Science.gov

Sample records for polyacrylic acid paa

  1. Precipitation of biomimetic fluorhydroxyapatite/polyacrylic acid nanostructures

    NASA Astrophysics Data System (ADS)

    Roche, Kevin J.; Stanton, Kenneth T.

    2015-01-01

    Ordered structures of fluorhydroxyapatite (FHA) nanoparticles that resemble the nanostructure of natural human enamel have been prepared. Wet precipitation in the presence of polyacrylic acid (PAA) was used, and the particle morphology was altered by varying several reaction conditions. High molecular weight PAA increased particle length from around 54 nm to several hundred nanometres, while maintaining particle width at 15 nm. PAA concentration and the order of mixing the reactants also influenced crystal morphology. Optimum conditions produced dense, aligned bundles of highly elongated nanorods, which are very similar to the hierarchical nanostructure of human tooth enamel.

  2. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    PubMed

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber.

  3. A biocompatible calcium salt of hyaluronic acid grafted with polyacrylic acid.

    PubMed

    Nakagawa, Yoshiyuki; Nakasako, Satoshi; Ohta, Seiichi; Ito, Taichi

    2015-03-01

    We have synthesized hyaluronic acid (HA) grafted with polyacrylic acid (PAA) via controlled radical polymerization (CRP) in aqueous media. The grafted HA (HA-g-PAA) showed slow degradation by hyaluronidase compared with unmodified HA as a result of the steric hindrance produced by grafted PAA, and PAA was detached by hydrolysis and enzymatic degradation by lipase. It formed an insoluble salt immediately after mixing with Ca(2+) by the binding between grafted PAA and Ca(2+). Both HA-g-PAA and its salt showed good biocompatibility, especially to mesothelial cells in vitro. Finally, they were administered into mice subcutaneously and intraperitoneally. The residue of the material was observed 7 days after subcutaneous administration, while the material was almost cleared from the peritoneum 7 days after intraperitoneal administration with or without Ca(2+). HA-g-PAA is expected to be applicable to medical uses such as drug delivery in the peritoneum and for materials preventing peritoneal adhesion.

  4. Controllable fabrication of soap-bubble-like structured polyacrylic acid nano-nets via electro-netting

    NASA Astrophysics Data System (ADS)

    Yang, Shangbin; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Qian, Jingfang; Sun, Gang

    2011-02-01

    Soap-bubble-like structured polyacrylic acid (PAA) nano-nets that comprise interlinked ultrathin nanowires with diameters of 10-35 nm are controllably prepared by a one-step electro-netting process.Soap-bubble-like structured polyacrylic acid (PAA) nano-nets that comprise interlinked ultrathin nanowires with diameters of 10-35 nm are controllably prepared by a one-step electro-netting process. Electronic supplementary information (ESI) available: Preparation procedure and characterization of PAA nano-nets. See DOI: 10.1039/c0nr00730g

  5. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    PubMed

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2. PMID:26695157

  6. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption.

    PubMed

    Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-11-20

    Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose. PMID:27561514

  7. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  8. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes.

    PubMed

    Lu, Ping; Hsieh, You-Lo

    2009-10-14

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  9. Self-Organization of Polystyrene-b-polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent Spreading.

    PubMed

    Guennouni, Zineb; Cousin, Fabrice; Fauré, Marie-Claude; Perrin, Patrick; Limagne, Denis; Konovalov, Oleg; Goldmann, Michel

    2016-03-01

    We present an in situ structural study of the surface behavior of PS-b-PAA monolayers at the air/water interface at pH 2, for which the PAA blocks are neutral and using N,N-dimethyformamide (DMF) as spreading solvent. The surface pressure versus molecular area isotherm shows a perfectly reversible pseudoplateau over several cycles of compression/decompression. The width of such plateau enlarges when increasing temperature, conversely to what is classically observed in the case of an in-plane first order transition. We combined specular neutron reflectivity (SNR) experiments with contrast variation to solve the profile of each block perpendicular to the surface with grazing-incidence small-angle scattering (GISAXS) measurements to determine the in-plane structure of the layer. SNR experiments showed that both PS and PAA blocks remain adsorbed on the surface for all surface pressure probed. A correlation peak at Q(xy)* = 0.021 Å(-1) is evidenced by GISAXS at very low surface pressure which intensity first increases on the plateau. When compressing further, its intensity decays while Q(xy)* is shifted toward low Q(xy). The peak fully disappears at the end of the plateau. These results are interpreted by the formation of surface aggregates induced by DMF molecules at the surface. These DMF molecules remain adsorbed within the PS core of the aggregates. Upon compression, they are progressively expelled from the monolayer, which gives rise to the pseudoplateau on the isotherm. The intensity of the GISAXS correlation peak is set by the amount of DMF within the monolayer as it vanishes when all DMF molecules are expelled. This result emphizes the role of the solvent in Langmuir monolayer formed by amphiphilic copolymers which hydrophobic and hydrophilic parts are composed by long polymer chains.

  10. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.

    PubMed

    Chen, Hong; Hsieh, You-Lo

    2005-05-20

    Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. PMID:15816022

  11. Energy Transfer of CdSe/ZnS Nanocrystals Encapsulated with Rhodamine-Dye Functionalized Poly(acrylic acid)

    PubMed Central

    Somers, Rebecca C.; Snee, Preston T.; Bawendi, Moungi G.; Nocera, Daniel G.

    2014-01-01

    Energy transfer between a CdSe/ZnS nanocrystal (NC) donor and a rhodamine isothiocyanate (RITC) acceptor has been achieved via a functionalized poly(acrylic acid) (PAA) encapsulating layer over the surface of the NC. The modification of PAA with both N-octylamine (OA) and 5-amino-1-pentanol (AP), [PAA-OA-AP], allows for the simultaneous water-solubilization and functionalization of the NCs, underscoring the ease of synthesizing NC-acceptor conjugates with this strategy. Photophysical studies of the NC-RITC constructs showed that energy transfer is efficient, with kFRET approaching 108 s−1. The ease of the covalent conjugation of molecules to NCs with PAA-OA-AP coating, together with efficient energy transfer, makes the NCs encapsulated with PAA-OA-AP attractive candidates for sensing applications. PMID:24926175

  12. Poly(acrylic acid)-poly(ethylene glycol) nanoparticles designed for ophthalmic drug delivery.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Tanase, Edi Constantin; Butnaru, Maria; Verestiuc, Liliana

    2014-02-01

    Poly(acrylic acid) (PAA) and poly(ethylene glycol) (PEG), four-arm, amine-terminated particles with nanometer size and spherical shape were obtained by the polymers cross-linking, via activation with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride, in a w/o emulsion. The morphology and surface charge of the final particles are strongly dependent on the molar ratio of PAA-PEG and the PAA concentration. The physicochemical characteristics correlated with the drug-loading capacity, in vitro and ex vivo release kinetics of pilocarpine hydrochloride and biocompatibility results indicate that these nanoparticles exhibit the prerequisite behavior for use as carriers of ophthalmic drugs. PMID:24357331

  13. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis

    PubMed Central

    2013-01-01

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential. PMID:23731716

  14. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  15. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis.

    PubMed

    Topuzogullari, Murat; Cakir Koc, Rabia; Dincer Isoglu, Sevil; Bagirova, Melahat; Akdeste, Zeynep; Elcicek, Serhat; Oztel, Olga N; Yesilkir Baydar, Serap; Canim Ates, Sezen; Allahverdiyev, Adil M

    2013-06-03

    Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.

  16. Formation of calcium carbonate films on chitosan substrates in the presence of polyacrylic acid

    SciTech Connect

    He, Linghao; Xue, Rui; Song, Rui

    2009-05-15

    In this investigation, chitosan membranes with different surface average degrees of deacetylation (DA) are prepared and then are employed as the support matrix to culture calcium carbonate (CaCO{sub 3}). In the presence of high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained on the surface of all chitosan films mainly consisted of vaterite, which suggests the presence of bulk PAA plays an overwhelming part in stabilizing the vaterite. As a comparison, the influences of active groups indicate that only in case of low concentration PAA the thin CaCO{sub 3} films grown on chitosan with 8% DA mainly consisted of vaterite owing to the strong nucleation ability of -NH{sub 2} group, whereas, for those grown on chitosan with 80% DA the CaCO{sub 3} films mainly consisted of aragonite. A more complex scenario revealed that in the case of intermediate concentration of PAA the formed polymorphs behave as mixtures of vaterite and aragonite. - Graphical abstract: Chitosan membranes with different degrees of deacetylation (DA) are employed as support to culture calcium carbonate (CaCO{sub 3}). In high concentration of polyacrylic acid (PAA), the CaCO{sub 3} films obtained consisted of vaterite. However, the CaCO{sub 3} film grown on chitosan with 8% DA mainly consisted of vaterite as opposed to aragonite for chitosan with 8% DA. The schematic presentation of the formation of calcium carbonate on chitosan films with different degrees of acetylation in the presence of PAA with low-, mid- and high concentrations.

  17. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    PubMed

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  18. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.

    PubMed

    Gratzl, Günther; Walkner, Sarah; Hild, Sabine; Hassel, Achim Walter; Weber, Hedda Katrin; Paulik, Christian

    2015-02-01

    The availability of polymeric antimicrobially active surfaces, which are mainly based on cationic surface effects, is limited. We have previously reported the discovery that, in addition to cationic surfaces, anionic surfaces based on poly(acrylic acid) (PAA) copolymers have a bactericidal effect. In this study, poly(styrene)-poly(acrylic acid)-diblock copolymers (PS-b-PAA) are used to describe the major variables causing the material to have a bactericidal effect on Escherichia coli ATCC 25922 in aqueous suspensions. Upon contact with water, the surface structure of the copolymer changes, the pH value decreases, and the PAA-block migrates toward the surface. Systematically modified antimicrobial tests show that the presence of acid-form PAA provides maximum antimicrobial activity of the material in slightly acidic conditions, and that an ion-exchange effect is the most probable mechanism. Antimicrobially inactive counter-ions inhibit the bactericidal activity of the copolymers, but the material can be regenerated by treatment with acids. PMID:25543987

  19. Mechanistic approaches on the antibacterial activity of poly(acrylic acid) copolymers.

    PubMed

    Gratzl, Günther; Walkner, Sarah; Hild, Sabine; Hassel, Achim Walter; Weber, Hedda Katrin; Paulik, Christian

    2015-02-01

    The availability of polymeric antimicrobially active surfaces, which are mainly based on cationic surface effects, is limited. We have previously reported the discovery that, in addition to cationic surfaces, anionic surfaces based on poly(acrylic acid) (PAA) copolymers have a bactericidal effect. In this study, poly(styrene)-poly(acrylic acid)-diblock copolymers (PS-b-PAA) are used to describe the major variables causing the material to have a bactericidal effect on Escherichia coli ATCC 25922 in aqueous suspensions. Upon contact with water, the surface structure of the copolymer changes, the pH value decreases, and the PAA-block migrates toward the surface. Systematically modified antimicrobial tests show that the presence of acid-form PAA provides maximum antimicrobial activity of the material in slightly acidic conditions, and that an ion-exchange effect is the most probable mechanism. Antimicrobially inactive counter-ions inhibit the bactericidal activity of the copolymers, but the material can be regenerated by treatment with acids.

  20. Brij-micelle and polyacrylic acid interaction investigated by Cu 2+-induced pyrene fluorescence: Effect of brij-micelle structure

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Prasun; Ghosh, Amit K.; Bandyopadhyay, Sayan

    2009-07-01

    Fluorescence response of pyrene has been studied in the presence of polyacrylic acid (PAA) and brij surfactant micelles with Cu 2+ as an ionic quencher. The quenched pyrene emission is completely recovered with the addition of PAA (conc. 2.4 × 10 -4 M) for brij 35 (poly-oxyethylene-23 lauryl ether) micelle indicating PAA-Cu 2+ complex formation at the micelle-water interface. This could be due to the relatively easier accessibility of PAA polymer chains near poly-oxyethylene chain of brij 35 micelle compared to brij 30 (poly-oxyethylene-4 lauryl ether) micelle. The interaction between brij-micelle and polymer is confirmed by turbidimetry and NMR spectroscopy.

  1. Comparison of the effects of chlorite-oxidized oxyamylose and polyacrylic acid on the multiplication of phytopathogenic viruses.

    PubMed

    Kluge, S

    1985-10-01

    Polyacrylic acid (PAA) and chlorite-oxidized oxyamylose (COAM) inhibit the multiplication of tobacco mosaic virus (TMV) in leaf disks by up to 50%. The reduction in TMV content is time-dependent and decreases with longer time intervals between the virus infection and the application of substances. The multiplication of potato virus X (PVX) in leaf disks is not affected by either PAA or COAM. In intact plants PAA produces a strong antiviral effect on both PVX and red clover mottle virus (RCMV). The effect produced by COAM is much less pronounced, although this substance is less toxic and could be used in a higher concentration than PAA. Neither of these compounds has a significant influence on the development of virus-induced necroses in Nicotiana glutinosa, Gomphrena globosa or Phaseolus vulgaris plants when administered one day before or after virus infection.

  2. Structure and Proton Conductivity in Mixtures of Poly(acrylic acid) and Imidazole

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Griffin, Philip J.; Winey, Karen I.; University of Pennsylvania Team

    2015-03-01

    Proton conductivity in polymer electrolyte membranes (PEMs) typically involves water, which requires that during operation the humidity of the PEM be carefully controlled. In contrast, anhydrous protic polymer membranes promote proton transport by incorporating heterocyclic molecules, such as imidazole and its derivatives, into acid-containing polymers. In this work, we explore the interplay between nanoscale-structure and proton conduction of poly(acrylic acid) (PAA) blended at varying compositions with 2-ethyl-4-methylimidazole (EMI). We present the glass transition temperature from differential scanning calorimetry, morphology characterization from X-ray scattering, and proton conductivity from electrical impedance spectroscopy.

  3. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid).

    PubMed

    Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-11-21

    If self-healing materials can be prepared via simple technology and methods using nontoxic materials, this would be a great step forward in the creation of environmentally friendly self-healing materials. In this paper, the specific structural parameters of the various hydrogen bonds between chitosan (CS) and polyacrylic acid (PAA) were calculated. Then, multilayer polyelectrolyte films were fabricated with CS and PAA based on layer-by-layer (LbL) self-assembly technology at different pH values. The possible influence of pH on the (CS/PAA) × 30 multilayer polyelectrolyte film was investigated. The results show that the interactions between CS and PAA, swelling capacity, microstructure, wettability, and self-healing ability are all governed by the pH of the CS solution. When the pH value of the CS solution is 3.0, the prepared multilayer polyelectrolyte film (CS3.0/PAA2.8) × 30 has fine-tuned interactions, a network-like structure, good swelling ability, good hydrophilicity, and excellent self-healing ability. This promises to greatly widen the future applications of environmentally friendly materials and bio-materials. PMID:26364567

  4. Stabilization of magnetorheological suspensions by polyacrylic acid polymers.

    PubMed

    Viota, J L; de Vicente, J; Durán, J D G; Delgado, A V

    2005-04-15

    This work is devoted to the synthesis and stabilization of magnetorheological suspensions constituted by monodisperse micrometer-sized magnetite spheres in aqueous media. The electrical double-layer characteristics of the solid/liquid interface were studied in the absence and presence of adsorbed layers of high molecular weight polyacrylic acids (PAA; Carbopol). Since the Carbopol-covered particles can be thought of as "soft" colloids, Ohshima's theory was used to gain information of the surface potential and the charge density of the polymer layer. The effect of the pH of the solution on the double-layer characteristics is related to the different conformations of the adsorbed molecules provoked by the dissociation of the acrylic groups present in polymer molecules. The stability of the suspensions was experimentally studied for different pH and polymer concentrations, and in the absence or presence of a weak magnetic field applied. The stability of the suspensions was explained using the classical DLVO theory of colloidal stability extended to account for hydration, steric, and magnetic interactions between particles. Diagrams of potential energy vs interparticle distance show the predominant effect of steric, hydrophilic/hydrophobic, and magnetic interactions on the whole stability of the system. The best conditions to obtain stable suspensions were found when strong steric and hydrophilic repulsions hinder the coagulation between polymer-covered particles, simultaneously avoiding sedimentation by the thickening effect of the polymer solution. When a not too high molecular weight PAA was employed in a low concentration, the task of a long-time antisettling effect compatible with the desired magnetic response of the fluid was achieved. PMID:15780292

  5. Interactions between poly(acrylic acid) and sodium dodecyl sulfate: isothermal titration calorimetric and surfactant ion-selective electrode studies.

    PubMed

    Wang, C; Tam, K C

    2005-03-24

    Interaction between a monodispersed poly(acrylic acid) (PAA) (M(W) = 5670 g/mol, M(w)/M(n) = 1.02) with sodium dodecyl sulfate (SDS) was investigated using isothermal titration calorimetry (ITC), ion-selective electrode (ISE), and dynamic light scattering measurements. Contrary to previous studies, we report for the first time evidence of interaction between SDS and PAA when the degree of neutralization (alpha) of PAA is lower than 0.2. Hydrocarbon chains of SDS cooperatively bind to apolar segments of PAA driven by hydrophobic interaction. The interaction is both enthalpy and entropy favored (deltaH is negative but deltaS is positive). In 0.05 wt % PAA solution, the SDS concentration corresponding to the onset of binding (i.e., CAC) is approximately 2.4 mM and the saturation concentration (i.e., C(S)) is approximately 13.3 mM when alpha = 0. When PAA was neutralized and ionized, the binding was hindered by the enhanced electrostatic repulsion between negatively charged SDS and PAA chains and improved solubility of the polymer. With increasing alpha to 0.2, CAC increases to approximately 6.2 mM, C(S) drops to 8.6 mM, and the interaction is significantly weakened where the amount of bound SDS on PAA is reduced considerably. The values of CAC and C(S) derived from different techniques are in good agreement. The binding results in the formation of mixed micelles on apolar PAA coils, which then expands and dissociates into single PAA chains. The majority of unneutralized PAA molecules exist as single polymer chains stabilized by bound SDS micelles in solution after the saturation concentration.

  6. Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria.

    PubMed

    Padwal, Priyanka; Bandyopadhyaya, Rajdip; Mehra, Sarika

    2014-12-23

    The emergence of drug resistance is a major problem faced in current tuberculosis (TB) therapy, representing a global health concern. Mycobacterium is naturally resistant to most drugs due to export of the latter outside bacterial cells by active efflux pumps, resulting in a low intracellular drug concentration. Thus, development of agents that can enhance the effectiveness of drugs used in TB treatment and bypass the efflux mechanism is crucial. In this study, we present a new nanoparticle-based strategy for enhancing the efficacy of existing drugs. To that end, we have developed poly(acrylic acid) (PAA)-coated iron oxide (magnetite) nanoparticles (PAA-MNPs) as efflux inhibitors and used it together with rifampicin (a first line anti-TB drug) on Mycobacterium smegmatis. PAA-MNPs of mean diameter 9 nm interact with bacterial cells via surface attachment and are then internalized by cells. Although PAA-MNP alone does not inhibit cell growth, treatment of cells with a combination of PAA-MNP and rifampicin exhibits a synergistic 4-fold-higher growth inhibition compared to rifampicin alone. This is because the combination of PAA-MNP and rifampicin results in up to a 3-fold-increased accumulation of rifampicin inside the cells. This enhanced intracellular drug concentration has been explained by real-time transport studies on a common efflux pump substrate, ethidium bromide (EtBr). It is seen that PAA-MNP increases the accumulation of EtBr significantly and also minimizes the EtBr efflux in direct proportion to the PAA-MNP concentration. Our results thus illustrate that the addition of PAA-MNP with rifampicin may bypass the innate drug resistance mechanism of M. smegmatis. This generic strategy is also found to be successful for other anti-TB drugs, such as isoniazid and fluoroquinolones (e.g., norfloxacin), only when stabilized, coated nanoparticles (such as PAA-MNP) are used, not PAA or MNP alone. We hence establish coated nanoparticles as a new class of efflux

  7. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate. PMID:20361751

  8. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  9. Acute toxicity of peracetic acid (PAA) to fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA; also called peroxyacetic acid) is a promising new aquatic disinfectant that has also been used to treat parasites and fungus. It is registered with the U.S. Environmental Protection Agency (EPA) as an antimicrobial compound approved for indoor use on hard, non-porous surfaces. T...

  10. Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection.

    PubMed

    Zhao, Yan; Wang, Ying; Zhang, Xiaobin; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-08-01

    The ultrasensitive monitoring of glucose with a fast and accurate method is significant in potential therapeutics and optimizes protein biosynthesis. Incorporation of enzyme into matrix is considered as promising candidates for constructing highly sensitive glucose-responsive systems. In this study, three-dimensional poly(acrylic acid) brushes-nanospherical silica (PAA-nano silica) with high amplification capability and stability were used to covalently immobilize bienzymes for cascade enzymatic catalysis. The major advantages of PAA-nano silica-bienzyme co-incorporation is that the enzymes are proximity distribution, and such close confinement both minimized the diffusion of intermediates among the enzymes in the consecutive reaction and improve the utilization efficiency of enzymes, thereby enhancing the overall reaction efficiency and specificity. Thus, this present bienzymatic biosensor shows robust signal amplification and ultrasensitivity of glucose-responsive properties with a detection limit of 0.04μM. PMID:27216683

  11. Relevance of nonfunctional linear polyacrylic acid for the biodegradation of superabsorbent polymer in soils.

    PubMed

    Bai, Mo; Wilske, Burkhard; Buegger, Franz; Esperschütz, Jürgen; Bach, Martin; Frede, Hans-Georg; Breuer, Lutz

    2015-04-01

    Biodegradability is a desired characteristic for synthetic soil amendments. Cross-linked polyacrylic acid (PAA) is a synthetic superabsorbent used to increase the water availability for plant growth in soils. About 4% within products of cross-linked PAA remains as linear polyacrylic acid (PAAlinear). PAAlinear has no superabsorbent function but may contribute to the apparent biodegradation of the overall product. This is the first study that shows specifically the biodegradation of PAAlinear in agricultural soil. Two (13)C-labeled PAAlinear of the average molecular weights of 530, 400, and 219,500 g mol(-1) were incubated in soil. Mineralization of PAAlinear was measured directly as the (13)CO2 efflux from incubation vessels using an automatic system, which is based on (13)C-sensitive wavelength-scanned cavity ring-down spectroscopy. After 149 days, the PAAlinear with the larger average molecular weight and chain length showed about half of the degradation (0.91% of the initial weight) of the smaller PAAlinear (1.85%). The difference in biodegradation was confirmed by the δ(13)C signature of the microbial biomass (δ(13)Cmic), which was significantly enriched in the samples with short PAAlinear (-13‰ against reference Vienna Pee Dee Belemnite,VPDB) as compared to those with long PAAlinear (-16‰ VPDB). In agreement with other polymer studies, the results suggest that the biodegradation of PAAlinear in soil is determined by the average molecular weight and occurs mainly at terminal sites. Most importantly, the study outlines that the size of PAA that escapes cross-linking can have a significant impact on the overall biodegradability of a PAA-based superabsorbent.

  12. Electrospun Poly(acrylic acid)/Silica Hydrogel Nanofibers Scaffold for Highly Efficient Adsorption of Lanthanide Ions and Its Photoluminescence Performance.

    PubMed

    Wang, Min; Li, Xiong; Hua, Weikang; Shen, Lingdi; Yu, Xufeng; Wang, Xuefen

    2016-09-14

    Combined with the features of electrospun nanofibers and the nature of hydrogel, a novel choreographed poly(acrylic acid)-silica hydrogel nanofibers (PAA-S HNFs) scaffold with excellent rare earth elements (REEs) recovery performance was fabricated by a facile route consisting of colloid-electrospinning of PAA/SiO2 precursor solution, moderate thermal cross-linking of PAA-S nanofiber matrix, and full swelling in water. The resultant PAA-S HNFs with a loose and spongy porous network structure exhibited a remarkable adsorption capacity of lanthanide ions (Ln(3+)) triggered by the penetration of Ln(3+) from the nanofiber surface to interior through the abundant water channels, which took full advantage of the internal adsorption sites of nanofibers. The effects of initial solution pH, concentration, and contact time on adsorption of Ln(3+) have been investigated comprehensively. The maximum equilibrium adsorption capacities for La(3+), Eu(3+), and Tb(3+) were 232.6, 268.8, and 250.0 mg/g, respectively, at pH 6, and the adsorption data were well-fitted to the Langmuir isotherm and pseudo-second-order models. The resultant PAA-S HNFs scaffolds could be regenerated successfully. Furthermore, the proposed adsorption mechanism of Ln(3+) on PAA-S HNFs scaffolds was the formation of bidentate carboxylates between carboxyl groups and Ln(3+) confirmed by FT-IR and XPS analysis. The well-designed PAA-S HNFs scaffold can be used as a promising alternative for effective REEs recovery. Moreover, benefiting from the unique features of Ln(3+), the Ln-PAA-S HNFs simultaneously exhibited versatile advantages including good photoluminescent performance, tunable emission color, and excellent flexibility and processability, which also hold great potential for applications in luminescent patterning, underwater fluorescent devices, sensors, and biomaterials, among others. PMID:27537710

  13. Controlled calcite nucleation on polarized calcite single crystal substrates in the presence of polyacrylic acid

    NASA Astrophysics Data System (ADS)

    Wada, Norio; Horiuchi, Naohiro; Nakamura, Miho; Nozaki, Kosuke; Hiyama, Tetsuo; Nagai, Akiko; Yamashita, Kimihiro

    2015-04-01

    We studied theoretically and experimentally the effects of the surface electric field generated by polarization and polyacrylic acid (PAA) additives on the heterogeneous nucleation of calcite on the calcite single crystal substrates with (10.4), (10.0) and (00.1) orientations. A set of "in-situ" experiments with optical microscopy was performed to determine the waiting time of CaCO3 nucleation, defined as the time interval between the onset of the diffusion of CO2 and the appearance of the first visible precipitation. Calcite was nucleated on the oriented calcite substrates through diffusion of NH3 and CO2 gas from a solid ammonium carbonate into calcium chloride solutions. A theoretical analysis showed that the surface electric field of the polarized calcite substrate decrease the activation energy for nucleation and consequently promotes nucleation. Experimentally, the surface electric field and PAA addition were found to decrease both contact angles and waiting times, and as a result, promote the heterogeneous nucleation. Combined effect of PAA and surface electric field further reduced contact angles and waiting times regardless of orientation differences of the calcite substrates. The cooperation acts remarkably on N-surface of the respective calcite substrates. The results were explained by the Cassie's equation, a classical heterogeneous nucleation theory under a surface electric field, and matching of the charged sites on the PAA chain with the ion arrangement on the calcite substrate.

  14. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers.

    PubMed

    Liu, Chao; Thormann, Esben; Claesson, Per M; Tyrode, Eric

    2014-07-29

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of the spectra, provided information regarding composition, including water content, and ionization state of weak acidic and basic groups present in the thin composite film. Low molecular weight PAA, mainly in its protonated form, diffuses into and out of the composite film during adsorption and rinsing steps. The higher molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using atomic force microscopy operating in PeakForce tapping mode. The multilayer consists of islands that grow in lateral dimension and height during the build-up process, leading to close to exponentially increasing roughness with deposition number. Both diffusion in and out of at least one of the two components (PAA) and the island-like morphology contribute to the nonlinear growth of chitosan/PAA multilayers.

  15. Nanoparticles of Block Ionomer Complexes from Double Hydrophilic Poly(acrylic acid)- b-poly(ethylene oxide)- b-poly(acrylic acid) Triblock Copolymer and Oppositely Charged Surfactant

    NASA Astrophysics Data System (ADS)

    Peng, Zhiping; Sun, Yuelong; Liu, Xinxing; Tong, Zhen

    2010-01-01

    The novel water-dispersible nanoparticles from the double hydrophilic poly(acrylic acid)- b-poly(ethylene oxide)- b-poly(acrylic acid) (PAA- b-PEO- b-PAA) triblock copolymer and oppositely charged surfactant dodecyltrimethyl ammonium bromide (DTAB) were prepared by mixing the individual aqueous solutions. The structure of the nanoparticles was investigated as a function of the degree of neutralization (DN) by turbidimetry, dynamic light scattering (DSL), ζ-potential measurement, and atomic force microscope (AFM). The neutralization of the anionic PAA blocks with cationic DTAB accompanied with the hydrophobic interaction of alkyl tails of DTAB led to formation of core-shell nanoparticles with the core of the DTAB neutralized PAA blocks and the shell of the looped PEO blocks. The water-dispersible nanoparticles with negative ζ-potential were obtained over the DN range from 0.4 to 2.0 and their sizes depended on the DN. The looped PEO blocks hindered the further neutralization of the PAA blocks with cationic DTAB, resulting in existence of some negative charged PAA- b-PEO- b-PAA backbones even when DN > 1.0. The spherical and ellipsoidal nature of these nanoparticles was observed with AFM.

  16. Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates: 1. Experiment

    SciTech Connect

    Wu,T.; Gong, P.; Szleifer, I.; Vicek, P.; Subr, V.; Genzer, J.

    2007-01-01

    We describe experiments pertaining to the formation of surface-anchored poly(acrylic acid) (PAA) brushes with a gradual variation of the PAA grafting densities on flat surfaces and provide detailed analysis of their properties. The PAA brush gradients are generated by first covering the substrate with a molecular gradient of the polymerization initiator, followed by the 'grafting from' polymerization of tert-butyl acrylate (tBA) from these substrate-bound initiator centers, and finally converting the PtBA into PAA. We use spectroscopic ellipsometry to measure the wet thickness of the grafted PAA chains in aqueous solutions at three different pH values (4, 5.8, and 10) and a series of ionic strengths (IS). Our measurements reveal that at low grafting densities, s, the wet thickness of the PAA brush (H) remains relatively constant, the polymers are in the mushroom regime. Beyond a certain value of s, the macromolecules enter the brush regime, where H increases with increasing s. For a given s, H exhibits a nonmonotonic behavior as a function of the IS. At large IS, the H is small because the charges along PAA are completely screened by the excess of the external salt. As IS decreases, the PAA enters the so-called salt brush (SB) regime, where H increases. At a certain value of IS, H reaches a maximum and then decreases again. The latter is a typical brush behavior in so-called osmotic brush (OB) regime. We provide detailed discussion of the behavior of the grafted PAA chains in the SB and OB regimes.

  17. Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy.

    PubMed

    Zhang, Manjie; Wang, Tingting; Zhang, Lingyu; Li, Lu; Wang, Chungang

    2015-11-01

    We have rationally designed a new theranostic agent by coating near-infrared (NIR) light-absorbing polypyrrole (PPY) with poly(acrylic acid) (PAA), in which PAA acts as a nanoreactor and template, followed by growing small fluorescent silica nanoparticles (fSiO2 NPs) inside the PAA networks, resulting in the formation of polypyrrole@polyacrylic acid/fluorescent mesoporous silica (PPY@PAA/fmSiO2 ) core-shell NPs. Meanwhile, DOX-loaded PPY@PAA/fmSiO2 NPs as pH and NIR dual-sensitive drug delivery vehicles were employed for fluorescence imaging and chemo-photothermal synergetic therapy in vitro and in vivo. The results demonstrate that the PPY@PAA/fmSiO2 NPs show high in vivo tumor uptake by the enhanced permeability and retention (EPR) effect after intravenous injection as revealed by in vivo fluorescence imaging, which is very helpful for visualizing the location of the tumor. Moreover, the obtained NPs inhibit tumor growth (95.6 % of tumors were eliminated) because of the combination of chemo-photothermal therapy, which offers a synergistically improved therapeutic outcome compared with the use of either therapy alone. Therefore, the present study provides new insights into developing NIR and pH-stimuli responsive PPY-based multifunctional platform for cancer theranostics.

  18. Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid).

    PubMed

    Lin, Wanjuan; Fritz, Karolina; Guerin, Gerald; Bardajee, Ghasem R; Hinds, Sean; Sukhovatkin, Vlad; Sargent, Edward H; Scholes, Gregory D; Winnik, Mitchell A

    2008-08-01

    Hydrophobic lead sulfide quantum dots (PbS/OA) synthesized in the presence of oleic acid were transferred from nonpolar organic solvents to polar solvents such as alcohols and water by a simple ligand exchange with poly(acrylic acid) (PAA). Ligand exchange took place rapidly at room temperature When a colloidal solution of PbS/OA in tetrahydrofuran (THF) was treated with excess PAA, the PbS/PAA nanocrystals that formed were insoluble in hexane and toluene but could be dissolved in methanol or water, where they formed colloidal solutions that were stable for months. Ligand exchange was accompanied by a small blue shift in the band-edge absorption, consistent with a small reduction in particle size. While there was a decrease in quantum yield associated with ligand exchange and transfer to polar solvents, as is commonly found for colloidal quantum dots, the quantum yields determined were impressively high: PbS/OA in toluene (82%) and in THF (58%); PbS/PAA in THF (42%) and in water (24%). The quantum yields for the PbS/PAA solutions decreased over time as the solutions were allowed to age in the presence of air.

  19. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  20. Development and in vivo evaluation of a new oral nanoparticulate dosage form for leuprolide based on polyacrylic acid.

    PubMed

    Iqbal, Javed; Vigl, Claudia; Moser, Gernot; Gasteiger, Markus; Perera, Glen; Bernkop-Schnürch, Andreas

    2011-08-01

    It was the aim of this study to develop a nanoparticulate oral drug delivery system for leuprolide based on polyacrylic acid (PAA). In order to achieve formation of nanoparticles in a mild, aqueous environment, two different techniques were combined, namely hydrophobic ion pairing between leuprolide and sodium dodecyl sulphate in a first step, followed by encapsulation into nanoparticles gained by interpolymer complexation between polyacrylic acid and Pluronic F68. The obtained nanoparticles were characterized regarding particle size distribution, drug encapsulation efficiency and in vitro release profile. Additionally, the pharmacokinetic profiles of leuprolide after oral administration of PAA-nanoparticulate and PAA-control tablets to male Sprague-Dawley rats were assessed and compared. It could be shown, that hydrophobic ion pairing increased encapsulation efficacy of leuprolide and leads to a slowed drug release of nanoparticulate suspensions. Relative oral bioavailability of leuprolide could be increased by nanoparticulate tablets up to 4.2-fold. Results verify that the suggested approach is a promising strategy for the design of oral delivery systems for oral administration of peptide drugs.

  1. Enhancement in the critical current density of C-doped MgB2 wire using a polyacrylic acid dopant.

    PubMed

    Lee, Seung Muk; Hwang, Soo Min; Lee, Chang Min; Kim, Won; Joo, Jinho; Lim, Jun Hyung; Kim, Chan-Joong; Hong, Gye-Won

    2012-02-01

    C-doped MgB2 wires were fabricated from a polyacrylic acid (PAA) using a conventional in-situ PIT technique. The effects of the PAA content on the lattice parameter, microstructure, critical temperature (Tc) and critical current density (Jc) were examined. With increasing PAA content, the amount of MgO in the sample increased but the crystallinity, a-axis lattice parameter, and Tc of MgB2 wires decreased, indicating that the C that decomposed from PAA during heat treatment had substituted for B. All doped samples exhibited a higher Jc than the undoped sample at high magnetic field, and the Jc(B) property improved with increasing PAA content: for the 7 wt% doped sample, the Jc was approximately 3-times higher than that of the pristine sample (1.28 kA/cm2 vs. 3.43 kA/cm2) at 5 K and 6.6 T. The improved Jc(B) of the doped sample was attributed to the decreased grain size, enlarged lattice distortion and increased C doping level.

  2. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  3. Water dispersible polytetrafluoroethylene microparticles prepared by grafting of poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Yang, Changqiao; Xu, Lu; Zeng, Hongyan; Tang, Zhongfeng; Zhong, Lei; Wu, Guozhong

    2014-10-01

    Due to the hydrophobic nature and high gravimetric density, it is very difficult to obtain water dispersible polytetrafluoroethylene (PTFE) powder. In this work, hydrophilic PTFE microparticles were successfully prepared by grafting of poly(acrylic acid) onto PTFE micropowder via a pre-irradiation method. The as-obtained hydrophilic PTFE microparticles were analyzed by FT-IR, 1H NMR, CA, SEM and TGA. After neutralization by sodium hydroxide, the water contact angle decreased from 145.69° for pristine PTFE to 63.38° for PTFE-g-NaAA. The obtained micropowder can be easily dispersed in water to form a dispersion with very high stability. Furthermore, the presence of grafted PAA shows no obvious influence on degradation temperature of PTFE backbones.

  4. Structural and behavioral characteristics of radiolytically synthesized polyacrylic acid-polyacrylonitrile copolymeric hydrogels

    NASA Astrophysics Data System (ADS)

    Bera, Anuradha; Misra, R. K.; Singh, Shailendra K.

    2013-10-01

    Copolymeric hydrogels of polyacrylic acid (PAA) - polyacrylonitrile (PAN) was radiolytically synthesized from their respective monomers with trimethyloltrimethacrylate (TMPTMA) as the crosslinker wherein both polymerization and crosslinking could be achieved in a single step reaction using 60Co γ-radiation under varying doses and dose rates. The formation of the hydrogels was confirmed by their FT-IR analysis, while their thermal degradation patterns were investigated through thermogravimetric analysis in both the dry and swelled state. The water sorption studies showed rapid swelling behavior of these hydrogels, where swelling (%EWC) was found to be strongly dependent on the ratio of the two monomers in the hydrogels and the swelling kinetics dependent on the dose rates of hydrogel synthesis. These radiolytically synthesized hydrogels responded to electrical stimulus both in terms of the bending speed as well as bending angle under an applied voltage. The nature of the deformation was reversible and can be controlled through switching the voltage on and off.

  5. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability.

    PubMed

    Xiang, Fangming; Ward, Sarah M; Givens, Tara M; Grunlan, Jaime C

    2015-02-01

    Hydrogen bonded poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) layer-by-layer assemblies are highly elastomeric, but more permeable than ionically bonded thin films. In order to expand the use of hydrogen-bonded assemblies to applications that require a better gas barrier, the effect of assembling pH on the oxygen permeability of PAA/PEO multilayer thin films was investigated. Altering the assembling pH leads to significant changes in phase morphology and bonding. The amount of intermolecular hydrogen bonding between PAA and PEO is found to increase with increasing pH due to reduction of COOH dimers between PAA chains. This improved bonding leads to smaller PEO domains and lower gas permeability. Further increasing the pH beyond 2.75 results in higher oxygen permeability due to partial deprotonation of PAA. By setting the assembling pH at 2.75, the negative impacts of COOH dimer formation and PAA ionization on intermolecular hydrogen bonding can be minimized, leading to a 50% reduction in the oxygen permeability of the PAA/PEO thin film. A 20 bilayer coating reduces the oxygen transmission rate of a 1.58 mm natural rubber substrate by 20 ×. These unique nanocoatings provide the opportunity to impart a gas barrier to elastomeric substrates without altering their mechanical behavior.

  6. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  7. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response. PMID:25967171

  8. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.

    PubMed

    Laumann, Susanne; Micić, Vesna; Lowry, Gregory V; Hofmann, Thilo

    2013-08-01

    The limited transport of nanoscale zero-valent iron (nZVI) in porous media is a major obstacle to its widespread application for in situ groundwater remediation. Previous studies on nZVI transport have mainly been carried out in quartz porous media. The effect of carbonate minerals, which often predominate in aquifers, has not been evaluated to date. This study assessed the influence of the carbonate minerals in porous media on the transport of polyacrylic acid modified nZVI (PAA-nZVI). Increasing the proportion of carbonate sand in the porous media resulted in less transport of PAA-nZVI. Predicted travel distances were reduced to a few centimeters in pure carbonate sand compared to approximately 1.6 m in quartz sand. Transport modeling showed that the attachment efficiency and deposition rate coefficient increased linearly with increasing proportion of carbonate sand.

  9. 40 CFR 721.10702 - Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thio polyacrylic... Significant New Uses for Specific Chemical Substances § 721.10702 Polyfluorinated alkyl thio polyacrylic acid... substance identified generically as polyfluorinated alkyl thio polyacrylic acid-acrylamide (PMN P-11-534)...

  10. High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution

    NASA Astrophysics Data System (ADS)

    Yi, Zhigao; Lu, Wei; Liu, Hongrong; Zeng, Songjun

    2014-12-01

    Polyacrylic acid (PAA) modified NaYF4:Gd/Yb/Er upconversion nanorods (denoted as PAA-UCNRs) are demonstrated for tri-modal upconversion (UC) optical, computed X-ray tomography (CT), and magnetic resonance imaging (MRI). The hydrophilic PAA-UCNRs were obtained from hydrophobic oleic acid (OA) capped UCNRs (denoted as OA-UCNRs) using a ligand exchange method. The as-prepared UCNRs with a hexagonal phase structure present high monodispersity. These PAA-UCNRs are successfully used as ideal probes for in vivo UC luminescence bioimaging and synergistic X-ray and UC bioimaging. Moreover, X-ray CT imaging reveals that PAA-UCNRs can act as contrast agents for improved detection of the liver and spleen. In addition, a significant signal enhancement in the liver is observed in in vivo MRI, indicating that PAA-UCNRs are ideal T1-weighted MRI agents. More importantly, in vivo long-term tracking based on these PAA-UCNRs in the live mice and the corresponding ex vivo bioimaging of isolated organs also verify the translocation of PAA-UCNRs from the liver to the spleen, and the observed intense UC signals from the feces reveal the biliary excretion mechanism of these UCNRs. These findings contribute to understanding of the translocation and potential route for excretion of PAA-UCNRs, which can provide an important guide for the diagnosis and detection of diseases based on these UCNRs.Polyacrylic acid (PAA) modified NaYF4:Gd/Yb/Er upconversion nanorods (denoted as PAA-UCNRs) are demonstrated for tri-modal upconversion (UC) optical, computed X-ray tomography (CT), and magnetic resonance imaging (MRI). The hydrophilic PAA-UCNRs were obtained from hydrophobic oleic acid (OA) capped UCNRs (denoted as OA-UCNRs) using a ligand exchange method. The as-prepared UCNRs with a hexagonal phase structure present high monodispersity. These PAA-UCNRs are successfully used as ideal probes for in vivo UC luminescence bioimaging and synergistic X-ray and UC bioimaging. Moreover, X-ray CT imaging

  11. Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization.

    PubMed

    Xie, Liqin; Lan, Fang; Li, Wenliao; Liu, Ziyao; Ma, Shaohua; Yang, Qi; Wu, Yao; Gu, Zhongwei

    2014-11-01

    Recently, the atom transfer radical polymerization (ATRP) of acrylic monomers in many reaction systems has been successfully accomplished. However, its application in aqueous solution is still a challenging task. In this work, polyacrylic acid (PAA) brushes with tunable length were directly grafted from P(St-AA)/Fe3O4 composite microspheres in aqueous solution via an improved method, activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP). This reaction was carried out in environment-friendly solvent. As well, this method overcame the sensitivity of the catalyst. Due to the strong coordination interaction of carboxyl groups, PAA brushes were employed for immobilizing gold nanoparticles, which were prepared via the in situ reduction of chloroauric acid. The PAA brushes modified magnetic composite microspheres decorating with gold nanoparticles were efficient for specific immobilization and separation of bovine serum albumin (BSA) from aqueous solution under the external magnetic field.

  12. Interactions between lead-zirconate titanate, polyacrylic acid, and polyvinyl butyral in ethanol and their influence on electrophoretic deposition behavior.

    PubMed

    Kuscer, Danjela; Bakarič, Tina; Kozlevčar, Bojan; Kosec, Marija

    2013-02-14

    Electrophoretic deposition (EPD) is an attractive method for the fabrication of a few tens of micrometer-thick piezoelectric layers on complex-shape substrates that are used for manufacturing high-frequency transducers. Niobium-doped lead-zirconate titanate (PZT Nb) particles were stabilized in ethanol using poly(acrylic acid) (PAA). With Fourier-transform infrared spectroscopy (FT-IR), we found that the deprotonated carboxylic group from the PAA is coordinated with the metal in the perovskite PZT Nb structure, resulting in a stable ethanol-based suspension. The hydroxyl group from the polyvinyl butyral added into the suspension to prevent the formation of cracks in the as-deposited layer did not interact with the PAA-covered PZT Nb particles. PVB acts as a free polymer in ethanol-based suspensions. The electrophoretic deposition of micro- and nanometer-sized PZT Nb particles from ethanol-based suspensions onto electroded alumina substrates was attempted in order to obtain uniform, crack-free deposits. The interactions between the PZT Nb particles, the PAA, and the PVB in ethanol will be discussed and related to the properties of the suspensions, the deposition yield and the morphology of the as-deposited PZT Nb thick film.

  13. Properties and mechanisms of drug release from matrix tablets containing poly(ethylene oxide) and poly(acrylic acid) as release retardants.

    PubMed

    Zhang, Feng; Meng, Fan; Lubach, Joseph; Koleng, Joseph; Watson, N A

    2016-08-01

    The interactions between poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) in aqueous medium at pH 6.8 were investigated in the current study. We have also studied the effect of interpolymer interactions and various formulation variables, including the molecular weight of PEO, the ratio between PEO and PAA, the crystallinity of PEO, and the presence of an acidifying agent, on the release of theophylline from matrix tablets containing both PEO and PAA as release retardants. At pH 6.8, the synergy in solution viscosity between PEO and PAA as the result of ion-dipole interaction was observed in this study. The release of theophylline from the matrix tablets containing physical mixtures of PEO and PAA was found to be a function of dissolution medium pH because of the pH-dependent interactions between these two polymers. Because of the formation of water insoluble interpolymer complex between PEO and PAA in aqueous medium at pH below 4.0, the release of theophylline was independent of PEO molecular weight and was controlled by Fickian diffusion mechanism in 0.01N hydrochloric acid solution. In comparison, the drug release was a function of PEO molecular weight and followed the anomalous transport mechanism in phosphate buffer pH 6.8. The presence of PAA exerted opposite effects on the release of theophylline in phosphate buffer pH 6.8. In one aspect, theophylline release was accelerated because the erosion of PAA was much faster than that of PEO at pH6.8. On the opposite aspect, theophylline release was slowed down because of the formation of insoluble complex inside the gel layer as the result of the acidic microenvironment induced by PAA, and the increase in the viscosity of the gel layer as the result of the synergy between PEO and PAA. These two opposite effects offset each other. As a result, the release of theophylline remained statistically the same even when 75% PEO in the formulation was replaced with PAA. In phosphate buffer pH 6.8, the release of

  14. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid.

    PubMed

    Lin, Chia-Lung; Lee, Chia-Fen; Chiu, Wen-Yen

    2005-11-15

    Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected. PMID:16009367

  15. A Novel Route for Preparing Highly Stable Fe3O4 Fluid with Poly(Acrylic Acid) as Phase Transfer Ligand

    NASA Astrophysics Data System (ADS)

    Oanh, Vuong Thi Kim; Lam, Tran Dai; Thu, Vu Thi; Lu, Le Trong; Nam, Pham Hong; Tam, Le The; Manh, Do Hung; Phuc, Nguyen Xuan

    2016-08-01

    Highly stable Fe3O4 liquid was synthesized by thermal decomposition using poly(acrylic acid) (PAA) as a phase transfer ligand. The crystalline structure, morphology, and magnetic properties of the as-prepared samples were thoroughly characterized. Results demonstrated that the magnetic Fe3O4 nanomaterial was formed in liquid phase with a spinel single-phase structure, average size of 8-13 nm, and high saturation magnetization (up to 75 emu/g). The PAA-capped Fe3O4 nanoparticles displayed high stability over a wide pH range (from 4 to 7) in 300 mM salt solution. More importantly, the heat-generating capacity of the nanoparticle systems was quantified at a specific absorption rate (SAR) of 70.22 W/g, which is 35% higher than magnetic nanoparticles coated with sodium dodecyl sulfate (SDS). These findings suggest the potential application of PAA-coated magnetic nanoparticles in magnetic hyperthermia.

  16. Sanitizing with peracetic acid (PAA)- An alternative treatment to use in aquaculture ...?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the lack of approved treatments for fish disease, disinfectants were tested to treat fish pathogens. One of these substances is peracetic acid (PAA). PAA is an agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harmful ...

  17. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  18. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs.

  19. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  20. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs. PMID:27208478

  1. Polyacrylic acid attenuates ethylene glycol induced hyperoxaluric damage and prevents crystal aggregation in vitro and in vivo.

    PubMed

    Sridharan, Badrinathan; Ganesh, Rajesh Nachiappa; Viswanathan, Pragasam

    2016-05-25

    The study explores calcium oxalate crystal inhibiting characteristic of polyacrylic acid (pAA), an anionic polymer in in vitro and in vivo. Animals were divided into 5 groups where group 1 served as control, group 2 were made hyperoxaluric by supplementing with Ethylene glycol (EG) 0.75% (v/v) for 30 days. Group 3, 4 & 5 were also given with EG and treated simultaneously with 2.5, 5 & 10 mg of pAA/kg of body weight, respectively. Urine, serum and tissue analyses along with histological studies were performed at the end of the 30 days study. In vitro crystallization was significantly inhibited by pAA and further it was supported by particle size analyses, XRD and FT-IR studies. Toxicological analyses showed that pAA was safe to use in animals at concentrations below 100 mg/kg BW. In vivo anti-urolithic study showed significant improvement in urinary lithogenic factors (calcium, oxalate, phosphate, citrate & magnesium) and renal function parameters (creatinine, urea and protein). Tissue analyses on anti-oxidant enzyme activity and lipid peroxides showed maintenance of tissue antioxidant status in the pAA supplemented rats and histological studies demonstrated the nephroprotection offered by pAA and were concurrent to the biochemical analyses. Supplementation of pAA not only reduces the crystal aggregation but also regulates the expression and localization of crystal inhibiting proteins and gene expression of inflammatory cytokines in experimental animals. In summary, pAA is a potent anti-urolithic agent in rats and we can propose that 10 mg/kg body weight is the effective dosage of pAA and this concentration can be used for further studies.

  2. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  3. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  4. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering. PMID:24460239

  5. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor.

    PubMed

    Jha, Sunil K; Hayashi, Kenshi

    2015-03-01

    In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation. PMID:25618646

  6. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers

    PubMed Central

    Paik, Bradford A.; Blanco, Marco A.; Jia, Xinqiao; Roberts, Christopher J.; Kiick, Kristi L.

    2015-01-01

    Polymer-peptide conjugates were produced via the copper-catalyzed alkyne-azide cycloaddition of poly(tert butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom-transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and titration of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA’s ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates. PMID:25611563

  7. Cell type-specific response to high intracellular loading of polyacrylic acid-coated magnetic nanoparticles

    PubMed Central

    Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca

    2015-01-01

    Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835

  8. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent.

  9. Optimal Parameter Determination for Tritiated Water Storage in Polyacrylic Networks

    SciTech Connect

    Postolache, C.; Matei, Lidia; Georgescu, Rodica; Ionita, Gh.

    2005-07-15

    Due to the remarkable capacity of water retaining, croslinked polyacrylic acids (PAA) represent an interesting alternative for tritiated water trapping. The study was developed on radiolytical processes in PAA:HTO systems derivated from irradiation of polymeric network by disintegration of tritium atoms from HTO. The aim of these studies is the identification of polymeric structures and optimal storage conditions.Sol and gel fractions were determinated by radiometrical methods using PAA labeled with 14-C at carboxylic groups and T at main chains of the polymer. Simulation of radiolytical processes was realized using {gamma} radiation field emitted by a irradiation source of 60-Co which ensures a maximum of absorbed dose rate of 3 kGy/h. Self-radiolytical effects were investigated using labeled PAA in HTO with great radioactive concentration (37-185 GBq/mL). The experiment suggests as optimum for HTO storage as tritium liquid wastes a 1:30 PAA:HTO swelling degree at 18.5-37 MBqL. HTO radioactive concentration.RES studies of radiolytical processes were also realized on dry polyacrylic acid (PAA) and polyacrylic based hydrogels irradiated and determined at 77 K. In the study we observed the effect of swelling capacity of hydrogel o the formation of free radicals.

  10. Polyacrylic acid modified upconversion nanoparticles for simultaneous pH-triggered drug delivery and release imaging.

    PubMed

    Jia, Xuekun; Yin, Jinjin; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Chen, Mian; Li, Yuhong

    2013-12-01

    A poly(acrylicacid)-modified NaYF4:Yb, Er upconversion nanoparticles (PAA-UCNPs) with dual functions of drug delivery and release imaging have been successfully developed. The PAA polymer coated on the surface of UCNPs serve as a pH-sensitive nanovalve for loading drug molecules via electrostatic interaction. The drug-loading efficiency of the PAA-UCNPs was investigated by using doxorubicin hydrochloride (DOX) as a model anticancer drug to evaluate their potential as a delivery system. Results showed loading and releasing of DOX from PAA-UCNPs were controlled by varying pH, with high encapsulation rate at weak alkaline conditions and an increased drug dissociation rate in acidic environment, which is favorable for construct a pH-responsive controlled drug delivery system. The in vitro cytotoxicity test using HeLa cell line indicated that the DOX loaded PAA-UCNPs (DOX@PAA-UCNPs) were distinctly cytotoxic to HeLa cells, while the PAA-UCNPs were highly biocompatible and suitable to use as drug carriers. Furthermore, the upconversion fluorescence resonance energy transfer (UFRET) imaging through the two-photon laser scanning microscopy (TLSM) revealed the time course of intracellular delivery of DOX from DOX@PAA-UCNPs. Thus, PAA-UCNPs are effective for constructing pH-responsive controlled drug delivery systems for multi-functional cancer therapy and imaging. PMID:24266261

  11. Cellular Response to Linear and Branched Poly(acrylic acid).

    PubMed

    Whitty, Elizabeth G; Maniego, Alison R; Bentwitch, Sharon A; Guillaneuf, Yohann; Jones, Mark R; Gaborieau, Marianne; Castignolles, Patrice

    2015-12-01

    Poly(acrylic acid-co-sodium acrylate) (PNaA) is a pH-responsive polymer with potential in anticancer drug delivery. The cytotoxicity and intracellular effects of 3-arm star, hyperbranched and linear PNaA were investigated with L1210 progenitor leukemia cells and L6 myoblast cells. Free solution capillary electrophoresis demonstrated interactions of PNaA with serum proteins. In a 72 h MTT assay most PNaAs exhibited a IC50 between 7 and 14 mmol L(-1), showing that precipitation may be a sufficient purification for PNaA dilute solutions. Dialyzed 3-arm star and hyperbranched PNaA caused an increase in L6 cell viability, challenging the suitability of MTT as cytotoxicity assay for PNaA. Fluorescent confocal microscopy revealed merging of cellular lipids after exposure to PNaA, likely caused by serum starvation.

  12. Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release.

    PubMed

    Kang, Xiaojiao; Yang, Dongmei; Dai, Yunlu; Shang, Mengmeng; Cheng, Ziyong; Zhang, Xiao; Lian, Hongzhou; Ma, Ping'an; Lin, Jun

    2013-01-01

    In this study, multifunctional poly(acrylic acid) modified lanthanide-doped GdVO(4) nanocomposites [PAA@GdVO(4): Ln(3+) (Ln = Yb/Er, Yb/Ho, Yb/Tm)] were constructed by filling PAA hydrogel into GdVO(4) hollow spheres via photoinduced polymerization. The up-conversion (UC) emission colors (green, red and blue) can be tuned by changing the codopant compositions in the matrices. The composites have potential applications as bio-probes for cell imaging. Meanwhile, the hybrid spheres can act as T(1) contrast agents for magnetic resonance imaging (MRI) owing to the existence of Gd(3+) ions on the surface of composites. Due to the nature of PAA, DOX-loaded PAA@GdVO(4):Yb(3+)/Er(3+) system exhibits pH-dependent drug releasing kinetics. A lower pH offers a faster drug release rate. Such character makes the loaded DOX easily released at cancer cells. The cell uptake process of drug-loaded composites was observed by using confocal laser scanning microscopy (CLSM). The results indicate the potential application of the multifunctional composites as theragnostics (effective bimodal imaging probes and pH-responsive drug carriers).

  13. Hydrogen-bonding-induced complexation of polydimethylsiloxane-graft-poly(ethylene oxide) and poly(acrylic acid)-block-polyacrylonitrile micelles in water.

    PubMed

    Hu, Aijuan; Cui, Yushuang; Wei, Xiaoling; Lu, Zaijun; Ngai, To

    2010-09-21

    Polydimethylsiloxane-graft-poly(ethylene oxide) (PDMS-g-PEO) copolymers form micelles in water with PDMS as the core and PEO as the corona. The introduction of poly(acrylic acid)-block-polyacrylonitrile (PAA-b-PAN) block copolymers in water leads to the formation of micellar complexes due to the hydrogen bonding between carboxyl groups and ether oxygens among the PAA and PEO chains in the corona of the micelles. The effects of pH, molar ratios (r) of PAA/PEO, and the standing time on the directly mixing these two micelles in water have been investigated using laser light scattering (LLS) and transmission electron microscopy (TEM). Our results showed that the complexation between PAA and PEO in the corona was greatly enhanced at a pH below 3.5. For a fixed pH value, the interactions between these two micelles in water were governed by the value of r. At r < ∼0.6, mixing the two micelles in water resulted in a large floccule because the smaller PAA-b-PAN micelles act as physical cross-links, which are absorbed onto one PDMS-g-PEO micelle and simultaneously bonded to PEO chains on the other micelles, forming bridges and causing flocculation. At ∼0.6 < r < ∼1.2, the mixing led to stable micellar complexes with a layer of PAA-b-PAN micelles absorbed onto the initial PDMS-g-PEO micelles. At r > ∼1.2, the resultant micellar complexes first remained stable, but they precipitated from solution after a long time standing.

  14. Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2016-06-01

    Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications.

  15. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce(IV) glucose redox system and their characterization

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Lee, Jae-Rock; Han, Jae Hung; Lee, In

    2006-04-01

    Grafted copolymers of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) were prepared using a Ce(IV) glucose redox initiator by free radical polymerization. Three grafted copolymers having 20%, 50% and 80% grafting were selected for this study. Thus-modified polymer was characterized by means of Fourier transform infrared spectra, 1H NMR, gel permeation chromatography, thermogravimetric analysis and universal testing machine approaches. The membranes were prepared by a solution casting method, where the cross-linking process was performed through the in situ addition of glutaraldehyde and hydrochloric acid as the cross-linking agent and catalyst respectively. The following four membranes were prepared: (i) pure PVA; (ii) 20% grafted PVA; (iii) 50% grafted PVA; (iv) 80% grafted PVA. The membranes obtained were employed in the electroactive behavior study under a DC electric stimulus in different concentrations of electrolyte. The equilibrium bending angles (EBA) of these polymers were studied with respect to time, poly(acrylic acid) content, electric voltage applied across the polymer and ionic strength of the electrolyte used. Experimental results show stable reversibility of the bending behavior of these polymers under an applied DC electric field. The EBA increased with increase in the applied electric voltage and poly(acrylic acid) content within the polymer.

  16. Flocculation of hematite with polyacrylic acid: Fractal structures in the reaction- and diffusion-limited aggregation regimes

    SciTech Connect

    Ferretti, R.; Zhang, J.; Buffle, J.

    1998-12-15

    The structure of hematite aggregates in the presence of fairly monodisperse polyacrylic acid (PAA) with two different molecular weights (M{sub w} = 1.36 {times} 10{sup 6}, M{sub w}/M{sub n} = 1.53; M{sub w} = 3.69 {times} 10{sup 4}, M{sub w}/M{sub n} = 1.60) was studied using static light scattering (SLS). The fractal dimensions were calculated from the scattering exponents, after taking into account the finite size of aggregates, using exponential and Gaussian cutoff functions. Three flocculation regimes, namely, pre-DLA, DLA (diffusion-limited aggregation), and post-DLA, were defined based on the polymer concentration. In the DLA regime, fractal dimension values, D{sub f} = 1.84 {+-} 0.02 and 1.73 {+-} 0.02, were obtained using exponential and Gaussian cutoff functions, respectively. A fractal dimension of approximately 2.0 was found, as expected, in the pre-DLA regime (at PAA concentrations lower than the optimal dosage for a DLA regime) where the flocculation rate was reaction limited. In contrast, in the post-DLA regime, the flocculation was slow but the structure of aggregates was as tenuous as in the DLA regime with a fractal dimension D{sub f} {approx} 1.8. Moreover, for all three regimes, the D{sub f} values were independent of the molecular weights of PAA. The lower fractal dimension in post-DLA was probably due to the increased concentration of polymer chains between adjacent particles in aggregates. The steric hindrance favored tip-to-tip aggregation, leading to a more tenuous structure.

  17. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  18. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  19. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  20. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%. PMID:27371017

  1. Microchip electrophoresis with background electrolyte containing polyacrylic acid and high content organic solvent in cyclic olefin copolymer microchips for easily adsorbed dyes.

    PubMed

    Wei, Xuan; Sun, Ping; Yang, Shenghong; Zhao, Lei; Wu, Jing; Li, Fengyun; Pu, Qiaosheng

    2016-07-29

    Plastic microchips can significantly reduce the fabrication cost but the adsorption of some analytes limits their application. In this work, background electrolyte containing ionic polymer and high content of organic solvent was adopted to eliminate the analyte adsorption and achieve highly efficient separation in microchip electrophoresis. Two dyes, rhodamine 6G (Rh6G) and rhodamine B (RhB) were used as the model analytes. By using methanol as the organic solvent and polyacrylic acid (PAA) as a multifunctional additive, successful separation of the two dyes within 75μm id. microchannels was realized. The role of PAA is multiple, including viscosity regulator, selectivity modifier and active additive for counteracting analyte adsorption on the microchannel surface. The number of theoretical plate of 7.0×10(5)/m was attained within an effective separation distance of 2cm using background electrolyte consisting 80% methanol, 0.36% PAA and 30mmol/L phosphate at pH 5.0. Under optimized conditions, relative standard deviations of Rh6G and RhB detection (n=5) were no more than 1.5% for migration time and 2.0% for peak area, respectively. The limit of detection (S/N=3) was 0.1nmol/L for Rh6G. The proposed technique was applied in the determination of both Rh6G and RhB in chilli powder and lipstick samples with satisfactory recoveries of 81.3-103.7%.

  2. pH- and ionic-strength-induced structural changes in poly(acrylic acid)-lipid-based self-assembled materials.

    SciTech Connect

    Crisci, A.; Hay, D. N. T.; Seifert, S.; Firestone, M. A.

    2009-01-01

    The effect of a polyanion introduced as a lipid conjugate (poly(acrylic acid)- dimyristoyl-sn-glycero-3-phosphoethanolamine, PAA-DMPE) on the structure of a self-assembled, biomembrane mimetic has been evaluated using synchrotron small-angle X-ray scattering (SAXS). At high grafting density (8-11 mol.%), the PAA chains were found to produce significant changes in structure in response to changes in pH and electrolyte composition. At low pH and in the absence of salt (NaCl), the neutral PAA chains adopt a coil conformational state that leads to the formation of a swollen lamellar structure. Upon the addition of salt at low to intermediate pH values, two lamellar phases, a collapsed and an expanded structure, coexist. Finally, when the polymer is fully ionized (at high pH), the extended conformation of the polymer generates a cubic phase. The results of this study contribute to an understanding of how polyelectrolytes may ultimately be harnessed for the preparation of self-assembling materials responsive to external stimuli.

  3. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents. PMID:17613025

  4. PAA/PEO comb polymer effects on the rheological property evolution in concentrated cement suspensions

    NASA Astrophysics Data System (ADS)

    Kirby, Glen Harold

    We have studied the behavior of polyelectrolyte-based comb polymers in dilute solution and on the rheological property evolution of concentrated Portland cement suspensions. These species consisted of charge-neutral, poly(ethylene oxide) (PEO) "teeth" grafted onto a poly(acrylic acid) (PAA) "backbone" that contains one ionizable carboxylic acid group (COOH) per monomer unit. As a benchmark, our observations were compared to those obtained for pure cement pastes and systems containing pure polyelectrolyte species, i.e., sulfonated naphthalene formaldehyde (SNF) and poly(acrylic acid) (PAA). The behavior of PAA/PEO comb polymers, SNF, and PAA in dilute solution was studied as a function of pH in the absence and presence of mono-, di-, and trivalent counterions. Light scattering and turbidity measurements were carried out to assess their hydrodynamic radius and stability in aqueous solution, respectively. PAA experienced large conformational changes as a function of solution pH and ionic strength. Moreover, dilute solutions of ionized SNF and PAA species became unstable in the presence of multivalent counterions due to ion-bridging interactions. PAA/PEO solutions exhibited enhanced stability relative to pure polyelectrolytes under analogous conditions. The charge neutral PEO teeth shielded the underlying PAA backbone from ion-bridging interactions. In addition, such species hindered conformational changes in solution due to steric interactions between adjacent teeth. A new oscillatory shear technique was developed to probe the rheological property evolution of concentrated cement systems. The rheological property evolution of ordinary and white Portland cement systems were studied in the absence and presence of pure polyelectrolytes and PAA/PEO comb polymers with a wide range of PAA backbone molecular weight, PEO teeth molecular weight, and acid:imide ratio. Cement-PAA suspensions experienced rapid irreversible stiffening and set at 6 min due to ion

  5. Intensification of depolymerization of polyacrylic acid solution using different approaches based on ultrasound and solar irradiation with intensification studies.

    PubMed

    Prajapat, Amrutlal L; Gogate, Parag R

    2016-09-01

    Depolymerization of polyacrylic acid (PAA) as sodium salt has been investigated using ultrasonic and solar irradiations with process intensification studies based on combination with hydrogen peroxide (H2O2) and ozone (O3). Effect of solar intensity, ozone flow and ultrasonic power dissipation on the extent of viscosity reduction has been investigated for individual treatment approaches. The combined approaches such as US+solar, solar+O3, solar+H2O2, US+H2O2 and US+O3 have been subsequently investigated under optimum conditions and established to be more efficient as compared to individual approaches. Approach based on US (60W)+solar+H2O2 (0.01%) resulted in the maximum extent of viscosity reduction as 98.97% in 35min whereas operation of solar+H2O2 (0.01%), US (60W), H2O2 (0.3%) and solar irradiation resulted in about 98.08%, 90.13%, 8.91% and 90.77% intrinsic viscosity reduction in 60min respectively. Approach of US (60W)+solar+ozone (400mg/h flow rate) resulted in extent of viscosity reduction as 99.47% in 35min whereas only ozone (400mg/h flow rate), ozone (400mg/h flow rate)+US (60W) and ozone (400mg/h flow rate)+solar resulted in 69.04%, 98.97% and 98.51% reduction in 60min, 55min and 55min respectively. The chemical identity of the treated polymer using combined approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant structural changes were obtained during the treatment. Overall, it can be said that the combination technique based on US and solar irradiations in the presence of hydrogen peroxide is the best approach for the depolymerization of PAA solution.

  6. Disinfection with peracetic acid (PAA), an alternative against fish pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the lack of approved substances to treat fish diseases, disinfecting substances are tested to treat fish pathogens. These agents should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. One of these substances is peracetic acid...

  7. Study of Molecular Conformation and Activity-Related Properties of Lipase Immobilized onto Core-Shell Structured Polyacrylic Acid-Coated Magnetic Silica Nanocomposite Particles.

    PubMed

    Esmaeilnejad-Ahranjani, Parvaneh; Kazemeini, Mohammad; Singh, Gurvinder; Arpanaei, Ayyoob

    2016-04-01

    A facile approach for the preparation of core-shell structured poly(acrylic acid) (PAA)-coated Fe3O4 cluster@SiO2 nanocomposite particles as the support materials for the lipase immobilization is reported. Low- or high-molecular-weight (1800 and 100,000, respectively) PAA molecules were covalently attached onto the surface of amine-functionalized magnetic silica nanoacomposite particles. The successful preparation of particles were verified by scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential measurement, and Fourier-transform infrared (FTIR) techniques. Once lipase is covalently immobilized onto the particles with an average diameter of 210 ± 50 nm, resulting from high binding sites concentrations on the low- and high-molecular-weight PAA-coated particles, high lipase immobilization efficiencies (86.2% and 89.9%, respectively), and loading capacities (786 and 816 mg g(-1), respectively) are obtained. Results from circular dichroism (CD) analysis and catalytic activity tests reveal an increase in the β-sheet content of lipase molecules upon immobilization, along with an enhancement in their activities and stabilities. The lipases immobilized onto the low- and high-molecular-weight PAA-coated particles show maximum activities at 55 and 50 °C, respectively, which are ∼28% and ∼15% higher than that of the free lipase at its own optimum temperature (40 °C), respectively. The immobilized lipases exhibit excellent performance at broader temperature and pH ranges and high thermal and storage stabilities, as well as superior reusability. These prepared magnetic nanocomposite particles can be offered as suitable support materials for efficient immobilization of enzymes and improvement of the immobilized enzymes properties.

  8. Amorphous polymeric anode materials from poly(acrylic acid) and tin(II) oxide for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroyuki; Nakanishi, Shinji; Iba, Hideki; Itoh, Takahito

    2015-02-01

    The reaction of poly(acrylic acid) (PAA) and tin oxide (II) (SnO) provides an amorphous product (PSnA), which was found to be a promising precursor of an anode material for lithium ion batteries. The anode electrode composed of PSnA as the active material and polyimide as the binder showed a better cycling performance than the anode electrode using SnO as the active material. It is considered that the organic polymer chain present in PSnA might act as a buffer to the volume change in the active material during the charge-discharge cycles. The X-ray diffraction (XRD) results of the electrode after delithiation revealed that nano-sized cubic tin (α-Sn) and tetragonal tin (β-Sn) particles are formed in the active material. Therefore, it is concluded that these nano-sized tin particles in the polymer matrix were effective for the storage and release of Li ions.

  9. Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water.

    PubMed

    Pal, Abhijit; Majumder, Kunal; Bandyopadhyay, Abhijit

    2016-11-01

    Noble copolymers from xanthan gum (XG) and poly(acrylic acid) (PAA) were synthesised through surfactant mediated graft copolymerization. The copolymers were applied as a biosorbent for inorganic Hg(II) at higher concentration level (300ppm). The copolymers were characterized using different analytical techniques which showed, the grafting principally occurred across the amorphous region of XG. Measurement of zeta potential and hydrodynamic size indicated, the copolymers were strong polyanion and possessed greater hydrodynamic size (almost in all cases) than XG, despite a strong molecular degradation that took place simultaneously during grafting. In the dispersed form, all grades of the copolymer displayed higher adsorption capability than XG, however, the grade with maximum grafting produced the highest efficiency (68.03%). Manipulation produced further improvement in efficiency to 72.17% with the same copolymer after 75min at a pH of 5.0. The allowable biosorbent dose, however, was 1000ppm as determined from the experimental evidences. PMID:27516248

  10. Electrophoretic Mobility of Poly(acrylic acid)-Coated Alumina Particles

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-01

    The effect of poly (acrylic acid) (PAA) adsorption on the electrokinetic behavior of alumina dispersions under high pH conditions was investigated as a function of polymer concentration and molecular weight as well as the presence, concentration and ion type of background electrolyte. Systems of this type are relevant to nuclear waste treatment, in which PAA is known to be an effective rheology modifier. The presence of all but the lowest molecular weight PAA studied (1800) led to decreases in dynamic electrophoretic mobility at low polymer concentrations, attributable to bridging flocculation, as verified by measurements of particle size distribution. Bridging effects increased with polymer molecular weight, and decreased with polymer concentration. Increases in background electrolyte concentration enhanced dynamic electrophoretic mobility as the polymer layers were compressed and bridging was reduced. Such enhancements were reduced as the cation was changed from Na+ to K+ to Cs+.

  11. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  12. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    PubMed

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization. PMID:16333511

  13. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties.

    PubMed

    Yang, Jun; Gong, Cheng; Shi, Fu-Kuan; Xie, Xu-Ming

    2012-10-01

    This investigation was to study the connections between polymer branch architecture of physical hydrogels and their properties. The bottle-brush-like polymer chains of poly(acrylic acid)-g-poly(ethylene glycol) methyl ether (PAA-g-mPEG) with PAA as backbones and mPEG as branch architecture were synthesized and in situ grafted from silica nanoparticles (SNs) to construct hydrogels cross-linked networks in aqueous solutions. The structural variables to be discussed included molecular weight and molar ratio of branch chains, and new aspects of the formation mechanism of physical hydrogels with branch structure in the absence of organic cross-links were present. The results indicated that the differences of polymer chain architecture could be distinguished via their different interactions that are present by gelation process and mature gel properties, such as gel strength and swelling ratio. The gelation occurred at the critical polymer concentration and molecular weight, respectively, and the inorganic/organic (SNs/PAA-g-mPEG) nanoparticles began to entangle and construct the cross-linking networks afterward. The gel-to-sol transition temperature (T(g-s)) and radii of SNs that were encapsulated by polymer chains as a function of time for chains' disentanglement were monitored according to the observation of the dissolution process, and the molecular weight between two consecutive entanglements (M(e)) was calculated thereafter. This study showed that the introduction of branch chain onto the linear backbone significantly promoted the chain interactions and increased entanglement density, which contributed to the hydrogels' network integrity and rigidity, thus illustrating greater elongation at break and tensile strength than the hydrogels formulated with linear polymer chains.

  14. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage. PMID:26070329

  15. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.

  16. Salinity, water hardness, and dissolved organic carbon modulate degradation of peracetic acid (PAA) compounds in aqueous solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection purposes. However, there is a lack of information about its environmental fate, particularly its persistence in aquatic systems with different chemistries. Therefore, the impact of water hardness, salinity, and d...

  17. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  18. Pervaporation separation of ethanol-water mixtures using polyacrylic acid composite membranes

    DOEpatents

    Neidlinger, H.H.

    1985-05-07

    Synthetic, organic, polymeric membranes were prepared from polyacrylic acid salts for use with pervaporation apparatus in the separation of ehthanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanata solution, after which the prepared membrane was heat-cured. The resulting membrane structure showed selectivity in permeating water over a wide range of feed concentrations. 4 tabs.

  19. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    PubMed

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  20. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    PubMed

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer.

  1. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  2. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from ˜320 to ˜800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction (˜80%) and very high EDS (˜800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  3. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    NASA Astrophysics Data System (ADS)

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-02-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles).

  4. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites

    PubMed Central

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Ali Syed, Junaid; Wang, Xiangyu; Meng, Xiangkang

    2016-01-01

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles). PMID:26883179

  5. Surface and statistical analysis of CaCO 3 crystals synthesized in the presence of fluorescein-tagged starch grafted with polyacrylic acid

    NASA Astrophysics Data System (ADS)

    Matahwa, H.; Sanderson, R. D.

    2009-02-01

    Crystallization of CaCO 3 was carried out in the presence of fluorescein-tagged starch grafted with polyacrylic acid (PAA) as polymeric additive. The crystal morphology at high polymeric additive concentration was spherical, with vaterite and calcite polymorphs. Mixed crystal morphologies were obtained at lower concentration of the polymeric additive and calcite was obtained. The CaCO 3 crystals obtained fluoresced under UV irradiation showing the presence of grafted starch expected on the surface of CaCO 3. The zeta potentials of the synthesized crystals were negative and addition of cationic starch lead to inversion of the zeta potential. Rodamine B-tagged cationic starch was successfully deposited onto the surface of the anionic-grafted starch-coated CaCO 3 crystals. Statistical analysis of the crystals showed that the fluorescence intensities of the crystals increased with increasing granularity and size of the CaCO 3 crystals. The high granularity and large-size crystals were due to aggregation of secondary crystals as observed with fluorescence microscopy.

  6. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites.

    PubMed

    Wang, Yongguang; Tang, Shaochun; Vongehr, Sascha; Syed, Junaid Ali; Wang, Xiangyu; Meng, Xiangkang

    2016-02-17

    Improving the solubility of conductive polymers to facilitate processing usually decreases their conductivity, and they suffer from poor cycling stability due to swelling-shrinking during charging cycles. We circumvent these problems with a novel preparation method for nitrogen-doped graphene (NG) enhanced polyacrylic acid/polyaniline (NG-PAA/PANI) composites, ensuring excellent processibility for scalable production. The content of PANI is maximized under the constraint of still allowing defect-free coatings on filaments of carbon cloth (CC). The NG content is then adjusted to optimize specific capacitance. The optimal CC electrodes have 32 wt.% PANI and 1.3 wt.% NG, thus achieving a high capacitance of 521 F/g at 0.5 F/g. A symmetric supercapacitor made from 20 wt.% PANI CC electrodes has more than four times the capacitance (68 F/g at 1 A/g) of previously reported flexible capacitors based on PANI-carbon nanotube composites, and it retains the full capacitance under large bending angles. The capacitor exhibits high energy and power densities (5.8 Wh/kg at 1.1 kW/kg), a superior rate capability (still 81% of the 1 A/g capacitance at 10 A/g), and long-term electrochemical stability (83.2% retention after 2000 cycles).

  7. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  8. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - Part I

    NASA Astrophysics Data System (ADS)

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-01

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca2+ ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca2+ ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  9. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness. PMID:25475759

  10. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness.

  11. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  12. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". PMID:27444970

  13. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics".

  14. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  15. Preparation of nanofiber polythiophene layered on Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid core-shell structure and its microwave absorption investigation

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Hossein; Moloudi, Maryam

    2015-09-01

    Ba x Sr1- x Fe12O19/Fe3O4/polyacrylic acid/polythiophene (Ba x Sr1- x Fe12O19/Fe3O4/PAA/PTh) nanocomposites with multi-core-shell structure were successfully synthesized by four steps. The samples were characterized by FTIR, X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer, and radar absorbing material reflectivity far-field radar cross-section method, respectively. XRD and TEM results indicated that the obtained nanoparticles have multi-core-shell morphology. The magnetic properties and microwave absorption analyses reveal that there are interphase interactions at the interface of Ba x Sr1- x Fe12O19, Fe3O4, PAA, and PTh, which can affect the magnetic properties and microwave absorption properties of the samples. The microwave-absorbing properties of nanocomposites were investigated at 8-14 GHz. A typical layer absorber exhibited an excellent microwave absorption with a -26 dB maximum absorption at 14 GHz. Compared with core material, the coercivity and saturation magnetization of multi-core-shell nanocomposites decrease obviously, but the microwave absorption properties of nanocomposites are improved greatly. The results show that these composite could be used as advancing absorption and shielding materials due to their favorable microwave-absorbing properties.

  16. Polyacrylic acid-coated and non-coated iron oxide nanoparticles induce cytokine activation in human blood cells through TAK1, p38 MAPK and JNK pro-inflammatory pathways.

    PubMed

    Couto, Diana; Freitas, Marisa; Porto, Graça; Lopez-Quintela, M Arturo; Rivas, José; Freitas, Paulo; Carvalho, Félix; Fernandes, Eduarda

    2015-10-01

    Iron oxide nanoparticles (ION) can have a wide scope of applications in biomedicine, namely in magnetic resonance imaging, tissue repair, drug delivery, hyperthermia, transfection, tissue soldering, and as antimicrobial agents. The safety of these nanoparticles, however, is not completely established, namely concerning their effect on immune system and inflammatory pathways. The aim of this study was to evaluate the in vitro effect of polyacrylic acid (PAA)-coated ION and non-coated ION on the production of six cytokines [interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 8 (IL-8), interferon gamma (IFN-γ) and interleukin 10 (IL-10)] by human peripheral blood cells, and to determine the inflammatory pathways involved in this production. The obtained results showed that PAA-coated and non-coated ION were able to induce all the tested cytokines and that activation of transforming growth factor beta (TGF-β)-activated kinase (TAK1), p38 mitogen-activated protein kinases (p38 MAPK) and c-Jun N-terminal kinases (JNK) were involved in this effect. PMID:25108419

  17. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    PubMed

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. PMID:22840022

  18. Use of Raman spectroscopy in the characterisation of the acid-base reaction in glass-ionomer cements.

    PubMed

    Young, A M; Sherpa, A; Pearson, G; Schottlander, B; Waters, D N

    2000-10-01

    Raman spectra of various combinations of glass-ionomer cement components have been compared with those of the reactants and the salts of polyacrylic and tartaric acids. The components consisted of a fast-setting acid-degradable dental glass (containing, inter alia, oxides of Si, Al, Ca, Ba and Na), polyacrylic acid (PAA) and/or tartaric acid (TA). On the addition of water to the glass and tartaric acid, Raman spectroscopy indicated loss of acid and production of tartrate salts within seconds of mixing. Mixtures containing the glass, PAA and water in mass ratios 2:1:(0.1-4) reacted to form polyacrylate salts. The maximum fraction of unreacted PAA was found to decrease linearly with initial water/PAA mass ratio to a minimum of approximately 20% when this ratio exceeds 1.5. The data are consistent with 5.6 moles of water being required when each mole of acidic groups is neutralised. In newly prepared cements containing glass, water, polyacrylic and tartaric acids, polyacrylic acid and its salts, in both ionised and solid state form, can be detected. After about 1 h, however, Raman peaks associated with ionised species disappear.

  19. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity. PMID:26360748

  20. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  1. Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multifunctional cellulosic fabrics.

    PubMed

    Ibrahim, N A; Amr, A; Eid, B M; Mohamed, Z E; Fahmy, H M

    2012-06-20

    Aqueous polymerization of partially neutralized acrylic acid (AA) along with polyethylene glycol (PEG-600) at AA/PEG-600 mass ratio 3/1 using ammonium persulfate as initiator under proper conditions results in formation of PAA/PEG-600 adduct. The structure of the adduct was confirmed by FT-IR spectra. The potential applications of the prepared adduct in: sizing, durable hand building of cotton cellulose, as well as in functional finishing of cellulose containing fabrics, i.e. cotton, viscose and cotton/polyester, with Ag- or TiO2-nanoparticles were investigated. The modified substrates using the prepared adduct showed a remarkable improvement in their sizing, hand building and/or functional properties, i.e. antibacterial, anti-UV, and self cleaning, in addition to durability to wash. TEM images of the prepared nano-particles, SEM images of the untreated and treated substrates, as well as EDX spectra to analyze the surface elemental compositions were examined. The tentative mechanisms were also suggested. PMID:24750770

  2. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate....

  3. Synthesis and high-efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ding, Zui; Cai, Minhan; Jian, Haitao; Zeng, Zhiqiao; Li, Feng; Liu, J. Ping

    2015-08-01

    MnFe2O4 nanoparticles and polyacrylic acid PAA/MnFe2O4 nanocomposites were synthesized by a hydrothermal method and ultrasonic mixing process. The obtained materials were characterized by XRD, FTIR, SEM, TEM, and VSM. XRD patterns indicate that the synthesized MnFe2O4 nanoparticles have a single cubic spinel phase. SEM images confirm the existence of three types of basic morphology of MnFe2O4 nanoparticles: octahedral, flower-like, and plate-like particles. High saturation magnetization Ms (up to 74.6 emu/g) of the as-synthesized MnFe2O4 nanoparticles was obtained. Experiments demonstrate that the variation of the hydrothermal reaction time does not remarkably affect the magnetic properties of MnFe2O4 nanoparticles. In PAA/MnFe2O4 nanocomposites, the coating of PAA leads to a slight decrease in magnetization of MnFe2O4 nanoparticles. Additionally, PAA coating greatly enhances the adsorption properties of MnFe2O4 nanoparticles for Methylene Blue (MB) dye. Especially, the removal efficiency reaches 96.3%. This research indicates that the as-synthesized PAA/MnFe2O4 nanocomposites exhibit excellent magnetic properties and can be taken as a promising adsorbent for removal of MB dye in industrial scale.

  4. Facile and Scalable Synthesis of Novel Spherical Au Nanocluster Assemblies@Polyacrylic Acid/Calcium Phosphate Nanoparticles for Dual-Modal Imaging-Guided Cancer Chemotherapy.

    PubMed

    Li, Lu; Zhang, Lingyu; Wang, Tingting; Wu, Xiaotong; Ren, Hong; Wang, Chungang; Su, Zhongmin

    2015-07-01

    Engineering novel theranostic agents with both imaging and therapeutic functions have profound impact on molecular diagnostics, imaging, and therapeutics. In this paper, we develop for the first time a simple, scalable, and reproducible route to synthesize novel multifunctional spherical Au nanoclusters assemblies encapsulated by a polyacylic acid (PAA)/calcium phosphate (CaP) shell with aggregation enhanced fluorescence property (designated as AuNCs-A@PAA/CaP). Furthermore, the resulting AuNCs-A@PAA/CaP nanoparticles (NPs) possess a high payload of doxorubicin as synergetic pH-sensitive drug delivery vehicles to employ for dual-modal computed tomography (CT) and fluorescence imaging-guided liver cancer chemotherapy in vivo. The results reveal that AuNCs-A@PAA/CaP NPs not only provide excellent bimodal CT and fluorescence contrast imaging but also present efficient tumor ablation under the guidance of CT and fluorescence imaging, to achieve excellent chemotherapeutic efficacy to the hepatocarcinoma cell line (H-22) bearing mice through intravenous injection. Comprehensive blood tests and careful histological examinations reveal no apparent toxicity of AuNCs-A@PAA/CaP NPs. Our work highlights the great promise of AuNCs-A@PAA/CaP NPs for guiding and monitoring the chemotherapeutic process using simultaneous dual-modality CT and fluorescence imaging through a single theranostic agent. PMID:25755105

  5. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe{sub 2}O{sub 3} nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    SciTech Connect

    Iversen, Nina K.; Frische, Sebastian; Thomsen, Karen; Laustsen, Christoffer; Pedersen, Michael; Hansen, Pernille B.L.; Bie, Peter; Fresnais, Jérome; Berret, Jean-Francois; Baatrup, Erik; Wang, Tobias

    2013-01-15

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe{sub 2}O{sub 3} NPs (10 mg kg{sup −1}) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1 h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid–base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 ± 0.02 and 7.41 ± 0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO{sub 2} or [HCO{sub 3}{sup −}] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35 ± 0.04 and 0.35 ± 0.01 ml min{sup −1} g{sup −1}, respectively, values which were statistically comparable with controls (0.29 ± 0.02 and 0.33 ± 0.1 ml{sup –1} min{sup –1} 25 g{sup –1}). Mean arterial blood pressure (MAP) decreased 12–24 h after NP injections (111.1 ± 11.5 vs 123.0 ± 6.1 min{sup −1}) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure. -- Highlights: ► PAA coated γ-Fe{sub 2}O{sub 3} nanoparticles were injected intravenously into healthy mice. ► We examine the distribution and physiological effects of

  6. Water-soluble complexes of star-shaped poly(acrylic acid) with quaternized poly(4-vinylpyridine).

    PubMed

    Pergushov, Dmitry V; Babin, Ivan A; Plamper, Felix A; Zezin, Alexander B; Müller, Axel H E

    2008-06-01

    The interaction of star-shaped poly(acrylic acid) having various numbers of arms (5, 8, and 21) and a strong cationic polyelectrolyte, viz., poly( N-ethyl-4-vinylpyridinium bromide), was examined at pH 7 by means of turbidimetry and dynamic light scattering. Mixing aqueous solutions of the oppositely charged polymeric components was found to result in phase separation only if their base-molar ratio Z = [N+]/[COO (-) + COOH] exceeds a certain critical value ZM ( ZM < 1); this threshold value is determined by the number of arms of the star-shaped polyelectrolyte and the ionic strength of the surrounding solution. At Z < ZM, the homogeneous aqueous mixtures of the oppositely charged polymeric components contain two types of complex species clearly differing in their sizes, with the fractions of these species appearing to depend distinctly on the number of arms of the star-shaped poly(acrylic acid), the base-molar ratio of the oppositely charged polymeric components in their mixtures, and the ionic strength of the surrounding solution. The small complex species (major fraction) are assumed to represent the particles of the water-soluble interpolyelectrolyte complex whereas the large complex species (minor fraction) are considered to be complex aggregates.

  7. A Novel Approach for the Desalination of Seawater by Means of Reusable Poly(acrylic acid) Hydrogels and Mechanical Force.

    PubMed

    Höpfner, Johannes; Klein, Christopher; Wilhelm, Manfred

    2010-08-01

    Desalination of a sodium chloride solution is achieved by the incorporation of salt depleted water into an acrylic acid based hydrogel and the subsequent deswelling of the gel by mechanical force to gain water with a lower salt content. This is a new approach towards the problem of desalination of seawater that has, to the best of our knowledge, not been presented before. In a proof-of-principle experiment the salt content of a 10 g/L NaCl solution could be reduced by 35% in one cycle. The influence of main chemical parameters, e.g. degree of crosslinking, degree of neutralization and experimental parameters like particle size and salt concentration on the desalination process are examined. Possible optimum conditions for the desalination using a poly(acrylic acid) network are discussed and the construction of a simple apparatus for deswelling by mechanical force is described.

  8. Influence of Glyoxal on Preparation of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Film.

    PubMed

    Park, Ju-Young; Hwang, Kyung-Jun; Yoon, Soon-Do; Lee, Ju-Heon; Lee, In-Hwa

    2015-08-01

    The preparation of a poly(vinyl alcohol)/poly(acrylic acid)/glyoxal film (PVA = poly(vinyl alcohol); PAA = poly(acrylic acid)) with high tensile strength and hydrophobic properties by using the crosslinking reaction for OH group removal is reported herein. PAA was selected as a crosslinking agent because the functional carboxyl group in each monomer unit facilitates reaction with PVA. The OH groups on unreacted PVA were removed by the addition of glyoxal to the PVA/PAA solution. The chemical properties of the PVA/PAA films were investigated using Fourier transformation infrared spectroscopy and the thermal properties of the PVA/PAA/glyoxal films were investigated by means of differential scanning calorimetry and thermogravimetric analysis. A tensile strength of 48.6 N/mm2 was achieved at a PVA/PAA ratio of 85/15 for the PVA/PAA film. The tensile strength of the cross-linked PVA/PAA/glyoxal film (10 wt% glyoxal) was increased by 55% relative to the pure PVA/PAA (85/15) film. The degree of swelling (DS) and solubility (S) of the 10 wt% (PVA/PAA = 85/15, wt%) film added 10 wt% glyoxal were 1.54 and 0.6, respectively. PMID:26369179

  9. Low Light CMOS Contact Imager with an Integrated Poly-Acrylic Emission Filter for Fluorescence Detection

    PubMed Central

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented. PMID:22399920

  10. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    NASA Astrophysics Data System (ADS)

    Altan, Cem L.; Gurten, Berna; Sadza, Roel; Yenigul, Elcin; Sommerdijk, Nico A. J. M.; Bucak, Seyda

    2016-10-01

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH)2) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40-50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity.

  11. In vitro permeation studies of phenolics from horse chestnut seed gels prepared with different polyacrylic acid polymer derivatives.

    PubMed

    Zelbienė, Eglė; Draksiene, Gailute; Savickas, Arunas; Kopustinskiene, Dalia; Masteikova, Ruta; Bernatoniene, Jurga

    2015-06-01

    The aim of this study was to investigate the effects of polyacrylic acid polymers (Ultrez 10, Ultrez 20, Carbopol 980, and Carbopol 940) on the viscosity and the in vitro permeation of phenolic compounds from the gel prepared from natural horse chestnut seed extract. Experiments were performed in the presence and in the absence of peppermint oil (Mentha piperita). Our results showed that peppermint oil decreased the viscosity of the gels and permeation of phenolic compounds from all gel samples. Results show that the highest content of phenolic compounds (1.758 μg cm(-2)) permeated in vitro from gel based on Carbopol Ultrez 20 without peppermint oil added (p<0.05 vs. other tested polymers). PMID:26011934

  12. Assessment of the deoxyribonucleic acid damage caused by occupational exposure to chemical compounds in Isfahan Polyacryl Company

    PubMed Central

    Etebari, Mahmoud; Jafarian-Dehkordi, Abbas; Kahookar, Ahmad; Moradi, Shahla

    2014-01-01

    Background: Chemical pollutants found in industrial environments can cause chronic genotoxicity in vulnerable individuals during the long-term exposure. The primary purpose of the present study was to assess the deoxyribonucleic acid (DNA) damage caused by occupational exposure to industrial chemicals and secondary purpose is to investigate the effect of possible risk factors of genotoxicity. Materials and Methods: The blood samples of the workers of Isfahan Polyacryl Company were evaluated in terms of genotoxicity using the comet assay method. The percentage of DNA in the tail and tail moment were measured and DNA damage was evaluated. Furthermore, the effect of age, smoking, duration of working in the company and working in two parts of the company on the degree of vulnerability to genotoxicity was assessed. Results: The amount of DNA damage in the target group (the production line workers) was significantly higher than the control group (the staffs), 3.87 versus 1.52 as tail moment, (P < 0.0001). DNA damage was significantly higher in smoker groups compared with non-smoker target group and control group, 4.18 versus 3.07 and 1.52 respectively as tail moment, (P < 0.0001). Furthermore, it was higher in person working in two different parts of the company compared to those work in one part and control group, 4.63 versus 3.74 and 1.52 respectively as tail moment, (P < 0.0001). Conclusion: Occupational exposure to Polyacryl caused DNA damage. Smoking and working in two parts of the company may have a significant role in DNA damage. PMID:25197297

  13. Electrospinning of Bioactive Dex-PAA Hydrogel Fibers

    NASA Astrophysics Data System (ADS)

    Louie, Katherine Boyook

    In this work, a novel method is developed for making nano- and micro-fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to

  14. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature. PMID:26355463

  15. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  16. Radiation synthesis of hydrogels based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol and their interaction with poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mun, G. A.; Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Yermukhambetova, B. B.; Koblanov, S. M.; Arkhipova, I. A.

    2003-08-01

    Novel hydrogels of cationic nature were synthesized by gamma-radiation copolymerization of vinyl ethers of monoethanolamine and ethyleneglycol in the presence of cross-linking agent. The effect of absorbed dose on the gel fraction and equilibrium swelling degree of hydrogels in water is shown. It was demonstrated that the hydrogels are able to bind poly(acrylic acid) to form polyelectrolyte complexes with swelling properties typical for polyampholytes.

  17. Fluorescent Ag nanoclusters prepared in aqueous poly(acrylic acid-co-maleic acid) solutions: a spectroscopic study of their excited state dynamics, size and local environment.

    PubMed

    Dandapat, Manika; Mandal, Debabrata

    2016-01-28

    Stable, fluorescent Ag nanoclusters were prepared in aqueous solutions of Na(+) salt of the carboxylate-rich polymer poly(acrylic acid-co-maleic acid) under brief spells of UV irradiation. The nanoclusters were nearly spherical, with diameters within 1.90 ± 0.50 nm, but displayed a prominent red edge excitation shift (REES) of fluorescence upon exciting within the visible absorption band, indicating heterogeneity of energy level distributions. Spectroscopic studies revealed that irrespective of whether the nanoclusters are excited in their UV or visible absorption bands, their fluorescence always ensues from the same manifold of emissive states, with a broad range of fluorescence lifetimes from ∼150 fs to 1 ns. PMID:26700465

  18. Covalently-layers of PVA and PAA and in situ formed Ag nanoparticles as versatile antimicrobial surfaces.

    PubMed

    Fragal, Vanessa H; Cellet, Thelma S P; Pereira, Guilherme M; Fragal, Elizângela H; Costa, Marco Antonio; Nakamura, Celso Vataru; Asefa, Tewodros; Rubira, Adley F; Silva, Rafael

    2016-10-01

    The in situ synthesis of silver nanoparticles (AgNPs) within covalently-modified poly(ethylene terephthalate) (PET) films possessing ultra-thin layer of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) is successfully demonstrated. The resulting polymeric films are shown to exhibit antimicrobial activities toward Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and fungus (Candida albicans). To make the films, first PET surfaces were subject to photo-oxidation and subsequent solid-state grafting to attach a PVA layer, followed by a PAA layer. To synthesize the AgNPs inside the films, the PVA and PAA-modified PET was soaked in AgNO3 solution and the polymeric film was modified with the Ag(+) ions via Ag(+)-carboxylate interaction, and then the Ag(+) ions-containing polymer film was subject to either photo-reduction or thermal reduction processes. The PVA and PAA thin layers attached by covalent bonds to the PET surface uniquely promoted not only the in situ synthesis but also the stabilization of AgNPs. The formation of the AgNPs was confirmed by UV-vis spectroscopy or by monitoring the surface plasmon resonance (SPR) peak associated with AgNPs. The resulting PVA and PAA ultrathin layers modified and AgNPs containing PET served as bactericide and fungicide, inhibiting the growth of bacteria and fungi on the surfaces. Given PET's versatility and common use in many commercial processes, the method can be used for producing plastic surfaces with versatile antimicrobial and antibacterial properties. PMID:27196366

  19. Crystallization and preliminary X-ray diffraction studies of the transcriptional repressor PaaX, the main regulator of the phenylacetic acid degradation pathway in Escherichia coli W

    PubMed Central

    Rojas-Altuve, Alzoray; Carrasco-López, César; Hernández-Rocamora, Víctor M.; Sanz, Jesús M.; Hermoso, Juan A.

    2011-01-01

    PaaX is the main regulator of the phenylacetic acid aerobic degradation pathway in bacteria and acts as a transcriptional repressor in the absence of its inducer phenylacetyl-coenzyme A. The natural presence and the recent accumulation of a variety of highly toxic aromatic compounds owing to human pollution has created considerable interest in the study of degradation pathways in bacteria, the most important microorganisms capable of recycling these compounds, in order to design and apply novel bioremediation strategies. PaaX from Escherichia coli W was cloned, overexpressed, purified and crystallized using the sitting-drop vapour-diffusion method at 291 K. Crystals grew from a mixture of 0.9 M Li2SO4 and 0.5 M sodium citrate pH 5.8. These crystals, which belonged to the monoclinic space group C2 with unit-cell parameters a = 167.88, b = 106.23, c = 85.87 Å, β = 108.33°, allowed the collection of an X-ray data set to 2.3 Å resolution. PMID:22102047

  20. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel.

    PubMed

    Ray, Debajyoti; Mohapatra, Dillip K; Mohapatra, Ranjit K; Mohanta, Guru P; Sahoo, Prafulla K

    2008-01-01

    Intravenous administration of 5-fluorouracil (5-FU) for colon cancer therapy produces severe systemic side-effects due to its cytotoxic effect on normal cells. The main objective of the present study was to develop novel oral site-specific delivery of 5-FU to the colon with less drug being released in the stomach or small intestine using biodegradable hydrogel, hydrogel nanoparticles and comparing the targeting efficiency of 5-FU to colon from both. Poly(acrylic acid-co-acrylamide) (P(AA-co-Am)) normal hydrogel and hydrogel nanoparticles (HN) were synthesized by free radical polymerization using N,N-methylene-bis-acrylamide (MBA) as cross-linker, potassium persulfate as reaction initiator and 5-FU was loaded. HN were found to be degradable in physiological medium and showed comparatively higher swelling in rat caecal medium (RCM). 5-FU entrapment was increased by increasing Am (wt%) monomer feed. In vitro release of 5-FU from normal hydrogel and HN in pH progressive medium, it was found that a AA/Am ratio of 25:75 showed higher release in RCM. The Higuchi model yielded good adjustment of in vitro release kinetics. A higher amount of 5-FU reached the colon in HN (61 +/- 2.1%) than normal hydrogel (40 +/- 3.6%) by organ biodistribution studies in albino rats.

  1. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel.

    PubMed

    Ray, Debajyoti; Mohapatra, Dillip K; Mohapatra, Ranjit K; Mohanta, Guru P; Sahoo, Prafulla K

    2008-01-01

    Intravenous administration of 5-fluorouracil (5-FU) for colon cancer therapy produces severe systemic side-effects due to its cytotoxic effect on normal cells. The main objective of the present study was to develop novel oral site-specific delivery of 5-FU to the colon with less drug being released in the stomach or small intestine using biodegradable hydrogel, hydrogel nanoparticles and comparing the targeting efficiency of 5-FU to colon from both. Poly(acrylic acid-co-acrylamide) (P(AA-co-Am)) normal hydrogel and hydrogel nanoparticles (HN) were synthesized by free radical polymerization using N,N-methylene-bis-acrylamide (MBA) as cross-linker, potassium persulfate as reaction initiator and 5-FU was loaded. HN were found to be degradable in physiological medium and showed comparatively higher swelling in rat caecal medium (RCM). 5-FU entrapment was increased by increasing Am (wt%) monomer feed. In vitro release of 5-FU from normal hydrogel and HN in pH progressive medium, it was found that a AA/Am ratio of 25:75 showed higher release in RCM. The Higuchi model yielded good adjustment of in vitro release kinetics. A higher amount of 5-FU reached the colon in HN (61 +/- 2.1%) than normal hydrogel (40 +/- 3.6%) by organ biodistribution studies in albino rats. PMID:18973725

  2. Capture of Tumor Cells on Anti-EpCAM-Functionalized Poly(acrylic acid)-Coated Surfaces.

    PubMed

    Andree, Kiki C; Barradas, Ana M C; Nguyen, Ai T; Mentink, Anouk; Stojanovic, Ivan; Baggerman, Jacob; van Dalum, Joost; van Rijn, Cees J M; Terstappen, Leon W M M

    2016-06-15

    The presence of tumor cells in blood is predictive of short survival in several cancers and their isolation and characterization can guide toward the use of more effective treatments. These circulating tumor cells (CTC) are, however, extremely rare and require a technology that is sufficiently sensitive and specific to identify CTC against a background of billions of blood cells. Immuno-capture of cells expressing the epithelial cell adhesion molecule (EpCAM) are frequently used to enrich CTC from blood. The choice of bio conjugation strategy and antibody clone is crucial for adequate cell capture but is poorly understood. In this study, we determined the binding affinity constants and epitope binding of the EpCAM antibodies VU1D-9, HO-3, EpAb3-5, and MJ-37 by surface plasmon resonance imaging (SPRi). Glass surfaces were coated using a poly(acrylic acid) based coating and functionalized with anti-EpCAM antibodies. Binding of cells from the breast carcinoma cell line (SKBR-3) to the functionalized surfaces were compared. Although EpAb3-5 displayed the highest binding affinity HO-3 captured the highest amount of cells. Hence we report differences in the performance of the different antibodies and more importantly that the choice of antibody to capture CTC should be based on multiple assays.

  3. Characterization and Antimicrobial Property of Poly(Acrylic Acid) Nanogel Containing Silver Particle Prepared by Electron Beam

    PubMed Central

    Choi, Jong-Bae; Park, Jong-Seok; Khil, Myung-Seob; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Nho, Young-Chang

    2013-01-01

    In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA). The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect. PMID:23708101

  4. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  5. Hydrogen-bonding-driven self-assembly of PEGylated organosilica nanoparticles with poly(acrylic acid) in aqueous solutions and in layer-by-layer deposition at solid surfaces.

    PubMed

    Irmukhametova, Galiya S; Fraser, Brian J; Keddie, Joseph L; Mun, Grigoriy A; Khutoryanskiy, Vitaliy V

    2012-01-10

    PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

  6. 808 nm photocontrolled UCL imaging guided chemo/photothermal synergistic therapy with single UCNPs-CuS@PAA nanocomposite.

    PubMed

    Liu, Bei; Li, Chunxia; Xie, Zhongxi; Hou, Zhiyao; Cheng, Ziyong; Jin, Dayong; Lin, Jun

    2016-08-16

    Recently, incorporating multiple components into one nanostructured matrix to construct a multifunctional nanomedical platform has attracted more and more attention for simultaneous anticancer diagnosis and therapy. Herein, a novel anti-cancer nanoplatform has been successfully developed by coating a uniform shell of poly(acrylic acid) (PAA) on the surface of CuS-decorated upconversion nanoparticles (UCNPs). Benefiting from the enhanced 808 nm-excited UCL intensity of the multilayer UCNPs, the unique photothermal properties of CuS and the pH-responsive drug release capacity of the PAA shell, such a nanoplatform design of UCNPs-CuS@PAA (labeled UCP) offers a new route to achieve 808 nm-excited UCL imaging guided chemo/photothermal combination therapy. We have found that the combined chemo/photothermal therapy can significantly improve the therapeutic efficacy compared with chemotherapy or photothermal therapy (PTT) alone. Moreover, the pH/NIR-dependent drug delivery properties, 808 nm-excited UCL imaging, as well as in vitro/in vivo biocompatibility tests were also investigated in detail. These results show promising applications of UCP nanoparticles as a novel theranostic agent for the detection and treatment of tumors. PMID:27529086

  7. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers.

    PubMed

    Chen, Bo; Jerger, Katherine; Fréchet, Jean M J; Szoka, Francis C

    2009-12-16

    Water-soluble polymers for the delivery of chemotherapeutic drugs passively target solid tumors as a consequence of reduced renal clearance and the enhanced permeation and retention (EPR) effect. Elimination of the polymers in the kidney occurs due to filtration through biological nanopores with a hydrodynamic diameter comparable to the polymer. Therefore we have investigated chemical features that may broadly be grouped as "molecular architecture" such as: molecular weight, chain flexibility, number of chain ends and branching, to learn how they impact polymer elimination. In this report we describe the synthesis of four pairs of similar molecular weight cyclic and linear polyacrylic acid polymers grafted with polyethylene glycol (23, 32, 65, 114 kDa) with low polydispersities using ATRP and "click" chemistry. The polymers were radiolabeled with (125)I and their pharmacokinetics and tissue distribution after intravenous injection were determined in normal and C26 adenocarcinoma tumored BALB/c mice. Cyclic polymers above the renal threshold of 30 kDa had a significantly longer elimination time (between 10 and 33% longer) than did the comparable linear polymer (for the 66 kDa cyclic polymer, t(1/2,beta)=35+/-2 h) and a greater area under the serum concentration versus time curve. This resulted in a greater tumor accumulation of the cyclic polymer than the linear polymer counterpart. Thus water-soluble cyclic comb polymers join a growing list of polymer topologies that show greatly extended circulation times compared to their linear counterparts and provide alternative polymer architecture for use as drug carriers.

  8. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.

    2009-05-01

    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  9. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions

    PubMed Central

    Kim, Young Kyung; Gu, Li-sha; Bryan, Thomas E.; Kim, Jong Ryul; Chen, Liang; Liu, Yan; Yoon, James C.; Breschi, Lorenzo; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    The complex morphologies of mineralised collagen fibrils are regulated through interactions between the collagen matrix and non-collagenous extracellular proteins. In the present study, polyvinylphosphonic acid, a biomimetic analogue of matrix phosphoproteins, was synthesised and confirmed with FTIR and NMR. Biomimetic mineralisation of reconstituted collagen fibrils devoid of natural non-collagenous proteins was demonstrated with TEM using a Portland cement-containing resin composite and a phosphate-containing fluid in the presence of polyacrylic acid as sequestration, and polyvinylphosphonic acid as templating matrix protein analogues. In the presence of these dual biomimetic analogues in the mineralisation medium, intrafibrillar and extrafibrillar mineralisation via bottom-up nanoparticle assembly based on the nonclassical crystallisation pathway could be identified. Conversely, only large mineral spheres with no preferred association with collagen fibrils were observed in the absence of biomimetic analogues in the medium. Mineral phases were evident within the collagen fibrils as early as 4 hours after the initially-formed amorphous calcium phosphate nanoprecursors were transformed into apatite nanocrystals. Selected area electron diffraction patterns of highly mineralised collagen fibrils were nearly identical to those of natural bone, with apatite crystallites preferentially aligned along the collagen fibril axes. PMID:20621767

  10. Preparation and Biophysical Characterization of Poly(amidoamine) Dendrimer-Poly(acrylic acid) Graft.

    PubMed

    Dung, Tran Huu; Do, Le Thanh; Loan, Ta Thi; Yoo, Hoon

    2015-01-01

    A series of PAMAM dendrimer generation 5-poly(acrylic acid) grafts were prepared to evaluate the potential use of dendritic grafts as a drug encapsulated nanocarrier. The structural features of the synthesized polymer graft were identified by FT-IR and 1H-NMR spectra and the biophysical properties were characterized by measuring its particle size and zeta potential. The prepared dendrimer G5-PAA grafts had particle size in the range of 600 to 900 nm and the size increased proportionally with the number of PAA on dendrimer surface. The electrostatic property of the dendrimer G5-PAA, carried out by HPLC reversed phase column analysis and the measurement of zeta potential, revealed that both migration time and zeta potential were dependent on the number of grafted PAA. The number of free amino groups on dendrimer G5-PAA, determined quantitatively by fluorescamine assay, was in a reverse order with the reaction mole ratio of dendrimer to PAA. In addition, dendrimer G5-PAA showed a pH-dependent solubility in aqueous solution with characteristic pH region of solubility, depending on the dendrimer generation. The observed biophysical properties indicate that PAMAM dendrimer G5-PAA is promising as a drug encapsulated nanocarrier. PMID:26328427

  11. Osteochondral defect repair using a polyvinyl alcohol-polyacrylic acid (PVA-PAAc) hydrogel.

    PubMed

    Bichara, David A; Bodugoz-Sentruk, Hatice; Ling, Doris; Malchau, Erik; Bragdon, Charles R; Muratoglu, Orhun K

    2014-08-01

    Poly(vinyl alcohol) (PVA) hydrogels can be candidates for articular cartilage repair due to their high water content. We synthesized a PVA-poly(acrylic acid) (PAAc) hydrogel formulation and determined its ability to function as a treatment option for condylar osteochondral (OC) defects in a New Zealand white rabbit (NZWR) model for 12 weeks and 24 weeks. In addition to hydrogel OC implants, tensile bar-shaped hydrogels were also implanted subcutaneously to evaluate changes in mechanical properties as a function of in vivo duration. There were no statistically significant differences (p > 0.05) in the water content measured in the OC hydrogel implant that was harvested after 12 weeks and 24 weeks, and non-implanted controls. There were no statistically significant differences (p > 0.05) in the break stress, strain at break or modulus of the tensile bars either between groups. Histological analysis of the OC defect, synovial capsule and fibrous tissue around the tensile bars determined hydrogel biocompatibility. Twelve-week hydrogels were found to be in situ flush with the articular cartilage; meniscal tissue demonstrated an intact surface. Twenty-four week hydrogels protruded from the defect site due to lack of integration with subchondral tissue, causing fibrillation to the meniscal surface. Condylar micro-CT scans ruled out osteolysis and bone cysts of the subchondral bone, and no PVA-PAAc hydrogel contents were found in the synovial fluid. The PVA-PAAc hydrogel was determined to be fully biocompatible, maintained its properties over time, and performed well at the 12 week time point. Physical fixation of the PVA-PAAc hydrogel to the subchondral bone is required to ensure long-term performance of hydrogel plugs for OC defect repair.

  12. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications.

    PubMed

    Jaiswal, Maneesh; Koul, Veena

    2013-03-01

    The article describes the design of the multicomponent hydrogel system of poly(acrylic acid-HEMA)/gelatin for tissue engineering application. Derivative of polycaprolactone-diol (polycaprolactone diacrylate (PCL-DAr)) was used to cross-link acrylate monomers whereas gelatin was kept free for cell proliferation. Epigallocatechin gallate (EGCG), an anti-oxidant phytochemical, was loaded by diffusion method. Its in vitro release study in PBS (pH 6.5) at 37 ± 0.2°C (75 rpm) revealed a sustained release profile upto 20 days. Fitting of drug release data in Korsmeyer-Peppas model equation revealed probable release mechanism through the value of release coefficient (n), which was found to depend on formulations composition. Drug-polymer interaction, thermal behavior, and surface morphology were investigated by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopic (SEM). Swelling behavior of hydrogel in PBS (pH 6.5 and 7.4, 0.2 M) and in distilled water was found to increase with increasing AAc/HEMA ratio. Compression modulus decreased from 203 ± 3.7 KPa to 11.6 ± 1.1KPa, at 30% strain, whereas displacement values significantly increased from 3.2 ± 0.2 to 4.7 ± 0.6 mm at 20 N force (p < 0.05), with increasing AAc/HEMA ratio. Percentage cell viability was analyzed using indirect 3-[4, 5-dimethylthiazolyl-2]-2,5-diphenyltetrazo-liumbromide (MTT) assay with fibroblast L929 cells; showed ≥92.3% cell viability after 24 h incubation. Cell proliferation on the scaffold surface was found to increase with incorporation of HEMA in P(AAc)/G cross-linked hydrogel matrix upto a certain extent. These biocompatible, elastic, and swellable hydrogels can serve as a matrix for drug delivery and tissue engineering applications.

  13. FT-IR and FT-Raman studies of cross-linking processes with Ca²⁺ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina; Tyliszczak, Bozena

    2015-12-01

    The hardening process of moulding sands on quartz matrices bound by polymer binders containing carboxyl and hydroxyl groups can be carried out by using physical (microwave radiation, thermal holding) and chemical (Ca(2+) cations, glutaraldehyde) cross-linking agents. The highest hardening level obtain moulding sand samples containing binders in a form of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) within the microwave radiation field, for which the bending strength is of 1.6 MPa value even after 24h from ending the agent activity. The authors focused, in this study, on finding the reason of this effect. It was shown, by means of the FT-IR and FT-Raman spectroscopic methods, that the chemical adsorption process activated by microwaves plays an essential role. The applied microwaves activate the polar groups present in the polymer composition structure as well as the quartz crystals surfaces (silane groups). Then the chemical adsorption occurs in the binder-matrix system within the microwave radiation field and intermolecular lattices are formed with a participation of hydrogen bridges (SiOH⋯OC, SiOH⋯OH) and COSi type bonds. PMID:26125981

  14. High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder

    NASA Astrophysics Data System (ADS)

    Maroni, F.; Gabrielli, S.; Palmieri, A.; Marcantoni, E.; Croce, F.; Nobili, F.

    2016-11-01

    Fe3O4 nanoparticles synthesized by a base catalyzed method are tested as anode material for Li-ion batteries. The pristine nanoparticles are morphologically characterized showing an average size of 11 nm. Electrodes are prepared using high-molecular weight Poly (acrylic acid) as improved binder and ethanol as low cost and environmentally friendly solvent. The evaluation of electrochemical properties shows high specific capacity values of 857 mA hg-1 after 200 cycles at a specific current of 462 mAg-1, as well as an excellent rate capability with specific current values up to 18480 mAg-1. To the best of our knowledge, this is the first report of Fe3O4 nanoparticles cycling with PAA as binder.

  15. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.

  16. Investigation of PAA/PVDF-NZVI hybrids for metronidazole removal: synthesis, characterization, and reactivity characteristics.

    PubMed

    Yang, Jiacheng; Wang, Xiangyu; Zhu, Minping; Liu, Huiling; Ma, Jun

    2014-01-15

    For the first time, the removal process of metronidazole (MNZ) from aqueous solutions over nano zerovalent iron (NZVI) encapsulated within poly(acrylic acid) (PAA)/poly(vinylidene fluoride) (PVDF) membranes was reported. The resultant composite (PPN) demonstrated high reactivity, excellent stability and reusability over the reaction course. Such excellent performance might be attributed to the presence of the charged carboxyl groups in PVDF membrane support, which could enhance NZVI dispersion and improve its longevity. Results showed that a lower initial concentration and higher reaction temperature facilitated the removal of MNZ by PPN, and that the acidic and neutral conditions generally exhibited more favorable effect on MNZ removal than the alkaline ones. Kinetics of the MNZ removal by PPN was found to follow a two-parameter pseudo-first-order decay model well, and the activation energy of the MNZ degradation by PPN was determined to be 30.49kJ/mol. The presence of chloride ions slightly enhanced the reactivity of PPN with MNZ, whereas sulfate ions inhibited its reactivity. In addition, MNZ degradation pathways by PPN were proposed based on the identified intermediates. This study suggests that PPN composite possessing excellent performance may be a promising functional material to pretreat antibiotic wastewaters.

  17. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    PubMed

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-05-14

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  18. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    PubMed Central

    van Berkum, Susanne; Dee, Joris T.; Philipse, Albert P.; Erné, Ben H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network. PMID:23673482

  19. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites).

  20. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). PMID:24681378

  1. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  2. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  3. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  4. Investigations of PAA degradation in aqueous solutions: Impacts of water hardness, salinity and DOC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is used in aquaculture under various conditions for disinfection purposes. However, there is lack of information about its environmental fate. Therefore, the impact of water hardness, salinity, and dissolved organic carbon (DOC) on PAA-degradation within 5 hours was investigat...

  5. The outcomes of two different bulking agents (dextranomer hyaluronic acid copolymer and polyacrylate-polyalcohol copolymer) in the treatment of primary vesico-ureteral reflux

    PubMed Central

    Taşkinlar, Hakan; Avlan, Dincer; Bahadir, Gokhan Berktug; Delibaş, Ali; Nayci, Ali

    2016-01-01

    ABSTRACT Purpose Subureteral injection of bulking agents in the endoscopic treatment of vesicoureteral reflux is widely accepted therapy with high success rates. Although the grade of vesicoureteric reflux and experience of surgeon is the mainstay of this success, the characteristics of augmenting substances may have an effect particularly in the long term. In this retrospective study, we aimed to evaluate the clinical outcomes of the endoscopic treatment of vesicoureteric reflux (VUR) with two different bulking agents: Dextranomer/hyaluronic acid copolymer (Dx/HA) and Polyacrylate polyalcohol copolymer (PPC). Materials and Methods A total 80 patients (49 girls and 31 boys) aged 1-12 years (mean age 5.3 years) underwent endoscopic subureteral injection for correction of VUR last six years. The patients were assigned to two groups: subureteral injections of Dx/HA (45 patients and 57 ureters) and PPC (35 patients and 45 ureters). VUR was grade II in 27 ureters, grade III in 35, grade IV in 22 and grade V in 18 ureters. Results VUR was resolved in 38 (66.6%) of 57 ureters and this equates to VUR correction in 33 (73.3%) of the 45 patients in Dx/HA group. In PPC group, overall success rate was 88.8% (of 40 in 45 ureters). Thus, Thus, this equates to VUR correction in 31 (88.5%) of the 35 patients. Conclusions Our short term data show that two different bulking agent injections provide a high level of reflux resolution and this study revealed that success rate of PPC was significantly higher than Dx/HA with less material. PMID:27286115

  6. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    PubMed

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  7. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    NASA Astrophysics Data System (ADS)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  8. Involvement of the TetR-Type Regulator PaaR in the Regulation of Pristinamycin I Biosynthesis through an Effect on Precursor Supply in Streptomyces pristinaespiralis

    PubMed Central

    Zhao, Yawei; Feng, Rongrong; Zheng, Guosong; Tian, Jinzhong; Ruan, Lijun; Ge, Mei; Jiang, Weihong

    2015-01-01

    ABSTRACT Pristinamycin I (PI), produced by Streptomyces pristinaespiralis, is a streptogramin type B antibiotic, which contains two proteinogenic and five aproteinogenic amino acid precursors. PI is coproduced with pristinamycin II (PII), a member of streptogramin type A antibiotics. The PI biosynthetic gene cluster has been cloned and characterized. However, thus far little is understood about the regulation of PI biosynthesis. In this study, a TetR family regulator (encoded by SSDG_03033) was identified as playing a positive role in PI biosynthesis. Its homologue, PaaR, from Corynebacterium glutamicum serves as a transcriptional repressor of the paa genes involved in phenylacetic acid (PAA) catabolism. Herein, we also designated the identified regulator as PaaR. Deletion of paaR led to an approximately 70% decrease in PI production but had little effect on PII biosynthesis. Identical to the function of its homologue from C. glutamicum, PaaR is also involved in the suppression of paa expression. Given that phenylacetyl coenzyme A (PA-CoA) is the common intermediate of the PAA catabolic pathway and the biosynthetic pathway of l-phenylglycine (l-Phg), the last amino acid precursor for PI biosynthesis, we proposed that derepression of the transcription of paa genes in a ΔpaaR mutant possibly diverts more PA-CoA to the PAA catabolic pathway, thereby with less PA-CoA metabolic flux toward l-Phg formation, thus resulting in lower PI titers. This hypothesis was verified by the observations that PI production of a ΔpaaR mutant was restored by l-Phg supplementation as well as by deletion of the paaABCDE operon in the ΔpaaR mutant. Altogether, this study provides new insights into the regulation of PI biosynthesis by S. pristinaespiralis. IMPORTANCE A better understanding of the regulation mechanisms for antibiotic biosynthesis will provide valuable clues for Streptomyces strain improvement. Herein, a TetR family regulator PaaR, which serves as the repressor of the

  9. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  10. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  11. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata.

    PubMed

    Booth, Andy; Størseth, Trond; Altin, Dag; Fornara, Andrea; Ahniyaz, Anwar; Jungnickel, Harald; Laux, Peter; Luch, Andreas; Sørensen, Lisbet

    2015-02-01

    An aqueous dispersion of poly (acrylic acid)-stabilised cerium oxide (CeO₂) nanoparticles (PAA-CeO₂) was evaluated for its stability in a range of freshwater ecotoxicity media (MHRW, TG 201 and M7), with and without natural organic matter (NOM). In a 15 day dispersion stability study, PAA-CeO₂ did not undergo significant aggregation in any media type. Zeta potential varied between media types and was influenced by PAA-CeO₂ concentration, but remained constant over 15 days. NOM had no influence on PAA-CeO₂ aggregation or zeta potential. The ecotoxicity of the PAA-CeO₂ dispersion was investigated in 72 h algal growth inhibition tests using the freshwater microalgae Pseudokirchneriella subcapitata. PAA-CeO₂ EC₅₀ values for growth inhibition (GI; 0.024 mg/L) were 2-3 orders of magnitude lower than pristine CeO₂ EC₅₀ values reported in the literature. The concentration of dissolved cerium (Ce(3+)/Ce(4+)) in PAA-CeO₂ exposure suspensions was very low, ranging between 0.5 and 5.6 μg/L. Free PAA concentration in the exposure solutions (0.0096-0.0384 mg/L) was significantly lower than the EC10 growth inhibition (47.7 mg/L) value of pure PAA, indicating that free PAA did not contribute to the observed toxicity. Elemental analysis indicated that up to 38% of the total Cerium becomes directly associated with the algal cells during the 72 h exposure. TOF-SIMS analysis of algal cell wall compounds indicated three different modes of action, including a significant oxidative stress response to PAA-CeO₂ exposure. In contrast to pristine CeO₂ nanoparticles, which rapidly aggregate in standard ecotoxicity media, PAA-stabilised CeO₂ nanoparticles remain dispersed and available to water column species. Interaction of PAA with cell wall components, which could be responsible for the observed biomarker alterations, could not be excluded. This study indicates that the increased dispersion stability of PAA-CeO₂ leads to an increase in toxicity compared to

  12. Controlled Transdermal Iontophoresis by Polypyrrole/Poly(Acrylic Acid) Hydrogel

    NASA Astrophysics Data System (ADS)

    Chansai, Phithupha; Sirivat, Anuvat

    2008-03-01

    Transdermal drug delivery system delivers a drug into a body at desired site and rate. The conductive polymer-hydrogel blend between polypyrrole (PPy) doped with anionic drug and poly(acrylic acid) (PAA) were developed as a matrix/carrier of drug for the transdermal drug delivery in which the characteristic releases depend on the electrical field applied. The PAA films and their blend films were prepared by solution casting using ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. A mechanical blending of PPy particles and PAA matrix was then carried out. Drug diffusions in the blended PPy/PAA hydrogel and the non-blended one were investigated and determined by using a modified Franz-diffusion cell with an acetate buffer, pH 5.5, at 37 0C, for a period of 48 hours to determine the effects of crosslinking ratio and electric field strength. Amounts of the released drug were measured by UV-Visible spectrophotometry. The diffusion coefficient of drug was determined through the Higuchi equation via different conditions, with and without an electric field. Moreover, thermal properties and electrical conductivity of the polypyrrole and drug-loaded polypyrrole were investigated by means of the thermogravimetric analysis and by using a two-point probe meter, respectively.

  13. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    NASA Astrophysics Data System (ADS)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  14. Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling.

    PubMed

    Xue, Lili; Lu, Xili; Wei, Huan; Long, Ping; Xu, Jina; Zheng, Yufeng

    2014-05-01

    In this paper, an antifouling hydrogel coating of slippery hydrogel-released hydrous surface (SHRHS) with the self-cleaning ability of oil-resistance and self-regeneration characters was designed. A physical blending method of loading Sodium polyacrylate (PAAS) powder into the organic silicon resin was employed to prepare the SHRHS coating. The oil-resistance of the intact and scratch SHRHS coatings was performed by time-sequence images of washing dyed beef tallow stain away. The results showed that the SHRHS coating has the greater ability of stain removal. The concentration of Na+ ions released from PAAS hydrogel on the surface of the SHRHS coating was investigated by ion chromatograph (IC). The results revealed that the coating had the ability of self-regeneration by PAAS hydrogel continuously peeling. The biomass of two marine microalgae species, Nitzschia closterium f. minutissima and Navicula climacospheniae Booth attached on the SHRHS was investigated using UV-Visible Spectrophotometer (UV) and Scanning electron microscopy (SEM). The results showed that the microalgaes attached a significantly lower numbers on the SHRHS in comparison with the organic silicon coating. In order to confirm the antifouling ability of the SHRHS coating, the field trials were carried out for 12weeks. It showed that the SHRHS may provide an effective attachment resistance to reduce biofouling.

  15. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    PubMed

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  16. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method.

  17. Physicochemical and structural studies of clathrate hydrates of tetrabutylammonium polyacrylates.

    PubMed

    Terekhova, Irina S; Manakov, Andrey Yu; Komarov, Vladislav Yu; Villevald, Galina V; Burdin, Alexander A; Karpova, Tamara D; Aladko, Eugeny Ya

    2013-03-01

    In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method. PMID:23383955

  18. Kinetics of chromium ion absorption by cross-linked polyacrylate films

    NASA Technical Reports Server (NTRS)

    May, C. E.

    1984-01-01

    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  19. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly(acrylic acid) derivative.

    PubMed

    Akiyama, Y; Nagahara, N; Kashihara, T; Hirai, S; Toguchi, H

    1995-03-01

    Two types of polyglycerol ester of fatty acid (PGEF)-based microspheres were prepared: Carbopol 934P (CP)-coated microspheres (CPC-microspheres) and CP-dispersion microspheres (CPD-microspheres). Comparative studies on mucoadhesion were done with these microspheres and PGEF-based microspheres without CP (PGEF-microspheres). In an in vitro adhesion test, the CPD-microspheres adhered strongly to mucosa prepared from rat stomach and small intestine because each CP particle in the CPD-microsphere was hydrated and swelled with part of it remaining within the microsphere and part extending to the surface serving to anchor the microsphere to the mucus layer. The gastrointestinal transit patterns after administration of the CPD-microspheres and PGEF-microspheres to fasted rats were fitted to a model in which the microspheres are emptied from the stomach monoexponentially with a lag time and then transit through the small intestine at zero-order. Parameters obtained by curve fitting confirmed that the gastrointestinal transit time of the CPD-microspheres was prolonged compared with that of the PGEF-microspheres. MRT in the gastrointestinal tract was also prolonged after administration of the CPD-microspheres compared with that following the administration of the PGEF-microspheres.

  20. Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/Poly(acrylic acid) Shell.

    PubMed

    Karayianni, Maria; Gancheva, Valeria; Pispas, Stergios; Petrov, Petar

    2016-03-10

    The electrostatic complexation between lysozyme and stabilized polymeric micelles (SPMs) with a poly(acrylic acid) (PAA) or a mixed poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) shell (SPMs with a mixed shell, SPMMS) and a temperature-responsive poly(propylene oxide) (PPO) core was investigated by means of dynamic, static, and electrophoretic light scattering. The SPMs and different types of SPMMS used resulted from the self-assembly of PAA-PPO-PAA triblock copolymer chains, or PAA-PPO-PAA and PEO-PPO-PEO triblock copolymer chain mixtures (with varying chain lengths and molar ratios) in aqueous solutions at pH 10 and the subsequent cross-linking of their PPO cores via loading and photo-cross-linking of pentaerythritol tetraacrylate (PETA). The solution behavior, structure and properties of the formed complexes at pH 7 and 0.01 M ionic strength, were studied as a function of the protein concentration in the solution (the concentration of the stabilized micelles was kept constant) or equivalently the ratio of the two components. The complexation process and properties of the complexes proved to be dependent on the protein concentration, while of particular interest was the effect of the structure of the shell of the SPMs on the stability/solubility of the complexes. Finally, the fluorescence and mid infrared spectroscopic investigation of the structure of the complexed protein showed that, although a small stretching of the protein molecules occurred in some cases, no protein denaturation takes place upon complexation. PMID:26881445

  1. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  2. Tuning hemoglobin-poly(acrylic acid) interactions by controlled chemical modification with triethylenetetramine.

    PubMed

    Thilakarathne, Vindya K; Briand, Victoria A; Kasi, Rajeswari M; Kumar, Challa V

    2012-10-25

    Protein-polymer interactions play a very important role in a number of applications, but details of these interactions are not fully understood. Chemical modification was introduced here to tune protein-polymer interactions in a systematic manner, where methemoglobin (Hb) and poly(acrylic acid) (PAA) served as a model system. Under similar conditions of pH and ionic strength, the influence of protein charge on Hb/PAA interaction was studied using chemically modified Hb by isothermal titration calorimetry (ITC). A small fraction of COOH groups of Hb were amidated with triethylenetetramine (TETA) or ammonium chloride to produce the corresponding charge ladders of Hb-TETA and Hb-ammonia derivatives, respectively. All the Hb/PAA complexes produced here are bioactive, entirely soluble in water, and indicated the retention of Hb structure to a significant extent. Binding of Hb to PAA was exothermic (ΔH < 0). The binding of Hb-TETA charge ladder to PAA indicated decrease of ΔH from -8 ± 0.2 to -89 ± 4 kcal/mol, at a rate of -3.8 kcal/mol per unit charge introduced via modification. The Hb-ammonia charge ladder, in contrast, showed a decrease of ΔH from -8 ± 0.2 to -17 ± 1.5 kcal/mol, at much slower rate of -1.0 kcal/mol per unit charge. Thus, the amine used for the modification played a strong role in tuning Hb/PAA interactions, even after correcting for the charge, synergistically. Charge clustering may be responsible for this synergy, and this interesting observation may be exploited to construct protein/polymer platforms for advanced biomacromolecular applications.

  3. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.

  4. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing

    PubMed Central

    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J.; Eckmann, David M.

    2013-01-01

    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces. PMID:24349719

  5. Deflocculation of clay suspensions using sodium polyacrylates

    NASA Technical Reports Server (NTRS)

    Jedlicka, P.

    1984-01-01

    Rheological properties of elutriated kaolin suspensions deflocculated by Na polyacrylate (DAC 3 and DAC 4) were studied and compared to those deflocculated by the conventional Na2CO3 water and glass and imported Dispex N40. The deflocculating effect of Na polyacrylate was comparable to that of Dispex N40. The optimum amounts of Na polyacrylate were determined for suspensions based on 5-type kaolin. The Na polyacrylate can be successfully used for decreasing the water content of ceramic slips for casting and spray drying.

  6. pH effect of coagulation bath on the characteristics of poly(acrylic acid)-grafted and poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) microfiltration membranes.

    PubMed

    Ying, Lei; Zhai, Guangqun; Winata, A Y; Kang, E T; Neoh, K G

    2003-09-15

    The poly(acrylic acid)-graft-poly(vinylidene fluoride) (PAAc-g-PVDF) and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) (P4VP-g-PVDF) copolymers were obtained by thermally induced molecular graft copolymerization of acrylic acid (AAc) and 4-vinylpyridine (4VP), respectively, with the ozone-pretreated poly(vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) solution. Microfiltration (MF) membranes were prepared from the respective copolymers by phase inversion in aqueous media. The effects of pH of the coagulation bath on the physicochemical and morphological characteristics of the membranes were investigated. The surface compositions of the membranes were determined by X-ray photoelectron spectroscopy (XPS). The surface graft concentration of the AAc polymer for the PAAc-g-PVDF MF membrane increased with decreasing pH value of the coagulation bath. Completely opposite pH-dependent behavior was observed for the surface graft concentration of the 4VP polymer in the P4VP-g-PVDF MF membranes. A substantial increase in mean pore size was observed for the PAAc-g-PVDF MF membranes cast in basic coagulation baths of increasing pH. In the case of the P4VP-g-PVDF MF membranes, a substantial increase in mean pore size was observed for membranes cast in low pH (acidic) baths. The permeation rate of aqueous solutions through the PAAc-g-PVDF and P4VP-g-PVDF MF membranes exhibited a reversible dependence on the pH of the solution, with the membranes cast near the neutral pH exhibiting the highest sensitivity to changes in permeate pH. PMID:12962674

  7. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively. PMID:22749139

  8. pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

    PubMed Central

    Häuser, Manuel; Langer, Klaus

    2015-01-01

    Summary Nanoparticles (NP) of poly(lactic-co-glycolic acid) (PLGA) represent a promising biodegradable drug delivery system. We suggest here a two-step release system of PLGA nanoparticles with a pH-tunable polymeric shell, providing an initial pH-triggered step, releasing a membrane-toxic cationic compound. PLGA nanoparticles are coated by polyelectrolytes using the layer-by-layer self-assembly technique, employing poly(acrylic acid) (PAA) as a pH-sensitive component and poly(diallyldimethylammonium chloride) (PDADMAC) as the releasable polycation. The pH during multilayer deposition plays a major role and influences the titration curve of the layer system. The pH-tunability of PAA is intensively investigated with regard to the pH region, in which the particle system becomes uncharged. The isoelectric point can be shifted by employing suitable deposition pH values. The release is investigated by quantitative 1H NMR, yielding a pH-dependent release curve. A release of PDADMAC is initiated by a decrease of the pH value. The released amount of polymer, as quantified by 1H NMR analysis, clearly depends on the pH value and thus on the state of deprotonation of the pH-sensitive PAA layer. Subsequent incubation of the nanoparticles with high concentrations of sodium chloride shows no further release and thus demonstrates the pH-driven release to be quantitative. PMID:26885463

  9. A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA).

    PubMed

    Moussas, P A; Zouboulis, A I

    2009-08-01

    Currently, research is focused on the synthesis of new composite coagulants, which are constituted of both inorganic and organic materials. In this paper, the development of relevant reagents was investigated, by combining the inorganic pre-polymerised iron-based coagulant Polyferric Sulphate (PFS) with an organic, non-ionic polymer (Polyacrylamide, PAA) under different PAA/Fe (mg/l) and OH/Fe molar ratios. Moreover, the new reagents were characterised in terms of typical properties, stability and morphological analysis (XRD, FTIR, SEM). Their coagulation performance, when treating low or high turbid kaolin-humic acid suspensions, was also investigated, whereas the applied coagulation mechanisms were discussed by using the Photometric Dispersion Analysis (PDA) analysis. The results show that the new coagulation reagents present improved properties, including increased effective polymer species concentration, and they exhibit very good stability. The respective tests using PDA confirmed that the predominant coagulation mechanism of PFS-PAA is the bridge formation mechanism. Coagulation experiments in low or high turbid kaolin-humic acid suspensions reveal that the novel composite reagent PFS-PAA exhibits better coagulation performance, when compared with simple PFS, in terms of zeta-potential reduction, turbidity and organic matter removal and residual iron concentration. PMID:19560180

  10. In vivo kinetic analysis of the penicillin biosynthesis pathway using PAA stimulus response experiments.

    PubMed

    Deshmukh, Amit T; Verheijen, Peter J T; Maleki Seifar, Reza; Heijnen, Joseph J; van Gulik, Walter M

    2015-11-01

    In this study we combined experimentation with mathematical modeling to unravel the in vivo kinetic properties of the enzymes and transporters of the penicillin biosynthesis pathway in a high yielding Penicillium chrysogenum strain. The experiment consisted of a step response experiment with the side chain precursor phenyl acetic acid (PAA) in a glucose-limited chemostat. The metabolite data showed that in the absence of PAA all penicillin pathway enzymes were expressed, leading to the production of a significant amount of 6-aminopenicillanic acid (6APA) as end product. After the stepwise perturbation with PAA, the pathway produced PenG within seconds. From the extra- and intracellular metabolite measurements, hypotheses for the secretion mechanisms of penicillin pathway metabolites were derived. A dynamic model of the penicillin biosynthesis pathway was then constructed that included the formation and transport over the cytoplasmic membrane of pathway intermediates, PAA and the product penicillin-G (PenG). The model parameters and changes in the enzyme levels of the penicillin biosynthesis pathway under in vivo conditions were simultaneously estimated using experimental data obtained at three different timescales (seconds, minutes, hours). The model was applied to determine changes in the penicillin pathway enzymes in time, calculate fluxes and analyze the flux control of the pathway. This led to a reassessment of the in vivo behavior of the pathway enzymes and in particular Acyl-CoA:Isopenicillin N Acyltransferase (AT).

  11. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.

    PubMed

    Dong, Haoran; Lo, Irene M C

    2013-01-01

    To enhance colloidal stability of nano zero-valent iron (NZVI) used for groundwater remediation, the surfaces of such NZVI can be modified via coating with organic stabilizers. These surface stabilizers can electrostatically, sterically, or electrosterically stabilize NZVI suspensions in water, but their efficacy is affected by the presence of humic acid (HA) in groundwater. In this study, the effect of HA on the colloidal stability of NZVI coated with three types of stabilizers (i.e., polyacrylic acid (PAA), Tween-20 and starch) was evaluated. Differing stability behaviors were observed for different surface-modified NZVIs (SM-NZVI) in the presence of HA. Fluorescence spectroscopic analysis probed the possible interactions at the SM-NZVI-HA interface, providing a better understanding of the effect of HA on SM-NZVI stability. The adsorption of HA on the surface of PAA-modified NZVI via complexation with NZVI (rather than the PAA stabilizer) enhanced the electrosteric repulsion effect, increasing the stability of the particles. However, for NZVI modified with Tween-20 or starch, HA could interact with the surface stabilizer and apparently play a "bridge" role among the particles, which might induce aggregation of the particles. Therefore, the stability behavior of NZVI modified with Tween-20 or starch might have resulted from the combined effect of "bridging" and "electrosteric" exerted by HA. PMID:23123051

  12. Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron.

    PubMed

    Dong, Haoran; Lo, Irene M C

    2013-01-01

    To enhance colloidal stability of nano zero-valent iron (NZVI) used for groundwater remediation, the surfaces of such NZVI can be modified via coating with organic stabilizers. These surface stabilizers can electrostatically, sterically, or electrosterically stabilize NZVI suspensions in water, but their efficacy is affected by the presence of humic acid (HA) in groundwater. In this study, the effect of HA on the colloidal stability of NZVI coated with three types of stabilizers (i.e., polyacrylic acid (PAA), Tween-20 and starch) was evaluated. Differing stability behaviors were observed for different surface-modified NZVIs (SM-NZVI) in the presence of HA. Fluorescence spectroscopic analysis probed the possible interactions at the SM-NZVI-HA interface, providing a better understanding of the effect of HA on SM-NZVI stability. The adsorption of HA on the surface of PAA-modified NZVI via complexation with NZVI (rather than the PAA stabilizer) enhanced the electrosteric repulsion effect, increasing the stability of the particles. However, for NZVI modified with Tween-20 or starch, HA could interact with the surface stabilizer and apparently play a "bridge" role among the particles, which might induce aggregation of the particles. Therefore, the stability behavior of NZVI modified with Tween-20 or starch might have resulted from the combined effect of "bridging" and "electrosteric" exerted by HA.

  13. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  14. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  15. NGAP: A (Brief) Update PaaS, IaaS, Onbording, and the Future

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brett; Pawloski, Andrew

    2016-01-01

    NASA ESDIS has charged the EED2 program with delivering a NASA-compliant, secure, cloud-based platform for application hosting. More than just a move to the cloud, this has forced us to examine all aspects of application hosting, from resource management to system administration, patching to monitoring, deployment to multiple environments. The result of this mandate is NGAP, the NASA General Application Platform. In this presentation, we will also discuss the various applications we are supporting and targeting, and their architectures including NGAPs move to support both PaaS and IaaS architectures.

  16. Comparison of the toxicity of the peracetic acid formulations Wofasteril(c) E400, E250 and Lspez to Daphnia magna with emphasis on the effect of hydrogen peroxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial peracetic acid (PAA) formulations are acidic mixtures of PAA, hydrogen peroxide (H2O2), acetic acid (AA), H2O and stabilizers to maintain equilibrium of the concentrations. Different PAA formulations show diverse PAA/H2O2 ratios, leading to potentially different toxicities at the same con...

  17. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  18. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  19. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  20. Microbial reduction in wastewater treatment using Fe(3+) and Al(3+) coagulants and PAA disinfectant.

    PubMed

    Pradhan, Surendra K; Kauppinen, Ari; Martikainen, Kati; Pitkänen, Tarja; Kusnetsov, Jaana; Miettinen, Ilkka T; Pessi, Matti; Poutiainen, Hannu; Heinonen-Tanski, Helvi

    2013-12-01

    Wastewater is an important source of pathogenic enteric microorganisms in surface water and a major contaminating agent of drinking water. Although primary and secondary wastewater treatments reduce the numbers of microorganisms in wastewater, significant numbers of microbes can still be present in the effluent. The aim of this study was to test the feasibility of tertiary treatment for municipal wastewater treatment plants (WWTPs) using PIX (FeCl3) or PAX (AlCl3) coagulants and peracetic acid (PAA) the disinfectant to reduce microbial load in effluent. Our study showed that both PIX and PAX efficiently reduced microbial numbers. PAA disinfection greatly reduced the numbers of culturable indicator microorganisms (Escherichia coli, intestinal enterococci, F-specific RNA coliphages and somatic DNA coliphages). In addition, pathogenic microorganisms, thermotolerant Campylobacter, Salmonella and norovirus GI, were successfully reduced using the tertiary treatments. In contrast, clostridia, Legionella, rotavirus, norovirus GII and adenovirus showed better resistance against PAA compared to the other microorganisms. However, interpretation of polymerase chain reaction (PCR) analysis results will need further studies to clarify the infectivity of the pathogenic microbes. In conclusion, PIX and PAX flocculants followed by PAA disinfectant can be used as a tertiary treatment for municipal WWTP effluents to reduce the numbers of indicator and pathogenic microorganisms.

  1. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C₁₅H₁₅N₃O₂: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells).

    PubMed

    Remy, P-Ph; Etique, M; Hazotte, A A; Sergent, A-S; Estrade, N; Cloquet, C; Hanna, K; Jorand, F P A

    2015-03-01

    The kinetics of Hg(II) and methyl red (MR) reduction by hydroxycarbonate green rust (GR1) and by hydroxysulfate green rust (GR2) were studied in the presence of naturally occurring organic and inorganic ligands (phosphate, polyacrylic acid, bacterial cells, silicate). The reducing ability of biogenic hydroxycarbonate green rust (GR1bio), obtained after microbial reduction of lepidocrocite by Shewanella putrefaciens, was also investigated and compared to those of chemically synthesized GR1 and GR2 (GR1ab and GR2ab). Pseudo first-order rate constants (kobs) of Hg(II) reduction (at pH 7.0, 8.2, and 9.5) and MR reduction (at pH 7.0) were determined and were normalized to the structural Fe(II) content of GRs (kFeII) and to the estimated concentration of surface Fe(II) sites (kS). The kS values ranged from 0.3 L mmol(-1) min(-1) to 43 L mmol(-1) min(-1) for the Hg reduction, and from 0.007 L mmol(-1) min(-1) to 3.4 L mmol(-1) min(-1) for the MR reduction. No significant discrepancy between GRab and GRbio was observed in term of reactivity. However, the reduction kinetics of MR was generally slower than the Hg(II) reduction kinetics for all tested GRs. While a slight difference in Hg(II) reduction rate was noted whatever the pH values (7.0, 8.2, or 9.5), the reduction of MR was significantly affected in the presence of ligands. A decrease by a factor of 2-200, depending on the type of ligand used, was observed. These data give new insights into the reactivity of GRs in the presence of co-occurring organic and inorganic ligands, and have major implications in the characterization of contaminated systems as well as water treatment processes. PMID:25543237

  2. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C₁₅H₁₅N₃O₂: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells).

    PubMed

    Remy, P-Ph; Etique, M; Hazotte, A A; Sergent, A-S; Estrade, N; Cloquet, C; Hanna, K; Jorand, F P A

    2015-03-01

    The kinetics of Hg(II) and methyl red (MR) reduction by hydroxycarbonate green rust (GR1) and by hydroxysulfate green rust (GR2) were studied in the presence of naturally occurring organic and inorganic ligands (phosphate, polyacrylic acid, bacterial cells, silicate). The reducing ability of biogenic hydroxycarbonate green rust (GR1bio), obtained after microbial reduction of lepidocrocite by Shewanella putrefaciens, was also investigated and compared to those of chemically synthesized GR1 and GR2 (GR1ab and GR2ab). Pseudo first-order rate constants (kobs) of Hg(II) reduction (at pH 7.0, 8.2, and 9.5) and MR reduction (at pH 7.0) were determined and were normalized to the structural Fe(II) content of GRs (kFeII) and to the estimated concentration of surface Fe(II) sites (kS). The kS values ranged from 0.3 L mmol(-1) min(-1) to 43 L mmol(-1) min(-1) for the Hg reduction, and from 0.007 L mmol(-1) min(-1) to 3.4 L mmol(-1) min(-1) for the MR reduction. No significant discrepancy between GRab and GRbio was observed in term of reactivity. However, the reduction kinetics of MR was generally slower than the Hg(II) reduction kinetics for all tested GRs. While a slight difference in Hg(II) reduction rate was noted whatever the pH values (7.0, 8.2, or 9.5), the reduction of MR was significantly affected in the presence of ligands. A decrease by a factor of 2-200, depending on the type of ligand used, was observed. These data give new insights into the reactivity of GRs in the presence of co-occurring organic and inorganic ligands, and have major implications in the characterization of contaminated systems as well as water treatment processes.

  3. One-Step Hydrothermal Synthesis of Butanetetracarboxylic Acid-Coated NaYF₄:Yb³⁺, Er³⁺ Upconversion Phosphors with Enhancement Upconversion Luminescence.

    PubMed

    Zhang, Liming; Mao, Lanlan; Lu, Zhuoxuan; Deng, Yan; He, Nongyue

    2016-01-01

    Butanetetracarboxylic acid (BTCA)/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have been successfully synthesized by a one-step hydrothermal method. The SEM and XRD results show the as-prepared phosphors exhibit main hexagonal lattice structures and uniform morphologies. FT-IR spectra confirm that the surface of as-prepared phosphors is inherently modified with the carboxyl groups. Under the excitation of 980 nm, it has been observed that BTCA/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have a higher upconversion luminescence efficiency than that coated with citrate, ethylenediamine tetraacetic acid (EDTA), or polyacrylic acid (PAA). These results indicate that the BTCA/NaYF₄:Yb³⁺, Er³⁺ phosphors may have superior optical properties, and thus have great potential for biological applications. PMID:27398591

  4. Chemical Analysis and Aqueous Solution Properties of Charged Amphiphilic Block Copolymers PBA-b-PAA Synthesized by MADIX

    SciTech Connect

    Jacquin,M.; Muller, P.; Talingting-Pabalan, R.; Cottet, H.; Berret, J.; Futterer, T.; Theodoly, O.

    2007-01-01

    We have linked the structural and dynamic properties in aqueous solution of amphiphilic charged diblock copolymers poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA, synthesized by controlled radical polymerization, with the physico-chemical characteristics of the samples. Despite product imperfections, the samples self-assemble in melt and aqueous solutions as predicted by monodisperse microphase separation theory. However, the PBA core are abnormally large; the swelling of PBA cores is not due to AA (the Flory parameter ?PBA/PAA, determined at 0.25, means strong segregation), but to h-PBA homopolymers (content determined by liquid chromatography at the point of exclusion and adsorption transition, LC-PEAT). Beside the dominant population of micelles detected by scattering experiments, capillary electrophoresis CE analysis permitted detection of two other populations, one of h-PAA, and the other of free PBA-b-PAA chains, that have very short PBA blocks and never self-assemble. Despite the presence of these free unimers, the self-assembly in solution was found out of equilibrium: the aggregation state is history dependant and no unimer exchange between micelles occurs over months (time-evolution SANS). The high PBA/water interfacial tension, measured at 20 mN/m, prohibits unimer exchange between micelles. PBA-b-PAA solution systems are neither at thermal equilibrium nor completely frozen systems: internal fractionation of individual aggregates can occur.

  5. "Stable-on-the-Table" Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity.

    PubMed

    Ghimire, Ananta; Zore, Omkar V; Thilakarathne, Vindya K; Briand, Victoria A; Lenehan, Patrick J; Lei, Yu; Kasi, Rajeswari M; Kumar, Challa V

    2015-01-01

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, M(W) 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17-20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at -0.279 and -0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications. PMID:26393601

  6. “Stable-on-the-Table” Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity

    PubMed Central

    Ghimire, Ananta; Zore, Omkar V.; Thilakarathne, Vindya K.; Briand, Victoria A.; Lenehan, Patrick J.; Lei, Yu; Kasi, Rajeswari M.; Kumar, Challa V.

    2015-01-01

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, MW 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17–20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at −0.279 and −0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications. PMID:26393601

  7. "Stable-on-the-Table" Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity.

    PubMed

    Ghimire, Ananta; Zore, Omkar V; Thilakarathne, Vindya K; Briand, Victoria A; Lenehan, Patrick J; Lei, Yu; Kasi, Rajeswari M; Kumar, Challa V

    2015-09-18

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, M(W) 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17-20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at -0.279 and -0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications.

  8. Hygienisierung in der Fischzucht mittels Per-essigsäure (Disinfection of water with PAA: State of the investigations)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are very few therapeutic agents against aquaculture ectoparasites in Germany. Peracetic Acid (PAA) has been referred to as the best disinfective agent in the world, but it has not been used much here in aquaculture. We currently use this compound in ‘treatment crisis’ situations because ther...

  9. Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.

    PubMed

    Chen, Xi; Kohl, Thomas A; Rückert, Christian; Rodionov, Dmitry A; Li, Ling-Hao; Ding, Jiu-Yuan; Kalinowski, Jörn; Liu, Shuang-Jiang

    2012-08-01

    The industrially important organism Corynebacterium glutamicum has been characterized in recent years for its robust ability to assimilate aromatic compounds. In this study, C. glutamicum strain AS 1.542 was investigated for its ability to catabolize phenylacetic acid (PAA). The paa genes were identified; they are organized as a continuous paa gene cluster. The type strain of C. glutamicum, ATCC 13032, is not able to catabolize PAA, but the recombinant strain ATCC 13032/pEC-K18mob2::paa gained the ability to grow on PAA. The paaR gene, encoding a TetR family transcription regulator, was studied in detail. Disruption of paaR in strain AS 1.542 resulted in transcriptional increases of all paa genes. Transcription start sites and putative promoter regions were determined. An imperfect palindromic motif (5'-ACTNACCGNNCGNNCGGTNAGT-3'; 22 bp) was identified in the upstream regions of paa genes. Electrophoretic mobility shift assays (EMSA) demonstrated specific binding of PaaR to this motif, and phenylacetyl coenzyme A (PA-CoA) blocked binding. It was concluded that PaaR is the negative regulator of PAA degradation and that PA-CoA is the PaaR effector. In addition, GlxR binding sites were found, and binding to GlxR was confirmed. Therefore, PAA catabolism in C. glutamicum is regulated by the pathway-specific repressor PaaR, and also likely by the global transcription regulator GlxR. By comparative genomic analysis, we reconstructed orthologous PaaR regulons in 57 species, including species of Actinobacteria, Proteobacteria, and Flavobacteria, that carry PAA utilization genes and operate by conserved binding motifs, suggesting that PaaR-like regulation might commonly exist in these bacteria.

  10. Electrochemical lithiation performance and characterization of silicon-graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders.

    PubMed

    Han, Zhen-Ji; Yamagiwa, Kiyofumi; Yabuuchi, Naoaki; Son, Jin-Young; Cui, Yi-Tao; Oji, Hiroshi; Kogure, Akinori; Harada, Takahiro; Ishikawa, Sumihisa; Aoki, Yasuhito; Komaba, Shinichi

    2015-02-01

    Poly(acrylic acid) (PAH), which is a water soluble polycarboxylic acid, is neutralized by adding different amounts of LiOH, NaOH, KOH, and ammonia (NH4OH) aqueous solutions to fix neutralization degrees. The differently neutralized polyacid, alkali and ammonium polyacrylates are examined as polymeric binders for the preparation of Si-graphite composite electrodes as negative electrodes for Li-ion batteries. The electrode performance of the Si-graphite composite depends on the alkali chemicals and neutralization degree. It is found that 80% NaOH-neutralized polyacrylate binder (a pH value of the resultant aqueous solution is ca. 6.7) is the most efficient binder to enhance the electrochemical lithiation and de-lithiation performance of the Si-graphite composite electrode compared to that of conventional PVdF and the other binders used in this study. The optimum polyacrylate binder highly improves the dispersion of active material in the composite electrode. The binder also provides the strong adhesion, suitable porosity, and hardness for the composite electrode with 10% (m/m) binder content, resulting in better electrochemical reversibility. From these results, the factors of alkali-neutralized polyacrylate binders affecting the electrode performance of Si-graphite composite electrodes are discussed. PMID:25559330

  11. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  12. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications.

  13. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo

    2010-11-01

    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  14. Polyacrylate membranes for tunable liquid-filled microlenses

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zappe, Hans; Seifert, Andreas

    2013-04-01

    We present the use of polyacrylate membranes for the fabrication of pneumatically actuated variable lenses. Whereas the most commonly used membrane material for tunable liquid-filled lenses is polydimethylsiloxane (PDMS), polyacrylate membranes have the advantages of high resistance to swelling in silicone oil and enhanced compatibility with a wide range of aqueous optical liquids. These features are quantitatively demonstrated by comparing the material properties and performance of PDMS and polyacrylate membrane lenses. The optical transparency of polyacrylate is more than 92%. The surface roughness is below 3.3 nm rms, and reversible elastic deformation could be demonstrated. Optical measurements show that the cutoff frequency of the modulation transfer function of polyacrylate lenses with different liquid fillings, using a reference contrast of 0.2, is more than 1.5 times larger than that of the same system assembled with PDMS membranes filled with water.

  15. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.

    PubMed

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-14

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm(-1). These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future. PMID:26895081

  16. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  17. [Studies on primary aromatic amines (PAAs) migration from multi-layer plastic food packaging by HPLC method].

    PubMed

    Cwiek-Ludwicka, Kazimiera; Pawlicka, Marzena; Starski, Andrzej; Półtorak, Hanna; Karłowski, Kazimierz

    2011-01-01

    The aim of this study was to identify of primary aromatic amines (PAAs) and to determine their migration from plastic food packaging. The magnitude of the migration of these substances from plastic food packaging consists a base for the evaluation of their compliance with the requirements of EU legislation and hazard for human health taking into account their migration into food. The unprinted and printed multi-layer plastic packaging (laminates), domestic and imported, were examined in these studies. PAAs migration tests from the laminates into food simulant (3% acetic acid) was performed according to the appropriate procedures recommended in the EU for testing migration from food contact articles under standard conditions reflecting the real use of laminates (10 days, 40 degrees C) and under ,, worst case scenario" conditions (2 h, 70 degrees C). PAAs present in migration solutions were concentrated on SPE columns and then seven PAAs (aniline, 1,3-phenylenediamine, 2, 6-toluenediamine, 2,4-toluenediamine, 4,4'-oxydianiline, 4,4'-methylenedianiline and 3,3 '-dimethylbenzidyne) were identified and determined by previously validated HPLC-DAD method. Depending on the migration conditions the PAAs content was different. When the "worst case scenario" conditions were applied the migration of 4,4 '-methylenedianiline (4,4 '-MDA) ranged from below detection limit (LOD = 0.51 microg/kg) up to 9.86 microg/kg, and aniline was released in the range from below detection limit (LOD = 0,98 microg/kg) up to 7.04 microg/kg. In two laminate samples of eight examined, the sum of PAAs (aniline and 4,4'-MDA) was 13.32 microg/kg and 14.72 microg/kg showing that the permitted limit (10 microg/kg) was exceeded. In the standard conditions, the migration of aniline and 4,4'-MDA was significantly lower Regarding the carcinogenic potential of PAAs, the laminates causing the amines migration above the permitted limit should not be used as food packaging.

  18. Acute toxicity of peracetic acid to fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA; also called peroxyacetic acid) is a stabilized mixture of acetic acid, hydrogen peroxide and water that does not leave dangerous residues in the environment when it breaks down as most compounds do. PAA is a promising disinfectant in the US aquaculture industry to control paras...

  19. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.

    PubMed

    Dong, Haoran; Lo, Irene M C

    2013-05-01

    To decrease aggregation and enhance the mobility of nano zero-valent iron (NZVI) used for in-situ groundwater remediation, the surface of such NZVI must be modified using organic stabilizers, which can provide electrostatic repulsion, and steric or electrosteric stabilization. However, the stability of the nanoparticles can also be affected by groundwater components such as cations and humic acid (HA). In this study, the effect of Ca(2+) on the colloidal stability of NZVI coated with three types of stabilizers (i.e., polyacrylic acid (PAA), Tween-20 and starch) was evaluated in the absence or presence of HA. Differing stability behavior was observed for different surface-modified NZVIs. The presence of Ca(2+) exerted a slight influence on the settling of NZVI modified with PAA or Tween-20, in the absence or presence of HA. However, the presence of Ca(2+) caused significant aggregation and sedimentation for starch-modified NZVI in the absence of HA, and induced an even higher degree of aggregation and sedimentation in the presence of HA. It is presumed that, in the absence of HA, starch-modified NZVI particles undergo attachment with each other via Ca(2+) complexation with the coated starch molecules on the surface of the particles, thus enhancing the aggregation and the following sedimentation of starch-modified NZVI. However, in the presence of HA, spectroscopic analysis of the starch-modified NZVI aggregates indicated that the bridging interaction of HA with Ca(2+) was the predominant mechanism for the enhanced aggregation.

  20. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is an agent used for disinfection in aquaculture. PAA contributes to sustainable aquaculture, because it releases no harmful residue in the environment. However, there is lack of guideline about the effective application of different PAA products against various pathogens in p...

  1. PERI-ANESTHESIA ANAPHYLAXIS (PAA): WE STILL HAVE NOT STARTED POST-PAA TESTING FOR INCITING ANESTHESIA-RELATED ALLERGENS.

    PubMed

    Alshaeri, Taghreed; Gupta, Deepak; Nagabhushana, Ananthamurthy

    2016-02-01

    Anaphylaxis during anesthesia is uncommon. Diagnosis of peri-anesthesia anaphylaxis (PAA) requires anesthesia providers' vigilance for prompt diagnosis and treatment. In this case report, we present a challenging case with suspected PAA including its perioperative management, intensive care unit (ICU) course, and post-discharge follow-up. A 44-year-old female (body mass index = 26) presented for elective abdominal panniculectomy. Post-intubation, severe bronchospasm occurred that was non-responsive to nebulized albuterol and intravenous epinephrine. Continuous infusion of epinephrine was initiated. After aborting surgical procedure, the patient was transferred to ICU on continuous intravenous infusion of epinephrine. Venous blood sampling showed elevated troponin level. Echocardiography revealed ejection fraction of 25% suspicious of Takotsubo cardiomyopathy (mid cavitary variant). Tracheal extubation was only possible after three days. Subsequently, patient was discharged home with a cardiology follow-up appointment and a referral to an allergy specialist. Unfortunately at our institution (an academic university hospital in United States) along with neighboring institutions in near-by areas, the only allergy skin tests available are for local anesthetics and antibiotics, while neuromuscular blocking agents (NMBAs) cannot be tested (the suspected anaphylactic agent in our case was presumably rocuronium). In summary, PAA requires and responds to emergent diagnosis and immediate treatment; however there is still a long way to go to ensure post-PAA testing for inciting anesthesia-related allergens. PMID:27382817

  2. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model.

    PubMed

    Faghihi, Shahab; Karimi, Alireza; Jamadi, Mahsa; Imani, Rana; Salarian, Reza

    2014-05-01

    Owing to excellent thermal and mechanical properties, graphene-based nanomaterials have recently attracted intensive attention for a wide range of applications, including biosensors, bioseparation, drug release vehicle, and tissue engineering. In this study, the effects of graphene oxide nanosheet (GONS) content on the linear (tensile strength and strain) and nonlinear (hyperelastic coefficients) mechanical properties of poly(acrylic acid) (PAA)/gelatin (Gel) hydrogels are evaluated. The GONS with different content (0.1, 0.3, and 0.5 wt.%) is added into the prepared PAA/Gel hydrogels and composite hydrogels are subjected to a series of tensile and stress relaxation tests. Hyperelastic strain energy density functions (SEDFs) are calibrated using uniaxial experimental data. The potential ability of different hyperelastic constitutive equations (Neo-Hookean, Yeoh, and Mooney-Rivlin) to define the nonlinear mechanical behavior of hydrogels is verified by finite element (FE) simulations. The results show that the tensile strength (71%) and elongation at break (26%) of composite hydrogels are significantly increased by the addition of GONS (0.3 wt.%). The experimental data is well fitted with those predicted by the FE models. The Yeoh material model accurately defines the nonlinear behavior of hydrogels which can be used for further biomechanical simulations of hydrogels. This finding might have implications not only for the improvement of the mechanical properties of composite hydrogels but also for the fabrication of polymeric substrate materials suitable for tissue engineering applications.

  3. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  4. Polyaspartate scale inhibitors -- Biodegradable alternatives to polyacrylates

    SciTech Connect

    Ross, R.J.; Low, K.C.; Shannon, J.E.

    1997-04-01

    Polyaspartates are highly biodegradable alternatives to polyacrylate-based scale inhibitors. This article presents laboratory testing data on polyaspartate inhibitors of calcium and barium mineral scales. The optimum molecular weight (Mw) for polyaspartate inhibitors of calcium carbonate, calcium sulfate, and barium sulfate mineral scales was determined to be between 1,000 Mw and 4,000 Mw. For inhibition of calcium carbonate and barium sulfate, polyaspartates in the range of 3,000 Mw to 4,000 Mw were most effective. For calcium sulfate inhibition, the optimum Mw lies in the 1,000 Mw to 2,000 Mw range. Biodegradability data (OECD 301B Ready Biodegradability) on polyaspartates of a variety of Mw is also presented, which demonstrates the high biodegradability of this class of mineral scale inhibitors.

  5. Synthesis and self-assembly of PAMAM/PAA Janus dendrimers

    NASA Astrophysics Data System (ADS)

    Gao, Chunmei; Liu, Mingzhu; Lü, Shaoyu; Zhang, Xinjie; Chen, Yuanmou

    2014-03-01

    Janus dendrimers have two differently functionalized segments which are located on opposite sides. They have many excellent properties and broad application prospects. In this study, poly(amido amine)/poly(acrylic acid) (PAMAM/PAA) Janus dendrimers were prepared by click chemistry. One of the first steps taken was the synthesis of N-Boc-G3.0 PAMAM dendrimers with primary amine groups at the periphery. Second, by amide coupling between propargylic acid and N-Boc-G3.0 PAMAM, PAMAM dendrimers with alkyne were successfully synthesized. After being dissolved in aqueous solutions with different pH, Janus dendrimers spontaneously form flowerlike micellar, Janus particles, and spherical micelles due to primary amino, tertiary amino, and carboxyl groups in the dendrimers. This self-assembly behavior depending on pH changes has a number of potential applications in the field of materials.

  6. In vitro release of clomipramine HCl and buprenorphine HCl from poly adipic anhydride (PAA) and poly trimethylene carbonate (PTMC) blends.

    PubMed

    Dinarvand, Rassoul; Alimorad, Mohammed Massoud; Amanlou, Massoud; Akbari, Hamid

    2005-10-01

    Controlled drug-delivery technology is concerned with the systematic release of a pharmaceutical agent to maintain a therapeutic level of the drug in the body for modulated and/or prolonged periods of time. This may be achieved by incorporating the therapeutic agent into a degradable polymer vehicle, which releases the agent continuously as the matrix erodes. In this study, poly trimethylene carbonate (PTMC), an aliphatic polycarbonate, and poly adipic anhydride (PAA), an aliphatic polyanhydride, were synthesized via melt condensation and ring-opening polymerization of trimethylene carbonate and adipic acid, respectively. The release of clomipramine HCl and buprenorphine HCl from discs prepared with the use of PTMC-PAA blends in phosphate buffer (pH 7.4) are also described. Clomipramine HCl and buprenorphine HCl were both used as hydrophilic drug models. Theoretical treatment of the data with the Peppas model revealed that release of clomipramine HCl (5%) in devices containing 70% PTMC or more followed a Fickian diffusion model. However, the releases of buprenorphine HCl (5%) in the same devices were anomalous. For devices containing 50% and more PAA, surface erosion may play a significant role in the release of both molecules.

  7. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    PubMed

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved. PMID:25966389

  8. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles

    PubMed Central

    2011-01-01

    The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved. PACS: 80; 87; 87.85jf PMID:21711915

  9. The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles.

    PubMed

    Piñeiro-Redondo, Yolanda; Bañobre-López, Manuel; Pardiñas-Blanco, Iván; Goya, Gerardo; López-Quintela, M Arturo; Rivas, José

    2011-05-16

    The suitability of magnetic nanoparticles (MNPs) to act as heat nano-sources by application of an alternating magnetic field has recently been studied due to their promising applications in biomedicine. The understanding of the magnetic relaxation mechanism in biocompatible nanoparticle systems is crucial in order to optimize the magnetic properties and maximize the specific absorption rate (SAR). With this aim, the SAR of magnetic dispersions containing superparamagnetic magnetite nanoparticles bio-coated with polyacrylic acid of an average particle size of ≈10 nm has been evaluated separately by changing colloidal parameters such as the MNP concentration and the viscosity of the solvent. A remarkable decrease of the SAR values with increasing particle concentration and solvent viscosity was found. These behaviours have been discussed on the basis of the magnetic relaxation mechanisms involved.PACS: 80; 87; 87.85jf.

  10. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    PubMed

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  11. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants

    PubMed Central

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-01-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  12. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    PubMed

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.

  13. Acid-catalytic decomposition of peracetic acid in the liquid phase

    SciTech Connect

    Kharchuk, V.G.; Kolenko, I.P.; Petrov, L.A.

    1985-12-01

    This paper elucidates the kinetic relationships of peracetic acid (PAA) decomposition in the presence of mineral acids and their heterogeneous analogs, polystyrene-di-vinylbenzene cation-exchangers, differing in physicochemical and morphological parameters. It is shown that the thermal decomposition of PAA in acetic acid is an acid-catalyzed reaction. The controlling step of the reaction is protonation of the substrate with formation of an active intermediate form. Sulfonated cation-exchangers are twice as effective as sulfuric acid in this process. Polystyrene-divinylbenzene sulfonated cation-exchangers can be used with success as acid catalysts in oxidation processes involving PAA, because of their high effectiveness, stability, and availability.

  14. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  15. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?

    PubMed

    Cook, Sam D; Nichols, David S; Smith, Jason; Chourey, Prem S; McAdam, Erin L; Quittenden, Laura; Ross, John J

    2016-06-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  16. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-01

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

  17. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-01

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations. PMID:25611970

  18. Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis

    PubMed Central

    Somers, E.; Ptacek, D.; Gysegom, P.; Srinivasan, M.; Vanderleyden, J.

    2005-01-01

    An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A. brasilense. In minimal growth medium, PAA biosynthesis by A. brasilense was only observed in the presence of phenylalanine (or precursors thereof). This observation suggests deamination of phenylalanine, decarboxylation of phenylpyruvate, and subsequent oxidation of phenylacetaldehyde as the most likely pathway for PAA synthesis. Expression analysis revealed that transcription of the ipdC gene is upregulated by PAA, as was previously described for IAA and synthetic auxins, indicating a positive feedback regulation. The synthesis of PAA by A. brasilense is discussed in relation to previously reported biocontrol properties of A. brasilense. PMID:15812004

  19. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  20. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?1[OPEN

    PubMed Central

    Nichols, David S.; Smith, Jason; Chourey, Prem S.; McAdam, Erin L.; Quittenden, Laura

    2016-01-01

    The biosynthesis of the main auxin in plants (indole-3-acetic acid [IAA]) has been elucidated recently and is thought to involve the sequential conversion of Trp to indole-3-pyruvic acid to IAA. However, the pathway leading to a less well studied auxin, phenylacetic acid (PAA), remains unclear. Here, we present evidence from metabolism experiments that PAA is synthesized from the amino acid Phe, via phenylpyruvate. In pea (Pisum sativum), the reverse reaction, phenylpyruvate to Phe, is also demonstrated. However, despite similarities between the pathways leading to IAA and PAA, evidence from mutants in pea and maize (Zea mays) indicate that IAA biosynthetic enzymes are not the main enzymes for PAA biosynthesis. Instead, we identified a putative aromatic aminotransferase (PsArAT) from pea that may function in the PAA synthesis pathway. PMID:27208245

  1. Hyaluronic Acid-Based Hydrogels Containing Covalently Integrated Drug Depots: Implication for Controlling Inflammation in Mechanically Stressed Tissues

    PubMed Central

    Xiao, Longxi; Tong, Zhixiang; Chen, Yingchao; Pochan, Darrin J.; Sabanayagam, Chandran R.; Jia, Xinqiao

    2013-01-01

    Synthetic hydrogels containing covalently-integrated soft and deformable drug depots capable of releasing therapeutic molecules in response to mechanical forces are attractive candidates for the treatment of degenerated tissues that are normally load bearing. Herein, radically crosslinkable block copolymer micelles (xBCM) assembled from an amphiphilic block copolymer consisting of hydrophilic poly(acrylic acid) (PAA) partially modified with 2-hydroxyethyl acrylate, and hydrophobic poly(n-butyl acryclate) (PnBA) were employed as the drug depots and the microscopic crosslinkers for the preparation of hyaluronic acid (HA)-based, hydrogels. HA hydrogels containing covalently integrated micelles (HAxBCM) were prepared by radical polymerization of glycidyl methacrylate (GMA)-modified HA (HAGMA) in the presence of xBCMs. When micelles prepared from the parent PAA-b-PnBA without any polymerizable double bonds were used, hydrogels containing physically entrapped micelles (HApBCM) were obtained. The addition of xBCMs to a HAGMA precursor solution accelerated the gelation kinetics and altered the hydrogel mechanical properties. The resultant HAxBCM gels exhibit an elastic modulus of 847 ± 43 Pa and a compressive modulus of 9.2 ± 0.7 kPa. Diffusion analysis of Nile Red (NR)-labeled xBCMs employing fluorescence correlation spectroscopy confirmed the covalent immobilization of xBCMs in HA networks. Covalent integration of dexamethasone (DEX)-loaded xBCMs in HA gels significantly reduced the initial burst release and provided sustained release over a prolonged period. Importantly, DEX release from HAxBCM gels was accelerated by intermittently-applied external compression in a strain-dependent manner. Culturing macrophages in the presence of DEX-releasing HAxBCM gels significantly reduced cellular production of inflammatory cytokines. Incorporating mechano-responsive modules in synthetic matrices offers a novel strategy to harvest mechanical stress present in the healing wounds

  2. Hyaluronic acid-based hydrogels containing covalently integrated drug depots: implication for controlling inflammation in mechanically stressed tissues.

    PubMed

    Xiao, Longxi; Tong, Zhixiang; Chen, Yingchao; Pochan, Darrin J; Sabanayagam, Chandran R; Jia, Xinqiao

    2013-11-11

    Synthetic hydrogels containing covalently integrated soft and deformable drug depots capable of releasing therapeutic molecules in response to mechanical forces are attractive candidates for the treatment of degenerated tissues that are normally load bearing. Herein, radically cross-linkable block copolymer micelles (xBCM) assembled from an amphiphilic block copolymer consisting of hydrophilic poly(acrylic acid) (PAA) partially modified with 2-hydroxyethyl acrylate, and hydrophobic poly(n-butyl acryclate) (PnBA) were employed as the drug depots and the microscopic cross-linkers for the preparation of hyaluronic acid (HA)-based, hydrogels. HA hydrogels containing covalently integrated micelles (HAxBCM) were prepared by radical polymerization of glycidyl methacrylate (GMA)-modified HA (HAGMA) in the presence of xBCMs. When micelles prepared from the parent PAA-b-PnBA without any polymerizable double bonds were used, hydrogels containing physically entrapped micelles (HApBCM) were obtained. The addition of xBCMs to a HAGMA precursor solution accelerated the gelation kinetics and altered the hydrogel mechanical properties. The resultant HAxBCM gels exhibit an elastic modulus of 847 ± 43 Pa and a compressive modulus of 9.2 ± 0.7 kPa. Diffusion analysis of Nile Red (NR)-labeled xBCMs employing fluorescence correlation spectroscopy confirmed the covalent immobilization of xBCMs in HA networks. Covalent integration of dexamethasone (DEX)-loaded xBCMs in HA gels significantly reduced the initial burst release and provided sustained release over a prolonged period. Importantly, DEX release from HAxBCM gels was accelerated by intermittently applied external compression in a strain-dependent manner. Culturing macrophages in the presence of DEX-releasing HAxBCM gels significantly reduced cellular production of inflammatory cytokines. Incorporating mechano-responsive modules in synthetic matrices offers a novel strategy to harvest mechanical stress present in the healing

  3. Disinfection of water in recirculating aquaculture systems with peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) has become a favoured alternative to chlorination in the disinfection of municipal waste water in recent years. It is also commonly used in the food industry as a disinfectant. Based on PAA concentration, the disulfide linkage in enzymes and proteins of microorganisms can be bro...

  4. Controlling fungus on channel catfish eggs with peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is much interest in the use of peracetic acid (PAA) to treat pathogens in aquaculture. It is a relatively new compound and is approved for use in Europe, but not in the United States. This study determined the effectiveness of PAA for fungus control on channel catfish Ictalurus punctatus egg...

  5. The physiological significance of phenylacetic Acid in abscising cotton cotyledons.

    PubMed

    Suttle, J C; Mansager, E R

    1986-06-01

    The physiological role of phenylacetic acid (PAA) as an endogenous regulator of cotyledon abscission was examined using cotton (Gossypium hirsutum L. cv LG 102) seedlings. Application of 100 micromolar or more PAA to leafless cotyledon abscission-zone explants resulted in the retardation of petiole abscission and a decrease in the rise of ethylene evolution that normally accompanies aging of these explants in vitro. The partial inhibition of ethylene evolution in these explants by PAA was indirect since application of this compound stimulated short-term (<24 hours) ethylene production. PAA treatment partially suppressed the stimulation of petiole abscission elicited by either ethylene or abscisic acid. Both free and an acid-labile, bound form of PAA were identified in extracts prepared from cotyledons. No discernible pattern of changes in free or bound PAA was found during the course of ethylene-induced cotyledon abscission. Unlike indole-3-acetic acid, transport of PAA in isolated petiole segments was limited and exhibited little polarity. On the whole, these results are not consistent with the direct participation of PAA in the endogenous regulation of cotyledon abscission.

  6. Peracetic acid degradation in freshwater aquaculture systems and possible practical implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is a highly reactive peroxygen compound with wide-ranging antimicrobial effects and is considered an alternative sanitizer to formaldehyde. Products containing PAA are available in solution with acetic acid and hydrogen peroxide to maintain the stability of the chemical, and it...

  7. Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride.

    PubMed

    Caon, Thiago; Porto, Ledilege Cucco; Granada, Andréa; Tagliari, Monika Piazzon; Silva, Marcos Antonio Segatto; Simões, Cláudia Maria Oliveira; Borsali, Redouane; Soldi, Valdir

    2014-02-14

    In view of the fact that the oral administration of finasteride (FIN) has resulted in various undesirable systemic side effects, the topical application of polystyrene and poly(acrylic acid)-based polymersomes (underexplored system) was investigated. Undecorated PS139-b-PAA17 and PS404-b-PAA63 vesicles (C3 and C7, respectively) or vesicles decorated with chitosan samples of different molecular weight (C3/CS-oligo, C7/CS-oligo, C3/CS-37 and C7/CS-37) were prepared by the co-solvent self-assembly method and characterized by small-angle X-ray scattering,transmission electron microscopy and dynamic light scattering techniques. In vitro release experiments and ex vivo permeation using Franz diffusion cells were carried out (through comparison with hydroethanolic finasteride solution). The ideal system should provide high finasteride retention in the dermis and epidermis while allowing some control of the drug release. The particle size and in vitro release were negatively correlated with the permeation coefficient and skin retention in both the epidermis and dermis. The findings that the longest lag time was obtained for the hydroethanolic drug solution and lowest permeation for the systems able to release the drug faster support the hypothesis that nanostructured systems may be required to enhance the penetration and permeation of the drug. Chitosan-decorated polymersomes interacted more strongly with the skin components than non-decorated samples, probably due to the positive surface charge, which increased the FIN retention and reduced the lag time. C7 polymersomes decorated with chitosan were more appropriate for topical applications (high retention in the dermis and epidermis and controlled drug delivery).

  8. Characterization of calcium carbonate/chitosan composites

    SciTech Connect

    Gonsalves, K.E.; Zhang, S.

    1995-12-31

    The crystal growth of calcium carbonate on a chitosan substrate was achieved using a supersaturated calcium carbonate solution, by using various additives, polyacrylic acid (PAA). Polyacrylic acid modified the chitosan-film surface and promoted the nucleation of calcium carbonate crystals.

  9. Nickel adsorption by sodium polyacrylate-grafted activated carbon.

    PubMed

    Ewecharoen, A; Thiravetyan, P; Wendel, E; Bertagnolli, H

    2009-11-15

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g(-1). X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  10. Effect of Polyelectrolyte and Fatty Acid Soap on the Formation of CaCO3 in the Bulk and the Deposit on Hard Surfaces.

    PubMed

    Wang, Hao; Alfredsson, Viveka; Tropsch, Juergen; Ettl, Roland; Nylander, Tommy

    2015-09-30

    The effects of sodium polyacrylate (NaPAA) as well as potassium oleate on the nucleation and calcium carbonate crystal growth on hard surfaces, i.e., stainless steel and silica, have been investigated at different temperatures. The relation between the surface deposition and the corresponding bulk processes has been revealed by combining dynamic light scattering (DLS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and ellipsometry. The aim was to further our understanding of the crystal deposition/growth mechanism and how it can be controlled by the presence of polyelectrolytes (NaPAA) or soap (potassium oleate). The addition of polyelectrolytes (NaPAA) or soap (potassium oleate) decreases the size of CaCO3 particles in bulk solution and affects both crystal structure and morphology in the bulk as well as on hard surfaces. The amount of particles on hard surfaces decreases significantly in the presence of both potassium oleate and NaPAA. This was found to be a consequence of potassium oleate or NaPAA adsorption on the hard surface as well as on the CaCO3 crystal surfaces. Here, the polymer NaPAA exhibited a stronger inhibition effect on the formation and growth of CaCO3 particles than potassium oleate. PMID:26353982

  11. Pre/post-strike atmospheric assessment system (PAAS)

    SciTech Connect

    Peglow, S. G., LLNL; Molitoris, J. D., LLNL

    1997-02-03

    The Pre/Post-Strike Atmospheric Assessment System was proposed to show the importance of local meteorological conditions in the vicinity of a site suspected of storing or producing toxic agents and demonstrate a technology to measure these conditions, specifically wind fields. The ability to predict the collateral effects resulting from an attack on a facility containing hazardous materials is crucial to conducting effective military operations. Our study approach utilized a combination of field measurements with dispersion modeling to better understand which variables in terrain and weather were most important to collateral damage predictions. To develop the PAAS wind-sensing technology, we utilized a combination of emergent and available technology from micro-Doppler and highly coherent laser systems. The method used for wind sensing is to probe the atmosphere with a highly coherent laser beam. As the beam probes, light is back-scattered from particles entrained in the air to the lidar transceiver and detected by the instrument. Any motion of the aerosols with a component along the beam axis leads to a Doppler shift of the received light. Scanning in a conical fashion about the zenith results in a more accurate and two-dimensional measurement of the wind velocity. The major milestones in the benchtop system development were to verify the design by demonstrating the technique in the laboratory, then scale the design down to a size consistent with a demonstrator unit which could be built to take data in the field. The micro-Doppler heterodyne system we developed determines absolute motion by optically mixing a reference beam with the return signal and has shown motion sensitivity to better than 1 cm/s. This report describes the rationale, technical approach and laboratory testing undertaken to demonstrate the feasibility and utility of a system to provide local meteorological data and predict atmospheric particulate motion. The work described herein was funded by

  12. The effect of covalently bonded conjugated linoleic acid on the reduction of oxidative stress and blood coagulation for polysulfone hemodialyzer membrane.

    PubMed

    Kung, Fu-Chen; Yang, Ming-Chine

    2006-05-30

    Conjugated linoleic acid (CLA) was covalently bonded to a layer of poly(acrylic acid) (PAA) grafted onto the surface of polysulfone (PSF) membranes. The effect of CLA-bonding on oxidative stress and blood coagulation was then evaluated. The surface was characterized with contact angle measurement and FTIR spectroscopy. Blood coagulation, platelet aggregation, and oxidative stress were evaluated using human blood. The complete blood count (CBC) and coagulation time (CT) were evaluated in vitro for hemocompatibility. The production of reactive oxygen species (ROS) was measured by the chemiluminescence (CL) method to evaluate the oxidative stress. The results showed that the CLA-bonding PSF membrane exhibited more stable CBC values, longer CT, and less adsorption of plasma proteins than the unmodified PSF membrane. In addition, the CL counts of hydrogen peroxide and superoxide values for CLA-bonding PSF membrane were more stable than for unmodified PSF membrane. These results demonstrate that CLA-bonding can improve the blood compatibility of PSF membrane. The CLA-bonding PSF membrane could offer protection for patients against oxidative stress and could also reduce the dosage of anticoagulant required during hemodialysis.

  13. Waterborne polyacrylic/PEDOT nanocomposites for conductive transparent adhesives.

    PubMed

    Kim, Byeonggwan; Park, Teahoon; Kim, Jeonghun; Kim, Eunkyoung

    2013-11-01

    A new nanocomposite for conductive transparent adhesives (CTAs) was synthesized by emulsion polymerization of acrylate monomers dispersed with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). Polymer particles of waterborne CTAs were uniform, and the average size of the particles was 330 nm. The conductive transparent adhesive nanocomposites (CTANs) were casted onto various substrates including slide glass, indium tin oxide (ITO) glass, and PET film. Upon thermal processing at 80 degrees C, highly transparent adhesive films were obtained with surface uniformity. The stress of the CTANs was affected by the contents of PEDOT:PSS, and a 7.5 wt% CTAN film had the highest maximum stress of 0.33 MPa. Importantly, polyacrylic nanoparticles were well dispersed with conductive filler PEDOT:PSS in water because of their high dispersity in water. Therefore, the polyacrylic/PEDOT nanocomposite had a low percolation threshold of approximately 8% due to the enhanced connection between conductive channels. The CTANs with an optimum content (10 wt%) of PEDOT:PSS had high electromagnetic interference shielding effectiveness (36 dB) and transparency (75%) for application to electronics including displays and solar cells. PMID:24245305

  14. Mechanism of Concentration Dependence of Water Diffusivity in Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    Membrane based separation processes offer an energy efficient alternative to traditional distillation based separation processes. In this work, we focus on the molecular mechanisms underlying the process of separation of dilute ethanol-water mixture using polyacrylate gels as pervaporation membranes. The diffusivities of the components in swollen gels exhibit concentration dependence. We have used molecular dynamics (MD) simulations to study the correlation between the dynamics of solvent (water and ethanol) molecules, polymer dynamics and solvent structure in the swollen gel systems as a function of solvent concentration. Three different polyacrylate gels were studied: (1) poly n-butyl acrylate (PBA), (2) copolymer of butyl acrylate and 2-hydroxyethyl acrylate P(BA50-HEA50), and (3) poly 2-hydroxyethyl acrylate (PHEA). Simulation results show that solvent concentration has a significant effect on local structure of the solvent molecules and chain dynamics; these factors (local structure and chain dynamics), in turn, affect the diffusivity of these molecules. At low concentration, solvent molecules are well dispersed in the gel matrix and form hydrogen bonds with the polymer. Solvent mobility is correlated with polymer mobility in this configuration and consequently water and ethanol molecules exhibit slower dynamics, this effect is especially significant in PHEA gel. At high solvent concentration, water molecules form large clusters in the system accompanied by enhancement in mobility of both the gel network and the solvent molecules.

  15. 76 FR 11965 - Peroxyacetic Acid; Amendment to an Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... degradates, including hydrogen peroxide (HP) and acetic acid (AA), in or on all food commodities, when PAA is..., colorless, organic compound that is formed, and only exists in equilibrium, with hydrogen peroxide and... hydrogen peroxide. PAA is always sold in solution with AA and HP to maintain stability of the...

  16. Pulse vs. continuous treatment: which is better for applying peracetic acid in RAS?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is a promising disinfectant in aquaculture. It is highly effective against various fish pathogens and also environmentally friendly due to harmless degradation residues. However, knowledge about potential adverse effects of PAA disinfection on fish is lacking; practical guidelin...

  17. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    EPA Science Inventory

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  18. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid.

    PubMed

    Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L

    2015-04-01

    Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed.

  19. [Metabolism of pantothenic acid and its derivatives in animals deficient in this enzyme].

    PubMed

    Gurinovich, V A; Moiseenok, A G

    1987-01-01

    Distribution of [14C]labelled metabolites of pantothenic acid (PAA) has been studied in tissues of normal and PAA-deficient rats-weaners 6 h after single injection of the calcium pantothenate (PAA-Ca), calcium 4'-phosphopantothenate (PAA-Ca) or pantethine (PT) preparations. Essential differences in the intertissue distribution of vitamin derivatives to be injected are revealed against a background of a higher vitamin-retaining ability of the PAA-deficient tissues. A degree of radionuclides' biotransformation into CoA permits them to be arranged in the series: PPA-Ca greater than PAA-Ca greater than PT. In PAA-deficient animals which were injected labelled PPA-Ca up to 41% of the liver radioactivity is concentrated in the CoA fraction and the quantity of label in the composition of PAA-protein cytosolium complexes increases considerably. It is supposed that there is a special PAA-depositing system which provides the intracellular CoA biosynthesis. PMID:3686695

  20. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid.

    PubMed

    Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L

    2015-04-01

    Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed. PMID:25850398

  1. Polyacrylate microspheres composite for all-solid-state reference electrodes.

    PubMed

    Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata

    2010-09-01

    A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane. PMID:20652191

  2. Research on the chemical mechanism in the polyacrylate latex modified cement system

    SciTech Connect

    Wang, Min; Wang, Rumin; Zheng, Shuirong; Farhan, Shameel; Yao, Hao; Jiang, Hao

    2015-10-15

    In this paper, the chemical mechanism in the polyacrylate latex modified cement system was investigated by Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), gel permeation chromatography (GPC) and compact pH meter. All results have shown that the chemical reactions in the polyacrylate modified system can be divided into three stages. The hydration reactions of cement can produce large amounts of Ca(OH){sub 2} (calcium hydroxide) and lead the whole system to be alkali-rich and exothermic at the first stage. Subsequently, this environment can do great contributions to the hydrolysis of ester groups in the polyacrylate chains, resulting in the formation of carboxyl groups at the second stage. At the third stage, the final crosslinked network structure of the product was obtained by the reaction between the carboxyl groups in the polyacrylate latex chains and Ca(OH){sub 2}.

  3. Salts of phenylacetic acid and 4-hydroxyphenylacetic acid with Cinchona alkaloids: Crystal structures, thermal analysis and FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Amombo Noa, Francoise M.; Jacobs, Ayesha

    2016-06-01

    Seven salts were formed with phenylacetic acid (PAA), 4-hydroxyphenylacetic acid (HPAA) and the Cinchona alkaloids; cinchonidine (CIND), quinidine (QUID) and quinine (QUIN). For all the structures the proton was transferred from the carboxylic acid of the PAA/HPAA to the quinuclidine nitrogen of the respective Cinchona alkaloid. For six of the salts, water was included in the crystal structures with one of these also incorporating an isopropanol solvent molecule. However HPAA co-crystallised with quinine to form an anhydrous salt, (HPAA-)(QUIN+). The thermal stability of the salts were determined and differential scanning calorimetry revealed that the (HPAA-)(QUIN+) salt had the highest thermal stability compared to the other salt hydrates. The salts were also characterized using Fourier transform infrared spectroscopy. (PAA-)(QUID+)·H2O and (PAA-)(QUIN+)·H2O are isostructural and Hirshfeld surface analysis was completed to compare the intermolecular interactions in these two structures.

  4. Imidization induced structural changes of 6FDA-ODA poly(amic acid) by two-dimensional (2D) infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Seo, Hyemi; Chae, Boknam; Im, Ji Hyuk; Jung, Young Mee; Lee, Seung Woo

    2014-07-01

    Two-dimensional (2D) gradient mapping method and 2D correlation analysis of in situ FTIR spectra were used to probe the thermal imidization-induced spectral changes in 6FDA-ODA poly(amic acid) (PAA) films prepared by a reaction of 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 4,4‧-oxydianiline (ODA) in N,N‧-dimethylacetamide. Large spectral changes in the in situ FTIR spectra of 6FDA-ODA PAA film were observed in the range, 130-230 °C. The thermal imidization of 6FDA-ODA PAA films strongly affects the spectral changes in amic acid groups in the PAA unit. The spectral change in the amic acid groups occurred before those of the imide ring. The cyclic anhydrides, isoimdes and intermolecular links are present together with the imide ring in the thermally-cured 6FDA-ODA PAA films.

  5. Fish-friendly prophylaxis/disinfection in aquaculture: Low concentration of peracetic acid is stress-free to the carp (Cyprinus carpio) after repeated applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of peracetic acid (PAA) at low concentrations has been proved to be a broad functional and eco-friendly prophylaxis/disinfection method against various fish pathogens. Therefore, regular applications of low concentration PAA is sufficient to control (potential) pathogens in recirculatin...

  6. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc. PMID:23496768

  7. Omniphobic low moisture permeation transparent polyacrylate/silica nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chang, Yuan-Ling; Tu, Yu-Chieh; Tsai, Chieh-Ming; Su, Wei-Fang

    2013-04-24

    We report the development of low moisture permeation and transparent dense polyacrylate/silica nanocomposite material that can exhibit both superhydrophobic and oleophobic (omniphobic) properties. The material was prepared by a three-step process. The first step involved the preparation of UV polymerizable solventless hybrid resin and the fabrication of nanocomposite. The hybrid resin consisted of a mixture of acrylate monomer, initiator, and acrylate-modified different size silica nanoparticles. The second step was to roughen the surface of the nanocomposite with unique nanotexture by oxygen plasma. In the third step, we applied a low surface tension fluoro monolayer on the treated surface. The nanocomposite exhibits desired superhydrophobicity and oleophobicity with a water contact angle of 158.2° and n-1-octadecene contact angle of 128.5°, respectively; low moisture permeation of 1.44 g·mm/m(2)·day; and good transparency (greater than 82% at 450-800 nm for ~60 μm film). The material has potential applications in optoelectronic encapsulation, self-cleaning coating, etc.

  8. Larger red-shift in optical emissions obtained from the thin films of globular proteins (BSA, lysozyme) - polyelectrolyte (PAA) complexes

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi; Basu, Saibal

    2016-09-01

    Globular proteins (lysozyme and BSA) and polyelectrolyte (sodium polyacrylic acid) are used to form protein-polyelectrolyte complexes (PPC). Out-of-plane structures of ≈30-60 nm thick PPC films and their surface morphologies have been studied by using X-ray reflectivity and atomic force microscopy, whereas optical behaviors of PPC and protein conformations have been studied by using UV-vis, photoluminescence and FTIR spectroscopy respectively. Our study reveals that thin films of PPC show a larger red-shift of 23 and 16 nm in the optical emissions in comparison to that of pure protein whereas bulk PPC show a small blue-shift of ≈3 nm. A small amount of peak-shift is found to occur due to the heat treatment or concentration variation of the polyelectrolyte/protein in bulk solution but cannot produce such film thickness independent larger red-shift. Position of the emission peak remains nearly unchanged with the film thickness. Mechanism for such larger red-shift has been proposed.

  9. Bioactivity and cytocompatibility of dicalcium phosphate/poly (amino acid) biocomposite with degradability

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Shan, Wenpeng; Li, Xiangde; Wei, Jie; Li, Hong; Ma, Jian; Yan, Yonggang

    2012-01-01

    A bioactive composite of dicalcium phosphate (DCP) and poly (amino acid) (PAA) was fabricated, and the in vitro bioactivity, degradability, and cellular responses to the DCP/PAA composite (DPC) were investigated as compared to PAA. Apatite formation on DPC surfaces occurred after immersion into simulated body fluid (SBF) for 7 days, but not on the surface of PAA. The weight loss ratio of DPC could reach 18.6 ± 0.3 wt% after soaking into phosphate buffered saline (PBS) for 2 months, which was higher than PAA (11.0 ± 0.2 wt%). Cell attachment and proliferation of MG-63 cells on DPC was obviously higher than on PAA. Moreover, the cells spread and formed confluent layer on the DPC surfaces. The alkaline phosphatase activity (ALP) of the cells on DPC was significantly greater than PAA at day 5 and day 7. The results suggested that introducing DCP into PAA makes the composite bioactive and more degradable, and meanwhile enhances osteoblast-like cells attach, proliferation and osteogenic differentiation.

  10. In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.

    PubMed

    Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang

    2016-01-01

    Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes. PMID:27070796

  11. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects

    PubMed Central

    Yan, Ling; Jiang, Dian-ming

    2015-01-01

    Purpose The purpose of this study was to investigate the effect of bone-like hydroxyapatite/polyamino acid (BHA/PAA) in the osteogenesis and reconstruction of long segmental bone defects. Methods In vitro, MG63 cells were cultured with BHA/PAA. The osteoinductive activity of the BHA/PAA material was evaluated using inverted microscopy, scanning electron microscopy, MTT proliferation assay, and the determination of alkaline phosphatase activity and Ca2+ content. In vivo, the radial bone defect was made in 20 New Zealand White rabbits, and then these animal were randomly divided into two groups (n=10), the experimental group (with BHA/PAA) and the control group (without BHA/PAA). Postoperatively, the osteogenesis effect of BHA/PAA was evaluated through X-ray, hematoxylin–eosin staining, observation of the gross bone specimen, immunohistochemistry, and fluorescent confocal scanning microscopy. Results In vitro, BHA/PAA promoted the adhesion, growth, and calcium nodule formation of MG63 cells, and it had good osteogenesis activity. In vivo, with BHA/PAA material degradation and absorption, the new bone gradually formed, and the bone defect gradually recovered in the experimental group. In the control group, a limited bone formation was found at the bone broken ends, and the bone defect was obviously visible. Conclusion In vitro and in vivo, we confirmed that BHA/PAA was effective in inducing osteogenesis and reconstructing a long segmental bone defect. PMID:26719675

  12. Kinetics of copper ion absorption by cross-linked calcium polyacrylate membranes

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; May, C. E.

    1983-01-01

    The absorption of copper ions from aqueous copper acetate solutions by cross-linked calcium acrylate membranes was found to obey parabolic kinetics similar to that found for oxidation of metals that form protective oxide layers. For pure calcium polyacrylate membranes the rate constant was essentially independent of copper acetate concentration and film thickness. For a cross-linked copolymer film of polyvinyl alcohol and calcium polyacrylate, the rate constant was much greater and dependent on the concentration of copper acetate. The proposed mechanism in each case involves the formation of a copper polyacrylate phase on the surface of the membrane. The diffusion of the copper ion through this phase appears to be the rate controlling step for the copolymer film. The diffusion of the calcium ion is apparently the rate controlling step for the calcium polyacrylate. At low pH, the copper polyacrylate phase consists of the normal copper salt; at higher pH, the phase appears to be the basic copper salt.

  13. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water. PMID:19269267

  14. The effect of TiO2/aluminosilicate nanocomposite additives on the mechanical and thermal properties of polyacrylic coatings

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali

    2015-12-01

    The commercial grade polyacrylic latex was modified in order to prepare a mechanical and thermal improved coating. TiO2/Ag-exchanged-aluminosilicate nanocomposites with montmorillonite, zeolite-A and clinoptilolite aluminosilicates were prepared and used as additive in the matrix of polyacrylic latex to achieve a coating with proper mechanical and thermal properties. X-ray diffraction patterns and FESEM were used to characterize the composition, structure, and morphology of the nanocomposite additives. Polyacrylic coatings modified by TiO2/Ag-exchanged-aluminosilicate nanocomposite additives showed higher adhesion strength and hardness compared to unmodified commercial grade polyacrylic coatings. Differential Scanning Calorimetry (DSC) analysis showed lower glass transition temperature for modified polyacrylic coatings than that of unmodified polyacrylic coatings. The tensile tests were also carried out for unmodified and modified polyacrylic coatings. According to the results, the modified polyacrylic based coating with TiO2/Ag-exchanged-clinoptilolite nanocomposite additive was the best coating considering most of useful properties.

  15. Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity

    PubMed Central

    Niu, Ying-Mei; Zhu, Xiao-Li; Chang, Bing; Tong, Zhao-Hui; Cao, Wen; Qiao, Pei-Huan; Zhang, Lin-Yuan; Zhao, Jing; Song, Yu-Guo

    2016-01-01

    We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n = 60). Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P < 0.05) at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P < 0.05) 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P < 0.05) 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity. PMID:26981538

  16. Attenuating the size and molecular carrier capabilities of polyacrylate nanoparticles by a hydrophobic fluorine effect.

    PubMed

    Labruère, Raphaël; Turos, Edward

    2012-08-15

    This study investigates the effect of introducing alkyl chain fluorination on the properties of polyacrylate nanoparticles prepared in aqueous solution by emulsion polymerization. For this, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (1) and methyl trifluoroacrylate (2) were tested as monomers as a means to prepare fluorinated polyacrylate nanoparticles to evaluate how side chain fluorination may affect nanoparticle size and drug carrier properties. Our results show that as fluorine content within the polyacrylate matrix increases, the size of the nanoparticle systematically diminishes, from 45 nm (for nanoparticles containing no fluoroacrylate) to ~7 nm (for nanoparticles constructed solely of fluoroacrylate). We also observe that as fluoroacrylate content and hydrophobicity increases, the nanoparticles decrease their ability to incorporate lipophilic molecules during the process of emulsification. These findings have meaningful implications in the implementation of fluorinated nanoparticles in molecular delivery.

  17. One-step synthesis of Poly(amic acid)/ZnO composite particles and its SERS applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun Yi; Hsu, Keh-Ying

    2015-11-01

    Raspberry like structured PAA/ZnO microsphere were realized by coating the ZnO nanoparticles onto the surface of PAA microsphere via a novel solution method. The obtained materials were characterized by means of X-ray diffraction (XRD), scanning electron microscopy(SEM),transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-Vis) absorption measurement. It was shown that ZnO nanoparticles were successfully grown on the surface of PAA microsphere. The absorption band of PAA/ZnO raspberry microsphere showed a large redshift comparing to pure ZnO nanoparticles, indicating the strong interfacial interaction between PAA and ZnO. This approach was simple, mild and readily scaled up, affording a simple method for the synthesis of raspberry like structure. The resulting Poly(amic acid)/ZnO composite structures could be used as a substrate for surface enhanced Raman scattering(SERS).

  18. Acute toxicity of peracetic acid to fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA; also called peroxyacetic acid) is a promising new therapeutant for parasites and fungus. It is registered with the U.S. Environmental Protection Agency (EPA) as an antimicrobial compound approved for indoor use on hard, non-porous surfaces. This study determined the acute toxi...

  19. Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-06-15

    4-Cyano-4'-pentylbiphenyl (5CB) in a transmission electron microscopy (TEM) grid was developed for glucose detection by coating with a monolayer of mixed polymer brushes using poly(acrylicacid-b-4-cynobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and quaternized poly(4-vinylpyridine-b-4-cynobiphenyl-4'-oxyundecylacrylate) (QP4VP-b-LCP) (LCP stands for liquid crystal polymer) at the 5CB/aqueous interface. The resultant 5CB in TEM grid was functionalized with the PAA and QP4VP brushes, which were strongly anchored by the LCP block. The PAA brush rendered the 5CB/aqueous interface pH-responsive and the QP4VP brush immobilized glucose oxidase (GOx) through electrostatic interactions without the aid of coupling agents. The glucose was detected through a homeotropic-to-planar orientational transition of the 5CB observed through a polarized optical microscope (POM) under crossed polarizers. The optimum immobilization with a 0.78 µM GOx solution on the dual-brush-coated TEM grid enabled glucose detection at concentrations higher than 0.5 mM with response times shorter than 180 s. This TEM grid glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.5 to 11 mM with a Michaelis-Menten constant (Km) of 1.67 mM. This new and sensitive glucose biosensor has the advantages of low production cost, simple enzyme immobilization, high enzyme sensitivity and stability, and easy detection with POM, and may be useful for prescreening the glucose level in the human body. PMID:25617751

  20. UV gelation of single-component polyacrylates bearing dinitrobenzoate side groups.

    PubMed

    Xie, Tongqing; Yang, Li; Sun, Xingxing; Jiang, Jun; Zhang, Xuepeng; Luo, Yi; Zhang, Guoqing

    2016-07-19

    Polyacrylates bearing dinitrobenzoate side groups undergo sol-gel-sol transformations in DMF or THF solutions regulated by alternating UV light and dark conditions. The formation and recombination of radical ionic species via photoinduced electron transfer may be responsible. PMID:27373563

  1. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    PubMed

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  2. Formation of Nanoparticles in binary polymer mixtures

    NASA Astrophysics Data System (ADS)

    Cai, Tong; Lu, Xihua; Hu, Zhibin

    2000-10-01

    Formation of Nanoparticles in binary polymer mixtures Tong CAI, Xihua LU, and Zhibin HU Department of Physics, Denton, TX76203 The nanoparticles of hydrorypropyl cellulose (HPC)-polyacrylic acid (PAA) complex have been studied using light scattering method. The formation of the nanoparticles results from the hydrogen-bonding interaction between HPC and PAA. The particle size and size distribution, characterized by dynamic light scattering, depend on the HPC concentration, PAA concentration and reactive temperature. Because HPC and PAA have been approved for use inside human body by FDA, the nanoparticle obtained in this study could be used as drug carriers for controlled release.

  3. Acute toxicity of peracetic acid to various fish species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA; also called peroxyacetic acid) is a promising disinfectant in the US aquaculture industry to control parasites and fungus. It is a stabilized mixture of acetic acid and hydrogen peroxide that does not leave dangerous residues in the environment when it breaks down as most compo...

  4. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    PubMed

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage. PMID:27435854

  5. Synthesis of fragment 7-20 of human gamma-interferon linked through a methionine residue to polyacrylic resin: use of the adduct as an immunogen.

    PubMed

    Mery, J; Hanin, V; Calas, B

    1990-01-01

    A peptide corresponding to the amino acid sequence of human gamma-interferon, residues 7-20, was synthesized by a solid phase procedure using polyacrylic resin and methionine as anchor. Fluorenemethoxycarbonyl and t-butyloxycarbonyl strategies were compared. After completion of the synthesis, side chain deprotections were performed on the peptide still attached to the resin. The purity of the peptide linked to the matrix was determined by amino acid analysis and solid phase sequencing. The presence of methionine allowed the peptide to be detached from the support by CNBr cleavage. The immune responses of the free peptide, the peptide linked to bovine serum albumin and the peptide resin adduct were compared. Peptide bound to polyacrylamide gave similar results to those obtained using classical immunization procedures.

  6. A simple method for decomposition of peracetic acid in a microalgal cultivation system.

    PubMed

    Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won

    2015-03-01

    A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass. PMID:25270405

  7. Simultaneous electroanalysis of peroxyacetic acid and hydrogen peroxide.

    PubMed

    Awad, M I; Harnoode, C; Tokuda, K; Ohsaka, T

    2001-04-15

    The electrochemical behavior of peroxyacetic acid (PAA) in the presence of hydrogen peroxide (H2O2) has been investigated using cyclic voltammetry and hydrodynamic techniques [rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry]. The results have been analyzed aiming at simultaneous electroanalysis of both species. Glassy carbon and gold electrodes were used for this investigation. It was found that the reduction of PAA, as well as H2O2, is highly sensitive to the electrode material; for example, at 100 mV s-1, the reduction peak potentials of PAA were 0.2 and -1.1 V at gold and glassy carbon electrodes, respectively. The well-separated steady-state limiting currents were obtained using a gold electrode for the reduction of both PAA and H2O2 and also a well-defined one for the oxidation of H2O2. On the basis of the RDE experiments, good calibration curves were obtained for both species over a wide range of their concentrations, for PAA and H2O2 in the range of 0.36 to 110 and 0.11 to 34 mM, respectively. The simultaneous and selective electroanalysis of PAA and H2O2 in their coexistence is demonstrated for the first time.

  8. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    PubMed

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent. PMID:24355852

  9. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP.

    PubMed

    Khan, Waliullah; Choi, Jin Ho; Kim, Gyu Man; Park, Soo-Young

    2011-10-21

    We are reporting for the first time the pH responsiveness of liquid crystal (LC) microdroplets decorated with an amphiphilic block copolymer of PAA-b-LCP. We successfully demonstrated the adsorption of block copolymer on LC droplets by fluorescence microscopy and pH response to the radial-to-bipolar orientational change of the LC droplets by changing pH from 12 to 2 through the polarized optical microscope (POM). We believe that our results may pave the way for the generation of monodisperse droplets decorated by various amphiphilic block copolymers which respond to several kinds of the external stimuli. These developments may be important for potential applications of the LC droplets in sensing and encapsulation fields. PMID:21874196

  10. Preactivated thiomers: permeation enhancing properties.

    PubMed

    Wang, Xueqing; Iqbal, Javed; Rahmat, Deni; Bernkop-Schnürch, Andreas

    2012-11-15

    The study was aimed to prepare a series of poly(acrylic acid)-cysteine-2-mercaptonicotinic acid conjugates (preactivated thiomers) and to evaluate the influence of molecular mass or degree of preactivation with 2-mercaptonicotinic acid (2MNA) on their permeation enhancing properties. Preactivated thiomers with different molecular mass and different degree of preactivation were synthesized and categorized on the basis of their molecular mass and degree of preactivation as PAA(100)-Cys-2MNA (h), PAA(250)-Cys-2MNA (h), PAA(450)-Cys-2MNA (h), PAA(450)-Cys-2MNA (m) and PAA(450)-Cys-2MNA (l). In vitro permeation studies, the permeation enhancement ability for preactivated thiomers was ranked as PAA(450)-Cys-2MNA (h)>PAA(250)-Cys-2MNA (h)>PAA(100)-Cys-2MNA (h) on both Caco-2 cell monolayers and rat intestinal mucosa. Comparing the influence of degree of preactivation with 2MNA on permeation enhancement, the following order PAA(450)-Cys-2MNA (h)>PAA(450)-Cys-2MNA (m)≈PAA(450)-Cys-2MNA (l) on Caco-2 cell monolayers and PAA(450)-Cys-2MNA (m)>PAA(450)-Cys-2MNA (h)>PAA(450)-Cys-2MNA (l) on intestinal mucosa was observed. The P(app) of sodium fluorescein was 5.08-fold improved on Caco-2 cell monolayers for PAA(450)-Cys-2MNA (h) and 2.46-fold improved on intestinal mucosa for PAA(450)-Cys-2MNA (m), respectively, in comparison to sodium fluorescein in buffer only. These results indicated that preactivated thiomers could be considered as a promising macromolecular permeation enhancing polymer for non-invasive drug administration.

  11. Template directed reactions of 2-aminoadenylic acid derivatives

    NASA Technical Reports Server (NTRS)

    Webb, T. R.; Orgel, L. E.

    1982-01-01

    The template-directed oligomerization of activated derivatives of 2-aminoadenylic acid (paA) on polyuridylic acid (poly(U)) in aqueous buffers was studied. The reaction differs from that of adenylic acid (pA) under identical conditions, in that only di- and tri-nucleotides are observed as substantial products rather than a longer sequence of oligomers. The reaction of paA also differs from that of pA in that it does not require Mg (2+), and is less susceptible to increased temperature. The relevance of these observations to the chemical evolution of polynucleotide replication is discussed. Improved syntheses of paA and its diphosphate are reported.

  12. Competitive ion complexation to polyelectrolytes: determination of the stepwise stability constants. The Ca2+/H+/polyacrylate system.

    PubMed

    David, Calin; Companys, Encarnació; Galceran, Josep; Garcés, Josep Lluís; Mas, Francesc; Rey-Castro, Carlos; Salvador, José; Puy, Jaume

    2007-09-01

    This work presents a new methodology aimed at obtaining the stepwise stability constants corresponding to the binding of ions (or other small molecules) to macromolecular ligands having a large number of sites. For complexing agents with a large number of sites, very simple expressions for the stepwise stability constants arise. Such expressions are model-independent; that is, they allow the determination of the stepwise stability constants without making any previous assumption of the detailed complexation mechanism. The formalism is first presented for a single complexing ion and further extended to competitive systems where the competing ions can display, in general, different stoichiometric relationships. These ideas are applied to the analysis of experimental titrations corresponding to competitive binding of calcium ions to poly(acrylic acid) for different pH values and ionic strengths. Intrinsic stability constants were estimated from the stepwise stability constants (by removing the corresponding statistical factor), and split into specific and electrostatic contributions (by means of the Poisson-Boltzmann equation). After this treatment, the specific proton binding energies showed almost no dependence on the coverage and ionic strength. Likewise, for the range of concentrations studied, the specific component of the intrinsic stability constants of the calcium ions, calculated assuming bidentate binding of Ca to neighboring groups of a linear chain, is almost independent of the calcium and proton coverage and ionic strength.

  13. Controlled formation of ag nanoparticles by means of long-chain sodium polyacrylates in dilute solution.

    PubMed

    Huber, Klaus; Witte, Thomas; Hollmann, Jutta; Keuker-Baumann, Susanne

    2007-02-01

    A new tool is presented to control formation of Ag nanoparticles. Small amounts of silver ions were added to dilute solutions of long-chain sodium polyacrylates (NaPA). Four NaPA samples covering a molar mass regime of 97 kD < or = Mw < or = 650 kD have been used. With amounts of added Ag(+) as low as 1-2% of the COO(-) groups of the polyanionic chains, significant changes could already be induced in the NaPA coils with 650 kD. If the NaPA concentration was kept below 0.1 g/L, the coils with 650 kD exhibited a significant coil shrinking in stable solutions. At larger NaPA concentrations, addition of Ag+ initiates an aggregation of the polyacrylate coils toward compact structures. Coil shrinking and aggregation was revealed by means of time-resolved static light scattering. If exposed to UV-radiation, small Ag particles formed within the shrunken anionic polyacrylate coils. The Ag nanoparticles were identified by means of an enhanced light scattering and a characteristic plasmon absorption band around 410 nm. No such Ag particle formation could be observed even at 5 times larger concentrations of Ag(+) and NaPA if the two smallest polyacrylate samples have been used under otherwise equal conditions. This molar mass sensitive response of NaPA to Ag(+)-addition suggests an interesting phenomenon: if the coil size of the NaPa chains, which act as Ag(+) collectors, is large enough, local Ag(+) concentration in these coil-shaped Ag(+) containers exceeds a critical value, and irradiation with UV generates Ag nanoparticles. PMID:17263389

  14. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  15. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  16. Effect of Water Concentration on the Molecular Structure of Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Mani, Sriramvignesh; Khabaz, Fardin; Khare, Rajesh

    2015-03-01

    Recent studies have suggested pervaporation to be a promising alternative method for separation of aqueous solution of alcohol compared to distillation based separation processes. The ability to tune the hydrophobic/hydrophilic character makes polyacrylate gels attractive candidate materials for separating water-alcohol mixture by pervaporation. Experimentally, it is observed that the amount of water absorbed in the gel i.e. the degree of swelling of the gel shows a large variation with polymer chemistry. Relatively few studies exist highlighting the effects of water concentration on the membrane separation efficiency which in turn is directly related to the internal molecular structure of the water rich membranes. In this regard, an all-atom molecular dynamics (MD) simulation is employed to study water structure in polyacrylate gels. As a first step, polyacrylate copolymer systems with varying degree of hydrophobicity are prepared using the simulated annealing polymerization technique. Atomistic structures of gels containing different amounts of water are also prepared. Effect of water content on the acrylate-water system microstructure is determined by characterizing the packing of water molecules as well as the hydrogen bonding in these systems. In addition, the change in dynamics of water molecules due to the interactions with polymer is captured by monitoring the auto-correlation function of their dipole vector.

  17. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants.

    PubMed

    Lee, S H I; Cappato, L P; Corassin, C H; Cruz, A G; Oliveira, C A F

    2016-03-01

    This research investigated the removal of adherent cells of 4 strains of Staphylococcus aureus and 1 Listeria monocytogenes strain (previously isolated from dairy plants) from polystyrene microtiter plates using peracetic acid (PAA, 0.5%) for 15, 30, 60, and 120 s, and the inactivation of biofilms formed by those strains on stainless steel coupons using the same treatment times. In the microtiter plates, PAA removed all S. aureus at 15 s compared with control (no PAA treatment). However, L. monocytogenes biofilm was not affected by any PAA treatment. On the stainless steel surface, epifluorescence microscopy using LIVE/DEAD staining (BacLight, Molecular Probes/Thermo Fisher Scientific, Eugene, OR) showed that all strains were damaged within 15 s, with almost 100% of cells inactivated after 30 s. Results of this trial indicate that, although PAA was able to inactivate both S. aureus and L. monocytogenes monospecies biofilms on stainless steel, it was only able to remove adherent cells of S. aureus from polystyrene microplates. The correct use of PAA is critical for eliminating biofilms formed by S. aureus strains found in dairy plants, although further studies are necessary to determine the optimal PAA treatment for removing biofilms of L. monocytogenes.

  18. Effect of peracetic acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from dairy plants.

    PubMed

    Lee, S H I; Cappato, L P; Corassin, C H; Cruz, A G; Oliveira, C A F

    2016-03-01

    This research investigated the removal of adherent cells of 4 strains of Staphylococcus aureus and 1 Listeria monocytogenes strain (previously isolated from dairy plants) from polystyrene microtiter plates using peracetic acid (PAA, 0.5%) for 15, 30, 60, and 120 s, and the inactivation of biofilms formed by those strains on stainless steel coupons using the same treatment times. In the microtiter plates, PAA removed all S. aureus at 15 s compared with control (no PAA treatment). However, L. monocytogenes biofilm was not affected by any PAA treatment. On the stainless steel surface, epifluorescence microscopy using LIVE/DEAD staining (BacLight, Molecular Probes/Thermo Fisher Scientific, Eugene, OR) showed that all strains were damaged within 15 s, with almost 100% of cells inactivated after 30 s. Results of this trial indicate that, although PAA was able to inactivate both S. aureus and L. monocytogenes monospecies biofilms on stainless steel, it was only able to remove adherent cells of S. aureus from polystyrene microplates. The correct use of PAA is critical for eliminating biofilms formed by S. aureus strains found in dairy plants, although further studies are necessary to determine the optimal PAA treatment for removing biofilms of L. monocytogenes. PMID:26723125

  19. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide

    PubMed Central

    Leggett, Mark J.; Schwarz, J. Spencer; Burke, Peter A.; McDonnell, Gerald; Denyer, Stephen P.

    2015-01-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  20. Mechanism of Sporicidal Activity for the Synergistic Combination of Peracetic Acid and Hydrogen Peroxide.

    PubMed

    Leggett, Mark J; Schwarz, J Spencer; Burke, Peter A; McDonnell, Gerald; Denyer, Stephen P; Maillard, Jean-Yves

    2016-02-01

    There is still great interest in controlling bacterial endospores. The use of chemical disinfectants and, notably, oxidizing agents to sterilize medical devices is increasing. With this in mind, hydrogen peroxide (H2O2) and peracetic acid (PAA) have been used in combination, but until now there has been no explanation for the observed increase in sporicidal activity. This study provides information on the mechanism of synergistic interaction of PAA and H2O2 against bacterial spores. We performed investigations of the efficacies of different combinations, including pretreatments with the two oxidizers, against wild-type spores and a range of spore mutants deficient in the spore coat or small acid-soluble spore proteins. The concentrations of the two biocides were also measured in the reaction vessels, enabling the assessment of any shift from H2O2 to PAA formation. This study confirmed the synergistic activity of the combination of H2O2 and PAA. However, we observed that the sporicidal activity of the combination is largely due to PAA and not H2O2. Furthermore, we observed that the synergistic combination was based on H2O2 compromising the spore coat, which was the main spore resistance factor, likely allowing better penetration of PAA and resulting in the increased sporicidal activity. PMID:26637595

  1. Synthesis of TiO{sub 2} nanoparticles by self-assembling reverse micelle cores of PS-b-PAA for functional textile applications

    SciTech Connect

    Akpolat, Leyla Budama; Çakır, Burçin Acar; Topel, Önder Hoda, Numan

    2015-04-15

    Highlights: • TiO{sub 2} nanoparticles were synthesized within poly(styrene)-b-poly(acrylic acid) micelles. • The copolymer solution including nano TiO{sub 2} was coated onto textile fabrics. • UV-protective factor of nano TiO{sub 2} coated fabrics was estimated as 50+. • Nano TiO{sub 2} coated fabrics was found to exhibit a high photocatalytic activity. - Abstract: Titanium dioxide (i.e., titanium(IV) oxide, TiO{sub 2}) nanoparticles have been fabricated using a copolymer templating technique in micellar solution of poly(styrene)-block-poly(acrylic acid), PS(10912)-b-PAA(4842) synthesized by atom transfer radical polymerization (ATRP). The size and morphology of the synthesized TiO{sub 2} nanoparticles have been characterized via TEM and XRD measurements. The average size of TiO{sub 2} nanoparticles was determined as 13 ± 3 and 13 ± 4 nm for titanium:copolymer ratios of 20:1 and 33:1, respectively. The copolymer solution including nano TiO{sub 2} particles has been coated onto textile fabrics to enhance their UV-blocking and self-cleaning properties. It has been determined that nano TiO{sub 2} coated textile fabrics have very good UV-blocking properties with 50+ of the ultraviolet protecting factor (UPF) and high photocatalytic efficiency with 69.2% of the photodegradation of methylene blue.

  2. Blends and Iodine complexes of starch with other water-soluble polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, we studied the viscosity and gel formation in the tri-component system, starch/poly(acrylic acid) (PAA), poly(N-vinyl pyrrolidone) (PVP). Starch and poly(acrylic acid) at 5% aqueous solution formed a synergistic mixture at 60/40 ratio. The addition of a small amount of PVP caused the...

  3. Application of a surface plasmon resonance sensor to analyses of amine compounds with the use of a polymer film and an acid-base reaction.

    PubMed

    Nishimura, Satoshi; Yoshidome, Toshifumi; Tokuda, Tomoyuki; Mitsushio, Masaru; Higo, Morihide

    2002-03-01

    A surface plasmon resonance (SPR) sensor was applied to analyses of some amine compounds (n-butylamine, isobutylamine, aniline, and N,N-dimethylaniline) by using a polymer film and an acid-base reaction in it. Poly(acrylamide) (PAA) was adopted as the polymer film and was immobilized on an Au film to prepare a sensor chip. Pivalic acid was entered into the PAA film as an acid. The PAA film with a thickness of 50 nm gave the highest sensitivity to the SPR sensor. Although water was better concerning the sensitivity for the SPR sensor as the solvent, ethanol was adopted because it dissolves well all of the amine compounds used. The Au film coated with the PAA film gave higher sensitivity for analyses of n-butylamine and isobutylamine, and lower sensitivity for analyses of aniline and N,N-dimethylaniline than an Au film without the PAA film. The PAA film containing pivalic acid gave 4-5 orders of magnitude higher sensitivity to the SPR sensor for analyses of all the amine compounds due to the reaction between pivalic acid and these amine compounds.

  4. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE PAGES

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; Pispas, Stergios

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  5. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    SciTech Connect

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; Pispas, Stergios

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so even when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.

  6. Coregulation by Phenylacetyl-Coenzyme A-Responsive PaaX Integrates Control of the Upper and Lower Pathways for Catabolism of Styrene by Pseudomonas sp. Strain Y2

    PubMed Central

    del Peso-Santos, Teresa; Bartolomé-Martín, David; Fernández, Cristina; Alonso, Sergio; García, José Luis; Díaz, Eduardo; Shingler, Victoria; Perera, Julián

    2006-01-01

    The PstyA promoter of Pseudomonas sp. strain Y2 controls expression of the styABCD genes, which are required for the conversion of styrene to phenylacetate, which is further catabolized by the products of two paa gene clusters. Two PaaX repressor proteins (PaaX1 and PaaX2) regulate transcription of the paa gene clusters of this strain. In silico analysis of the PstyA promoter region revealed a sequence located just within styA that is similar to the reported PaaX binding sites of Escherichia coli and the proposed PaaX binding sites of the paa genes of Pseudomonas species. Here we show that protein extracts from some Pseudomonas strains that have paaX genes, but not from a paaX mutant strain, can bind and retard the migration of a PstyA specific probe. Purified maltose-binding protein (MBP)-PaaX1 fusion protein specifically binds the PstyA promoter proximal PaaX site, and this binding is eliminated by the addition of phenylacetyl-coenzyme A. The sequence protected by MBP-PaaX1 binding was defined by DNase I footprinting. Moreover, MBP-PaaX1 represses transcription from the PstyA promoter in a phenylacetyl-coenzyme A-dependent manner in vitro. Finally, the inactivation of both paaX gene copies of Pseudomonas sp. strain Y2 leads to a higher level of transcription from the PstyA promoter, while heterologous expression of the PaaX1 in E. coli greatly decreases transcription from the PstyA promoter. These findings reveal a control mechanism that integrates regulation of styrene catabolism by coordinating the expression of the styrene upper catabolic operon to that of the paa-encoded central pathway and support a role for PaaX as a major regulatory protein in the phenylacetyl-coenzyme A catabolon through its response to the levels of this central metabolite. PMID:16788190

  7. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions.

    PubMed

    Zhang, Wenbin; Zhu, Yuzhang; Liu, Xia; Wang, Dong; Li, Jingye; Jiang, Lei; Jin, Jian

    2014-01-13

    Conventional polymer membranes suffer from low flux and serious fouling when used for treating emulsified oil/water mixtures. Reported herein is the fabrication of a novel superhydrophilic and underwater superoleophobic poly(acrylic acid)-grafted PVDF filtration membrane using a salt-induced phase-inversion approach. A hierarchical micro/nanoscale structure is constructed on the membrane surface and endows it with a superhydrophilic/underwater superoleophobic property. The membrane separates both surfactant-free and surfactant-stabilized oil-in-water emulsions under either a small applied pressure (<0.3 bar) or gravity, with high separation efficiency and high flux, which is one to two orders of magnitude higher than those of commercial filtration membranes having a similar permeation property. The membrane exhibits an excellent antifouling property and is easily recycled for long-term use. The outstanding performance of the membrane and the efficient, energy and cost-effective preparation process highlight its potential for practical applications. PMID:24307602

  8. In vitro free radical scavenging activity of platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Takahashi, Kyoko; Mashino, Tadahiko; Miyamoto, Yusei

    2009-11-01

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 ± 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical (\\mathrm {AOO}^{\\bullet } ) generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O2 and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by \\mathrm {AOO}^{\\bullet } generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 µM DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 µM DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  9. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  10. Evaluation of the toxicity data for peracetic acid in deriving occupational exposure limits: a minireview.

    PubMed

    Pechacek, Nathan; Osorio, Magdalena; Caudill, Jeff; Peterson, Bridget

    2015-02-17

    Peracetic acid (PAA) is a peroxide-based chemistry that is highly reactive and can produce strong local effects upon direct contact with the eyes, skin and respiratory tract. Given its increasing prominence in industry, attention has focused on health hazards and associated risks for PAA in the workplace. Occupational exposure limits (OEL) are one means to mitigate risks associated with chemical hazards in the workplace. A mini-review of the toxicity data for PAA was conducted in order to determine if the data were sufficient to derive health-based OELs. The available data for PAA frequently come from unpublished studies that lack sufficient study details, suffer from gaps in available information and often follow unconventional testing methodology. Despite these limitations, animal and human data suggest sensory irritation as the most sensitive endpoint associated with inhalation of PAA. Rodent RD50 data (the concentration estimated to cause a 50% depression in respiratory rate) were selected as the critical studies in deriving OELs. Based on these data, a range of 0.36-0.51mg/m(3) (0.1-0.2ppm) was calculated for a time-weighted average (TWA), and 1.2-1.7mg/m(3) (0.4-0.5ppm) as a range for a short-term exposure limit (STEL). These ranges compare favorably to other published OELs for PAA. Considering the applicable health hazards for this chemistry, a joint TWA/STEL OEL approach for PAA is deemed the most appropriate in assessing workplace exposures to PAA, and the selection of specific values within these proposed ranges represents a risk management decision. PMID:25542141

  11. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection.

    PubMed

    McCormack, Paul; Lemmo, John S; Macomber, Margaret; Holcomb, Mark L; Lieckfield, Robert

    2011-04-01

    Superabsorbent polyacrylate (SAP) is an important industrial chemical manufactured primarily as sodium polyacrylate but occasionally as potassium salt. It has many applications owing to its intrinsic physical property of very high water absorption, which can be more than 100 times it own weight. SAP is commonly used in disposable diapers and feminine hygiene products and is known by a number of synonyms-sodium polyacrylate, superabsorbent polyacrylate (SAP), polyacrylate absorbent (PA), and superabsorbent material (SAM). Germany and The Netherlands have adopted a nonbinding scientific guideline value 0.05 mg/m³ (8-hr time-weighted average, TWA) as the maximum allowable workplace concentration for the respirable dust of SAP (<10 μm particle diameter). Three industry associations representing Europe, the United States, and Asia have adopted the German scientific guideline value of 0.05 mg/m³ (8-hr TWA) as a voluntary guideline. A new test method based on alcohol derivatization of the acrylate was developed and validated for the analysis of respirable superabsorbent polyacrylate dust collected on filter cassettes in the workplace environment. This method is an alternative to the commonly used sodium-based method, which is limited owing to potential interference by other sources of sodium from the workplace and laboratory environments. The alcohol derivatization method effectively eliminates sodium interference from several classes of sodium compounds, as shown by their purposeful introduction at two and six times the equivalent amount of SAP present in reference samples. The accuracy of the method, as determined by comparison with sodium analysis of known reference samples, was greater than 80% over the study range of 5-50 μg of SAP dust. The lower reporting limit of the method is 3.0 μg of SAP per sample, which is equivalent to 3 (μg/m³) for an 8-hr sampling period at the recommended flow rate of 2.2 L/min. PMID:21416441

  12. Control of corona composition and morphology in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers: effects of pH and block length.

    PubMed

    Vyhnalkova, Renata; Müller, Axel H E; Eisenberg, Adi

    2014-05-01

    The corona compositions and morphologies in aggregates of mixtures of amphiphilic polystyrene-block-poly(acrylic acid) (PS-b-PAA) and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymers are influenced by controllable assembly parameters such as the hydrophilic block length and solution pH. The morphologies and corona compositions of the aggregates were investigated by transmission electron microscopy and electrophoretic mobility, respectively. When mineral acids or bases are present during aggregate formation, they can exert a strong influence on the corona composition. Morphology changes were also seen with changing pH, as well as changes in corona composition, specifically for vesicles. Because of complications introduced by the presence of ions, the general hypothesis that the external corona of the vesicles is composed of the longer chains, while the shorter chains form the inner corona, which is valid only in mixtures containing only nonionic chains without any additives (no acids or bases) or within a well-defined narrow pH range. In addition to the numerical block lengths and the pH, the solubility of the hydrophilic blocks can also influence the morphology and as well as the interfacial composition of vesicles; as the numerically longer chains become less soluble, they can contract and move to the interior, while the numerically shorter but more soluble chains go to the external corona. A remarkable morphological feature of the pH continuum is that for some compositions vesicles are observed in four distinct pH regions, separated by pH ranges in which other morphologies dominate. The effect of pH and microion content on coil dimensions of the PVP and PAA chains in the block copolymers is most likely responsible for the observed behavior.

  13. Dissolved and Particulate Amino Acids in the Lower Mississippi and Pearl Rivers (USA)

    NASA Astrophysics Data System (ADS)

    Duan, S.; Bianchi, T. S.

    2006-12-01

    Seasonal changes (monthly samples) in abundance and composition of dissolved and particulate amino acids were observed at one station in the lower Mississippi and Pearl Rivers (MS, USA) from September 2001 to August 2003. Spatial variability was also observed during a 4 day transmit from river-mile 225 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS). Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.45-1.4 μ M) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.13-0.27 μ M) than in the Pearl River (DCAA, 0.91-2.8 μ M; HMW DAA, 0.25-0.95 μ M). DCAA and HMW DAA in both rivers were generally higher during high-flow periods. DFAA was significantly lower than DCAA in both rivers (0.05-0.08 μ M), and displayed minimal seasonal variability. Total particulate amino acids (PAA) in both rivers were in the same range (0.7-1.4 μ M). A C- normalized yield of PAA (PAA-C/POC) was negatively correlated with suspended particulate matter and positively with chl-a in both rivers. No significant difference in PAA composition was observed in the two rivers. However, PAA in both rivers was relatively enriched in arginine, alanine, methionine and leucine, and depleted in aspartic acid, serine, and non-protein amino acids, compared to DCAA. While DCAA spatial variability in the lower Mississippi River was minimal, decreases in PAA (from 1.06 to 0.43 μ M) were consistent with particulate organic carbon (POC) and particulate nitrogen (PN). Frequent variations in the PAA-C/POC ratio were inversely correlated with suspended particulate matter and PAA (R = -0.7, n = 48), suggesting short- scale sedimentation and resuspension events. A gradual increase in % non-protein AA along with a loss of phytoplankton biomass along the river, suggested was indicative of bacterial utilization of labile

  14. Environmental applications of poly(amic acid)-based nanomaterials.

    PubMed

    Okello, Veronica A; Du, Nian; Deng, Boling; Sadik, Omowunmi A

    2011-05-01

    Nanoscale materials offer new possibilities for the development of novel remediation and environmental monitoring technologies. Different nanoscale materials have been exploited for preventing environmental degradation and pollutant transformation. However, the rapid self-aggregation of nanoparticles or their association with suspended solids or sediments where they could bioaccumulate supports the need for polymeric coatings to improve mobility, allows faster site cleanups and reduces remediation cost. The ideal material must be able to coordinate different nanomaterials functionalities and exhibit the potential for reusability. We hereby describe two novel environmental applications of nanostructured poly (amic acid)-based (nPAA) materials. In the first application, nPAA was used as both reductant and stabilizer during the in situ chemical reduction of chromium(vi) to chromium(iii). Results showed that Cr(vi) species were rapidly reduced within the concentration range of 10(-1) to 10(2) mM with efficiency of 99.9% at 40 °C in water samples and 90% at 40 °C in soil samples respectively. Furthermore, the presence of PdNPs on the PAA-Au electrode was found to significantly enhance the rate of reduction. In the second application, nPAA membranes were tested as filters to capture, isolate and detect nanosilver. Preliminary results demonstrate the capability of the nPAA membranes to quantitatively capture nanoparticles from suspension and quantify their abundance on the membranes. Silver nanoparticles detection at concentrations near the toxic threshold of silver was also demonstrated.

  15. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid.

    PubMed

    Van Haute, S; López-Gálvez, F; Gómez-López, V M; Eriksson, Markus; Devlieghere, F; Allende, Ana; Sampers, I

    2015-09-01

    A methodology to i) assess the feasibility of water disinfection in fresh-cut leafy greens wash water and ii) to compare the disinfectant efficiency of water disinfectants was defined and applied for a combination of peracetic acid (PAA) and lactic acid (LA) and comparison with free chlorine was made. Standardized process water, a watery suspension of iceberg lettuce, was used for the experiments. First, the combination of PAA+LA was evaluated for water recycling. In this case disinfectant was added to standardized process water inoculated with Escherichia coli (E. coli) O157 (6logCFU/mL). Regression models were constructed based on the batch inactivation data and validated in industrial process water obtained from fresh-cut leafy green processing plants. The UV254(F) was the best indicator for PAA decay and as such for the E. coli O157 inactivation with PAA+LA. The disinfection efficiency of PAA+LA increased with decreasing pH. Furthermore, PAA+LA efficacy was assessed as a process water disinfectant to be used within the washing tank, using a dynamic washing process with continuous influx of E. coli O157 and organic matter in the washing tank. The process water contamination in the dynamic process was adequately estimated by the developed model that assumed that knowledge of the disinfectant residual was sufficient to estimate the microbial contamination, regardless the physicochemical load. Based on the obtained results, PAA+LA seems to be better suited than chlorine for disinfecting process wash water with a high organic load but a higher disinfectant residual is necessary due to the slower E. coli O157 inactivation kinetics when compared to chlorine.

  16. Methodology for modeling the disinfection efficiency of fresh-cut leafy vegetables wash water applied on peracetic acid combined with lactic acid.

    PubMed

    Van Haute, S; López-Gálvez, F; Gómez-López, V M; Eriksson, Markus; Devlieghere, F; Allende, Ana; Sampers, I

    2015-09-01

    A methodology to i) assess the feasibility of water disinfection in fresh-cut leafy greens wash water and ii) to compare the disinfectant efficiency of water disinfectants was defined and applied for a combination of peracetic acid (PAA) and lactic acid (LA) and comparison with free chlorine was made. Standardized process water, a watery suspension of iceberg lettuce, was used for the experiments. First, the combination of PAA+LA was evaluated for water recycling. In this case disinfectant was added to standardized process water inoculated with Escherichia coli (E. coli) O157 (6logCFU/mL). Regression models were constructed based on the batch inactivation data and validated in industrial process water obtained from fresh-cut leafy green processing plants. The UV254(F) was the best indicator for PAA decay and as such for the E. coli O157 inactivation with PAA+LA. The disinfection efficiency of PAA+LA increased with decreasing pH. Furthermore, PAA+LA efficacy was assessed as a process water disinfectant to be used within the washing tank, using a dynamic washing process with continuous influx of E. coli O157 and organic matter in the washing tank. The process water contamination in the dynamic process was adequately estimated by the developed model that assumed that knowledge of the disinfectant residual was sufficient to estimate the microbial contamination, regardless the physicochemical load. Based on the obtained results, PAA+LA seems to be better suited than chlorine for disinfecting process wash water with a high organic load but a higher disinfectant residual is necessary due to the slower E. coli O157 inactivation kinetics when compared to chlorine. PMID:26065727

  17. Analysis of Arabidopsis glucose insensitive growth Mutants Reveals the Involvement of the Plastidial Copper Transporter PAA1 in Glucose-Induced Intracellular Signaling1[W][OA

    PubMed Central

    Lee, Shin Ae; Yoon, Eun Kyung; Heo, Jung-Ok; Lee, Mi-Hyun; Hwang, Indeok; Cheong, Hyeonsook; Lee, Woo Sung; Hwang, Yong-sic; Lim, Jun

    2012-01-01

    Sugars play important roles in many aspects of plant growth and development, acting as both energy sources and signaling molecules. With the successful use of genetic approaches, the molecular components involved in sugar signaling have been identified and their regulatory roles in the pathways have been elucidated. Here, we describe novel mutants of Arabidopsis (Arabidopsis thaliana), named glucose insensitive growth (gig), identified by their insensitivity to high-glucose (Glc)-induced growth inhibition. The gig mutant displayed retarded growth under normal growth conditions and also showed alterations in the expression of Glc-responsive genes under high-Glc conditions. Our molecular identification reveals that GIG encodes the plastidial copper (Cu) transporter PAA1 (for P1B-type ATPase 1). Interestingly, double mutant analysis indicated that in high Glc, gig is epistatic to both hexokinase1 (hxk1) and aba insensitive4 (abi4), major regulators in sugar and retrograde signaling. Under high-Glc conditions, the addition of Cu had no effect on the recovery of gig/paa1 to the wild type, whereas exogenous Cu feeding could suppress its phenotype under normal growth conditions. The expression of GIG/PAA1 was also altered by mutations in the nuclear factors HXK1, ABI3, and ABI4 in high Glc. Furthermore, a transient expression assay revealed the interaction between ABI4 and the GIG/PAA1 promoter, suggesting that ABI4 actively regulates the transcription of GIG/PAA1, likely binding to the CCAC/ACGT core element of the GIG/PAA1 promoter. Our findings indicate that the plastidial Cu transporter PAA1, which is essential for plastid function and/or activity, plays an important role in bidirectional communication between the plastid and the nucleus in high Glc. PMID:22582133

  18. Fabrication of monodisperse hollow silica spheres and effect on water vapor permeability of polyacrylate membrane.

    PubMed

    Bao, Yan; Yang, Yongqiang; Ma, Jianzhong

    2013-10-01

    Polystyrene/silica core-shell spheres were fabricated using polystyrene as templates by hydrolysis and condensation of tetraethyl orthosilicate through a sol-gel process, in which polystyrene was synthesized by emulsion polymerization. Then, hollow silica spheres were obtained after selective removal of the organic polystyrene core from the polystyrene/silica core-shell spheres by tetrahydrofuran etching. The effect of hollow silica spheres on water vapor permeability, mechanical property, and water uptake of polyacrylate membrane were investigated. The microstructure analysis shows that the mean size and wall thickness of hollow silica spheres are 170 nm and 20 nm, respectively. The silica shells consist of amorphous silica seed assembly with a broad size distribution, which roughen the surfaces of hollow silica spheres greatly. The specific surface area of hollow silica spheres is bigger than that of polystyrene/silica core-shell spheres. Hollow silica spheres can significantly improve water vapor permeability of polyacrylate membrane, but lead to the reduction in mechanical property.

  19. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    PubMed

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. PMID:21704525

  20. Green Synthesis of Fe and Fe/Pd Bimetallic Nanoparticles in Membranes for Reductive Degradation of Chlorinated Organics

    EPA Science Inventory

    Membranes containing reactive nanoparticles (Fe and Fe/Pd) immobilized in a polymer film (polyacrylic acid, PAA-coated polyvinylidene fluoride, PVDF membrane) are prepared by a new method. In the present work a biodegradable, non-toxic -“green” reducing agent, green tea extract ...

  1. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    PubMed

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. PMID:24918873

  2. Monitoring the Switching of Single BSA-ATTO 488 Molecules Covalently End-Attached to a pH-Responsive PAA Brush.

    PubMed

    Akkilic, Namik; Molenaar, Robert; Claessens, Mireille M A E; Blum, Christian; de Vos, Wiebe M

    2016-09-01

    We describe a novel combination of a responsive polymer brush and a fluorescently labeled biomolecule, where the position of the biomolecule can be switched from inside to outside the brush and vice versa by a change in pH. For this, we grafted ultrathin, amino-terminated poly(acrylic acid) brushes to glass and silicon substrates. Individual bovine serum albumin (BSA) molecules labeled with fluorophore ATTO 488 were covalently end-attached to the polymers in this brush using a bis-N-succinimidyl-(pentaethylene glycol) linker. We investigated the dry layer properties of the brush-protein ensemble, and it is swelling behavior using spectroscopic ellipsometry. Total internal reflection fluorescence (TIRF) microscopy enabled us to study the distance-dependent switching of the fluorescently labeled protein molecules. The fluorescence emission from the labeled proteins ceased (out-state) when the polymer chains stretched away from the interface under basic pH conditions, and fluorescence recurred (in-state) when the chains collapsed under acidic conditions. Moreover, TIRF allowed us to study the fluorescence switching behavior of fluorescently labeled BSA molecules down to the single-molecule level, and we demonstrate that this switching is fast but that the exact intensity during the in-state is the result of a more random process. Control experiments verify that the switching behavior is directly correlated to the responsive behavior of the polymer brush. We propose this system as a platform for switchable sensor applications but also as a method to study the swelling and collapse of individual polymer chains in a responsive polymer brush. PMID:27525503

  3. Could peracetic acid be an alternative treatment in aquaculture?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is an antimicrobial disinfectant used in agriculture, food processing and medical facilities. It has recently been tested as a means to control infestations of Ichthyophthirius multifiliis and Saprolegnia parasitica. Free-swimming theronts of I. multifiliis can be eliminated u...

  4. International cooperation on the use of peracetic acid in aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will discuss collaborative efforts on research to evaluate the usefulness of peracetic acid (PAA) as a therapeutant in aquaculture. Research has been underway since 2009 with a scientist from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (Berlin, Germany). Ther...

  5. (1)H NMR and FT-IR dataset based structural investigation of poly(amic acid)s and polyimides from 4,4'-diaminostilbene.

    PubMed

    Kumar, Amit; Tateyama, Seiji; Yasaki, Katsuaki; Ali, Mohammad Asif; Takaya, Naoki; Singh, Rajeev; Kaneko, Tatsuo

    2016-06-01

    Structural investigation of polymers by various available analytical methods is important in order to correlate the structure with polymer properties for which understanding of polymer structure is very important factor. The data presented here in this article shows the (1)H NMR spectra used for the characterization of prepared poly(amic acid)s (PAAs). It is often difficult to assigns the peak in NMR of polymers due to its complexity. Data presented here helps in assigning the proton peak in complex NMR of PAAs prepared from aromatic diamines. Further functionality in polymer chains can be confirmed by FT-IR spectra. Change in functionality during some reaction or process can be monitored by disappearance or appearance of peaks in FT-IR. The complete imidization of PAAs to Polyimides (PIs) is difficult to analyze because of the chemical stability i.e. insolubility of PIs in most of the solvent therefore the completion of imidization process was confirmed using FTIR.

  6. The primary transcriptome of the Escherichia coli O104:H4 pAA plasmid and novel insights into its virulence gene expression and regulation

    PubMed Central

    Berger, Petya; Knödler, Michael; Förstner, Konrad U.; Berger, Michael; Bertling, Christian; Sharma, Cynthia M.; Vogel, Jörg; Karch, Helge; Dobrindt, Ulrich; Mellmann, Alexander

    2016-01-01

    Escherichia coli O104:H4 (E. coli O104:H4), which caused a massive outbreak of acute gastroenteritis and hemolytic uremic syndrome in 2011, carries an aggregative adherence fimbriae I (AAF/I) encoding virulence plasmid, pAA. The importance of pAA in host-pathogen interaction and disease severity has been demonstrated, however, not much is known about its transcriptional organization and gene regulation. Here, we analyzed the pAA primary transcriptome using differential RNA sequencing, which allows for the high-throughput mapping of transcription start site (TSS) and non-coding RNA candidates. We identified 248 TSS candidates in the 74-kb pAA and only 21% of them could be assigned as TSS of annotated genes. We detected TSS for the majority of pAA-encoded virulence factors. Interestingly, we mapped TSS, which could allow for the transcriptional uncoupling of the AAF/I operon, and potentially regulatory antisense RNA candidates against the genes encoding dispersin and the serine protease SepA. Moreover, a computational search for transcription factor binding sites suggested for AggR-mediated activation of SepA expression, which was additionally experimentally validated. This work advances our understanding of the molecular basis of E. coli O104:H4 pathogenicity and provides a valuable resource for further characterization of pAA virulence gene regulation. PMID:27748404

  7. Polyacrylate/nanosilica causes pleural and pericardial effusion, and pulmonary fibrosis and granuloma in rats similar to those observed in exposed workers

    PubMed Central

    Zhu, Xiaoli; Cao, Wen; Chang, Bing; Zhang, Linyuan; Qiao, Peihuan; Li, Xue; Si, Lifang; Niu, Yingmei; Song, Yuguo

    2016-01-01

    Nanomaterials offer great benefit as well as potential damage to humans. Workers exposed to polyacrylate coatings have pleural effusion, pericardial effusion, and pulmonary fibrosis and granuloma, which are thought to be related to the high exposure to nanomaterials in the coatings. The study aimed to determine whether polyacrylate/silica nanoparticles cause similar toxicity in rats, as observed in exposed workers. Ninety male Wistar rats were randomly divided into five groups with 18 rats in each group. The groups included the saline control group, another control group of polyacrylate only, and low-, intermediate-, and high-dose groups of polyacrylate/nanosilica with concentrations of 3.125, 6.25, and 12.5 mg/kg. Seventy-five rats for the 1-week study were terminated for scheduled necropsy at 24 hours, 3 days, and 7 days postintratracheal instillation. The remaining 15 rats (three males/group) had repeated ultrasound and chest computed tomography examinations in a 2-week study to observe the pleural and pericardial effusion and pulmonary toxicity. We found that polyacrylate/nanosilica resulted in pleural and pericardial effusions, where nanosilica was isolated and detected. Effusion occurred on day 3 and day 5 post-administration of nanocomposites in the 6.25 and 12.5 mg/kg groups, it gradually rose to a maximum on days 7–10 and then slowly decreased and disappeared on day 14. With an increase in polyacrylate/nanosilica concentrations, pleural effusion increased, as shown by ultrasonographic qualitative observations. Pulmonary fibrosis and granuloma were also observed in the high-dose polyacrylate/nanosilica group. Our study shows that polyacrylate/nanosilica results in specific toxicity presenting as pleural and pericardial effusion, as well as pulmonary fibrosis and granuloma, which are almost identical to results in reported patients. These results indicate the urgent need and importance of nanosafety and awareness of toxicity of polyacrylate

  8. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    PubMed

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. PMID:26611721

  9. Efficacy of chlorine and peroxyacetic acid on reduction of natural microflora, Escherichia coli O157:H7, Listeria monocyotgenes and Salmonella spp. on mung bean sprouts.

    PubMed

    Neo, Shan Yu; Lim, Pei Yan; Phua, Li Kai; Khoo, Gek Hoon; Kim, Su-Jung; Lee, Seung-Cheol; Yuk, Hyun-Gyun

    2013-12-01

    Sprouts-related outbreaks have risen due to increased raw sprouts consumption. To minimize such cases, chemical sanitations are applied. While chlorine is commonly used, concerns with its effectiveness and health implication have prompted researchers to seek alternatives. Peroxyacetic acid (PAA) has shown efficacy in inactivating foodborne pathogens on fresh vegetables, and hence could be considered as an alternative. Thus, the objective of this study was to compare the efficacy of chlorine and PAA in inactivating Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and natural microflora on mung bean sprouts. Resistance of non- and acid-adapted pathogens to these sanitizer treatments was also evaluated. Un-inoculated and inoculated sprouts were treated with chlorine at 106, 130 and 170 ppm and PAA at 25, 51 and 70 ppm for 90 and 180 s at room temperature. Overall, the greater log reductions were obtained with the increase in the sanitizer concentration. For 180 s, chlorine treatment at 170 ppm reduced 2.0, 1.3, 1.5, 0.9-logs and PAA treatment at 70 ppm resulted in 2.3, 1.8, 2.1, 1.1-log reductions for non-adapted E. coli O157:H7, L. monocytogenes, Salmonella spp., and natural microflora, respectively. These results revealed that the efficacy of PAA was significantly better than or similar to that of chlorine. For acid-adapted cells, these sanitizer treatments were less effective with the ranges of 1.0-1.2-log reductions for chlorine and 1.1-1.6-log reductions for PAA compared to non-adapted cells, indicating that acid-adapted cells were more resistant to the sanitizing treatment. These data suggest that PAA may replace chlorine in the disinfection of mung bean sprouts and that acid-adapted pathogens should be used to design an effective sanitizing strategy.

  10. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    PubMed

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. PMID:24907758

  11. Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption.

    PubMed

    Osypova, A; Magnin, D; Sibret, P; Aqil, A; Jérôme, C; Dupont-Gillain, C; Pradier, C-M; Demoustier-Champagne, S; Landoulsi, J

    2015-11-01

    In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly of PNIPAM-containing polyelectrolytes and PAH. PAA-b-PNIPAM block copolymers were synthesized in order to benefit from (i) the ionizable properties of PAA, to be involved in the LbL assembly, and (ii) the sensitivity of PNIPAM to temperature stimulus. The impact of parameters related to the structure and size of the macromolecules (their molecular weight and the relative degree of polymerization of PAA and PNIPAM), and the interaction with proteins under physico-chemical stimuli, such as pH and temperature, are carefully investigated. The incorporation of PAA-b-PNIPAM into multilayered films is shown to be successful whatever the block copolymer used, resulting in slightly thicker films than the corresponding (PAA/PAH)n film. Importantly, the protein adsorption studies demonstrate that it is possible to alter the adsorption behavior of proteins on (PAA-b-PNIPAM/PAH)n surfaces by varying the temperature and/or the pH of the medium, which seems to be intimately related to two key factors: (i) the ability of PNIPAM units to undergo conformational changes and (ii) the structural changes of the film made of weak polyelectrolytes. The simplicity of construction of these PNIPAM block copolymer-based LbL coatings on a large range of substrates, combined with their highly tunable features, make them ideal candidates to be employed for various biomedical applications requiring the control of protein adsorption.

  12. Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption.

    PubMed

    Osypova, A; Magnin, D; Sibret, P; Aqil, A; Jérôme, C; Dupont-Gillain, C; Pradier, C-M; Demoustier-Champagne, S; Landoulsi, J

    2015-11-01

    In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly of PNIPAM-containing polyelectrolytes and PAH. PAA-b-PNIPAM block copolymers were synthesized in order to benefit from (i) the ionizable properties of PAA, to be involved in the LbL assembly, and (ii) the sensitivity of PNIPAM to temperature stimulus. The impact of parameters related to the structure and size of the macromolecules (their molecular weight and the relative degree of polymerization of PAA and PNIPAM), and the interaction with proteins under physico-chemical stimuli, such as pH and temperature, are carefully investigated. The incorporation of PAA-b-PNIPAM into multilayered films is shown to be successful whatever the block copolymer used, resulting in slightly thicker films than the corresponding (PAA/PAH)n film. Importantly, the protein adsorption studies demonstrate that it is possible to alter the adsorption behavior of proteins on (PAA-b-PNIPAM/PAH)n surfaces by varying the temperature and/or the pH of the medium, which seems to be intimately related to two key factors: (i) the ability of PNIPAM units to undergo conformational changes and (ii) the structural changes of the film made of weak polyelectrolytes. The simplicity of construction of these PNIPAM block copolymer-based LbL coatings on a large range of substrates, combined with their highly tunable features, make them ideal candidates to be employed for various biomedical applications requiring the control of protein adsorption. PMID:26338028

  13. Penicillin-bound polyacrylate nanoparticles: restoring the activity of beta-lactam antibiotics against MRSA.

    PubMed

    Turos, Edward; Reddy, G Suresh Kumar; Greenhalgh, Kerriann; Ramaraju, Praveen; Abeylath, Sampath C; Jang, Seyoung; Dickey, Sonja; Lim, Daniel V

    2007-06-15

    This report describes the preparation of antibacterially active emulsified polyacrylate nanoparticles in which a penicillin antibiotic is covalently conjugated onto the polymeric framework. These nanoparticles were prepared in water by emulsion polymerization of an acrylated penicillin analogue pre-dissolved in a 7:3 (w:w) mixture of butyl acrylate and styrene in the presence of sodium dodecyl sulfate (surfactant) and potassium persulfate (radical initiator). Dynamic light scattering analysis and atomic force microscopy images show that the emulsions contain nanoparticles of approximately 40 nm in diameter. The nanoparticles have equipotent in vitro antibacterial properties against methicillin-susceptible and methicillin-resistant forms of Staphylococcus aureus and indefinite stability toward beta-lactamase. PMID:17420125

  14. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    PubMed

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength.

  15. Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Kuang-Tsin; Wu, Nae-Lih

    An aqueous gel electrolyte has for the first time been successfully applied to the MnO 2· nH 2O-based pseudocapacitive electrochemical capacitors (ECs). The gel electrolyte is made of potassium poly(acrylate) (PAAK) polymer and aqueous solution of KCl. With the selected composition, PAAK:KCl:H 2O = 9.0%:6.7%:84.3% by weight, the gel shows no fluidity, possessing an ionic conductivity in the order of 10 -1 S cm -1. The gel electrolyte has been found to give substantially higher specific capacitances than those in the liquid electrolyte with the same salt (KCl) composition (1 M) and high power capability (>10 kW/kg).

  16. Solubility and phase behavior of polyacrylate scale inhibitors and their implications for precipitation squeeze treatment

    SciTech Connect

    Rabaioli, M.R.; Lockhart, T.P.

    1995-11-01

    The phase behavior of a commercial phosphino-polyacrylate inhibitor (PPAA) in aqueous brine has been characterized as a function of temperature, pH, and the Ca{sup ++} and PPAA concentrations. The quantity of precipitate formed has been determined as a function of the same variables. Contrary to expectations, over a range of conditions the yield of phase-separated PPAA was found to be less than 50% and sometimes as low as 5%. Studies on a sample of isolated precipitate show that it has significant solubility even in brines with high Ca{sup ++} concentration. Ca{sup ++}-induced fractionation of the polymeric inhibitor by molecular weight has been identified as the mechanism responsible for both the observed precipitation and re-dissolution behavior. The implications of these results for the optimization of precipitation squeeze treatments are discussed.

  17. Structural and morphological modifications of polymer thin film in the presence of nonsolvent

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2016-05-01

    Thin films of sodium poly(acrylic acid) salt (Na-PAA) have been investigated to obtain the modification of the out-of-plane structure and surface morphology in the presence of toluene which is considered as nonsolvent for Na-PAA. X-ray reflectivity analysis show that the out-of-plane thickness of the Na-PAA film increases if the film is kept for longer time inside the toluene. For the thicker film the effect of toluene is more pronounced than the thinner one. Surface morphology obtained from the atomic force microscopy shows that the top surface becomes relatively rough after the dipping of the Na-PAA film inside toluene. Although toluene is nonsolvent for Na-PAA molecules, however, the effect of restructuring of the nanometer-thick polymer film cannot be ignored. The reason for such structural modification has been proposed.

  18. Conducting gel electrolytes with microporous structures for efficient quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yuan, Shuangshuang; Tang, Qunwei; He, Benlin; Yu, Liangmin

    2015-01-01

    Conducting gel electrolytes from poly(acrylic acid)-cetyltrimethylammonium bromide/polyaniline (PAA-CTAB/PANi) and poly(acrylic acid)-cetyltrimethylammonium bromide/polypyrrole (PAA-CTAB/PPy) are synthesized under driving forces of both osmotic pressure and capillary force within microporous PAA-CTAB matrix. The as-synthesized PAA-CTAB/PANi or PAA-CTAB/PPy can extend the reduction reaction of triiodides from gel electrolyte/Pt counter electrode interface to both interface and three-dimensional framework of conducting gel electrolyte due to the electrical conduction of PANi or PPy toward reflux electrons (electrons from external circuit to Pt counter electrode). The enhanced kinetics for triiodides → iodide conversion is promising in elevating photovoltaic performances of quasi-solid-state dye-sensitized solar cells (DSSCs). Driving forces by both osmotic pressure across PAA-CTAB matrix and capillary force presenting in micropores can elevate the loading of PANi or PPy incorporated liquid electrolyte in per unit volume, leading to further enhancement in charge transfer and electrocatalytic activity. The total power conversion efficiencies of 7.11% and 6.39% are recorded in the solar cells with PAA-CTAB/PANi and PAA-CTAB/PPy electrolytes under one sun irradiation, respectively, whereas it is 6.07% for the cell device with pure PAA-CTAB gel electrolyte. Electrical and electrochemical characterizations reveal that the electrical conduction and electrocatalytic performances have been significantly enhanced by incorporating electrical conducting PANi or PPy into microporous PAA-CTAB matrix. The concept opens a new approach of fabricating efficient polymer gel electrolytes for robust quasi-solid-state DSSC applications.

  19. Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution.

    PubMed

    Wang, Hongfang; Wu, Cong; Xia, Guangmei; Ma, Zhi; Mo, Guang; Song, Rui

    2015-03-01

    In this paper, we have systematically investigated the aggregation behavior, confined crystallization and controlled growth of a novel polyolefin analogue-containing block copolymers (BCPs), i.e., polymethylene-b-poly(acrylic acid) diblock copolymers (PM-b-PAA). On cooling from a homogenous DMF solution at 80 °C, PM-b-PAA was found to crystallize and aggregate with well-defined disk-like micelles. The aggregate behavior and in-plane morphology of PM-b-PAA could be easily controlled by modifying the block ratio, solution pH and solvent composition (DMF-water), by manipulating the crystallization of PM block and the stretching degree of solvated PAA corona. Further investigation of the crystalline feature of PM-b-PAA indicated that the crystallization of PM was retarded by tethered amorphous PAA segments. The crystalline micelle could construct a nano-confined environment with PM folding as the core into a thickness of the mono-layered polyethylene. Finally, when cultured in dilute DMF solution at 50 °C, the initial crystalline micelles, being as self-seeds, could follow a living growth mechanism and develop into single crystals, with well-defined lozenge-shaped morphology.

  20. Impact of UV and Peracetic Acid Disinfection on the Prevalence of Virulence and Antimicrobial Resistance Genes in Uropathogenic Escherichia coli in Wastewater Effluents

    PubMed Central

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke

    2014-01-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265

  1. Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution.

    PubMed

    Wang, Hongfang; Wu, Cong; Xia, Guangmei; Ma, Zhi; Mo, Guang; Song, Rui

    2015-03-01

    In this paper, we have systematically investigated the aggregation behavior, confined crystallization and controlled growth of a novel polyolefin analogue-containing block copolymers (BCPs), i.e., polymethylene-b-poly(acrylic acid) diblock copolymers (PM-b-PAA). On cooling from a homogenous DMF solution at 80 °C, PM-b-PAA was found to crystallize and aggregate with well-defined disk-like micelles. The aggregate behavior and in-plane morphology of PM-b-PAA could be easily controlled by modifying the block ratio, solution pH and solvent composition (DMF-water), by manipulating the crystallization of PM block and the stretching degree of solvated PAA corona. Further investigation of the crystalline feature of PM-b-PAA indicated that the crystallization of PM was retarded by tethered amorphous PAA segments. The crystalline micelle could construct a nano-confined environment with PM folding as the core into a thickness of the mono-layered polyethylene. Finally, when cultured in dilute DMF solution at 50 °C, the initial crystalline micelles, being as self-seeds, could follow a living growth mechanism and develop into single crystals, with well-defined lozenge-shaped morphology. PMID:25608942

  2. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents.

    PubMed

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic

    2014-06-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265

  3. Influence of He/O 2 atmospheric pressure plasma jet treatment on subsequent wet desizing of polyacrylate on PET fabrics

    NASA Astrophysics Data System (ADS)

    Li, Xuming; Lin, Jun; Qiu, Yiping

    2012-01-01

    The influence of He/O2 atmospheric pressure plasma jet (APPJ) treatment on subsequent wet desizing of polyacrylate on PET fabrics was studied in the present paper. Weight loss results indicated that the weight loss increased with an increase of plasma treatment time. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed an increased surface roughness after the plasma treatment. SEM also showed that the fiber surfaces were as clean as unsized fibers after 35 s treatment followed by NaHCO3 desizing. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen-based functional groups increased for the plasma treated polyacrylate sized fabrics. The percent desizing ratio (PDR) results showed that more than 99% PDR was achieved after 65 s plasma treatment followed by a 5 min NaHCO3 desizing. Compared to conventional wet desizing, indicating that plasma treatment could significantly reduce desizing time.

  4. Effects of concentration and temperature on the dynamic behavior of PAA-g-PEO aqueous solutions with different counterion species: a dielectric spectroscopy study.

    PubMed

    Liu, Chunyan; Zhao, Kongshuang

    2012-01-19

    Dielectric properties of PAA-g-PEO-7% solutions with different counterions were measured as a function of concentration and temperature over a frequency range of 40 Hz to 110 MHz. After the contribution of electrode polarization effects was subtracted, the dielectric spectra of PAA-g-PEO-7% solutions showed three relaxation processes in the experimental frequency range, named low-, mid-, and high-frequency relaxation. The observed three relaxations were strictly analyzed by using the Cole-Cole relaxation function, and the dielectric parameters (dielectric increment Δε and the relaxation time τ) were obtained. The scaling relation of dielectric increment and relaxation time of high frequency with concentration C(p) were obtained and compared with the predictions of scaling theories. The information on the dynamics and microstructure of PAA-g-PEO-7% was obtained. Using different counterion species, the mid- and high-frequency relaxation mechanisms were attributed to the fluctuation of condensed counterions and free counterions, respectively, and the low-frequency relaxation was considered to be caused by the interface polarization of a complex formed by the hydrogen bonding between carboxylic group of PAA and ether oxygen on the side-chain PEO. In addition, by means of Eyring equation, the thermodynamic parameters, enthalpy change ΔH and entropy change ΔS, of the three relaxations were calculated from the relaxation time and discussed from the microscopic thermodynamical view.

  5. Synthesis and Characterization of nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion

    NASA Astrophysics Data System (ADS)

    Zhou, Jianhua; Chen, Xin; Duan, Hao; Ma, Jianzhong; Ma, Yurong

    2015-03-01

    Nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion, consisting of methyl methacrylate, butyl acrylate, dodecafluoroheptyl methacrylate and ethyl silicate, was successfully synthesized by emulsion polymerization using surfmer and sol-gel process. When increasing ethyl silicate content, the latex centrifugal stability decreased, and the latex particle size increased. The contact angle results showed that the finished fabric had an excellent water and oil repellency. Furthermore, compared with fluorine-containing polyacrylate emulsifier-free emulsion, the obtained nano-SiO2 modified fluorine-containing polyacrylate emulsifier-free emulsion proved to be highly solvent-resistant and water-resistant. In addition, the transmission electron microscopy (TEM) indicated that the nano-SiO2 presented on the surface of latex particles. The atomic force microscope (AFM) and energy dispersive X-ray spectrometer (EDX) confirmed that the hybrid film had a rough surface and the organic fluorine segment could migrate onto the film-air interface.

  6. Large-area electrochromic coatings: Composites of polyaniline and polyacrylate-silica hybrid sol-gel materials

    SciTech Connect

    Jang, G.W.; Chen, C.; Gumbs, R.W.; Wei, Y.; Yeh, J.M.

    1996-08-01

    A low-cost technique for fabricating large-area electrochromic coatings is described. Polyaniline was incorporated into polyacrylate-silica hybrid sol-gel networks using suspended particles or solutions. A solution of polyaniline and poly[methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate] can be spray- or brush-coated on transparent indium-tin oxide substrates to form robust electrochromic coatings. Silane functional groups on the polyacrylate chain act as coupling and cross-linking agents to improve surface adhesion and mechanical properties of the resulting composite coatings. These coatings showed reversible transparent to green color change when polarized at potentials between {minus}0.4 and +0.4 V vs. Ag/AgCl in a 0.2 M LiClO{sub 4}/acetonitrile electrolyte solution. The cycle lifetimes of polyaniline films were improved by incorporating the polymer in the polyacrylate-silica matrix. Electrochromic switching was demonstrated for the composite coatings in large-area all-solid-state devices.

  7. Quantitative study of solid-state acid-base reactions between polymorphs of flufenamic acid and magnesium oxide using X-ray powder diffraction.

    PubMed

    Chen, Xiaoming; Stowell, Joseph G; Morris, Kenneth R; Byrn, Stephen R

    2010-03-11

    The purpose of this study is to investigate solid-state acid-base reactions between polymorphs of flufenamic acid (FFA) and magnesium oxide (MgO) using X-ray powder diffraction (XRPD). Polymorphs of FFA were blended with MgO and stored under conditions of 96.5% RH and 89% RH at 40 degrees C. The disappearance of FFA and production of magnesium flufenamate were monitored by XRPD. It was observed that the reactions between FFA and MgO proceeded following the Jander equation. Form I of FFA is more reactive with MgO than Form III. Differential accessibility of reactive groups is hypothesized as one of the reasons that Form I is more reactive than Form III. It was noted that the reaction between FFA and MgO could be mitigated by adding another acidic excipient such as polyacrylic acid to prevent the acid-base reaction with FFA. The effectiveness of polyacrylic acid was impacted by the mixing order of the tertiary mixture. Mixing polyacrylic acid and MgO first provided the most significant protection. In conclusion, solid-state acid-base reactions could be investigated using XRPD. Different forms may have distinct reactivity. Acid-base reactions in the solid state could be mitigated through the addition of another "shielding" excipient.

  8. Determination of diphenylarsinic acid, phenylarsonic acid and inorganic arsenic in drinking water by graphite-furnace atomic-absorption spectrometry after simultaneous separation and preconcentration with solid-phase extraction disks.

    PubMed

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Nakamura, Toshihiro

    2013-01-01

    A simple method of graphite-furnace atomic-absorption spectrometry (GFAAS) after solid-phase extraction (SPE) was developed for the determination of diphenylarsinic acid (DPAA), phenylarsonic acid (PAA), and inorganic arsenic (iAs) in drinking water. This method involves the simultaneous collection of DPAA, PAA, and iAs using three stacked SPE disks, i.e., an Empore SDB-XD disk (the upper layer), an activated carbon disk (the middle layer), and a Cation-SR disk loaded with Zr and Ca (ZrCa-CED; the lower layer). A 200-mL aqueous sample was adjusted to pH 3 with nitric acid and passed through the SPE disks at a flow rate of 15 mL min(-1), to concentrate DPAA on the SDB-XD disk, PAA on the activated carbon disk, and iAs on the ZrCa-CED. The As compounds were eluted from the disks with 10 mL of ethanol containing 0.5 mol L(-1) ammonia solution for DPAA, 20 mL of 1 mol L(-1) ammonia solution for PAA, and 20 mL of 6 mol L(-1) hydrochloric acid for iAs. The eluates of DPAA, PAA, and iAs were diluted to 20, 25, and 25 mL, respectively, with deionized water, and then analyzed by GFAAS. The detection limits of As (three-times the standard deviation (n = 3) of the blank values) were 0.13 and 0.16 μg L(-1) at enrichment factors of 10 and 8, respectively, using a 200-mL water sample. Spike tests with 2 μg (10 μg L(-1)) of DPAA, PAA, and iAs in 200 mL of tap water and bottled drinking water showed good recoveries (96.1-103.8%).

  9. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  10. Low-Melt Poly(amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)

    2015-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  11. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Parks, Steven L. (Inventor)

    2014-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use in repair of electrical wire insulation, flat or ribbon wire harnesses, and flat surfaces comprised of high-performance polymers such as inflatables or solar panels applications. Also provided are methods and devices for repair of electrical insulation.

  12. Use of copper sulfate and peracetic acid as therapeutants on fish: can these replace formalin?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate (CuSO4) and peracetic acid (PAA) are compounds that have been found to be useful in several areas of aquaculture around the world. In the United States, CuSO4 is used for treatment of an ectoparasite (Ichthyophthirius multifiliis) on fish (Straus 1993; Tieman and Goodwin 2001), and s...

  13. Reduction of in vitro growth in Flavobacterium columnare and Saprolegnia parasitica by products containing peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial products containing peracetic acid (PAA) are strong disinfectants with a wide spectrum of antimicrobial activity and have been suggested as potential therapeutic agents in aquaculture. The aim of this study was to compare the in vitro reduction of growth on two fish pathogens, Flavobacte...

  14. Evaluation of continuous 4 day exposure to peracetic acid as a treatment for Ichthyophthirius multifiliis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The parasitic ciliate Ichthyophthirius multifiliis infests all species of freshwater fish and can cause severe economic losses in fish breeding. The most effective treatment, malachite green, has been banned in Europe and North America for use in food-fish production. Peracetic acid (PAA) was foun...

  15. Low-Melt Poly(Amic Acids) and Polyimides and Their Uses

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T. (Inventor); Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Parrish, Clyde F. (Inventor); Snyder, Sarah J. (Inventor)

    2016-01-01

    Provided are low-melt polyimides and poly(amic acids) (PAAs) for use as adhesives, and methods of using the materials for attaching two substrates. The methods typically form an adhesive bond that is hermetically sealed to both substrates. Additionally, the method typically forms a cross-linked bonding material that is flexible.

  16. Acute toxicity and histopathology of channel catfish fry exposed to peracetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish Ictalurus punctatus yolk-sac fry and swim-up fry were exposed to peracetic acid (PAA) for 48h in static toxicity bioassays at 23C. The test water was 217 and 126 mg/L (as CaCO3) total alkalinity and total hardness, respectively. Probit LC50 values were estimated with the trimmed Sp...

  17. Erratum to: the acaricidal efficacy of peracetic acid and deltamethrin against the fowl tick, Argas persicus, infesting laying hens.

    PubMed

    Khater, Hanem F; Seddiek, Shaker A; El-Shorbagy, Mohamed M; Ali, Ali M

    2013-10-01

    The fowl tick, Argas persicus (Oken), is of veterinary importance as a parasite of poultry and wild birds. The antitick efficacy, in vitro and in vivo, of peracetic acid (PAA) and deltamethrin (DMT) was tested separately against A. persicus through the dipping technique. PAA (0.5%) was highly efficient against soft tick larvae (A. persicus), resulting in 100 % mortality after 2 min. The lethal concentrations LC₅₀ and LC₉₅ were 0.310 and 0.503 %, respectively. The lethal time values LT₅₀ and LT₉₅ were 5.34 and 40.00 min, respectively, after treatment with PAA (0.25%). Two minutes after exposure to DMT, LC₅₀ and LC₉₅ values were 0.0033 and 0.0052% (33.204 and 51.527 mg/L), respectively. The LT₅₀ and LT₉₅ values were 27.03 and 305.46 min, respectively, after treatment with 0.0025% DMT (25 mg/L). After dipping in PAA (0.5%), the chickens did not show respiratory signs or inflammation on the eyes and/or skin. By contrast, temporary coughing, sneezing, and ocular inflammations without dermatitis were observed in chickens dipped in DMT (0.005 % or 50 mg /L). Seven days posttreatment (PT), the reduction in the percentages of A. persicus infesting laying hens were 99.15 and 63.42% after dipping in PAA and DMT, respectively. However, complete elimination of the number of ticks occurred after 28 days PT with DMT. PAA inhibits molting effectively (28%) when compared with that of DMT (52%). Results indicated that PAA is a more potent and promising acaricide against A. persicus (in vitro and in vivo) than DMT.

  18. Crystallization and preliminary X-ray analysis of two variants of the Escherichia coli O157 ParE2–PaaA2 toxin–antitoxin complex

    PubMed Central

    Sterckx, Yann G. J.; Haesaerts, Sarah; Van Melderen, Laurence; Loris, Remy

    2014-01-01

    The paaR2–paaA2–parE2 operon is a three-component toxin–antitoxin module encoded in the genome of the human pathogen Escherichia coli O157. The toxin (ParE2) and antitoxin (PaaA2) interact to form a nontoxic toxin–antitoxin complex. In this paper, the crystallization and preliminary characterization of two variants of the ParE2–PaaA2 toxin–antitoxin complex are described. Selenomethionine-derivative crystals of the full-length ParE2–PaaA2 toxin–antitoxin complex diffracted to 2.8 Å resolution and belonged to space group P41212 (or P43212), with unit-cell parameters a = b = 90.5, c = 412.3 Å. It was previously reported that the full-length ParE2–PaaA2 toxin–antitoxin complex forms a higher-order oligomer. In contrast, ParE2 and PaaA213–63, a truncated form of PaaA2 in which the first 12 N-terminal residues of the antitoxin have been deleted, form a heterodimer as shown by analytical gel filtration, dynamic light scattering and small-angle X-ray scattering. Crystals of the PaaA213–63–ParE2 complex diffracted to 2.7 Å resolution and belonged to space group P6122 (or P6522), with unit-cell parameters a = b = 91.6, c = 185.6 Å. PMID:25195911

  19. Determination of uric acid level by polyaniline and poly (allylamine): Based biosensor.

    PubMed

    Wathoni, Nasrul; Hasanah, Aliya Nur; Gozali, Dolih; Wahyuni, Yeni; Fauziah, Lia Layusa

    2014-01-01

    The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI) and poly (allylamine) (PAA) respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm). The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H2O2-selective film. Standard of deviation, coefficient of variation (CV) and coefficient of correlation (r) analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor. PMID:24696812

  20. Determination of uric acid level by polyaniline and poly (allylamine): Based biosensor

    PubMed Central

    Wathoni, Nasrul; Hasanah, Aliya Nur; Gozali, Dolih; Wahyuni, Yeni; Fauziah, Lia Layusa

    2014-01-01

    The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI) and poly (allylamine) (PAA) respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm). The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H2O2-selective film. Standard of deviation, coefficient of variation (CV) and coefficient of correlation (r) analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor. PMID:24696812

  1. Swelling behaviors of porous lignin based poly (acrylic acid).

    PubMed

    Ma, Yanli; Sun, Yajie; Fu, Yujie; Fang, Guizhen; Yan, Xingru; Guo, Zhanhu

    2016-11-01

    Supramolecular cross-linked porous lignin based poly (acrylic acid) [LBPAA] was lab-synthesized by copolymerizing lignin grafted N, N'-methylene-bisacrylamide (LM) and acrylic acid. LBPAA successfully acted as a water retention agent with salt resistance and biodegradation for agricultural applications. Lignin was found to improve its swelling behaviors with higher water retention, fast swelling and de-swelling rates. The salt tolerance was stronger in the case of LBPAA (60 PAA/40 LM) [60 wt% PAA/40 wt% LM], i.e., 145.79 g·g(-1) higher than PAA at 0.09 mM KCl solution. The effect of ion charges on the LBPAA swelling ratio was greater than that of ionic radius. The weight loss of LBPAA (60 PAA/40 LM) was 5.47%, 4.96%, and 4.56% in the soil of Tangshan, Harbin, and Sian, respectively. The soil moisture content and clay content were observed to decrease gradually with increasing the burial time. The biodegradation test of LBPAA (60 PAA/40 LM) composite exhibited different bacterial colony forming units (CFU), the soil of Tangshan was 2.0 × 10(3) CFU·g(-1) soil, 7.0 × 10(3) CFU·g(-1) soil for Harbin, and 6.10 × 10(4) CFU·g(-1) soil for Sian. However, the organic matter contents in the soils did not have significant changes (Tangshan 6.21 mg·g(-1), Harbin 0.61 mg·g(-1), and Sian 0.405 mg·g(-1)). PMID:27587327

  2. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling.

    PubMed

    Hibbs, Michael R; Hernandez-Sanchez, Bernadette A; Daniels, Justin; Stafslien, Shane J

    2015-01-01

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm). PMID:26343202

  3. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents.

    PubMed

    Turos, Edward; Shim, Jeung-Yeop; Wang, Yang; Greenhalgh, Kerriann; Reddy, G Suresh Kumar; Dickey, Sonja; Lim, Daniel V

    2007-01-01

    This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated beta-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium dodecyl sulfate as a surfactant and potassium persulfate as a radical initiator. Dynamic light scattering analysis and electron microscopy images of these emulsions show that the nanoparticles are approximately 40 nm in diameter. The emulsions have potent in vitro antibacterial properties against methicillin-resistant Staphylococcus aureus and have improved bioactivity relative to the non-polymerized form of the antibiotic. A unique feature of this methodology is the ability to incorporate water-insoluble drugs directly into the nanoparticle framework without the need for post-synthetic modification. Additionally, the antibiotic properties of the nanoparticles can be modulated by changing the length or location of the acrylate linker on the drug monomer. PMID:17049850

  4. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling

    SciTech Connect

    Hibbs, Michael R.; Hernandez-Sanchez, Bernadette A.; Daniels, Justin; Stafslien, Shane J.

    2015-09-07

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. As a result, this significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).

  5. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents.

    PubMed

    Turos, Edward; Shim, Jeung-Yeop; Wang, Yang; Greenhalgh, Kerriann; Reddy, G Suresh Kumar; Dickey, Sonja; Lim, Daniel V

    2007-01-01

    This report describes the preparation of polyacrylate nanoparticles in which an N-thiolated beta-lactam antibiotic is covalently conjugated onto the polymer framework. These nanoparticles are formed in water by emulsion polymerization of an acrylated antibiotic pre-dissolved in a liquid acrylate monomer (or mixture of co-monomers) in the presence of sodium dodecyl sulfate as a surfactant and potassium persulfate as a radical initiator. Dynamic light scattering analysis and electron microscopy images of these emulsions show that the nanoparticles are approximately 40 nm in diameter. The emulsions have potent in vitro antibacterial properties against methicillin-resistant Staphylococcus aureus and have improved bioactivity relative to the non-polymerized form of the antibiotic. A unique feature of this methodology is the ability to incorporate water-insoluble drugs directly into the nanoparticle framework without the need for post-synthetic modification. Additionally, the antibiotic properties of the nanoparticles can be modulated by changing the length or location of the acrylate linker on the drug monomer.

  6. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling

    DOE PAGES

    Hibbs, Michael R.; Hernandez-Sanchez, Bernadette A.; Daniels, Justin; Stafslien, Shane J.

    2015-09-07

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified frommore » microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. As a result, this significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1–2 µm) relative to commercial coating standards (>200 µm).« less

  7. Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls.

    PubMed

    Zhou, W X; Chan-Park, Mary B

    2005-05-01

    Large area molding of long and deep microchannels separated by high aspect ratio microwalls is important for high sensitivity and high throughput microfluidic devices. Ultraviolet (UV) casting is a feasible, economical and convenient method of replication of such microstructures in plastics. It is shown that a wide variety of polyacrylates with diverse properties such as those made from epoxy (EP), polyurethane (UR), polyester (ES), poly (ethylene glycol) (EG) and poly(propylene glycol) (PG) can be used for the high aspect ratio (7-9) UV casting of such linear microstructures over a 100 mm diameter, enlarging the range of applications of the replicated microstructures. Some challenges arise. With the EG formulation, wavy microstructures were observed; this can be overcome by stress relaxation. With non-polar PG formulation, poor adhesion between the polyester substrate and resin can lead to delamination of the casting from the substrate during demolding; this can be overcome by pre-coating a partially cured same resin on the polyester substrate. An optimum UV irradiation time was important for cure at the deepest end of the microstructure without excessive crosslinking leading to much increased demolding forces. The viscosity and wetting capability of the formulations were found to affect replication fidelity.

  8. Rheological and filtration behavior of aqueous alumina casting slips dispersed with polyacrylate and polymethacrylate deflocculants

    NASA Astrophysics Data System (ADS)

    Shemo, David M.

    Dynamic stress-controlled rheometry methods and filtration analysis were used to characterize aluminum oxide suspensions relative to several process variables. These included dispersant molecular weight, dispersant concentration, solids concentration, alumina PSD, and aging time. It is believed that through rheological analysis, a better understanding of a slip's structure and dewatering behavior can be achieved. Based upon time- and stress-sweep data, structural models were developed for the build-up (gelation) and break-down (yielding) processes in alumina suspensions. Aqueous alumina suspensions dispersed with acrylate-based polyelectrolytes of average molecular weights of 2400, 3500, and 15000 were evaluated over an aging period of up to ten days. The aging-induced variations in their rheological, filtration, and electrochemical characteristics were quantified. These effects were related to changes in the structures of the suspensions over time. It was found that the aging effect was most pronounced for slips dispersed with higher molecular weight polyacrylate or polymethacrylate deflocculants. A mechanism was proposed to account for the aging behavior and the effect of dispersant molecular weight. Alumina slips were prepared with bimodal particle size compositions by combining two sub-micron alumina powders. Variation in rheological behavior with the composition was evaluated for slips at moderate and high solids concentration, and at fully dispersed and under dispersed states. The corresponding changes in the filtration behavior and cast density were measured. A structural model was constructed for the observed variations with alumina composition.

  9. Antioxidant Hydroxytyrosol-Based Polyacrylate with Antimicrobial and Antiadhesive Activity Versus Staphylococcus Epidermidis.

    PubMed

    Crisante, Fernanda; Taresco, Vincenzo; Donelli, Gianfranco; Vuotto, Claudia; Martinelli, Andrea; D'Ilario, Lucio; Pietrelli, Loris; Francolini, Iolanda; Piozzi, Antonella

    2016-01-01

    The accumulation of reactive oxygen species (ROS) in microbial biofilms has been recently recognized to play a role in promoting antibiotic resistance in biofilm-growing bacteria. ROS are also over-produced when a medical device is implanted and they can promote device susceptibility to infection or aseptic loosening. High levels of ROS seem also to be responsible for the establishment of chronic wounds.In this study, a novel antioxidant polyacrylate was synthesized and investigated in terms of antimicrobial and antibiofilm activity. The polymer possesses in side-chain hydroxytyrosol (HTy), that is a polyphenolic compound extracted from olive oil wastewaters.The obtained 60 nm in size polymer nanoparticles showed good scavenging and antibacterial activity versus a strain of Staphylococcus epidermidis. Microbial adherence assays evidenced that the hydroxytyrosol-containing polymer was able to significantly reduce bacterial adhesion compared to the control. These findings open novel perspective for a successful use of this antioxidant polymer for the prevention or treatment of biofilm-based infections as those related to medical devices or chronic wounds. PMID:26542603

  10. Surface hydrophobization by electrostatic deposition of hydrophobically modified poly(acrylates) and their complexes with surfactants

    NASA Astrophysics Data System (ADS)

    Gîfu, Ioana Cătălina; Maxim, Monica Elisabeta; Iovescu, Alina; Simion, Elena Livia; Aricov, Ludmila; Anastasescu, Mihai; Munteanu, Cornel; Anghel, Dan-Florin

    2016-05-01

    The present study demonstrates the hydrophobic effect of poly(electrolyte) multilayer films when they are alkyl-grafted and complexed or not with surfactants. For this purpose, sodium hydrophobically modified poly(acrylates) (PACnNa, n = 10, 18) or their anionic complexes with alkyltrimethylammonium bromides (CxTAB, x = 10, 12, 14, 18), and the cationic poly(diallyldimethyldiammonium chloride) (PDDAMAC) are assembled by layer-by-layer deposition on a glass substrate. Contact angle (CA) measurements reveal that films constructed with PACnNa-CxTAB/PDADMAC are superior water repellants than those of PACnNa/PDADMAC. For example, the highest CA is obtained for the PAC18Na-C18TAB/PDADMAC. Moreover, it has been observed that the CA increases with the alkyl chain length of PACnNa and of surfactant. The film roughness and thickness have the same trend as wettability. Thinner and less coarse films are obtained by NaCl addition, as witnessed by SEM and AFM.

  11. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA. PMID:24530948

  12. Graphene sheets stacked polyacrylate latex composites for ultra-efficient electromagnetic shielding

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Song; Ni, Yuwei

    2016-07-01

    Graphene sheets (GS) are at the forefront of electromagnetic interference (EMI) shielding/attenuation materials science research because of their excellent electrical properties (Wen B et al 2014 Adv. Mater. 26 3484, Zhang Y et al 2015 Adv. Mater. 27 2049). GS/polyacrylate (PA) composites were prepared using a solvent-free latex technology, which favored the build-up of a segregated GS architecture stacked in the polymer matrix. GS were obtained from graphite flakes (GF) via a mechanical delamination approach in water. The microstructure, electrical, dielectric and electromagnetic shielding properties of the GS/PA composites were correlated in this manuscript. A remarkably low percolation threshold of ∼0.11 mass per cent for room-temperature electrical conductivity was obtained in the GS/PA composites owing to the stacked architecture of GS with high aspect ratios. This unique nanostructured GS architecture not only enhanced the electrical conductivity of composites, but also dramatically increased complex permittivity by inducing strong Maxwell–Wagner–Sillars (MWS) polarization at the highly conductive GS/non-conductive PA interfaces. The EMI shielding effectiveness (SE) of these composites was enhanced with increasing GS content, and the composite with 6 wt% GS loading exhibited a high EMI SE of ∼66 dB over a frequency of 8.2–12.4 GHz, resulting from the pronounced conduction loss, dielectric relaxation, and multi-scattering.

  13. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling.

    PubMed

    Hibbs, Michael R; Hernandez-Sanchez, Bernadette A; Daniels, Justin; Stafslien, Shane J

    2015-01-01

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm).

  14. Evaluations of Mesogen Orientation in Thin Films of Polyacrylate with Cyanobiphenyl Side Chain.

    PubMed

    Tanaka, Daisuke; Mizuno, Tasuku; Hara, Mitsuo; Nagano, Shusaku; Saito, Itsuki; Yamamoto, Katsuhiro; Seki, Takahiro

    2016-04-19

    The orientation behavior of mesogens in a polyacrylate with cyanobiphenyl (CB) side chain in thin films was investigated in detail by UV-vis absorption spectroscopy and grazing incidence small-angle X-ray scattering (GI-SAXS) measurements using both high-energy X-rays of Cu Kα line (λ = 0.154 nm) and low-energy synchrotron X-rays (λ = 0.539 nm). By changing the film thickness ranging 7-200 nm, it is concluded that the planar orientation is predominant for thin films with thickness below 10-15 nm. This planar mesogen orientation near the substrate surface coexists with the homeotropically aligned CB mesogens in films thicker than 30 nm. For the thinnest 7 nm film, the planar orientation is unexpectedly lost, which is in consort with a disordering of smectic layer structure. Peculiar orienting characteristics of CB mesogen are suggested, which probably stem from the tendency to form an antiparallel arrangement of mesogens due to the strong dipole moment of the terminal cyano group. PMID:27031094

  15. Simulated sugar factory wastewater remediation kinetics using algal-bacterial raceway reactor promoted by polyacrylate polyalcohol.

    PubMed

    Memon, Abdul Rehman; Andresen, John; Habib, Muddasar; Jaffar, Muhammad

    2014-04-01

    The remediation kinetics of simulated sugar factory wastewater (SFW) using an algal-bacterial culture (ABC) of Chlorella vulgaris in association with Pseudomonas putida in a raceway reactor was found to be enhanced by 89% with the addition of 80ppm of copolymer Polyacrylate polyalcohol (PAPA). This was achieved by efficient suspension of the ABC throughout the water body maintaining optimum pH and dissolved oxygen that led to rapid COD removal and improved algal biomass production. The suspension of the ABC using the co-polymer PAPA maintained a DO of 8-10mgl(-1) compared to 2-3mgl(-1) when not suspended. As a result, the non-suspended ABC only achieved a 50% reduction in COD after 96h compared to a 89% COD removal using 80ppm PAPA suspension. In addition, the algae biomass increased from 0.4gl(-1)d(-1) for the non-suspended ABC to 1.1gl(-1)d(-1) when suspended using 80ppm PAPA.

  16. Direct determination of peracetic acid, hydrogen peroxide, and acetic acid in disinfectant solutions by far-ultraviolet absorption spectroscopy.

    PubMed

    Higashi, Noboru; Yokota, Hiroshi; Hiraki, Satoru; Ozaki, Yukihiro

    2005-04-01

    In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization. PMID:15801764

  17. Hydrogenation of unsaturated, aromatic, and heterocyclic compounds with polymer-supported catalysts

    SciTech Connect

    Karakhanov, E.A.; Pshezhetskii, V.S.; Dedov, A.G.; Loktev, A.S.; Lebedeva, T.S.

    1984-04-01

    The authors synthesized and studied catalysts based upon complexes of platinum, palladium, rhodium, and nickel with the following polymeric microligands: copolymers of styrene with maleic acid (S-MA), copolymers of maleic acid with methyl methacrylate (MA-MMA), and polyacrylic acid (PAA). The catalysts showed high activity and selectivity in the hydrogenation of furan and its derivatives, benzofuran, benzodioxane, benzene, nitrobenzene, phenol, olefins and cyclic olefins, and cyclic dienes. 2 tables.

  18. Probing the Mucoadhesive Interactions Between Porcine Gastric Mucin and Some Water-Soluble Polymers.

    PubMed

    Albarkah, Yasser A; Green, Rebecca J; Khutoryanskiy, Vitaliy V

    2015-11-01

    This study investigates the structural features of porcine gastric mucin (PGM) in aqueous dispersions and its interactions with water-soluble polymers (poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(ethylene oxide), and poly(ethylene glycol)) using isothermal titration calorimetry, turbidimetric titration, dynamic light scattering, and transmission electron microscopy. It is established that PAA (450 kDa) and PMAA (100 kDa) exhibit strong specific interactions with PGM causing further aggregation of its particles, while PAA (2 kDa), poly(ethylene oxide) (1 000 kDa), and poly(ethylene glycol) (10 kDa) do not show any detectable effects on mucin. Sonication of mucin dispersions prior to their mixing with PAA (450 kDa) and PMAA (100 kDa) leads to more pronounced intensity of interactions.

  19. Probing the Mucoadhesive Interactions Between Porcine Gastric Mucin and Some Water-Soluble Polymers.

    PubMed

    Albarkah, Yasser A; Green, Rebecca J; Khutoryanskiy, Vitaliy V

    2015-11-01

    This study investigates the structural features of porcine gastric mucin (PGM) in aqueous dispersions and its interactions with water-soluble polymers (poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(ethylene oxide), and poly(ethylene glycol)) using isothermal titration calorimetry, turbidimetric titration, dynamic light scattering, and transmission electron microscopy. It is established that PAA (450 kDa) and PMAA (100 kDa) exhibit strong specific interactions with PGM causing further aggregation of its particles, while PAA (2 kDa), poly(ethylene oxide) (1 000 kDa), and poly(ethylene glycol) (10 kDa) do not show any detectable effects on mucin. Sonication of mucin dispersions prior to their mixing with PAA (450 kDa) and PMAA (100 kDa) leads to more pronounced intensity of interactions. PMID:26102520

  20. In vivo pharmacokinetics, biodistribution and antitumor effect of amphiphilic poly(L-amino acids) micelles loaded with a novel all-trans retinoic acid derivative.

    PubMed

    Tang, Jihui; Wang, Xinqun; Wang, Ting; Chen, Feihu; Zhou, Jianping

    2014-01-23

    Poly(amino acid)s are well-known as biodegradable and environmentally acceptable materials. In this study, a series of poly(L-aspartic acid)-b-poly(L-phenylalanine) (PAA-PPA) compounds with different degrees of polymerization were used to prepare copolymer micelles for a poorly water-soluble drug 4-amino-2-trifluoromethyl-phenyl retinate (ATPR, a novel all-trans retinoic acid derivative) and in vivo pharmacokinetics, biodistribution and antitumor efficacy of ATPR delivered by PAA-PPA micelles were evaluated. The area under the plasma concentration time curve AUC0→∞ of ATPR-loaded PAA20PPA20 micelles was 2.23 and 1.97 times higher than that of ATPR solution and ATPR CrmEL solution, respectively; In addition, the mean residence time (MRT) was increased 1.67 and 1.97-fold, respectively and the total body clearance (CL) was reduced 2.25 and 1.98-fold, respectively. The biodistribution study indicated that most of the ATPR in the ATPR-M group was distributed in the liver and there was delayed liver aggregation compared with the ATPR solution and ATPR CrmEL solution groups. Furthermore, the antitumor efficacy of ATPR-loaded PAA20PPA20 micelles was demonstrated in in vivo antitumor models involving mice inoculated with the human gastric cancer cell line SGC-7901. At the same dose of 7mg/kg, the ATPR-loaded micelles group demonstrated a better tumor growth inhibition and induced differentiation than the groups given ATPR solution and ATPR CrmEL solution. Therefore, the ATPR-loaded PAA-PPA micelles appear to be a potentially useful drug delivery system for ATPR and suitable for the chemotherapy of gastric cancer.

  1. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    SciTech Connect

    Tang Yuechao; Yang Dong; Qin Feng; Hu Jianhua; Wang Changchun; Xu Hualong

    2009-08-15

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). Due to the strong interaction between Ni{sup 2+} and -COOH, PAA-g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for alpha, beta-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC). - Abstract: Nickel nanoparticles decorated multi-walled carbon nanotubes (Ni-MWNTs) nanocomposites were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA-g-MWNTs). These nanocomposites possessed excellent catalytic activity and selectivity for hydrogenation of citral.

  2. A novel approach to explain the inactivation mechanism of Escherichia coli employing a commercially available peracetic acid.

    PubMed

    Flores, Marina J; Lescano, Maia R; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2014-01-01

    The chemical inactivation of Escherichia coli employing a commercial mixture of peracetic acid (PAA) was studied. For this purpose, experiments were carried out using dilutions of the unmodified mixture, and also the same mixture but altered with hydrogen peroxide (HP) previously inhibited. Also, these results were compared to those obtained before employing HP alone. It was found that the mixture is much more efficient than HP and PAA acting separately. Furthermore, it was found that PAA without HP is much more efficient than HP alone. A plausible explanation is presented. The homolysis of PAA would give rise to a chain reaction that generates a significant number of highly oxidizing radicals. An attacking scheme to bacteria in two stages is proposed, where the initial step, mainly caused by PAA, is very fast and eliminates some specific components of the bacteria that would otherwise inhibit the parallel action of HP. Thereafter, the emergence of a potentiating synergetic action of the second oxidant seems to be immediately unveiled. PMID:24473306

  3. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    PubMed

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank. PMID:25938730

  4. Nondeterministic computational fluid dynamics modeling of Escherichia coli inactivation by peracetic acid in municipal wastewater contact tanks.

    PubMed

    Santoro, Domenico; Crapulli, Ferdinando; Raisee, Mehrdad; Raspa, Giuseppe; Haas, Charles N

    2015-06-16

    Wastewater disinfection processes are typically designed according to heuristics derived from batch experiments in which the interaction among wastewater quality, reactor hydraulics, and inactivation kinetics is often neglected. In this paper, a computational fluid dynamics (CFD) study was conducted in a nondeterministic (ND) modeling framework to predict the Escherichia coli inactivation by peracetic acid (PAA) in municipal contact tanks fed by secondary settled wastewater effluent. The extent and variability associated with the observed inactivation kinetics were both satisfactorily predicted by the stochastic inactivation model at a 95% confidence level. Moreover, it was found that (a) the process variability induced by reactor hydraulics is negligible when compared to the one caused by inactivation kinetics, (b) the PAA dose required for meeting regulations is dictated equally by the fixed limit of the microbial concentration as well as its probability of occurrence, and (c) neglecting the probability of occurrence during process sizing could lead to an underestimation of the PAA dose required by as much as 100%. Finally, the ND-CFD model was used to generate sizing information in the form of probabilistic disinfection curves relating E. coli inactivation and probability of occurrence with the average PAA dose and PAA residual concentration at the outlet of the contact tank.

  5. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-06-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations have suggested that the budget of peroxyacetic acid (PAA, CH3C(O)OOH) is potentially related to the aerosol phase processes, especially to secondary aerosol formation. Here, we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. The value of γPAA at 90 % RH is 5.4 ± 1.9 times that at 3 % RH, whereas γH2O2 at 90 % RH is 2.4 ± 0.5 times that at 3 % RH, which suggests that PAA is more sensitive to the RH variation than H2O2 is. Considering the larger Henry's law constant of H2O2 than that of PAA, the smaller RH sensitivity of the H2O2 uptake coefficient suggests that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5 in Beijing, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that, in addition to the mineral dust in PM2.5, other components (e.g., soluble inorganic salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.0 h on haze days and 7.1 h on non-haze days, values that are in good agreement with the field observations.

  6. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores.

    PubMed

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called "cryptic," often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these "cryptic" metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of "cryptic" antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against antibiotic

  7. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    PubMed Central

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  8. Ionic strength assay via polyacrylate-ferriferrous oxide magnetic photonic crystals.

    PubMed

    Li, Yan-Ran; Sun, Ye; Wang, He-Fang

    2015-05-21

    Convenient reading out and/or determination of ionic strength (IS) is of great significance for both scientific research and real life applications. We presented here a novel method for the rapid and sensitive IS assay based on the electrolyte-induced sensitive wavelength blueshifts of the reflection spectra of polyacrylate capped Fe3O4 magnetic photonic crystals (PA-Fe3O4-MPCs). For HCl, MgSO4 and the common electrolytes corresponding to the salinity of seawater (including NaCl, KCl, MgCl2, CaCl2, Na2SO4 and their mixtures), the PA-Fe3O4-MPCs displayed wavelength blueshifts identical to the total IS of the aqueous solutions, regardless of the kind of above-mentioned electrolytes in the solutions. Besides, the PA-Fe3O4-MPCs exhibited relatively high sensitivity (an average of 294 nm L mmol(-1) in the range of 0.05-0.30 mmol L(-1), and an even higher value of 386 nm L mmol(-1) at 0.05-0.15 mmol L(-1)) and fast response (within 8 s) to the IS of aqueous solutions. The relative standard deviation (RSD) for IS (NaCl, 0.1 mmol L(-1)) was 4.4% (n = 5). The developed method was applied to determine the salinity of seawater samples, and the determined results were validated by the traditional standard chlorinity titration and electric conductimetry method. The recoveries were in the range of 92-104%. The proposed PA-Fe3O4-MPCs based reflectometry method would have great potential for IS and salinity assays.

  9. Internal transport properties of macroporous sugar polyacrylate hydrogels: microsphere diffusion described by phenomenological laws.

    PubMed

    Martin, Brett D; Soto, Carissa M; Taitt, Chris; Charles, Paul T

    2008-04-01

    We have determined the internal transport properties of heterogeneous, macroporous hydrogels based on the regioregular sugar polyacrylate poly(6-acryloyl-beta-O-methyl-galactopyranoside). This was accomplished by measuring the diffusive flux of variously sized polystyrene microspheres and combining these results with solutions of phenomenological transport laws (the Navier-Stokes equations and Fick's Law with an assumption of first-order irreversible sphere capture by the gel polymer). This enabled calculation of gel properties such as average pore diameters (ca. 11.76 microm) and the diffusivities of the polystyrene spheres in the gel. These values range from 76% to 83% of that in free solution and correlate closely with the equilibrium solution content of the gel (82.3%). This approach has also enabled calculation of the sphere capture rates (2.4 x 10(-3) to 9.6 x 10(-5) s(-1)). These low capture rates indicate that the gel is extremely non-adhesive towards the spheres, and a linear correlation with sphere form drag area (r(2) = 1) was found. The pore sizes of the hydrated gel were observed via DIC light microscopy and the visible effective diameters corresponded very closely to the calculated values (11.66 vs. 11.76 microm). The diffusion/capture of inert spheres in the hydrogel can thus be described in a non-destructive manner by straightforward application of phenomenological transport laws. This result is significant in that these laws were intended to describe macroscopic ensembles of very large numbers of particles in continuous media, not small numbers (i.e., hundreds) in discontinuous media.

  10. A unique hetero-hexadecameric architecture displayed by the Escherichia coli O157 PaaA2-ParE2 antitoxin-toxin complex.

    PubMed

    Sterckx, Yann G-J; Jové, Thomas; Shkumatov, Alexander V; Garcia-Pino, Abel; Geerts, Lieselotte; De Kerpel, Maia; Lah, Jurij; De Greve, Henri; Van Melderen, Laurence; Loris, Remy

    2016-04-24

    Many bacterial pathogens modulate their metabolic activity, virulence and pathogenicity through so-called "toxin-antitoxin" (TA) modules. The genome of the human pathogen Escherichia coli O157 contains two three-component TA modules related to the known parDE module. Here, we show that the toxin EcParE2 maps in a branch of the RelE/ParE toxin superfamily that is distinct from the branches that contain verified gyrase and ribosome inhibitors. The structure of EcParE2 closely resembles that of Caulobacter crescentus ParE but shows a distinct pattern of conserved surface residues, in agreement with its apparent inability to interact with GyrA. The antitoxin EcPaaA2 is characterized by two α-helices (H1 and H2) that serve as molecular recognition elements to wrap itself around EcParE2. Both EcPaaA2 H1 and H2 are required to sustain a high-affinity interaction with EcParE2 and for the inhibition of EcParE2-mediated killing in vivo. Furthermore, evidence demonstrates that EcPaaA2 H2, but not H1, determines specificity for EcParE2. The initially formed EcPaaA2-EcParE2 heterodimer then assembles into a hetero-hexadecamer, which is stable in solution and is formed in a highly cooperative manner. Together these findings provide novel data on quaternary structure, TA interactions and activity of a hitherto poorly characterized family of TA modules.

  11. Synthesis, self-assembly and photoinduced surface-relief gratings of a polyacrylate-based Azo polyelectrolyte

    NASA Astrophysics Data System (ADS)

    He, Yaning; Wang, Haopeng; Tuo, Xinlin; Deng, Wei; Wang, Xiaogong

    2004-06-01

    A polyacrylate-based azo polyelectrolyte was synthesized and characterized by the spectroscopic methods and thermal analysis. Layer-by-layer self-assembly of the azo polyelectrolyte through electrostatic adsorption was explored. By using a dipping solution of the anionic azo polyelectrolyte in anhydrous DMF, together with an aqueous solution of cationic poly(diallyldimethylammonium chloride) (PDAC), high quality multilayer films were obtained through the sequential deposition of the oppositely charged polyelectrolytes. With interfering illumination of Ar + laser beams (488 nm), significant surface-relief gratings formed on the self-assembled multiplayer films were observed.

  12. Expression, purification, crystallization and preliminary X-ray analysis of the PaaI-like thioesterase SAV0944 from Staphylococcus aureus.

    PubMed

    Khandokar, Yogesh B; Roman, Noelia; Smith, Kate M; Srivastava, Parul; Forwood, Jade K

    2014-02-01

    Staphylococcus aureus is the causative agent of many diseases, including meningitis, bacteraemia, pneumonia, food poisoning and toxic shock syndrome. Structural characterization of the PaaI-like thioesterase SAV0944 (SaPaaI) from S. aureus subsp. aureus Mu50 will aid in understanding its potential as a new therapeutic target by knowledge of its molecular details and cellular functions. Here, the recombinant expression, purification and crystallization of SaPaaI thioesterase from S. aureus are reported. This protein initially crystallized with the ligand coenzyme A using the hanging-drop vapour-diffusion technique with condition No. 40 of Crystal Screen from Hampton Research at 296 K. Optimal final conditions consisting of 24% PEG 4000, 100 mM sodium citrate pH 6.5, 12% 2-propanol gave single diffraction-quality crystals. These crystals diffracted to beyond 2 Å resolution at the Australian Synchrotron and belonged to space group P12(1)1, with unit-cell parameters a = 44.05, b = 89.05, c = 60.74 Å, β = 100.5°. Initial structure determination and refinement gave an R factor and R(free) of 17.3 and 22.0%, respectively, confirming a positive solution in obtaining phases using molecular replacement.

  13. RF beam transmission of x-band PAA system utilizing large-area, polymer-based true-time-delay module developed using imprinting and inkjet printing

    NASA Astrophysics Data System (ADS)

    Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.

    2016-02-01

    Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.

  14. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    PubMed Central

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  15. Morphological evolution of inorganic crystal into zigzag and helical architectures with an exquisite association of polymer: a novel approach for morphological complexity.

    PubMed

    Oaki, Yuya; Imai, Hiroaki

    2005-02-01

    The morphology of potassium sulfate (K(2)SO(4)) crystals grown in a viscous polymer solution of poly(acrylic acid) (PAA) was remarkably changed from the tilted columnar assembly into zigzag and helical architectures with increasing PAA concentration. The habit modification of orthorhombic K(2)SO(4) with adsorption of PAA molecules on a specified crystal face fundamentally led to the formation of tilted unit crystals. Concurrently with the habit modification, a diffusion-limited condition controlling the assembly of tilted units was achieved in the presence of PAA molecules in the matrix. Various complex morphologies, including zigzag and helical assembly, emerged through the formation of twinned crystals with the variation of the diffusion condition. Understanding the morphogenesis observed in this report would provide a novel approach for sophisticated crystal design by using an exquisite association of organic and inorganic materials. PMID:15667161

  16. Synthesis of nano-sized lithium cobalt oxide via a sol-gel method

    NASA Astrophysics Data System (ADS)

    Li, Guangfen; Zhang, Jing

    2012-07-01

    In this study, nano-structured LiCoO2 thin film were synthesized by coupling a sol-gel process with a spin-coating method using polyacrylic acid (PAA) as chelating agent. The optimized conditions for obtaining a better gel formulation and subsequent homogenous dense film were investigated by varying the calcination temperature, the molar mass of PAA, and the precursor's molar ratios of PAA, lithium, and cobalt ions. The gel films on the silicon substrate surfaces were deposited by multi-step spin-coating process for either increasing the density of the gel film or adjusting the quantity of PAA in the film. The gel film was calcined by an optimized two-step heating procedure in order to obtain regular nano-structured LiCoO2 materials. Both atomic force microscopy (AFM) and scanning electron microscopy (SEM) were utilized to analyze the crystalline and the morphology of the films, respectively.

  17. Modification of polymeric substrates using surface-grafted nanoscaffolds

    NASA Astrophysics Data System (ADS)

    Thompson, Kimberlee Fay

    Surface grafting and modification of poly(acrylic acid) (PAA) were performed on nylon 6,6 carpet fibers to achieve permanent stain and soil resistance. PAA was grafted to nylon and modified with 1H, 1H-pentadecafluorooctyl amine (PDFOA) using an amidation agent, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM). The first goal was to optimize acrylamide modification of PAA in solution. Aqueous reactions with taurine, hydroxyethyl amine, and butyl amine progressed ˜100%, while PDFOA reactions in MeOH progressed ˜80%. Reaction products precipitated at 77% butyl or 52% PDFOA acrylamide contents. The second goal was to optimize the PAA grafting process. First, PAA was adsorbed onto nylon 6,6 films. Next, DMTMM initiated grafting of adsorbed PAA. PAA surface coverage was ˜78%, determined by contact angle analysis of the top 0.1--1 nm and x-ray photoelectron spectroscopy (XPS) analysis of the top 3--10 nm. The third goal was to modify PAA grafted nylon films with butyl amine and PDFOA. Randomly methylated beta-cyclodextrin (RAMEB) solubilized PDFOA in water. Contact angle detected ˜100% surface reaction for each amine, while XPS detected ˜77% butyl amine (H2O) and ˜50% for PDFOA (MeOH or H2O pH = 7) reactions. In H2O pH = 12, the PDFOA reaction progressed ˜89%, perhaps due to greater efficiency, access and solubility. The fourth goal was to perform surface depth profiling via angle-resolved XPS analysis (ARXPS). The PAA surface coverage from contact angle and XPS was confirmed. Further, adsorbed PAA was thicker than grafted PAA, supporting the theory that PAA adsorption occurs in thick layers onto nylon followed by DMTMM-activated spreading and grafting of thinner PAA layers across the surface. The PDFOA reaction in McOH produced a highly fluorinated but thin exterior and an unreacted PAA interior. The PDFOA reaction in H 2O pH = 12 produced a completely fluorinated exterior and highly fluorinated interior. Thus surface modification levels

  18. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.

  19. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.

    PubMed

    Ma, Ruoshui; Guo, Mond; Lin, Kuan-Ting; Hebert, Vincent R; Zhang, Jinwen; Wolcott, Michael P; Quintero, Melissa; Ramasamy, Karthikeyan K; Chen, Xiaowen; Zhang, Xiao

    2016-07-25

    Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated. PMID:27373451

  20. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production

    PubMed Central

    Harris, Diana M; van der Krogt, Zita A; Klaassen, Paul; Raamsdonk, Leonie M; Hage, Susanne; van den Berg, Marco A; Bovenberg, Roel AL; Pronk, Jack T; Daran, Jean-Marc

    2009-01-01

    Background Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. Results In studies on β-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. Conclusion This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression

  1. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt.

    PubMed

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses. PMID:27148321

  2. Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt

    PubMed Central

    Akram, Waheed; Anjum, Tehmina; Ali, Basharat

    2016-01-01

    Bacillus fortis IAGS162 has been previously shown to induce systemic resistance in tomato plants against Fusarium wilt disease. In the first phase of current study, the ISR determinant was isolated from extracellular metabolites of this bacterium. ISR bioassays combined with solvent extraction, column chromatography and GC/MS analysis proved that phenylacetic acid (PAA) was the potential ISR determinant that significantly ameliorated Fusarium wilt disease of tomato at concentrations of 0.1 and 1 mM. In the second phase, the biochemical basis of the induced systemic resistance (ISR) under influence of PAA was elucidated by performing non-targeted whole metabolomics through GC/MS analysis. Tomato plants were treated with PAA and fungal pathogen in various combinations. Exposure to PAA and subsequent pathogen challenge extensively re-modulated tomato metabolic networks along with defense related pathways. In addition, various phenylpropanoid precursors were significantly up-regulated in treatments receiving PAA. This work suggests that ISR elicitor released from B. fortis IAGS162 contributes to resistance against fungal pathogens through dynamic reprogramming of plant pathways that are functionally correlated with defense responses. PMID:27148321

  3. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.

    PubMed

    Wang, Peng; Liu, Pengzheng; Peng, Haitao; Luo, Xiaoman; Yuan, Huipin; Zhang, Juncai; Yan, Yonggang

    2016-08-01

    In vitro cytocompatibility of ternary biocomposite of dicalcium phosphate (DCP) and calcium sulfate (CS) containing 40 wt% poly (amino acid) (PAA) was evaluated using L929 fibroblasts and MG-63 osteoblast-like cells. Thereafter, the biocompatibility of biocomposite in vivo was investigated using an implantation in muscle and bone model. In vitro L929 and MG-63 cell culture experiments showed that the composite and PAA polymer were noncytotoxic and allowed cells to adhere and proliferate. The scanning electron microscope (SEM) confirmed that two kinds of cells maintained their phenotype on all of samples surfaces. Moreover, the DCP/CS/PAA composite showed higher cellular viability than that of PAA; meanwhile, the cell proliferation and ALP activity were much higher when DCP/CS had added into PAA. After implanted in muscle of rabbits for 12 weeks, the histological evaluation indicated that the composite exhibited excellent biocompatibility and no inflammatory responses were found. When implanted into bone defects of femoral condyle of rabbits, the composite was combined directly with the host bone tissue without fibrous capsule tissue, which shown good biocompatibility and osteoconductivity. Thus, this novel composite may have potential application in the clinical setting.

  4. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.

    PubMed

    Wang, Peng; Liu, Pengzheng; Peng, Haitao; Luo, Xiaoman; Yuan, Huipin; Zhang, Juncai; Yan, Yonggang

    2016-08-01

    In vitro cytocompatibility of ternary biocomposite of dicalcium phosphate (DCP) and calcium sulfate (CS) containing 40 wt% poly (amino acid) (PAA) was evaluated using L929 fibroblasts and MG-63 osteoblast-like cells. Thereafter, the biocompatibility of biocomposite in vivo was investigated using an implantation in muscle and bone model. In vitro L929 and MG-63 cell culture experiments showed that the composite and PAA polymer were noncytotoxic and allowed cells to adhere and proliferate. The scanning electron microscope (SEM) confirmed that two kinds of cells maintained their phenotype on all of samples surfaces. Moreover, the DCP/CS/PAA composite showed higher cellular viability than that of PAA; meanwhile, the cell proliferation and ALP activity were much higher when DCP/CS had added into PAA. After implanted in muscle of rabbits for 12 weeks, the histological evaluation indicated that the composite exhibited excellent biocompatibility and no inflammatory responses were found. When implanted into bone defects of femoral condyle of rabbits, the composite was combined directly with the host bone tissue without fibrous capsule tissue, which shown good biocompatibility and osteoconductivity. Thus, this novel composite may have potential application in the clinical setting. PMID:27126299

  5. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  6. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    PubMed

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality. PMID:24642428

  7. Development of improved nanosilver-based antibacterial textiles via synthesis of versatile chemically modified cotton fabrics.

    PubMed

    Hebeish, A; El-Shafei, A; Sharaf, S; Zaghloul, S

    2014-11-26

    Cationization of cotton fabric form was effected by reacting the cellulose with 3-chloro-2 hydroxypropyl trimethyl ammonium chloride in presence of sodium hydroxide as per the pad dry cure method. Thus obtained cationized cotton cellulose was reacted with a reactive copolymer, namely, reactive β-cyclodextrin grafted with polyacrylic acid (MCT-βCD-g-PAA).Bridging of another copolymer, namely, β-cyclodextrin grafted with polyacrylic acid (βCD-g-PAA) to the cationized fabric using epichlorohydrin crosslinker was also performed. Inclusion of Ag nanoparticles in these three cotton substrates via treatment of the latter with colloid of Ag nanoparticles or through in situ formation of the former was exercised. Characterization of cotton fabric before and after being chemically modified was carried out using FTIR, XRD and SEM. Bacterial examination of the cationized cotton containing either (MCT-βCD-g-PAA) or (βCD-g-PAA) incorporated with Ag nanoparticles showed these substrates function against G+ve and G-ve bacteria. Ability of (MCT-βCD-g-PAA) modified cotton to include hydrophobic molecules was examined.

  8. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods.

    PubMed

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-12-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V. PMID:26831687

  9. Surfactant-Assisted Hydrothermal Synthesis of PMN-PT Nanorods

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Liu, Xingzhao; Luo, Wenbo; Xu, Dong; He, Kai

    2016-02-01

    The effects of surfactant polyacrylate acid (PAA) on shape evolution of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (0.7PMN-0.3PT) nanorods were studied. The results revealed that the polyacrylic acid content had great influence on the morphology of 0.7PMN-0.3PT. With increasing PAA concentration from 0.45 to 0.82 g/ml, the ratio of perovskite phase (PMN-PT nanorod) increased, while the ratio of pyrochlore phase decreased. When the PAA concentration was 0.82 g/ml, pure 0.7PMN-0.3PT nanorods were obtained. However, when PAA concentration was higher than 0.82 g/ml, the excess of PAA would hindered their [100] orientation growth. The piezoelectric coefficient d 33 of 0.7PMN-0.3PT nanorod was obtained by linear fitting, and the d 33 value was 409 pm/V.

  10. Mechanical Robust and Self-Healable Supramolecular Hydrogel.

    PubMed

    Zheng, Jing; Xiao, Peng; Liu, Wei; Zhang, Jiawei; Huang, Youju; Chen, Tao

    2016-02-01

    Development of self-healing polymers with spontaneous self-healing capability and good mechanical performance is highly desired and remains a great challenge. Here, mechanical robust and self-healable supramolecular hydrogels have been fabricated by using poly(2-dimethylaminoethyl methacrylate) brushes modified silica nanoparticles (SiO2 @PDMAEMA) as multifunctional macrocrosslinkers in a poly(acrylic acid) (PAA) network structure. The SiO2 nanoparticles serve as noncovalent crosslinkers, dissipating energy, whereas the electrostatic interactions between cationic PDMAEMA and anionic PAA render the hydrogel self-healing property. This process provides a simple and broadly applicable strategy to produce mechanical strong and self-healable materials. PMID:26647774

  11. Polyacrylamide-based glycoconjugates as tools in glycobiology.

    PubMed

    Bovin, N V

    1998-05-01

    This review describes the synthesis, physicochemical characteristics and application for studying carbohydrate-binding proteins of polyacrylamide (PAA) type neoglycoconjugates. An approach to the synthesis of conjugates based on the interaction of activated polyacrylic acid with omega-aminoalkyl glycosides has been developed. Both the molecules of Glyc-PAA and the conjugates bearing various labels and effectors, as well as sorbents, and glycosurfaces can be designed using this method. Examples of the application of the conjugates as tools for the study of lectins, antibodies, and glycosyltransferases in glycobiology, cytochemistry and histochemistry are described along with the prospects of the further development of the presented approach in glycotechnology and medicine.

  12. A self-templated approach to T1O{sub 2 } microcapsules.

    SciTech Connect

    Hu, Y.; Ge, J.; Sun, Y.; Zhang, T.; Yin, Y.; Center for Nanoscale Materials; Univ. of California

    2007-06-01

    A self-templated approach has been developed for the synthesis of TiO2 microcapsules with tunable size and wall thickness by heating sol-gel derived TiO2 microspheres with poly(acrylic acid) (PAA) in a diethylene glycol (DEG) solution. PAA plays a crucial role in the formation of microcapsules by crosslinking the surface TiO2 nanoparticles and preventing them from dissolution by DEG. Hollow microcapsules form when DEG molecules penetrate the outer layer and remove the core materials by forming soluble titanium glycolate.

  13. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment.

    PubMed

    Ge, Qingchun; Wang, Peng; Wan, Chunfeng; Chung, Tai-Shung

    2012-06-01

    Polyelectrolytes have proven their advantages as draw solutes in forward osmosis process in terms of high water flux, minimum reverse flux, and ease of recovery. In this work, the concept of a polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid system was demonstrated and applied to recycle the wastewater containing an acid dye. A poly(acrylic acid) sodium (PAA-Na) salt was used as the draw solute of the FO to dehydrate the wastewater, while the MD was employed to reconcentrate the PAA-Na draw solution. With the integration of these two processes, a continuous wastewater treatment process was established. To optimize the FO-MD hybrid process, the effects of PAA-Na concentration, experimental duration, and temperature were investigated. Almost a complete rejection of PAA-Na solute was observed by both FO and MD membranes. Under the conditions of 0.48 g mL(-1) PAA-Na and 66 °C, the wastewater was most efficiently dehydrated yet with a stabilized PAA-Na concentration around 0.48 g mL(-1). The practicality of PAA-Na-promoted FO-MD hybrid technology demonstrates not only its suitability in wastewater reclamation, but also its potential in other membrane-based separations, such as protein or pharmaceutical product enrichment. This study may provide the insights of exploring novel draw solutes and their applications in FO related processes.

  14. Effectiveness of copper sulfate, potassium permanganate, and peracetic acid to reduce mortality and infestation of Ichthyobodo nector in channel catfish Ictalurus punctatus (Rafinesque 1818)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...

  15. Efficacy of sodium hypochlorite and peroxyacetic acid to reduce murine norovirus 1, B40-8, Listeria monocytogenes, and Escherichia coli O157:H7 on shredded iceberg lettuce and in residual wash water.

    PubMed

    Baert, Leen; Vandekinderen, Isabelle; Devlieghere, Frank; Van Coillie, Els; Debevere, Johan; Uyttendaele, Mieke

    2009-05-01

    The efficiency of sodium hypochlorite (NaOCl) and peroxyacetic acid (PAA) to reduce murine norovirus 1 (MNV-1), a surrogate for human norovirus, and Bacteroides fragilis HSP40-infecting phage B40-8 on shredded iceberg lettuce was investigated. The levels of removal of viruses MNV-1 and B40-8 were compared with the reductions observed for bacterial pathogens Listeria monocytogenes and Escherichia coli O157:H7. Two inoculation levels, one with a high organic load and the other containing a 10-fold lower number of pathogens and organic matter, showed that the effectiveness of NaOCl was greatly influenced by the presence of organic material, which was not observed for PAA. Moreover, the present study showed that 200 mg/liter NaOCl or 250 mg/liter PAA is needed to obtain an additional reduction of 1 log (compared with tap water) of MNV-1 on shredded iceberg lettuce, whereas only 250 mg/liter PAA achieved this for bacterial pathogens. None of the treatments resulted in a supplementary 1-log PFU/g reduction of B40-8 compared with tap water. B40-8 could therefore be useful as an indicator of decontamination processes of shredded iceberg lettuce based on NaOCl or PAA. Neither MNV-1, B40-8, nor bacterial pathogens could be detected in residual wash water after shredded iceberg lettuce was treated with NaOCl and PAA, whereas considerable numbers of all these microorganisms were found in residual wash water consisting solely of tap water. This study illustrates the usefulness of PAA and NaOCl in preventing cross-contamination during the washing process rather than in causing a reduction of the number of pathogens present on lettuce.

  16. Chiral transformation in protonated and deprotonated adipic acids through multistep internal proton transfer.

    PubMed

    Min, Seung Kyu; Park, Mina; Singh, N Jiten; Lee, Han Myoung; Lee, Eun Cheol; Kim, Kwang S; Lagutschenkov, Anita; Niedner-Schatteburg, Gereon

    2010-09-10

    Protonated and deprotonated adipic acids (PAA: HOOC-(CH(2))(4)--COOH(2) (+) and DAA: HOOC-(CH(2))(4)-COO(-)) have a charged hydrogen bond under the influence of steric constraint due to the molecular skeleton of a circular ring. Despite the similarity between PAA and DAA, it is surprising that the lowest energy structure of PAA is predicted to have (H(2)O...H...OH(2))(+) Zundel-like symmetric hydrogen bonding, whereas that of DAA has H(3)O(+) Eigen-like asymmetric hydrogen bonding. The energy profiles show that direct proton transfer between mirror image structures is unfavorable. Instead, the chiral transformation is possible by subsequent backbone twistings through stepwise proton transfer along multistep intermediate structures, which are Zundel-like ions for PAA and Eigen-like ions for DAA. This type of chiral transformation by multistep intramolecular proton transfers is unprecedented. Several prominent OH...O short hydrogen-bond stretching peaks are predicted in the range of 1000-1700 cm(-1) in the Car-Parrinello molecular dynamics (CPMD) simulations, which show distinctive signatures different from ordinary hydrogen-bond peaks. The O-H-O stretching peaks in the range of 1800-2700 cm(-1) become insignificant above around 150 K and are almost washed out at about 300 K. PMID:20652911

  17. Synthesis and in vitro biocompatibility assessment of a poly(amic acid) derived from ethylenediaminetetraacetic dianhydride.

    PubMed

    Padavan, Donna T; Hamilton, Amanda M; Boughner, Derek R; Wan, Wankei

    2011-01-01

    Poly(amic acid) (PAA) derived from ethylenediaminetetracetic dianhydride shows great potential as a biomaterial suitable for biomedical applications. To evaluate this polymer class further, in vitro cell toxicity (WST-1/ECS, ELISA based) and cell compatibility (cell adhesion and cell proliferation) tests were conducted to establish structure-toxicity relationships. PAAs with a number-average molecular weight ranging between 100 to 200 kg/mol were synthesized at 37°C after 24 h. Porcine radial artery cells (RACs) and descending aorta endothelial cells (ECs) were seeded independently in a 96-well cell culture plate at a cell density of 5000 cells/cm(2) to observe toxic effects. Similarly, RACs and ECs were seeded independently onto PAA coated and uncoated cover slips at a cell density of 7000 cells/cm(2) to observe growth patterns. Our results showed no toxicity after 96 h of incubation and in addition, both RACs and ECs adhered and proliferated on the PAA films, preserving their phenotype during this time. The tested synthetic material seems promising as a future biomaterial and should elicit a desired cellular response upon implantation.

  18. Peracetic Acid: A Practical Agent for Sterilizing Heat-Labile Polymeric Tissue-Engineering Scaffolds

    PubMed Central

    Yoganarasimha, Suyog; Trahan, William R.; Best, Al M.; Bowlin, Gary L.; Kitten, Todd O.; Moon, Peter C.

    2014-01-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  19. Peracetic acid: a practical agent for sterilizing heat-labile polymeric tissue-engineering scaffolds.

    PubMed

    Yoganarasimha, Suyog; Trahan, William R; Best, Al M; Bowlin, Gary L; Kitten, Todd O; Moon, Peter C; Madurantakam, Parthasarathy A

    2014-09-01

    Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering. PMID:24341350

  20. Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass.

    PubMed

    Uju; Goto, Masahiro; Kamiya, Noriho

    2016-08-01

    The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-buthyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5h. Interestingly, the 1-buthyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the degree of polymerization of cellulose. PMID:27174616

  1. Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation.

    PubMed

    Nguyen, Cao Cuong; Yoon, Taeho; Seo, Daniel M; Guduru, Pradeep; Lucht, Brett L

    2016-05-18

    The effects of different binders, polyvinylidene difluoride (PVdF), poly(acrylic acid) (PAA), sodium carboxymethyl cellulose (CMC), and cross-linked PAA-CMC (c-PAA-CMC), on the cycling performance and solid electrolyte interphase (SEI) formation on silicon nanoparticle electrodes have been investigated. Electrodes composed of Si-PAA, Si-CMC, and Si-PAA-CMC exhibit a specific capacity ≥3000 mAh/g after 20 cycles while Si-PVdF electrodes have a rapid capacity fade to 1000 mAh/g after just 10 cycles. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) reveal that PAA and CMC react with the surface of the Si nanoparticles during electrode fabrication. The fresh Si-CMC electrode has a thicker surface coating of SiOx than Si-PAA and Si-PAA-CMC electrodes, due to the formation of thicker SiOx during electrode preparation, which leads to lower cyclability. The carboxylic acid functional groups of the PAA binder are reactive toward the electrolyte, causing the decomposition of LiPF6 and dissolution of SiOx during the electrode wetting process. The PAA and CMC binder surface films are then electrochemically reduced during the first cycle to form a protective layer on Si. This layer effectively suppresses the decomposition of carbonate solvents during cycling resulting in a thin SEI. On the contrary, the Si-PVDF electrode has poor cycling performance and continuous reduction of carbonate solvents is observed resulting in the generation of a thicker SEI. Interestingly, the Lewis basic -CO2Na of CMC was found to scavenge HF in electrolyte. PMID:27135935

  2. Parametric test of a zirconium (4) oxide-polyacrylic acid dual layer hyperfiltration membrane with spacecraft washwater

    NASA Technical Reports Server (NTRS)

    Brandon, C. A.; Gaddis, J. L.; El-Nashar, A. M.

    1975-01-01

    Performance data consisting of solute rejections and product flux were measured, as dependent on the operation parameters. These parameters and ranges were pressure (500,000 n/m2 to 700,000 n/m2), temperature (74 C to 95 C), velocity (1.6 M/sec to 10 M/sec), and concentration (up to 14x). Tests were carried out on analog washwater. Data presented include rejections of organic materials, ammonia, urea, and an assortment of ions. The membrane used was deposited in situ on a porcelain ceramic substrate.

  3. Bacteriostatic and anti-collagenolytic dental materials through the incorporation of polyacrylic acid modified CuI nanoparticles

    DOEpatents

    Renne, Walter George; Mennito, Anthony Samuel; Schmidt, Michael Gerard; Vuthiganon, Jompobe; Chumanov, George

    2015-05-19

    Provided are antibacterial and antimicrobial surface coatings and dental materials by utilizing the antimicrobial properties of copper chalcogenide and/or copper halide (CuQ, where Q=chalcogens including oxygen, or halogens, or nothing). An antimicrobial barrier is created by incorporation of CuQ nanoparticles of an appropriate size and at a concentration necessary and sufficient to create a unique bioelectrical environment. The unique bioelectrical environment results in biocidal effectiveness through a multi-factorial mechanism comprising a combination of the intrinsic quantum flux of copper (Cu.sup.0, Cu.sup.1+, Cu.sup.2+) ions and the high surface-to-volume electron sink facilitated by the nanoparticle. The result is the constant quantum flux of copper which manifests and establishes the antimicrobial environment preventing or inhibiting the growth of bacteria. The presence of CuQ results in inhibiting or delaying bacterial destruction and endogenous enzymatic breakdown of the zone of resin inter-diffusion, the integrity of which is essential for dental restoration longevity.

  4. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  5. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.

    PubMed

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  6. Influence of phenylacetic acid pulses on anaerobic digestion performance and archaeal community structure in WWTP sewage sludge digesters.

    PubMed

    Cabrol, Léa; Urra, Johana; Rosenkranz, Francisca; Kroff, Pablo Araya; Plugge, Caroline M; Lesty, Yves; Chamy, Rolando

    2015-01-01

    The effect of phenylacetic acid (PAA) pulses on anaerobic digestion (AD) performance and archaeal community structure was evaluated in anaerobic digesters treating sewage sludge from a wastewater treatment plant (WWTP). Four pilot-scale continuous stirred tank reactors were set up at a full-scale municipal WWTP in Santiago de Chile, and fed with either primary or mixed sewage sludge. AD performance was evaluated by volatile fatty acid (VFA) and biogas production monitoring. Archaeal community structure was characterized by 16S rRNA denaturing gradient gel electrophoresis and band sequencing. In the primary sludge digester, a single PAA pulse at 200 mg L(-1) was sufficient to affect AD performance and archaeal community structure, resulting in long-term VFA accumulation, reduced biogas production and community shift from dominant acetoclastic (Methanosaeta concilii) to hydrogenotrophic (Methanospirillum hungatei) methanogens. By contrast, AD performance and archaeal community structure in the mixed sludge digester were stable and resistant to repeated PAA pulses at 200 and 600 mg L(-1). This work demonstrated that the effect of PAA pulses on methanogenic activity and archaeal community structure differed according to AD substrate, and suggests that better insights of the correlations between archaeal population dynamics and functional performance could help to better face toxic shocks in AD.

  7. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA.

  8. Photolytic degradation of chlorophenols from industrial wastewaters by organic oxidants peroxy acetic acid, para nitro benzoic acid and methyl ethyl ketone peroxide: identification of reaction products.

    PubMed

    Sharma, Swati; Mukhopadhyay, Mausumi; Murthy, Zagabathuni Venkata Panchakshari

    2014-01-01

    In this investigation, chlorophenol (CP) containing industrial wastewater was remediated by ultraviolet irradiation in conjunction with organic oxidants, peroxy acetic acid (PAA); para nitro benzoic acid (PNBA); and methyl ethyl ketone peroxide (MEKP). CP mineralization was studied with regard to chemical oxygen demand (COD) and chloride ion release under identical test conditions. COD depletion to the extent of 81% by PAA, 66% by PNBA, and 67% by MEKP was noted along with an upwardly mobile trend of chloride ion release upon irradiation of samples at 254 nm. A 90-99% decrease in CP concentration (as per high pressure liquid chromatography (HPLC) analysis) was achieved with an additional 15.0 ml of organic oxidant in all cases. Gas chromatography high resolution mass spectroscopy (GC-HRMS) results also indicated the formation of such reaction products as are free from chlorine substitutions. This treatment also leads to total decolorization of the collected samples. PMID:24647192

  9. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility.

    PubMed

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-04-15

    Electrospinning of polyacrylic acid (PAA) nanofibres (NF) incorporating β-cyclodextrin inclusion complex (β-CD-IC) of quercetin (QU) was performed. Here, β-CD was used as not only the crosslinking agent for PAA nanofibres but also as a host molecule for inclusion of QU. The phase solubility test showed enhanced solubility of QU due to the inclusion complexation; in addition, the stoichiometry of QU/β-CD-IC was determined to be 1:1. Computational modelling studies confirmed that 1:1 and 1:2 complex formation are desirable; 1:1 complex formation was chosen to have higher weight loading of QU. SEM images showed that PAA/QU/β-CD-IC-NF were bead-free and uniform. XRD indicated that PAA/QU/β-CD-IC-NF were amorphous in nature without the crystalline peaks of QU. Comparative results revealed that the release profile of QU from PAA/QU/β-CD-IC-NF was much slower but greater in total than from PAA/QU/β-CD-IC-film. Moreover, high antioxidant activity and photostability of QU was achieved in PAA/QU/β-CD-IC-NF. PMID:26617028

  10. Diblock Copolymer Foams with Adhesive Nano-domains Promote Stem Cell Differentiation

    NASA Astrophysics Data System (ADS)

    Engler, Adam

    2012-02-01

    Adhesions play an important role in cell behavior, including differentiation. Substrates are typically modified with homogeneous protein coatings; extracellular matrices in vivo provide heterogeneous adhesive sites. To mimic adhesive heterogeneity, internal phase emulsion foams were polymerized with polystyrene-polyacrylic acid (PAA) and polystyrene-polyethylene oxide (PEO) to determine if interface de-mixing would form patch-like surfaces. PEO/PAA mole ratios were confirmed by XPS and water contact angle while spatial distribution was measured by chemical force spectroscopy. This method confirmed the presence of patch-like PAA domains. Protein differentially adsorbs on PEO and PAA, so adsorption on foam mixtures was copolymer ratio dependent. Bone marrow-derived mesenchymal stem cell (BMSC) adhesion was ratio dependent, but the highest density and vinculin expression was observed for 75PEO/25PAA. BMSCs appeared to change lineage expression the most on this composition, suggesting that this foam, which exhibits small adhesive PAA domains, may be more biomemetic than uniformally adhesive scaffolds, e.g. 0PEO/100PAA.

  11. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface.

    PubMed

    Røn, Troels; Javakhishvili, Irakli; Jankova, Katja; Hvilsted, Søren; Lee, Seunghwan

    2013-06-25

    We have investigated the adsorption and lubricating properties of neutral and charged amphiphilic diblock copolymers at a hydrophobic polydimethylsiloxane (PDMS) interface in an aqueous environment. The diblock copolymers consist of a hydrophilic block of either neutral poly(ethylene glycol) (PEG) or negatively charged poly(acrylic acid) (PAA) and of a hydrophobic block of polystyrene (PS) or poly(2-methoxyethyl acrylate) (PMEA), thus generating PEG-b-X or PAA-b-X, where X block is either PS or PMEA. The molecular weight ratios were roughly 1:1 with each block ca. 5 kDa. Comparing the neutral PEG and charged PAA buoyant blocks with all other conditions identical, the former showed superior adsorption onto nonpolar, hydrophobic PDMS surfaces from a neutral aqueous solution. PEG-based copolymers showed substantial adsorption for both PS and PMEA as the anchoring block, whereas PAA-based copolymers showed effective adsorption only when PMEA was employed as the anchoring block. For PAA-b-PS, the poor adsorption properties are chiefly attributed to micellization due to the high interfacial tension between the PS core and water. The poor lubricating properties of PAA-b-PS diblock copolymer for a PDMS-PDMS sliding contact was well correlated with the poor adsorption properties. PAA-b-PMEA copolymers, despite their sizable amount of adsorbed mass, showed insignificant lubricating effects. When the charges of the PAA-b-PMEA diblock copolymers were screened by either adding NaCl to the aqueous solution or by lowering the pH, both the adsorption and lubricity improved. We ascribe the poor adsorption and inferior aqueous lubricating properties of the PAA-based diblock copolymers compared to their PEG-based counterparts mainly to the electrostatic repulsion between charged PAA blocks, hindering the facile formation of the lubricating layer under cyclic tribological stress at the sliding PDMS-PDMS interface. PMID:23725290

  12. Capture, isolation and electrochemical detection of industrially-relevant engineered aerosol nanoparticles using poly (amic) acid, phase-inverted, nano-membranes.

    PubMed

    Okello, Veronica A; Gass, Samuel; Pyrgiotakis, Georgios; Du, Nian; Lake, Andrew; Kariuki, Victor; Sotiriou, Georgios A; Addolorato, Jessica; Demokritou, Philip; Sadik, Omowunmi A

    2014-08-30

    Workplace exposure to engineered nanoparticles (ENPs) is a potential health and environmental hazard. This paper reports a novel approach for tracking hazardous airborne ENPs by applying online poly (amic) acid membranes (PAA) with offline electrochemical detection. Test aerosol (Fe2O3, TiO2 and ZnO) nanoparticles were produced using the Harvard (Versatile Engineered Generation System) VENGES system. The particle morphology, size and elemental composition were determined using SEM, XRD and EDS. The PAA membrane electrodes used to capture the airborne ENPs were either stand-alone or with electron-beam gold-coated paper substrates. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to conceptually illustrate that exposure levels of industry-relevant classes of airborne nanoparticles could be captured and electrochemically detected at PAA membranes filter electrodes. CV parameters showed that PAA catalyzed the reduction of Fe2O3 to Fe(2+) with a size-dependent shift in reduction potential (E(0)). Using the proportionality of peak current to concentration, the amount of Fe2O3 was found to be 4.15×10(-17)mol/cm(3) PAA electrodes. Using EIS, the maximum phase angle (Φmax) and the interfacial charge transfer resistance (Rct) increased significantly using 100μg and 1000μg of TiO2 and ZnO respectively. The observed increase in Φmax and Rct at increasing concentration is consistent with the addition of an insulating layer of material on the electrode surface. The integrated VENGES/PAA filter sensor system has the potential to be used as a portable monitoring system.

  13. In vivo biocompatibility of new nano-calcium-deficient hydroxyapatite/poly-amino acid complex biomaterials

    PubMed Central

    Dai, Zhenyu; Li, Yue; Lu, Weizhong; Jiang, Dianming; Li, Hong; Yan, Yonggang; Lv, Guoyu; Yang, Aiping

    2015-01-01

    Objective To evaluate the compatibility of novel nano-calcium-deficient hydroxyapatite/poly-amino acid (n-CDHA/PAA) complex biomaterials with muscle and bone tissue in an in vivo model. Methods Thirty-two New Zealand white rabbits were used in this study. Biomaterials were surgically implanted into each rabbit in the back erector spinae and in tibia with induced defect. Polyethylene was implanted into rabbits in the control group and n-CDHA/PAA into those of the experimental group. Animals were examined at four different points in time: 2 weeks, 4 weeks, 12 weeks, and 24 weeks after surgery. They were euthanized after embolization. Back erector spinae muscles with the surgical implants were examined after hematoxylin and eosin (HE) staining at these points in time. Tibia bones with the surgical implants were examined by X-ray and scanning electron microscopy (SEM) at these points in time to evaluate the interface of the bone with the implanted biomaterials. Bone tissues were sectioned and subjected to HE, Masson, and toluidine blue staining. Results HE staining of back erector spinae muscles at 4 weeks, 12 weeks, and 24 weeks after implantation of either n-CDHA/PAA or polyethylene showed disappearance of inflammation and normal arrangement in the peripheral tissue of implant biomaterials; no abnormal staining was observed. At 2 weeks after implantation, X-ray imaging of bone tissue samples in both experimental and control groups showed that the peripheral tissues of the implanted biomaterials were continuous and lacked bone osteolysis, absorption, necrosis, or osteomyelitis. The connection between implanted biomaterials and bone tissue was tight. The results of HE, Masson, toluidine blue staining and SEM confirmed that the implanted biomaterials were closely connected to the bone defect and that no rejection had taken place. The n-CDHA/PAA biomaterials induced differentiation of a large number of chondrocytes. New bone trabecula began to form at 4 weeks after

  14. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid

    PubMed Central

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 104 spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  15. The Use of Germinants to Potentiate the Sensitivity of Bacillus anthracis Spores to Peracetic Acid.

    PubMed

    Celebi, Ozgur; Buyuk, Fatih; Pottage, Tom; Crook, Ant; Hawkey, Suzanna; Cooper, Callum; Bennett, Allan; Sahin, Mitat; Baillie, Leslie

    2016-01-01

    Elimination of Bacillus anthracis spores from the environment is a difficult and costly process due in part to the toxicity of current sporicidal agents. For this reason we investigated the ability of the spore germinants L-alanine (100 mM) and inosine (5 mM) to reduce the concentration of peracetic acid (PAA) required to inactivate B. anthracis spores. While L-alanine significantly enhanced (p = 0.0085) the bactericidal activity of 500 ppm PAA the same was not true for inosine suggesting some form of negative interaction. In contrast the germinant combination proved most effective at 100 ppm PAA (p = 0.0009). To determine if we could achieve similar results in soil we treated soil collected from the burial site of an anthrax infected animal which had been supplemented with spores of the Sterne strain of B. anthracis to increase the level of contamination to 10(4) spores/g. Treatment with germinants followed 1 h later by 5000 ppm PAA eliminated all of the spores. In contrast direct treatment of the animal burial site using this approach delivered using a back pack sprayer had no detectable effect on the level of B. anthracis contamination or on total culturable bacterial numbers over the course of the experiment. It did trigger a significant, but temporary, reduction (p < 0.0001) in the total spore count suggesting that germination had been triggered under real world conditions. In conclusion, we have shown that the application of germinants increase the sensitivity of bacterial spores to PAA. While the results of the single field trial were inconclusive, the study highlighted the potential of this approach and the challenges faced when attempting to perform real world studies on B. anthracis spores contaminated sites. PMID:26858699

  16. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii

    PubMed Central

    Wang, Mengcen; Tachibana, Seiji; Murai, Yuta; Li, Li; Lau, Sharon Yu Ling; Cao, Mengchao; Zhu, Guonian; Hashimoto, Makoto; Hashidoko, Yasuyuki

    2016-01-01

    Burkholderia heleia PAK1-2 is a potent biocontrol agent isolated from rice rhizosphere, as it prevents bacterial rice seedling blight disease caused by Burkholderia plantarii. Here, we isolated a non-antibacterial metabolite from the culture fluid of B. heleia PAK1-2 that was able to suppress B. plantarii virulence and subsequently identified as indole-3-acetic acid (IAA). IAA suppressed the production of tropolone in B. plantarii in a dose-dependent manner without any antibacterial and quorum quenching activity, suggesting that IAA inhibited steps of tropolone biosynthesis. Consistent with this, supplementing cultures of B. plantarii with either L-[ring-2H5]phenylalanine or [ring-2H2~5]phenylacetic acid revealed that phenylacetic acid (PAA), which is the dominant metabolite during the early growth stage, is a direct precursor of tropolone. Exposure of B. plantarii to IAA suppressed production of both PAA and tropolone. These data particularly showed that IAA produced by B. heleia PAK1-2 disrupts tropolone production during bioconversion of PAA to tropolone via the ring-rearrangement on the phenyl group of the precursor to attenuate the virulence of B. plantarii. B. heleia PAK1-2 is thus likely a microbial community coordinating bacterium in rhizosphere ecosystems, which never eliminates phytopathogens but only represses production of phytotoxins or bacteriocidal substances. PMID:26935539

  17. Peracetic acid as an alternative disinfection technology for wet weather flows.

    PubMed

    Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M

    2014-08-01

    Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection.

  18. Peracetic acid as an alternative disinfection technology for wet weather flows.

    PubMed

    Coyle, Elizabeth E; Ormsbee, Lindell E; Brion, Gail M

    2014-08-01

    Rain-induced wet weather flows (WWFs) consist of combined sewer overflows, sanitary sewer overflows, and stormwater, all of which introduce pathogens to surface waters when discharged. When people come into contact with the contaminated surface water, these pathogens can be transmitted resulting in severe health problems. As such, WWFs should be disinfected. Traditional disinfection technologies are typically cost-prohibitive, can yield toxic byproducts, and space for facilities is often limited, if available. More cost-effective alternative technologies, requiring less space and producing less harmful byproducts are currently being explored. Peracetic acid (PAA) was investigated as one such alternative and this research has confirmed the feasibility and applicability of using PAA as a disinfectant for WWFs. Peracetic acid doses ranging from 5 mg/L to 15 mg/L over contact times of 2 to 10 minutes were shown to be effective and directly applicable to WWF disinfection. PMID:25306784

  19. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  20. Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.

    PubMed

    Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C

    2007-11-01

    Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.

  1. Interaction of photosensitive surfactant with DNA and poly acrylic acid.

    PubMed

    Zakrevskyy, Yuriy; Cywinski, Piotr; Cywinska, Magdalena; Paasche, Jens; Lomadze, Nino; Reich, Oliver; Löhmannsröben, Hans-Gerd; Santer, Svetlana

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes' properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate - for the first time - complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules. PMID:25669583

  2. Effects of some polymeric additives on the cocrystallization of caffeine

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Kim, Il Won

    2011-11-01

    Effects of polymeric additives on the model cocrystallization were examined. The model cocrystal was made from caffeine and oxalic acid, and poly(ethylene glycol) (PEG), poly( L-lactide) (PLLA), poly(ɛ-caprolactone) (PCL), and poly(acrylic acid) (PAA) were the additives. The cocrystals were formed as millimeter-sized crystals without additives, and they became microcrystals with PLLA and PCL, and nanocrystals with PAA. XRD and IR revealed that the cocrystal structure was unchanged despite the strong effects of the additives on the crystal morphology, although some decrease in crystallinity was observed with PAA as confirmed by DSC. The DSC study also showed that the cocrystal melted and recrystallized to form α-caffeine upon heating. The present study verified that the polymeric additives can be utilized to modulate the size and morphology of the cocrystals without interfering the intermolecular interactions essential to the integrity of the cocrystal structures.

  3. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    PubMed

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment.

  4. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    PubMed

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment. PMID:26584344

  5. Heterogeneous reaction of peroxyacetic acid and hydrogen peroxide on ambient aerosol particles under dry and humid conditions: kinetics, mechanism and implications

    NASA Astrophysics Data System (ADS)

    Wu, Q. Q.; Huang, L. B.; Liang, H.; Zhao, Y.; Huang, D.; Chen, Z. M.

    2015-02-01

    Hydrogen peroxide (H2O2) and organic peroxides play important roles in the cycle of oxidants and the formation of secondary aerosols in the atmosphere. Recent field observations suggest that peroxyacetic acid (PAA, CH3C(O)OOH) is one of the most important organic peroxides in the atmosphere, whose budget is potentially related to the aerosols. Here we present the first laboratory measurements of the uptake coefficient of gaseous PAA and H2O2 onto the ambient fine particulate matter (PM2.5) as a function of relative humidity (RH) at 298 K. The results show that the PM2.5, which was collected in an urban area, can take up PAA and H2O2 at the uptake coefficient (γ) of 10-4, and both γPAA and γH2O2 increase with increasing RH. However, γPAA is more sensitive to the RH variation than is γH2O2, which indicates that the enhanced uptake of peroxide compounds on PM2.5 under humid conditions is dominated by chemical processes rather than dissolution. Considering that mineral dust is one of the main components of PM2.5, we also determined the uptake coefficients of gaseous PAA and H2O2 on authentic Asian Dust Storm (ADS) and Arizona Test Dust (ATD) particles. Compared to ambient PM2.5, ADS shows a similar γ value and RH dependence in its uptake coefficient for PAA and H2O2, while ATD gives a negative dependence on RH. The present study indicates that in addition to the mineral dust in PM2.5, other components (e.g., inorganic soluble salts) are also important to the uptake of peroxide compounds. When the heterogeneous reaction of PAA on PM2.5 is considered, its atmospheric lifetime is estimated to be 3.3 h on haze days and 7.6 h on non-haze days, values which agree well with the field observed result.

  6. Interfacial Rheology of Hydrogen-Bonded Polymer Multilayers Assembled at Liquid Interfaces: Influence of Anchoring Energy and Hydrophobic Interactions.

    PubMed

    Le Tirilly, Sandrine; Tregouët, Corentin; Reyssat, Mathilde; Bône, Stéphane; Geffroy, Cédric; Fuller, Gerald; Pantoustier, Nadège; Perrin, Patrick; Monteux, Cécile

    2016-06-21

    We study the 2D rheological properties of hydrogen-bonded polymer multilayers assembled directly at dodecane-water and air-water interfaces using pendant drop/bubble dilation and the double-wall ring method for interfacial shear. We use poly(vinylpyrrolidone) (PVP) as a proton acceptor and a series of polyacrylic acids as proton donors. The PAA series of chains with varying hydrophobicity was fashioned from poly(acrylic acid), (PAA), polymethacrylic acid (PMAA), and a homemade hydrophobically modified polymer. The latter consisted of a PAA backbone covalently grafted with C12 moieties at 1% mol (referred to as PAA-1C12). Replacing PAA with the more hydrophobic PMAA provides a route for combining hydrogen bonding and hydrophobic interactions to increase the strength and/or the number of links connecting the polyacid chains to PVP. This systematic replacement allows for control of the ability of the monomer units inside the absorbed polymer layer to reorganize as the interface is sheared or compressed. Consequently, the interplay of hydrogen bonding and hydrophobic interactions leads to control of the resistance of the polymer multilayers to both shear and dilation. Using PAA-1C12 as the first layer improves the anchoring energy of a few monomers of the chain without changing the strength of the monomer-monomer contact in the complex layer. In this way, the layer does not resist shear but resists compression. This strategy provides the means for using hydrophobicity to control the interfacial dynamics of the complexes adsorbed at the interface of the bubbles and droplets that either elongate or buckle upon compression. Moreover, we demonstrate the pH responsiveness of these interfacial multilayers by adding aliquots of NaOH to the acidic water subphase surrounding the bubbles and droplets. Subsequent pH changes can eventually break the polymer complex, providing opportunities for encapsulation/release applications. PMID:27176147

  7. An efficient strategy of managing irrigation water based on formulating highly absorbent polymer-inorganic clay composites

    NASA Astrophysics Data System (ADS)

    Berber, Mohamed R.; Hafez, Inas H.; Minagawa, Keiji; Tanaka, Masami; Mori, Takeshi

    2012-11-01

    SummaryThe management of irrigation water presents a great challenge for the agriculture field. In view of increasing soil water-holding capacity and increasing water-use efficiency, an efficient strategy of managing irrigation water based on formulating highly absorbent polymer-inorganic clay composite (polyacrylic acid-layered double hydroxide; PAA-LDH) was offered. The PAA-LDH composite was synthesized by an incorporation/in situ polymerization technique. Scanning electron microscopy, X-ray analysis and infrared spectroscopy were used to confirm the composite structure. The thermal gravimetric analysis was applied to investigate the polymer thermal stability after the composite formation. The irrigation experiments were conducted in a wooden soil box with a transparent plexiglas side by using a subsurface drip irrigation system. The X-ray patterns and infrared spectra confirmed the incorporation of acrylic acid monomer (AA) into the gallery of LDH. The SEM images emphasized the composite structure of PAA-LDH and indicated its ability to absorb and keep water. The stability of PAA was promoted against the thermal decomposition after the composite formation. The composite structure of PAA-LDH worked as water barrier and secondary water source during the irrigation process. The soil moisture distribution patterns were enhanced after the application of PAA-LDH composites as a soil conditioner.

  8. The up-right/down-left advantage occurs for both participant- and computer-paced conditions: an empirical observation on Adam, Boon, Paas, and Umiltà (1998).

    PubMed

    Proctor, R W; Cho, Y S

    2001-04-01

    When up and down stimuli are mapped to left and right keypresses or "left" and "right" vocalizations in a 2-choice reaction task, performance is often better with the up-right/down-left mapping than with the opposite mapping. J. J. Adam, B. Boon, F. G. W. C. Paas, and C. Umiltà (1998) presented evidence that the up-right/down-left advantage is obtained when trials are participant paced but not when they are computer paced. In all, 3 experiments are reported that show no difference in magnitude of the up-right/down-left advantage between computer-paced and participant-paced conditions. The advantage was eliminated, however, in Experiment 3 when a response deadline was imposed. Response speed, rather than participant or computer pacing of trials, is crucial.

  9. 1H NMR and FT-IR dataset based structural investigation of poly(amic acid)s and polyimides from 4,4′-diaminostilbene

    PubMed Central

    Kumar, Amit; Tateyama, Seiji; Yasaki, Katsuaki; Ali, Mohammad Asif; Takaya, Naoki; Singh, Rajeev; Kaneko, Tatsuo

    2016-01-01

    Structural investigation of polymers by various available analytical methods is important in order to correlate the structure with polymer properties for which understanding of polymer structure is very important factor. The data presented here in this article shows the 1H NMR spectra used for the characterization of prepared poly(amic acid)s (PAAs). It is often difficult to assigns the peak in NMR of polymers due to its complexity. Data presented here helps in assigning the proton peak in complex NMR of PAAs prepared from aromatic diamines. Further functionality in polymer chains can be confirmed by FT-IR spectra. Change in functionality during some reaction or process can be monitored by disappearance or appearance of peaks in FT-IR. The complete imidization of PAAs to Polyimides (PIs) is difficult to analyze because of the chemical stability i.e. insolubility of PIs in most of the solvent therefore the completion of imidization process was confirmed using FTIR. PMID:26933669

  10. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    PubMed Central

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576

  11. Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides.

    PubMed

    Sun, Ye; Wang, He-Fang

    2013-11-01

    Rapid and selective enrichment of phosphopeptides from complex biological samples is essential and challenging in phosphorylated proteomics. We present the direct growth of the ultrathin YPO4 shell on the surface of polyacrylate capped secondary Fe3O4 microspheres (PA-Fe3O4@YPO4) for the rapid and selective trapping phosphopeptides from complex samples. The prepared PA-Fe3O4@YPO4 could be rapidly harvested in the presence of an applied magnetic field and easily re-dispersed in solutions after removing the external magnet. The ultrathin YPO4 shell on super-hydrophilic PA-Fe3O4 has the advantages of fast adsorption/desorption dynamics and low non-specific adsorption, thus trapping of phosphopeptides from the tryptic digests mixture of β-casein/BSA with molar ratio of 1/300 is achieved in 20s adsorption/desorption time. Two phosphopeptides can still be detected with a signal to noise ratio (S/N) over 3 when the amount of β-casein was as low as 8 fmol.

  12. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.

    PubMed

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E M; Kluger, Petra J; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap(®) technology by the authors. PMID:27104576

  13. Nano-sized ceramic particles of hydroxyapatite calcined with an anti-sintering agent.

    PubMed

    Okada, Masahiro; Furuzono, Tsutomu

    2007-03-01

    Nano-sized crystals of calcined hydroxyapatite (HAp) having spherical morphologies were fabricated by calcination at 800 degrees C for 1 h with an anti-sintering agent surrounding the original HAp particles and the agent was subsequently removed by washing after calcination. The original HAp particles were prepared by a modified emulsion system, and surrounded with poly(acrylic acid, calcium salt) (PAA-Ca) by utilizing a precipitation reaction between calcium hydroxide and poly(acrylic acid) adsorbed on the HAp particle surfaces in an aqueous medium. In the case of calcination without PAA-Ca, micron-sized particles consisting of sintered polycrystals were mainly observed by scanning electron microscopy, indicating the calcination-induced sintering among the crystals. On the other hand, most of the crystals calcined with the anti-sintering agent were observed as isolated particles, and the mean size of the HAp crystals was around 80 nm. This result indicates that PAA-Ca and its thermally decomposed product, CaO, surrounding the HAp crystals could protect them against calcination-induced sintering during calcination at 800 degrees C. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected.

  14. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine.

    PubMed

    Wilcox, M D; Van Rooij, L K; Chater, P I; Pereira de Sousa, I; Pearson, J P

    2015-10-01

    The effectiveness of delivering oral therapeutic peptides, proteins and nucleotides is often hindered by the protective mucus barrier that covers mucosal surfaces of the gastrointestinal (GI) tract. Encapsulation of active pharmaceutical ingredients (API) in nanocarriers is a potential strategy to protect the cargo but they still have to pass the mucus barrier. Decorating nanoparticles with proteolytic enzymes has been shown to increase the permeation through mucus. Here we investigate the effect of poly(acrylic acid) (PAA) nanoparticles decorated with bromelain (BRO), a proteolytic enzyme from pineapple stem, on the bulk rheology of mucus as well as non-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Porcine intestinal mucus from the small intestine was incubated for 30min in the presence of PLGA nanoparticles or polyacrylic nanoparticles decorated with bromelain (PAA-BRO). The effect of nanoparticles on the rheological properties, weight of gel, released glycoprotein content from mucus as well as the viscosity of liquid removed was assessed. Treatment with nanoparticles decreased mucus gel strength with PAA-BRO reducing it the most. PAA-BRO nanoparticles resulted in the release of increased glycoprotein from the gel network whereas mucus remained a gel and exhibited a similar breakdown stress to control mucus. Therefore it would be possible to use bromelain to increase the permeability of nanoparticles through mucus without destroying the gel and leaving the underlying mucosa unprotected. PMID:25758122

  15. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine.

    PubMed

    Wilcox, M D; Van Rooij, L K; Chater, P I; Pereira de Sousa, I; Pearson, J P

    2015-10-01

    The effectiveness of delivering oral therapeutic peptides, proteins and nucleotides is often hindered by the protective mucus barrier that covers mucosal surfaces of the gastrointestinal (GI) tract. Encapsulation of active pharmaceutical ingredients (API) in nanocarriers is a potential strategy to protect the cargo but they still have to pass the mucus barrier. Decorating nanoparticles with proteolytic enzymes has been shown to increase the permeation through mucus. Here we investigate the effect of poly(acrylic acid) (PAA) nanoparticles decorated with bromelain (BRO), a proteolytic enzyme from pineapple stem, on the bulk rheology of mucus as well as non-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Porcine intestinal mucus from the small intestine was incubated for 30min in the presence of PLGA nanoparticles or polyacrylic nanoparticles decorated with bromelain (PAA-BRO). The effect of nanoparticles on the rheological properties, weight of gel, released glycoprotein content from mucus as well as the viscosity of liquid removed was assessed. Treatment with nanoparticles decreased mucus gel strength with PAA-BRO reducing it the most. PAA-BRO nanoparticles resulted in the release of increased glycoprotein from the gel network whereas mucus remained a gel and exhibited a similar breakdown stress to control mucus. Therefore it would be possible to use bromelain to increase the permeability of nanoparticles through mucus without destroying the gel and leaving the underlying mucosa unprotected.

  16. The formation of hydroxyapatite-ionomer cements at 38 degrees C.

    PubMed

    TenHuisen, K S; Brown, P W

    1994-03-01

    This study describes the formation of a calcium polyacrylate-hydroxyapatite cement. Our hypothesis was that calcium phosphates would rapidly hydrolyze in the presence of polyacrylic acid (PAA) to form a cement. PAA, tetracalcium phosphate (TetCP), and dicalcium phosphate (DCP) were reacted together and formed calcium polyacrylate (CPA) and hydroxyapatite(HAp) within 10 h at 38 degrees C, resulting in hardened masses. Reaction times increased with decreasing (HApreactants)/PAA ratios. In the first of three reaction stages, the pH increased while CPA and dicalcium phosphate dihydrate (DCPD) formed. Two steady-state pH conditions occurred during the second stage as TetCP reacted with DCPD and DCP. The first steady-state pH was the result of DCPD and TetCP reacting at near-equilibrium conditions. The second steady-state pH resulted as the reaction became limited by DCP dissolution. The third, diffusionally controlled, stage occurred as DCP and previously formed HA preacted to produce calcium-deficient HAp (Ca/P = 1.5). The emphasis of this investigation was to establish the mechanistic path involved and the rate-limiting steps of the reaction.

  17. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    NASA Astrophysics Data System (ADS)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (< 0.005 cm^3/m^2 . day). This level of oxygen barrier is believed to be due to a nano-brick wall microstructure comprised of exfoliated clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  18. Utilization of starch graft copolymers as selective depressants for lizardite in the flotation of pentlandite

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Luo, Yong-Chun; Xu, Guo-Qiang; Qi, Li; Hu, Xiu-Qin; Xu, Peng-Fei; Zhang, Liu-Yi; Cheng, Shao-Yi

    2015-05-01

    This paper investigates the detrimental effect of lizardite surface characteristics on pentlandite flotation. To reduce the effect, two different starch graft copolymers, starch-graft-polyacrylamide (S-g-PAM) and starch-graft-polyacrylic acid (S-g-PAA) were synthesized as depressants for lizardite. The flotation results show that at pH value of 8, where the flotation of lizardite and pentlandite are routinely performed, S-g-PAM and S-g-PAA improve pentlandite recovery efficiently, compared with the traditional depressant carboxymethyl cellulose (CMC). Experimental results demonstrate that S-g-PAM and S-g-PAA disperse the hydrophilic lizardite particles from the pentlandite surface and also flocculate lizardite particles.

  19. Simultaneous determination of phenoxyethanol and its major metabolite, phenoxyacetic acid, in rat biological matrices by LC-MS/MS with polarity switching: Application to ADME studies.

    PubMed

    Kim, Tae Hwan; Kim, Min Gi; Kim, Min Gyu; Shin, Beom Soo; Kim, Kyu-Bong; Lee, Jong Bong; Paik, Soo Heui; Yoo, Sun Dong

    2015-11-01

    This study describes the development of a simple LC-ESI-MS/MS method with polarity switching for the simultaneous analysis of phenoxyethanol (PE) and its major metabolite, phenoxyacetic acid (PAA), in rat plasma, urine, and 7 different tissues. The assay was validated to demonstrate the linearity, precision, accuracy, LLOQ, recovery, and stability by using the matrix matched QC samples. The assay achieved the LLOQ of 10 and 20 ng/mL of PE and PAA, respectively, for plasma samples and the LLOQ of 20 and 50 ng/mL of PE and PAA, respectively, for urine and tissue samples. This method was successfully applied to the percutaneous absorption, distribution, metabolism, and excretion studies in rats. The absolute topical bioavailability of PE was 75.4% and 76.0% for emulsion and lotion, respectively. Conversion of PE to PAA was extensive, with the average AUCPAA-to-AUCPE ratio being 4.4 and 5.3 for emulsion and lotion, respectively. The steady-state tissue-to-plasma PE concentration ratio (Kp) was higher than unity for kidney, spleen, heart, brain, and testis and was lower (≤0.6) for lung and liver, while the metabolite Kp ratio was higher than unity for kidney, liver, lung, and testis and was lower (≤0.3) for other tissues. Findings of this study may be useful to evaluate the relationship between exposure and toxic potential of PE in risk assessment. PMID:26452788

  20. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator.

    PubMed

    Ma, Zhi-yuan; Jia, Xin; Zhang, Guo-xiang; Hu, Jia-mei; Zhang, Xiu-lan; Liu, Zhi-yong; Wang, He-yun; Zhou, Feng

    2013-06-12

    This work reports a polydopamine-graft-poly(acrylic acid) (Pdop-g-PAA)-coated controlled-release multi-element compound fertilizer with water-retention function by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) techniques for the first time. The morphology and composition of the products were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and inductively coupled plasma (ICP) emission spectrometry. The results revealed that the stimuli-responsive layer formed by a Pdop inner layer and a PAA outer corona exhibit outstanding selective permeability to charged nutrients and the release rate of encapsulated elements can be tailored by the pH values. At low pH, the Pdop-g-PAA layer can reduce nutrient loss, and at high pH, the coating restrains transportation of negative nutrients but favors the release of cations. Moreover, PAA brushes provide good water-retention property. This Pdop-graft-polymer brushes coating will be effective and promising in the research and development of multi-functional controlled-release fertilizer. PMID:23692274

  1. A Concise Approach to Site-Specific Topological Protein-Poly(amino acid) Conjugates Enabled by in Situ-Generated Functionalities.

    PubMed

    Hou, Yingqin; Yuan, Jingsong; Zhou, Yu; Yu, Jin; Lu, Hua

    2016-08-31

    Controlling the topology of polymer-modified proteins has attracted growing interest. However, one of the main challenges in this field is the lack of efficient and site-specific methods for installing multiple bioorthogonal functionalities on substrate polymers. We report here an orchestrating strategy that provides easy access to various topological protein-poly(amino acid) (PAA) conjugates in high yields. This method features the in situ installation of two "chemical handles", including a thioester for native chemical ligation and a polyglycine nucleophile for sortase A-mediated ligation, at both ends of substrate PAAs. As a result, neither pre-functionalization of initiator or monomer units, nor post-polymerization modification of the resultant polymers, is necessary. Site-specific topological conjugates, particularly circular conjugates, can be conveniently synthesized under mild conditions from the functionalized PAAs. The biomedical utility of our method is demonstrated by the rapid and efficient generation of several therapeutic interferon-α conjugates, which exhibit significantly enhanced protease resistance and thermostability. Given the versatility of both PAAs and proteins, the method offers a convenient approach to producing libraries of conjugates for biological applications. PMID:27494383

  2. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator.

    PubMed

    Ma, Zhi-yuan; Jia, Xin; Zhang, Guo-xiang; Hu, Jia-mei; Zhang, Xiu-lan; Liu, Zhi-yong; Wang, He-yun; Zhou, Feng

    2013-06-12

    This work reports a polydopamine-graft-poly(acrylic acid) (Pdop-g-PAA)-coated controlled-release multi-element compound fertilizer with water-retention function by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) techniques for the first time. The morphology and composition of the products were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and inductively coupled plasma (ICP) emission spectrometry. The results revealed that the stimuli-responsive layer formed by a Pdop inner layer and a PAA outer corona exhibit outstanding selective permeability to charged nutrients and the release rate of encapsulated elements can be tailored by the pH values. At low pH, the Pdop-g-PAA layer can reduce nutrient loss, and at high pH, the coating restrains transportation of negative nutrients but favors the release of cations. Moreover, PAA brushes provide good water-retention property. This Pdop-graft-polymer brushes coating will be effective and promising in the research and development of multi-functional controlled-release fertilizer.

  3. Evaluation of biomechanical strength, stability, bioactivity, and in vivo biocompatibility of a novel calcium deficient hydroxyapatite/poly(amino acid) composite cervical vertebra cage.

    PubMed

    Xiong, Yi; Li, Hong; Zhou, Chunguang; Yang, Xi; Song, Yueming; Qing, Yan; Yan, Yonggang

    2014-01-01

    A new type of cervical vertebra cage was prepared using a novel composite, calcium deficient hydroxyapatite/poly(amino acid) (HA/PAA), and its mechanical properties, in vitro stability and bioactivity, and in vivo biocompatibility were characterized. The results showed that the axial compressive loads of the HA/PAA cage were in the range of 10058-10612 N and the lateral compressive loads were in the range of 1180-2363 N, and varied with the height of the cervical vertebra cages. After immersion in simulated body fluid (SBF) for 16 weeks, the axial compressive loads of the cage decreased from 10058 to 7131 N and the lateral compressive loads decreased from 1180 to 479 N. In addition, the weight loss decreased 6.01%, showing that HA/PAA composites had good stability during the incubation period. The pH value of SBF was also monitored during the whole soaking period; it fluctuated in the range of 6.9-7.4. Scanning electron microscope and energy dispersive spectrometer results showed the cage was bioactive with a new apatite layer attached on the surface. The histological evaluation revealed that new bone tissue bonded tightly with the surfaces of the implants, showing excellent biocompatibility. In conclusion, the HA/PAA cage showed sufficient strength, good stability, bioactivity, and biocompatibility, and has potential applications for clinical cervical vertebrae repair.

  4. Simultaneous determination of phenoxyethanol and its major metabolite, phenoxyacetic acid, in rat biological matrices by LC-MS/MS with polarity switching: Application to ADME studies.

    PubMed

    Kim, Tae Hwan; Kim, Min Gi; Kim, Min Gyu; Shin, Beom Soo; Kim, Kyu-Bong; Lee, Jong Bong; Paik, Soo Heui; Yoo, Sun Dong

    2015-11-01

    This study describes the development of a simple LC-ESI-MS/MS method with polarity switching for the simultaneous analysis of phenoxyethanol (PE) and its major metabolite, phenoxyacetic acid (PAA), in rat plasma, urine, and 7 different tissues. The assay was validated to demonstrate the linearity, precision, accuracy, LLOQ, recovery, and stability by using the matrix matched QC samples. The assay achieved the LLOQ of 10 and 20 ng/mL of PE and PAA, respectively, for plasma samples and the LLOQ of 20 and 50 ng/mL of PE and PAA, respectively, for urine and tissue samples. This method was successfully applied to the percutaneous absorption, distribution, metabolism, and excretion studies in rats. The absolute topical bioavailability of PE was 75.4% and 76.0% for emulsion and lotion, respectively. Conversion of PE to PAA was extensive, with the average AUCPAA-to-AUCPE ratio being 4.4 and 5.3 for emulsion and lotion, respectively. The steady-state tissue-to-plasma PE concentration ratio (Kp) was higher than unity for kidney, spleen, heart, brain, and testis and was lower (≤0.6) for lung and liver, while the metabolite Kp ratio was higher than unity for kidney, liver, lung, and testis and was lower (≤0.3) for other tissues. Findings of this study may be useful to evaluate the relationship between exposure and toxic potential of PE in risk assessment.

  5. Polycyclic Aromatic Acids Are Primary Metabolites of Alkyl-PAHs-A Case Study with Nereis diversicolor.

    PubMed

    Malmquist, Linus M V; Selck, Henriette; Jørgensen, Kåre B; Christensen, Jan H

    2015-05-01

    Although concentrations of alkylated polycyclic aromatic hydrocarbons (alkyl-PAHs) in oil-contaminated sediments are higher than those of unsubstituted PAHs, only little attention has been given to metabolism and ecotoxicity of alkyl-PAHs. In this study we demonstrated that metabolism of alkyl-PAHs primarily forms polycyclic aromatic acids (PAAs). We generalize this to other alkyl-PAHs, based on literature and the present study of the metabolism of 1-methylphenanthrene, 3,6-dimethylphenanthrene, and 1-, 2-, 3-, and 6-methylchrysene related to their unsubstituted parent PAHs. Also, we observed that body burdens and production of PAAs was related to the position of the methyl group, showing the same isomer specific preferences as for microbial degradation of alkyl-PAHs. We detected a high production of PAAs, and larger metabolism of alkyl-PAHs than their unsubstituted parent PAHs. We therefore propose that carboxylic acid metabolites of alkyl-PAHs have the potential of constituting a new class of contaminants in marine waters that needs attention in relation to ecological risk assessments.

  6. Preactivated thiomers as mucoadhesive polymers for drug delivery

    PubMed Central

    Iqbal, Javed; Shahnaz, Gul; Dünnhaupt, Sarah; Müller, Christiane; Hintzen, Fabian; Bernkop-Schnürch, Andreas

    2012-01-01

    This study was aimed to synthesize polymeric excipients with improved mucoadhesive, cohesive and in situ-gelling properties to assure a prolonged retention time of dosage forms at a given target site, thereby achieving an increased uptake and improved oral bioavailability of certain challenging therapeutic agents such as peptides and proteins. Accordingly, poly(acrylic acid)-cysteine-2-mercaptonicotinic acid (PAA-cys-2MNA) conjugates were synthesized by the oxidative S–S coupling of PAA-cys (100-, 250- and 450 kDa) with 2-mercaptonicotinic acid (2MNA). Unmodified PAAs, PAAs-cys (thiomers) and PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates were compressed into tablets to perform disintegration tests, mucoadhesion studies and rheological measurements. Moreover, cytotoxicty of the polymers was determined using Caco-2 cells. The resulting PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates displayed 113.5 ± 12.7, 122.7 ± 12.2 and 117.3 ± 4.6 μmol/g of 2-mercaptonicotinic acid, respectively. Due to the immobilization of 2MNA, the PAA-cys-2MNA (pre-activated thiomers) conjugates exhibit comparatively higher swelling properties and disintegration time to the corresponding unmodified and thiolated polymers. On the rotating cylinder, tablets based on PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates displayed 5.0-, 5.4- and 960-fold improved mucoadhesion time in comparison to the corresponding unmodified PAAs. Results achieved from tensile studies were found in good agreement with the results obtained by rotating cylinder method. The apparent viscosity of PAA-cys-2MNA (100-, 250- and 450 kDa) conjugates was improved 1.6-, 2.5- and 206.2-fold, respectively, in comparison to the corresponding unmodified PAAs. Moreover, pre-activated thiomers/mucin mixtures showed a time dependent increase in viscosity up to 24 h, leading to 7.0-, 18.9- and 2678-fold increased viscosity in comparison to unmodified PAAs (100-, 250- and 450 kDa), respectively. All polymers were

  7. Oxidation of PAHs in a simplified system using peroxy-acid and glass beads: Identification of oxidizing species.

    PubMed

    Alderman, Norman S; Nyman, Marianne C

    2009-09-01

    Polycyclic aromatic hydrocarbons (PAHs) are organic contaminants of concern due to their ubiquity, persistence in the natural environment and adverse health effects. Numerous studies have looked into the removal and treatment of these contaminants, with mixed results. High molecular weight PAHs have been particularly problematic due to their hydrophobicity and high affinity for organics, resulting in mass transfer limitations for even the fastest advanced oxidation processes (AOPs). The peroxy-acid process has been used to successfully treat PAH contaminated matrices. Experiments were conducted on benzo[a]pyrene contaminated glass beads in order to elucidate the reaction mechanisms responsible for the effectiveness of this process. For the first time peracetic acid (PAA) was identified as the important oxidant in this reaction. Different v/v/v ratios of hydrogen peroxide/acetic acid/DI water were studied which illustrated the importance of reaction ratio on oxidant concentration and rate of formation. Approximately 60% degradation of benzo[a]pyrene was achieved in 24 hours with 1.7% PAA. Observations of the reaction kinetics suggest that the slow desorption/dissolution of benzo[a]pyrene limits the efficiency of the peroxy-acid process. Modifications of the reaction setup supported this observation as treatment efficiencies increased with reactive surface area, and an increase in system agitation. These limitations were also overcome by increasing the concentration of PAA delivered to the contaminated matrix. Greater than 80% degradation of benzo[a]pyrene was achieved in 24 hours with approximately 9.2% PAA. PMID:19847697

  8. Examination of the change in returning molecular weight obtained during inhibitor squeeze treatments using polyacrylate based inhibitors

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.

    1995-11-01

    Scale inhibitors based on small polyelectrolytes are often employed in oilfield scale prevention treatments. These materials are injected into the near-well formation of producers in a scale inhibitor squeeze treatment. When the well is brought back on production, the objective is for the return concentration level of the inhibitor in the produced brine to be at or above a certain threshold level, C{sub t}. This threshold level is the minimum inhibitor concentration required to prevent the formation of mineral carbonate or sulfate scales in that well. The squeeze lifetime depends strongly on the nature of the interaction between the inhibitor and the formation either through an adsorption or precipitation mechanism. Both adsorption and precipitation processes depend on the molecular weight of the scale inhibitor, as well as on a range of other factors. However, polymeric inhibitor species always display some degree of polydispersity (spread of molecular weight). In this paper, the authors examine the effects of molecular weight on adsorption/desorption phenomena for polyacrylate based inhibitor species. This work shows that, in the inhibitor effluent after a squeeze treatment, the molecular weight of the returning inhibitor may be different from that which was injected. For commercially available polymeric inhibitor species, they demonstrate using core floods that preferential retention of higher molecular weight components occurs and preferential desorption of lower molecular weight components is observed. This leads to a gradation in molecular weight in the return profile, which can lead to increased molecular weight components returning as the inhibitor concentration approaches the threshold level. The significance of this observation to field application of polymeric inhibitor species is discussed.

  9. Flexible poly(amic acid) conducting polymers: effect of chemical composition on structural, electrochemical, and mechanical properties.

    PubMed

    Du, Nian; Wong, Cheuk; Feurstein, Michael; Sadik, Omowunmi A; Umbach, Christopher; Sammakia, Bahgat

    2010-09-01

    A new approach for creating flexible, mechanically strong poly(amic acid) (PAA) hybrid copolymers is described. The reduction of gold salts to gold nanoparticles by PAA coupled with its copolymerization in the presence of various silanes (e.g., N-[3-(trimethoxysilyl)-propyl] aniline (TMOSPA), 3-aminopropyl-trimethoxysilane (APTMOS), dichlorodimethylsilane (DCMS), and tetramethoxysilane (TMOS)) has enabled the design of a series of polymeric films. The resulting poly(amic acid), silane, and gold (PSG) solutions were employed for the fabrication of flexible, ternary polymers with a minimum bend ratio of 3 mm using thermal desolvation and/or wet-phase inversion techniques. By controlling the composition and synthesis conditions, porous PSG films were produced that are flexible or rigid, transparent or opaque, and/or mechanically strong. (1)H NMR, (13)C NMR, and Fourier transform infrared spectroscopy (FTIR) characterization results showed that the carboxylic acid moieties were retained in the PSG copolymer. Thermal stabilities with degradation characteristics of the polymers were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Although structurally and morphologically different from the parent PAA, copolymerization with silanes had significantly improved the mechanical and interfacial property of the PSG class of films.

  10. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium.

    PubMed

    Yudistira, Harry; McClarty, Leigh; Bloodworth, Ruhi A M; Hammond, Sydney A; Butcher, Haley; Mark, Brian L; Cardona, Silvia T

    2011-09-01

    Synthetic cystic fibrosis sputum medium (SCFM) is rich in amino acids and supports robust growth of Burkholderia cenocepacia, a member of the Burkholderia cepacia complex (Bcc). Previous work demonstrated that B. cenocepacia phenylacetic acid (PA) catabolic genes are up-regulated during growth in SCFM and are required for full virulence in a Caenorhabditis elegans host model. In this work, we investigated the role of phenylalanine, one of the aromatic amino acids present in SCFM, as an inducer of the PA catabolic pathway. Phenylalanine degradation intermediates were used as sole carbon sources for growth and gene reporter experiments. In addition to phenylalanine and PA, phenylethylamine, phenylpyruvate, and 2-phenylacetamide were usable as sole carbon sources by wild type B. cenocepacia K56-2, but not by a PA catabolism-defective mutant. EMSA analysis showed that the binding of PaaR, the negative regulator protein of B. cenocepacia PA catabolism, to PA regulatory DNA could only be relieved by phenylacetyl-Coenzyme A (PA-CoA), but not by any of the putative phenylalanine degradation intermediates. Taken together, our results show that in B. cenocepacia, phenylalanine is catabolized to PA and induces PA catabolism through PA activation to PA-CoA. Thus, PaaR shares the same inducer with PaaX, the regulator of PA catabolism in Escherichia coli, despite belonging to a different protein family.

  11. Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging.

    PubMed

    Cho, Minjung; Sethi, Richa; Narayanan, Jeyarama Subramanian Ananta; Lee, Seung Soo; Benoit, Denise N; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L

    2014-11-21

    Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)(-1) were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.

  12. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company.

    PubMed

    Tong Thi, Anh Ngoc; Sampers, Imca; Van Haute, Sam; Samapundo, Simbarashe; Ly Nguyen, Binh; Heyndrickx, Marc; Devlieghere, Frank

    2015-09-01

    This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid treated wash water. First, the decontamination efficacy of the washing step with chlorinated water applied by a Vietnamese processing company during trimming of Pangasius fillets was evaluated and used as the basis for the experiments performed on a laboratory scale. As chlorine was only added at the beginning of the batch and used continuously without renewal for 239min; a rapid increase of the bacterial counts and a fast decrease of chlorine in the wash water were found. This could be explained by the rapid accumulation of organic matter (ca. 400mg O2/L of COD after only 24min). Secondly, for the experiments performed on a laboratory scale, a single batch approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were evaluated at 10, 20, 50 and 150ppm at contact times of 10, 20 and 240s. Washing with chlorine and PAA wash water resulted in a reduction of Escherichia coli on Pangasius fish which ranged from 0-1.0 and 0.4-1.4logCFU/g, respectively while less to no reduction of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish was observed. However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of chlorine and 15-17% of PAA were lost after washing for 40s (COD=238.2±66.3mg O2/L). Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay close attention to the residual chlorine level, pH and COD level during treatment for optimal efficacy. PMID:26058007

  13. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company.

    PubMed

    Tong Thi, Anh Ngoc; Sampers, Imca; Van Haute, Sam; Samapundo, Simbarashe; Ly Nguyen, Binh; Heyndrickx, Marc; Devlieghere, Frank

    2015-09-01

    This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid treated wash water. First, the decontamination efficacy of the washing step with chlorinated water applied by a Vietnamese processing company during trimming of Pangasius fillets was evaluated and used as the basis for the experiments performed on a laboratory scale. As chlorine was only added at the beginning of the batch and used continuously without renewal for 239min; a rapid increase of the bacterial counts and a fast decrease of chlorine in the wash water were found. This could be explained by the rapid accumulation of organic matter (ca. 400mg O2/L of COD after only 24min). Secondly, for the experiments performed on a laboratory scale, a single batch approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were evaluated at 10, 20, 50 and 150ppm at contact times of 10, 20 and 240s. Washing with chlorine and PAA wash water resulted in a reduction of Escherichia coli on Pangasius fish which ranged from 0-1.0 and 0.4-1.4logCFU/g, respectively while less to no reduction of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish was observed. However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of chlorine and 15-17% of PAA were lost after washing for 40s (COD=238.2±66.3mg O2/L). Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay close attention to the residual chlorine level, pH and COD level during treatment for optimal efficacy.

  14. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Liu, Hanzhou; Yu, Ming; Ma, Hongjuan; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2014-01-01

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions.

  15. Control of morphology and corona composition in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers: effects of solvent, water content, and mixture composition.

    PubMed

    Vyhnalkova, Renata; Müller, Axel H E; Eisenberg, Adi

    2014-11-11

    The morphologies and corona compositions in aggregates of mixtures of PS-b-PAA and PS-b-P4VP diblock copolymers are influenced by controllable assembly parameters such as water content, block copolymer molar ratios, and solvent effects as well as the hydrophilic block lengths and block length ratios. All these factors can affect the morphology of the aggregates as well as their corona composition, the latter especially in vesicles, where two interfaces are involved. The morphologies and corona compositions of the aggregates were investigated by transmission electron microscopy and electrophoretic mobility, respectively. They depend, to a large extent, on the solubility of P4VP and PAA in the given organic solvent (e.g., DMF, THF, or dioxane), which influences the coil dimensions of the hydrophilic chains. The water content affects both the size and the shape of the block copolymer aggregates as well as the corona composition. Water acts as a precipitant for the hydrophobic block in the common solvent and, therefore, its progressive addition to the solution changes the interaction parameter with the hydrophobic block. The block copolymer molar ratio has an effect on both the morphology and the corona composition of the aggregates. With increasing PS-b-P4VP content in the mixture, the morphology transforms gradually from large compound micelles (LCMs), through coexistence of LCMs and small spherical micelles (SSMs), and eventually to vesicles. As expected, the corona composition of the aggregates is also affected by the block copolymer molar ratio, and changes progressively from pure PAA to a mixture of PAA and P4VP and to pure P4VP with increasing PS-b-P4VP content. It is clear that the use of mixtures of the soluble chains offers the opportunity of fine-tuning the corona composition in block copolymer aggregates under assembly conditions.

  16. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores

    PubMed Central

    Nerandzic, Michelle M.; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J.

    2016-01-01

    Background. Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5–2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods. We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results. Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200–2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions. Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  17. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    PubMed

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin. PMID:26885539

  18. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    PubMed

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.

  19. Platinum nanoparticles: the crucial role of crystal face and colloid stabilizer in the diastereoselective hydrogenation of cinchonidine.

    PubMed

    Schmidt, Erik; Kleist, Wolfgang; Krumeich, Frank; Mallat, Tamas; Baiker, Alfons

    2010-02-15

    The preparation of stable metal nanoparticles requires a strong interaction between the (organic) stabilizer and the metal surface that might alter the catalytic properties. This behavior has been described as "poisoning" since the stabilizer normally decreases the catalytic activity due to site blocking. Here we show a striking influence of the stabilizer on the selectivity in the hydrogenation of cinchonidine (CD) over poly(acrylic acid) (PAA)-stabilized Pt nanoparticles with well-defined shape distributions. In the hydrogenation of the heteroaromatic ring of cinchonidine in toluene, the diastereomeric excess of the (S)-hexahydrocinchonidine increased upon increasing Pt{111}/Pt{100} ratio, but this distinct shape selectivity was observed only after the oxidative removal of PAA at 473 K. The use of the as-prepared nanoparticles inverted the major diastereomer to R, and this isomer was formed also in acetic acid. This striking change in the diastereoselectivity indicates that poly(acrylic acid), which remains on the Pt surface after preparation, interacts with CD during hydrogenation almost as strongly as the solvent acetic acid. The PAA stabilizer plays a dual role: it allows one to control the size and shape of the nanoparticles during their synthesis, and it affects the rate and diastereoselectivity of the hydrogenation of CD probably through a "surface-localized acidification".

  20. Biodegradation of a biochar-modified waterborne polyacrylate membrane coating for controlled-release fertilizer and its effects on soil bacterial community profiles.

    PubMed

    Zhou, Zijun; Du, Changwen; Li, Ting; Shen, Yazhen; Zeng, Yin; Du, Jie; Zhou, Jianmin

    2015-06-01

    Biochar-modified polyacrylate-like polymers are promising waterborne polymer-based membrane coatings for controlled-release fertilizers. However, the effect of these membrane polymers on paddy soil is unknown. A soil incubation experiment was conducted using Fourier transform infrared photoacoustic spectroscopy to monitor the changes in the polymer-coated membranes in paddy soil, and Biolog EcoPlates and polymerase chain reaction-denaturing gradient gel electrophoresis were used to detect the effects of the membranes on soil bacterial community profiles. Compared to unmodified membranes, the biodegradation rate of the biochar-modified membrane was slower, and the membrane was more intact, which improved and guaranteed the controlled release of nutrients. Compared to the soil without membranes, the biochar-modified membranes, as well as unmodified ones, showed no significant impacts on the composition diversity of soil dominant bacterial community. The activity and functional diversity of soil culturable microbial community during the early stage of incubation were reduced by biochar-modified membranes due to the release of small amount of soluble organic materials but were both recovered in the 12(th) month of the incubation period. Therefore, the biochar-modified waterborne polyacrylate was environmentally friendly, demonstrating its potential both in the development of coated controlled-release fertilizers and in the utilization of crop residue. PMID:25567059

  1. Core-shell-structured silica/polyacrylate particles prepared by Pickering emulsion: influence of the nucleation model on particle interfacial organization and emulsion stability

    PubMed Central

    2014-01-01

    This work reports a new evidence of the versatility of silica sol as a stabilizer for Pickering emulsions. The organization of silica particles at the oil-water interface is a function of the nucleation model. The present results show that nucleation model, together with monomer hydrophobicity, can be used as a trigger to modify the packing density of silica particles at the oil-water interface: Less hydrophobic methylmethacrylate, more wettable with silica particles, favors the formation of core-shell-structured composite when the composite particles are prepared by miniemulsion polymerization in which monomers are fed in batch (droplet nucleation). By contrast, hydrophobic butylacrylate promotes the encapsulating efficiency of silica when monomers are fed dropwise (homogeneous nucleation). The morphologies of polyacrylate-nano-SiO2 composites prepared from different feed ratio of methylmethacrylate/butylacrylate (with different hydrophobicity) and by different feed processes are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) techniques. The results from SEM and TEM show that the morphologies of the as-prepared polyacrylate/nano-SiO2 composite can be a core-shell structure or a bare acrylic sphere. The stability of resulting emulsions composed of these composite particles is strongly dependent on the surface coverage of silica particles. The emulsion stability is improved by densely silica-packed composite particles. PMID:25313299

  2. Biodegradation of a biochar-modified waterborne polyacrylate membrane coating for controlled-release fertilizer and its effects on soil bacterial community profiles.

    PubMed

    Zhou, Zijun; Du, Changwen; Li, Ting; Shen, Yazhen; Zeng, Yin; Du, Jie; Zhou, Jianmin

    2015-06-01

    Biochar-modified polyacrylate-like polymers are promising waterborne polymer-based membrane coatings for controlled-release fertilizers. However, the effect of these membrane polymers on paddy soil is unknown. A soil incubation experiment was conducted using Fourier transform infrared photoacoustic spectroscopy to monitor the changes in the polymer-coated membranes in paddy soil, and Biolog EcoPlates and polymerase chain reaction-denaturing gradient gel electrophoresis were used to detect the effects of the membranes on soil bacterial community profiles. Compared to unmodified membranes, the biodegradation rate of the biochar-modified membrane was slower, and the membrane was more intact, which improved and guaranteed the controlled release of nutrients. Compared to the soil without membranes, the biochar-modified membranes, as well as unmodified ones, showed no significant impacts on the composition diversity of soil dominant bacterial community. The activity and functional diversity of soil culturable microbial community during the early stage of incubation were reduced by biochar-modified membranes due to the release of small amount of soluble organic materials but were both recovered in the 12(th) month of the incubation period. Therefore, the biochar-modified waterborne polyacrylate was environmentally friendly, demonstrating its potential both in the development of coated controlled-release fertilizers and in the utilization of crop residue.

  3. Formation of Hydroxyapatite Skeletal Materials from Hydrogel Matrices via Artificial Biomineralization.

    PubMed

    Iwatsubo, Takashi; Kishi, Ryoichi; Miura, Toshiaki; Ohzono, Takuya; Yamaguchi, Tomohiko

    2015-07-16

    Several kinds of hydrogels were prepared as mimics for the collagen/acidic protein hydrogel employed as the polymer matrix for mineralization in natural bone formation. The hydrogels prepared as mineralization matrices were employed for synthesizing artificial bones. The artificial bone made from a network of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) prepared by heating (PVA/PAA-h-network) exhibited mechanical properties comparable with those of fish scales. To elucidate the formation mechanism of the artificial bone, we synthesized four further kinds of matrix. Artificial bones were obtained from both a PVA/PAA network prepared by repeated freezing and thawing (PVA/PAA-ft-network) and a chitosan/PAA network, in which hydrogen bonding exists between the two constituent polymers, similar to that observed in a natural collagen/acidic protein network. The artificial bone made from the chitosan/PAA network was confirmed to be formed by the phase transformation of a cartilaginous precursor by a process similar to the transformation of cartilaginous tissue to natural bone. In addition, skeletal phase material, i.e., a homogeneous solid phase of hydroxyapatite/polymers, was formed in the cartilaginous phase, i.e., the hypercomplex gel. The skeletal phase grew thicker at the expense of the cartilaginous phase until it formed the entirety of the composite. Artificial bones were also obtained from a gelatin/PAA network and a poly[N-(2-hydroxyethyl)acrylamide]-co-(acrylic acid) network. These experimental results suggested that the coexistence of proton donor and proton acceptor functions in the hydrogel is a key factor for bone formation. The hydroxyapatite content of our artificial bones was almost conterminous with those of natural bones.

  4. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.

    1987-01-01

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.

  5. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Carciello, N.R.

    1987-04-21

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.

  6. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles.

    PubMed

    Matelová, Alena; Huerta-Angeles, Gloria; Šmejkalová, Daniela; Brůnová, Zdislava; Dušek, Jan; Vícha, Robert; Velebný, Vladimír

    2016-10-20

    Novel hydrophobized hyaluronan (HA) derivatives, containing ω-phenylalkanoic acids (ω-PAA, 4-phenylbutyric acid, 6-phenylhexanoic, 8-phenyloctanoic or 11-tolylundecanoic acids) were prepared by esterification. Mixed anhydrides obtained after reaction of the carboxyl acid moiety and benzoyl chloride were found to be active acylating agents, affording hydrophobized HA in good yield and under mild conditions. The reactivity of the aromatic fatty acids towards esterification has decreased with the increasing length of the aliphatic spacer between the aromatic substituent and carboxylic acid moiety. The novel HA derivatives self-assembled from very low concentrations and were found to be non-cytotoxic. The potential use of ω-phenylalkanoic acids grafted-HA towards drug delivery applications was demonstrated by hydrophobic drugs (resveratrol and retinyl palmitate) encapsulation. The drug loading capacity of the novel HA derivatives was significantly improved most likely because of π⋯π interactions between the micelle core and loaded hydrophobic aromatic compound.

  7. Synthesis of novel amphiphilic hyaluronan containing-aromatic fatty acids for fabrication of polymeric micelles.

    PubMed

    Matelová, Alena; Huerta-Angeles, Gloria; Šmejkalová, Daniela; Brůnová, Zdislava; Dušek, Jan; Vícha, Robert; Velebný, Vladimír

    2016-10-20

    Novel hydrophobized hyaluronan (HA) derivatives, containing ω-phenylalkanoic acids (ω-PAA, 4-phenylbutyric acid, 6-phenylhexanoic, 8-phenyloctanoic or 11-tolylundecanoic acids) were prepared by esterification. Mixed anhydrides obtained after reaction of the carboxyl acid moiety and benzoyl chloride were found to be active acylating agents, affording hydrophobized HA in good yield and under mild conditions. The reactivity of the aromatic fatty acids towards esterification has decreased with the increasing length of the aliphatic spacer between the aromatic substituent and carboxylic acid moiety. The novel HA derivatives self-assembled from very low concentrations and were found to be non-cytotoxic. The potential use of ω-phenylalkanoic acids grafted-HA towards drug delivery applications was demonstrated by hydrophobic drugs (resveratrol and retinyl palmitate) encapsulation. The drug loading capacity of the novel HA derivatives was significantly improved most likely because of π⋯π interactions between the micelle core and loaded hydrophobic aromatic compound. PMID:27474668

  8. Silk fibroin immobilization on poly(ethylene terephthalate) films: comparison of two surface modification methods and their effect on mesenchymal stem cells culture.

    PubMed

    Liang, Meini; Yao, Jinrong; Chen, Xin; Huang, Lei; Shao, Zhengzhong

    2013-04-01

    Silk fibroin (SF) has played a curial role for the surface modification of conventional materials to improve the biocompatibility, and SF modified poly(ethylene terephthalate) (PET) materials have potential applications on tissue engineering such as artificial ligament, artificial vessel, artificial heart valve sewing cuffs dacron and surgical mesh engineering. In this work, SF was immobilized onto PET film via two different methods: 1) plasma pretreatment followed by SF dip coating (PET-SF) and 2) plasma-induce acrylic acid graft polymerization and subsequent covalent immobilization of SF on PET film (PET-PAA-SF). It could be found that plasma treatment provided higher surface roughness which was suitable for further SF dip coating, while grafted poly(acrylic acid) (PAA) promised the covalent bonding between SF and PAA. ATR-FTIR adsorption band at 3284 cm(-1), 1623 cm(-1) and 1520 cm(-1) suggested the successful introduction of SF onto PET surface, while the amount of immobilized SF of PET-SF was higher than PET-PAA-SF according to XPS investigation (0.29 vs 0.23 for N/C ratio). Surface modified PET film was used as substrate for mesenchymal stem cells (MSCs) culture, the cells on PET-SF surface exhibited optimum density compared to PET-PAA-SF according to CCK-8 assays, which indicated that plasma pretreatment followed by SF dip coating was a simple and effective way to prepare biocompatible PET surface. PMID:23827589

  9. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.

    PubMed

    Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-03-01

    The mobility of nanoscale zero-valent iron (nZVI), which is used for in situ groundwater remediation, is affected by chemical and physical heterogeneities within aquifers. Carbonate minerals in porous aquifers and the presence of divalent cations reduce nZVI mobility. This study assesses the potential for enhancing the mobility of polyacrylic acid coated nZVI (PAA-nZVI) in such aquifers through the co-injection of polyelectrolytes (natural organic matter, humic acid, carboxymethyl cellulose, and lignin sulfonate). When applied at the same concentration, all of the polyelectrolytes produced similar enhancement of PAA-nZVI mobility in carbonate porous media. This increase in mobility was a result of increased repulsion between PAA-nZVI and the carbonate matrix. Lignin sulfonate, an environmentally friendly and inexpensive agent, was identified as the most suitable polyelectrolyte for field applications. The greatest increase in PAA-nZVI mobility was achieved with co-injection of lignin sulfonate at concentrations ≥50 mg L(-1); at these concentrations the maximum PAA-nZVI travel distance in carbonate porous media was twice of that in the absence of lignin sulfonate.

  10. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  11. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  12. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  13. Synthesis and characterization of composite polysulfone membranes for desalination in nanofiltration technique.

    PubMed

    Akbari, A; Homayonfal, M; Jabbari, V

    2010-01-01

    Composite nanofiltration (NF) membrane was developed polyacrylic acid (PAA) in situ UV graft polymerization process using ultrafiltration (UF) polysulfone (PSF) membrane as porous support. FT-IR spectra indicated that grafting was performed and it show peaks at 1,732 cm⁻¹ and 3,396 cm⁻¹ region for CO and OH starching bond of acrylic acid (AA) monomer, respectively. AFM microscopy showed the roughness of surface was reduced by increase of UV irradiation times. Effect of irradiation time on the grafting of acrylic acid (AA) in the same concentration was discussed. The salts rejection increase was accompanied with grafting of polysulfone (PSF) ultrafiltration (UF) membrane. The rejection of Na₂SO₄, MgSO₄, NaCl and CaCl₂ salts by PSF-grafted-PAA nanofiltration (NF) membrane was in 98, 60, 52 and 30% respectively, under 0.3 MPa.

  14. Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption

    NASA Astrophysics Data System (ADS)

    Gu, Baohua; Mehlhorn, Tonia L.; Liang, Liyuan; McCarthy, John F.

    1996-06-01

    Different organic compounds or fractions of natural organic matter (NOM) show different adsorption affinities ( K) and capacities ( qm) on mineral surfaces. We hypothesize that these different organic compounds or fractions compete for adsorption when surface adsorption sites are limited. In this study, competitive adsorption of binary mixtures of Suwannee River NOM (SR-NOM), polyacrylic acid (PAA), phthalic acid, and salicylic acid on iron oxide was investigated at a constant solid:solution ratio, temperature, and pressure, but at varying C weight fractions, pH, and solution concentrations of the mixture. Results revealed that, in general, PAA is the most competitive whereas SR-NOM is more competitive than phthalic and salicylic acids. The competitive adsorption of these organic compounds is pH-dependent. At pH < 4, PAA becomes less competitive than SR-NOM or phthalic and salicylic acids. The competition among these organic compounds may be related to their carboxyl functional groups and their molecular structure. The overall strong competitiveness of PAA at pH > 4 in comparison with other organics is attributed to its high carboxyl density and linear molecular structure, which promote strong surface complexation with iron oxide. Because of the heterogeneity or polydispersity of NOM, this research indicates that NOM partitioning and transport in the subsurface soil environment are influenced by the dynamic competitive interactions between NOM subcomponents (or fractions). This process ultimately influences the distribution, interaction, and cotransport of contaminants and mineral colloids that are associated with NOM.

  15. A Prediction of the Damping Properties of Hindered Phenol AO-60/polyacrylate Rubber (AO-60/ACM) Composites through Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Yang, Da-Wei; Zhao, Xiu-Ying; Zhang, Geng; Li, Qiang-Guo; Wu, Si-Zhu

    2016-05-01

    Molecule dynamics (MD) simulation, a molecular-level method, was applied to predict the damping properties of AO-60/polyacrylate rubber (AO-60/ACM) composites before experimental measures were performed. MD simulation results revealed that two types of hydrogen bond, namely, type A (AO-60) -OH•••O=C- (ACM), type B (AO-60) - OH•••O=C- (AO-60) were formed. Then, the AO-60/ACM composites were fabricated and tested to verify the accuracy of the MD simulation through dynamic mechanical thermal analysis (DMTA). DMTA results showed that the introduction of AO-60 could remarkably improve the damping properties of the composites, including the increase of glass transition temperature (Tg) alongside with the loss factor (tan δ), also indicating the AO-60/ACM(98/100) had the best damping performance amongst the composites which verified by the experimental.

  16. Decorating multi-walled carbon nanotubes with nickel nanoparticles for selective hydrogenation of citral

    NASA Astrophysics Data System (ADS)

    Tang, Yuechao; Yang, Dong; Qin, Feng; Hu, Jianhua; Wang, Changchun; Xu, Hualong

    2009-08-01

    The nanocomposites of multi-walled carbon nanotubes (MWNTs) decorated with nickel nanoparticles were conveniently prepared by a chemical reduction of nickel salt in the present of poly(acrylic acid) grafted MWNTs (PAA- g-MWNTs). Due to the strong interaction between Ni 2+ and -COOH, PAA- g-MWNTs became an excellent supporting material for Ni nanoparticles. The morphology and distribution of Ni nanoparticles on the surface of MWNTs were greatly influenced by the reduction temperatures, the experimental results also showed that the distribution of Ni nanoparticles was greatly improved while the MWNTs were modified by poly(acrylic acid) (PAA). The hydrogenation activity and selectivity of MWNTs decorated with Ni nanoparticles (Ni-MWNTs) for α, β-unsaturated aldehyde (citral) were also studied, and the experimental results showed that the citronellal, an important raw material for flavoring and perfumery industries, is the favorable product with a percentage as high as 86.9%, which is 7 times higher than that of catalyst by Ni-supported active carbon (Ni-AC).

  17. Thermo-/pH-responsive behaviours of base-rich diblock polyampholytes in aqueous solution: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Han, Xia; Feng, Jian; Dong, Fang; Zhang, Xuxia; Liu, Honglai; Hu, Ying

    2014-08-01

    We report on the thermo-responsive and pH-responsive behaviours exhibited by two poly(acrylic acid)-poly(2-(dimethylamino)ethyl methacrylate) diblock copolymers with unbalanced acid-base compositions, PAA40-PDMAEMA120 and PAA40-PDMAEMA285, in water, a selective solvent. Using a combination of ultraviolet-visible (UV-vis) spectroscopy and dynamic light scattering, the dual-stimuli responsive behaviours can be clearly detected. The ζ-potential decreases sharply for a symmetrical counterpart PAA60-PDMAEMA70 solution, while it changes evenly for PAA40-PDMAEMA120 and PAA40-PDMAEMA285 solutions because of the asymmetrical compositions. The lower critical solution temperature of the PAA40-PDMAEMA285 solution is always less than that of the PAA40-PDMAEMA120 solution at the same solution concentration and pH values. The molecular dynamics simulation is used to explore the molecular mechanism of the responsive behaviour. The simulation also evidences the presence of dual-stimuli responsive behaviour of the copolymer with respect to changes in temperature and pH in aqueous solutions. The radius of gyration Rg and the end-to-end distance Re of the asymmetric polyampholyte A20-B60 are smaller than those of the symmetric one A40-B40 at all simulated temperatures, which indicates increased aggregation behaviour and the compact aggregates of asymmetric polyampholyte chains. The effect of polymer molecular mass MW on the aggregation behaviour seems to be more profound than that of polymer composition, which may be attributed to the fact that increasing the molecular weight of the copolymer increases the variability of the micelle sizes. Additionally, hydrophobic interaction plays a key role in the aggregation process.

  18. Healable and Optically Transparent Polymeric Films Capable of Being Erased on Demand.

    PubMed

    Wang, Yan; Li, Tianqi; Li, Siheng; Guo, Ruibing; Sun, Junqi

    2015-06-24

    Different from living organisms, artificial materials can only undergo a limited number of damage/healing processes and cannot heal severe damage. As an alternative to solve this problem, we report in this study the fabrication of erasable, optically transparent and healable films by exponential layer-by-layer assembly of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO). The hydrogen-bonded PAA/PEO films are highly transparent, capable of conveniently healing damages and being erased under external stimuli. The PAA/PEO films can heal damages such as scratches and deep cuts for multiple times in the same location by exposure to pH 2.5 water or humid N2 flow. The healability of the PAA/PEO films originates from the reversibility of the hydrogen bonding interaction between PAA and PEO, and the tendency of films to flow upon adsorption of water. When the damage exceeds the capability of the films to repair, the damaged films can be conveniently erased from substrates to facilitate the replacement of the damaged films with new ones. The combination of healability and erasibility provides a new way to the design of transparent films with enhanced reliability and extended service life. PMID:26040425

  19. Photothermal effects and toxicity of Fe3O4 nanoparticles via near infrared laser irradiation for cancer therapy.

    PubMed

    Dunn, Andrew W; Ehsan, Sadat M; Mast, David; Pauletti, Giovanni M; Xu, Hong; Zhang, Jiaming; Ewing, Rodney C; Shi, Donglu</