Science.gov

Sample records for polyadenylation activates oncogenes

  1. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  2. Characterization of Rous sarcoma virus polyadenylation site use in vitro

    SciTech Connect

    Maciolek, Nicole L.; McNally, Mark T.

    2008-05-10

    Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.

  3. The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation.

    PubMed

    Lyons, Rebecca; Iwase, Akira; Gänsewig, Thomas; Sherstnev, Alexander; Duc, Céline; Barton, Geoffrey J; Hanada, Kousuke; Higuchi-Takeuchi, Mieko; Matsui, Minami; Sugimoto, Keiko; Kazan, Kemal; Simpson, Gordon G; Shirasu, Ken

    2013-10-09

    RNA-binding proteins (RBPs) play an important role in plant host-microbe interactions. In this study, we show that the plant RBP known as FPA, which regulates 3'-end mRNA polyadenylation, negatively regulates basal resistance to bacterial pathogen Pseudomonas syringae in Arabidopsis. A custom microarray analysis reveals that flg22, a peptide derived from bacterial flagellins, induces expression of alternatively polyadenylated isoforms of mRNA encoding the defence-related transcriptional repressor ETHYLENE RESPONSE FACTOR 4 (ERF4), which is regulated by FPA. Flg22 induces expression of a novel isoform of ERF4 that lacks the ERF-associated amphiphilic repression (EAR) motif, while FPA inhibits this induction. The EAR-lacking isoform of ERF4 acts as a transcriptional activator in vivo and suppresses the flg22-dependent reactive oxygen species burst. We propose that FPA controls use of proximal polyadenylation sites of ERF4, which quantitatively limit the defence response output.

  4. Oncogenic activation of NF-kappaB.

    PubMed

    Staudt, Louis M

    2010-06-01

    Recent genetic evidence has established a pathogenetic role for NF-kappaB signaling in cancer. NF-kappaB signaling is engaged transiently when normal B lymphocytes respond to antigens, but lymphomas derived from these cells accumulate genetic lesions that constitutively activate NF-kappaB signaling. Many genetic aberrations in lymphomas alter CARD11, MALT1, or BCL10, which constitute a signaling complex that is intermediate between the B-cell receptor and IkappaB kinase. The activated B-cell-like subtype of diffuse large B-cell lymphoma activates NF-kappaB by a variety of mechanisms including oncogenic mutations in CARD11 and a chronic active form of B-cell receptor signaling. Normal plasma cells activate NF-kappaB in response to ligands in the bone marrow microenvironment, but their malignant counterpart, multiple myeloma, sustains a variety of genetic hits that stabilize the kinase NIK, leading to constitutive activation of the classical and alternative NF-kappaB pathways. Various oncogenic abnormalities in epithelial cancers, including mutant K-ras, engage unconventional IkappaB kinases to activate NF-kappaB. Inhibition of constitutive NF-kappaB signaling in each of these cancer types induces apoptosis, providing a rationale for the development of NF-kappaB pathway inhibitors for the treatment of cancer.

  5. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.

    PubMed

    Northcott, Paul A; Lee, Catherine; Zichner, Thomas; Stütz, Adrian M; Erkek, Serap; Kawauchi, Daisuke; Shih, David J H; Hovestadt, Volker; Zapatka, Marc; Sturm, Dominik; Jones, David T W; Kool, Marcel; Remke, Marc; Cavalli, Florence M G; Zuyderduyn, Scott; Bader, Gary D; VandenBerg, Scott; Esparza, Lourdes Adriana; Ryzhova, Marina; Wang, Wei; Wittmann, Andrea; Stark, Sebastian; Sieber, Laura; Seker-Cin, Huriye; Linke, Linda; Kratochwil, Fabian; Jäger, Natalie; Buchhalter, Ivo; Imbusch, Charles D; Zipprich, Gideon; Raeder, Benjamin; Schmidt, Sabine; Diessl, Nicolle; Wolf, Stephan; Wiemann, Stefan; Brors, Benedikt; Lawerenz, Chris; Eils, Jürgen; Warnatz, Hans-Jörg; Risch, Thomas; Yaspo, Marie-Laure; Weber, Ursula D; Bartholomae, Cynthia C; von Kalle, Christof; Turányi, Eszter; Hauser, Peter; Sanden, Emma; Darabi, Anna; Siesjö, Peter; Sterba, Jaroslav; Zitterbart, Karel; Sumerauer, David; van Sluis, Peter; Versteeg, Rogier; Volckmann, Richard; Koster, Jan; Schuhmann, Martin U; Ebinger, Martin; Grimes, H Leighton; Robinson, Giles W; Gajjar, Amar; Mynarek, Martin; von Hoff, Katja; Rutkowski, Stefan; Pietsch, Torsten; Scheurlen, Wolfram; Felsberg, Jörg; Reifenberger, Guido; Kulozik, Andreas E; von Deimling, Andreas; Witt, Olaf; Eils, Roland; Gilbertson, Richard J; Korshunov, Andrey; Taylor, Michael D; Lichter, Peter; Korbel, Jan O; Wechsler-Reya, Robert J; Pfister, Stefan M

    2014-07-24

    Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.

  6. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq.

    PubMed

    Haenni, Simon; Ji, Zhe; Hoque, Mainul; Rust, Nigel; Sharpe, Helen; Eberhard, Ralf; Browne, Cathy; Hengartner, Michael O; Mellor, Jane; Tian, Bin; Furger, André

    2012-07-01

    Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.

  7. Activation of ras oncogenes preceding the onset of neoplasia

    SciTech Connect

    Kumar, R.; Barbacid, M. ); Sukumar, S. )

    1990-06-01

    The identification of ras oncogenes in human and animal cancers including precancerous lesions indicates that these genes participate in the early stages of neoplastic development. Yet, these observations do not define the timing of ras oncogene activation in the multistep process of carcinogenesis. To ascertain the timing of ras oncogene activation, an animal model system was devised that involves the induction of mammary carcinomas in rats exposed at birth to the carcinogen nitrosomethylurea. High-resolution restriction fragment length polymorphism analysis of polymerase chain reaction-amplified ras sequences revealed the presence of both H-ras and K-ras oncogenes in normal mammary glands 2 weeks after carcinogen treatment and at least 2 months before the onset of neoplasia. These ras oncogenes can remain latent within the mammary gland until exposure to estrogens, demonstrating that activation of ras oncogenes can precede the onset of neoplasia and suggesting that normal physiological proliferative processes such as estrogen-induced mammary gland development may lead to neoplasia if the targeted cells harbor latent ras oncogenes.

  8. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin.

    PubMed

    Sowd, Gregory A; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J; Poeschla, Eric M; Engelman, Alan N

    2016-02-23

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies.

  9. Activation of oncogenes by radon progeny and x-rays

    SciTech Connect

    Ling, C.C.

    1990-01-01

    The overall goal of this proposal is to study the carcinogenic effect of both high and low LET radiation at the molecular level, utilizing techniques developed in molecular biology, cancer cell biology and radiation biology. The underlying assumption is that malignant transformation of normal cells is a multistep process requiring two or more molecular events in the genomic DNA. We hypothesize that radiation may induce such events in one or more steps of the multistep process. We will use in vitro models of transformation that reproduce the stepwise progression of normal cells toward the transformed phenotype and ask whether radiation can provide the necessary activating function at discrete steps along this path. Our strategy involves transfecting into normal primary cells a variety of cloned oncogenes that are known to supply only some of the functions necessary for full transformation. These partially transformed'' cells will be the targets for irradiation by x-rays and alpha particles. The results will provide the basis for assessing the ability of ionizing radiation to activate oncogenic functions that complement'' the oncogene already present in the transfected cells and produce the fully transformed phenotype. Progress is described. 121 refs.

  10. Oncogenic programmes and Notch activity: an 'organized crime'?

    PubMed

    Dominguez, Maria

    2014-04-01

    The inappropriate Notch signalling can influence virtually all aspect of cancer, including tumour-cell growth, survival, apoptosis, angiogenesis, invasion and metastasis, although it does not do this alone. Hence, elucidating the partners of Notch that are active in cancer is now the focus of much intense research activity. The genetic toolkits available, coupled to the small size and short life of the fruit fly Drosophila melanogaster, makes this an inexpensive and effective animal model, suited to large-scale cancer gene discovery studies. The fly eye is not only a non-vital organ but its stereotyped size and disposition also means it is easy to screen for mutations that cause tumours and metastases and provides ample opportunities to test cancer theories and to unravel unanticipated nexus between Notch and other cancer genes, or to discover unforeseen Notch's partners in cancer. These studies suggest that Notch's oncogenic capacity is brought about not simply by increasing signal strength but through partnerships, whereby oncogenes gain more by cooperating than acting individually, as in a ring 'organized crime'.

  11. Insulator dysfunction and oncogene activation in IDH mutant gliomas.

    PubMed

    Flavahan, William A; Drier, Yotam; Liau, Brian B; Gillespie, Shawn M; Venteicher, Andrew S; Stemmer-Rachamimov, Anat O; Suvà, Mario L; Bernstein, Bradley E

    2016-01-07

    Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.

  12. Endogenous Retrotransposition Activates Oncogenic Pathways in Hepatocellular Carcinoma

    PubMed Central

    Shukla, Ruchi; Upton, Kyle R.; Muñoz-Lopez, Martin; Gerhardt, Daniel J.; Fisher, Malcolm E.; Nguyen, Thu; Brennan, Paul M.; Baillie, J. Kenneth; Collino, Agnese; Ghisletti, Serena; Sinha, Shruti; Iannelli, Fabio; Radaelli, Enrico; Dos Santos, Alexandre; Rapoud, Delphine; Guettier, Catherine; Samuel, Didier; Natoli, Gioacchino; Carninci, Piero; Ciccarelli, Francesca D.; Garcia-Perez, Jose Luis; Faivre, Jamila; Faulkner, Geoffrey J.

    2013-01-01

    Summary LINE-1 (L1) retrotransposons are mobile genetic elements comprising ∼17% of the human genome. New L1 insertions can profoundly alter gene function and cause disease, though their significance in cancer remains unclear. Here, we applied enhanced retrotransposon capture sequencing (RC-seq) to 19 hepatocellular carcinoma (HCC) genomes and elucidated two archetypal L1-mediated mechanisms enabling tumorigenesis. In the first example, 4/19 (21.1%) donors presented germline retrotransposition events in the tumor suppressor mutated in colorectal cancers (MCC). MCC expression was ablated in each case, enabling oncogenic β-catenin/Wnt signaling. In the second example, suppression of tumorigenicity 18 (ST18) was activated by a tumor-specific L1 insertion. Experimental assays confirmed that the L1 interrupted a negative feedback loop by blocking ST18 repression of its enhancer. ST18 was also frequently amplified in HCC nodules from Mdr2−/− mice, supporting its assignment as a candidate liver oncogene. These proof-of-principle results substantiate L1-mediated retrotransposition as an important etiological factor in HCC. PMID:23540693

  13. Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.

    PubMed

    Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M

    2017-01-24

    Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo.

  14. Cancer genes: rare recombinants instead of activated oncogenes (a review).

    PubMed Central

    Duesberg, P H

    1987-01-01

    The 20 known transforming (onc) genes of retroviruses are defined by sequences that are transduced from cellular genes termed protooncogenes or cellular oncogenes. Based on these sequences, viral onc genes have been postulated to be transduced cellular cancer genes, and proto-onc genes have been postulated to be latent cancer genes that can be activated from within the cell to cause virus-negative tumors. The hypothesis is popular because it promises direct access to cellular cancer genes. However, the existence of latent cancer genes presents a paradox, since such genes are clearly undesirable. The hypothesis predicts that viral onc genes and proto-onc genes are isogenic; that expression of proto-onc genes induces tumors; that activated proto-onc genes transform diploid cells upon transfection, like viral onc genes; and that diploid tumors exist. As yet, none of these predictions is confirmed. Instead: Structural comparisons between viral onc genes, essential retroviral genes, and proto-onc genes show that all viral onc genes are indeed new genes, rather than transduced cellular cancer genes. They are recombinants put together from truncated viral and truncated proto-onc genes. Proto-onc genes are frequently expressed in normal cells. To date, not one activated proto-onc gene has been isolated that transforms diploid cells. Above all, no diploid tumors with activated proto-onc genes have been found. Moreover, the probability of spontaneous transformation in vivo is at least 10(9) times lower than predicted from the mechanisms thought to activate proto-onc genes. Therefore, the hypothesis that proto-onc genes are latent cellular oncogenes appears to be an overinterpretation of sequence homology to structural and functional homology with viral onc genes. Here it is proposed that only rare truncations and illegitimate recombinations that alter the germ-line configuration of cellular genes generate viral and possibly cellular cancer genes. The clonal chromosome

  15. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection

    PubMed Central

    Flavell, Steven W.; Kim, Tae-Kyung; Gray, Jesse M.; Harmin, David A.; Hemberg, Martin; Hong, Elizabeth J.; Markenscoff-Papadimitriou, Eirene; Bear, Daniel M.; Greenberg, Michael E.

    2009-01-01

    SUMMARY Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorders including epilepsy and autism-spectrum disorders, suggesting that these disorders may be caused by disruption of an activity-dependent gene program that controls synapse development. Our analyses also reveal that neuronal activity promotes alternative polyadenylation site usage at many of the MEF2 target genes, leading to the production of truncated mRNAs that may have different functions than their full-length counterparts. Taken together, these analyses suggest that the ubiquitously expressed transcription factor MEF2 regulates an intricate transcriptional program in neurons that controls synapse development. PMID:19109909

  16. Negative Suppressors of Oncogenic Activation of the Met Receptor Tyrosine Kinase

    DTIC Science & Technology

    2007-03-01

    progesterone (PR) receptor positive), basal ( triple negative : ER/PER/Her2 negative ) and the Her2 (ER/PR negative , Her2 amplification and/or overexpression...AD_________________ Award Number: W81XWH-06-1-0392 TITLE: Negative Suppressors of Oncogenic...CONTRACT NUMBER Negative Suppressors of Oncogenic Activation of the Met Receptor 5b. GRANT NUMBER W81XWH-06-1-0392 5c. PROGRAM ELEMENT NUMBER

  17. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.

    PubMed

    Ozsolak, Fatih; Kapranov, Philipp; Foissac, Sylvain; Kim, Sang Woo; Fishilevich, Elane; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-12-10

    The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.

  18. Activation of c-myc and c-K-ras oncogenes in primary rat tumors induced by ionizing radiation.

    PubMed Central

    Sawey, M J; Hood, A T; Burns, F J; Garte, S J

    1987-01-01

    An activated K-ras oncogene was detected by transfection in NIH 3T3 cells and by Southern blot analysis in 6 of 12 rat skin tumors induced by ionizing radiation. The DNA from 10 of the 12 tumors also showed c-myc gene amplification and restriction polymorphisms. Evidence for tissue specificity was observed in patterns of oncogene activation, with each of three clear cell carcinomas exhibiting activation of both c-myc and K-ras oncogenes. Images PMID:3547086

  19. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins.

    PubMed

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D; Yan, Chunhong

    2014-03-28

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer.

  20. Netrin-1 exerts oncogenic activities through enhancing Yes-associated protein stability.

    PubMed

    Qi, Qi; Li, Dean Y; Luo, Hongbo R; Guan, Kun-Liang; Ye, Keqiang

    2015-06-09

    Yes-associated protein (YAP), a transcription coactivator, is the major downstream effector of the Hippo pathway, which plays a critical role in organ size control and cancer development. However, how YAP is regulated by extracellular stimuli in tumorigenesis remains incompletely understood. Netrin-1, a laminin-related secreted protein, displays proto-oncogenic activity in cancers. Nonetheless, the downstream signaling mediating its oncogenic effects is not well defined. Here we show that netrin-1 via its transmembrane receptors, deleted in colorectal cancer and uncoordinated-5 homolog, up-regulates YAP expression, escalating YAP levels in the nucleus and promoting cancer cell proliferation and migration. Inactivating netrin-1, deleted in colorectal cancer, or uncoordinated-5 homolog B (UNC5B) decreases YAP protein levels, abrogating cancer cell progression by netrin-1, whereas knockdown of mammalian STE20-like protein kinase 1/2 (MST1/2) or large tumor suppressor kinase 1/2 (Lats1/2), two sets of upstream core kinases of the Hippo pathway, has no effect in blocking netrin-1-induced up-regulation of YAP. Netrin-1 stimulates phosphatase 1A to dephosphorylate YAP, which leads to decreased ubiquitination and degradation, enhancing YAP accumulation and signaling. Hence, our findings support that netrin-1 exerts oncogenic activity through YAP signaling, providing a mechanism coupling extracellular signals to the nuclear YAP oncogene.

  1. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities.

    PubMed

    Kagawa, S; Natsuizaka, M; Whelan, K A; Facompre, N; Naganuma, S; Ohashi, S; Kinugasa, H; Egloff, A M; Basu, D; Gimotty, P A; Klein-Szanto, A J; Bass, A J; Wong, K-K; Diehl, J A; Rustgi, A K; Nakagawa, H

    2015-04-30

    Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.

  2. Activation of H-ras oncogene in 3-methylcholanthrene-transformed human cell line.

    PubMed

    Rhim, J S; Fujita, J; Park, J B

    1987-08-01

    DNA prepared from the 3-methylcholanthrene (3MC)-transformed human 312H cell line induced foci on NIH/3T3 cells, whereas DNAs prepared from 7,12-dimethylbenz[a]-anthracene-transformed and the dimethylsulfoxide control 312H cell lines failed to induce foci. The transformed gene from the 3MC-transformed 312H cells was identified as an activated form of the human cellular transforming H-ras oncogene. Analysis of the ras oncogene p21 product in this transformant by immunoprecipitation and gel electrophoresis suggested that this gene was activated by mutation in the 61st codon. These findings demonstrate that activation of a member of the ras gene family can occur in a chemically transformed human cell line.

  3. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  4. Inhibition of TWIST1 leads to activation of oncogene-induced senescence in oncogene-driven non-small cell lung cancer.

    PubMed

    Burns, Timothy F; Dobromilskaya, Irina; Murphy, Sara C; Gajula, Rajendra P; Thiyagarajan, Saravanan; Chatley, Sarah N H; Aziz, Khaled; Cho, Yoon-Jae; Tran, Phuoc T; Rudin, Charles M

    2013-04-01

    A large fraction of non-small cell lung cancers (NSCLC) are dependent on defined oncogenic driver mutations. Although targeted agents exist for EGFR- and EML4-ALK-driven NSCLCs, no therapies target the most frequently found driver mutation, KRAS. Furthermore, acquired resistance to the currently targetable driver mutations is nearly universally observed. Clearly a novel therapeutic approach is needed to target oncogene-driven NSCLCs. We recently showed that the basic helix-loop-helix transcription factor Twist1 cooperates with mutant Kras to induce lung adenocarcinoma in transgenic mouse models and that inhibition of Twist1 in these models led to Kras-induced senescence. In the current study, we examine the role of TWIST1 in oncogene-driven human NSCLCs. Silencing of TWIST1 in KRAS-mutant human NSCLC cell lines resulted in dramatic growth inhibition and either activation of a latent oncogene-induced senescence program or, in some cases, apoptosis. Similar effects were observed in EGFR mutation-driven and c-Met-amplified NSCLC cell lines. Growth inhibition by silencing of TWIST1 was independent of p53 or p16 mutational status and did not require previously defined mediators of senescence, p21 and p27, nor could this phenotype be rescued by overexpression of SKP2. In xenograft models, silencing of TWIST1 resulted in significant growth inhibition of KRAS-mutant, EGFR-mutant, and c-Met-amplified NSCLCs. Remarkably, inducible silencing of TWIST1 resulted in significant growth inhibition of established KRAS-mutant tumors. Together these findings suggest that silencing of TWIST1 in oncogene driver-dependent NSCLCs represents a novel and promising therapeutic strategy.

  5. Oncogene activation in spontaneous and chemically induced rodent tumors: implications for risk analysis

    SciTech Connect

    Reynolds, S.H.; Stowers, S.J.; Patterson, R.M.; Maronpot, R.R.; Anderson, M.W.

    1988-06-01

    The validity of rodent tumor end points in assessing the potential hazards of chemical exposure to humans is a somewhat controversial but very important issue since most chemicals are classified as potentially hazardous to humans on the basis of long-term carcinogenesis studies in rodents. The ability to distinguish between genotoxic, cytotoxic, or receptor-mediated promotion effects of chemical treatment would aid in the interpretation of rodent carcinogenesis data. Activated oncogenes in spontaneously occurring and chemically induced rodent tumors were examined and compared as one approach to determine the mechanism by which chemical treatment caused an increased incidence of rodent tumors. Different patterns of activated oncogenes were found not only in spontaneous versus chemically induced mouse liver tumors but also in a variety of spontaneous rat tumors versus chemically induced rat lung tumors. In the absence of cytotoxic effects, it could be argued that the chemicals in question activated protooncogenes by a direct genotoxic mechanism. These results provided a basis for the analysis of activated oncogenes in spontaneous and chemically induced rodent tumors to provide information at a molecular level to aid in the extrapolation of rodent carcinogenesis data to human risk assessment.

  6. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    SciTech Connect

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. ); Barrett, J.C.; Wiseman, R.W. ); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  7. Anti-oncogenic activity of signalling-defective epidermal growth factor receptor mutants.

    PubMed Central

    Redemann, N; Holzmann, B; von Rüden, T; Wagner, E F; Schlessinger, J; Ullrich, A

    1992-01-01

    Overexpression and autocrine activation of the epidermal growth factor receptor (EGF-R) cause transformation of cultured cells and correlate with tumor progression in cancer patients. Dimerization and transphosphorylation are crucial events in the process by which receptors with tyrosine kinase activity generate normal and transforming cellular signals. Interruption of this process by inactive receptor mutants offers the potential to inhibit ligand-induced cellular responses. Using recombinant retroviruses, we have examined the effects of signalling-incompetent EGF-R mutants on the growth-promoting and transforming potential of ligand-activated, overexpressed wild-type EGF-R and the v-erbB oncogene product. Expression of a soluble extracellular EGF-R domain had little if any effect on the growth and transformation of NIH 3T3 cells by either tyrosine kinase. However, both a kinase-negative EGF-R point mutant (HERK721A) and an EGF-R lacking 533 C-terminal amino acids efficiently inhibited wild-type EGF-R-mediated, de novo DNA synthesis and cell transformation in a dose-dependent manner. Furthermore, coexpression with the v-erbBES4 oncogene product in NIH 3T3 cells resulted in transphosphorylation of the HERK721A mutant receptor and reduced soft-agar colony growth but had no effect in a focus formation assay. These results demonstrate that signalling-defective receptor tyrosine kinase mutants differentially interfere with oncogenic signals generated by either overexpressed EGF-R or the retroviral v-erbBES4 oncogene product. Images PMID:1346334

  8. A human cellular sequence implicated in trk oncogene activation is DNA damage inducible

    SciTech Connect

    Ben-Ishai, R.; Scharf, R.; Sharon, R.; Kapten, I. )

    1990-08-01

    Xeroderma pigmentosum cells, which are deficient in the repair of UV light-induced DNA damage, have been used to clone DNA-damage-inducible transcripts in human cells. The cDNA clone designated pC-5 hybridizes on RNA gel blots to a 1-kilobase transcript, which is moderately abundant in nontreated cells and whose synthesis is enhanced in human cells following UV irradiation or treatment with several other DNA-damaging agents. UV-enhanced transcription of C-5 RNA is transient and occurs at lower fluences and to a greater extent in DNA-repair-deficient than in DNA-repair-proficient cells. Southern blot analysis indicates that the C-5 gene belongs to a multigene family. A cDNA clone containing the complete coding sequence of C-5 was isolated. Sequence analysis revealed that it is homologous to a human cellular sequence encoding the amino-terminal activating sequence of the trk-2h chimeric oncogene. The presence of DNA-damage-responsive sequences at the 5' end of a chimeric oncogene could result in enhanced expression of the oncogene in response to carcinogens.

  9. Activation of ras oncogene in aflatoxin-induced rat liver carcinogenesis.

    PubMed Central

    Sinha, S; Webber, C; Marshall, C J; Knowles, M A; Proctor, A; Barrass, N C; Neal, G E

    1988-01-01

    The presence of activated transforming genes was investigated in four primary aflatoxin-induced rat liver tumors in male Fischer rats, in two cell lines generated from such tumors, in an epithelial liver-derived nontransformed cell line, and in the latter cell line after transformation by aflatoxin B1 in vitro. When DNA extracted from these sources was transfected into NIH 3T3 cells, negative results were obtained from focus assays. Cotransfection of these DNA samples with a gene for resistance to G418, followed by selection for resistance to that antibiotic, and tumorigenicity testing in nude mice demonstrated DNA-mediated transfer of the neoplastic phenotype in all cases except for DNA from the nontransformed cell line. DNA extracted from these primary nude mouse tumors used in a secondary round of transfection with NIH 3T3 cells gave positive results in focus assays, which were conserved through succeeding rounds of transfection. By use of appropriate radiolabeled probes, activated ras oncogenes were detected in all samples. N-ras activation was detected in three of the primary rat liver tumors and both hepatoma cell lines. Ki-ras activation was detected in one primary rat liver tumor, and Ha-ras activation was detected in the cell line transformed in vitro with activated aflatoxin B1. The activated Ki-ras oncogene was further characterized by use of synthetic oligonucleotide probes and was shown to contain a G----A transition at the second nucleotide in codon 12. Images PMID:3287372

  10. RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex.

    PubMed

    Jia, Huijue; Wang, Xuying; Anderson, James T; Jankowsky, Eckhard

    2012-05-08

    Many RNA-processing events in the cell nucleus involve the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for processing by the nuclear exosome. In addition, TRAMP functions as an exosome cofactor during RNA degradation, and it has been speculated that this role involves disruption of RNA secondary structure. However, it is unknown whether TRAMP displays RNA unwinding activity. It is also not clear how unwinding would be coordinated with polyadenylation and the function of the RNA helicase Mtr4p in modulating poly(A) addition. Here, we show that TRAMP robustly unwinds RNA duplexes. The unwinding activity of Mtr4p is significantly stimulated by Trf4p/Air2p, but the stimulation of Mtr4p does not depend on ongoing polyadenylation. Nonetheless, polyadenylation enables TRAMP to unwind RNA substrates that it otherwise cannot separate. Moreover, TRAMP displays optimal unwinding activity on substrates with a minimal Mtr4p binding site comprised of adenylates. Our results suggest a model for coordination between unwinding and polyadenylation activities by TRAMP that reveals remarkable synergy between helicase and poly(A) polymerase.

  11. Frequency distribution of pre-messenger RNA sequences in polyadenylated and non-polyadenylated nuclear RNA from Friend cells.

    PubMed Central

    Balmain, A; Minty, A J; Birnie, G D

    1980-01-01

    Hybridisation of cDNA probes for abundant and rare polysomal polyadenylated RNAs with polyadenylated and non-polyadenylated nuclear RNA from Friend cells indicated that the abundant polysomal polyadenylated RNA sequences were present at a higher concentration in the nucleus than rare polysomal sequences, but at a reduced range of concentrations. The ratio of the concentrations of abundant and rare sequences was about 3 in non-polyadenylated nuclear RNA, 9 in polyadenylated nuclear RNA and 13 in polysomal polyadenylated RNA. This suggests that polyadenylation may play a role in the quantitative selection of sequences for transport to the cytoplasm. Polyadenylation cannot be the only signal for transport, since a highly complex population of nucleus-confined polyadenylated molecules exists, each of which is present on average at less than one copy per cell. PMID:7433127

  12. The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function.

    PubMed

    Wan, Lixin; Chen, Ming; Cao, Juxiang; Dai, Xiangpeng; Yin, Qing; Zhang, Jinfang; Song, Su-Jung; Lu, Ying; Liu, Jing; Inuzuka, Hiroyuki; Katon, Jesse M; Berry, Kelsey; Fung, Jacqueline; Ng, Christopher; Liu, Pengda; Song, Min Sup; Xue, Lian; Bronson, Roderick T; Kirschner, Marc W; Cui, Rutao; Pandolfi, Pier Paolo; Wei, Wenyi

    2017-02-07

    BRAF drives tumorigenesis by coordinating the activation of RAS/RAF/MEK/ERK oncogenic signaling cascade. However, upstream pathway(s) governing BRAF kinase activity and protein stability remains undefined. Here, we report that in primary cells with active APCFZR1, APCFZR1 earmarks BRAF for ubiquitination-mediated proteolysis, while in cancer cells with APC-free FZR1, FZR1 suppresses BRAF through disrupting BRAF dimerization. Moreover, we identified FZR1 as a direct target of ERK and CYCLIN D1/CDK4 kinases. Phosphorylation of FZR1 inhibits APCFZR1, leading to elevation of a cohort of oncogenic APCFZR1 substrates to facilitate melanomagenesis. Importantly, CDK4 and/or BRAF/MEK inhibitors restore APCFZR1 E3 ligase activity, which might be critical for their clinical effects. Furthermore, FZR1 depletion co-operates with AKT hyper-activation to transform primary melanocytes, while genetic ablation of Fzr1 synergizes with Pten loss, leading to aberrant co-activation of BRAF/ERK and AKT signaling in mice. Our findings therefore reveal a reciprocal suppression mechanism between FZR1 and BRAF in controlling tumorigenesis.

  13. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    PubMed Central

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-01-01

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene. PMID:9184210

  14. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    SciTech Connect

    Fang, Liping; Xu, Yinghui; Zou, Lijuan

    2014-03-28

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis.

  15. Activation of diverse signaling pathways by oncogenic PIK3CA mutations

    PubMed Central

    Wu, Xinyan; Renuse, Santosh; Sahasrabuddhe, Nandini A.; Zahari, Muhammad Saddiq; Chaerkady, Raghothama; Kim, Min-Sik; Nirujogi, Raja S.; Mohseni, Morassa; Kumar, Praveen; Raju, Rajesh; Zhong, Jun; Yang, Jian; Neiswinger, Johnathan; Jeong, Jun-Seop; Newman, Robert; Powers, Maureen A.; Somani, Babu Lal; Gabrielson, Edward; Sukumar, Saraswati; Stearns, Vered; Qian, Jiang; Zhu, Heng; Vogelstein, Bert; Park, Ben Ho; Pandey, Akhilesh

    2014-01-01

    The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signaling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signaling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signaling events and for discovering novel signaling molecules as readouts of pathway activation or potential therapeutic targets. PMID:25247763

  16. One reporter for in-cell activity profiling of majority of protein kinase oncogenes.

    PubMed

    Gudernova, Iva; Foldynova-Trantirkova, Silvie; Ghannamova, Barbora El; Fafilek, Bohumil; Varecha, Miroslav; Balek, Lukas; Hruba, Eva; Jonatova, Lucie; Jelinkova, Iva; Kunova Bosakova, Michaela; Trantirek, Lukas; Mayer, Jiri; Krejci, Pavel

    2017-02-15

    In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies.

  17. One reporter for in-cell activity profiling of majority of protein kinase oncogenes

    PubMed Central

    Gudernova, Iva; Foldynova-Trantirkova, Silvie; Ghannamova, Barbora El; Fafilek, Bohumil; Varecha, Miroslav; Balek, Lukas; Hruba, Eva; Jonatova, Lucie; Jelinkova, Iva; Bosakova, Michaela Kunova; Trantirek, Lukas; Mayer, Jiri; Krejci, Pavel

    2017-01-01

    In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies. DOI: http://dx.doi.org/10.7554/eLife.21536.001 PMID:28199182

  18. ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation.

    PubMed

    Sashida, Goro; Liu, Yan; Elf, Shannon; Miyata, Yasuhiko; Ohyashiki, Kazuma; Izumi, Miki; Menendez, Silvia; Nimer, Stephen D

    2009-07-01

    Several ETS transcription factors, including ELF4/MEF, can function as oncogenes in murine cancer models and are overexpressed in human cancer. We found that Elf4/Mef activates Mdm2 expression; thus, lack of or knockdown of Elf4/Mef reduces Mdm2 levels in mouse embryonic fibroblasts (mef's), leading to enhanced p53 protein accumulation and p53-dependent senescence. Even though p53 is absent in Elf4(-/-) p53(-/-) mef's, neither oncogenic H-Ras(V12) nor c-myc can induce transformation of these cells. This appears to relate to the INK4a/ARF locus; both p19(ARF) and p16 are increased in Elf4(-/-) p53(-/-) mef's, and expression of Bmi-1 or knockdown of p16 in this context restores H-Ras(V12)-induced transformation. Thus, ELF4/MEF promotes tumorigenesis by inhibiting both the p53 and p16/Rb pathways.

  19. Lipid phosphatase SHIP2 functions as oncogene in colorectal cancer by regulating PKB activation

    PubMed Central

    Hoekstra, Elmer; Das, Asha M.; Willemsen, Marcella; Swets, Marloes; Kuppen, Peter J.K.; van der Woude, Christien J.; Bruno, Marco J.; Shah, Jigisha P.; Hagen, Timo L.M. ten; Chisholm, John D.; Kerr, William G.; Peppelenbosch, Maikel P.; Fuhler, Gwenny M.

    2016-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related death, encouraging the search for novel therapeutic targets affecting tumor cell proliferation and migration. These cellular processes are under tight control of two opposing groups of enzymes; kinases and phosphatases. Aberrant activity of kinases is observed in many forms of cancer and as phosphatases counteract such “oncogenic” kinases, it is generally assumed that phosphatases function as tumor suppressors. However, emerging evidence suggests that the lipid phosphatase SH2-domain-containing 5 inositol phosphatase (SHIP2), encoded by the INPPL1 gene, may act as an oncogene. Just like the well-known tumor suppressor gene Phosphatase and Tensin Homolog (PTEN) it hydrolyses phosphatidylinositol (3,4,5) triphosphate (PI(3,4,5)P3). However, unlike PTEN, the reaction product is PI(3,4)P2, which is required for full activation of the downstream protein kinase B (PKB/Akt), suggesting that SHIP2, in contrast to PTEN, could have a tumor initiating role through PKB activation. In this work, we investigated the role of SHIP2 in colorectal cancer. We found that SHIP2 and INPPL1 expression is increased in colorectal cancer tissue in comparison to adjacent normal tissue, and this is correlated with decreased patient survival. Moreover, SHIP2 is more active in colorectal cancer tissue, suggesting that SHIP2 can induce oncogenesis in colonic epithelial cells. Furthermore, in vitro experiments performed on colorectal cancer cell lines shows an oncogenic role for SHIP2, by enhancing chemoresistance, cell migration, and cell invasion. Together, these data indicate that SHIP2 expression contributes to the malignant potential of colorectal cancer, providing a possible target in the fight against this devastating disease. PMID:27716613

  20. Dissecting the signaling pathways associated with the oncogenic activity of MLK3 P252H mutation

    PubMed Central

    2014-01-01

    Background MLK3 gene mutations were described to occur in about 20% of microsatellite unstable gastrointestinal cancers and to harbor oncogenic activity. In particular, mutation P252H, located in the kinase domain, was found to have a strong transforming potential, and to promote the growth of highly invasive tumors when subcutaneously injected in nude mice. Nevertheless, the molecular mechanism underlying the oncogenic activity of P252H mutant remained elusive. Methods In this work, we performed Illumina Whole Genome arrays on three biological replicas of human HEK293 cells stably transfected with the wild-type MLK3, the P252H mutation and with the empty vector (Mock) in order to identify the putative signaling pathways associated with P252H mutation. Results Our microarray results showed that mutant MLK3 deregulates several important colorectal cancer- associated signaling pathways such as WNT, MAPK, NOTCH, TGF-beta and p53, helping to narrow down the number of potential MLK3 targets responsible for its oncogenic effects. A more detailed analysis of the alterations affecting the WNT signaling pathway revealed a down-regulation of molecules involved in the canonical pathway, such as DVL2, LEF1, CCND1 and c-Myc, and an up-regulation of DKK, a well-known negative regulator of canonical WNT signaling, in MLK3 mutant cells. Additionally, FZD6 and FZD10 genes, known to act as negative regulators of the canonical WNT signaling cascade and as positive regulators of the planar cell polarity (PCP) pathway, a non-canonic WNT pathway, were found to be up-regulated in P252H cells. Conclusion The results provide an overall view of the expression profile associated with mutant MLK3, and they support the functional role of mutant MLK3 by showing a deregulation of several signaling pathways known to play important roles in the development and progression of colorectal cancer. The results also suggest that mutant MLK3 may be a novel modulator of WNT signaling, and pinpoint the

  1. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  2. DNA sequence, structure, and tyrosine kinase activity of the Drosophila melanogaster abelson proto-oncogene homolog

    SciTech Connect

    Henkemeyer, M.J.; Bennett, R.L.; Gertler, F.B.; Hoffmann, F.M.

    1988-02-01

    The authors report their molecular characterization of the Drosophila melanogaster Abelson gene (abl), a gene in which recessive loss-of-function mutations result in lethality at the pupal stage of development. This essential gene consists of 10 exons extending over 26 kilobase pairs of genomic DNA. The DNA sequence encodes a protein of 1,520 amino acids with strong sequence similarity to the human c-abl proto-oncogene beginning in the type 1b 5' exon and extending through the region essential for tyrosine kinase activity. When the tyrosine kinase homologous region was expressed in Escherichia coli, phosphorylation of proteins on tyrosine residues was observed with an antiphosphotyrosine antibody. These results show that the abl gene is highly conserved through evolution and encodes a functional tyrosine protein kinase required for Drosophila development.

  3. Intrinsically active variants of Erk oncogenically transform cells and disclose unexpected autophosphorylation capability that is independent of TEY phosphorylation

    PubMed Central

    Smorodinsky-Atias, Karina; Goshen-Lago, Tal; Goldberg-Carp, Anat; Melamed, Dganit; Shir, Alexei; Mooshayef, Navit; Beenstock, Jonah; Karamansha, Yael; Darlyuk-Saadon, Ilona; Livnah, Oded; Ahn, Natalie G.; Admon, Arie; Engelberg, David

    2016-01-01

    The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk’s activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation. PMID:26658610

  4. Eukaryotic Elongation Factor 2 Kinase Activity Is Controlled by Multiple Inputs from Oncogenic Signaling

    PubMed Central

    Wang, Xuemin; Regufe da Mota, Sergio; Liu, Rui; Moore, Claire E.; Xie, Jianling; Lanucara, Francesco; Agarwala, Usha; Pyr dit Ruys, Sébastien; Vertommen, Didier; Rider, Mark H.; Eyers, Claire E.

    2014-01-01

    Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways. PMID:25182533

  5. Transcription termination and polyadenylation in retroviruses.

    PubMed Central

    Guntaka, R V

    1993-01-01

    The provirus structure of retroviruses is bracketed by long terminal repeats (LTRs). The two LTRs (5' and 3') are identical in nucleotide sequence and organization. They contain signals for transcription initiation as well as termination and cleavage polyadenylation. As in eukaryotic pre-mRNAs, the two common signals, the polyadenylation signal, AAUAAA, or a variant AGUAAA, and the G+U-rich sequence are present in all retroviruses. However, the AAUAAA sequence is present in the U3 region in some retroviruses and in the R region in other retroviruses. As in animal cell RNAs, both AAUAAA and G+U-rich sequences apparently contribute to the 3'-end processing of retroviral RNAs. In addition, at least in a few cases examined, the sequences in the U3 region determine the efficiency of 3'-end processing. In retroviruses in which the AAUAAA is localized in the R region, the poly(A) signal in the 3' LTR but not the 5' LTR must be selectively used for the production of genomic RNA. It appears that the short distance between the 5' cap site and polyadenylation signal in the 5' LTR precludes premature termination and polyadenylation. Since 5' and 3' LTRs are identical in sequence and structural organization yet function differently, it is speculated that flanking cellular DNA sequences, chromatin structure, and binding of transcription factors may be involved in the functional divergence of 5' and 3' LTRs of retroviruses. PMID:7902524

  6. GEP oncogene promotes cell proliferation through YAP activation in ovarian cancer.

    PubMed

    Yagi, H; Asanoma, K; Ohgami, T; Ichinoe, A; Sonoda, K; Kato, K

    2016-08-25

    G-protein-coupled receptors (GPCRs) and their ligands function in the progression of human malignancies. Gα12 and Gα13, encoded by GNA12 and GNA13, respectively, are referred to as the GEP oncogene and are implicated in tumor progression. However, the molecular mechanisms by which Gα12/13 activation promotes cancer progression are not fully elucidated. Here, we demonstrate elevated expression of Gα12/13 in human ovarian cancer tissues. Gα12/13 activation did not promote cellular migration in the ovarian cancer cell lines examined. Rather, Gα12/13 activation promoted cell growth. We used a synthetic biology approach using chimeric G proteins and GPCRs activated solely by artificial ligands to selectively trigger signaling pathways downstream of specific G proteins. We found that Gα12/13 promotes proliferation of ovarian cancer cells by activating the transcriptional coactivator YAP, a critical component of the Hippo signaling pathway. Furthermore, we reveal that inhibition of YAP by short hairpin RNA or a specific inhibitor prevented the growth of ovarian cancer cells. Therefore, YAP may be a suitable therapeutic target in ovarian cancer.

  7. Biologically active mutants with deletions in the v-mos oncogene assayed with retroviral vectors.

    PubMed Central

    Bold, R J; Donoghue, D J

    1985-01-01

    We have constructed retroviral expression vectors by manipulation of the Moloney murine leukemia virus genome such that an exogenous DNA sequence may be inserted and subsequently expressed when introduced into mammalian cells. A series of N-terminal deletions of the v-mos oncogene was constructed and assayed for biological activity with these retroviral expression vectors. The results of the deletion analysis demonstrate that the region of p37mos coding region upstream of the third methionine codon is dispensable with respect to transformation. However, deletion mutants of v-mos which allow initiation of translation at the fourth methionine codon have lost the biological activity of the parental v-mos gene. Furthermore, experiments were also carried out to define the C-terminal limit of the active region of p37mos by the construction of premature termination mutants by the insertion of a termination oligonucleotide. Insertion of the oligonucleotide just 69 base pairs upstream from the wild-type termination site abolished the focus-forming ability of v-mos. Thus, we have shown the N-terminal limit of the active region of p37mos to be between the third and fourth methionines, while the C-terminal limit is within the last 23 amino acids of the protein. PMID:3018503

  8. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation

    PubMed Central

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2014-01-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P<0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3’-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack there of (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation. PMID:25560149

  9. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation.

    PubMed

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2015-02-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P < 0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3'-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack thereof (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation.

  10. Novel small molecules targeting ciliary transport of Smoothened and oncogenic Hedgehog pathway activation

    PubMed Central

    Jung, Bomi; Messias, Ana C.; Schorpp, Kenji; Geerlof, Arie; Schneider, Günter; Saur, Dieter; Hadian, Kamyar; Sattler, Michael; Wanker, Erich E.; Hasenöder, Stefan; Lickert, Heiko

    2016-01-01

    Trafficking of the G protein-coupled receptor (GPCR) Smoothened (Smo) to the primary cilium (PC) is a potential target to inhibit oncogenic Hh pathway activation in a large number of tumors. One drawback is the appearance of Smo mutations that resist drug treatment, which is a common reason for cancer treatment failure. Here, we undertook a high content screen with compounds in preclinical or clinical development and identified ten small molecules that prevent constitutive active mutant SmoM2 transport into PC for subsequent Hh pathway activation. Eight of the ten small molecules act through direct interference with the G protein-coupled receptor associated sorting protein 2 (Gprasp2)-SmoM2 ciliary targeting complex, whereas one antagonist of ionotropic receptors prevents intracellular trafficking of Smo to the PC. Together, these findings identify several compounds with the potential to treat drug-resistant SmoM2-driven cancer forms, but also reveal off-target effects of established drugs in the clinics. PMID:26931153

  11. Activation of oncogenic tyrosine kinase signaling promotes insulin receptor-mediated cone photoreceptor survival

    PubMed Central

    Rajala, Ammaji; Wang, Yuhong; Rajala, Raju V.S.

    2016-01-01

    In humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population. Photoreceptors are postmitotic, but shed 10% of their outer segments daily, and must synthesize the membrane and protein equivalent of a proliferating cell each day. Although activation of oncogenic tyrosine kinase and inhibition of tyrosine phosphatase signaling is known to be essential for tumor progression, the cellular regulation of this signaling in postmitotic photoreceptor cells has not been studied. In the present study, we report that a novel G-protein coupled receptor–mediated insulin receptor (IR) signaling pathway is regulated by non-receptor tyrosine kinase Src through the inhibition of protein tyrosine phosphatase IB (PTP1B). We demonstrated the functional significance of this pathway through conditional deletion of IR and PTP1B in cones, in addition to delaying the death of cones in a mouse model of cone degeneration by activating the Src. This is the first study demonstrating the molecular mechanism of a novel signaling pathway in photoreceptor cells, which provides a window of opportunity to save the dying cones in retinal degenerative diseases. PMID:27391439

  12. Targeting of RET oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer

    PubMed Central

    Tortoreto, Monica; Doria, Filippo; Beretta, Giovanni L.; Zuco, Valentina; Freccero, Mauro; Borrello, Maria Grazia; Lanzi, Cinzia; Richter, Sara N.; Zaffaroni, Nadia; Folini, Marco

    2016-01-01

    Medullary thyroid cancer (MTC) relies on the aberrant activation of RET proto-oncogene. Though targeted approaches (i.e., tyrosine kinase inhibitors) are available, the absence of complete responses and the onset of resistance mechanisms indicate the need for novel therapeutic interventions. Due to their role in regulation of gene expression, G-quadruplexes (G4) represent attractive targets amenable to be recognized or stabilized by small molecules. Here, we report that exposure of MTC cells to a tri-substituted naphthalene diimide (NDI) resulted in a significant antiproliferative activity paralleled by inhibition of RET expression. Biophysical analysis and gene reporter assays showed that impairment of RET expression was consequent to the NDI-mediated stabilization of the G4 forming within the gene promoter. We also showed for the first time that systemic administration of the NDI in mice xenotransplanted with MTC cells resulted in a remarkable inhibition of tumor growth in vivo. Overall, our findings indicate that NDI-dependent RET G4 stabilization represents a suitable approach to control RET transcription and delineate the rationale for the development of G4 stabilizing-based treatments for MTC as well as for other tumors in which RET may have functional and therapeutic implications. PMID:27351133

  13. Putting an ‘End’ to HIV mRNAs: capping and polyadenylation as potential therapeutic targets

    PubMed Central

    2013-01-01

    Like most cellular mRNAs, the 5′ end of HIV mRNAs is capped and the 3′ end matured by the process of polyadenylation. There are, however, several rather unique and interesting aspects of these post-transcriptional processes on HIV transcripts. Capping of the highly structured 5′ end of HIV mRNAs is influenced by the viral TAT protein and a population of HIV mRNAs contains a trimethyl-G cap reminiscent of U snRNAs involved in splicing. HIV polyadenylation involves active repression of a promoter-proximal polyadenylation signal, auxiliary upstream regulatory elements and moonlighting polyadenylation factors that have additional impacts on HIV biology outside of the constraints of classical mRNA 3’ end formation. This review describes these post-transcriptional novelties of HIV gene expression as well as their implications in viral biology and as possible targets for therapeutic intervention. PMID:24330569

  14. Folic acid mediates activation of the pro-oncogene STAT3 via the Folate Receptor alpha.

    PubMed

    Hansen, Mariann F; Greibe, Eva; Skovbjerg, Signe; Rohde, Sarah; Kristensen, Anders C M; Jensen, Trine R; Stentoft, Charlotte; Kjær, Karina H; Kronborg, Camilla S; Martensen, Pia M

    2015-07-01

    The signal transducer and activator of transcription 3 (STAT3) is a well-described pro-oncogene found constitutively activated in several cancer types. Folates are B vitamins that, when taken up by cells through the Reduced Folate Carrier (RFC), are essential for normal cell growth and replication. Many cancer cells overexpress a glycophosphatidylinositol (GPI)-anchored Folate Receptor α (FRα). The function of FRα in cancer cells is still poorly described, and it has been suggested that transport of folate is not its primary function in these cells. We show here that folic acid and folinic acid can activate STAT3 through FRα in a Janus Kinase (JAK)-dependent manner, and we demonstrate that gp130 functions as a transducing receptor for this signalling. Moreover, folic acid can promote dose dependent cell proliferation in FRα-positive HeLa cells, but not in FRα-negative HEK293 cells. After folic acid treatment of HeLa cells, up-regulation of the STAT3 responsive genes Cyclin A2 and Vascular Endothelial Growth Factor (VEGF) were verified by qRT-PCR. The identification of this FRα-STAT3 signal transduction pathway activated by folic and folinic acid contributes to the understanding of the involvement of folic acid in preventing neural tube defects as well as in tumour growth. Previously, the role of folates in these diseases has been attributed to their roles as one-carbon unit donors following endocytosis into the cell. Our finding that folic acid can activate STAT3 via FRα adds complexity to the established roles of B9 vitamins in cancer and neural tube defects.

  15. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human melanoma cells

    PubMed Central

    Wilmott, James S.; Yan, Xu Guang; Liu, Xiao Ying; Luan, Qi; Guo, Su Tang; Jiang, Chen Chen; Tseng, Hsin-Yi; Scolyer, Richard A.; Jin, Lei; Zhang, Xu Dong

    2014-01-01

    Reduction in the expression of the anti-survival BH3-only proteins PUMA and Bim is associated with the pathogenesis of melanoma. However, we have found that the expression of the other BH3-only protein Noxa is commonly upregulated in melanoma cells, and that this is driven by oncogenic activation of MEK/ERK. Immunohistochemistry studies showed that Noxa was expressed at higher levels in melanomas than nevi. Moreover, the expression of Noxa was increased in metastatic compared to primary melanomas, and in thick primaries compared to thin primaries. Inhibition of oncogenic BRAFV600E or MEK downregulated Noxa, whereas activation of MEK/ERK caused its upregulation. In addition, introduction of BRAFV600E increased Noxa expression in melanocytes. Upregulation of Noxa was due to a transcriptional increase mediated by cAMP responsive element binding protein, activation of which was also increased by MEK/ERK signaling in melanoma cells. Significantly, Noxa appeared necessary for constitutive activation of autophagy, albeit at low levels, by MEK/ERK in melanoma cells. Furthermore, it was required for autophagy activation that delayed apoptosis in melanoma cells undergoing nutrient deprivation. These results reveal that oncogenic activation of MEK/ERK drives Noxa expression to promote autophagy, and suggest that Noxa has an indirect anti-apoptosis role in melanoma cells under nutrient starvation conditions. PMID:25365078

  16. Acetylation directs survivin nuclear localization to repress STAT3 oncogenic activity.

    PubMed

    Wang, Haijuan; Holloway, Michael P; Ma, Li; Cooper, Zachary A; Riolo, Matthew; Samkari, Ayman; Elenitoba-Johnson, Kojo S J; Chin, Y Eugene; Altura, Rachel A

    2010-11-12

    The multiple functions of the oncofetal protein survivin are dependent on its selective expression patterns within immunochemically distinct subcellular pools. The mechanism by which survivin localizes to these compartments, however, is only partly understood. Here we show that nuclear accumulation of survivin is promoted by CREB-binding protein (CBP)-dependent acetylation on lysine 129 (129K, Lys-129). We demonstrate a mechanism by which survivin acetylation at this position results in its homodimerization, while deacetylation promotes the formation of survivin monomers that heterodimerize with CRM1 and facilitate its nuclear export. Using proteomic analysis, we identified the oncogenic transcription factor STAT3 as a binding partner of nuclear survivin. We show that acetylated survivin binds to the N-terminal transcriptional activation domain of the STAT3 dimer and represses STAT3 transactivation of target gene promoters. Using multiplex PCR and DNA sequencing, we identified a single-nucleotide polymorphism (A → G) at Lys-129 that exists as a homozygous mutation in a neuroblastoma cell line and corresponds with a defect in survivin nuclear localization. Our results demonstrate that the dynamic equilibrium between survivin acetylation and deacetylation at amino acid 129 determines its interaction with CRM1, its subsequent subcellular localization, and its ability to inhibit STAT3 transactivation, providing a potential route for therapeutic intervention in STAT3-dependent tumors.

  17. Oncogenic KRAS activates an embryonic stem cell-like program in human colon cancer initiation.

    PubMed

    Le Rolle, Anne-France; Chiu, Thang K; Zeng, Zhaoshi; Shia, Jinru; Weiser, Martin R; Paty, Philip B; Chiu, Vi K

    2016-01-19

    Colorectal cancer is the third most frequently diagnosed cancer worldwide. Prevention of colorectal cancer initiation represents the most effective overall strategy to reduce its associated morbidity and mortality. Activating KRAS mutation (KRASmut) is the most prevalent oncogenic driver in colorectal cancer development, and KRASmut inhibition represents an unmet clinical need. We apply a systems-level approach to study the impact of KRASmut on stem cell signaling during human colon cancer initiation by performing gene set enrichment analysis on gene expression from human colon tissues. We find that KRASmut imposes the embryonic stem cell-like program during human colon cancer initiation from colon adenoma to stage I carcinoma. Expression of miR145, an embryonic SC program inhibitor, promotes cell lineage differentiation marker expression in KRASmut colon cancer cells and significantly suppresses their tumorigenicity. Our data support an in vivo plasticity model of human colon cancer initiation that merges the intrinsic stem cell properties of aberrant colon stem cells with the embryonic stem cell-like program induced by KRASmut to optimize malignant transformation. Inhibition of the embryonic SC-like program in KRASmut colon cancer cells reveals a novel therapeutic strategy to programmatically inhibit KRASmut tumors and prevent colon cancer.

  18. Anti-tumor activity of ESX1 on cancer cells harboring oncogenic K-ras mutation

    SciTech Connect

    Nakajima, Junta; Ishikawa, Susumu; Hamada, Jun-Ichi; Yanagihara, Masatomo; Koike, Takao; Hatakeyama, Masanori

    2008-05-23

    Human ESX1 is a 65-kilodalton (kDa) paired-like homeoprotein that is proteolytically processed into N-terminal 45-kDa and C-terminal 20-kDa fragments. The N-terminal ESX1 fragment, which contains the homeodomain, localizes to the nucleus and represses mRNA transcription from the K-ras gene. When we inoculated human colorectal carcinoma HCT116 constitutive expressing N-terminal region of ESX1 (N-ESX1) into nude mice, transfectant cells uniformly showed decreased tumor-forming activity compared with that of the parental cells. Furthermore, pretreatment of HCT116 carcinoma cells with a fusion protein consisting of N-ESX1 and the protein-transduction domain derived from the human immunodeficiency virus type-1 TAT protein gave rise to a dramatic reduction in the tumorigenicity of HCT116 cells in nude mice. Our results provide first in vivo evidence for the molecular targeting therapeutic application of the K-ras repressor ESX1, especially TAT-mediated transduction of N-ESX1, in the treatment of human cancers having oncogenic K-ras mutations.

  19. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin.

    PubMed

    Saud, Shakir M; Young, Matthew R; Jones-Hall, Yava L; Ileva, Lilia; Evbuomwan, Moses O; Wise, Jennifer; Colburn, Nancy H; Kim, Young S; Bobe, Gerd

    2013-09-01

    Analysis of the Polyp Prevention Trial showed an association between an isorhamnetin-rich diet and a reduced risk of advanced adenoma recurrence; however, the mechanism behind the chemoprotective effects of isorhamnetin remains unclear. Here, we show that isorhamnetin prevents colorectal tumorigenesis of FVB/N mice treated with the chemical carcinogen azoxymethane and subsequently exposed to colonic irritant dextran sodium sulfate (DSS). Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. MRI, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than the control diet. Isorhamnetin inhibited AOM/DSS-induced oncogenic c-Src activation and β-catenin nuclear translocation, while promoting the expression of C-terminal Src kinase (CSK), a negative regulator of Src family of tyrosine kinases. Similarly, in HT-29 colon cancer cells, isorhamnetin inhibited oncogenic Src activity and β-catenin nuclear translocation by inducing expression of csk, as verified by RNA interference knockdown of csk. Our observations suggest the chemoprotective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression.

  20. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells

    PubMed Central

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells. PMID:26269757

  1. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells.

    PubMed

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

  2. Intestine-specific homeobox (ISX) upregulates E2F1 expression and related oncogenic activities in HCC

    PubMed Central

    Chai, Chee-Yin; Hsi, Edward; Kuo, Hsing-Tao; Yokoyama, Kazunari K.; Hsu, Shih-Hsien

    2016-01-01

    Intestine-specific homeobox (ISX), a newly identified proto-oncogene, is involved in cell proliferation and progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms linking gene expression and tumor formation remain unclear. In this study, we found that ISX transcriptionally activated E2F transcription factor 1 (E2F1) and associated oncogenic activity by directly binding to the E2 site of its promoter. Forced expression of ISX increased the expression of and phosphorylated the serine residue at position 332 of E2F1, which may be translocated into the nucleus to form the E2F1–DP-1 complex, suggesting that the promotion of oncogenic activities of the ISX–E2F1 axis plays a critical role in hepatoma cells. Coexpression of ISX and E2F1 significantly promoted p53 and RB-mediated cell proliferation and anti-apoptosis, and repressed apoptosis and autophagy. In contrast, short hairpin RNAi-mediated attenuation of ISX and E2F1 decreased cell proliferation and malignant transformation, respectively, in hepatoma cells in vitro and in vivo. The mRNA expression of E2F1 and ISX in 238 paired specimens from human HCC patients, and the adjacent, normal tissues exhibited a tumor-specific expression pattern which was highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. Therefore, our results indicate that E2F1 is an important downstream gene of ISX in hepatoma progression. PMID:27175585

  3. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism.

    PubMed

    Ye, Fang; Lemieux, Hélène; Hoppel, Charles L; Hanson, Richard W; Hakimi, Parvin; Croniger, Colleen M; Puchowicz, Michelle; Anderson, Vernon E; Fujioka, Hisashi; Stavnezer, Ed

    2011-11-18

    Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.

  4. Activation of the LMO2 oncogene through a somatically acquired neomorphic promoter in T-cell acute lymphoblastic leukemia.

    PubMed

    Rahman, Sunniyat; Magnussen, Michael; León, Theresa E; Farah, Nadine; Li, Zhaodong; Abraham, Brian J; Alapi, Krisztina Z; Mitchell, Rachel J; Naughton, Tom; Fielding, Adele K; Pizzey, Arnold; Bustraan, Sophia; Allen, Christopher; Popa, Teodora; Pike-Overzet, Karin; Garcia-Perez, Laura; Gale, Rosemary E; Linch, David C; Staal, Frank J T; Young, Richard A; Look, A Thomas; Mansour, Marc R

    2017-03-07

    Somatic mutations within non-coding genomic regions that aberrantly activate oncogenes have remained poorly characterized. Here we describe recurrent activating intronic mutations of LMO2, a prominent oncogene in T-cell acute lymphoblastic leukemia (T-ALL). Heterozygous mutations were identified in PF-382 and DU.528 T-ALL cell lines, in addition to 3.7% (6/160) of pediatric and 5.5% (9/163) of adult T-ALL patient samples. The majority of indels harbour putative de novo MYB, ETS1 or RUNX1 consensus binding sites. Analysis of 5'-capped RNA transcripts in mutant cell lines identified the usage of an intermediate promoter site, with consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear causality between the mutation and oncogene dysregulation. Furthermore, the spectrum of CRISPR/Cas9-derived mutations provide important insights into the interconnected contributions of functional transcription factor binding. Finally, these mutations occur in the same intron as retroviral integration sites in gene therapy induced T-ALL, suggesting that such events occur at preferential sites in the non-coding genome.

  5. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea

    SciTech Connect

    Perantoni, A.O.; Rice, J.M.; Reed, C.D.; Watatani, M.; Wenk, M.L.

    1987-09-01

    Neurogenic tumors were selectively induced in high incidence in F344 rats by a single transplacental exposure to the direct-acting alkylating agent N-ethyl-N-nitrosourea (EtNU). The authors prepared DNA for transfection of NIH 3T3 cells from primary glial tumors of the brain and form schwannomas of the cranial and spinal nerves that developed in the transplacentally exposed offspring between 20 and 40 weeks after birth. DNA preparations from 6 of 13 schwannomas, but not from normal liver, kidney, or intestine of tumor-bearing rats, transformed NIH 3T3 cells. NIH 3T3 clones transformed by schwannoma DNA contained rat repetitive DNA sequences, and all isolates contained rat neu oncogene sequences. A point mutation in the transmembrane region of the putative protein product of neu was identified in all six transformants and in the primary tumors from which they were derived as well as in 5 of 6 schwannomas tested that did not transform NIH 3T3 cells. Of 59 gliomas, only one yielded transforming DNA, and an activated N-ras oncogen was identified. The normal cellular neu sequence for the transmembrane region, but not the mutated sequence, was identified in DNA from all 11 gliomas surveyed by oligonucleotide hybridization. Activation of the neu oncogene, originally identified in cultured cell lines derived from EtNU-induced neurogenic tumors appears specifically associated with tumors of the peripheral nervous system in the F344 inbred strain.

  6. High Energy Particle Radiation-associated Oncogenic Transformation in Normal Mice: Insight into the Connection between Activation of Oncotargets and Oncogene Addiction.

    PubMed

    Aravindan, Natarajan; Aravindan, Sheeja; Manickam, Krishnan; Natarajan, Mohan

    2016-11-23

    Concerns on high-energy particle radiation-induced tumorigenic transformation of normal tissue in astronauts, and in cancer patients undergoing radiotherapy, emphasizes the significance of elucidating the mechanisms involved in radiogenic transformation processes. Mostly used genetically modified or tumor-prone models are less reliable in determining human health risk in space or protracted post-treatment normal tissue toxicity. Here, in wild type C57BL/6 mice, we related the deregulation of distinctive set of tissue-specific oncotargets in major organs upon (56)Fe (600 MeV/amu; 0.5 Gy/min; 0.8 Gy) particle radiation and compared the response with low LET γ-radiation ((137)Cs; 0.5 Gy/min; 2 Gy). One of the novel findings is the 'tissue-independent' activation of TAL2 upon high-energy radiation, and thus qualifies TAL2 as a potential biomarker for particle and other qualities of radiation. Heightened expression of TAL2 gene transcript, which sustained over four weeks post-irradiation foster the concept of oncogene addiction signaling in radiogenic transformation. The positive/negative expression of other selected oncotargets that expresses tissue-dependent manner indicated their role as a secondary driving force that addresses the diversity of tissue-dependent characteristics of tumorigenesis. This study, while reporting novel findings on radiogenic transformation of normal tissue when exposed to particle radiation, it also provides a platform for further investigation into different radiation quality, LET and dose/dose rate effect in healthy organs.

  7. High Energy Particle Radiation-associated Oncogenic Transformation in Normal Mice: Insight into the Connection between Activation of Oncotargets and Oncogene Addiction

    PubMed Central

    Aravindan, Natarajan; Aravindan, Sheeja; Manickam, Krishnan; Natarajan, Mohan

    2016-01-01

    Concerns on high-energy particle radiation-induced tumorigenic transformation of normal tissue in astronauts, and in cancer patients undergoing radiotherapy, emphasizes the significance of elucidating the mechanisms involved in radiogenic transformation processes. Mostly used genetically modified or tumor-prone models are less reliable in determining human health risk in space or protracted post-treatment normal tissue toxicity. Here, in wild type C57BL/6 mice, we related the deregulation of distinctive set of tissue-specific oncotargets in major organs upon 56Fe (600 MeV/amu; 0.5 Gy/min; 0.8 Gy) particle radiation and compared the response with low LET γ-radiation (137Cs; 0.5 Gy/min; 2 Gy). One of the novel findings is the ‘tissue-independent’ activation of TAL2 upon high-energy radiation, and thus qualifies TAL2 as a potential biomarker for particle and other qualities of radiation. Heightened expression of TAL2 gene transcript, which sustained over four weeks post-irradiation foster the concept of oncogene addiction signaling in radiogenic transformation. The positive/negative expression of other selected oncotargets that expresses tissue-dependent manner indicated their role as a secondary driving force that addresses the diversity of tissue-dependent characteristics of tumorigenesis. This study, while reporting novel findings on radiogenic transformation of normal tissue when exposed to particle radiation, it also provides a platform for further investigation into different radiation quality, LET and dose/dose rate effect in healthy organs. PMID:27876887

  8. Long-range oncogenic activation of Igh-c-myc translocations by the Igh 3' regulatory region.

    PubMed

    Gostissa, Monica; Yan, Catherine T; Bianco, Julia M; Cogné, Michel; Pinaud, Eric; Alt, Frederick W

    2009-12-10

    B-cell malignancies, such as human Burkitt's lymphoma, often contain translocations that link c-myc or other proto-oncogenes to the immunoglobulin heavy chain locus (IgH, encoded by Igh). The nature of elements that activate oncogenes within such translocations has been a long-standing question. Translocations within Igh involve DNA double-strand breaks initiated either by the RAG1/2 endonuclease during variable, diversity and joining gene segment (V(D)J) recombination, or by activation-induced cytidine deaminase (AID, also known as AICDA) during class switch recombination (CSR). V(D)J recombination in progenitor B (pro-B) cells assembles Igh variable region exons upstream of mu constant region (Cmu) exons, which are the first of several sets of C(H) exons ('C(H) genes') within a C(H) locus that span several hundred kilobases (kb). In mature B cells, CSR deletes Cmu and replaces it with a downstream C(H) gene. An intronic enhancer (iEmu) between the variable region exons and Cmu promotes V(D)J recombination in developing B cells. Furthermore, the Igh 3' regulatory region (Igh3'RR) lies downstream of the C(H) locus and modulates CSR by long-range transcriptional enhancement of C(H) genes. Transgenic mice bearing iEmu or Igh3'RR sequences fused to c-myc are predisposed to B lymphomas, demonstrating that such elements can confer oncogenic c-myc expression. However, in many B-cell lymphomas, Igh-c-myc translocations delete iEmu and place c-myc up to 200 kb upstream of the Igh3'RR. Here we address the oncogenic role of the Igh3'RR by inactivating it in two distinct mouse models for B-cell lymphoma with Igh-c-myc translocations. We show that the Igh3'RR is dispensable for pro-B-cell lymphomas with V(D)J recombination-initiated translocations, but is required for peripheral B-cell lymphomas with CSR-associated translocations. As the Igh3'RR is not required for CSR-associated Igh breaks or Igh-c-myc translocations in peripheral B-cell lymphoma progenitors, we conclude that

  9. In vivo analysis of polyadenylation in prokaryotes.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2014-01-01

    Polyadenylation at the 3' ends of mRNAs, tRNAs, rRNAs, and sRNAs plays important roles in RNA metabolism in both prokaryotes and eukaryotes. However, the nature of poly(A) tails in prokaryotes is distinct compared to their eukaryotic counterparts. Specifically, depending on the organism, eukaryotic poly(A) tails average between 50 and >200 nt and can easily be isolated by several techniques involving oligo(dT)-dependent cDNA amplification. In contrast, the bulk of the poly(A) tails present on prokaryotic transcripts is relatively short (<10 nt) and is difficult to characterize using similar techniques. This chapter describes methods that can circumvent these problems. For example, we discuss how to isolate total RNA and characterize its overall polyadenylation status employing a poly(A) sizing assay. Furthermore, we describe a technique involving RNase H treatment of total RNA followed by northern analysis in order to distinguish length of poly(A) tails on various types of transcripts. Finally, we outline a useful procedure to clone the poly(A) tails of specific transcripts using 5'-3' end-ligated RNA, which is independent of oligo(dT)-dependent cDNA amplification. These approaches are particularly helpful in analyzing transcripts with either short or long poly(A) tails both in prokaryotes and eukaryotes.

  10. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA.

    PubMed Central

    de Moor, C H; Richter, J D

    1999-01-01

    During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented. PMID:10205182

  11. Activated Oncogenic Pathway Modifies Iron Network in Breast Epithelial Cells: A Dynamic Modeling Perspective

    PubMed Central

    Lemler, Erica; Kochen, Michael A.; Akman, Steven A.; Torti, Frank M.; Torti, Suzy V.; Laubenbacher, Reinhard

    2017-01-01

    Dysregulation of iron metabolism in cancer is well documented and it has been suggested that there is interdependence between excess iron and increased cancer incidence and progression. In an effort to better understand the linkages between iron metabolism and breast cancer, a predictive mathematical model of an expanded iron homeostasis pathway was constructed that includes species involved in iron utilization, oxidative stress response and oncogenic pathways. The model leads to three predictions. The first is that overexpression of iron regulatory protein 2 (IRP2) recapitulates many aspects of the alterations in free iron and iron-related proteins in cancer cells without affecting the oxidative stress response or the oncogenic pathways included in the model. This prediction was validated by experimentation. The second prediction is that iron-related proteins are dramatically affected by mitochondrial ferritin overexpression. This prediction was validated by results in the pertinent literature not used for model construction. The third prediction is that oncogenic Ras pathways contribute to altered iron homeostasis in cancer cells. This prediction was validated by a combination of simulation experiments of Ras overexpression and catalase knockout in conjunction with the literature. The model successfully captures key aspects of iron metabolism in breast cancer cells and provides a framework upon which more detailed models can be built. PMID:28166223

  12. P53 Modulates The Activity Of The GLI1 Oncogene Through Interactions With The Shared Coactivator TAF9

    PubMed Central

    Yoon, Joon Won; Lamm, Marilyn; Iannaccone, Stephen; Higashiyama, Nicole; Leong, King Fu; Iannaccone, Philip; Walterhouse, David

    2015-01-01

    The GLI1 oncogene and p53 tumor suppressor gene function in an inhibitory loop that controls stem cell and tumor cell numbers. Since GLI1 and p53 both interact with the coactivator TATA Binding Protein Associated Factor 9 (TAF9), we hypothesized that competition between these transcription factors for TAF9 in cancer cells may contribute to the inhibitory loop and directly affect GLI1 function and cellular phenotype. We showed that TAF9 interacts with the oncogenic GLI family members GLI1 and GLI2 but not GLI3 in cell-free pull-down assays and with GLI1 in rhabdomyosarcoma and osteosarcoma cell lines. Removal of the TAF9-binding acidic alpha helical transactivation domain of GLI1 produced a significant reduction in the ability of GLI1 to transform cells. We then introduced a point mutation into GLI1 (L1052I) that eliminates TAF9 binding and a point mutation into GLI3 (I1510L) that establishes binding. Wild-type and mutant GLI proteins that bind TAF9 showed enhanced transactivating and cell transforming activity compared with those that did not. Therefore, GLI-TAF9 binding appears important for oncogenic activity. We then determined whether wild-type p53 down-regulates GLI function by sequestering TAF9. We showed that p53 binds TAF9 with greater affinity than does GLI1 and that co-expression of p53 with GLI1 or GLI2 down-regulated GLI-induced transactivation, which could be abrogated using mutant forms of GLI1 or p53. This suggests that p53 sequesters TAF9 from GLI1, which may contribute to inhibition of GLI1 activity by p53 and potentially impact therapeutic success of agents targeting GLI-TAF9 interactions in cancer. PMID:26282181

  13. Oncogenic role of EAPII in lung cancer development and its activation of the MAPK–ERK pathway

    PubMed Central

    Li, C; Fan, S; Owonikoko, T K; Khuri, F R; Sun, S-Y; Li, R

    2011-01-01

    Cancer progression involves multiple complex and interdependent steps, including progressive proliferation, angiogenesis and metastases. The complexity of these processes requires a comprehensive elucidation of the integrated signaling networks for better understanding. EAPII interacts with multiple cancer-related proteins, but its biological significance in cancer development remains unknown. In this report we identified the elevated level of EAPII protein in non-small-cell lung carcinoma (NSCLC) patients and NSCLC cell lines in culture. The oncogenic role of EAPII in lung cancer development was demonstrated using NSCLC cells with genetic manipulations that influence EAPII expression: EAPII overexpression increases proliferation of NSCLC cells with an accelerated transition of cell cycle and facilitates xenograft tumor growth in vivo; EAPII knockdown results in apoptosis of NSCLC cells and reduces xenograft tumor formation. To further explore the mechanism of EAPII's oncogenic role in lung cancer development and to elucidate the potential signaling pathway(s) that EAPII may impact, we employed antibody array to investigate the alternation of the major signaling pathways in NSCLC cells with altered EAPII level. We found that EAPII overexpression significantly activated Raf1 and ERK1/2, but not c-Jun N-terminal kinase and p38 pathways. Consistently, the protein and mRNA levels of MYC and cyclin D1, which are targets of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK–ERK) pathway, are significantly increased by EAPII overexpression. Taken together, we demonstrated that EAPII is an oncogenic factor and the activation of MAPK–ERK signaling pathway by EAPII may contribute to lung cancer development. PMID:21478903

  14. The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway Through E-Syt1 Phosphorylation

    PubMed Central

    Jun, Hyun Jung; Johnson, Hannah; Bronson, Roderick T.; de Feraudy, Sebastien; White, Forest; Charest, Alain

    2013-01-01

    Patients with lung cancer often present with metastatic disease and therefore have a very poor prognosis. The recent discovery of several novel ROS receptor tyrosine kinase molecular alterations in non-small-cell lung cancer (NSCLC) presents a therapeutic opportunity for the development of new targeted treatment strategies. Here, we report that the NSCLC-derived fusion CD74-ROS, which accounts for 30% of all ROS fusion kinases in NSCLC, is an active and oncogenic tyrosine kinase. We found that CD74-ROS expressing cells were highly invasive in vitro and metastatic in vivo. Pharmacological inhibition of CD74-ROS kinase activity reversed its transforming capacity by attenuating downstrream signaling networks. Using quantitative phosphoproteomics, we uncovered a mechanism by which CD74-ROS activates a novel pathway driving cell invasion. Expression of CD74-ROS resulted in the phosphorylation of the extended synaptotagmin-like protein E-Syt1. Elimination of E-Syt1 expression drastically reduced invasiveness both in vitro and in vivo without modifying the oncogenic activity of CD74-ROS. Furthermore, expression of CD74-ROS in non-invasive NSCLC cell lines readily confered invasive properties that paralleled the acquisition of E-Syt1 phosphorylation. Taken together, our findings indicate that E-Syt1 is a mediator of cancer cell invasion and molecularly define ROS fusion kinases as therapeutic targets in the treatment of NSCLC. PMID:22659450

  15. Oncogenic K-Ras and Basic Fibroblast Growth Factor Prevent FAS-Mediated Apoptosis in Fibroblasts through Activation of Mitogen-Activated Protein Kinase

    PubMed Central

    Kazama, Hirotaka; Yonehara, Shin

    2000-01-01

    By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis. PMID:10662780

  16. Activated neu oncogene sequences in primary tumors of the peripheral nervous system induced in rats by transplacental exposure to ethylnitrosourea.

    PubMed Central

    Perantoni, A O; Rice, J M; Reed, C D; Watatani, M; Wenk, M L

    1987-01-01

    Neurogenic tumors were selectively induced in high incidence in F344 rats by a single transplacental exposure to the direct-acting alkylating agent N-ethyl-N-nitrosourea (EtNU). We prepared DNA for transfection of NIH 3T3 cells from primary glial tumors of the brain and from schwannomas of the cranial and spinal nerves that developed in the transplacentally exposed offspring between 20 and 40 weeks after birth. DNA preparations from 6 of 13 schwannomas, but not from normal liver, kidney, or intestine of tumor-bearing rats, transformed NIH 3T3 cells. NIH 3T3 clones transformed by schwannoma DNA contained rat repetitive DNA sequences, and all isolates contained rat neu oncogene sequences. One schwannoma yielded a transformant with rat-specific sequences for both neu and N-ras. A point mutation in the transmembrane region of the putative protein product of neu was identified in all six transformants and in the primary tumors from which they were derived as well as in 5 of 6 schwannomas tested that did not transform NIH 3T3 cells. Of 59 gliomas, only one yielded transforming DNA, and an activated N-ras oncogene was identified. The normal cellular neu sequence for the transmembrane region, but not the mutated sequence, was identified in DNA from all 11 gliomas surveyed by oligonucleotide hybridization. Activation of the neu oncogene, originally identified [Schechter, A.L., Stern, D.F., Vaidyanathan, L., Decker, S.J., Drebin, J.A., Greene, M.I. & Weinberg, R.A. (1984) Nature (London) 312, 513-516] in cultured cell lines derived from EtNU-induced neurogenic tumors that by biochemical but not histologic criteria were thought to originate in the central nervous system in BD-IX rats, appears specifically associated with tumors of the peripheral nervous system in the F344 inbred strain. Images PMID:3476947

  17. An in-depth map of polyadenylation sites in cancer.

    PubMed

    Lin, Yuefeng; Li, Zhihua; Ozsolak, Fatih; Kim, Sang Woo; Arango-Argoty, Gustavo; Liu, Teresa T; Tenenbaum, Scott A; Bailey, Timothy; Monaghan, A Paula; Milos, Patrice M; John, Bino

    2012-09-01

    We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms that are potentially important to tumorigenesis. Analyses of polyadenylation sites indicate that a large fraction (∼30%) of mRNAs contain alternative polyadenylation sites in their 3' untranslated regions, independent of the cell type. The shortest 3' untranslated region isoforms are preferentially upregulated in cancer tissues, genome-wide. Candidate targets of alternative polyadenylation-mediated upregulation of short isoforms include POLR2K, and signaling cascades of cell-cell and cell-extracellular matrix contact, particularly involving regulators of Rho GTPases. Polyadenylation maps also helped to improve 3' untranslated region annotations and identify candidate regulatory marks such as sequence motifs, H3K36Me3 and Pabpc1 that are isoform dependent and occur in a position-specific manner. In summary, these results highlight the need to go beyond monitoring only the cumulative transcript levels for a gene, to separately analysing the expression of its RNA isoforms.

  18. Alterations in Polyadenylation and Its Implications for Endocrine Disease

    PubMed Central

    Rehfeld, Anders; Plass, Mireya; Krogh, Anders; Friis-Hansen, Lennart

    2013-01-01

    Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added – a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3′ untranslated regions (3′ UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3′ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. Perspectives: Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. Summary: This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field. PMID:23658553

  19. Platelet-derived growth factor agonist activity of a secreted form of the v-sis oncogene product

    SciTech Connect

    Johnsson, A.; Betsholtz, C.; von der Helm, K.; Heldin, C.H.; Westermark, B.

    1985-03-01

    The authors have compared the functional properties of a growth factor partially purified from medium conditioned by simian sarcoma virus-transformed cells with those of platelet-derived growth factor (PDGF). The factor mimicked the effects induced by PDGF: it bound to and activated human fibroblast PDGF receptors and stimulated DNA synthesis. The factor behaved as a secretory protein, since about 95% of the receptor-binding activity was found in the medium after a 48-hr serum-free incubation. Structural characterization of the PDGF-like activity revealed a M/sub r/ 24,000 intracellular protein and two polypeptides of M/sub r/ 13,000 and 11,500 released into the medium. The M/sub r/ 13,000 component bound to human fibroblasts; this binding was competitively inhibited by PDGF. The data support the possibility that oncogene products may elicit transforming activity by interacting with the normal cellular mitogenic pathway.

  20. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1.

    PubMed

    Cader, Fathima Zumla; Vockerodt, Martina; Bose, Shikha; Nagy, Eszter; Brundler, Marie-Anne; Kearns, Pamela; Murray, Paul G

    2013-12-19

    The malignant Hodgkin and Reed-Sternberg (HRS) cells of Hodgkin lymphoma are surrounded by a tumor microenvironment that is composed of a variety of cell types, as well as noncellular components such as collagen. Although HRS cells harbor oncogenic Epstein-Barr virus (EBV) in approximately 50% of cases, it is not known if the tumor microenvironment contributes to EBV-driven lymphomagenesis. We show that expression of the EBV-encoded latent membrane protein-1 (LMP1) in primary human germinal center B cells, the presumed progenitors of HRS cells, upregulates discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen. We also show that HRS cells intimately associated with collagen frequently overexpress DDR1 and that short-term exposure to collagen is sufficient to activate DDR1 in Hodgkin lymphoma-derived cell lines. The ectopic expression of DDR1 significantly increased the survival of collagen-treated DG75 Burkitt lymphoma cells, following etoposide treatment. Conversely, knockdown of DDR1 significantly decreased the survival of collagen-treated L428 Hodgkin lymphoma cells in the absence of specific apoptotic stimulus, suggesting that DDR1 also influences baseline survival. Our results identify a hitherto unknown function for collagen in protecting Hodgkin lymphoma cells from apoptosis and suggest an important contribution of the tumor microenvironment in promoting the oncogenic effects of EBV.

  1. Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth

    PubMed Central

    Zhang, Yan-Xia; Yan, Yun-Fei; Liu, Yue-Mei; Li, You-Jie; Zhang, Han-Han; Pang, Min; Hu, Jin-Xia; Zhao, Wei; Xie, Ning; Zhou, Ling; Wang, Ping-Yu; Xie, Shu-Yang

    2016-01-01

    MicroRNAs (miRNAs) and Smad3, as key transcription factors in transforming growth factor-β1 (TGF-β1) signaling, help regulate various physiological and pathological processes. We investigated the roles of Smad3-regulated miRNAs with respect to lung adenocarcinoma cell apoptosis, proliferation, and metastasis. We observed that Smad3 and phospho-SMAD3 (p-Smad3) were decreased in miR-206- (or miR-140)-treated cells and there might be a feedback loop between miR-206 (or miR-140) and TGF-β1 expression. Smad3-related miRNAs affected tribbles homolog 2 (TRIB2) expression by regulating trib2 promoter activity through the CAGACA box. MiR-206 and miR-140 inhibited lung adenocarcinoma cell proliferation in vitro and in vivo by suppressing p-Smad3/Smad3 and TRIB2. Moreover, lung adenocarcinoma data supported a suppressive role for miR-206/miR-140 and an oncogenic role for TRIB2—patients with higher TRIB2 levels had poorer survival. In summary, miR-206 and miR-140, as tumor suppressors, induced lung adenocarcinoma cell death and inhibited cell proliferation by modifying oncogenic TRIB2 promoter activity through p-Smad3. MiR-206 and miR-140 also suppressed lung adenocarcinoma cell metastasis in vitro and in vivo by regulating EMT-related factors. PMID:28005074

  2. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    SciTech Connect

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  3. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  4. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    PubMed

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription.

  5. Oncogenic activity of Epstein-Barr virus latent membrane protein 1 (LMP-1) is down-regulated by lytic LMP-1.

    PubMed

    Pandya, Jyotsna; Walling, Dennis M

    2006-08-01

    The Epstein-Barr virus (EBV) is an oncogenic human herpesvirus. EBV latent membrane protein 1 (LMP-1) is a viral oncogene that manifests its oncogenic phenotype through activation of cellular signaling pathways involved in cell growth, survival, differentiation, and transformation. Lytic LMP-1 (lyLMP-1) is a related EBV gene without oncogenic properties. The lyLMP-1 gene is found in 60% of the EBV strains circulating in nature, but it is not found in EBV strains associated with nasopharyngeal carcinoma. We recently demonstrated that lyLMP-1 down-regulates the half-life of LMP-1 in epithelial cells. Therefore in this study, we tested the hypothesis that lyLMP-1 concomitantly down-regulates LMP-1 oncogenic activity. The results demonstrated that lyLMP-1 inhibits LMP-1-mediated intracellular signaling activation, epithelial cell growth and survival, and fibroblast cell transformation in a dose-dependent manner. Lytic LMP-1 manifested this effect through the promotion of LMP-1 degradation and a reduction in the expressed quantity of LMP-1. Thus, lyLMP-1 functions as a posttranslational negative regulator of LMP-1 oncogenesis. These results support a model of EBV-associated epithelial oncogenesis in which lyLMP-1 may act in vivo to reduce the risk of LMP-1-mediated transformation and is therefore subjected to negative selection in nasopharyngeal carcinoma pathogenesis.

  6. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.

  7. Sustained PKCβII activity confers oncogenic properties in a phospholipase D- and mTOR-dependent manner

    PubMed Central

    El Osta, Mohamad; Liu, Mengling; Adada, Mohamad; Senkal, Can E.; Idkowiak-Baldys, Jolanta; Obeid, Lina M.; Clarke, Christopher J.; Hannun, Yusuf A.

    2014-01-01

    Protein kinase C (PKC) is a family of serine/threonine kinases implicated in a variety of physiological processes. We have shown previously that sustained activation of the classical PKCα and PKCβII induces their phospholipase D (PLD)-dependent internalization and translocation to a subset of the recycling endosomes defined by the presence of PKC and PLD (the pericentrion), which results in significant differences in phosphorylation of PKC substrates. Here, we have investigated the biological consequences of sustained PKC activity and the involvement of PLD in this process. We find that sustained activation of PKC results in activation of the mammalian target of rapamycin (mTOR)/S6 kinase pathway in a PLD- and endocytosis-dependent manner, with both pharmacologic inhibitors and siRNA implicating the PLD2 isoform. Notably, dysregulated overexpression of PKCβII in A549 lung cancer cells was necessary for the enhanced proliferation and migration of these cancer cells. Inhibition of PKCβII with enzastaurin reduced A549 cell proliferation by >60% (48 h) and migration by >50%. These biological effects also required both PLD activity and mTOR function, with both the PLD inhibitor FIPI and rapamycin reducing cell growth by >50%. Reciprocally, forced overexpression of wild-type PKCβII, but not an F666D mutant that cannot interact with PLD, was sufficient to enhance cell growth and increase migration of noncancerous HEK cells; indeed, both properties were almost doubled when compared to vector control and PKC-F666D-overexpressing cells. Notably, this condition was also dependent on both PLD and mTOR activity. In summary, these data define a PKC-driven oncogenic signaling pathway that requires both PLD and mTOR, and suggest that inhibitors of PLD or mTOR would be beneficial in cancers where PKC overexpression is a contributing or driving factor.—El Osta, M., Liu, M. Adada, M., Senkal, C. E., Idkowiak-Baldys, J., Obeid, L. M., Clarke, C. J., Hannun, Y. A. Sustained PKC

  8. Proton Transfer in the Mechanism of Polyadenylate Polymerase

    PubMed Central

    Balbo, Paul B.; Bohm, Andrew

    2011-01-01

    Polyadenylate polymerase (PAP) is the template-independent RNA polymerase responsible for synthesis of the 3' poly(A) tails of mRNA. To investigate the role of proton transfer in the catalytic mechanism of PAP, the pH dependence of the steady state kinetic parameters of yeast PAP were determined for the forward (adenylyltransfer) and reverse (pyrophosphorolysis) reactions. The results indicate that productive formation of an enzyme-RNA-MgATP complex is pH independent over a broad pH range, but that formation of an active enzyme-RNA-MgPPi complex is strongly pH dependent, consistent with the production of a proton on the enzyme in the forward reaction. The pH dependence of the maximum velocity of the forward reaction suggests two protonic species are involved in enzyme catalysis. Optimal enzyme activity requires one species to be protonated, and the other, deprotonated. The deuterium solvent isotope effect on Vmax is also consistent with proton transfer involved in catalysis of a rate determining step. Finally, pKa calculations of PAP were performed by the multiconformational continuum electrostatic (MCCE) method. Together, the data support that the protonation of residues K215 and Y224 exhibit cooperativity important for MgATP2− and MgPPi2− binding/dissociation, and suggest these residues function in electrostatic, but not in general acid catalysis. PMID:19281452

  9. Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer.

    PubMed

    Lastwika, Kristin J; Wilson, Willie; Li, Qing Kay; Norris, Jeffrey; Xu, Haiying; Ghazarian, Sharon R; Kitagawa, Hiroshi; Kawabata, Shigeru; Taube, Janis M; Yao, Sheng; Liu, Linda N; Gills, Joell J; Dennis, Phillip A

    2016-01-15

    Alterations in EGFR, KRAS, and ALK are oncogenic drivers in lung cancer, but how oncogenic signaling influences immunity in the tumor microenvironment is just beginning to be understood. Immunosuppression likely contributes to lung cancer, because drugs that inhibit immune checkpoints like PD-1 and PD-L1 have clinical benefit. Here, we show that activation of the AKT-mTOR pathway tightly regulates PD-L1 expression in vitro and in vivo. Both oncogenic and IFNγ-mediated induction of PD-L1 was dependent on mTOR. In human lung adenocarcinomas and squamous cell carcinomas, membranous expression of PD-L1 was significantly associated with mTOR activation. These data suggest that oncogenic activation of the AKT-mTOR pathway promotes immune escape by driving expression of PD-L1, which was confirmed in syngeneic and genetically engineered mouse models of lung cancer where an mTOR inhibitor combined with a PD-1 antibody decreased tumor growth, increased tumor-infiltrating T cells, and decreased regulatory T cells.

  10. Analysis of figwort mosaic virus (plant pararetrovirus) polyadenylation signal.

    PubMed

    Sanfaçon, H

    1994-01-01

    Analysis of the cauliflower mosaic virus (CaMV) polyadenylation (poly(A)) signal has revealed several striking differences to poly(A) signals from animal genes such as the absence of activating sequences downstream from the cleavage site. Instead, upstream sequences were shown to induce recognition of an AAUAAA sequence. To test whether these features are representative of other plant pararetrovirus poly(A) signals, a characterization of the figwort mosaic virus (FMV) poly(A) signal is presented here. The FMV RNAs were isolated from infected plants and mapped, and the different elements composing the FMV poly(A) signal were identified. Multiple upstream sequences were found to be essential for efficient processing at the FMV poly(A) site and could be replaced by the CaMV upstream elements. The FMV upstream sequences showed homologies to other characterized upstream sequences from CaMV, from animal viruses, and from plant poly(A) signals. Surprisingly, neither the FMV nor the CaMV upstream elements could induce recognition of an AAUAAA sequence present in the FMV poly(A) signal, instead a UAUAAA sequence 55 nucleotides further downstream was utilized. It is proposed that additional features may be required for appropriate cleavage such as the context of the AAUAAA-like sequence or perhaps the cleavage site itself.

  11. Specific oncogenic activity of the Src-family tyrosine kinase c-Yes in colon carcinoma cells.

    PubMed

    Sancier, Florence; Dumont, Aurélie; Sirvent, Audrey; Paquay de Plater, Ludmilla; Edmonds, Thomas; David, Géraldine; Jan, Michel; de Montrion, Catherine; Cogé, Francis; Léonce, Stéphane; Burbridge, Michael; Bruno, Alain; Boutin, Jean A; Lockhart, Brian; Roche, Serge; Cruzalegui, Francisco

    2011-02-24

    c-Yes, a member of the Src tyrosine kinase family, is found highly activated in colon carcinoma but its importance relative to c-Src has remained unclear. Here we show that, in HT29 colon carcinoma cells, silencing of c-Yes, but not of c-Src, selectively leads to an increase of cell clustering associated with a localisation of β-catenin at cell membranes and a reduction of expression of β-catenin target genes. c-Yes silencing induced an increase in apoptosis, inhibition of growth in soft-agar and in mouse xenografts, inhibition of cell migration and loss of the capacity to generate liver metastases in mice. Re-introduction of c-Yes, but not c -Src, restores transforming properties of c-Yes depleted cells. Moreover, we found that c-Yes kinase activity is required for its role in β-catenin localisation and growth in soft agar, whereas kinase activity is dispensable for its role in cell migration. We conclude that c-Yes regulates specific oncogenic signalling pathways important for colon cancer progression that is not shared with c-Src.

  12. Preliminary crystallographic analysis of a polyadenylate synthase from Megavirus

    PubMed Central

    Lartigue, Audrey; Jeudy, Sandra; Bertaux, Lionel; Abergel, Chantal

    2013-01-01

    Megavirus chilensis, a close relative of the Mimivirus giant virus, is also the most complex virus sequenced to date, with a 1.26 Mb double-stranded DNA genome encoding 1120 genes. The two viruses share common regulatory elements such as a peculiar palindrome governing the termination/polyadenylation of viral transcripts. They also share a predicted polyadenylate synthase that presents a higher than average percentage of residue conservation. The Megavirus enzyme Mg561 was overexpressed in Escherichia coli, purified and crystallized. A 2.24 Å resolution MAD data set was recorded from a single crystal on the ID29 beamline at the ESRF. PMID:23295487

  13. αB-crystallin promotes oncogenic transformation and inhibits caspase activation in cells primed for apoptosis by Rb inactivation.

    PubMed

    Petrovic, Vladimir; Malin, Dmitry; Cryns, Vincent L

    2013-04-01

    The retinoblastoma (Rb) tumor suppressor gene is frequently inactivated in cancer, resulting in deregulated activation of E2F transcription factors, which promote S-phase entry, p53-dependent and p53-independent apoptosis. Transformed cells evade p53-dependent apoptosis initiated by Rb inactivation by TP53 mutation. However, the mechanisms by which cancer cells circumvent p53-independent apoptosis in this context are poorly understood. Because Rb inactivation primes cells for apoptosis by p53-independent induction of procaspases, we postulated that αB-crystallin, an inhibitor of procaspase-3 activation, would suppress caspase activation in cells with combined Rb and p53 inactivation. Notably, αB-crystallin is commonly expressed in ER/PR/HER2 "triple-negative" breast carcinomas characterized by frequent Rb loss and TP53 mutation. We report that αB-crystallin (-/-) knock out (KO) MEFs immortalized by dominant negative (DN) p53 are resistant to transformation by the adenovirus E1A oncoprotein, which inactivates Rb, while wild-type (WT) MEFs are readily transformed by DN p53 and E1A. αB-crystallin (-/-) KO MEFs stably expressing DN p53 and E1A were more sensitive to chemotherapy-induced caspase-3 activation and apoptosis than the corresponding WT MEFs, despite comparable induction of procaspases by E1A. Similarly, silencing Rb in WT and αB-crystallin (-/-) KO MEFs immortalized by DN p53 increased procaspase levels and sensitized αB-crystallin (-/-) KO MEFs to chemotherapy. Furthermore, silencing αB-crystallin in triple-negative breast cancer cells, which lack Rb and express mutant p53, enhanced chemotherapy sensitivity compared to non-silencing controls. Our results indicate that αB-crystallin inhibits caspase activation in cells primed for apoptosis by Rb inactivation and plays a novel oncogenic role in the context of combined Rb and p53 inactivation.

  14. RABEX-5 is upregulated and plays an oncogenic role in gastric cancer development by activating the VEGF signaling pathway.

    PubMed

    Wang, Shuang; Lu, Aixia; Chen, Xiangming; Wei, Lin; Ding, Jiqiang

    2014-01-01

    RABEX-5, a guanine-nucleotide exchange factor (GEF) for RAB-5, is implicated in tumorigenesis and in the development of certain human cancers. Here, we report that RABEX-5 promotes tumor growth and the metastatic ability of gastric cancer cells both in vitro and in vivo. Expression of RABEX-5 is significantly higher in gastric cancer tissues and is associated with tumor size and lymph node metastasis. In addition, targeted silencing of RABEX-5 reduced gastric cancer cell proliferation and colony formation in vitro via the induction of a G0/G1 phase arrest, and stimulated gastric cancer cell apoptosis. Knockdown of RABEX-5 also inhibited wound healing, migration and the invasive abilities of gastric cancer cells. The results of in vivo animal experiments were also consistent with these in vitro findings. Silencing of RABEX-5 led to decreased expression of VEGF. These results indicate that RABEX-5 is upregulated and plays an oncogenic role in gastric cancer development by activating the VEGF signaling pathway.

  15. Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea

    PubMed Central

    Lakshmanan, Vairavan; Bansal, Dhiru; Kulkarni, Jahnavi; Poduval, Deepak; Krishna, Srikar; Sasidharan, Vidyanand; Anand, Praveen; Seshasayee, Aswin; Palakodeti, Dasaradhi

    2016-01-01

    In eukaryotes, 3′ untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3′UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3′UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3′UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration. PMID:27489207

  16. Enhanced transcriptional activation by E2 proteins from the oncogenic human papillomaviruses.

    PubMed Central

    Kovelman, R; Bilter, G K; Glezer, E; Tsou, A Y; Barbosa, M S

    1996-01-01

    A systematic comparison of transcriptional activation by papillomavirus E2 proteins revealed that the E2 proteins from high-risk human papillomaviruses (human papillomavirus type 16 [HPV-16] and HPV-18) are much more active than are the E2 proteins from low-risk HPVs (HPV-6b and HPV-11). Despite the tropism of HPVs for particular epithelial cell types, this difference in transcriptional activation was observed in a number of different epithelial and nonepithelial cells. The enhanced activities of the E2 proteins from high-risk HPVs did not result from higher steady-state levels of protein in vivo, and in vitro DNA-binding assays revealed similar binding properties for these two classes of E2 proteins. These results demonstrate that the E2 proteins from high-risk HPVs have an intrinsically enhanced potential to activate transcription from promoters with E2-responsive elements. We found that there are also substantial differences between the activation properties of the bovine papillomavirus type 1 E2 protein and those of either of the two classes of HPV E2 proteins, especially with regard to requirements for particular configurations of E2 binding sites in the target promoter. Our results indicate that there are at least three distinct functional classes of E2 proteins and that these classes of E2 proteins may perform different roles during the respective viral life cycles. PMID:8892874

  17. Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein

    PubMed Central

    Sabiani, Samaneh; Geppert, Tim; Engelbrecht, Christian; Kowarz, Eric; Schneider, Gisbert; Marschalek, Rolf

    2015-01-01

    We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed. PMID:26137584

  18. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes.

    PubMed

    Komrskova, Pavla; Susor, Andrej; Malik, Radek; Prochazkova, Barbora; Liskova, Lucie; Supolikova, Jaroslava; Hladky, Stepan; Kubelka, Michal

    2014-01-01

    Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.

  19. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    PubMed

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  20. Apoptosis signal-regulating kinase 1 exhibits oncogenic activity in pancreatic cancer

    PubMed Central

    Hao, Ziwei; Yang, Yang; Xie, Songbo; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Pancreatic cancer has an extremely grim prognosis, with an overall 5-year survival rate less than 5%, as a result of its rapid metastasis and late diagnosis. To combat this disease, it is crucial to better understand the molecular mechanisms that contribute to its pathogenesis. Herein, we report that apoptosis signal-regulating kinase 1 (ASK1) is overexpressed in pancreatic cancer tissues and that its expression correlates with the histological grade of pancreatic cancer. The expression of ASK1 is also elevated in pancreatic cancer cell lines at both protein and mRNA levels. In addition, ASK1 promotes the proliferation and stimulates the tumorigenic capacity of pancreatic cancer cells. These functions of ASK1 are abrogated by pharmacological inhibition of its kinase activity or by introduction of a kinase-dead mutation, suggesting that the kinase activity of ASK1 is required for its role in pancreatic cancer. However, the alteration of ASK1 expression or activity does not significantly affect the migration or invasion of pancreatic cancer cells. Collectively, these findings reveal a critical role for ASK1 in the development of pancreatic cancer and have important implications for the diagnosis and treatment of this malignancy. PMID:27655673

  1. Zebra fish myc family and max genes: differential expression and oncogenic activity throughout vertebrate evolution.

    PubMed Central

    Schreiber-Agus, N; Horner, J; Torres, R; Chiu, F C; DePinho, R A

    1993-01-01

    To gain insight into the role of Myc family oncoproteins and their associated protein Max in vertebrate growth and development, we sought to identify homologs in the zebra fish (Brachydanio rerio). A combination of a polymerase chain reaction-based cloning strategy and low-stringency hybridization screening allowed for the isolation of zebra fish c-, N-, and L-myc and max genes; subsequent structural characterization showed a high degree of conservation in regions that encode motifs of known functional significance. On the functional level, zebra fish Max, like its mammalian counterpart, served to suppress the transformation activity of mouse c-Myc in rat embryo fibroblasts. In addition, the zebra fish c-myc gene proved capable of cooperating with an activated H-ras to effect the malignant transformation of mammalian cells, albeit with diminished potency compared with mouse c-myc. With respect to their roles in normal developing tissues, the differential temporal and spatial patterns of steady-state mRNA expression observed for each zebra fish myc family member suggest unique functions for L-myc in early embryogenesis, for N-myc in establishment and growth of early organ systems, and for c-myc in increasingly differentiated tissues. Furthermore, significant alterations in the steady-state expression of zebra fish myc family genes concomitant with relatively constant max expression support the emerging model of regulation of Myc function in cellular growth and differentiation. Images PMID:8474440

  2. Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases.

    PubMed

    Verstraete, Kenneth; Savvides, Savvas N

    2012-11-01

    Intracellular signalling cascades initiated by class III receptor tyrosine kinases (RTK-IIIs) and their cytokine ligands contribute to haematopoiesis and mesenchymal tissue development. They are also implicated in a wide range of inflammatory disorders and cancers. Recent snapshots of RTK-III ectodomains in complex with cognate cytokines have revealed timely insights into the structural determinants of RTK-III activation, evolution and pathology. Importantly, candidate 'driver' and 'passenger' mutations that have been identified in RTK-IIIs can now be collectively mapped for the first time to structural scaffolds of the corresponding RTK-III ectodomains. Such insights will generate a renewed interest in dissecting the mechanistic effects of such mutations and their therapeutic relevance.

  3. Expression of Cellular Oncogenes in Human Malignancies

    NASA Astrophysics Data System (ADS)

    Slamon, Dennis J.; Dekernion, Jean B.; Verma, Inder M.; Cline, Martin J.

    1984-04-01

    Cellular oncogenes have been implicated in the induction of malignant transformation in some model systems in vitro and may be related to malignancies in vivo in some vertebrate species. This article describes a study of the expression of 15 cellular oncogenes in fresh human tumors from 54 patients, representing 20 different tumor types. More than one cellular oncogene was transcriptionally active in all of the tumors examined. In 14 patients it was possible to study normal and malignant tissue from the same organ. In many of these patients, the transcriptional activity of certain oncogenes was greater in the malignant than the normal tissue. The cellular fes (feline sarcoma) oncogene, not previously known to be transcribed in mammalian tissue, was found to be active in lung and hematopoietic malignancies.

  4. miR-203 downregulates Yes-1 and suppresses oncogenic activity in human oral cancer cells.

    PubMed

    Lee, Seul-Ah; Kim, Jae-Sung; Park, Sun-Young; Kim, Heung-Joong; Yu, Sun-Kyoung; Kim, Chun Sung; Chun, Hong Sung; Kim, Jeongsun; Park, Jong-Tae; Go, Daesan; Kim, Do Kyung

    2015-10-01

    The purpose of this study was to elucidate the molecular mechanisms of microRNA-203 (miR-203) as a tumor suppressor in KB human oral cancer cells. MicroRNA microarray results showed that the expression of miR-203 was significantly down-regulated in KB cells compared with normal human oral keratinocytes. The viability of KB cells was decreased by miR-203 in the time- and dose-dependent manners. In addition, over-expressed miR-203 not only increased the nuclear condensation but also significantly increased the apoptotic population of KB cells. These results indicated that the over-expression of miR-203 induced apoptosis of KB cells. Furthermore, the target gene array analyses revealed that the expression of Yes-1, a member of the Src family kinases (SFKs), was significantly down-regulated by miR-203 in KB cells. Moreover, both the mRNA and protein levels of Yes-1 were strongly reduced in KB cells transfected with miR-203. Therefore, these results indicated that Yes-1 is predicted to be a potential target gene of miR-203. Through a luciferase activity assay, miR-203 was confirmed to directly targets the Yes-1 3' untranslated region (UTR) to suppress gene expression. Therefore, our findings indicate that miR-203 induces the apoptosis of KB cells by directly targeting Yes-1, suggesting its application in anti-cancer therapeutics.

  5. The anti-melanoma activity and oncogenic targets of hsa-miR-15a-5p

    PubMed Central

    Alderman, Christopher; Yang, Yixin

    2016-01-01

    MiRNAs regulate gene expression post-transcriptionally and pre-translationally. Through gene regulation, several miRNAs have been found to play a significant role in various diseases. Each miRNA has multiple targets and is able to have a potent, albeit complex, effect on the cells. Specifically, miRNA-15a has been found to significantly reduce cancer cell survival and aggressiveness through multiple mechanisms across several cancer types. Our research found that miRNA-15a was able to decrease melanoma cell viability in-vitro and in-vivo. We have also found that miRNA-15a caused cell cycle arrest at the G0/G1 phase. Moreover, miRNA-15a was found to decrease the invasiveness of melanoma cells. CDCA4 was also discovered as a novel bona-fide target of miRNA-15a. The following oncogenic mRNAs are verified targets of miRNA-15a: CDCA4, BCL2L2, YAP1, AKT-3, Cyclin E1, and γ-Synuclein. In the future we hope to better understand which miRNAs will be effective in different transcriptome and genome environments. Efforts such as the NIH Center for Cancer Genomics' ‘The Cancer Genome Atlas,’ ‘Cancer Target and Driver Discovery Network,’ and the ‘Human Cancer Models Initiatives’ among others, will help us characterize the specific tumor environments in which different miRNAs are able to reduce cancer proliferation and aggression. This information will be enhanced by improving the delivery of miRNA by inducing its expression in-situ with dCas9 conjugated to activation domains.

  6. Global expression profiling reveals gain-of-function onco-genic activity of a mutated thyroid hormone receptor in thyroid carcinogenesis

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Thyroid hormone receptors (TRs) are critical in regulating gene expression in normal physiological processes. Decreased expression and/or somatic mutations of TRs have been shown to be associated several types of human cancers including liver, breast, lung, and thyroid. To understand the molecular mechanisms by which mutated TRs promote carcinogenesis, an animal model of follicular thyroid carcinoma (FTC) (Thrbpv/pv mice) was used in the present study. The Thrbpv/pv mouse harbors a knockin dominant negative PV mutation, identified in a patient with resistance to thyroid hormone. To understand whether oncogenic actions of PV involve not only the loss of normal TR functions but also gain-of-function activities, we compared the gene expression profiles of thyroid lesions in Thrbpv/pv mice and Thra1-/- Thrb-/- mice that also spontaneously develop FTC, but with less severe malignancy. Analysis of the cDNA microarray data derived from microdissected thyroid tumor cells of these two mice showed contrasting global gene expression profiles. With stringent selection using 2.5-fold change (p<0.01) in cDNA microarray analysis, 241 genes with altered gene expression were identified. Nearly half of the genes (n=103: 42.7% of total) with altered gene expression in thyroid tumor cells of Thrbpv/pv mice were associated with tumorigenesis and metastasis; some of these genes function as oncogenes in human thyroid cancers. The remaining genes were found to function in transcriptional regulation, RNA processing, cell proliferation, apoptosis, angiogenesis, and cytoskeleton modification. These results indicate that the more aggressive thyroid tumor progression in Thrbpv/pv mice was not due simply to the loss of tumor suppressor functions of TR via mutation but also, importantly, to gain-of-function in the oncogenic activities of PV to drive thyroid carcinogenesis. Thus, the present study identifies a novel mechanism by which a mutated TRβ evolves with an oncogenic advantage to promote

  7. Induction of human microsomal prostaglandin E synthase 1 by activated oncogene RhoA GTPase in A549 human epithelial cancer cells

    SciTech Connect

    Choi, Hye Jin; Lee, Dong-Hyung; Park, Seong-Hwan; Kim, Juil; Do, Kee Hun; An, Tae Jin; Ahn, Young Sup; Park, Chung Berm; Moon, Yuseok

    2011-09-30

    Highlights: {yields} As a target of oncogene RhoA-linked signal, a prostaglandin metabolism is assessed. {yields} RhoA activation increases PGE{sub 2} levels and its metabolic enzyme mPGES-1. {yields} RhoA-activated NF-{kappa}B and EGR-1 are positively involved in mPGES-1 induction. -- Abstract: Oncogenic RhoA GTPase has been investigated as a mediator of pro-inflammatory responses and aggressive carcinogenesis. Among the various targets of RhoA-linked signals, pro-inflammatory prostaglandin E{sub 2} (PGE{sub 2}), a major prostaglandin metabolite, was assessed in epithelial cancer cells. RhoA activation increased PGE{sub 2} levels and gene expression of the rate-limiting PGE{sub 2} producing enzymes, cyclooxygenase-2 and microsomal prostaglandin E synthase 1 (mPGES-1). In particular, human mPGES-1 was induced by RhoA via transcriptional activation in control and interleukin (IL)-1{beta}-activated cancer cells. To address the involvement of potent signaling pathways in RhoA-activated mPGES-1 induction, various signaling inhibitors were screened for their effects on mPGES-1 promoter activity. RhoA activation enhanced basal and IL-1{beta}-mediated phosphorylated nuclear factor-{kappa}B and extracellular signal-regulated kinase1/2 proteins, all of which were positively involved in RhoA-induced gene expression of mPGES-1. As one potent down-stream transcription factor of ERK1/2 signals, early growth response gene 1 product also mediated RhoA-induced gene expression of mPGES-1 by enhancing transcriptional activity. Since oncogene-triggered PGE{sub 2} production is a critical modulator of epithelial tumor cells, RhoA-associated mPGES-1 represents a promising chemo-preventive or therapeutic target for epithelial inflammation and its associated cancers.

  8. Polyadenylation factor CPSF-73 is the pre-mRNA 3’-end processing endonuclease

    PubMed Central

    Mandel, Corey R.; Kaneko, Syuzo; Zhang, Hailong; Gebauer, Damara; Vethantham, Vasupradha; Manley, James L.; Tong, Liang

    2013-01-01

    Most eukaryotic messenger RNA precursors (pre-mRNAs) undergo extensive maturational processing, including 3’-end cleavage and polyadenylation1–8. Despite the characterization of a large number of proteins that are required for the cleavage reaction, the identity of the endoribonuclease is not known4,9,10. Recent analyses suggested that the 73 kD subunit of cleavage and polyadenylation specificity factor (CPSF-73) may be the endonuclease for this and related reactions10–15, although no direct data confirmed this. Here we report the crystal structures of human CPSF-73 at 2.1 Å resolution, complexed with zinc ions and a sulfate that may mimic the phosphate group of the substrate, and the related yeast protein CPSF-100 (Ydh1p) at 2.5 Å resolution. Both CPSF-73 and CPSF-100 contain two domains, a metallo-β-lactamase domain and a novel β-CASP domain. The active site of CPSF-73, with two zinc ions, is located at the interface of the two domains. Purified recombinant CPSF-73 possesses endoribonuclease activity, and mutations that disrupt zinc binding in the active site abolish this activity. Our studies provide the first direct experimental evidence that CPSF-73 is the pre-mRNA 3’-end processing endonuclease. PMID:17128255

  9. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  10. Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements.

    PubMed

    Rutledge, Charlotte E; Lau, Ho-Tak; Mangan, Hazel; Hardy, Linda L; Sunnotel, Olaf; Guo, Fan; MacNicol, Angus M; Walsh, Colum P; Lees-Murdock, Diane J

    2014-01-01

    Regulation of DNMT1 is critical for epigenetic control of many genes and for genome stability. Using phylogenetic analysis we characterized a block of 27 nucleotides in the 3'UTR of Dnmt1 mRNA identical between humans and Xenopus and investigated the role of the individual elements contained within it. This region contains a cytoplasmic polyadenylation element (CPE) and a Musashi binding element (MBE), with CPE binding protein 1 (CPEB1) known to bind to the former in mouse oocytes. The presence of these elements usually indicates translational control by elongation and shortening of the poly(A) tail in the cytoplasm of the oocyte and in some somatic cell types. We demonstrate for the first time cytoplasmic polyadenylation of Dnmt1 during periods of oocyte growth in mouse and during oocyte activation in Xenopus. Furthermore we show by RNA immunoprecipitation that Musashi1 (MSI1) binds to the MBE and that this element is required for polyadenylation in oocytes. As well as a role in oocytes, site-directed mutagenesis and reporter assays confirm that mutation of either the MBE or CPE reduce DNMT1 translation in somatic cells, but likely act in the same pathway: deletion of the whole conserved region has more severe effects on translation in both ES and differentiated cells. In adult cells lacking MSI1 there is a greater dependency on the CPE, with depletion of CPEB1 or CPEB4 by RNAi resulting in substantially reduced levels of endogenous DNMT1 protein and concurrent upregulation of the well characterised CPEB target mRNA cyclin B1. Our findings demonstrate that CPE- and MBE-mediated translation regulate DNMT1 expression, representing a novel mechanism of post-transcriptional control for this gene.

  11. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer.

    PubMed

    Cheng, Yan; Holloway, Michael P; Nguyen, Kevin; McCauley, Dilara; Landesman, Yosef; Kauffman, Michael G; Shacham, Sharon; Altura, Rachel A

    2014-03-01

    Inhibition of XPO1 (CRM1)-mediated nuclear export of multiple tumor suppressor proteins has been proposed as a novel cancer therapeutic strategy to turn off oncogenic signals and enhance tumor suppression. Survivin is a multifunctional protein with oncogenic properties when expressed in the cytoplasm that requires the XPO1-RanGTP complex for its nuclear export. We investigated the antitumor mechanisms of the drug-like selective inhibitors of nuclear export (SINE) XPO1 antagonists KPT-185, KPT-251 KPT-276, and KPT-330 in estrogen receptor-positive and triple-negative breast cancer (TNBC) cell lines and xenograft models of human breast tumors. KPT compounds significantly inhibited breast cancer cell growth and induced tumor cell death, both in vitro and in vivo. These drugs initially promoted survivin accumulation within tumor cell nuclei. However, their major in vitro effect was to decrease survivin cytoplasmic protein levels, correlating with the onset of apoptosis. XPO1 inhibition repressed Survivin transcription by inhibiting CREB-binding protein-mediated STAT3 acetylation, and blocking STAT3 binding to the Survivin promoter. In addition, caspase-3 was activated to cleave survivin, rendering it unavailable to bind X-linked inhibitor of apoptosis protein and block the caspase cascade. Collectively, these data demonstrate that XPO1 inhibition by SINE compounds represses STAT3 transactivation to block the selective oncogenic properties of survivin and supports their clinical use in TNBC.

  12. Conditional overexpression of the wild-type Gs alpha as the gsp oncogene initiates chronic extracellularly regulated kinase 1/2 activation and hormone hypersecretion in pituitary cell lines.

    PubMed

    Romano, D; Magalon, K; Pertuit, M; Rasolonjanahary, R; Barlier, A; Enjalbert, A; Gerard, C

    2007-06-01

    In pituitary cells, activation of the cAMP pathway by specific G protein-coupled receptors controls differentiative functions and proliferation. Constitutively active forms of the alpha subunit of the heterotrimeric G(s) protein resulting from mutations at codon 201 or 227 (gsp oncogene) were first identified in 30-40% of human GH-secreting pituitary adenomas. This rate of occurrence suggests that the gsp oncogene is not responsible for initiating the majority of these tumors. Moreover, there is a large overlap between the clinical phenotypes observed in patients with tumors bearing the gsp oncogene and those devoid of this oncogene. To explore the role of G(s)alpha in GH-secreting adenomas, we obtained somatolactotroph GH4C1 cell lines by performing doxycycline-dependent conditional overexpression of the wild-type G(s)alpha protein and expression of the gsp oncogene. Although the resulting adenylyl cyclase and cAMP levels were 10-fold lower in the wild-type G(s)alpha-overexpressing cell line, a sustained MAPK ERK1/2 activation was observed in both cell lines. Overexpression of the wild-type G(s)alpha protein as the gsp oncogene initiated chronic activation of endogenous prolactin synthesis and release, as well as chronic activation of ERK1/2-sensitive human prolactin and GH promoters.

  13. Putative alternative polyadenylation (APA) events in the early interaction of Salmonella enterica Typhimurium and human host cells.

    PubMed

    Afonso-Grunz, Fabian

    2015-12-01

    The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA) represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730) covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA) sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL, PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  14. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein.

    PubMed

    Hong, Shin Yee; Yu, Fa-Xing; Luo, Yan; Hagen, Thilo

    2016-05-01

    Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.

  15. Upregulation of functional Kv11.1 isoform expression by inhibition of intronic polyadenylation with antisense morpholino oligonucleotides.

    PubMed

    Gong, Qiuming; Stump, Matthew R; Zhou, Zhengfeng

    2014-11-01

    The KCNH2 gene encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative processing; intron 9 splicing leads to the formation of a functional, full-length Kv11.1a isoform, while polyadenylation within intron 9 generates a non-functional, C-terminally truncated Kv11.1a-USO isoform. The relative expression of Kv11.1 isoforms plays an important role in the regulation of Kv11.1 channel function and the pathogenesis of long QT syndrome. In this study, we identified cis-acting elements that are required for KCNH2 intron 9 poly(A) signal activity. Mutation of these elements decreased Kv11.1a-USO expression and increased the expression of Kv11.1a mRNA, protein and channel current. More importantly, blocking these elements by antisense morpholino oligonucleotides shifted the alternative processing of KCNH2 intron 9 from the polyadenylation to the splicing pathway, leading to the predominant production of Kv11.1a and a significant increase in Kv11.1 current. Our findings indicate that the expression of the Kv11.1a isoform can be upregulated by an antisense approach. Antisense inhibition of KCNH2 intronic polyadenylation represents a novel approach to increase Kv11.1 channel function.

  16. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation.

    PubMed

    Kühn, Uwe; Buschmann, Juliane; Wahle, Elmar

    2017-04-01

    The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.

  17. Inhibition of Oncogenic BRAF Activity by Indole-3-Carbinol Disrupts Microphthalmia-Associated Transcription Factor Expression and Arrests Melanoma Cell Proliferation

    PubMed Central

    Kundu, Aishwarya; Quirit, Jeanne G.; Khouri, Michelle G.; Firestone, Gary L.

    2016-01-01

    Indole-3-carbinol (I3C), an anti-cancer phytochemical derived from cruciferous vegetables, strongly inhibited proliferation and down-regulated protein levels of the melanocyte master regulator micropthalmia-associated transcription factor (MITF-M) in oncogenic BRAF-V600E expressing melanoma cells in culture as well as in vivo in tumor xenografted athymic nude mice. In contrast, wild type BRAF-expressing melanoma cells remained relatively insensitive to I3C anti-proliferative signaling. In BRAF-V600E-expressing melanoma cells, I3C treatment inhibited phosphorylation of MEK and ERK/MAPK, the down stream effectors of BRAF. The I3C anti-proliferative arrest was concomitant with the down-regulation of MITF-M transcripts and promoter activity, loss of endogenous BRN-2 binding to the MITF-M promoter, and was strongly attenuated by expression of exogenous MITF-M. Importantly, in vitro kinase assays using immunoprecipitated BRAF-V600E and wild type BRAF demonstrated that I3C selectively inhibited the enzymatic activity of the oncogenic BRAF-V600E but not of the wild type protein. In silico modeling predicted an I3C interaction site in the BRAF-V600E protomer distinct from where the clinically used BRAF-V600E inhibitor Vemurafenib binds to BRAF-V600E. Consistent with this prediction, combinations of I3C and Vemurafenib more potently inhibited melanoma cell proliferation and reduced MITF-M levels in BRAF-V600E expressing melanoma cells compared to the effects of each compound alone. Thus, our results demonstrate that oncogenic BRAF-V600E is a new cellular target of I3C that implicate this indolecarbinol compound as a potential candidate for novel single or combination therapies for melanoma. PMID:26878440

  18. The RON and MET oncogenes are co-expressed in human ovarian carcinomas and cooperate in activating invasiveness.

    PubMed

    Maggiora, Piera; Lorenzato, Annalisa; Fracchioli, Stefano; Costa, Barbara; Castagnaro, Massimo; Arisio, Riccardo; Katsaros, Dionyssios; Massobrio, Marco; Comoglio, Paolo M; Flavia Di Renzo, Maria

    2003-08-15

    RON is a member of the receptor tyrosine kinase gene family that includes the MET oncogene, whose germline mutations have been causally related to human tumorigenesis. In vitro, RON and MET receptors cross-talk, synergize in intracellular signaling, and cooperate in inducing morphogenic responses. Here we show that the RON and MET oncogenes were expressed in 55% and 56% of human ovarian carcinomas, respectively, and were significantly coexpressed in 42% (P < 0.001). In ovarian carcinoma samples and cell lines we did not find mutations in RON and MET gene kinase domain, nor coexpression of RON and MET receptor ligands (MSP and HGF, respectively). We show that motility and invasiveness of ovarian cancer cells coexpressing MET and RON receptors were elicited by HGF and, to a lesser extent, by MSP. More interestingly, invasion of both reconstituted basement membrane and collagen gel was greatly enhanced by the simultaneous addition of the two ligands. These data suggest that coexpression of the MET and RON receptors confer a selective advantage to ovarian cancer cells and might promote ovarian cancer progression.

  19. The Tax oncogene enhances ELL incorporation into p300 and P-TEFb containing protein complexes to activate transcription.

    PubMed

    Fufa, Temesgen D; Byun, Jung S; Wakano, Clay; Fernandez, Alfonso G; Pise-Masison, Cynthia A; Gardner, Kevin

    2015-09-11

    The eleven-nineteen lysine-rich leukemia protein (ELL) is a key regulator of RNA polymerase II mediated transcription. ELL facilitates RNA polymerase II transcription pause site entry and release by dynamically interacting with p300 and the positive transcription elongation factor b (P-TEFb). In this study, we investigated the role of ELL during the HTLV-1 Tax oncogene induced transactivation. We show that ectopic expression of Tax enhances ELL incorporation into p300 and P-TEFb containing transcriptional complexes and the subsequent recruitment of these complexes to target genes in vivo. Depletion of ELL abrogates Tax induced transactivation of the immediate early genes Fos, Egr2 and NF-kB, suggesting that ELL is an essential cellular cofactor of the Tax oncogene. Thus, our study identifies a novel mechanism of ELL-dependent transactivation of immediate early genes by Tax and provides the rational for further defining the genome-wide targets of Tax and ELL.

  20. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation

    PubMed Central

    García-Carpizo, Verónica; Sarmentero, Jacinto; Han, Bomie; Graña, Osvaldo; Ruiz-Llorente, Sergio; Pisano, David G.; Serrano, Manuel; Brooks, Harold B.; Campbell, Robert M.; Barrero, Maria J.

    2016-01-01

    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression. PMID:27604143

  1. Inhibition of ligand-independent constitutive activation of the Met oncogenic receptor by the engineered chemically-modified antibody DN30.

    PubMed

    Vigna, Elisa; Chiriaco, Cristina; Cignetto, Simona; Fontani, Lara; Basilico, Cristina; Petronzelli, Fiorella; Comoglio, Paolo M

    2015-11-01

    An awesome number of experimental and clinical evidences indicate that constitutive activation of the Met oncogenic receptor plays a critical role in the progression of cancer toward metastasis and/or resistance to targeted therapies. While mutations are rare, the common mechanism of Met activation is overexpression, either by gene amplification ('addiction') or transcriptional activation ('expedience'). In the first instance ligand-independent kinase activation plays a major role in sustaining the transformed phenotype. Anti-Met antibodies directed against the receptor binding site behave essentially as ligand (Hepatocyte Growth Factor, HGF) antagonists and are ineffective to counteract ligand-independent activation. The monovalent chimeric MvDN30 antibody fragment, PEGylated to extend its half-life, binds the fourth IPT domain and induces 'shedding' of the Met extracellular domain, dramatically reducing both the number of receptors on the surface and their phosphorylation. Downstream signaling is thus inhibited, both in the absence or in the presence of the ligand. In vitro, MvDN30 is a strong inhibitor not only of ligand-dependent invasive growth, sustained by both paracrine and autocrine HGF, but notably, also of ligand-independent growth of 'Met-addicted' cells. In immunocompromised mice, lacking expression of Hepatocyte Growth Factor cross-reacting with the human receptor - thus providing, by definition, a model of 'ligand-independent' Met activation - PEGylated MvDN30 impairs growth of Met 'addicted' human gastric carcinoma cells. In a Met-amplified patient-derived colo-rectal tumor (xenopatient) MvDN30-PEG overcomes the resistance to EGFR targeted therapy (Cetuximab). The PEGylated MvDN30 is thus a strong candidate for targeting tumors sustained by ligand-independent Met oncogenic activation.

  2. Function of oncogenes in cancer development: a changing paradigm

    PubMed Central

    Vicente-Dueñas, Carolina; Romero-Camarero, Isabel; Cobaleda, Cesar; Sánchez-García, Isidro

    2013-01-01

    Tumour-associated oncogenes induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumour cells. However, recent evidences have revealed that oncogenes are only essential for the proliferation of some specific tumour cell types, but not all. Indeed, the latest studies of the interactions between the oncogene and its target cell have shown that oncogenes contribute to cancer development not only by inducing proliferation but also by developmental reprogramming of the epigenome. This provides the first evidence that tumorigenesis can be initiated by stem cell reprogramming, and uncovers a new role for oncogenes in the origin of cancer. Here we analyse these evidences and propose an updated model of oncogene function that can explain the full range of genotype–phenotype associations found in human cancer. Finally, we discuss how this vision opens new avenues for developing novel anti-cancer interventions. PMID:23632857

  3. Polyadenylic acid at the 3'-terminus of poliovirus RNA.

    PubMed

    Yogo, Y; Wimmer, E

    1972-07-01

    Poliovirus RNA that has been derivatized at the 3'-end with NaIO(4)-NaB(3)H(4) yields, after hydrolysis with alkali or RNase T2, predominantly labeled residues of modified adenosine; no labeled nucleoside derivative is produced by digestion with RNase A or RNase T1. The 3'-terminal bases of the RNA are, therefore,...ApA(OH). Hydrolyzates of poliovirus [(32)P]RNA, after exhaustive digestion with RNase T1 or RNase A, contain, besides internal oligonucleotides, polynucleotides resistant to further action of ribonucleases T1 and A, respectively; these polynucleotides were isolated by membrane-filter binding or ion-exchange chromatography. The sequence of the T1-resistant polynucleotide was determined to be (Ap)(n)A(OH), that of the RNase A-resistant polynucleotide was GpGp(Ap)(n)A(OH). The chain length (n) of the polyadenylic acid, as analyzed by different methods, averages 89 nucleotides. Gel electrophoresis revealed heterogeneity of the size of poly(A). Poliovirus RNA, when labeled in vitro at the 3'-end, contains [3'-(3)H]poly(A); when labeled in vivo with [(3)H]A, it contains [(3)H](Ap)(n)A(OH). The data establish that... YpGpGp(Ap)([unk])A(OH) is the 3'-terminal sequence of poliovirus RNA, Type 1 (Mahoney). Since this mammalian virus reproduces in the cell cytoplasm, these observations may modify prior interpretations of the function of polyadenylate ends on messenger RNAs.

  4. Ebola Virus GP Gene Polyadenylation Versus RNA Editing.

    PubMed

    Volchkova, Valentina A; Vorac, Jaroslav; Repiquet-Paire, Laurie; Lawrence, Philip; Volchkov, Viktor E

    2015-10-01

    Synthesis of Ebola virus (EBOV) surface glycoprotein (GP) is dependent on transcriptional RNA editing. Northern blot analysis of EBOV-infected cells using GP-gene-specific probes reveals that, in addition to full-length GP messenger RNAs (mRNAs), a shorter RNA is also synthesized, representing >40% of the total amount of GP mRNA. Sequence analysis demonstrates that this RNA is a truncated version of the full-length GP mRNA that is polyadenylated at the editing site and thus lacks a stop codon. An absence of detectable levels of protein synthesis in cellulo is consistent with the existence of tight regulation of the translation of such mRNA. However, nonstop GP mRNA was shown to be only slightly less stable than the same mRNA containing a stop codon, against the general belief in nonstop decay mechanisms aimed at detecting and destroying mRNAs lacking a stop codon. In conclusion, we demonstrate that the editing site indeed serves as a cryptic transcription termination/polyadenylation site, which rarely also functions to edit GP mRNA for expression of surface GP. This new data suggest that the downregulation of surface GP expression is even more dramatic than previously thought, reinforcing the importance of the GP gene editing site for EBOV replication and pathogenicity.

  5. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma

    PubMed Central

    Wong, Kwong-Fai; Liu, Angela M.; Hong, Wanjin; Xu, Zhi; Luk, John M.

    2016-01-01

    The Hippo pathway regulates the down-stream target Yes-associated protein (YAP) to maintain organ homeostasis, which is commonly inactivated in many types of cancers. However, how cell adhesion dysregulates the Hippo pathway activating YAP oncogene in hepatocellular carcinoma (HCC) remains unclear. Our findings demonstrate that α2β1 integrin (but not other β1 integrins) expressed in HCC cells, after binding to collagen extracellular matrix, could inhibit MST1 kinase phosphorylation and activate YAP pro-oncogenic activities. Knockdown of integrin α2 gene (ITGA2) suppressed YAP targeted gene expression in vitro. α2β1 and collagen binding resulted in suppressing Hippo signaling of mammalian sterile 20-like kinase 1 (MST1) and Large tumor suppressor homolog 1 (LATS1) with concomitant activation of YAP-mediated connective tissue growth factor (CTGF) gene expression. In vitro kinase assay showed that MST1 is an immediate downstream target of integrin α2 with S1180 residue as the critical phosphorylation site. Clinical correlational analysis using a gene expression dataset of 228 HCC tumors revealed that ITGA2 expression was significantly associated with tumor progression, and co-expression with YAP targeted genes (AXL receptor tyrosine kinase, CTGF, cyclin D1, glypican 3, insulin like growth factor 1 receptor, and SRY-box 4) correlated with survivals of HCC patients. In conclusion, α2β1 integrin activation through cellular adhesion impacts the Hippo pathway in solid tumors and modulates MST1-YAP signaling cascade. Targeting integrin α2 holds promises for treating YAP-positive HCC. PMID:27765911

  6. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma.

    PubMed

    Wong, Kwong-Fai; Liu, Angela M; Hong, Wanjin; Xu, Zhi; Luk, John M

    2016-11-22

    The Hippo pathway regulates the down-stream target Yes-associated protein (YAP) to maintain organ homeostasis, which is commonly inactivated in many types of cancers. However, how cell adhesion dysregulates the Hippo pathway activating YAP oncogene in hepatocellular carcinoma (HCC) remains unclear. Our findings demonstrate that α2β1 integrin (but not other β1 integrins) expressed in HCC cells, after binding to collagen extracellular matrix, could inhibit MST1 kinase phosphorylation and activate YAP pro-oncogenic activities. Knockdown of integrin α2 gene (ITGA2) suppressed YAP targeted gene expression in vitro. α2β1 and collagen binding resulted in suppressing Hippo signaling of mammalian sterile 20-like kinase 1 (MST1) and Large tumor suppressor homolog 1 (LATS1) with concomitant activation of YAP-mediated connective tissue growth factor (CTGF) gene expression. In vitro kinase assay showed that MST1 is an immediate downstream target of integrin α2 with S1180 residue as the critical phosphorylation site. Clinical correlational analysis using a gene expression dataset of 228 HCC tumors revealed that ITGA2 expression was significantly associated with tumor progression, and co-expression with YAP targeted genes (AXL receptor tyrosine kinase, CTGF, cyclin D1, glypican 3, insulin like growth factor 1 receptor, and SRY-box 4) correlated with survivals of HCC patients. In conclusion, α2β1 integrin activation through cellular adhesion impacts the Hippo pathway in solid tumors and modulates MST1-YAP signaling cascade. Targeting integrin α2 holds promises for treating YAP-positive HCC.

  7. Antisense Transcript and RNA Processing Alterations Suppress Instability of Polyadenylated mRNA in Chlamydomonas Chloroplasts

    PubMed Central

    Nishimura, Yoshiki; Kikis, Elise A.; Zimmer, Sara L.; Komine, Yutaka; Stern, David B.

    2004-01-01

    In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Δ26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Δ26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3′ poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS−, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Δ26, in which atpB mRNA is unstable because of the lack of a 3′ stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3′→5

  8. Lack of oncogenicity of wood creosote, the principal active ingredient of Seirogan, an herbal antidiarrheal medication, in Sprague-Dawley rats.

    PubMed

    Kuge, T; Shibata, T; Willett, M S; Turck, P; Traul, K A

    2001-01-01

    Seirogan, an herbal medicine containing wood creosote (tablets, 10.0% w/w), has been developed and marketed for almost a century in various countries for the control of acute diarrhea and treatment of associated symptoms, such as abdominal cramping. Wood creosote (CAS no. 8021-39-4) is a mixture of simple phenolic compounds, including guaiacol and creosol and related compounds, and is chemically distinct from, and should not be confused with, coal tar creosote, a known carcinogen. In the current study, the oncogenic potential of wood creosote was assessed in a 96/103-week oral gavage study in Sprague-Dawley rats. Groups of 60 rats/sex received wood creosote at dose levels of 20, 50, or 200 mg/kg body weight [bw]/day. An additional group of rats received the vehicle, 0.5% carboxymethylcellulose in deionized, distilled water, at the same dose volume as the treatment groups (10 ml/kg) and served as the controls. Treatment-related decreases in survival, body weight, and food consumption, as well as increased incidences of clinical signs that included rales, decreased activity, and salivation, were noted at 200 mg/kg bw/day when compared with the control group. There was an increased incidence of reddened and edematous lungs in rats from the 200 mg/kg bw/day group that died during the study. The lung findings were suggestive of test article aspiration during dose administration or agonal aspiration preceding and possibly resulting in death, especially because these observations were not seen in animals that survived to scheduled sacrifice. Additionally, phenols are generally recognized as having corrosive properties. There were no changes in clinical pathology and no increases in neoplastic or non-neoplastic lesions, excluding the lung findings, related to treatment with wood creosote at any dose level. Although the results of this study indicate that the maximum tolerated dose of wood creosote was met or exceeded at 200 mg/kg bw/day, there was no evidence of

  9. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark.

    PubMed

    Slomovic, Shimyn; Laufer, David; Geiger, Dan; Schuster, Gadi

    2005-08-01

    RNA polyadenylation serves a purpose in bacteria and organelles opposite from the role it plays in nuclear systems. The majority of nucleus-encoded transcripts are characterized by stable poly(A) tails at their mature 3' ends, which are essential for stabilization and translation initiation. In contrast, in bacteria, chloroplasts, and plant mitochondria, polyadenylation is a transient feature which promotes RNA degradation. Surprisingly, in spite of their prokaryotic origin, human mitochondrial transcripts possess stable 3'-end poly(A) tails, akin to nucleus-encoded mRNAs. Here we asked whether human mitochondria retain truncated and transiently polyadenylated transcripts in addition to stable 3'-end poly(A) tails, which would be consistent with the preservation of the largely ubiquitous polyadenylation-dependent RNA degradation mechanisms of bacteria and organelles. To this end, using both molecular and bioinformatic methods, we sought and revealed numerous examples of such molecules, dispersed throughout the mitochondrial genome. The broad distribution but low abundance of these polyadenylated truncated transcripts strongly suggests that polyadenylation-dependent RNA degradation occurs in human mitochondria. The coexistence of this system with stable 3'-end polyadenylation, despite their seemingly opposite effects, is so far unprecedented in bacteria and other organelles.

  10. Oncogenic potential of bifunctional bioreductive drugs.

    PubMed

    Hei, T K; Liu, S X; Hall, E J

    1996-07-01

    Potential oncogenicity must be a factor of concern in the design and development of novel bioreductive drugs. In the present studies, the cytotoxicity and oncogenic transforming potential of a series of heterocyclic mono-N-oxides, designed to be used as bioreductive drugs, were examined using the mouse C3H 10T1/2 cell system. Exponential phase cultures of 10T1/2 cells were treated with graded doses of the bioreductive drugs for a 4 h period, either in air or hypoxia, at 37 degrees C. After treatment, cultures were replated for both survival and transformation assays. The fused pyrazine mono-N-oxide RB 90740 and its N-deoxy analogue, RB 92816, demonstrated a dose-dependent cytotoxicity and oncogenic transforming potency under aerobic conditions. Similarly, the indoloquinone E09 and the structurally related mitomycin C demonstrated dose dependence in both toxicity and oncogenic transforming potential. The most cytotoxic aromatic-N-oxides tested, RB 92816, also demonstrated the highest oncogenic transformation incidence. In hypoxia, the bioreductive metabolites of RB 90740 were substantially more cytotoxic and induced a higher oncogenic transformation yield than the drug in air. These data are consistent with the structure-activity relationship for bioreductive drugs in that heterocyclic-N-oxides with reactive side chains such as RB 92816 are cytotoxic and potentially carcinogenic.

  11. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma

    PubMed Central

    Wu, Weining; Hu, Qi; Nie, Er; Yu, Tianfu; Wu, Youzhi; Zhi, Tongle; Jiang, Kuan; Shen, Feng; Wang, Yingyi; Zhang, Junxia; You, Yongping

    2017-01-01

    H19 expression is elevated in many human tumors including glioblastomas, suggesting an oncogenic role for the long noncoding RNA; yet the upregulation of H19 in glioblastomas remains unclear. Here we report that hypoxia significantly stimulated H19 expression in glioblastoma cell lines, which was related to hypoxia-inducible factors 1α (Hif-1α). Hif-1α promoted H19 expression in U87 and U251 cells. Meanwhile PTEN is an advantageous factor to affect H19 expression, through attenuating Hif-1α stability. Hif-1α also positively correlates with H19 in human glioblastoma samples depending on PTEN status. ChIP and luciferase reporter assays showed that Hif-1α induced H19 transcription through directly binding to the H19 promoter. Furthermore, Hif-1α upregulated specific protein 1 (SP1) expression in glioblastomas cells in vitro and in vivo, and SP1 also strongly interacted with the H19 promoter to promote H19 expression under hypoxia. We also showed that H19 acts as a molecular sponge that binds miR-181d, relieving inhibition of β-catenin expression. Therefore, H19 participates in hypoxia-driven migration and invasion in glioblastoma cells. In summary, our results uncover the mechanisms that stimulate H19 expression under hypoxia to promote malignant effects in glioblastomas and suggest H19 might be a promising therapeutic target. PMID:28327666

  12. The In Vitro Effect of Acidic-Pepsin on Nuclear Factor KappaB Activation and Its Related Oncogenic Effect on Normal Human Hypopharyngeal Cells

    PubMed Central

    Sasaki, Clarence T.; Toman, Julia; Vageli, Dimitra

    2016-01-01

    Background Extra-esophageal carcinogenesis has been widely discussed in relation to the chronic effects of laryngopharyngeal reflux and most prominently with pepsin historically central to this discussion. With refluxate known to include gastric (pepsin) and duodenal (bile) fluids, we recently demonstrated the mechanistic role of NF-κB in mediating the preneoplastic effects of acidic-bile. However, the role of pepsin in promoting hypopharyngeal premalignant events remains historically unclear. Here, we investigate the in vitro effect of acidic-pepsin on the NF-κB oncogenic pathway to better define its potential role in hypopharyngeal neoplasia. Methods Human hypopharyngeal primary cells (HHPC) and keratinocytes (HHK) were repetitively exposed to physiologic pepsin concentrations (0.1 mg/ml) at pH 4.0, 5.0 and 7.0. Cellular localization of phospho-NF-κB and bcl-2 was determined using immunofluorescence and western blotting. NF-κB transcriptional activity was tested by luc reporter and qPCR. Analysis of DNA content of pepsin treated HHK and HHPC was performed using Fluorescence-activated-cell sorting assay. To explore a possible dose related effect, pepsin concentration was reduced from 0.1 to 0.05 and 0.01 mg/ml. Results At physiologic concentration, acidic-pepsin (0.1 mg/ml at pH 4.0) is lethal to most normal hypopharyngeal cells. However, in surviving cells, no NF-κB transcriptional activity is noted. Acidic-pepsin fails to activate the NF-κB or bcl-2, TNF-α, EGFR, STAT3, and wnt5α but increases the Tp53 mRNAs, in both HHPC and HHK. Weakly acidic-pepsin (pH 5.0) and neutral-pepsin (pH 7.0) induce mild activation of NF-κB with increase in TNF-α mRNAs, without oncogenic transcriptional activity. Lower concentrations of pepsin at varying pH do not produce NF-κB activity or transcriptional activation of the analyzed genes. Conclusion Our findings in vitro do not support the role of acidic-pepsin in NF-κB related hypopharyngeal carcinogenesis. PMID:27973541

  13. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    SciTech Connect

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  14. The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice

    PubMed Central

    Grozdanov, Petar N.; Bergeson, Susan E.; Grammas, Paula

    2016-01-01

    Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction. PMID:27812195

  15. The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice.

    PubMed

    Harris, Jaryse C; Martinez, Joseph M; Grozdanov, Petar N; Bergeson, Susan E; Grammas, Paula; MacDonald, Clinton C

    2016-01-01

    Polyadenylation is an essential mechanism for the processing of mRNA 3' ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.

  16. (Oncogenic action of ionizing radiation)

    SciTech Connect

    Not Available

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. The carcinogenicity of energetic electrons was determined for comparison with the neon ion results. As in past reports we will describe progress in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) DNA strand breaks in the epidermis as a function of radiation penetration; (3) oncogene activation in radiation-induced rat skin cancers. 72 refs., 6 tabs.

  17. Transcriptomic profiling of Ichthyophthirius multifiliis reveals polyadenylation of the large subunit ribosomal RNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyadenylation of eukaryotic transcripts is usually restricted to mRNA, whereby providing transcripts with stability from degradation by nucleases. Conversely, an RNA degradation pathway can be signaled through poly (A) tailing in prokaryotic, archeal, and organeller biology. Recently polyadenyla...

  18. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2013-10-01

    Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL) PRINCIPAL INVESTIGATOR: Chioniso Masamha, Ph.D. CONTRACTING ORGANIZATION...CONTRACT NUMBER W81XWH-12-1-0218 Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL) 5b...shorten the 3’UTR of their mRNAs has important implications in cancer. Truncation of the cyclin D1 mRNA in mantle cell lymphoma (MCL) is one of the

  19. Viral oncogenes, proto-oncogenes and homoeotic genes related to cell proliferation and differentiation.

    PubMed

    Antohi, S; Antohi-Talle, O

    1987-01-01

    Molecular studies on viral oncogenes and their products have led to the discovery of physiological proto-oncogenes, involved in the control of cell proliferation and gene activation. Other genetic and molecular investigations, initiated in Drosophila melanogaster and continued in different multicellular eukaryotes, have made evident the homoeotic genes, which are directly correlated with cell specialization, in the complex processes of differentiation and morphogenesis. Both gene classes are conserved to a high extent during evolution. They are involved in the eukaryotic mechanisms of differentiation control and proto-oncogenes, in particular, are related to malignant transformation. Some available data suggest a certain extent of relatedness between the gene products of both gene classes. A differentiation trigger model, including retroviral transposition, homoeotic genes and proto-oncogenes is discussed.

  20. Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3.

    PubMed

    Lee, Hui Min; Lo, Kwok-Wai; Wei, Wenbin; Tsao, Sai Wah; Chung, Grace Tin Yun; Ibrahim, Maha Hafez; Dawson, Christopher W; Murray, Paul G; Paterson, Ian C; Yap, Lee Fah

    2017-02-27

    Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1 and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is over-expressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease.

  1. Experimental Genome-Wide Determination of RNA Polyadenylation in Chlamydomonas reinhardtii

    PubMed Central

    Bell, Stephen A.; Shen, Chi; Brown, Alishea; Hunt, Arthur G.

    2016-01-01

    The polyadenylation of RNA is a near-universal feature of RNA metabolism in eukaryotes. This process has been studied in the model alga Chlamydomonas reinhardtii using low-throughput (gene-by-gene) and high-throughput (transcriptome sequencing) approaches that recovered poly(A)-containing sequence tags which revealed interesting features of this critical process in Chlamydomonas. In this study, RNA polyadenylation has been studied using the so-called Poly(A) Tag Sequencing (PAT-Seq) approach. Specifically, PAT-Seq was used to study poly(A) site choice in cultures grown in four different media types—Tris-Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt (HS), and High-Salt-Acetate (HAS). The results indicate that: 1. As reported before, the motif UGUAA is the primary, and perhaps sole, cis-element that guides mRNA polyadenylation in the nucleus; 2. The scope of alternative polyadenylation events with the potential to change the coding sequences of mRNAs is limited; 3. Changes in poly(A) site choice in cultures grown in the different media types are very few in number and do not affect protein-coding potential; 4. Organellar polyadenylation is considerable and affects primarily ribosomal RNAs in the chloroplast and mitochondria; and 5. Organellar RNA polyadenylation is a dynamic process that is affected by the different media types used for cell growth. PMID:26730730

  2. Aberrant microRNA Expression Likely Controls RAS Oncogene Activation During Malignant Transformation of Human Prostate Epithelial and Stem Cells by Arsenic

    PubMed Central

    Ngalame, Ntube N. O.; Tokar, Erik J.; Person, Rachel J.; Xu, Yuanyuan; Waalkes, Michael P.

    2014-01-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants. PMID:24431212

  3. Oncogene v-jun modulates DNA replication.

    PubMed

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  4. LPS challenge regulates gene expression and tissue localization of a Ciona intestinalis gene through an alternative polyadenylation mechanism.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Parrinello, Daniela; Sanfratello, Maria Antonietta; Longo, Valeria; Colombo, Paolo

    2013-01-01

    A subtractive hybridization strategy for the identification of differentially expressed genes was performed between LPS-challenged and naive Ciona intestinalis. This strategy allowed the characterization of two transcripts (Ci8short and Ci8long) generated by the use of two Alternative Polyadenylation sites. The Ci8long transcript contains a protein domain with relevant homology to several components of the Receptor Transporting Protein (RTP) family not present in the Ci8short mRNA. By means of Real Time PCR and Northern Blot, the Ci8short and Ci8long transcripts showed a different pattern of gene expression with the Ci8short mRNA being strongly activated after LPS injection in the pharynx. In situ hybridization analysis demonstrated that the activation of the APA site also influenced the tissue localization of the Ci8short transcript. This analysis showed that the Ci8long mRNA was expressed in hemocytes meanwhile the Ci8short mRNA was highly transcribed also in vessel endothelial cells and in the epithelium of pharynx. These findings demonstrated that regulation of gene expression based on different polyadenylation sites is an ancestral powerful strategy influencing both the level of expression and tissue distribution of alternative transcripts.

  5. Alternative Polyadenylation of Human Bocavirus at Its 3′ End Is Regulated by Multiple Elements and Affects Capsid Expression

    PubMed Central

    Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Xu, Huanzhou; Wang, Hanzhong

    2016-01-01

    ABSTRACT Alternative processing of human bocavirus (HBoV) P5 promoter-transcribed RNA is critical for generating the structural and nonstructural protein-encoding mRNA transcripts. The regulatory mechanism by which HBoV RNA transcripts are polyadenylated at proximal [(pA)p] or distal [(pA)d] polyadenylation sites is still unclear. We constructed a recombinant HBoV infectious clone to study the alternative polyadenylation regulation of HBoV. Surprisingly, in addition to the reported distal polyadenylation site, (pA)d, a novel distal polyadenylation site, (pA)d2, which is located in the right-end hairpin (REH), was identified during infectious clone transfection or recombinant virus infection. (pA)d2 does not contain typical hexanucleotide polyadenylation signal, upstream elements (USE), or downstream elements (DSE) according to sequence analysis. Further study showed that HBoV nonstructural protein NS1, REH, and cis elements of (pA)d were necessary and sufficient for efficient polyadenylation at (pA)d2. The distance and sequences between (pA)d and (pA)d2 also played a key role in the regulation of polyadenylation at (pA)d2. Finally, we demonstrated that efficient polyadenylation at (pA)d2 resulted in increased HBoV capsid mRNA transcripts and protein translation. Thus, our study revealed that all the bocaviruses have distal poly(A) signals on the right-end palindromic terminus, and alternative polyadenylation at the HBoV 3′ end regulates its capsid expression. IMPORTANCE The distal polyadenylation site, (pA)d, of HBoV is located about 400 nucleotides (nt) from the right-end palindromic terminus, which is different from those of bovine parvovirus (BPV) and canine minute virus (MVC) in the same genus whose distal polyadenylation is located in the right-end stem-loop structure. A novel polyadenylation site, (pA)d2, was identified in the right-end hairpin of HBoV during infectious clone transfection or recombinant virus infection. Sequence analysis showed that (pA)d2

  6. The Oncogenic Response to MiR-335 Is Associated with Cell Surface Expression of Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) Activity.

    PubMed

    Rojas, Fausto; Hernandez, Maria E; Silva, Milagros; Li, Lihua; Subramanian, Subbaya; Wilson, Michael J; Liu, Ping

    2015-01-01

    MicroRNA miR-335 has been reported to have both tumor suppressor and oncogenic activities. In order to determine possible tissue and cell type differences in response to miR-335, we examined the effect of miR-335 on cell expression of MT1-MMP, a proteinase commonly expressed in tumors and associated with cell proliferation and migration. miR-335 increased cell surface expression of MT1-MMP in fibrosarcoma HT-1080 and benign prostate BPH-1 cells, but not in prostate LNCaP or breast MCF-7 tumor cells. miR-335 stimulated proliferation and cell migration in a wound healing in vitro assay in HT-1080, BPH-1, and U87 glioblastoma cells, cells which demonstrated significant cell surface expression of MT1-MMP. In contrast, miR-335 did not affect proliferation or migration in cells without a prominent plasma membrane associated MT1-MMP activity. Our data suggest that differences in response to miR-335 by tumor cells may lie in part in the mechanism of regulation of MT1-MMP production.

  7. The copy number of Epstein-Barr virus latent genome correlates with the oncogenicity by the activation level of LMP1 and NF-κB

    PubMed Central

    Zuo, Lielian; Yu, Haibo; Liu, Lingzhi; Tang, Yunlian; Wu, Hongzhuan; Yang, Jing; Zhu, Meijuan; Du, Shujuan; Zhao, Lian; Cao, Li; Li, Guiyuan; Lu, Jianhong

    2015-01-01

    A tumor model that Epstein-Barr virus (EBV) latent infection facilitated the tumorigenicity was previously established using the Maxi-EBV system. In the present approach, EBV-lost cell clones demonstrated significantly decreased tumorigenesis. On the other hand, the LMP1 gene in Maxi-EBV genome was replaced by that of nasopharyngeal carcinoma origin. The resultant cell line, 293–1/NL showed much lower malignancy than the original 293-EBV. The result was opposite to our expectation. The change of 293 sublineage cells for EBV harboring also got similar result. To seek the underlying reason, the copy number of EBV genome in all the cell lines was detected. The result indicated that 293-EBV contained about 4.5-fold higher EBV copies than 293–1/NL did. Parallel EBV genomes led to relatively stable copies in different 293 sublineages, suggesting the viral genome structure is a factor for the sustainability of EBV's copy number. Moreover, the LMP1 transcription in high copy-containing cells showed abnormally high level. Furthermore, the main LMP1-driven pathway, transcription factor NF-κB, was highly activated in high-copy cells. Here we first manifest by experimental model that the copy number of EBV latent genome correlates with the viral pathogenesis, which depends on the activation level of LMP1 and NF-κB. Overall, both the presence and amount of EBV genome are crucial for the viral oncogenicity. PMID:26517512

  8. Long Noncoding RNA LINC00673 Is Activated by SP1 and Exerts Oncogenic Properties by Interacting with LSD1 and EZH2 in Gastric Cancer.

    PubMed

    Huang, Mingde; Hou, Jiakai; Wang, Yunfei; Xie, Min; Wei, Chenchen; Nie, Fengqi; Wang, Zhaoxia; Sun, Ming

    2017-02-14

    Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases, including cancers. However, the biological function of these molecules and the mechanisms responsible for their alteration in gastric cancer (GC) are not fully understood. In this study, we found that lncRNA LINC00673 is significantly upregulated in gastric cancer. Knockdown of LINC00673 inhibited cell proliferation and invasion and induced cell apoptosis, whereas LINC00673 overexpression had the opposite effect. Online transcription factor binding site prediction analysis showed that there are SP1 binding sites in the LINC00673 promoter region. Next, luciferase reporter and chromatin immunoprecipitation (ChIP) assays provided evidence that SP1 could bind directly to the LINC00673 promoter region and activate its transcription. Moreover, mechanistic investigation showed that CADM4, KLF2, and LATS2 might be the underlying targets of LINC00673 in GC cells, and RNA immunoprecipitation, RNA pull-down, and ChIP assays showed that LINC00673 can interact with EZH2 and LSD1, thereby repressing KLF2 and LATS2 expression. Taken together, these findings show that SP1-activated LINC00673 exerts an oncogenic function that promotes GC development and progression, at least in part, by functioning as a scaffold for LSD1 and EZH2 and repressing KLF2 and LATS2 expression.

  9. A mutation in the RET proto-oncogene in Hirschsprung's disease affects the tyrosine kinase activity associated with multiple endocrine neoplasia type 2A and 2B.

    PubMed Central

    Cosma, M P; Panariello, L; Quadro, L; Dathan, N A; Fattoruso, O; Colantuoni, V

    1996-01-01

    We demonstrate that a Hirschsprung (HSCR) mutation in the tyrosine kinase domain of the RET proto-oncogene abolishes in cis the tyrosine-phosphorylation associated with the activating mutation in multiple endocrine neoplasia type 2A (MEN2A) in transiently transfected Cos cells. Yet the double mutant RET2AHS retains the ability to form stable dimers, thus dissociating the dimerization from the phosphorylation potential. Co-transfection experiments with single and double mutants carrying plasmids RET2A and RET2AHS in different ratios drastically reduced the phosphorylation levels of the RET2A protein, suggesting a dominant-negative effect of the HSCR mutation. Also, the phosphorylation associated with the multiple endocrine neoplasia type 2B (MEN2B) allele was affected in experiments with single and double mutants carrying plasmids co-transfected under the same conditions. Finally, analysis of the enzymic activity of MEN2A and MEN2B tumours confirmed the relative levels of tyrosine phosphorylation observed in Cos cells, indicating that this condition, in vivo, may account for the RET transforming potential. PMID:8670046

  10. Polyadenylated mRNA from the photosynthetic procaryote Rhodospirillum rubrum

    SciTech Connect

    Majumdar, P.K.; McFadden, B.A.

    1984-03-01

    Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxy-thymidylic acid-cellulose column into polyadenylated (poly(A)/sup +/) RNA and poly(A)/sup -/ RNA fractions. The poly(A)/sup +/ fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A)/sup +/ RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A)/sup -/ RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A)/sup +/ fragments isolated after combined digestion with pancreatic A and T/sub 1/ RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A)/sup +/ RNA. Stimulation of (/sup 3/H)leucine

  11. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  12. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship.

    PubMed

    Melnick, Michael; Sedghizadeh, Parish P; Allen, Carl M; Jaskoll, Tina

    2012-02-01

    Human cytomegalovirus (hCMV) infection is common. Although still controversial, there is growing evidence that active hCMV infection is associated with a variety of malignancies, including brain, breast, lung, colon, and prostate. Given that hCMV is frequently resident in salivary gland (SG) ductal epithelium, we hypothesized that hCMV would be important to the pathogenesis of SG mucoepidermoid carcinoma (MEC). This was initially supported by our finding that purified CMV induces malignant transformation in SG cells in an in vitro mouse model, and utilizes a pathogenic pathway previously reported for human MEC. Here we present the histologic and molecular characterizations of 39 human SG MECs selected randomly from a repository of cases spanning 2004-2011. Serial sections were obtained from formalin-fixed, paraffin embedded, tissue blocks from previous incisional or excisional biopsies. Immunohistochemical assays were performed for active hCMV proteins (IE1 and pp65) and the activated COX/AREG/EGFR/ERK signaling pathway. All four prospective causal criteria for viruses and cancer are fully satisfied: (1) protein markers for active hCMV are present in 97% of MECs; (2) markers of active hCMV are absent in non-neoplastic SG tissues; (3) hCMV-specific proteins (IE1, pp65) are in specific cell types and expression is positively correlated with severity; (4) hCMV correlates and colocalizes with an upregulation and activation of an established oncogenic signaling pathway (COX/AREG/EGFR/ERK). Thus, the evidential support reported here and previously in a mouse model is strongly confirmatory of a causal relationship between hCMV and SG mucoepidermoid carcinoma. To our knowledge, this is the first demonstration of hCMV's role in human oncogenesis that fully responds to all of Koch's Postulates as revised for viruses and cancer. In the absence of any contrary evidence, hCMV can reasonably be designated an "oncovirus."

  13. Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma.

    PubMed

    Gouw, Arvin M; Eberlin, Livia S; Margulis, Katherine; Sullivan, Delaney K; Toal, Georgia G; Tong, Ling; Zare, Richard N; Felsher, Dean W

    2017-04-11

    KRAS gene mutation causes lung adenocarcinoma. KRAS activation has been associated with altered glucose and glutamine metabolism. Here, we show that KRAS activates lipogenesis, and this activation results in distinct proteomic and lipid signatures. By gene expression analysis, KRAS is shown to be associated with a lipogenesis gene signature and specific induction of fatty acid synthase (FASN). Through desorption electrospray ionization MS imaging (DESI-MSI), specific changes in lipogenesis and specific lipids are identified. By the nanoimmunoassay (NIA), KRAS is found to activate the protein ERK2, whereas ERK1 activation is found in non-KRAS-associated human lung tumors. The inhibition of FASN by cerulenin, a small molecule antibiotic, blocked cellular proliferation of KRAS-associated lung cancer cells. Hence, KRAS is associated with activation of ERK2, induction of FASN, and promotion of lipogenesis. FASN may be a unique target for KRAS-associated lung adenocarcinoma remediation.

  14. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  15. Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells.

    PubMed

    Shieh, Jiunn-Min; Chen, Yung-Chan; Lin, Ying-Chao; Lin, Jia-Ni; Chen, Wei-Chih; Chen, Yang-Yuan; Ho, Chi-Tang; Way, Tzong-Der

    2013-07-03

    Demethoxycurcumin (DMC), curcumin (Cur), and bisdemethoxycurcumin (BDMC) are major forms of curcuminoids found in the rhizomes of turmeric. This study examined the effects of three curcuminoid analogues on breast cancer cells. The results revealed that DMC demonstrated the most potent cytotoxic effects on breast cancer MDA-MB-231 cells. Compared with estrogen receptor (ER)-positive or HER2-overexpressing breast cancer cells, DMC demonstrated the most efficient cytotoxic effects on triple-negative breast cancer (TNBC) cells. However, nonmalignant MCF-10A cells were unaffected by DMC treatment. The study showed that DMC activated AMPK in TNBC cells. Once activated, AMPK inhibited eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) signaling and mRNA translation via mammalian target of rapamycin (mTOR) and decreased the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). DMC also targeted multiple AMPK downstream pathways. Among these, the dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mTOR inhibition. Moreover, DMC suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation. In addition, DMC also sustained epidermal growth factor receptor (EGFR) activation by suppressing the phosphatases, PP2a and SHP-2. These results suggest that DMC is a potent AMPK activator that acts through a broad spectrum of anti-TNBC activities.

  16. Oncogenic mutations of thyroid hormone receptor β

    PubMed Central

    Park, Jeong Won; Zhao, Li; Willingham, Mark; Cheng, Sheue-yann

    2015-01-01

    The C-terminal frame-shift mutant of the thyroid hormone receptor TRβ1, PV, functions as an oncogene. An important question is whether the oncogenic activity of mutated TRβ1 is uniquely dependent on the PV mutated sequence. Using four C-terminal frame-shift mutants—PV, Mkar, Mdbs, and AM—we examined that region in the oncogenic actions of TRβ1 mutants. Remarkably, these C-terminal mutants induced similar growth of tumors in mouse xenograft models. Molecular analyses showed that they physically interacted with the p85α regulatory subunit of PI3K similarly in cells. In vitro GST-binding assay showed that they bound to the C-terminal Src-homology 2 (CSH2) of p85α with markedly higher avidity. The sustained association of mutants with p85α led to activation of the common PI3K-AKT-ERK/STAT3 signaling to promote cell proliferation and invasion and to inhibit apoptosis. Thus, these results argue against the oncogenic activity of PV being uniquely dependent on the PV mutated sequence. Rather, these four mutants could favor a C-terminal conformation that interacted with the CSH2 domain of p85α to initiate activation of PI3K to relay downstream signaling to promote tumorigenesis. Thus, we propose that the mutated C-terminal region of TRβ1 could function as an “onco-domain” and TRβ1 is a potential therapeutic target. PMID:25924236

  17. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    SciTech Connect

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-04-15

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.

  18. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Deng, Xiaolan; Kiyotani, Kazuma; Park, Jae-Hyun; Matsuo, Yo; Lingen, Mark; Suzuki, Takehiro; Dohmae, Naoshi; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-01-01

    While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions. PMID:28102297

  19. Identification of polymorphisms and transcriptional activity of the proto-oncogene KIT located on both autosomal and B chromosomes of the Chinese raccoon dog.

    PubMed

    Li, Y M; Zhang, Y; Zhu, W J; Yan, S Q; Sun, J H

    2016-02-05

    B chromosomes are dispensable and co-exist with autosomal and sex chromosomes. The karyotype of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides) comprises 0-4 B chromosomes. The proto-oncogene KIT is found on all B chromosomes of the Chinese raccoon dog. In the present study, partial DNA and mRNA sequences of KIT were amplified and sequenced from four individuals containing B chromosomes. Sequence analyses revealed that polymorphisms including single nucleotide polymorphisms (SNPs) and inserts/deletions were rich in the KIT gene of Chinese raccoon dog at the genomic level. However, no polymorphism was detected at the mRNA level. A comparison of mRNA sequences from Chinese raccoon dogs with the corresponding sequences derived from arctic fox and dog, which do not contain B chromosomes, revealed the mRNA sequences of the 10 SNPs to be identical between these three species. Therefore, these findings suggest that KIT located on the B chromosomes in Chinese raccoon dog lacks transcriptional activity.

  20. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling.

    PubMed

    Owusu, Benjamin Y; Bansal, Namita; Venukadasula, Phanindra K M; Ross, Larry J; Messick, Troy E; Goel, Sanjay; Galemmo, Robert A; Klampfer, Lidija

    2016-05-17

    The binding of hepatocyte growth factor (HGF) to its receptor MET activates a signaling cascade that promotes cell survival, proliferation, cell scattering, migration and invasion of malignant cells. HGF is secreted by cancer cells or by tumor-associated fibroblasts as pro-HGF, an inactive precursor. A key step in the regulation of HGF/MET signaling is proteolytic processing of pro-HGF to its active form by one of the three serine proteases, matriptase, hepsin or HGF activator (HGFA).We developed SRI 31215, a small molecule that acts as a triplex inhibitor of matriptase, hepsin and HGFA and mimics the activity of HAI-1/2, endogenous inhibitors of HGF activation. We demonstrated that SRI 31215 inhibits fibroblast-induced MET activation, epithelial-mesenchymal transition and migration of cancer cells. SRI 31215 overcomes primary resistance to cetuximab and gefitinib in HGF-producing colon cancer cells and prevents fibroblast-mediated resistance to EGFR inhibitors. Thus, SRI 31215 blocks signaling between cancer cells and fibroblasts and inhibits the tumor-promoting activity of cancer-associated fibroblasts.Aberrant HGF/MET signaling supports cell survival, proliferation, angiogenesis, invasion and metastatic spread of cancer cells, establishing HGF and MET as valid therapeutic targets. Our data demonstrate that inhibitors of HGF activation, such as SRI 31215, merit investigation as potential therapeutics in tumors that are addicted to HGF/MET signaling. The findings reported here also indicate that inhibitors of HGF activation overcome primary and acquired resistance to anti-EGFR therapy, providing a rationale for concurrent inhibition of EGFR and HGF to prevent therapeutic resistance and to improve the outcome of cancer patients.

  1. ras proto-oncogene activation in dichloroacetic acid-, trichloroethylene- and tetrachloroethylene-induced liver tumors in B6C3F1 mice.

    PubMed

    Anna, C H; Maronpot, R R; Pereira, M A; Foley, J F; Malarkey, D E; Anderson, M W

    1994-10-01

    The frequency and mutation spectra of proto-oncogene activation in hepatocellular neoplasms induced by tetrachloroethylene, trichloroethylene and dichloroacetic acid were examined to help define the molecular basis for their carcinogenicity. H-ras codon 61 activation was not significantly different among dichloroacetic acid- and trichloroethylene-induced and combined historical and concurrent control hepatocellular tumors (62%, 51% and 69% respectively). The mutation spectra of H-ras codon 61 mutations showed a significant decrease in AAA and increase in CTA mutations for dichloroacetic acid- and trichloroethylene-induced tumors when compared to combined controls. The H-ras codon 61 mutation frequency for tetrachloroethylene-induced tumors was significantly lower (24%) than that of combined controls and also that of the two other chemicals. Mutations at codons 13 and 117 plus a second exon insert contributed 4% to the total H-ras frequencies for trichloroethylene and tetrachloroethylene. There was also a higher incidence of K-ras activation (13%) in tetrachloroethylene-induced tumors than in the other chemically induced or control tumors. Four liver tumors were found to contain insertions of additional bases within the second exon of K- or H-ras. These findings suggest that exposure to dichloroacetic acid, trichloroethylene and tetrachloroethylene provides a selective growth advantage to spontaneously occurring mutations in codon 61 of H-ras and, at the same time, is responsible for a small number of unique molecular lesions suggestive of either a random genotoxic mode of action or a non-specific result of secondary DNA damage. However, the absence of ras activation in many of the liver neoplasms suggests that alternative mechanisms are also important in B6C3F1 mouse hepatocarcinogenesis.

  2. The mystery of oncogenic KRAS: Lessons from studying its wild-type counter part.

    PubMed

    Chang, Yuan-I; Damnernsawad, Alisa; Kong, Guangyao; You, Xiaona; Wang, Demin; Zhang, Jing

    2016-07-22

    Using conditional knock-in mouse models, we and others have shown that despite the very high sequence identity between Nras and Kras proteins, oncogenic Kras displays a much stronger leukemogenic activity than oncogenic Nras in vivo. In this manuscript, we will summarize our recent work of characterizing wild-type Kras function in adult hematopoiesis and in oncogenic Kras-induced leukemogenesis. We attribute the strong leukemogenic activity of oncogenic Kras to 2 unique aspects of Kras signaling. First, Kras is required in mediating cell type- and cytokine-specific ERK1/2 signaling. Second, oncogenic Kras, but not oncogenic Nras, induces hyperactivation of wild-type Ras, which significantly enhances Ras signaling in vivo. We will also discuss a possible mechanism that mediates oncogenic Kras-evoked hyperactivation of wild-type Ras and a potential approach to down-regulate oncogenic Kras signaling.

  3. SCCRO3 (DCUN1D3) Antagonizes the Neddylation and Oncogenic Activity of SCCRO (DCUN1D1)*

    PubMed Central

    Huang, Guochang; Stock, Cameron; Bommeljé, Claire C.; Weeda, Víola B.; Shah, Kushyup; Bains, Sarina; Buss, Elizabeth; Shaha, Manish; Rechler, Willi; Ramanathan, Suresh Y.; Singh, Bhuvanesh

    2014-01-01

    The activity of cullin-RING type ubiquitination E3 ligases is regulated by neddylation, a process analogous to ubiquitination that culminates in covalent attachment of the ubiquitin-like protein Nedd8 to cullins. As a component of the E3 for neddylation, SCCRO/DCUN1D1 plays a key regulatory role in neddylation and, consequently, cullin-RING ligase activity. The essential contribution of SCCRO to neddylation is to promote nuclear translocation of the cullin-ROC1 complex. The presence of a myristoyl sequence in SCCRO3, one of four SCCRO paralogues present in humans that localizes to the membrane, raises questions about its function in neddylation. We found that although SCCRO3 binds to CAND1, cullins, and ROC1, it does not efficiently bind to Ubc12, promote cullin neddylation, or conform to the reaction processivity paradigms, suggesting that SCCRO3 does not have E3 activity. Expression of SCCRO3 inhibits SCCRO-promoted neddylation by sequestering cullins to the membrane, thereby blocking its nuclear translocation. Moreover, SCCRO3 inhibits SCCRO transforming activity. The inhibitory effects of SCCRO3 on SCCRO-promoted neddylation and transformation require both an intact myristoyl sequence and PONY domain, confirming that membrane localization and binding to cullins are required for in vivo functions. Taken together, our findings suggest that SCCRO3 functions as a tumor suppressor by antagonizing the neddylation activity of SCCRO. PMID:25349211

  4. Loss of platelet-derived growth factor-stimulated phospholipase activity in NIH-3T3 cells expressing the EJ-ras oncogene

    SciTech Connect

    Benjamin, C.W.; Tarpley, W.G.; Gorman, R.R.

    1987-01-01

    Data indicating that the 21-kDa protein (p21) Harvey-ras gene product shares sequence homology with guanine nucleotide-binding proteins (G proteins) has stimulated research on the influence(s) of p21 on G-protein-regulated systems in vertebrate cells. Previous work demonstrated that NIH-3T3 mouse cells expressing high levels of the cellular ras oncogene isolated from the EJ human bladder carcinoma (EJ-ras) exhibited reduced hormone-stimulated adenylate cyclase activity. The authors now report that in these cells another enzyme system thought to be regulated by G proteins is inhibited, namely phospholipases A/sub 2/ and C. NIH-3T3 cells incubated in plasma-derived serum release significant levels of prostaglandin E/sub 2/ (PGE/sub 2/) as determined by radioimmunoassay when exposed to platelet-derived growth factor (PDGF) at 2 units/ml. The lack of PDGF-stimulated PGE/sub 2/ release from EJ-ras-transfected cells is not due to a defect in the prostaglandin cyclooxygenase enzyme, since incubation of control cells and EJ-ras-transfected cells in 0.33, 3.3, or 33 ..mu..M arachidonate resulted in identical levels of PGE/sub 2/ release. The lack of PDGF-stimulated PGE/sub 2/ release from EJ-ras-transfected cells also does not result from the loss of functional PDGF receptors. EJ-ras-transformed cells bind 70% as much /sup 125/I-labeled PDGF as control cells and are stimulated to incorporate (/sup 3/H)thymidine and to proliferate after exposure to PDGF. Determination of total water-soluble inositolphospholipids and changes in the specific activities of phosphatidylcholine in control and EJ-ras-transfected cells demonstrated that PDGF-stimulated phospholipase C and A/sub 2/ activities are inhibited in the EJ-ras-transfected cells.

  5. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue.

    PubMed

    Sonoiki, Ebere; Ng, Caroline L; Lee, Marcus C S; Guo, Denghui; Zhang, Yong-Kang; Zhou, Yasheen; Alley, M R K; Ahyong, Vida; Sanz, Laura M; Lafuente-Monasterio, Maria Jose; Dong, Chen; Schupp, Patrick G; Gut, Jiri; Legac, Jenny; Cooper, Roland A; Gamo, Francisco-Javier; DeRisi, Joseph; Freund, Yvonne R; Fidock, David A; Rosenthal, Philip J

    2017-03-06

    Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg(-1), respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these mutations in the active site, where AN3661 is predicted to bind. Transcripts for three trophozoite-expressed genes were lost in AN3661-treated trophozoites, which was not observed in parasites selected or engineered for AN3661 resistance. Our results identify the pre-mRNA processing factor PfCPSF3 as a promising antimalarial drug target.

  6. Endothelin-converting enzyme-1 (ECE-1) is post-transcriptionally regulated by alternative polyadenylation.

    PubMed

    Whyteside, Alison R; Turner, Anthony J; Lambert, Daniel W

    2014-01-01

    Endothelin-converting enzyme-1 (ECE-1) is the enzyme predominantly responsible for producing active endothelin-1 (ET-1), a mitogenic peptide implicated in the aetiology of a number of diseases, including cancer. Elevated levels of ECE-1 have been observed in a range of malignancies, with high expression conferring poor prognosis and aiding the acquisition of androgen independence in prostate cancer. The mechanisms regulating the expression of ECE-1 in cancer cells are poorly understood, hampering the development of novel therapies targeting the endothelin axis. Here we provide evidence that the expression of ECE-1 is markedly inhibited by its 3'UTR, and that alternative polyadenylation (APA) results in the production of ECE-1 transcripts with truncated 3'UTRs which promote elevated protein expression. Abolition of the ECE-1 APA sites reduced protein expression from a reporter vector in prostate cancer cells, suggesting these sites are functional. This is the first study to identify ECE-1 as a target for APA, a regulatory mechanism aberrantly activated in cancer cells, and provides novel information about the mechanisms leading to ECE-1 overexpression in malignant cells.

  7. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue

    PubMed Central

    Sonoiki, Ebere; Ng, Caroline L.; Lee, Marcus C. S.; Guo, Denghui; Zhang, Yong-Kang; Zhou, Yasheen; Alley, M. R. K.; Ahyong, Vida; Sanz, Laura M.; Lafuente-Monasterio, Maria Jose; Dong, Chen; Schupp, Patrick G.; Gut, Jiri; Legac, Jenny; Cooper, Roland A.; Gamo, Francisco-Javier; DeRisi, Joseph; Freund, Yvonne R.; Fidock, David A.; Rosenthal, Philip J.

    2017-01-01

    Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg−1, respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these mutations in the active site, where AN3661 is predicted to bind. Transcripts for three trophozoite-expressed genes were lost in AN3661-treated trophozoites, which was not observed in parasites selected or engineered for AN3661 resistance. Our results identify the pre-mRNA processing factor PfCPSF3 as a promising antimalarial drug target. PMID:28262680

  8. Mechanism of activation of the mouse c-mos oncogene by the LTR of an intracisternal A-particle gene.

    PubMed Central

    Horowitz, M; Luria, S; Rechavi, G; Givol, D

    1984-01-01

    In the mouse myeloma XRPC-24 the DNA of an intracisternal A-particle (IAP) is inserted within the coding region of c-mos. This insertion splits the c-mos into a 3' rc-mos and a 5' rc-mos separated by approximately 4.7 kb of IAP DNA. The insertion is in a head-to-head orientation and brings the 5' LTR of the IAP in juxtaposition to the 3' rc-mos such that the IAP and the 3' rc-mos are transcribed in opposite directions. The intact c-mos gene is usually dormant, whereas the 3' rc-mos is actively transcribed and is capable of transforming NIH3T3 cells. In an effort to understand the nature of this activation we mapped the 5' ends of the 3' rc-mos mRNA present in XPRC-24. We found two main mRNA start sites, one mapping to the junction of the 3' rc-mos and the 5' LTR, and the other located 10 nucleotides upstream to this junction, within the 5' LTR. This result indicates that the 3' rc-mos in XRPC-24 was activated by insertion of a promoter provided by the LTR of an IAP genome. Furthermore, the 5' LTR appears to possess promoter activities in two directions. This conclusion was confirmed by the fact that this 5' LTR, in both orientations, was able to activate the bacterial gene coding for chloramphenicol acetyltransferase (CAT) in the modular vector pSVOCAT. Images Fig. 2. Fig. 5. PMID:6098457

  9. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    PubMed Central

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  10. Heat Stress Enhances the Accumulation of Polyadenylated Mitochondrial Transcripts in Arabidopsis thaliana

    PubMed Central

    Adamo, Alessio; Pinney, John W.; Kunova, Andrea; Westhead, David R.; Meyer, Peter

    2008-01-01

    Background Polyadenylation of RNA has a decisive influence on RNA stability. Depending on the organisms or subcellular compartment, it either enhances transcript stability or targets RNAs for degradation. In plant mitochondria, polyadenylation promotes RNA degradation, and polyadenylated mitochondrial transcripts are therefore widely considered to be rare and unstable. We followed up a surprising observation that a large number of mitochondrial transcripts are detectable in microarray experiments that used poly(A)-specific RNA probes, and that these transcript levels are significantly enhanced after heat treatment. Methodology/Principal Findings As the Columbia genome contains a complete set of mitochondrial genes, we had to identify polymorphisms to differentiate between nuclear and mitochondrial copies of a mitochondrial transcript. We found that the affected transcripts were uncapped transcripts of mitochondrial origin, which were polyadenylated at multiple sites within their 3′region. Heat-induced enhancement of these transcripts was quickly restored during a short recovery period. Conclusions/Significance Our results show that polyadenylated transcripts of mitochondrial origin are more stable than previously suggested, and that their steady-state levels can even be significantly enhanced under certain conditions. As many microarrays contain mitochondrial probes, due to the frequent transfer of mitochondrial genes into the genome, these effects need to be considered when interpreting microarray data. PMID:18682831

  11. Retroviral Oncogenes: A Historical Primer

    PubMed Central

    Vogt, Peter K.

    2012-01-01

    Retroviruses are the original source of oncogenes. The discovery and characterization of these genes were made possible by the introduction of quantitative cell biological and molecular techniques for the study of tumor viruses. Key features of all retroviral oncogenes were first identified in src, the oncogene of Rous sarcoma virus. These include non-involvement in viral replication, coding for a single protein, and cellular origin. The myc, ras and erbB oncogenes quickly followed src, and these together with pi3k are now recognized as critical driving forces in human cancer. PMID:22898541

  12. Targeted disruption of the murine fps/fes proto-oncogene reveals that Fps/Fes kinase activity is dispensable for hematopoiesis.

    PubMed

    Senis, Y; Zirngibl, R; McVeigh, J; Haman, A; Hoang, T; Greer, P A

    1999-11-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase that is functionally implicated in the survival and terminal differentiation of myeloid progenitors and in signaling from several members of the cytokine receptor superfamily. To gain further insight into the physiological function of fps/fes, we targeted the mouse locus with a kinase-inactivating missense mutation. Mutant Fps/Fes protein was expressed at normal levels in these mice, but it lacked detectable kinase activity. Homozygous mutant animals were viable and fertile, and they showed no obvious defects. Flow cytometry analysis of bone marrow showed no statistically significant differences in the levels of myeloid, erythroid, or B-cell precursors. Subtle abnormalities observed in mutant mice included slightly elevated total leukocyte counts and splenomegaly. In bone marrow hematopoietic progenitor cell colony-forming assays, mutant mice gave slightly elevated numbers and variable sizes of CFU-granulocyte macrophage in response to interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Tyrosine phosphorylation of Stat3 and Stat5A in bone marrow-derived macrophages was dramatically reduced in response to GM-CSF but not to IL-3 or IL-6. This suggests a distinct nonredundant role for Fps/Fes in signaling from the GM-CSF receptor that does not extend to the closely related IL-3 receptor. Lipopolysaccharide-induced Erk1/2 activation was also reduced in mutant macrophages. These subtle molecular phenotypes suggest a possible nonredundant role for Fps/Fes in myelopoiesis and immune responses.

  13. Activation of H-ras oncogenes in male B6C3F1 mouse liver tumors induced by vinthionine or 2-chloroethyl-methyl sulfide.

    PubMed

    Sohn, Y W; Lee, G H; Liem, A; Miller, J A

    1996-06-01

    Vinthionine (S-vinyl-DL-homocysteine) is hepatocarcinogenic in rats and mice. [Vinyl-14C]vinthionine binds covalently to rat liver DNA, RNA and protein in vivo, but not in vitro. This amino acid is directly mutagenic in Salmonella typhimurium TA100 and TA1535; the mechanism of its metabolic activation in vivo in bacteria and liver is under study. In the present study liver tumors were induced in 12-day-old male B6C3F1 mice by single i.p. injections of vinthionine or the alkylating agent 2-chloroethyl methyl sulfide (CEMS). At 10 months the gross tumors were examined for the presence of activated H-ras oncogenes. DNA was isolated from single tumors per mouse from 37 mice treated with vinthionine and from 31 mice treated with CEMS. These DNAs were screened for codon 61 mutations by restriction fragment length polymorphism of PCR-amplified H-ras gene fragments. Thirty seven of 37 vinthionine-induced hepatomas had H-ras mutations in this codon, which consisted of seven C-->A transversions in the first base, with 29 A-->T transversions and one A-->G transition in the second base. Twenty five of 31 CEMS-induced hepatomas had mutations in the same codon, which consisted of seven C-->A transversions in the first base, with eight A-->T transversions and 10 A-->G transitions in the second base. These mutation spectra are quite different to that noted by others in spontaneous hepatomas in untreated B6C3F1 mice. These data appear to result from the covalent binding of these carcinogens to the liver DNA.

  14. Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition.

    PubMed

    Kim, H S; Jung, M; Kang, H N; Kim, H; Park, C-W; Kim, S-M; Shin, S J; Kim, S H; Kim, S G; Kim, E K; Yun, M R; Zheng, Z; Chung, K Y; Greenbowe, J; Ali, S M; Kim, T-M; Cho, B C

    2017-01-16

    Despite remarkable progress in cutaneous melanoma genomic profiling, the mutational landscape of primary mucosal melanomas (PMM) remains unclear. Forty-six PMMs underwent targeted exome sequencing of 111 cancer-associated genes. Seventy-six somatic nonsynonymous mutations in 42 genes were observed, and recurrent mutations were noted on eight genes, including TP53 (13%), NRAS (13%), SNX31 (9%), NF1 (9%), KIT (7%) and APC (7%). Mitogen-activated protein kinase (MAPK; 37%), cell cycle (20%) and phosphatidylinositol 3-kinase (PI3K)-mTOR (15%) pathways were frequently mutated. We biologically characterized a novel ZNF767-BRAF fusion found in a vemurafenib-refractory respiratory tract PMM, from which cell line harboring ZNF767-BRAF fusion were established for further molecular analyses. In an independent data set, NFIC-BRAF fusion was identified in an oral PMM case and TMEM178B-BRAF fusion and DGKI-BRAF fusion were identified in two malignant melanomas with a low mutational burden (number of mutation per megabase, 0.8 and 4, respectively). Subsequent analyses revealed that the ZNF767-BRAF fusion protein promotes RAF dimerization and activation of the MAPK pathway. We next tested the in vitro and in vivo efficacy of vemurafenib, trametinib, BKM120 or LEE011 alone and in combination. Trametinib effectively inhibited tumor cell growth in vitro, but the combination of trametinib and BKM120 or LEE011 yielded more than additive anti-tumor effects both in vitro and in vivo in a melanoma cells harboring the BRAF fusion. In conclusion, BRAF fusions define a new molecular subset of PMM that can be targeted therapeutically by the combination of a MEK inhibitor with PI3K or cyclin-dependent kinase 4/6 inhibitors.Oncogene advance online publication,16 January 2017; doi:10.1038/onc.2016.486.

  15. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma

    PubMed Central

    Kim, Pil-Jong; Kim, Young-Goo; Nam, Soo Jeong; Paik, Jin Ho; Kim, Tae Min; Heo, Dae Seog; Kim, Chul-Woo; Jeon, Yoon Kyung

    2015-01-01

    The prognostic implications of miR-21, miR-17-92 and miR-155 were evaluated in diffuse large B-cell lymphoma (DLBCL) patients, and novel mechanism by which miR-21 contributes to the oncogenesis of DLBCL by regulating FOXO1 and PI3K/AKT/mTOR pathway was investigated. The expressions of miR-21, miR-17-92 and miR-155 measured by quantitative reverse-transcription-PCR were significantly up-regulated in DLBCL tissues (n=200) compared to control tonsils (P=0.012, P=0.001 and P<0.0001). Overexpression of miR-21 and miR-17-92 was significantly associated with shorter progression-free survival (P=0.003 and P=0.014) and overall survival (P=0.004 and P=0.012). High miR-21 was an independent prognostic factor in DLBCL patients treated with rituximab-combined chemotherapy. MiR-21 level was inversely correlated with the levels of FOXO1 and PTEN in DLBCL cell lines. Reporter-gene assay showed that miR-21 directly targeted and suppressed the FOXO1 expression, and subsequently inhibited Bim transcription in DLBCL cells. MiR-21 also down-regulated PTEN expression and consequently activated the PI3K/AKT/mTOR pathway, which further decreased FOXO1 expression. Moreover, miR-21 inhibitor suppressed the expression and activity of MDR1, thereby sensitizing DLBCL cells to doxorubicin. These data demonstrated that miR-21 plays an important oncogenic role in DLBCL by modulating the PI3K/AKT/mTOR/FOXO1 pathway at multiple levels resulting in strong prognostic implication. Therefore, targeting miR-21 may have therapeutic relevance in DLBCL. PMID:25909227

  16. ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex

    PubMed Central

    Li, Zhe; Tognon, Cristina E.; Godinho, Frank J.; Yasaitis, Laura; Hock, Hanno; Herschkowitz, Jason I.; Lannon, Chris L.; Cho, Eunah; Kim, Seong-Jin; Bronson, Roderick T.; Perou, Charles M.; Sorensen, Poul H.; Orkin, Stuart H.

    2007-01-01

    SUMMARY To better understand the cellular origin of breast cancer, we developed a mouse model that recapitulates expression of the ETV6-NTRK3 (EN) fusion oncoprotein, the product of the t(12;15)(p13;q25) translocation characteristic of human secretory breast carcinoma. Activation of EN expression in mammary tissues by Wap-Cre leads to fully penetrant, multifocal malignant breast cancer with short latency. We provide genetic evidence that in nulliparous Wap-Cre;EN females, committed alveolar bipotent or CD61+ luminal progenitors, are targets of tumorigenesis. Furthermore, EN transforms these otherwise transient progenitors through activation of the AP1 complex. Given increasing relevance of chromosomal translocations in epithelial cancers, such mice serve as a paradigm for the study of their genetic pathogenesis and cellular origins, and generation of novel preclinical models. SIGNIFICANCE For the largest class of human tumors, those of epithelial origin, little is known about their initiating genetic hits or cells of origin. Whether tissue stem cells or more committed progenitors are targets for transformation is uncertain. We developed a system in which epithelial tumorigenesis can be assessed from the initial event to frank malignancy. In this breast cancer model based on chromosomal translocation, we show through genetic marking that committed mammary progenitors, rather than mammary stem cells, are direct targets of transformation. We show that activation of the AP1 complex represents a critical downstream event of the ETV6-NTRK3 translocation. Further focus on this transcriptional complex as a target in human breast cancer is warranted. PMID:18068631

  17. Activation of human papillomavirus type 18 E6-E7 oncogene expression by transcription factor Sp1.

    PubMed Central

    Hoppe-Seyler, F; Butz, K

    1992-01-01

    The human papillomavirus 18 (HPV18) E6 and E7 proteins are considered to be primarily responsive for the transforming activity of the virus. In order to analyse the molecular mechanisms resulting in viral oncoprotein expression, it is necessary to identify the factors involved in the transcriptional regulation of the E6/E7 genes. Here we define by gel retardation experiments a sequence aberrant Sp1 binding site present in the promoter proximal part of the viral transcriptional control region (Upstream Regulatory Region, URR). Functional analyses employing transient reporter assays reveal that this Sp1 element is required for an efficient stimulation of the HPV18 E6/E7-promoter. Mutation of the Sp1 element in the natural context of the HPV18 URR leads to a strong decrease in the activity of the E6/E7-promoter in several cell lines. The magnitude of reduction varies between different cell types and is higher in cell lines of epithelial origin when compared with nonepithelial cells. Cotransfection assays using Sp1 expression vector systems further define the promoter proximal HPV18 Sp1 binding motif as a functional Sp1 element in vivo and show that its integrity is essential for the stimulation of the E6/E7-promoter by augmented levels of Sp1. These results indicate, that the cellular transcription factor Sp1 plays an important role for the stimulation of the E6/E7-promoter by the viral URR and represents a major determinant for the expression of HPV18 transforming genes E6 and E7. Images PMID:1336181

  18. A specific protein, p92, detected in flat revertants derived from NIH/3T3 transformed by human activated c-Ha-ras oncogene.

    PubMed

    Fujita, H; Suzuki, H; Kuzumaki, N; Müllauer, L; Ogiso, Y; Oda, A; Ebisawa, K; Sakurai, T; Nonomura, Y; Kijimoto-Ochiai, S

    1990-01-01

    Total proteins from a mouse embryo fibroblast cell line NIH/3T3, NIH/3T3 cells transformed by human activated c-Ha-ras (EJ-ras) oncogene (EJ-NIH/3T3), and the two flat revertant cell lines, R1 and R2, were analyzed by two-dimensional gel electrophoresis (IEF and NEPHGE). Several hundred polypeptides were resolved as seen by silver staining. Common alterations in four polypeptide spots were observed in the revertants when compared with NIH/3T3 and EJ-NIH/3T3 cells. In these alterations, a new polypeptide spot p92-5.7 (designated by molecular weight x 10(-3) and pI) was detected only in the revertants and not in NIH/3T3 and EJ-NIH/3T3 cells. Furthermore, the expression level of p92-5.7 seemed to be associated with the flat morphology and the reduced tumorigenicity of the revertants. Polypeptide p92-5.7 was also not detected in the total proteins extracted from BALB/3T3 cells, NIH Swiss mouse primary embryo fibroblasts, NRK (normal rat kidney) cells, and L6 (rat myoblast). Subcellular fractionation of total protein from R1 cells revealed that the p92-5.7 was present in the cytosol. Western blot analysis using an anti-gelsolin antibody demonstrated that the p92-5.7 might be a variant form of gelsolin which is thought to be an actin regulatory protein or a gelsolin-like polypeptide. These results may suggest that the expression of p92-5.7 detected only in the revertants is associated, at least in part, with the reversion. This may be the first demonstration of specific protein expression in the flat revertants.

  19. Oncogenes in melanoma: an update.

    PubMed

    Kunz, Manfred

    2014-01-01

    Melanoma is a highly aggressive tumour with poor prognosis in the metastatic stage. BRAF, NRAS, and KIT are three well-known oncogenes involved in melanoma pathogenesis. Targeting of mutated BRAF kinase has recently been shown to significantly improve overall survival of metastatic melanoma patients, underscoring the particular role of this oncogene in melanoma biology. However, recurrences regularly occur within several months, which supposedly involve further oncogenes. Moreover, oncogenic driver mutations have not been described for up to 30% of all melanomas. In order to obtain a more complete picture of the mutational landscape of melanoma, more recent studies used high-throughput DNA sequencing technologies. A number of new oncogene candidates such as MAPK1/2, ERBB4, GRIN2A, GRM3, RAC1, and PREX2 were identified. Their particular role in melanoma biology is currently under investigation. Evidence for the functional relevance of some of these new oncogene candidates has been provided in in vitro and in vivo experiments. However, these findings await further validation in clinical studies. This review provides an overview on well-known melanoma oncogenes and new oncogene candidates, based on recent high-throughput sequencing studies. The list of genes discussed herein is of course not complete but highlights some of the most significant of recent findings in this area. The new candidates may support more individualized treatment approaches for metastatic melanoma patients in the future.

  20. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.

    PubMed

    Záhonová, Kristína; Hadariová, Lucia; Vacula, Rostislav; Yurchenko, Vyacheslav; Eliáš, Marek; Krajčovič, Juraj; Vesteg, Matej

    2014-03-03

    Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corresponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 5'-end of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in secondary plastids.

  1. A newly identified RET proto-oncogene polymorphism is found in a high number of endocrine tumor patients.

    PubMed

    Gartner, Wolfgang; Mineva, Ivelina; Daneva, Teodora; Baumgartner-Parzer, Sabina; Niederle, Bruno; Vierhapper, Heinrich; Weissel, Michael; Wagner, Ludwig

    2005-07-01

    Multiple RET proto-oncogene transcripts, due to genomic variations and alternate splicing, have been described. To investigate endocrine tumor tissue characteristic RET proto-oncogene expression, we performed quantitative RT-PCR, Northern blot and Southern blot analyses of benign and malignant endocrine-derived tissues. We newly describe RET proto-oncogene expression in carcinoid-, gastrinoma- and insulinoma-derived tissue samples. In addition, the presence of a 3'-terminally truncated RET proto-oncogene mRNA variant in benign and malignant thyroid neoplasias, as well as in a pheochromocytoma, an ovarian carcinoma and a medullary thyroid carcinoma, is demonstrated. Southern blot analysis revealed no evidence of gross RET proto-oncogene rearrangements or deletions. As the underlying cause for a bi-allelic TaqI restriction fragment length polymorphism (RFLP), a C (allele 1)/T (allele 2) transition within intron 19, was characterized. This polymorphism is close to a recently described polyadenylation site and lies within a binding site for the nucleic acid binding protein Pbx-1. Screening of healthy subjects and of patients suffering from various endocrine malignancies revealed exclusively allele 1 homozygous and allele 1/allele 2 heterozygous genotypes. Heterozygous genotypes were found in a significantly higher percentage in samples derived from endocrine tumor patients when compared with those from healthy control subjects. Homozygosity for allele 2 was found exclusively in somatic DNA derived from endocrine tumors with high malignant potential. Analysis of DNA derived from varying regions within individual anaplastic thyroid carcinomas revealed an allele 1/allele 2 switch of the RFLP banding pattern, indicating loss of heterozygosity at the RET proto-oncogene locus. In conclusion, our data demonstrate presence of a 5'-terminal RET proto-oncogene transcript in endocrine tissues and reveal a bi-allelic RET proto-oncogene polymorphism. A heterozygous genotype for

  2. The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells.

    PubMed

    Chen, T; Meng, Z; Gan, Y; Wang, X; Xu, F; Gu, Y; Xu, X; Tang, J; Zhou, H; Zhang, X; Gan, X; Van Ness, C; Xu, G; Huang, L; Zhang, X; Fang, Y; Wu, J; Zheng, S; Jin, J; Huang, W; Xu, R

    2013-07-01

    HERV-K (human endogenous retrovirus type K) type 1-encoded Np9 is a tumor-specific biomarker, but its oncogenic role and targets in human leukemia remain elusive. We first identified Np9 as a potent viral oncogene in human leukemia. Silencing of Np9 inhibited the growth of myeloid and lymphoblastic leukemic cells, whereas expression of Np9 significantly promoted the growth of leukemia cells in vitro and in vivo. Np9 not only activated ERK, AKT and Notch1 pathways but also upregulated β-catenin essential for survival of leukemia stem cells. In human leukemia, Np9 protein level in leukemia patients was substantially higher than that in normal donors (56% vs 4.5%). Moreover, Np9 protein level was correlated with the number of leukemia stem/progenitor cells but not detected in normal CD34(+) hematopoietic stem cells. In addition, Np9-positive samples highly expressed leukemia-specific pol-env polyprotein, env and transmembrane proteins as well as viral particles. Thus, the viral oncogene Np9 is a critical molecular switch of multiple signaling pathways regulating the growth of leukemia stem/progenitor cells. These findings open a new perspective to understand the etiology of human common leukemia and provide a novel target for treating leukemia.

  3. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.

    1991-01-01

    Progress has occurred in several areas corresponding to the specific aims of the proposal: (1) Progression and multiple events in radiation carcinogenesis of rat skin as a function of LET; (2) cell cycle kinetics of irradiated rat epidermis as determined by double labeling and double emulsion autoradiography; (3) oncogene activation detected by in situ hybridization in radiation-induced rat skin tumors; (4) amplification of the c-myc oncogene in radiation-induced rat skin tumors as a function of LET; and (5) transformation of rat skin keratinocytes by ionizing radiation in combination with c-Ki-ras and c-myc oncogenes. 111 refs., 13 figs., 12 tabs.

  4. Association of a polyadenylation polymorphism in the serotonin transporter and panic disorder

    PubMed Central

    Gyawali, Sandeep; Subaran, Ryan; Weissman, Myrna M.; Hershkowitz, Dylan; McKenna, Morgan C.; Talari, Ardesheer; Fyer, Abby J.; Wickramaratne, Priya; Adams, Phillip B.; Hodge, Susan E.; Schmidt, Carl J.; Bannon, Michael J.; Glatt, Charles E.

    2010-01-01

    Background Genetic markers in the serotonin transporter are associated with panic disorder. The associated polymorphisms do not include the serotonin transporter-linked polymorphic region and display no obvious functional attributes. A common polymorphism (rs3813034) occurs in one of the two reported polyadenylation signals for the serotonin transporter and is in linkage disequilibrium with the panic disorder-associated markers. If functional, rs3813034 may be the risk factor that explains the association of the serotonin transporter and panic disorder. Methods Quantitative PCR on human brain samples (n=65) and lymphoblast cultures (n=71) was used to test rs3813034 for effects on expression of the polyadenylation forms of the serotonin transporter. rs3813034 was also tested for association in a sample of panic disorder cases (n=307) and a control sample (n=542) that has similar population structure. Results The balance of the two polyadenylation forms of the serotonin transporter is associated with rs3813034 in brain (P<0.001) and lymphoblasts (P<0.001). The balance of the polyadenylation forms is also associated with gender in brain only (P<0.05). Association testing of rs3813034 in panic disorder identified a significant association (P=0.0068) with a relative risk of 1.56 and 1.81 for the heterozygous and homozygous variant genotypes respectively. Conclusions rs3813034 is a functional polymorphism in the serotonin transporter that alters the balance of the two polyadenylation forms of the serotonin transporter. rs3813034 is a putative risk factor for panic disorder and other behavioral disorders that involve dysregulation of serotonergic neurotransmission. PMID:19969287

  5. Know thy neighbor: stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.; Hein, P. W.

    2001-01-01

    Although the stroma within carcinogenic lesions is known to be supportive and responsive to tumors, new data increasingly show that the stroma also has a more active, oncogenic role in tumorigenesis. Stromal cells and their products can transform adjacent tissues in the absence of pre-existing tumor cells by inciting phenotypic and genomic changes in the epithelial cells. The oncogenic action of distinctive stromal components has been demonstrated through a variety of approaches, which provide clues about the cellular pathways involved.

  6. Molecular analysis of the beta-glucuronidase gene: novel mutations in mucopolysaccharidosis type VII and heterogeneity of the polyadenylation region.

    PubMed

    Vervoort, R; Buist, N R; Kleijer, W J; Wevers, R; Fryns, J P; Liebaers, I; Lissens, W

    1997-04-01

    We used polymerase chain reaction (PCR)/single-strand conformation polymorphism analysis and direct sequencing of the coding region of the beta-glucuronidase cDNA and gene to detect mutations causing beta-glucuronidase enzyme deficiency in five MPS VII patients. Four patients presented with hydrops fetalis, one with an early infantile form of the disease. Genetic heterogeneity of MPS VII alleles was further confirmed in this study. Recurrent mutations were observed in patients of related origin. Previously unknown alleles detected were RII0X, F361delta9, 1270 + 1G-->A, S52F and 1480delta4. Reverse transcription/PCR analysis of the 1270 + 1G-->A messenger showed aberrant splicing: inclusion of intron 7 or skipping of exons 6-7 and 9. Messenger RNA transcribed from the R110X and 1480delta4 alleles was unstable. We detected a 2154A/G change in the 3' non-coding region of the gene, in the neighbourhood of the two consensus polyadenylation sites. 3'-Rapid amplification of cDNA ends/PCR of fibroblast cDNA revealed equal usage of two alternative polyadenylation sites. The 2154A/G substitution did not influence adenylation-site choice, nor the amount of stable messenger produced. The finding that 2 out of 30 normal controls carried the 2154G allele indicated that the 2154A/G substitution is a harmless polymorphism. The S52F and F361delta9 cDNAs were constructed in vitro and used to transfect COS cells transiently. Both mutations completely abolished enzyme activity.

  7. Ras oncogene and inflammation: partners in crime.

    PubMed

    Sparmann, Anke; Bar-Sagi, Dafna

    2005-06-01

    It is well established that Ras oncogenes facilitate neoplastic conversion by stimulating tumor cell growth, survival and motility. However, current studies have indicated that the role of Ras in malignant transformation extends beyond these cell-intrinsic effects to include the establishment of a pro-tumorigenic host environment. We have recently demonstrated that Ras-induced secretion of the chemokine Interleukin-8 (CXCL-8/IL-8) elicits a local inflammatory reaction that is critical for neo-vascularization and sustained tumor growth. Our data identify a novel mechanism by which the Ras oncogene promotes tumor-host interactions that are essential for cancer progression, and suggest that CXCL-8 could serve as a surrogate marker for in-vivo Ras activity.

  8. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition

    PubMed Central

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death. PMID:27486347

  9. New alternative splicing BCR/ABL-OOF shows an oncogenic role by lack of inhibition of BCR GTPase activity and an increased of persistence of Rac activation in chronic myeloid leukemia

    PubMed Central

    Panuzzo, Cristina; Volpe, Gisella; Rocchietti, Elisa Cibrario; Casnici, Claudia; Crotta, Katia; Crivellaro, Sabrina; Carrà, Giovanna; Lorenzatti, Roberta; Peracino, Barbara; Torti, Davide; Morotti, Alessandro; Camacho-Leal, Maria Pilar; Defilippi, Paola; Marelli, Ornella; Saglio, Giuseppe

    2015-01-01

    In Chronic Myeloid Leukemia 80% of patients present alternative splice variants involving BCR exons 1, 13 or 14 and ABL exon 4, with a consequent impairment in the reading frame of the ABL gene. Therefore BCR/ABL fusion proteins (BCR/ABL-OOF) are characterized by an in-frame BCR portion followed by an amino acids sequence arising from the out of frame (OOF) reading of the ABL gene. The product of this new transcript contains the characteristic BCR domains while lacking the COOH-terminal Rho GTPase GAP domain. The present work aims to characterize the protein functionality in terms of cytoskeleton (re-)modelling, adhesion and activation of canonical oncogenic signalling pathways. Here, we show that BCR/ABL-OOF has a peculiar endosomal localization which affects EGF receptor activation and turnover. Moreover, we demonstrate that BCR/ABL-OOF expression leads to aberrant cellular adhesion due to the activation of Rac GTPase, increase in cellular proliferation, migration and survival. When overexpressed in a BCR/ABL positive cell line, BCR/ABL-OOF induces hyperactivation of Rac signaling axis offering a therapeutic window for Rac-targeted therapy. Our data support a critical role of BCR/ABL-OOF in leukemogenesis and identify a subset of patients that may benefit from Rac-targeted therapies. PMID:26682280

  10. Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation

    PubMed Central

    Cao, Bo; Wang, Kebing; Liao, Jun-Ming; Zhou, Xiang; Liao, Peng; Zeng, Shelya X; He, Meifang; Chen, Lianzhou; He, Yulong; Li, Wen; Lu, Hua

    2016-01-01

    Increasing evidence highlights the important roles of microRNAs in mediating p53’s tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p. DOI: http://dx.doi.org/10.7554/eLife.15978.001 PMID:27383270

  11. Splicing and Polyadenylation of Human Papillomavirus Type 16 mRNAs

    PubMed Central

    Wu, Chengjun; Kajitani, Naoko; Schwartz, Stefan

    2017-01-01

    The human papillomavirus type 16 (HPV16) life cycle can be divided into an early stage in which the HPV16 genomic DNA is replicated, and a late stage in which the HPV16 structural proteins are synthesized and virions are produced. A strong coupling between the viral life cycle and the differentiation state of the infected cell is highly characteristic of all HPVs. The switch from the HPV16 early gene expression program to the late requires a promoter switch, a polyadenylation signal switch and a shift in alternative splicing. A number of cis-acting RNA elements on the HPV16 mRNAs and cellular and viral factors interacting with these elements are involved in the control of HPV16 gene expression. This review summarizes our knowledge of HPV16 cis-acting RNA elements and cellular and viral trans-acting factors that regulate HPV16 gene expression at the level of splicing and polyadenylation. PMID:28208770

  12. Role of polyadenylic acid in a deoxyribonucleic acid-membrane fraction extracted from pneumococci.

    PubMed Central

    Firshein, W; Meyer, B; Epner, E; Viggiani, J

    1976-01-01

    After the addition of radioactive polyadenylic acid to cell suspensions of pneumocci, part of the radioactivity becomes associated with a deoxyribonucleic acid (DNA)-membrane fraction extracted from the cells. A variety of techniques show that a portion of this associated radioactivity may represent oligoadenylates complexed to DNA, probaby as part of a ribonucleic acid (RNA) component. Polyadenylic acid, which had previously been shown to enhance DNA synthesis in cell suspensions (Firshein and Benson, 1968), also enhances the extent of DNA synthesis by the DNA-membrane fraction in vitro under specific conditions of concentration and conformation. The mechanism of action of this enhancement may be related to the ability of oligoadenylates to increase the number of initiation sites for DNA replication by stimulating the production of an RNA primer, thus providing additional 3'-OH groups with which DNA polymerase can react. PMID:6428

  13. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2015-12-01

    for APA in MCL. In addition, by using RNA Seq. CFIm25 has been identified as an important global regulator of shortening of cyclin D1 mRNA and other...These data provides a clear link between CFIm25 and regulation of APA and the utility of using novel RNA Seq. technology. This provides a strong...research platform for continued research on this project. 15. SUBJECT TERMS Mantle cell lymphoma, alternative cleavage and polyadenylation, RNA -Seq

  14. Genome-Wide Analysis and Functional Characterization of the Polyadenylation Site in Pigs Using RNAseq Data.

    PubMed

    Wang, Hongyang; Li, Rui; Zhou, Xiang; Xue, Liyao; Xu, Xuewen; Liu, Bang

    2016-11-04

    Polyadenylation, a critical step in the production of mature mRNA for translation in most eukaryotes, involves cleavage and poly(A) tail addition at the 3' end of mRNAs at the polyadenylation site (PAS). Sometimes, one gene can have more than one PAS, which can produce the alternative polyadenylation (APA) phenomenon and affect the stability, localization and translation of the mRNA. In this study, we discovered 28,363 PASs using pig RNAseq data, with 13,033 located in 7,403 genes. Among the genes, 41% were identified to have more than one PAS. PAS distribution analysis indicated that the PAS position was highly variable in genes. Additionally, the analysis of RNAseq data from the liver and testis showed a difference in their PAS number and usage. RT-PCR and qRT-PCR were performed to confirm our findings by detecting the expression of 3'UTR isoforms for five candidate genes. The analysis of RNAseq data under a different androstenone level and salmonella inoculation indicated that the functional usage of PAS might participate in the immune response and may be related to the androstenone level in pigs. This study provides new insights into pig PAS and facilitates further functional research of PAS.

  15. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants

    PubMed Central

    Chakrabarti, Manohar; Hunt, Arthur G.

    2015-01-01

    Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules. PMID:26061761

  16. Genome-Wide Analysis and Functional Characterization of the Polyadenylation Site in Pigs Using RNAseq Data

    PubMed Central

    Wang, Hongyang; Li, Rui; Zhou, Xiang; Xue, Liyao; Xu, Xuewen; Liu, Bang

    2016-01-01

    Polyadenylation, a critical step in the production of mature mRNA for translation in most eukaryotes, involves cleavage and poly(A) tail addition at the 3′ end of mRNAs at the polyadenylation site (PAS). Sometimes, one gene can have more than one PAS, which can produce the alternative polyadenylation (APA) phenomenon and affect the stability, localization and translation of the mRNA. In this study, we discovered 28,363 PASs using pig RNAseq data, with 13,033 located in 7,403 genes. Among the genes, 41% were identified to have more than one PAS. PAS distribution analysis indicated that the PAS position was highly variable in genes. Additionally, the analysis of RNAseq data from the liver and testis showed a difference in their PAS number and usage. RT-PCR and qRT-PCR were performed to confirm our findings by detecting the expression of 3′UTR isoforms for five candidate genes. The analysis of RNAseq data under a different androstenone level and salmonella inoculation indicated that the functional usage of PAS might participate in the immune response and may be related to the androstenone level in pigs. This study provides new insights into pig PAS and facilitates further functional research of PAS. PMID:27812017

  17. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase.

    PubMed

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S; Carlomagno, Francesca; Santoro, Massimo

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the 'DFG-out' inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the 'gatekeeper' V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET.

  18. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  19. The PRKCI and SOX2 Oncogenes are Co-amplified and Cooperate to Activate Hedgehog Signaling in Lung Squamous Cell Carcinoma

    PubMed Central

    Justilien, Verline; Walsh, Michael P.; Ali, Syed A.; Thompson, E. Aubrey; Murray, Nicole R.; Fields, Alan P.

    2014-01-01

    SUMMARY We report that two oncogenes co-amplified on chromosome 3q26, PRKCI and SOX2, cooperate to drive a stem-like phenotype in lung squamous cell carcinoma (LSCC). PKCι phosphorylates SOX2, a master transcriptional regulator of stemness, and recruits it to the promoter of Hedgehog Acyl Transferase (HHAT), which catalyzes the rate-limiting step in Hh ligand production. PKCι-mediated SOX2 phosphorylation is required for HHAT promoter occupancy, HHAT expression, and maintenance of a stem-like phenotype. Primary LSCC tumors coordinately overexpress PKCι, SOX2, and HHAT, and require PKCι-SOX2-HHAT signaling to maintain a stem-like phenotype. Thus, PKCι and SOX2 are genetically, biochemically and functionally linked in LSCC, and together they drive tumorigenesis by establishing a cell autonomous Hh signaling axis. PMID:24525231

  20. Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-05-08

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1-3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target.

  1. Transforming properties of Felis catus papillomavirus type 2 E6 and E7 putative oncogenes in vitro and their transcriptional activity in feline squamous cell carcinoma in vivo

    SciTech Connect

    Altamura, Gennaro; Corteggio, Annunziata; Pacini, Laura; Conte, Andrea; Pierantoni, Giovanna Maria; Tommasino, Massimo; Accardi, Rosita; Borzacchiello, Giuseppe

    2016-09-15

    Felis catus papillomavirus type 2 (FcaPV2) DNA is found in feline cutaneous squamous cell carcinomas (SCCs); however, its biological properties are still uncharacterized. In this study, we successfully expressed FcaPV2 E6 and E7 putative oncogenes in feline epithelial cells and demonstrated that FcaPV2 E6 binds to p53, impairing its protein level. In addition, E6 and E7 inhibited ultraviolet B (UVB)-triggered accumulation of p53, p21 and pro-apoptotic markers such as Cleaved Caspase3, Bax and Bak, suggesting a synergistic action of the virus with UV exposure in tumour pathogenesis. Furthermore, FcaPV2 E7 bound to feline pRb and impaired pRb levels, resulting in upregulation of the downstream pro-proliferative genes Cyclin A and Cdc2. Importantly, we demonstrated mRNA expression of FcaPV2 E2, E6 and E7 in feline SCC samples, strengthening the hypothesis of a causative role in the development of feline SCC. - Highlights: • FcaPV2 E6 binds to and deregulates feline p53 protein. • FcaPV2 E7 binds to and deregulates feline pRb protein. • FcaPV2 oncogenes inhibit UVB-induced apoptosis. • FcaPV2 E6E7 and E7 increase the lifespan of primary cells. • FcaPV2 E2, E6 and E7 are expressed at the mRNA level in feline SCC in vivo.

  2. Risk assessment of oncogenic potency of pesticide residues in fruits and vegetables.

    PubMed

    Keikotlhaile, B M; Spanoghe, P; Steurbaut, W

    2011-01-01

    Pesticides are used in agriculture to improve food security by assuring good harvest, however, they can have harmful effects in human beings and animals. One of the harmful effects of pesticides is their carcinogenicity. Exposure to oncogenic compounds may result in cancer to the exposed animal or person. In this paper, exposure assessment of oncogenic potency of pesticides was performed from raw and processed fruits and vegetables. The oncogenic risk was calculated by multiplying the estimated daily intake (EDI) of the pesticide residue with the oncogenic potency factor (Q*) of the concerned pesticide. The total potential oncogenic risk was calculated to be 2.76 x 10(-3) before processing and 8.97 x 10(-4) after processing. The risk was higher than the EPA acceptable limit of 1 x10(-6). Despite the calculated levels exceeding the EPA acceptable limit, food processing activities reduced the dietary oncogenic risk to an average 33.8%.

  3. Expression of tetanus toxin fragment C in yeast: gene synthesis is required to eliminate fortuitous polyadenylation sites in AT-rich DNA.

    PubMed Central

    Romanos, M A; Makoff, A J; Fairweather, N F; Beesley, K M; Slater, D E; Rayment, F B; Payne, M M; Clare, J J

    1991-01-01

    Fragment C is a non-toxic 50 kDa fragment of tetanus toxin which is a candidate subunit vaccine against tetanus. The AT-rich Clostridium tetani DNA encoding fragment C could not be expressed in Saccharomyces cerevisiae due to the presence of several fortuitous polyadenylation sites which gave rise to truncated mRNAs. The polyadenylation sites were eliminated by chemically synthesising the DNA with increased GC-content (from 29% to 47%). Synthesis of the entire gene (1400 base pairs) was necessary to generate full-length transcripts and for protein production in yeast. Using a GAL1 promoter vector, fragment C was expressed to 2-3% of soluble cell protein. Fragment C could also be secreted using the alpha-factor leader peptide as a secretion signal. The protein was present at 5-10 mg/l in the culture medium in two forms: a high molecular mass hyper-glycosylated protein (75-200 kDa) and a core-glycosylated protein (65 kDa). Intracellular fragment C was as effective in vaccinating mice against tetanus authentic fragment C. The glycosylated material was inactive, though it was rendered fully active by de-glycosylation. Images PMID:2027754

  4. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana.

    PubMed

    Lange, Heike; Holec, Sarah; Cognat, Valérie; Pieuchot, Laurent; Le Ret, Monique; Canaday, Jean; Gagliardi, Dominique

    2008-05-01

    Yeast Rrp6p and its human counterpart, PM/Scl100, are exosome-associated proteins involved in the degradation of aberrant transcripts and processing of precursors to stable RNAs, such as the 5.8S rRNA, snRNAs, and snoRNAs. The activity of yeast Rrp6p is stimulated by the polyadenylation of its RNA substrates. We identified three RRP6-like proteins in Arabidopsis thaliana: AtRRP6L3 is restricted to the cytoplasm, whereas AtRRP6L1 and -2 have different intranuclear localizations. Both nuclear RRP6L proteins are functional, since AtRRP6L1 complements the temperature-sensitive phenotype of a yeast rrp6Delta strain and mutation of AtRRP6L2 leads to accumulation of an rRNA maturation by-product. This by-product corresponds to the excised 5' part of the 18S-5.8S-25S rRNA precursor and accumulates as a polyadenylated transcript, suggesting that RRP6L2 is involved in poly(A)-mediated RNA degradation in plant nuclei. Interestingly, the rRNA maturation by-product is a substrate of AtRRP6L2 but not of AtRRP6L1. This result and the distinctive subcellular distribution of AtRRP6L1 to -3 indicate a specialization of RRP6-like proteins in Arabidopsis.

  5. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    PubMed Central

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27kip1 and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27kip1 mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. PMID:26926106

  6. Oncogenes and RNA splicing of human tumor viruses.

    PubMed

    Ajiro, Masahiko; Zheng, Zhi-Ming

    2014-09-01

    Approximately 10.8% of human cancers are associated with infection by an oncogenic virus. These viruses include human papillomavirus (HPV), Epstein-Barr virus (EBV), Merkel cell polyomavirus (MCV), human T-cell leukemia virus 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV) and hepatitis B virus (HBV). These oncogenic viruses, with the exception of HCV, require the host RNA splicing machinery in order to exercise their oncogenic activities, a strategy that allows the viruses to efficiently export and stabilize viral RNA and to produce spliced RNA isoforms from a bicistronic or polycistronic RNA transcript for efficient protein translation. Infection with a tumor virus affects the expression of host genes, including host RNA splicing factors, which play a key role in regulating viral RNA splicing of oncogene transcripts. A current prospective focus is to explore how alternative RNA splicing and the expression of viral oncogenes take place in a cell- or tissue-specific manner in virus-induced human carcinogenesis.

  7. The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus

    PubMed Central

    Hellquist, Anna; Zucchelli, Marco; Kivinen, Katja; Saarialho‐Kere, Ulpu; Koskenmies, Sari; Widen, Elisabeth; Julkunen, Heikki; Wong, Andrew; Karjalainen‐Lindsberg, Marja‐Liisa; Skoog, Tiina; Vendelin, Johanna; Cunninghame‐Graham, Deborah S; Vyse, Timothy J; Kere, Juha; Lindgren, Cecilia M

    2007-01-01

    Background Several members of the GIMAP gene family have been suggested as being involved in different aspects of the immune system in different species. Recently, a mutation in the GIMAP5 gene was shown to cause lymphopenia in a rat model of autoimmune insulin‐dependent diabetes. Thus it was hypothesised that genetic variation in GIMAP5 may be involved in susceptibility to other autoimmune disorders where lymphopenia is a key feature, such as systemic lupus erythematosus (SLE). Material and methods To investigate this, seven single nucleotide polymorphisms in GIMAP5 were analysed in five independent sets of family‐based SLE collections, containing more than 2000 samples. Result A significant increase in SLE risk associated with the most common GIMAP5 haplotype was found (OR 1.26, 95% CI 1.02 to 1.54, p = 0.0033). In families with probands diagnosed with trombocytopenia, the risk was increased (OR 2.11, 95% CI 1.09 to 4.09, p = 0.0153). The risk haplotype bears a polymorphic polyadenylation signal which alters the 3′ part of GIMAP5 mRNA by producing an inefficient polyadenylation signal. This results in higher proportion of non‐terminated mRNA for homozygous individuals (p<0.005), a mechanism shown to be causal in thalassaemias. To further assess the functional effect of the polymorphic polyadenylation signal in the risk haplotype, monocytes were treated with several cytokines affecting apoptosis. All the apoptotic cytokines induced GIMAP5 expression in two monocyte cell lines (1.5–6 times, p<0.0001 for all tests). Conclusion Taken together, the data suggest the role of GIMAP5 in the pathogenesis of SLE. PMID:17220214

  8. An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.

    PubMed

    Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R; Budka, Justin A; Plotnik, Joshua P; Jerde, Travis J; Hollenhorst, Peter C

    2016-10-25

    More than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma.

  9. Addition of Polyadenylate Sequences to Virus-Specific RNA during Adenovirus Replication

    PubMed Central

    Philipson, L.; Wall, R.; Glickman, G.; Darnell, J. E.

    1971-01-01

    Adenovirus-specific nuclear and polysomal RNA, both early and late in the infectious cycle, contain a covalently linked region of polyadenylic acid 150-250 nucleotides long. A large proportion of the adenovirus-specific messenger RNA contains poly(A). As revealed by hybridization experiments, the poly(A) is not transcribed from adenovirus DNA. Furthermore, an adenosine analogue, cordycepin, blocks the synthesis of poly(A) and also inhibits the accumulation of adenovirus messenger RNA on polysomes. Addition of poly(A) to viral RNA may involve a host-controlled mechanism that regulates the processing and transport of messenger RNA. PMID:5315962

  10. Addition of polyadenylate sequences to virus-specific RNA during adenovirus replication.

    PubMed

    Philipson, L; Wall, R; Glickman, G; Darnell, J E

    1971-11-01

    Adenovirus-specific nuclear and polysomal RNA, both early and late in the infectious cycle, contain a covalently linked region of polyadenylic acid 150-250 nucleotides long. A large proportion of the adenovirus-specific messenger RNA contains poly(A). As revealed by hybridization experiments, the poly(A) is not transcribed from adenovirus DNA. Furthermore, an adenosine analogue, cordycepin, blocks the synthesis of poly(A) and also inhibits the accumulation of adenovirus messenger RNA on polysomes. Addition of poly(A) to viral RNA may involve a host-controlled mechanism that regulates the processing and transport of messenger RNA.

  11. Developmental-stage-dependent transcriptional response to leukaemic oncogene expression

    PubMed Central

    Regha, Kakkad; Assi, Salam A.; Tsoulaki, Olga; Gilmour, Jane; Lacaud, Georges; Bonifer, Constanze

    2015-01-01

    Acute myeloid leukaemia (AML) is characterized by a block in myeloid differentiation the stage of which is dependent on the nature of the transforming oncogene and the developmental stage of the oncogenic hit. This is also true for the t(8;21) translocation that gives rise to the RUNX1-ETO fusion protein and initiates the most common form of human AML. Here we study the differentiation of mouse embryonic stem cells expressing an inducible RUNX1-ETO gene into blood cells as a model, combined with genome-wide analyses of transcription factor binding and gene expression. RUNX1-ETO interferes with both the activating and repressive function of its normal counterpart, RUNX1, at early and late stages of blood cell development. However, the response of the transcriptional network to RUNX1-ETO expression is developmental stage specific, highlighting the molecular mechanisms determining specific target cell expansion after an oncogenic hit. PMID:26018585

  12. Methylation-independent repression of Dnmt3b contributes to oncogenic activity of Dnmt3a in mouse MYC-induced T-cell lymphomagenesis.

    PubMed

    Haney, S L; Hlady, R A; Opavska, J; Klinkebiel, D; Pirruccello, S J; Dutta, S; Datta, K; Simpson, M A; Wu, L; Opavsky, R

    2015-10-01

    DNA methyltransferase 3A (DNMT3A) catalyzes cytosine methylation of mammalian genomic DNA. In addition to myeloid malignancies, mutations in DNMT3A have been recently reported in T-cell lymphoma and leukemia, implying a possible involvement in the pathogenesis of human diseases. However, the role of Dnmt3a in T-cell transformation in vivo is poorly understood. Here we analyzed the functional consequences of Dnmt3a inactivation in a mouse model of MYC-induced T-cell lymphomagenesis (MTCL). Loss of Dnmt3a delayed tumorigenesis by suppressing cellular proliferation during disease progression. Gene expression profiling and pathway analysis identified upregulation of 17 putative tumor suppressor genes, including DNA methyltransferase Dnmt3b, in Dnmt3a-deficient lymphomas as molecular events potentially responsible for the delayed lymphomagenesis in Dnmt3a(Δ/Δ) mice. Interestingly, promoter and gene body methylation of these genes was not substantially changed between control and Dnmt3a-deficient lymphomas, suggesting that Dnmt3a may inhibit their expression in a methylation-independent manner. Re-expression of both wild type and catalytically inactive Dnmt3a in Dnmt3a(Δ/Δ) lymphoma cells in vitro inhibited Dnmt3b expression, indicating that Dnmt3b upregulation may be directly repressed by Dnmt3a. Importantly, genetic inactivation of Dnmt3b accelerated lymphomagenesis in Dnmt3a(Δ/Δ) mice, demonstrating that upregulation of Dnmt3b is a relevant molecular change in Dnmt3a-deficient lymphomas that inhibits disease progression. Collectively, our data demonstrate an unexpected oncogenic role for Dnmt3a in MTCL through methylation-independent repression of Dnmt3b and possibly other tumor suppressor genes.

  13. Oncogenic KRAS signalling in pancreatic cancer.

    PubMed

    Eser, S; Schnieke, A; Schneider, G; Saur, D

    2014-08-26

    Pancreatic ductal adenocarcinoma (PDAC) is almost universally fatal. The annual number of deaths equals the number of newly diagnosed cases, despite maximal treatment. The overall 5-year survival rate of <5% has remained stubbornly unchanged over the last 30 years, despite tremendous efforts in preclinical and clinical science. There is unquestionably an urgent need to further improve our understanding of pancreatic cancer biology, treatment response and relapse, and to identify novel therapeutic targets. Rigorous research in the field has uncovered genetic aberrations that occur during PDAC development and progression. In most cases, PDAC is initiated by oncogenic mutant KRAS, which has been shown to drive pancreatic neoplasia. However, all attempts to target KRAS directly have failed in the clinic and KRAS is widely assumed to be undruggable. This has led to intense efforts to identify druggable critical downstream targets and nodes orchestrated by mutationally activated KRAS. This includes context-specific KRAS effector pathways, synthetic lethal interaction partners and KRAS-driven metabolic changes. Here, we review recent advances in oncogenic KRAS signalling and discuss how these might benefit PDAC treatment in the future.

  14. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer.

    PubMed

    Lodish, Maya B; Stratakis, Constantine A

    2008-04-01

    Hereditary medullary thyroid carcinoma (MTC) is caused by specific autosomal dominant gain-of-function mutations in the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. MTC represents a promising model for targeted cancer therapy, as the oncogenic event responsible for initiating malignancy has been well characterized. The RET proto-oncogene has become the target for molecularly designed drug therapy. Tyrosine kinase inhibitors targeting activated RET are currently in clinical trials for the treatment of patients with MTC. This review will provide a brief overview of MTC and the associated RET oncogenic mutations, and will summarize the therapies designed to strategically interfere with the pathologic activation of the RET oncogene.

  15. c-Abl antagonizes the YAP oncogenic function

    PubMed Central

    Keshet, R; Adler, J; Ricardo Lax, I; Shanzer, M; Porat, Z; Reuven, N; Shaul, Y

    2015-01-01

    YES-associated protein (YAP) is a central transcription coactivator that functions as an oncogene in a number of experimental systems. However, under DNA damage, YAP activates pro-apoptotic genes in conjunction with p73. This program switching is mediated by c-Abl (Abelson murine leukemia viral oncogene) via phosphorylation of YAP at the Y357 residue (pY357). YAP as an oncogene coactivates the TEAD (transcriptional enhancer activator domain) family transcription factors. Here we asked whether c-Abl regulates the YAP–TEAD functional module. We found that DNA damage, through c-Abl activation, specifically depressed YAP–TEAD-induced transcription. Remarkably, c-Abl counteracts YAP-induced transformation by interfering with the YAP–TEAD transcriptional program. c-Abl induced TEAD1 phosphorylation, but the YAP–TEAD complex remained unaffected. In contrast, TEAD coactivation was compromised by phosphomimetic YAP Y357E mutation but not Y357F, as demonstrated at the level of reporter genes and endogenous TEAD target genes. Furthermore, YAP Y357E also severely compromised the role of YAP in cell transformation, migration, anchorage-independent growth, and epithelial-to-mesenchymal transition (EMT) in human mammary MCF10A cells. These results suggest that YAP pY357 lost TEAD transcription activation function. Our results demonstrate that YAP pY357 inactivates YAP oncogenic function and establish a role for YAP Y357 phosphorylation in cell-fate decision. PMID:25361080

  16. Targeting Oncogenic Mutant p53 for Cancer Therapy.

    PubMed

    Parrales, Alejandro; Iwakuma, Tomoo

    2015-01-01

    Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such as metastasis and drug resistance. Increasing evidence reveals that stabilization of mutant p53 in tumors is crucial for its oncogenic activities, while depletion of mutant p53 attenuates malignant properties of cancer cells. Thus, mutant p53 is an attractive druggable target for cancer therapy. Different approaches have been taken to develop small-molecule compounds that specifically target mutant p53. These include compounds that restore wild-type conformation and transcriptional activity of mutant p53, induce depletion of mutant p53, inhibit downstream pathways of oncogenic mutant p53, and induce synthetic lethality to mutant p53. In this review article, we comprehensively discuss the current strategies targeting oncogenic mutant p53 in cancers, with special focus on compounds that restore wild-type p53 transcriptional activity of mutant p53 and those reducing mutant p53 levels.

  17. APADB: a database for alternative polyadenylation and microRNA regulation events.

    PubMed

    Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn

    2014-01-01

    Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3' untranslated region (3'UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3'UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3' end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3' end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3'UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/.

  18. Role of polyadenylation in regulation of the flagella cascade and motility in Escherichia coli.

    PubMed

    Maes, Alexandre; Gracia, Céline; Bréchemier, Dominique; Hamman, Philippe; Chatre, Elodie; Lemelle, Laurence; Bertin, Philippe N; Hajnsdorf, Eliane

    2013-02-01

    Polyadenylation is recognized as part of a surveillance machinery for eliminating defective RNA molecules in eukaryotes and prokaryotes. Escherichia coli strains, deficient in poly(A)polymerase I (PAP I), expressed less flagellin compared to wild-type strains. Because flagellin synthesis is a late step in the flagellar biosynthesis pathway, we assessed the role of PAP I in this cascade and in flagella function. Transcription of flhDC, fliA, and fliC was decreased in the PAP I mutant. These results provide evidence that polyadenylation positively controls the expression of genes belonging to the flagellar biosynthesis pathway and that this effect is mediated through the FlhDC master regulator. However, the downshift in flagella gene expression in the mutant strain did not provoke any noticeable defects in the synthesis of flagella, in biofilm formation and in swimming speed although there was a reduction in motility on soft agar. Our data support an alternative hypothesis that the reduced motility of the mutant resulted from an alteration of the cell membrane composition caused in part by the higher level of GlmS (Glucosamine-6P synthase) which accumulates in the mutant. In agreement with this hypothesis the mutant is more sensitive to hydrophobic agents and antibiotics and in particular to vancomycin. We propose that PAP I participates in the ability of the bacteria to adapt to and survive detrimental conditions by constantly monitoring and adjusting to its environment.

  19. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  20. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.

    PubMed Central

    McGrew, L L; Richter, J D

    1990-01-01

    The expression of certain maternal mRNAs during oocyte maturation is regulated by cytoplasmic polyadenylation. To understand this process, we have focused on a maternal mRNA from Xenopus termed G10. This mRNA is stored in the cytoplasm of stage 6 oocytes until maturation when the process of poly(A) elongation stimulates its translation. Deletion analysis of the 3' untranslated region of G10 RNA has revealed that two sequence elements, UUUUUUAU and AAUAAA were both necessary and sufficient for polyadenylation and polysomal recruitment. In this communication, we have defined the U-rich region that is optimal for polyadenylation as UUUUUUAUAAAG, henceforth referred to as the cytoplasmic polyadenylation element (CPE). We have also identified unique sequence requirements in the 3' terminus of the RNA that can modulate polyadenylation even in the presence of wild-type cis elements. A time course of cytoplasmic polyadenylation in vivo shows that it is an early event of maturation and that it requires protein synthesis within the first 15 min of exposure to progesterone. MPF and cyclin can both induce polyadenylation but, at least with respect to MPF, cannot obviate the requirement for protein synthesis. To identify factors that may be responsible for maturation-specific polyadenylation, we employed extracts from oocytes and unfertilized eggs, the latter of which correctly polyadenylates exogenously added RNA. UV crosslinking demonstrated that an 82 kd protein binds to the U-rich CPE in egg, but not oocyte, extracts. The data suggest that progesterone, either in addition to or through MPF/cyclin, induces the synthesis of a factor during very early maturation that stimulates polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig.1 Fig.2 Fig.3 Fig.4 Fig.5 Fig.6 Fig.7 Fig.8 Fig.9 PMID:2145153

  1. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  2. Liquid biopsy for detection of actionable oncogenic mutations in human cancers and electric field induced release and measurement liquid biopsy (eLB).

    PubMed

    Tu, Michael; Chia, David; Wei, Fang; Wong, David

    2016-01-21

    Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed.

  3. Liquid Biopsy for Detection of Actionable Oncogenic Mutations in Human Cancers and Electric Field Induced Release and Measurement Liquid Biopsy (eLB)

    PubMed Central

    Tu, Michael; Chia, David; Wei, Fang; Wong, David

    2015-01-01

    Oncogenic activations by mutations in key cancer genes such as EGFR and KRAS are frequently associated with human cancers. Molecular targeting of specific oncogenic mutations in human cancer is a major therapeutic inroad for anti-cancer drug therapy. In addition, progressive developments of oncogene mutations lead to drug resistance. Therefore, the ability to detect and continuously monitor key actionable oncogenic mutations is important to guide the use of targeted molecular therapies to improve long-term clinical outcomes in cancer patients. Current oncogenic mutation detection is based on direct sampling of cancer tissue by surgical resection or biopsy. Oncogenic mutations were recently shown to be detectable in circulating bodily fluids of cancer patients. This field of investigation, termed liquid biopsy, permits a less invasive means of assessing the oncogenic mutation profile of a patient. This paper will review the analytical strategies used to assess oncogenic mutations from biofluid samples. Clinical applications will also be discussed. PMID:26645892

  4. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling

    PubMed Central

    Callahan, Brian P.; Wang, Chunyu

    2015-01-01

    Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog’s biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target. PMID:26473928

  5. CDC25 phosphatases as potential human oncogenes.

    PubMed

    Galaktionov, K; Lee, A K; Eckstein, J; Draetta, G; Meckler, J; Loda, M; Beach, D

    1995-09-15

    Cyclin-dependent kinases (CDKs) are activated by CDC25 phosphatases, which remove inhibitory phosphate from tyrosine and threonine residues. In human cells, CDC25 proteins are encoded by a multigene family, consisting of CDC25A, CDC25B, and CDC25C. In rodent cells, human CDC25A or CDC25B but not CDC25C phosphatases cooperate with either Ha-RASG12V or loss of RB1 in oncogenic focus formation. Such transformants were highly aneuploid, grew in soft agar, and formed high-grade tumors in nude mice. Overexpression of CDC25B was detected in 32 percent of human primary breast cancers tested. The CDC25 phosphatases may contribute to the development of human cancer.

  6. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation.

    PubMed

    Johansson, Cecilia; Somberg, Monika; Li, Xiaoze; Backström Winquist, Ellenor; Fay, Joanna; Ryan, Fergus; Pim, David; Banks, Lawrence; Schwartz, Stefan

    2012-05-22

    We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.

  7. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation

    PubMed Central

    Johansson, Cecilia; Somberg, Monika; Li, Xiaoze; Backström Winquist, Ellenor; Fay, Joanna; Ryan, Fergus; Pim, David; Banks, Lawrence; Schwartz, Stefan

    2012-01-01

    We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2. PMID:22617423

  8. Activation of endogenous c-fos proto-oncogene expression by human T-cell leukemia virus type I-encoded p40 sup tax protein in the human T-cell line, Jurkat

    SciTech Connect

    Nagata, Kinya; Ohtani, Kiyoshi; Nakamura, Masataka; Sugamura, Kazuo )

    1989-08-01

    The authors examined the ability of the trans-acting factor p40{sup tax} of human T-cell leukemia virus type I (HTLV-I), which is thought to be a crucial molecule in T-cell transformation by HTLV-I, to activate expression of a set of endogenous cellular genes related to T-cell proliferation. For this purpose, they established a subclone (JPX-9) of Jurkat cells that was stably transfected with an expression plasmid containing the p40{sup tax} gene, whose expression is definitively dependent on heavy-metal ions. Expression of the interleukin-2 receptor {alpha} chain in JPX-9 cells was induced in response to the induction of p40{sup tax} expression, as has been demonstrated by others in transient transfection experiments with Jurkat cells. In addition, they found that significant enhancement of expression of the nuclear proto-oncogene c-fos was closely associated with expression of p40{sup tax}. Continuous enhancement in the level of c-fos mRNA was observed in the presence of p40{sup tax}. These results suggest that (i) in addition to the interleukin-2-interleukin-2 receptor system, cellular genes such as c-fos, which regulate normal T-cell growth, are also activated directly or indirectly by p40{sup tax} and (ii) p40{sup tax}-induced modulation of gene expression plays a crucial role in T-cell transformation by HTLV-I.

  9. Hormonally induced alterations of chromatin structure in the polyadenylation and transcription termination regions of the chicken ovalbumin gene.

    PubMed Central

    Bellard, M; Dretzen, G; Bellard, F; Kaye, J S; Pratt-Kaye, S; Chambon, P

    1986-01-01

    We have studied the chromatin structure of a 16-kb region of the chicken genome containing the 3'-terminal 2 kb of the ovalbumin pre-mRNA coding sequence and the 14-kb segment located immediately downstream from the main mRNA polyadenylation site. Using the indirect end-labelling technique, four major and two minor DNase I-hypersensitive regions were found in the oviduct chromatin, whereas they were not present in liver, kidney or erythrocyte chromatin. The first hypersensitive region (region A) was present in chromatin of oviducts from laying hen and estrogen- or progesterone-stimulated immature chicks, in which the ovalbumin gene is expressed, but not in the chromatin of 'acute withdrawn' chicks where the gene is no longer transcribed. Region A spans 1.3 kb, from 7.2 to 8.5 kb downstream from the ovalbumin gene capsite (position +1), and encompasses the 3' moiety of the last exon including the major polyadenylation signal and polyadenylation site located at +7546 and +7564, respectively. Region A also contains a minor polyadenylation signal present at +7294 and the corresponding polyadenylation site at +7368. Two putative termination sequences at +8445 and +8483 are also found at the 3' extremity of region A in a 170-bp DNA segment within which 90% of the ovalbumin primary transcripts apparently terminate. Two minor hormone-independent DNase I-hypersensitive regions (a1 and a2) located at +8.6 and +8.8 kb are also specific to oviduct chromatin.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3011414

  10. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells.

  11. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    DTIC Science & Technology

    2005-04-01

    cancer. Cancer involves, at least in part, aberrant programs of gene expression often mediated by oncogenic transcription factors activating downstream...networks that underlie complex gene expression programs that are activated in cancer. Indeed, transcription factors have been proposed as targets of...some of the limitations of ChIP-chip analysis and can be applied to transcription factors important in breast cancer such as c-myc and ER ( estrogen

  12. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  13. The role of alternative polyadenylation in the antiviral innate immune response

    PubMed Central

    Jia, Xin; Yuan, Shaochun; Wang, Yao; Fu, Yonggui; Ge, Yong; Ge, Yutong; Lan, Xihong; Feng, Yuchao; Qiu, Feifei; Li, Peiyi; Chen, Shangwu; Xu, Anlong

    2017-01-01

    Alternative polyadenylation (APA) is an important regulatory mechanism of gene functions in many biological processes. However, the extent of 3′ UTR variation and the function of APA during the innate antiviral immune response are unclear. Here, we show genome-wide poly(A) sites switch and average 3′ UTR length shortens gradually in response to vesicular stomatitis virus (VSV) infection in macrophages. Genes with APA and mRNA abundance change are enriched in immune-related categories such as the Toll-like receptor, RIG-I-like receptor, JAK-STAT and apoptosis-related signalling pathways. The expression of 3′ processing factors is down-regulated upon VSV infection. When the core 3′ processing factors are knocked down, viral replication is affected. Thus, our study reports the annotation of genes with APA in antiviral immunity and highlights the roles of 3′ processing factors on 3′ UTR variation upon viral infection. PMID:28233779

  14. Human immunodeficiency virus type 1 Tat increases the expression of cleavage and polyadenylation specificity factor 73-kilodalton subunit modulating cellular and viral expression.

    PubMed

    Calzado, Marco A; Sancho, Rocío; Muñoz, Eduardo

    2004-07-01

    The human immunodeficiency virus type 1 (HIV-1) Tat protein, which is essential for HIV gene expression and viral replication, is known to mediate pleiotropic effects on various cell functions. For instance, Tat protein is able to regulate the rate of transcription of host cellular genes and to interact with the signaling machinery, leading to cellular dysfunction. To study the effect that HIV-1 Tat exerts on the host cell, we identified several genes that were up- or down-regulated in tat-expressing cell lines by using the differential display method. HIV-1 Tat specifically increases the expression of the cleavage and polyadenylation specificity factor (CPSF) 73-kDa subunit (CPSF3) without affecting the expression of the 160- and 100-kDa subunits of the CPSF complex. This complex comprises four subunits and has a key function in the 3'-end processing of pre-mRNAs by a coordinated interaction with other factors. CPSF3 overexpression experiments and knockdown of the endogenous CPSF3 by mRNA interference have shown that this subunit of the complex is an important regulatory protein for both viral and cellular gene expression. In addition to the known CPSF3 function in RNA polyadenylation, we also present evidence that this protein exerts transcriptional activities by repressing the mdm2 gene promoter. Thus, HIV-1-Tat up-regulation of CPSF3 could represent a novel mechanism by which this virus increases mRNA processing, causing an increase in both cell and viral gene expression.

  15. Oncogenic ras-induced expression of cytokines: a new target of anti-cancer therapeutics.

    PubMed

    Ancrile, Brooke B; O'Hayer, Kevin M; Counter, Christopher M

    2008-02-01

    The Ras family of small guanosine triphosphatases normally transmit signals from cell surface receptors to the interior of the cell. Stimulation of cell surface receptors leads to the activation of guanine exchange factors, which, in turn, convert Ras from an inactive GDP-bound state to an active GTP-bound state. However, in one third of human cancers, RAS is mutated and remains in the constitutively active GTP-bound state. In this oncogenic state, RAS activates a constellation of signaling that is known to promote tumorigenesis. One consequence of this oncogenic RAS signal in cancer cells is the upregulation of the cytokines interleukin (IL)-6, IL-8, and chemokine growth-regulated oncogene 1 (GRO-1). We review the evidence supporting a role for these cytokines in oncogenic RAS-driven solid tumors.

  16. APADB: a database for alternative polyadenylation and microRNA regulation events

    PubMed Central

    Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M.; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn

    2014-01-01

    Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/ PMID:25052703

  17. Alternative polyadenylation in a family of paralogous EPB41 genes generates protein 4.1 diversity.

    PubMed

    Rangel, Laura; Lospitao, Eva; Ruiz-Sáenz, Ana; Alonso, Miguel A; Correas, Isabel

    2017-02-01

    Alternative polyadenylation (APA) is a step in mRNA 3'-end processing that contributes to the complexity of the transcriptome by generating isoforms that differ in either their coding sequence or their 3'-untranslated regions (UTRs). The EPB41 genes, EPB41, EPB41L2, EPB41L3 and EPB41L1, encode an impressively complex array of structural adaptor proteins (designated 4.1R, 4.1G, 4.1B and 4.1N, respectively) by using alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing. The great variety of 4.1 proteins mainly results from 5'-end and internal processing of the EPB41 pre-mRNAs. Thus, 4.1 proteins can vary in their N-terminal extensions but all contain a highly homologous C-terminal domain (CTD). Here we study a new group of EPB41-related mRNAs that originate by APA and lack the exons encoding the CTD characteristic of prototypical 4.1 proteins, thereby encoding a new type of 4.1 protein. For the EPB41 gene, this type of processing was observed in all 11 human tissues analyzed. Comparative genomic analysis of EPB41 indicates that APA is conserved in various mammals. In addition, we show that APA also functions for the EPB41L2, EPB41L3 and EPB41L1 genes, but in a more restricted manner in the case of the latter 2 than it does for the EPB41 and EPB41L2 genes. Our study shows alternative polyadenylation to be an additional mechanism for the generation of 4.1 protein diversity in the already complex EPB41-related genes. Understanding the diversity of EPB41 RNA processing is essential for a full appreciation of the many 4.1 proteins expressed in normal and pathological tissues.

  18. Effect of cellular determination on oncogenic transformation by chemicals and oncogenes.

    PubMed Central

    Harrington, M A; Gonzales, F; Jones, P A

    1988-01-01

    Three developmentally determined myogenic cell lines derived from C3H 10T1/2 C18 (10T1/2) mouse embryo cells treated with 5-azacytidine were compared with the parental 10T1/2 line for their susceptibility to oncogenic transformation by 3-methylcholanthrene or the activated human c-Ha-ras oncogene. Neither the 10T1/2 cells nor the myogenic derivatives grew in soft agar or formed tumors in nude mice. In contrast to 10T1/2 cells, the three myogenic derivatives were not susceptible to transformation by 3-methylcholanthrene, so that cellular determination altered the response of 10T1/2 cells to chemical carcinogen. On the other hand, all cell types were transformed to a tumorigenic phenotype following transfection with the activated c-Ha-ras gene. The transfected myogenic cells expressed both the c-Ha-ras gene and the muscle determination gene MyoD1. In contrast to other reports, the presence of as many as six copies of the c-Ha-ras gene per genome did not prevent the formation of striated muscle cells which expressed immunologically detectable muscle-specific myosin. The expression of the c-Ha-ras gene does not therefore necessarily preclude the expression of the determination gene for myogenesis or prevent end-stage myogenic differentiation. Images PMID:2460742

  19. Activation of the c-abl oncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties.

    PubMed Central

    Davis, R L; Konopka, J B; Witte, O N

    1985-01-01

    The v-abl protein of Abelson murine leukemia virus is a tyrosine-specific kinase. Its normal cellular homolog, murine c-abl, does not possess detectable tyrosine kinase activity in vitro. Previously, we have detected tyrosine kinase activity in vitro for an altered c-abl gene product (c-abl P210) in the K562 human chronic myelogenous leukemia cell line. The expression of this variant c-abl gene product correlates with chromosomal translocation and amplification of the c-abl gene in K562 cells. Like v-abl, c-abl P210 is a fusion protein containing non-abl sequences near the amino terminus of c-abl. We compared the in vitro tyrosine kinase activity of c-abl P210 with that of wild-type murine v-abl. The remarkable similarities of these two proteins with respect to cis-acting autophosphorylation, trans-acting phosphorylation of exogenous substrates, and kinase inhibition, using site-directed abl-specific antisera, suggested that c-abl P210 could function similarly to v-abl in vivo. In addition, c-abl P210 possessed an associated serine kinase activity in immunoprecipitates. The serine kinase activity was not inhibited by site-directed, abl-specific antisera that inhibit the tyrosine kinase activity, suggesting that the serine kinase activity is not an intrinsic property of c-abl P210. Thus, the activation of the c-abl gene in a human leukemia cell line may have functional consequences analogous to activation of the c-abl gene in Abelson murine leukemia virus. Images PMID:4039028

  20. Leucine Leucine-37 Uses Formyl Peptide Receptor–Like 1 to Activate Signal Transduction Pathways, Stimulate Oncogenic Gene Expression, and Enhance the Invasiveness of Ovarian Cancer Cells

    PubMed Central

    Coffelt, Seth B.; Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor–like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein–coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37–induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37–stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37–treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1. PMID:19491199

  1. Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells.

    PubMed

    Coffelt, Seth B; Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Danka, Elizabeth S; Scandurro, Aline B

    2009-06-01

    Emerging evidence suggests that the antimicrobial peptide, leucine leucine-37 (LL-37), could play a role in the progression of solid tumors. LL-37 is expressed as the COOH terminus of human cationic antimicrobial protein-18 (hCAP-18) in ovarian, breast, and lung cancers. Previous studies have shown that the addition of LL-37 to various cancer cell lines in vitro stimulates proliferation, migration, and invasion. Similarly, overexpression of hCAP-18/LL-37 in vivo accelerates tumor growth. However, the receptor or receptors through which these processes are mediated have not been thoroughly examined. In the present study, expression of formyl peptide receptor-like 1 (FPRL1) was confirmed on ovarian cancer cells. Proliferation assays indicated that LL-37 does not signal through a G protein-coupled receptor, such as FPRL1, to promote cancer cell growth. By contrast, FPRL1 was required for LL-37-induced invasion through Matrigel. The peptide stimulated mitogen-activated protein kinase and Janus-activated kinase/signal transducers and activators of transcription signaling cascades and led to the significant activation of several transcription factors, through both FPRL1-dependent and FPRL1-independent pathways. Likewise, expression of some LL-37-stimulated genes was attenuated by the inhibition of FPRL1. Increased expression of CXCL10, EGF, and PDGF-BB as well as other soluble factors was confirmed from conditioned medium of LL-37-treated cells. Taken together, these data suggest that LL-37 potentiates a more aggressive behavior from ovarian cancer cells through its interaction with FPRL1.

  2. Liposomal encapsulation of deguelin: evidence for enhanced antitumor activity in tobacco carcinogen-induced and oncogenic K-ras-induced lung tumorigenesis.

    PubMed

    Woo, Jong K; Choi, Dong Soon; Tran, Hai T; Gilbert, Brian E; Hong, Waun Ki; Lee, Ho-Young

    2009-04-01

    Deguelin has shown promising chemopreventive and therapeutic activities in diverse types of cancers. However, the potential side effect of deguelin over a certain dose could be the substantial hurdle in the practical application of the drug. One of the successful strategies for the use of deguelin in clinical trials could be lung-specific delivery of the drug. The present study evaluates the efficacy of liposome-encapsulated deguelin with a dose of 0.4 mg/kg, which is 10 times less than the dose (4 mg/kg) for preventive and therapeutic activities validated in previous in vivo studies. Liposomal deguelin revealed cytotoxic activity in vitro in premalignant and malignant human bronchial epithelial cells and non-small cell lung cancer cells through the same mechanistic pathway previously reported for deguelin (i.e., suppression of the heat shock protein 90 chaperone function and induction of apoptosis). Delivery of liposomal deguelin at a dose of 0.4 mg/kg by intranasal instillation resulted in markedly increased drug partitioning to the lungs compared with that of 4 mg/kg deguelin or 0.4 mg/kg liposomal deguelin administered by oral gavage. Lung-specific delivery of deguelin (0.4 mg/kg) via nasal or intratracheal instillation in a liposomal formulation also showed significant chemopreventive and therapeutic activities in 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone/benzo(a)pyrene-treated A/J mice and K-rasLAC57Bl6/129/sv F1 mice with no detectable toxicity. Our findings support the potential use of deguelin in a liposomal formulation via lung-specific delivery to improve efficacy and to reduce the potential side effects of the agent.

  3. High-risk oncogenic HPV genotype infection associates with increased immune activation and T cell exhaustion in ART-suppressed HIV-1-infected women

    PubMed Central

    Papasavvas, Emmanouil; Surrey, Lea F.; Glencross, Deborah K.; Azzoni, Livio; Joseph, Jocelin; Omar, Tanvier; Feldman, Michael D.; Williamson, Anna-Lise; Siminya, Maureen; Swarts, Avril; Yin, Xiangfan; Liu, Qin; Firnhaber, Cynthia; Montaner, Luis J.

    2016-01-01

    ABSTRACT Persistence of human papillomavirus (HPV) and cervical disease in the context of HIV co-infection can be influenced by introduction of antiretroviral therapy (ART) and sustained immune activation despite ART. We conducted a cross-sectional study in order to evaluate immune activation/exhaustion in ART-suppressed HIV+ women with or without high-risk (HR) HPV-related cervical intraepithelial neoplasia (CIN). 55 South African women were recruited in three groups: HR (-) (n = 16) and HR (+) (n = 15) HPV with negative cervical histopathology, and HR (+) HPV with CIN grade 1/2/3 (n = 24). Sampling included endocervical brushing (HPV DNA genotyping), Pap smear (cytology), colposcopic punch biopsy (histopathology, histochemical evaluation of immune cells), and peripheral blood (clinical assessment, flow cytometry-based immune subset characterization). Statistics were done using R2.5.1. Irrespective of the presence of CIN, HR (+) HPV women had higher circulating levels of T cells expressing markers of activation/exhaustion (CD38, PD1, CTLA-4, BTLA, CD160), Tregs, and myeloid subsets expressing corresponding ligands (PDL1, PDL2, CD86, CD40, HVEM) than HR (-) HPV women. A decrease in circulating NK cells was associated with CIN grade. CD4+ T cell count associated negatively with T cell exhaustion and expression of negative regulators on myeloid cells. Women with CIN when compared to HR (-) HPV women, had higher cervical cell density in stroma and epithelium for CD4+, CD68+, and CD11c+ cells, and only in stroma for CD8+ cells. We conclude that in ART-suppressed HIV-infected women with HPV co-infection the levels of T and myeloid cell activation/exhaustion are associated with the presence of HR HPV genotypes. PMID:27467943

  4. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  5. Oncogene addiction: sometimes a temporary slavery.

    PubMed

    Jonkers, Jos; Berns, Anton

    2004-12-01

    Tumors induced in conditional oncomice can show remarkable different responses to subsequent oncogene deprivation. Complete sustained regression, concomitant with massive differentiation and/or apoptosis, and partial regression are both observed. In the latter case, tumor growth either resumes without being dependent any longer on the oncogene, or requires reactivation of the oncogene in cells that have become dormant. These models reflect many of the features we also witness in human cancer and can therefore assist us in understanding the underlying mechanisms and in designing more effective treatment protocols.

  6. Activation of Mas oncogene-related gene (Mrg) C receptors enhances morphine-induced analgesia through modulation of coupling of μ-opioid receptor to Gi-protein in rat spinal dorsal horn.

    PubMed

    Wang, D; Chen, T; Zhou, X; Couture, R; Hong, Y

    2013-12-03

    Mas oncogene-related gene (Mrg) G protein-coupled receptors are exclusively expressed in small-sized neurons in trigeminal and dorsal root ganglia (DRG) in mammals. The present study investigated the effect of MrgC receptor activation on morphine analgesic potency and addressed its possible mechanisms. Intrathecal (i.t.) administration of the specific MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22, 3 nmol) increased morphine-induced analgesia and shifted the morphine dose-response curve to the left in rats. Acute morphine (5 μg) reduced the coupling of μ-opioid receptors (MORs) to Gi-, but not Gs-, protein in the spinal dorsal horn. The i.t. BAM8-22 (3 nmol) prevented this change of G-protein repertoire while the inactive MrgC receptor agonist BAM8-18 (3 nmol, i.t.) failed to do so. A double labeling study showed the co-localization of MrgC and MORs in DRG neurons. The i.t. BAM8-22 also increased the coupling of MORs to Gi-protein and recruited Gi-protein from cytoplasm to the cell membrane in the spinal dorsal horn. Application of BAM8-22 (10nM) in the cultured ganglion explants for 30 min increased Gi-protein mRNA, but not Gs-protein mRNA. The present study demonstrated that acute administration of morphine inhibited the repertoire of MOR/Gi-protein coupling in the spinal dorsal horn in vivo. The findings highlight a novel mechanism by which the activation of MrgC receptors can modulate the coupling of MORs with Gi-protein to enhance morphine-induced analgesia. Hence, adjunct treatment of MrgC agonist BAM8-22 may be of therapeutic value to relieve pain.

  7. Cigarette smoke extracts induce overexpression of the proto-oncogenic gene interleukin-13 receptor α2 through activation of the PKA-CREB signaling pathway to trigger malignant transformation of lung vascular endothelial cells and angiogenesis.

    PubMed

    Meng, Mei; Liao, Huaidong; Zhang, Bin; Pan, Yanyan; Kong, Ying; Liu, Wenming; Yang, Ping; Huo, Zihe; Cao, Zhifei; Zhou, Quansheng

    2017-02-01

    Cigarette smoking is a major cause of lung cancer. Tumor-associated endothelial cells (TAECs) play important roles in tumor angiogenesis and metastasis. However, whether cigarette smoking can trigger genesis of lung TAECs has not been reported yet. In the current study, we used lung endothelial cell (EC) lines as a model to study the pathological effect of cigarette smoke extracts (CSEs) on human lung ECs, and found that a lower dose of 4% CSEs obviously caused abnormal morphological changes in ECs, increased the permeability of endothelial monolayer, while a higher concentration of 8% CSEs caused EC apoptosis. Strikingly, CSEs induced a 117-fold overexpression of a pro-tumorigenic interleukin-13 receptor α2 gene (IL-13Rα2, also named as CT-19) through activation of the protein kinase A (PKA) and cAMP response element-binding protein (CREB) signaling pathway. A PKA specific inhibitor H89 completely abolished CSEs-induced IL-13Rα2 overexpression. The overexpression of IL-13Rα2 in lung ECs significantly increased the tumorigenic, migratory, and angiogenic capabilities of the cells, suggesting that IL-13Rα2 promotes genesis of lung TAECs. Together, our data show that CSEs activate the PKA, CREB, and IL-13Rα2 axis in lung ECs, and IL-13Rα2 promotes the malignant transformation of lung ECs and genesis of TAECs with robust angiogenic and oncogenic capabilities. Our study provides new insight into the mechanism of CSEs-triggered lung cancer angiogenesis and tumorigenesis, suggesting that the PKA-CREB-IL-13Rα2 axis is a potential target for novel anti-lung tumor angiogenesis and anti-lung cancer drug discovery.

  8. The oncogenic action of ionizing radiation on rat skin

    SciTech Connect

    Burns, F.J.; Garte, S.J.

    1990-01-01

    An extensive experiment involving approximately 400 rats exposed to the neon ion beam at the Bevalac in Berkeley, CA and to electrons is nearing completion. Progress is described in three areas corresponding to the specific aims of the proposal: (1) carcinogenesis and DNA strand breaks in rat skin following exposure by the neon ions or electrons; (2) oncogene activation in radiation-induced rat skin cancers; (3) DNA strand breaks in the epidermis as a function of radiation penetration. 59 refs., 4 tabs.

  9. Role of ETS Oncogenes in the Progression of Breast Cancer

    DTIC Science & Technology

    1999-10-01

    EWS, on chromosome 22, solid tumors including Ewing sarcoma, related with either Fli-1 or erg genes, located on chromosomes 11 primitive ... neuroectodermal tumors , malignant and 21, respectively. The erg and Fli-I are members of the melanoma of soft parts and desmoplastic small round ets oncogene super...for these proteins in cell cycle regulation, tumor suppression, transcription activation, etc. Breast cancers have a reduced ability to undergo cell

  10. ARF and ATM/ATR cooperate in p53-mediated apoptosis upon oncogenic stress

    SciTech Connect

    Pauklin, Siim . E-mail: spauklin@ut.ee; Kristjuhan, Arnold; Maimets, Toivo; Jaks, Viljar

    2005-08-26

    Induction of apoptosis is pivotal for eliminating cells with damaged DNA or deregulated proliferation. We show that tumor suppressor ARF and ATM/ATR kinase pathways cooperate in the induction of apoptosis in response to elevated expression of c-myc, {beta}-catenin or human papilloma virus E7 oncogenes. Overexpression of oncogenes leads to the formation of phosphorylated H2AX foci, induction of Rad51 protein levels and ATM/ATR-dependent phosphorylation of p53. Inhibition of ATM/ATR kinases abolishes both induction of Rad51 and phosphorylation of p53, and remarkably reduces the level of apoptosis induced by co-expression of oncogenes and ARF. However, the induction of apoptosis is downregulated in p53-/- cells and does not depend on activities of ATM/ATR kinases, indicating that efficient induction of apoptosis by oncogene activation depends on coordinated action of ARF and ATM/ATR pathways in the regulation of p53.

  11. Dose dependency of aflatoxin B/sub 1/ binding on human high molecular weight DNA in the activation of proto-oncogene

    SciTech Connect

    Yang, S.S.; Taub, J.V.; Modali, R.; Vieira, W.; Yasei, P.; Yang, G.C.

    1985-10-01

    The binding of aflatoxin B/sub 1/, AFB/sub 1/, a potent hepatocarcinogen, to various high molecular weight (HMW) DNAs from human normal liver and two liver cancer cell lines, Alexander primary liver carcinoma (PLC) and Mahlavu hepatocellular carcinoma (hHC) and from NIH/3T3 cell have been investigated. The kinetics of AFB/sub 1/ binding to these DNAs showed similar initial rates but the extents of binding to the PLC and hHC DNAs seemed to be slightly higher. Preferential AFB/sub 1/ bindings were identified in both PLC and hHC DNAs compared to normal liver DNA. A critical AFB/sub 1/ binding dosage, ranging 100 to 460 fmole/..mu..g DNA, was found to activate the carcinogenic effect of the Mahlavu hHC HMW DNA, but not normal liver HMW DNA, rendering it capable of inducting focal transformation in NIH/3T3 cell. Excessive AFB/sub 1/ binding on the hHC and PLC HMW DNAs resulted in an over-kill of both cell transformation capability and templating activity of the DNA.

  12. Recent Advances on the Possible Neuroprotective Activities of Epstein-Barr Virus Oncogene BARF1 Protein in Chronic Inflammatory Disorders of Central Nervous System

    PubMed Central

    Wynne, Alicia; Kanwar, Rupinder K; Khanna, Rajiv; Kanwar, Jagat R

    2010-01-01

    Multiple sclerosis and neurodegenerative diseases in which cells of the central nervous system (CNS) are lost or damaged are rapidly increasing in frequency, and there is neither effective treatment nor cure to impede or arrest their destructive course. The Epstein-Barr virus is a human gamma-herpesvirus that infects more than 90% of the human population worldwide and persisting for the lifetime of the host. It is associated with numerous epithelial cancers, principally undifferentiated nasopharyngeal carcinoma and gastric carcinoma. Individuals with a history of symptomatic primary EBV infection, called infectious mononucleosis, carry a moderately higher risk of developing multiple sclerosis (MS). It is not known how EBV infection potentially promotes autoimmunity and central nervous system (CNS) tissue damage in MS. Recently it has been found that EBV isolates from different geographic regions have highly conserved BARF1 epitopes. BARF1 protein has the neuroprotective and mitogenic activity, thus may be useful to combat and overcome neurodegenerative disease. BARF1 protein therapy can potentially be used to enhance the neuroprotective activities by combinational treatment with anti-inflammatory antagonists and neuroprotectors in neural disorders. PMID:21358976

  13. Cytotoxic activity of Justicia spicigera is inhibited by bcl-2 proto-oncogene and induces apoptosis in a cell cycle dependent fashion.

    PubMed

    Cáceres-Cortés, J R; Cantú-Garza, F A; Mendoza-Mata, M T; Chavez-González, M A; Ramos-Mandujano, G; Zambrano-Ramírez, I R

    2001-12-01

    Identification of organic compounds from plants is of clinical significance because of the effect that they might have in patients with haematopoietic disorders. We studied the effect of the plant extract Justicia spicigera (Acanthaceae) in different haematopoietic cells: human leukaemic cell lines, umbilical cord blood cells, and mouse bone marrow cells. By examining colony formation and performing the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay it was shown that the plant extract of Justicia spicigera contains cytotoxic factors for leukaemic cells and has no proliferative activity on normal haematopoietic progenitor cells. Our results show that this plant extract induces apoptosis in the human leukaemia cell line TF-1, but not in the bcl-2 transfectant cell line TB-1. Similar results were obtained using a haemopoietic cell line 32D and 32DBcl2. The cultures of umbilical cord blood cells and mouse bone marrow that contain granulocyte-macrophage colony-stimulating factor (GM-CSF) do not proliferate or become terminally differentiated in the presence of the infusion of Justicia spicigera. GM-CSF that acts by abrogating programmed cell death is not sufficient to inhibit the apoptotic stimulus in TF-1 and 32D cells. Moreover mouse fibroblasts (3T3) and two cervical carcinoma cell lines CALO and INBL, undergo apoptosis in the presence of different concentrations of an infusion from the plant. Our data show that there is a strong correlation between the cytotoxic effect and cell proliferation. Together, these results indicate that the plant infusion of Justicia spicigera does not contain any haematopoietic activity, induces apoptosis inhibited by bcl-2 and is linked to cell proliferation.

  14. KRAS insertion mutations are oncogenic and exhibit distinct functional properties

    PubMed Central

    White, Yasmine; Bagchi, Aditi; Van Ziffle, Jessica; Inguva, Anagha; Bollag, Gideon; Zhang, Chao; Carias, Heidi; Dickens, David; Loh, Mignon; Shannon, Kevin; Firestone, Ari J.

    2016-01-01

    Oncogenic KRAS mutations introduce discrete amino acid substitutions that reduce intrinsic Ras GTPase activity and confer resistance to GTPase-activating proteins (GAPs). Here we discover a partial duplication of the switch 2 domain of K-Ras encoding a tandem repeat of amino acids G60_A66dup in a child with an atypical myeloproliferative neoplasm. K-Ras proteins containing this tandem duplication or a similar five amino acid E62_A66dup mutation identified in lung and colon cancers transform the growth of primary myeloid progenitors and of Ba/F3 cells. Recombinant K-RasG60_A66dup and K-RasE62_A66dup proteins display reduced intrinsic GTP hydrolysis rates, accumulate in the GTP-bound conformation and are resistant to GAP-mediated GTP hydrolysis. Remarkably, K-Ras proteins with switch 2 insertions are impaired for PI3 kinase binding and Akt activation, and are hypersensitive to MEK inhibition. These studies illuminate a new class of oncogenic KRAS mutations and reveal unexpected plasticity in oncogenic Ras proteins that has diagnostic and therapeutic implications. PMID:26854029

  15. Clinical correlates in acromegalic patients with pituitary tumors expressing GSP oncogenes.

    PubMed

    Buchfelder, M; Fahlbusch, R; Merz, T; Symowski, H; Adams, E F

    1999-05-01

    We herein review published findings on the clinical characteristics of acromegalic patients harboring pituitary somatotrophinomas expressing adenylyl cyclase activating gsp mutations and present an update of our own data on a large series of 176 patients with and without these oncogenes. Gsp oncogenes are the result of point mutations in either codon 201 or 227 of the Gs-alpha subunit of the Gs-protein which controls adenylyl cyclase. They result ultimately in increased intracellular cAMP levels and thus in excessive growth hormone (GH) secretion. Our large series has allowed us to characterise patients with mutations in codon 201 and the far rarer group possessing codon 227 defects. Both groups were compared with patients without gsp oncogenes. In accordance with previous findings, there was no statistically significant difference in age of the patients belonging to each group, the overall average tumor diameter nor in pre-operative serum GH levels, although the latter showed a tendency to be lower in patients with gsp oncogenes. The distribution of different types of response during an oral glucose tolerance test (no change, paradoxical rise or greater than 50% decrease in serum GH levels) did not differ between the 3 groups. However, the incidence of microadenomas was higher in acromegalics expressing gsp oncogenes in patients possessing mutations in codon 227. Additionally, the incidence of invasiveness was much lower (10% v. 33%) in those tumors with mutations in codon 227. Finally, previous in-vitro data indicating that gsp oncogene-expressing tumors may respond more efficiently to the somatostatin analogue, octreotide, have been confirmed by subsequent in-vivo studies showing a better reduction in serum GH levels in patients with gsp oncogenes. These latter findings suggest that presence of gsp oncogenes may be a marker for good reponsiveness to octreotide. Assessment of gsp oncogene status of surgically removed pituitary somatotrophinomas may thus be

  16. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30

    SciTech Connect

    Bercovich, Natalia; Levin, Mariano J.; Vazquez, Martin P.

    2009-03-20

    In trypanosomes transcription is polycistronic and individual mRNAs are generated by a trans-splicing/polyadenylation coupled reaction. We identified a divergent trypanosome FIP1-like, a factor required for mRNA 3' end formation from yeasts to human. Here we showed that it is a nuclear protein with a speckled distribution essential for trypanosome viability. A strong interaction was found between TcFIP1-like and TcCPSF30, a component of the polyadenylation complex. We determined the specific amino acids in each protein involved in the interaction. Significant differences were found between the trypanosome interaction surface and its human counterpart. Although CPSF30/FIP1 interaction is known in other organisms, this is the first report mapping the interaction surface at the amino acid level.

  17. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy.

    PubMed

    Pak, Ekaterina; Segal, Rosalind A

    2016-08-22

    The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.

  18. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway

    PubMed Central

    Pu, Qiang; Yuan, Yue; Yang, Weihan; Luo, Xinmei; Jiang, Qianqian; Hu, Xueting; Gong, Yi; Tang, Kui; Su, Xiaolan; Liu, Lunxu; Zhu, Wen; Wei, Yuquan

    2016-01-01

    SLC34A2 had been reported to be down-regulated in human NSCLC cells and patient tissues, and played a significant role in lung cancer. However, the mechanism of its unusual expressionin NSCLC has not been fully elucidated. In present study, we identified SLC34A2 was a direct target of miR-410 and could be inhibited by miR-410 transcriptionally and post-transcriptionally. MiR-410 promoted the growth, invasion and migration of NSCLC cells in vitro. An orthotopic xenograft nude mouse model further affirmed that miR-410 promoted NSCLC cell growth and metastasis in vivo. Moreover, restoring SLC34A2 expression effectively reversed the miR-410-mediated promotion of cell growth, invasion and migration in NSCLC cells. In addition, miR-410high /SLC34A2low expression signature frequently existed in NSCLC cells and tumor tissues. MiR-410 significantly increased the expression of DVL2 and β-catenin protein while decreased that of Gsk3β protein of Wnt/β-catenin signaling pathway, while SLC34A2 partly blocked the effects of miR-410 on those protein expressions. Hence, our data for the first time delineated that unusual expression of SLC34A2 was modulated by miR-410, and miR-410 might positivelycontribute to the tumorigenesis and development of NSCLC by down-regulating SLC34A2 and activating Wnt/β-catenin signaling pathway. MiR-410 might be a new potential therapeutic target for NSCLC. PMID:26910912

  19. Oncogenic transformation of human lung bronchial epithelial cells induced by arsenic involves ROS-dependent activation of STAT3-miR-21-PDCD4 mechanism

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Wang, Lei; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Arsenic is a well-documented human carcinogen. The present study explored the role of the onco-miR, miR-21 and its target protein, programmed cell death 4 (PDCD4) in arsenic induced malignant cell transformation and tumorigenesis. Our results showed that treatment of human bronchial epithelial (BEAS-2B) cells with arsenic induces ROS through p47phox, one of the NOX subunits that is the key source of arsenic-induced ROS. Arsenic exposure induced an upregulation of miR-21 expression associated with inhibition of PDCD4, and caused malignant cell transformation and tumorigenesis of BEAS-2B cells. Indispensably, STAT3 transcriptional activation by IL-6 is crucial for the arsenic induced miR-21 increase. Upregulated miR-21 levels and suppressed PDCD4 expression was also observed in xenograft tumors generated with chronic arsenic exposed BEAS-2B cells. Stable shut down of miR-21, p47phox or STAT3 and overexpression of PDCD4 or catalase in BEAS-2B cells markedly inhibited the arsenic induced malignant transformation and tumorigenesis. Similarly, silencing of miR-21 or STAT3 and forced expression of PDCD4 in arsenic transformed cells (AsT) also inhibited cell proliferation and tumorigenesis. Furthermore, arsenic suppressed the downstream protein E-cadherin expression and induced β-catenin/TCF-dependent transcription of uPAR and c-Myc. These results indicate that the ROS-STAT3-miR-21-PDCD4 signaling axis plays an important role in arsenic -induced carcinogenesis. PMID:27876813

  20. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues

    PubMed Central

    Lyons, Shawn M.; Cunningham, Clark H.; Welch, Joshua D.; Groh, Beezly; Guo, Andrew Y.; Wei, Bruce; Whitfield, Michael L.; Xiong, Yue; Marzluff, William F.

    2016-01-01

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. PMID:27402160

  1. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis.

    PubMed

    Mou, Haiwei; Moore, Jill; Malonia, Sunil K; Li, Yingxiang; Ozata, Deniz M; Hough, Soren; Song, Chun-Qing; Smith, Jordan L; Fischer, Andrew; Weng, Zhiping; Green, Michael R; Xue, Wen

    2017-04-04

    Genetic lesions that activate KRAS account for ∼30% of the 1.6 million annual cases of lung cancer. Despite clinical need, KRAS is still undruggable using traditional small-molecule drugs/inhibitors. When oncogenic Kras is suppressed by RNA interference, tumors initially regress but eventually recur and proliferate despite suppression of Kras Here, we show that tumor cells can survive knockout of oncogenic Kras, indicating the existence of Kras-independent survival pathways. Thus, even if clinical KRAS inhibitors were available, resistance would remain an obstacle to treatment. Kras-independent cancer cells exhibit decreased colony formation in vitro but retain the ability to form tumors in mice. Comparing the transcriptomes of oncogenic Kras cells and Kras knockout cells, we identified 603 genes that were specifically up-regulated in Kras knockout cells, including the Fas gene, which encodes a cell surface death receptor involved in physiological regulation of apoptosis. Antibodies recognizing Fas receptor efficiently induced apoptosis of Kras knockout cells but not oncogenic Kras-expressing cells. Increased Fas expression in Kras knockout cells was attributed to decreased association of repressive epigenetic marks at the Fas promoter. Concordant with this observation, treating oncogenic Kras cells with histone deacetylase inhibitor and Fas-activating antibody efficiently induced apoptosis, thus bypassing the need to inhibit Kras. Our results suggest that activation of Fas could be exploited as an Achilles' heel in tumors initiated by oncogenic Kras.

  2. Pharmacological strategies to target oncogenic KRAS signaling in pancreatic cancer.

    PubMed

    Chuang, Hsiao-Ching; Huang, Po-Hsien; Kulp, Samuel K; Chen, Ching-Shih

    2017-03-01

    The clear importance of mutated KRAS as a therapeutic target has driven the investigation of multiple approaches to inhibit oncogenic KRAS signaling at different molecular levels. However, no KRAS-targeted therapy has reached the clinic to date, which underlies the intrinsic difficulty in developing effective, direct inhibitors of KRAS. Thus, this article provides an overview of the history and recent progress in the development of pharmacological strategies to target oncogenic KRAS with small molecule agents. Mechanistically, these KRAS-targeted agents can be classified into the following four categories. (1) Small-molecule RAS-binding ligands that prevent RAS activation by binding within or outside the nucleotide-binding motif. (2) Inhibitors of KRAS membrane anchorage. (3) Inhibitors that bind to RAS-binding domains of RAS-effector proteins. (4) Inhibitors of KRAS expression. The advantage and limitation of each type of these anti-KRAS agents are discussed.

  3. Small genomic insertions form enhancers that misregulate oncogenes

    PubMed Central

    Abraham, Brian J.; Hnisz, Denes; Weintraub, Abraham S.; Kwiatkowski, Nicholas; Li, Charles H.; Li, Zhaodong; Weichert-Leahey, Nina; Rahman, Sunniyat; Liu, Yu; Etchin, Julia; Li, Benshang; Shen, Shuhong; Lee, Tong Ihn; Zhang, Jinghui; Look, A. Thomas; Mansour, Marc R.; Young, Richard A.

    2017-01-01

    The non-coding regions of tumour cell genomes harbour a considerable fraction of total DNA sequence variation, but the functional contribution of these variants to tumorigenesis is ill-defined. Among these non-coding variants, somatic insertions are among the least well characterized due to challenges with interpreting short-read DNA sequences. Here, using a combination of Chip-seq to enrich enhancer DNA and a computational approach with multiple DNA alignment procedures, we identify enhancer-associated small insertion variants. Among the 102 tumour cell genomes we analyse, small insertions are frequently observed in enhancer DNA sequences near known oncogenes. Further study of one insertion, somatically acquired in primary leukaemia tumour genomes, reveals that it nucleates formation of an active enhancer that drives expression of the LMO2 oncogene. The approach described here to identify enhancer-associated small insertion variants provides a foundation for further study of these abnormalities across human cancers. PMID:28181482

  4. SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2

    SciTech Connect

    Park, Sun-Mi; Chae, Myounghee; Kim, Bo-Kyoung; Seo, Taegun; Jang, Ik-Soon; Choi, Jong-Soon; Kim, Il-Chul; Lee, Je-Ho; Park, Junsoo

    2010-01-01

    Interferon regulatory factor-1 (IRF-1) is an interferon-induced transcriptional activator that suppresses tumors by impeding cell proliferation. Recently, we demonstrated that the level of SUMOylated IRF-1 is elevated in tumor cells, and that SUMOylation of IRF-1 attenuates its tumor-suppressive function. Here we report that SUMOylated IRF-1 mimics IRF-2, an antagonistic repressor, and shows oncogenic potential. To demonstrate the role of SUMOylated IRF-1 in tumorigenesis, we used SUMO-IRF-1 recombinant protein. Stable expression of SUMO-IRF-1 in NIH3T3 cells resulted in focus formation and anchorage-independent growth in soft agar. Inoculation of SUMO-IRF-1-transfected cells into athymic nude mice resulted in tumor formation and infiltration of adipose tissues. Finally, we demonstrated that SUMO-IRF-1 transforms NIH3T3 cells in a dose-dependent manner suggesting that SUMOylated IRF-1 may act as an oncogenic protein in tumor cells.

  5. Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize.

    PubMed Central

    Cui, Xiangqin; Hsia, An-Ping; Liu, Feng; Ashlock, Daniel A; Wise, Roger P; Schnable, Patrick S

    2003-01-01

    Even in the absence of excisional loss of the associated Mu transposons, some Mu-induced mutant alleles of maize can lose their capacity to condition a mutant phenotype. Three of five Mu-derived rf2a alleles are susceptible to such Mu suppression. The suppressible rf2a-m9437 allele has a novel Mu transposon insertion (Mu10) in its 5' untranslated region (UTR). The suppressible rf2a-m9390 allele has a Mu1 insertion in its 5' UTR. During suppression, alternative transcription initiation sites flanking the Mu1 transposon yield functional transcripts. The suppressible rf2a-m8110 allele has an rcy/Mu7 insertion in its 3' UTR. Suppression of this allele occurs via a previously unreported mechanism; sequences in the terminal inverted repeats of rcy/Mu7 function as alternative polyadenylation sites such that the suppressed rf2a-m8110 allele yields functional rf2a transcripts. No significant differences were observed in the nucleotide compositions of these alternative polyadenylation sites as compared with 94 other polyadenylation sites from maize genes. PMID:12618406

  6. Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers

    PubMed Central

    Pérez-Guijarro, Eva; Karras, Panagiotis; Cifdaloz, Metehan; Martínez-Herranz, Raúl; Cañón, Estela; Graña, Osvaldo; Horcajada-Reales, Celia; Alonso-Curbelo, Direna; Calvo, Tonantzin G.; Gómez-López, Gonzalo; Bellora, Nicolas; Riveiro-Falkenbach, Erica; Ortiz-Romero, Pablo L.; Rodríguez-Peralto, José L.; Maestre, Lorena; Roncador, Giovanna; de Agustín Asensio, Juan C.; Goding, Colin R.; Eyras, Eduardo; Megías, Diego; Méndez, Raúl; Soengas, María S.

    2016-01-01

    Nuclear 3'-end-polyadenylation is essential for the transport, stability and translation of virtually all eukaryotic mRNAs. Poly(A) tail extension can also occur in the cytoplasm, but the transcripts involved are incompletely understood, particularly in cancer. Here we identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma. CPEB4 is upregulated early in melanoma progression, as defined by computational and histological analyses. Melanoma cells are distinct from other tumour cell types in their dependency on CPEB4, not only to prevent mitotic aberrations, but to progress through G1/S cell cycle checkpoints. RNA immunoprecipitation, sequencing of bound transcripts and poly(A) length tests link the melanoma-specific functions of CPEB4 to signalling hubs specifically enriched in this disease. Essential in these CPEB4-controlled networks are the melanoma drivers MITF and RAB7A, a feature validated in clinical biopsies. These results provide new mechanistic links between cytoplasmic polyadenylation and lineage specification in melanoma. PMID:27857118

  7. CRAF R391W is a melanoma driver oncogene

    PubMed Central

    Atefi, Mohammad; Titz, Bjoern; Tsoi, Jennifer; Avramis, Earl; Le, Allison; Ng, Charles; Lomova, Anastasia; Lassen, Amanda; Friedman, Michael; Chmielowski, Bartosz; Ribas, Antoni; Graeber, Thomas G.

    2016-01-01

    Approximately 75% of melanomas have known driver oncogenic mutations in BRAF, NRAS, GNA11 or GNAQ, while the mutations providing constitutive oncogenic signaling in the remaining melanomas are not known. We established a melanoma cell line from a tumor with none of the common driver mutations. This cell line demonstrated a signaling profile similar to BRAF-mutants, but lacked sensitivity to the BRAF inhibitor vemurafenib. RNA-seq mutation data implicated CRAF R391W as the alternative driver mutation of this melanoma. CRAF R391W was homozygous and over expressed. These melanoma cells were highly sensitive to CRAF, but not BRAF knockdown. In reconstitution experiments, CRAF R391W, but not CRAF WT, transformed NIH3T3 cells in soft-agar colony formation assays, increased kinase activity in vitro, induced MAP kinase signaling and conferred vemurafenib resistance. MAP kinase inducing activity was dependent on CRAF dimerization. Thus, CRAF is a bona fide alternative oncogene for BRAF/NRAS/GNAQ/GNA11 wild type melanomas. PMID:27273450

  8. Oncogenes induce the cancer-associated fibroblast phenotype

    PubMed Central

    Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E; Sotgia, Federica

    2013-01-01

    Metabolic coupling, between mitochondria in cancer cells and catabolism in stromal fibroblasts, promotes tumor growth, recurrence, metastasis, and predicts anticancer drug resistance. Catabolic fibroblasts donate the necessary fuels (such as L-lactate, ketones, glutamine, other amino acids, and fatty acids) to anabolic cancer cells, to metabolize via their TCA cycle and oxidative phosphorylation (OXPHOS). This provides a simple mechanism by which metabolic energy and biomass are transferred from the host microenvironment to cancer cells. Recently, we showed that catabolic metabolism and “glycolytic reprogramming” in the tumor microenvironment are orchestrated by oncogene activation and inflammation, which originates in epithelial cancer cells. Oncogenes drive the onset of the cancer-associated fibroblast phenotype in adjacent normal fibroblasts via paracrine oxidative stress. This oncogene-induced transition to malignancy is “mirrored” by a loss of caveolin-1 (Cav-1) and an increase in MCT4 in adjacent stromal fibroblasts, functionally reflecting catabolic metabolism in the tumor microenvironment. Virtually identical findings were obtained using BRCA1-deficient breast and ovarian cancer cells. Thus, oncogene activation (RAS, NFkB, TGF-β) and/or tumor suppressor loss (BRCA1) have similar functional effects on adjacent stromal fibroblasts, initiating “metabolic symbiosis” and the cancer-associated fibroblast phenotype. New therapeutic strategies that metabolically uncouple oxidative cancer cells from their glycolytic stroma or modulate oxidative stress could be used to target this lethal subtype of cancers. Targeting “fibroblast addiction” in primary and metastatic tumor cells may expose a critical Achilles’ heel, leading to disease regression in both sporadic and familial cancers. PMID:23860382

  9. Polyadenylation helps regulate functional tRNA levels in Escherichia coli

    PubMed Central

    Mohanty, Bijoy K.; Maples, Valerie F.; Kushner, Sidney R.

    2012-01-01

    Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3′ → 5′ exonucleases involved in the final step of 3′-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that are ≤10 nt in length coupled with a 2.3- to 4.2-fold decrease in the level of aminoacylated tRNAs and a >2-fold decrease in growth rate. Only 7 out of 86 tRNAs are not regulated by this mechanism and are also not substrates for RNase T, RNase PH or PAP I. Surprisingly, neither PNPase nor RNase II has any effect on tRNA poly(A) tail length. Our data suggest that the polyadenylation of tRNAs by PAP I likely proceeds in a distributive fashion unlike what is observed with mRNAs. PMID:22287637

  10. Coordination of RNA Polymerase II Pausing and 3′ End Processing Factor Recruitment with Alternative Polyadenylation

    PubMed Central

    Fusby, Becky; Kim, Soojin; Erickson, Benjamin; Kim, Hyunmin; Peterson, Martha L.

    2015-01-01

    Most mammalian genes produce transcripts whose 3′ ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS2PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3′ end processing. PMID:26527620

  11. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs

    PubMed Central

    Ruzzenente, Benedetta; Metodiev, Metodi D; Wredenberg, Anna; Bratic, Ana; Park, Chan Bae; Cámara, Yolanda; Milenkovic, Dusanka; Zickermann, Volker; Wibom, Rolf; Hultenby, Kjell; Erdjument-Bromage, Hediye; Tempst, Paul; Brandt, Ulrich; Stewart, James B; Gustafsson, Claes M; Larsson, Nils-Göran

    2012-01-01

    Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine-rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino-acid substitution of this protein causes the French-Canadian type of Leigh syndrome (LSFC), a neurodegenerative disorder characterized by complex IV deficiency. We have generated conditional Lrpprc knockout mice and show here that the gene is essential for embryonic development. Tissue-specific disruption of Lrpprc in heart causes mitochondrial cardiomyopathy with drastic reduction in steady-state levels of most mitochondrial mRNAs. LRPPRC forms an RNA-dependent protein complex that is necessary for maintaining a pool of non-translated mRNAs in mammalian mitochondria. Loss of LRPPRC does not only decrease mRNA stability, but also leads to loss of mRNA polyadenylation and the appearance of aberrant mitochondrial translation. The translation pattern without the presence of LRPPRC is misregulated with excessive translation of some transcripts and no translation of others. Our findings point to the existence of an elaborate machinery that regulates mammalian mtDNA expression at the post-transcriptional level. PMID:22045337

  12. Polyadenylated tail length variation pattern in ultra-rapid vitrified bovine oocytes

    PubMed Central

    Dutta, D. J.; Raj, Himangshu; Dev, and Hiramoni

    2016-01-01

    Aim: Thecurrent study aims at investigating the polyadenylated (poly[A]) tail length of morphologically high and low competent oocytes at different developmental stages. Furthermore, effect of ultra-rapid vitrification on the poly(A) tail length was studied. Materials and Methods: Fresh bovine cumulus oocyte complexes from abattoir originated ovaries were graded based on morphological characters and matured in vitro. Cryopreservation was done by ultra-rapid vitrification method. mRNA was isolated from different categories of oocyte and subjected to ligation-mediated poly(A) test followed by polymerase chain reaction for determining the poly(A) tail length of β actin, gap junction protein alpha 1 (GJA1), poly(A) polymerase alpha (PAPOLA), and heat shock 70 kDa protein (HSP70) transcripts. Results: GJA1, PAPOLA, and HSP70 showed significantly higher poly(A) in immature oocytes of higher competence irrespective of vitrification effects as compared to mature oocytes of higher competence. Conclusion: mRNA poly(A) tail size increases in developmentally high competent immature bovine oocytes. There was limited effect of ultra-rapid vitrification of bovine oocytes on poly(A). PMID:27847415

  13. From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.

    PubMed

    Misra, Ashish; Green, Michael R

    2016-01-01

    Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.

  14. State of the art address oncogenes and tumor-suppressing genes

    SciTech Connect

    Frazier, M.E.

    1989-05-01

    Cancer has a myriad of causes but, whatever the cause, the changes that result in neoplasia are usually genetic. Although not all DNA damage results in cancer, evidence implicates two broad classes of genes in carcinogenesis. The first class, oncogenes are genes that cause cancer. An oncogene results when there is increased and/or changed expression of the proto-oncogene. Oncogenes are dominant: when activated, they predominate over the activity of any normal alleles in the cell. Thus oncogenes act directly to cause cancer. The second class of genes associated with cancer are tumor-suppressing genes, which either code directly for, or control expression of a wide spectrum of tissue-specific differentiation antigens. Malignancy occurs in a specific cell type when expression of an appropriate tumor-suppressing gene is, homozygously, seriously distorted or completely lacking. Tumor suppressing genes also appear to regulate expression of a third, uncharacterized group of cancer-related genes that act in a recessive manner and are not expressed in the presence of the tumor-suppressing genes. We will first discuss oncogenes, then the tumor-suppressing genes. Experimental data will be used to illustrate key features of the carcinogenic process.

  15. SBRT for oligoprogressive oncogene addicted NSCLC.

    PubMed

    Basler, L; Kroeze, S G C; Guckenberger, M

    2017-04-01

    Lung cancer is one of the leading causes of cancer death in men and women and treatment outcome continues to lag behind other common cancer types. A subset of lung adenocarcinoma patients exhibit a somatic mutation in EGFR or an ALK rearrangement. In these patients, targeted TKI therapy results in higher response rates, improved PFS and reduced side effects compared with platinum-based chemotherapy. Despite initial activity of the TKIs, ultimately all patients present with disease progression after about a year on TKI therapy due to resistance development. About 15-47% of patients present with limited oligoprogressive disease (OPD): such patients show only a limited number of metastases with progression in radiological imaging. Radical local treatment to all oligoprogressive lesions is thought to eradicate the de-differentiated clones and restore overall sensitivity of the metastatic disease. Retrospective studies suggest that aggressive local treatment using stereotactic body radiotherapy (SBRT), surgery or others can be used to eradicate TKI-resistant subpopulations enabling prolonged TKI treatment "beyond progression", which may lead to increased PFS and overall survival. This review focuses on the biological background of resistance development, systemic and local treatment options with a focus on SBRT, as well as challenges in defining the state of OPD and current clinical studies in oligoprogressive oncogene addicted NSCLC.

  16. Activation of spinal MrgC-Gi-NR2B-nNOS signaling pathway by Mas oncogene-related gene C receptor agonist bovine adrenal medulla 8-22 attenuates bone cancer pain in mice

    PubMed Central

    Sun, Yu’e; Zhang, Juan; Lei, Yishan; Lu, Cui’e; Hou, Bailing; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    Objectives: In the present study, we investigate the effects of Mas oncogene-related gene (Mrg) C receptors (MrgC) on the expression and activation of spinal Gi protein, N-methyl-D-aspartate receptor subunit 2B (NR2B), and neuronal nitric oxide synthase (nNOS) in mouse model of bone cancer pain. Methods: The number of spontaneous foot lift (NSF) and paw withdrawal mechanical threshold (PWMT) were measured after inoculation of tumor cells and intrathecal injection of MrgC agonist bovine adrenal medulla 8-22 (BAM8-22) or MrgC antagonist anti-MrgC for 14 days after operation. Expression of spinal MrgC, Gi protein, NR2B and nNOS and their phosphorylated forms after inoculation was examined by immunohistochemistry and Western blotting. Double labeling was used to identify the co-localization of NR2B or nNOS with MrgC in spinal cord dorsal horn (SCDH) neurons. The effects of intrathecal injection of BAM8-22 or anti-MrgC on nociceptive behaviors and the corresponding expression of spinal MrgC, Gi protein, NR2B and nNOS were also investigated. Results: The expression of spinal MrgC, Gi protein, NR2B, and nNOS was higher in tumor-bearing mice in comparison to sham mice or normal mice. Intrathecal injection of MrgC agonist BAM8-22 significantly alleviated bone cancer pain, up-regulated MrgC and Gi protein expression, and down-regulated the expression of spinal p-NR2B, t-nNOS and p-nNOS in SCDH on day 14 after operation, whereas administration of anti-MrgC produced the opposite effect. Meanwhile, MrgC-like immunoreactivity (IR) co-localizes with NR2B-IR or nNOS-IR in SCDH neurons. Conclusions: The present study demonstrates that MrgC-activated spinal Gi-NR2B-nNOS signaling pathway plays important roles in the development of bone cancer pain. These findings may provide a novel strategy for the treatment of bone cancer pain. PMID:27158400

  17. X-ray Crystallographic and Steady State Fluorescence Characterization of the Protein Dynamics of Yeast Polyadenylate Polymerase.

    SciTech Connect

    Balbo,P.; Toth, J.; Bohm, A.

    2007-01-01

    Polyadenylate polymerase (PAP) catalyzes the synthesis of poly(A) tails on the 3'-end of pre-mRNA. PAP is composed of three domains: an N-terminal nucleotide-binding domain (homologous to the palm domain of DNA and RNA polymerases), a middle domain (containing other conserved, catalytically important residues), and a unique C-terminal domain (involved in protein-protein interactions required for 3'-end formation). Previous X-ray crystallographic studies have shown that the domains are arranged in a V-shape such that they form a central cleft with the active site located at the base of the cleft at the interface between the N-terminal and middle domains. In the previous studies, the nucleotides were bound directly to the N-terminal domain and exhibited a conspicuous lack of adenine-specific interactions that would constitute nucleotide recognition. Furthermore, it was postulated that base-specific contacts with residues in the middle domain could occur either as a result of a change in the conformation of the nucleotide or domain movement. To address these issues and to better characterize the structural basis of substrate recognition and catalysis, we report two new crystal structures of yeast PAP. A comparison of these structures reveals that the N-terminal and C-terminal domains of PAP move independently as rigid bodies along two well defined axes of rotation. Modeling of the nucleotide into the most closed state allows us to deduce specific nucleotide interactions involving residues in the middle domain (K215, Y224 and N226) that are proposed to be involved in substrate binding and specificity. To further investigate the nature of PAP domain flexibility, 2-aminopurine labeled molecular probes were employed in steady state fluorescence and acrylamide quenching experiments. The results suggest that the closed domain conformation is stabilized upon recognition of the correct substrate, MgATP, in an enzyme-substrate ternary complex. The implications of these results

  18. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence.

    PubMed

    Brevini, T A L; Lonergan, P; Cillo, F; Francisci, C; Favetta, L A; Fair, T; Gandolfi, F

    2002-12-01

    In this study we analyzed the pattern of polyadenylation changes that takes place between the resumption of meiosis and the first cleavage of bovine oocytes. Moreover, we investigated whether the delayed occurrence of the first cleavage division, which characterizes embryos of low developmental competence, is accompanied by an altered polyadenylation pattern of individual transcripts. We determined the polyadenylation status of a group of genes that characterize physiological processes, involved in early differentiation (Oct-4), compaction, and cavitation (beta-actin, plakophilin, connexin-32, connexin-43), energy metabolism (glucose transporter type 1, pyruvate dehydrogenase phosphatase), RNA processing (RNA poly(A) polymerase), and stress (heat shock protein 70). RNA was isolated from pools of 20 oocytes or embryos at the germinal vesicle (GV) stage, at the end of in vitro maturation, at the end of in vitro fertilization, and at the time of the first cleavage. Cleavage was assessed 27, 30, 36, 42 hr post insemination (hpi), and at the latter time the remaining uncleaved oocytes were retained as a group. Between oocyte isolation and first cleavage at 27 hpi (best quality embryos), the poly(A) tail of individual transcripts followed four patterns: no changes (beta-actin, PDP); gradual reduction (Cx-43, Oct-4, Plako); gradual elongation (Cx-32, TPA); reduction followed by elongation (PAP, HSP-70, Glut-1). If the interval between insemination and first cleavage was longer than 27 hpi (progressively lower quality embryos) further changes of polyadenylation were observed, which differed for each gene considered. These data indicated that specific changes in polyadenylation contribute to the modulation of gene expression in bovine embryos at this stage of development. Defective developmental competence is accompanied by abnormal polyadenylation levels of specific maternal mRNAs with synchrony between polyadenylation and cleavage emerging as an apparently important

  19. Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction.

    PubMed

    Bachireddy, P; Rakhra, K; Felsher, D W

    2012-02-01

    Despite complex genomic and epigenetic abnormalities, many cancers are irrevocably dependent on an initiating oncogenic lesion whose restoration to a normal physiological activation can elicit a dramatic and sudden reversal of their neoplastic properties. This phenomenon of the reversal of tumorigenesis has been described as oncogene addiction. Oncogene addiction had been thought to occur largely through tumour cell-autonomous mechanisms such as proliferative arrest, apoptosis, differentiation and cellular senescence. However, the immune system plays an integral role in almost every aspect of tumorigenesis, including tumour initiation, prevention and progression as well as the response to therapeutics. Here we highlight more recent evidence suggesting that oncogene addiction may be integrally dependent upon host immune-mediated mechanisms, including specific immune effectors and cytokines that regulate tumour cell senescence and tumour-associated angiogenesis. Hence, the host immune system is essential to oncogene addiction.

  20. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment

    PubMed Central

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-01-01

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4

  1. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis.

  2. αCP Poly(C) Binding Proteins Act as Global Regulators of Alternative Polyadenylation

    PubMed Central

    Ji, Xinjun; Wan, Ji; Vishnu, Melanie

    2013-01-01

    We have previously demonstrated that the KH-domain protein αCP binds to a 3′ untranslated region (3′UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3′ processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3′ processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5′ to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3′ processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome. PMID:23629627

  3. PlantAPA: A Portal for Visualization and Analysis of Alternative Polyadenylation in Plants

    PubMed Central

    Wu, Xiaohui; Zhang, Yumin; Li, Qingshun Q.

    2016-01-01

    Alternative polyadenylation (APA) is an important layer of gene regulation that produces mRNAs that have different 3′ ends and/or encode diverse protein isoforms. Up to 70% of annotated genes in plants undergo APA. Increasing numbers of poly(A) sites collected in various plant species demand new methods and tools to access and mine these data. We have created an open-access web service called PlantAPA (http://bmi.xmu.edu.cn/plantapa) to visualize and analyze genome-wide poly(A) sites in plants. PlantAPA provides various interactive and dynamic graphics and seamlessly integrates a genome browser that can profile heterogeneous cleavage sites and quantify expression patterns of poly(A) sites across different conditions. Particularly, through PlantAPA, users can analyze poly(A) sites in extended 3′ UTR regions, intergenic regions, and ambiguous regions owing to alternative transcription or RNA processing. In addition, it also provides tools for analyzing poly(A) site selections, 3′ UTR lengthening or shortening, non-canonical APA site switching, and differential gene expression between conditions, making it more powerful for the study of APA-mediated gene expression regulation. More importantly, PlantAPA offers a bioinformatics pipeline that allows users to upload their own short reads or ESTs for poly(A) site extraction, enabling users to further explore poly(A) site selection using stored PlantAPA poly(A) sites together with their own poly(A) site datasets. To date, PlantAPA hosts the largest database of APA sites in plants, including Oryza sativa, Arabidopsis thaliana, Medicago truncatula, and Chlamydomonas reinhardtii. As a user-friendly web service, PlantAPA will be a valuable addition to the community of biologists studying APA mechanisms and gene expression regulation in plants. PMID:27446120

  4. Sec5 and Exo84 foster Oncogenic Ras-mediated Tumorigenesis

    PubMed Central

    Issaq, Sameer H.; Lim, Kian-Huat; Counter, Christopher M.

    2009-01-01

    The genes encoding the Ras family of small GTPases are mutated to yield constitutively active GTP-bound oncogenic proteins in one-third of all human cancers. Oncogenic Ras binds to and activates a number of proteins that promote tumorigenic phenotypes, including the family of Ral guanine nucleotide exchange factors, or RalGEFs. Activated RalGEFs convert the Ral family of small GTPases, comprised of RalA and RalB, from an inactive GDP-bound state to an active GTP-bound state. As both RalA and RalB have been implicated in a variety of tumorigenic phenotypes, we sought to determine which proteins downstream of Rals promote transformation and tumorigenesis. Here we report that shRNA-mediated knockdown of the Ral effector proteins Sec5 and Exo84, but less so in the case of RalBP1, reduced oncogenic RalGEF-mediated transformation and oncogenic Ras-driven tumorigenic growth of human cells. These results suggest that Rals promote oncogenic Ras-mediated tumorigenesis through, at least in part, Sec5 and Exo84. PMID:20145037

  5. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA.

    PubMed Central

    Zhang, F; Cole, C N

    1987-01-01

    Cleavage and polyadenylation of substrate RNAs containing the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene polyadenylation signal region were examined in HeLa cell nuclear extract. 3'-End RNA processing was accurate and efficient and required ATP and Mg2+. Cleavage, but not polyadenylation, occurred in the presence of EDTA or when ATP was replaced with 3' dATP (cordycepin) or AMP(CH2)PP, a nonhydrolyzable analog of ATP. Processing in vitro and in vivo showed the same signal element requirements: a series of substrates containing linker scanning, internal deletion, and small insertion mutations was processed with the same relative efficiencies and at the same sites in vitro and in vivo. A complex involved in 3'-end RNA processing was identified by gel mobility shift analysis. This complex formed rapidly, reached a maximum level after 20 to 30 min, and was much reduced after 2 h. Very little complex was formed at 0 degree C or with substrates lacking a polyadenylation signal. Entry of 32P-labeled tk substrate into the complex could be prevented by addition of excess 35S-labeled tk or adenovirus L3 precursor RNAs. Competition was not observed with tk RNAs lacking a complete polyadenylation signal. Images PMID:2823124

  6. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation.

    PubMed

    Miles, Wayne O; Lembo, Antonio; Volorio, Angela; Brachtel, Elena; Tian, Bin; Sgroi, Dennis; Provero, Paolo; Dyson, Nicholas

    2016-12-15

    Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3' untranslated region (3' UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3' UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype-specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. Cancer Res; 76(24); 7231-41. ©2016 AACR.

  7. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation.

    PubMed

    Guan, Fei; Caratozzolo, Rose M; Goraczniak, Rafal; Ho, Eric S; Gunderson, Samuel I

    2007-12-01

    U1A protein negatively autoregulates itself by polyadenylation inhibition of its own pre-mRNA by binding as two molecules to a 3'UTR-located Polyadenylation Inhibitory Element (PIE). The (U1A)2-PIE complex specifically blocks U1A mRNA biosynthesis by inhibiting polyA tail addition, leading to lower mRNA levels. U1 snRNP bound to a 5'ss-like sequence, which we call a U1 site, in the 3'UTRs of certain papillomaviruses leads to inhibition of viral late gene expression via a similar mechanism. Although such U1 sites can also be artificially used to potently silence reporter and endogenous genes, no naturally occurring U1 sites have been found in eukaryotic genes. Here we identify a conserved U1 site in the human U1A gene that is, unexpectedly, within a bipartite element where the other part represses the U1 site via a base-pairing mechanism. The bipartite element inhibits U1A expression via a synergistic action with the nearby PIE. Unexpectedly, synergy is not based on stabilizing binding of the inhibitory factors to the 3'UTR, but rather is a property of the larger ternary complex. Inhibition targets the biosynthetic step of polyA tail addition rather than altering mRNA stability. This is the first example of a functional U1 site in a cellular gene and of a single gene containing two dissimilar elements that inhibit nuclear polyadenylation. Parallels with other examples where U1 snRNP inhibits expression are discussed. We expect that other cellular genes will harbor functional U1 sites.

  8. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  9. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy.

    PubMed

    Willis, Rudolph E

    2012-01-01

    An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the

  10. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  11. 40 CFR 798.3300 - Oncogenicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clinical abnormalities), gross lesions, identified target organs, body weight changes, effects on mortality... (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3300 Oncogenicity. (a) Purpose. The... of chronic effects. (ii) The high dose level should elicit signs of minimal toxicity...

  12. 40 CFR 798.3300 - Oncogenicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clinical abnormalities), gross lesions, identified target organs, body weight changes, effects on mortality...) HEALTH EFFECTS TESTING GUIDELINES Chronic Exposure § 798.3300 Oncogenicity. (a) Purpose. The objective of... of chronic effects. (ii) The high dose level should elicit signs of minimal toxicity...

  13. Novel Oncogenes in Breast Cancer Development

    DTIC Science & Technology

    2002-07-01

    determinants that contribute to the development of breast cancer remain unknown We have developed and applied a novel retrovirus-based library ... screening strategy coupled to a biological assay for growth transformation, to identify novel oncogenes in breast cancer development The approach involves the

  14. Spi-1, Fli-1 and Fli-3 (miR-17-92) Oncogenes Contribute to a Single Oncogenic Network Controlling Cell Proliferation in Friend Erythroleukemia

    PubMed Central

    Kayali, Samer; Giraud, Guillaume; Morlé, François; Guyot, Boris

    2012-01-01

    Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed. PMID:23056458

  15. Spi-1, Fli-1 and Fli-3 (miR-17-92) oncogenes contribute to a single oncogenic network controlling cell proliferation in friend erythroleukemia.

    PubMed

    Kayali, Samer; Giraud, Guillaume; Morlé, François; Guyot, Boris

    2012-01-01

    Clonal erythroleukemia developing in susceptible mice infected by Friend virus complex are associated with highly recurrent proviral insertions at one of three loci called Spi-1, Fli-1 or Fli-3, leading to deregulated expression of oncogenic Spi-1 or Fli-1 transcription factors or miR-17-92 miRNA cluster, respectively. Deregulated expression of each of these three oncogenes has been independently shown to contribute to cell proliferation of erythroleukemic clones. Previous studies showed a close relationship between Spi-1 and Fli-1, which belong to the same ETS family, Spi-1 activating fli-1 gene, and both Spi-1 and Fli-1 activating multiple common target genes involved in ribosome biogenesis. In this study, we demonstrated that Spi-1 and Fli-1 are also involved in direct miR-17-92 transcriptional activation through their binding to a conserved ETS binding site in its promoter. Moreover, we demonstrated that physiological re-expression of exogenous miR-17 and miR-20a are able to partially rescue the proliferation loss induced by Fli-1 knock-down and identified HBP1 as a target of these miRNA in erythroleukemic cells. These results establish that three of the most recurrently activated oncogenes in Friend erythroleukemia are actually involved in a same oncogenic network controlling cell proliferation. The putative contribution of a similar ETS-miR-17-92 network module in other normal or pathological proliferative contexts is discussed.

  16. Oncogenic PTEN functions and models in T-cell malignancies.

    PubMed

    Tesio, M; Trinquand, A; Macintyre, E; Asnafi, V

    2016-07-28

    PTEN is a protein phosphatase that is crucial to prevent the malignant transformation of T-cells. Although a numerous mechanisms regulate its expression and function, they are often altered in T-cell acute lymphoblastic leukaemias and T-cell lymphomas. As such, PTEN inactivation frequently occurs in these malignancies, where it can be associated with chemotherapy resistance and poor prognosis. Different Pten knockout models recapitulated the development of T-cell leukaemia/lymphoma, demonstrating that PTEN loss is at the center of a complex oncogenic network that sustains and drives tumorigenesis via the activation of multiple signalling pathways. These aspects and their therapeutic implications are discussed in this review.

  17. The HPV-16 E7 oncogene sensitizes malignant cells to IFN-alpha-induced apoptosis

    SciTech Connect

    Wang, Yisong

    2005-10-01

    Interferons (IFNs) exert antitumor effects in several human malignancies, but their mechanism of action is unclear. There is a great variability in sensitivity to IFN treatment depending on both tumor type and the individual patient. The reason for this variable sensitivity is not known. The fact that several IFN-induced anticellular effects are exerted through modulation of proto-oncogenes and tumor suppressor genes may indicate that the malignant genotype may be decisive in the cell's sensitivity to IFN. To determine if a deregulated oncogene could alter the cellular response to IFN, a mouse lymphoma cell line (J3D) was stably transfected with the viral human papillomavirus-16 (HPV-16) E7 oncogene. The E7-transfected cells and their respective mock-transfected sister clones were treated with IFN-{alpha} and examined for possible IFN-induced anticellular effects. We found that the E7-transfected clones were greatly sensitized to IFN-{alpha}-induced apoptosis compared with their mock-transfected counterparts. Induction of apoptosis in the transfected cells correlated with the ability of IFN to activate parts of the proapoptotic machinery specifically in these cells, including activation of caspases and the proapoptotic protein Bak. In summary, our data suggest that transfection of malignant cells with the E7 oncogene can sensitize them to IFN-{alpha}-induced apoptosis. This demonstrates that an oncogenic event may alter the cellular sensitivity to IFN and might also have implications for treatment of HPV related diseases with IFN.

  18. Structural Effects of Oncogenic PI3K alpha Mutations

    SciTech Connect

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  19. Structural effects of oncogenic PI3Kα mutations.

    PubMed

    Gabelli, Sandra B; Huang, Chuan-Hsiang; Mandelker, Diana; Schmidt-Kittler, Oleg; Vogelstein, Bert; Amzel, L Mario

    2010-01-01

    Physiological activation of PI3Kα is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3Kα result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  20. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    SciTech Connect

    Keryer-Bibens, Cecile; Legagneux, Vincent; Namanda-Vanderbeken, Allen; Cosson, Bertrand; Paillard, Luc; Poncet, Didier; Osborne, H. Beverley

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  1. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation

    PubMed Central

    Shen, Yingjia; Ji, Guoli; Haas, Brian J.; Wu, Xiaohui; Zheng, Jianti; Reese, Greg J.; Li, Qingshun Quinn

    2008-01-01

    The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites. PMID:18411206

  2. Characterization of c-Ki-ras and N-ras oncogenes in aflatoxin B1-induced rat liver tumors.

    PubMed Central

    McMahon, G; Davis, E F; Huber, L J; Kim, Y; Wogan, G N

    1990-01-01

    c-Ki-ras and N-ras oncogenes have been characterized in aflatoxin B1-induced hepatocellular carcinomas. Detection of different protooncogene and oncogene sequences and estimation of their frequency distribution were accomplished by polymerase chain reaction, cloning, and plaque screening methods. Two c-Ki-ras oncogene sequences were identified in DNA from liver tumors that contained nucleotide changes absent in DNA from livers of untreated control rats. Sequence changes involving G.C to T.A or G.C to A.T nucleotide substitutions in codon 12 were scored in three of eight tumor-bearing animals. Distributions of c-Ki-ras sequences in tumors and normal liver DNA indicated that the observed nucleotide changes were consistent with those expected to result from direct mutagenesis of the germ-line protooncogene by aflatoxin B1. N-ras oncogene sequences were identified in DNA from two of eight tumors. Three N-ras gene regions were identified, one of which was shown to be associated with an oncogene containing a putative activating amino acid residing at codon 13. All three N-ras sequences, including the region detected in N-ras oncogenes, were present at similar frequencies in DNA samples from control livers as well as liver tumors. The presence of a potential germ-line oncogene may be related to the sensitivity of the Fischer rat strain to liver carcinogenesis by aflatoxin B1 and other chemical carcinogens. Images PMID:2105496

  3. mTOR links oncogenic signaling to tumor cell metabolism.

    PubMed

    Yecies, Jessica L; Manning, Brendan D

    2011-03-01

    As a key regulator of cell growth and proliferation, the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) has been the subject of intense investigation for its role in tumor development and progression. This research has revealed a signaling network of oncogenes and tumor suppressors lying upstream of mTORC1, and oncogenic perturbations to this network result in the aberrant activation of this kinase complex in the majority of human cancers. However, the molecular events downstream of mTORC1 contributing to tumor cell growth and proliferation are just coming to light. In addition to its better-known functions in promoting protein synthesis and suppressing autophagy, mTORC1 has emerged as a key regulator of cellular metabolism. Recent studies have found that mTORC1 activation is sufficient to stimulate an increase in glucose uptake, glycolysis, and de novo lipid biosynthesis, which are considered metabolic hallmarks of cancer, as well as the pentose phosphate pathway. Here, we focus on the molecular mechanisms of metabolic regulation by mTORC1 and the potential consequences for anabolic tumor growth and therapeutic strategies.

  4. Metastatic Pancreatic Cancer Is Dependent on Oncogenic Kras in Mice

    PubMed Central

    Collins, Meredith A.; Brisset, Jean-Christophe; Zhang, Yaqing; Bednar, Filip; Pierre, Josette; Heist, Kevin A.; Galbán, Craig J.; Galbán, Stefanie; di Magliano, Marina Pasca

    2012-01-01

    Pancreatic cancer is one of the deadliest human malignancies, and its prognosis has not improved over the past 40 years. Mouse models that spontaneously develop pancreatic adenocarcinoma and mimic the progression of the human disease are emerging as a new tool to investigate the basic biology of this disease and identify potential therapeutic targets. Here, we describe a new model of metastatic pancreatic adenocarcinoma based on pancreas-specific, inducible and reversible expression of an oncogenic form of Kras, together with pancreas-specific expression of a mutant form of the tumor suppressor p53. Using high-resolution magnetic resonance imaging to follow individual animals in longitudinal studies, we show that both primary and metastatic lesions depend on continuous Kras activity for their maintenance. However, re-activation of Kras* following prolonged inactivation leads to rapid tumor relapse, raising the concern that Kras*-resistance might eventually be acquired. Thus, our data identifies Kras* as a key oncogene in pancreatic cancer maintenance, but raises the possibility of acquired resistance should Kras inhibitors become available for use in pancreatic cancer. PMID:23226501

  5. Oncogenicity of the developmental transcription factor Sox9

    PubMed Central

    Matheu, Ander; Collado, Manuel; Wise, Clare; Manterola, Lorea; Cekaite, Lina; Tye, Angela J.; Canamero, Marta; Bujanda, Luis; Schedl, Andreas; Cheah, Kathryn S.E.; Skotheim, Rolf I.; Lothe, Ragnhild A.; de Munain, Adolfo López; Briscoe, James; Serrano, Manuel; Lovell-Badge, Robin

    2012-01-01

    SOX9, a high mobility group (HMG) box transcription factor, plays critical roles during embryogenesis and its activity is required for development, differentiation and lineage commitment in various tissues including the intestinal epithelium. Here, we present functional and clinical data of a broadly important role for SOX9 in tumorigenesis. SOX9 was overexpressed in a wide range of human cancers, where its expression correlated with malignant character and progression. Gain of SOX9 copy number is detected in some primary colorectal cancers. SOX9 exhibited several pro-oncogenic properties, including the ability to promote proliferation, inhibit senescence and collaborate with other oncogenes in neoplastic transformation. In primary MEFs and colorectal cancer cells, SOX9 expression facilitated tumor growth and progression whilst its inactivation reduced tumorigenicity. Mechanistically, we have found that Sox9 directly binds and activates the promoter of the polycomb protein Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus. In agreement with this, human colorectal cancers showed a positive correlation between expression levels of SOX9 and BMI1 and a negative correlation between SOX9 and ARF in clinical samples. Taken together, our findings provide direct mechanistic evidence of the involvement of SOX9 in neoplastic pathobiology, particularly in colorectal cancer. PMID:22246670

  6. Oncogenic mutations as predictive factors in colorectal cancer.

    PubMed

    Lièvre, A; Blons, H; Laurent-Puig, P

    2010-05-27

    The anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies cetuximab and panitumumab have been demonstrated to be new therapeutic options for metastatic colorectal cancer (mCRC). Oncogenic activation of intracellular signalling pathways downstream of EGFR has a major role in colorectal carcinogenesis but has also been reported to be an important mechanism of resistance to anti-EGFR antibodies. Among the activating mutations found in colorectal cancers, tumour KRAS mutations, which are found in approximately 40% of the cases, have been widely demonstrated as a major predictive marker of resistance to cetuximab or panitumumab, therefore, opening the way to individualized treatment for patients with mCRC. Other oncogenic mutations, such as BRAF or PIK3CA mutations or loss of PTEN expression, may also be additional interesting predictive markers of response to anti-EGFR monoclonal antibodies but required further evaluation before being incorporated in clinical practice. The identification of these molecular markers involved in the resistance of anti-EGFR antibodies will allow the development of new therapies that should target 'escape mechanisms' used by tumours to circumvent a pathway that has been pharmacologically blocked by anti-EGFR.

  7. LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia.

    PubMed

    Chong, Phyllis S Y; Zhou, Jianbiao; Cheong, Lip-Lee; Liu, Shaw-Cheng; Qian, Jingru; Guo, Tiannan; Sze, Siu Kwan; Zeng, Qi; Chng, Wee Joo

    2014-06-01

    PRL-3, an oncogenic dual-specificity phosphatase, is overexpressed in 50% of acute myelogenous leukemia (AML) and associated with poor survival. We found that stable expression of PRL-3 confers cytokine independence and growth advantage of AML cells. However, how PRL-3 mediates these functions in AML is not known. To comprehensively screen for PRL3-regulated proteins in AML, we performed SILAC-based quantitative proteomics analysis and discovered 398 significantly perturbed proteins after PRL-3 overexpression. We show that Leo1, a component of RNA polymerase II-associated factor (PAF) complex, is a novel and important mediator of PRL-3 oncogenic activities in AML. We described a novel mechanism where elevated PRL-3 protein increases JMJD2C histone demethylase occupancy on Leo1 promoter, thereby reducing the H3K9me3 repressive signals and promoting Leo1 gene expression. Furthermore, PRL-3 and Leo1 levels were positively associated in AML patient samples (N=24; P<0.01). On the other hand, inhibition of Leo1 reverses PRL-3 oncogenic phenotypes in AML. Loss of Leo1 leads to destabilization of the PAF complex and downregulation of SOX2 and SOX4, potent oncogenes in myeloid transformation. In conclusion, we identify an important and novel mechanism by which PRL-3 mediates its oncogenic function in AML.

  8. Major heat shock protein Hsp72 controls oncogene-induced senescence.

    PubMed

    Sherman, Michael

    2010-06-01

    Various heat shock proteins, including Hsp72, are strongly upregulated in cancers, but their significance for tumor emergence and growth is poorly understood. Here we review recent data from several labs to indicate that Hsps, including Hsp72, are critical for growth of transformed but not normal cells. By manipulating expression and activity of Hsp72 and several oncogenes, it was shown that Hsp72 suppresses oncogene-induced senescence, thus allowing proliferation of cancer cells. Importantly, Hsp72 is able to suppress both p53-dependent and p53-independent senescence pathways. We propose that targeting Hsp72 may be a promising approach toward development of novel cancer therapies.

  9. Analysis in Cos-1 cells of processing and polyadenylation signals by using derivatives of the herpes simplex virus type 1 thymidine kinase gene.

    PubMed Central

    Cole, C N; Santangelo, G M

    1983-01-01

    Bal31 nuclease was used to resect the herpes simplex virus type 1 thymidine kinase (tk) gene from its 3' end, and a plasmid, pTK206, was isolated that lacked the processing and polyadenylation signals normally found at the 3' end of the gene. The wild-type gene, pTK2, and pTK206 were each transferred to pSV010, a plasmid containing the simian virus 40 (SV40) origin of DNA replication, allowing replication and analysis of the patterns of transcription in Cos-1 cells. Fragments of DNA containing processing and polyadenylation signals from SV40 and polyoma virus were inserted into the 3' end of the resected tk gene, pTK206. We found that tk gene expression requires a processing and polyadenylation signal, that signals from SV40 and polyoma virus could substitute for the herpes simplex virus tk signal, and that considerable differences in the levels of tk mRNA were present in Cos-1 cells transfected by these gene constructs. In addition, tk gene expression was restored to a low level after the insertion of an 88-base-pair fragment from the middle of the SV40 early region. Processing and polyadenylation do not occur in the vicinity of this fragment in SV40, even though it contains the hexanucleotide 5'-AAUAAA-3'. Images PMID:6300661

  10. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models.

    PubMed

    Neil, James C; Gilroy, Kathryn; Borland, Gillian; Hay, Jodie; Terry, Anne; Kilbey, Anna

    2017-01-01

    The observation that the Runx genes act as targets for transcriptional activation by retroviral insertion identified a new family of dominant oncogenes. However, it is now clear that Runx genes are 'conditional' oncogenes whose over-expression is growth inhibitory unless accompanied by another event such as concomitant over-expression of MYC or loss of p53 function. Remarkably, while the oncogenic activities of either MYC or RUNX over-expression are suppressed while p53 is intact, the combination of both neutralises p53 tumour suppression in vivo by as yet unknown mechanisms. Moreover, there is emerging evidence that endogenous, basal RUNX activity is important to maintain the viability and proliferation of MYC-driven lymphoma cells. There is also growing evidence that the human RUNX genes play a similar conditional oncogenic role and are selected for over-expression in end-stage cancers of multiple types. Paradoxically, reduced RUNX activity can also predispose to cell immortalisation and transformation, particularly by mutant Ras. These apparently conflicting observations may be reconciled in a stage-specific model of RUNX involvement in cancer. A question that has yet to be fully addressed is the extent to which the three Runx genes are functionally redundant in cancer promotion and suppression.

  11. How should we define STAT3 as an oncogene and as a potential target for therapy?

    PubMed

    Sellier, Hélène; Rébillard, Amélie; Guette, Catherine; Barré, Benjamin; Coqueret, Olivier

    2013-07-01

    Aberrant activation of the STAT3 transcription factor has been reported in a large group of tumors and a strong biological basis now defines this protein as an oncogenic driver. Consequently, STAT3 is considered to be a promising target in the field of cancer therapy. For its inhibition to result in a successful therapeutic approach, the definition of a target tumor population identified by specific and detectable alterations is critical. The canonical activation model of STAT3 relies on a constitutive phosphorylation on its 705 tyrosine site, resulting in its dimerization, nuclear translocation, and the consequent activation of cancer genes. Therefore, it is expected that tumors expressing this phosphorylated form are addicted to STAT3 and will be sensitive to existing drugs which are targeting this dimeric form. However, recent results have shown that STAT3 can function as an oncogene in the absence of this tyrosine phosphorylation. This indicates that different forms of the transcription factor also play an important role in tumor growth and chemotherapy resistance. This complicates the definition of STAT3 as an oncogene and as a potential prognosis and predictive biomarker. The obligation to target a defined tumor type implies that future clinical trials should use a precise definition of STAT3 activation. This will allow tumors addicted to this oncogene to be identified correctly, leading to a strong rationale for patient stratification.

  12. Productive life cycle of adeno-associated virus serotype 2 in the complete absence of a conventional polyadenylation signal

    PubMed Central

    Wang, Lina; Yin, Zifei; Wang, Yuan; Lu, Yuan; Zhang, Daniel; Srivastava, Arun; Ling, Changquan

    2015-01-01

    We showed that WT adeno-associated virus serotype 2 (AAV2) genome devoid of a conventional polyadenylation [poly(A)] signal underwent complete genome replication, encapsidation and progeny virion production in the presence of adenovirus. The infectivity of the progeny virion was also retained. Using recombinant AAV2 vectors devoid of a human growth hormone poly(A) signal, we also demonstrated that a subset of mRNA transcripts contained the inverted terminal repeat (ITR) sequence at the 3′ end, which we designated ITR in RNA (ITRR). Furthermore, AAV replication (Rep) proteins were able to interact with the ITRR. Taken together, our studies suggest a new function of the AAV2 ITR as an RNA element to mediate transgene expression from poly(A)-deleted mRNA. PMID:26297494

  13. Three dimensional structure of the transmembrane region of the proto-oncogenic and oncogenic forms of the neu protein.

    PubMed Central

    Gullick, W J; Bottomley, A C; Lofts, F J; Doak, D G; Mulvey, D; Newman, R; Crumpton, M J; Sternberg, M J; Campbell, I D

    1992-01-01

    The neu proto-oncogene may be converted into a dominantly transforming oncogene by a single point mutation. Substitution of a valine residue at position 664 in the transmembrane region with glutamic acid activates the tyrosine kinase of the molecule and is associated with increased receptor dimerization. Previously we have proposed a model in which the glutamic acid side chain stabilizes receptor dimerization by hydrogen bonding. Other models have been proposed in which the mutation leads to a conformational change in the transmembrane region mimicking that assumed to occur following binding of a natural ligand. Synthetic peptides representing part of the transmembrane region were prepared. Some residues were replaced with serine in order to improve peptide solubility to allow purification and analysis. Both the peptides containing valine and glutamic acid dissolved in water and in an artificial lipid monolayer. The structures of the peptides were determined by NMR spectroscopy to be alpha-helical. No significant difference in conformation was observed between the two peptides. This result does not support the model proposing a conformational change. The receptor structures determined experimentally do allow alternative models involving receptor transmembrane region packing. Images PMID:1346763

  14. A human endogenous long terminal repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in normal placenta.

    PubMed

    Goodchild, N L; Wilkinson, D A; Mager, D L

    1992-11-16

    We have been investigating the impact that the long terminal repeats (LTRs) of the RTVL-H family of human endogenous retroviral-like elements may have on the expression of adjacent cellular genes. Using a differential hybridization strategy, we have screened a cDNA library from a normal full-term human placenta and have identified two clones containing non-RTVL-H-related cellular sequences that have been polyadenylated within an RTVL-H LTR. One of these clones, cPj-LTR, contains an open reading frame (ORF) of 223 amino acids. Southern analysis indicated that the corresponding gene, termed PLT, is most probably a single multi-exon locus and that related sequences are present in the mouse genome, suggesting that this gene has been evolutionarily conserved. Database searches detected no significant homology to previously published sequences, indicating that PLT is a novel gene. Northern analysis identified several PLT-related transcripts in placental RNA samples, one of which is associated with the LTR. The presence of this PLT-LTR fusion transcript in normal placenta was also confirmed by PCR. Additional hybridization studies with RNAs from various cell lines suggested that the PLT locus is differentially expressed in different cell types. To investigate the structure of the non-LTR-associated PLT-related transcripts, additional clones were isolated from the placental cDNA library. Analysis of these clones suggests that the PLT mRNA undergoes alternative splicing at its 3' end, with polyadenylation within an RTVL-H LTR occurring in one of the resulting transcripts.

  15. BCL3 exerts an oncogenic function by regulating STAT3 in human cervical cancer

    PubMed Central

    Zhao, Hu; Wang, Wuliang; Zhao, Qinghe; Hu, Guiming; Deng, Kehong; Liu, Yuling

    2016-01-01

    Aberrant expression of oncogenes and/or tumor suppressors play a fundamental effect on the pathogenesis and tumorigenicity of cervical cancer (CC). B-cell CLL/lymphoma 3 (BCL3) was previously found to be a putative proto-oncogene in human cancers and regulated signal transducer and activator of transcription 3 (STAT3), a critical oncogene, in CC cell line. However, its expression status, clinical significance and biological functions in CC remain largely unclear. The expressions of BCL3 and STAT3 in CC specimens were determined by immunohistochemistry. MTT, colony formation assays and flow cytometry analysis were carried out to test proliferation and cell cycle of CC cells. Here, the levels of BCL3 were overexpressed in CC compared to adjacent cervical tissues. Furthermore, high levels of BCL3 protein were confirmed by immunoblotting in CC cells as compared with normal cervical epithelial cells. The positive expression of BCL3 was correlated with adverse prognostic features and reduced survival rate. In addition, BCL3 regulated STAT3 abundance in CC cells. STAT3 was found to be upregulated and positively correlated with BCL3 expression in CC specimens. BCL3 overexpression resulted in prominent increased proliferation and cell cycle progression in Hela cells. By contrast, inhibition of BCL3 in CaSki cells remarkably suppressed proliferative ability and cell cycle progression. In vivo studies showed that knockdown of BCL3 inhibited tumor growth of CC in mice xenograft model. Notably, we confirmed that STAT3 mediated the oncogenic roles of BCL3 in CC. In conclusion, we suggest that BCL3 serves as an oncogene in CC by modulating proliferation and cell cycle progression, and its oncogenic effect is mediated by its downstream target gene, STAT3. PMID:27822067

  16. The oncogenic triangle of HMGA2, LIN28B and IGF2BP1 antagonizes tumor-suppressive actions of the let-7 family

    PubMed Central

    Busch, Bianca; Bley, Nadine; Müller, Simon; Glaß, Markus; Misiak, Danny; Lederer, Marcell; Vetter, Martina; Strauß, Hans-Georg; Thomssen, Christoph; Hüttelmaier, Stefan

    2016-01-01

    The tumor-suppressive let-7 microRNA family targets various oncogene-encoding mRNAs. We identify the let-7 targets HMGA2, LIN28B and IGF2BP1 to form a let-7 antagonizing self-promoting oncogenic triangle. Surprisingly, 3′-end processing of IGF2BP1 mRNAs is unaltered in aggressive cancers and tumor-derived cells although IGF2BP1 synthesis was proposed to escape let-7 attack by APA-dependent (alternative polyadenylation) 3′ UTR shortening. However, the expression of the triangle factors is inversely correlated with let-7 levels and promoted by LIN28B impairing let-7 biogenesis. Moreover, IGF2BP1 enhances the expression of all triangle factors by recruiting the respective mRNAs in mRNPs lacking AGO proteins and let-7 miRNAs. This indicates that the downregulation of let-7, largely facilitated by LIN28B upregulation, and the protection of let-7 target mRNAs by IGF2BP1-directed shielding in mRNPs synergize in enhancing the expression of triangle factors. The oncogenic potential of this triangle was confirmed in ovarian cancer (OC)-derived ES-2 cells transduced with let-7 targeting decoys. In these, the depletion of HMGA2 only diminishes tumor cell growth under permissive conditions. The depletion of LIN28B and more prominently IGF2BP1 severely impairs tumor cell viability, self-renewal and 2D as well as 3D migration. In conclusion, this suggests the targeting of the HMGA2-LIN28B-IGF2BP1 triangle as a promising strategy in cancer treatment. PMID:26917013

  17. Melanoma: oncogenic drivers and the immune system

    PubMed Central

    Karachaliou, Niki; Pilotto, Sara; Teixidó, Cristina; Viteri, Santiago; González-Cao, María; Riso, Aldo; Morales-Espinosa, Daniela; Molina, Miguel Angel; Chaib, Imane; Santarpia, Mariacarmela; Richardet, Eduardo; Bria, Emilio

    2015-01-01

    Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches. PMID:26605311

  18. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy

    PubMed Central

    Zhang, Jiao; Chen, Yan-Hua; Lu, Qun

    2010-01-01

    Carcinogenesis is the uncontrolled growth of cells gaining the potential to invade and disrupt vital tissue functions. This malignant process includes the occurrence of ‘unwanted’ gene mutations that induce the transformation of normal cells, for example, by overactivation of pro-oncogenic pathways and inactivation of tumor-suppressive or anti-oncogenic pathways. It is now recognized that the number of major signaling pathways that control oncogenesis is not unlimited; therefore, suppressing these pathways can conceivably lead to a cancer cure. However, the clinical application of cancer intervention has not matched up to scientific expectations. Increasing numbers of studies have revealed that many oncogenic-signaling elements show double faces, in which they can promote or suppress cancer pathogenesis depending on tissue type, cancer stage, gene dosage and their interaction with other players in carcinogenesis. This complexity of oncogenic signaling poses challenges to traditional cancer therapy and calls for considerable caution when designing an anticancer drug strategy. We propose future oncology interventions with the concept of integrative cancer therapy. PMID:20373871

  19. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors.

    PubMed

    Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R

    2017-02-13

    Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek-Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)'s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.Oncogene advance online publication, 13 February 2017; doi:10.1038/onc.2016.519.

  20. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Curry, Joseph M; Ko, Ying-Hui; Lin, Zhao; Tuluc, Madalina; Cognetti, David; Birbe, Ruth C; Pribitkin, Edmund; Bombonati, Alessandro; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2013-08-15

    Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of "normal" and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the "bystander" effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for "metabolic symbiosis" between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial "lactate-shuttle", to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as "partners" for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an "MCT4 inhibitor". Taken

  1. Power of PTEN/AKT: Molecular switch between tumor suppressors and oncogenes

    PubMed Central

    XIE, YINGQIU; NAIZABEKOV, SANZHAR; CHEN, ZHANLIN; TOKAY, TURSONJAN

    2016-01-01

    An increasing amount of evidence has shown that tumor suppressors can become oncogenes, or vice versa, but the mechanism behind this is unclear. Recent findings have suggested that phosphatase and tensin homolog (PTEN) is one of the powerful switches for the conversion between tumor suppressors and oncogenes. PTEN regulates a number of cellular processes, including cell death and proliferation, through the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. Furthermore, a number of studies have suggested that PTEN deletions may alter various functions of certain tumor suppressor and oncogenic proteins. The aim of the present review was to analyze specific cases driven by PTEN loss/AKT activation, including aberrant signaling pathways and novel drug targets for clinical application in personalized medicine. The findings illustrate how PTEN loss and/or AKT activation switches MDM2-dependent p53 downregulation, and induces conversion between oncogene and tumor suppressor in enhancer of zeste homolog 2, BTB domain-containing 7A, alternative reading frame 2, p27 and breast cancer 1, early onset, through multiple mechanisms. This review highlights the genetic basis of complex drug targets and provides insights into the rationale of precision cancer therapy. PMID:27347153

  2. A high-content screening assay for small-molecule modulators of oncogene-induced senescence.

    PubMed

    Bitler, Benjamin G; Fink, Lauren S; Wei, Zhi; Peterson, Jeffrey R; Zhang, Rugang

    2013-10-01

    Cellular senescence is a state of stable cell growth arrest. Activation of oncogenes such as RAS in mammalian cells typically triggers cellular senescence. Oncogene-induced senescence (OIS) is an important tumor suppression mechanism, and suppression of OIS contributes to cell transformation. Oncogenes trigger senescence through a multitude of incompletely understood downstream signaling events that frequently involve protein kinases. To identify target proteins required for RAS-induced senescence, we developed a small-molecule screen in primary human fibroblasts undergoing senescence induced by oncogenic RAS (H-Ras(G12V)). Using a high-content imaging system to monitor two hallmarks of senescence, senescence-associated β-galactosidase activity expression and inhibition of proliferation, we screened a library of known small-molecule kinase inhibitors for those that suppressed OIS. Identified compounds were subsequently validated and confirmed using a third marker of senescence, senescence-associated heterochromatin foci. In summary, we have established a novel high-content screening platform that may be useful for elucidating signaling pathways mediating OIS by targeting critical pathway components.

  3. FAM83 proteins: Fostering new interactions to drive oncogenic signaling and therapeutic resistance

    PubMed Central

    Bartel, Courtney A.; Parameswaran, Neetha; Cipriano, Rocky; Jackson, Mark W.

    2016-01-01

    The FAM83 proteins were recently identified as novel transforming oncogenes that function as intermediaries in EGFR/RAS signaling. Using two distinct forward genetics screens, the Bissell and Jackson laboratories uncovered the importance of the FAM83 proteins in promoting resistance to EGFR tyrosine kinase inhibitors and therapies targeting downstream EGFR signaling effectors. The discovery of this novel oncogene family using distinct genetic screens provides compelling evidence that the FAM83 proteins are key oncogenic players in cancer-associated signaling when they are overexpressed or dysregulated. Consistent with a role in oncogenic transformation, the FAM83 genes are frequently overexpressed in diverse human cancer specimens. Importantly, ablation of numerous FAM83 members results in a marked suppression of cancer-associated signaling and loss of tumorigenic potential. Here, we review the current knowledge of the FAM83 proteins’ involvement in cancer signaling and discuss the potential mechanisms by which they contribute to tumorigenesis. Both redundant activities shared by all 8 FAM83 members and non-redundant activities unique to each member are highlighted. We discuss the promise and challenges of the FAM83 proteins as novel points of attack for future cancer therapies. PMID:27221039

  4. Oncogenic regulation of tumor metabolic reprogramming

    PubMed Central

    Tarrado-Castellarnau, Míriam; de Atauri, Pedro; Cascante, Marta

    2016-01-01

    Development of malignancy is accompanied by a complete metabolic reprogramming closely related to the acquisition of most of cancer hallmarks. In fact, key oncogenic pathways converge to adapt the metabolism of carbohydrates, proteins, lipids and nucleic acids to the dynamic tumor microenvironment, conferring a selective advantage to cancer cells. Therefore, metabolic properties of tumor cells are significantly different from those of non-transformed cells. In addition, tumor metabolic reprogramming is linked to drug resistance in cancer treatment. Accordingly, metabolic adaptations are specific vulnerabilities that can be used in different therapeutic approaches for cancer therapy. In this review, we discuss the dysregulation of the main metabolic pathways that enable cell transformation and its association with oncogenic signaling pathways, focusing on the effects of c-MYC, hypoxia inducible factor 1 (HIF1), phosphoinositide-3-kinase (PI3K), and the mechanistic target of rapamycin (mTOR) on cancer cell metabolism. Elucidating these connections is of crucial importance to identify new targets and develop selective cancer treatments that improve response to therapy and overcome the emerging resistance to chemotherapeutics. PMID:28040803

  5. Tumor-derived exosomes in oncogenic reprogramming and cancer progression.

    PubMed

    Saleem, Sarmad N; Abdel-Mageed, Asim B

    2015-01-01

    In multicellular organisms, effective communication between cells is a crucial part of cellular and tissue homeostasis. This communication mainly involves direct cell-cell contact as well as the secretion of molecules that bind to receptors at the recipient cells. However, a more recently characterized mode of intercellular communication-the release of membrane vesicles known as exosomes-has been the subject of increasing interest and intensive research over the past decade. Following the discovery of the exosome-mediated immune activation, the pathophysiological roles of exosomes have been recognized in different diseases, including cancer. In this review, we describe the biogenesis and main physical characteristics that define exosomes as a specific population of secreted vesicles, with a special focus on their role in oncogenic transformation and cancer progression.

  6. Assessing the subcellular distribution of oncogenic phosphoinositide 3-kinase using microinjection into live cells

    PubMed Central

    Layton, Meredith J.; Rynkiewicz, Natalie K.; Ivetac, Ivan; Horan, Kristy A.; Mitchell, Christina A.; Phillips, Wayne A.

    2014-01-01

    Oncogenic mutations in PIK3CA lead to an increase in intrinsic phosphoinositide kinase activity, but it is thought that increased access of PI3Kα (phosphoinositide 3-kinase α) to its PM (plasma membrane) localized substrate is also required for increased levels of downstream PIP3/Akt [phosphoinositide-3,4,5-trisphosphate/also called PKB (protein kinase B)] signalling. We have studied the subcellular localization of wild-type and the two most common oncogenic mutants of PI3Kα in cells maintained in growth media, and starved or stimulated cells using a novel method in which PI3Kα is pre-formed as a 1:1 p110α:p85α complex in vitro then introduced into live cells by microinjection. Oncogenic E545K and H1047R mutants did not constitutively interact with membrane lipids in vitro or in cells maintained in 10% (v/v) FBS. Following stimulation of RTKs (receptor tyrosine kinases), microinjected PI3Kα was recruited to the PM, but oncogenic forms of PI3Kα were not recruited to the PM to a greater extent and did not reside at the PM longer than the wild-type PI3Kα. Instead, the E545K mutant specifically bound activated Cdc42 in vitro and microinjection of E545K was associated with the formation of cellular protrusions, providing some preliminary evidence that changes in protein–protein interactions may play a role in the oncogenicity of the E545K mutant in addition to the well-known changes in lipid kinase activity. PMID:27919038

  7. Anti-tumor effects of genetic vaccines against HPV major oncogenes.

    PubMed

    Cordeiro, Marcelo Nazário; Paolini, Francesca; Massa, Silvia; Curzio, Gianfranca; Illiano, Elena; Duarte Silva, Anna Jéssica; Franconi, Rosella; Bissa, Massimiliano; Morghen, Carlo De Giuli; de Freitas, Antonio Carlos; Venuti, Aldo

    2015-01-01

    Expression of HPV E5, E6 and E7 oncogenes are likely to overcome the regulation of cell proliferation and to escape immunological control, allowing uncontrolled growth and providing the potential for malignant transformation. Thus, their three oncogenic products may represent ideal target antigens for immunotherapeutic strategies. In previous attempts, we demonstrated that genetic vaccines against recombinant HPV16 E7 antigen were able to affect the tumor growth in a pre-clinical mouse model. To improve this anti-HPV strategy we developed a novel approach in which we explored the effects of E5-based genetic immunization. We designed novel HPV16 E5 genetic vaccines based on two different gene versions: whole E5 gene and E5Multi. The last one is a long multi epitope gene designed as a harmless E5 version. Both E5 genes were codon optimized for mammalian expression. In addition, we demonstrated that HPV 16 E5 oncogene is expressed in C3 mouse cell line making it an elective model for the study of E5 based vaccine. In this mouse model the immunological and biological activity of the E5 vaccines were assessed in parallel with the activity of anti-E7 and anti-E6 vaccines already reported to be effective in an immunotherapeutic setting. These E7 and E6 vaccines were made with mutated oncogenes, the E7GGG mutant that does not bind pRb and the E6F47R mutant that is less effective in inhibiting p53, respectively. Results confirmed the immunological activity of genetic formulations based on attenuated HPV16 oncogenes and showed that E5-based genetic immunization provided notable anti-tumor effects.

  8. [Oncogenes and the origin of leukemia. Acute avian leukemia viruses].

    PubMed

    Graf, T

    1988-03-01

    Oncogenes have been intimately associated with the genesis of human neoplasms. A particularly useful system to study the mechanism of tumorigenesis is a small group of avian retroviruses that carry two oncogenes. These viruses causes acute leukemias and can transform hematopoietic cells in vitro. The mechanisms by which viral oncogenes affect the growth control and differentiation of their target cells is now understood in fair detail for two of these virus strains. In the avian erythroblastosis virus AEV, the v-erbB oncogene deregulates the growth control of erythroid precursors, while verbA blocks their terminal differentiation into erythrocytes. Based on the findings that v-erbB oncogene corresponds to a mutated growth factor receptor gene and that v-erbA corresponds to a mutated hormone receptor gene, models have been developed that explain the function of these two oncogenes on a molecular basis. The myelomonocytic leukemia virus MH2 acts by a completely different mechanism. In this case, the v-myc oncogene stimulates the proliferation of macrophage-like cells, while the v-mil gene stimulates them to produce their own growth factor, thus leading to autocrine growth. It will be interesting to determine whether the type of mechanisms of oncogene cooperativity elucidated for acute leukemia viruses are also operative during leukemogenesis in humans.

  9. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence

    PubMed Central

    Patel, Priyanka L.; Suram, Anitha; Mirani, Neena; Bischof, Oliver; Herbig, Utz

    2016-01-01

    Oncogene-induced senescence (OIS) is a critical tumor-suppressing mechanism that restrains cancer progression at premalignant stages, in part by causing telomere dysfunction. Currently it is unknown whether this proliferative arrest presents a stable and therefore irreversible barrier to cancer progression. Here we demonstrate that cells frequently escape OIS induced by oncogenic H-Ras and B-Raf, after a prolonged period in the senescence arrested state. Cells that had escaped senescence displayed high oncogene expression levels, retained functional DNA damage responses, and acquired chromatin changes that promoted c-Myc–dependent expression of the human telomerase reverse transcriptase gene (hTERT). Telomerase was able to resolve existing telomeric DNA damage response foci and suppressed formation of new ones that were generated as a consequence of DNA replication stress and oncogenic signals. Inhibition of MAP kinase signaling, suppressing c-Myc expression, or inhibiting telomerase activity, caused telomere dysfunction and proliferative defects in cells that had escaped senescence, whereas ectopic expression of hTERT facilitated OIS escape. In human early neoplastic skin and breast tissue, hTERT expression was detected in cells that displayed features of senescence, suggesting that reactivation of telomerase expression in senescent cells is an early event during cancer progression in humans. Together, our data demonstrate that cells arrested in OIS retain the potential to escape senescence by mechanisms that involve derepression of hTERT expression. PMID:27503890

  10. Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma

    PubMed Central

    Sukowati, Caecilia HC; El-Khobar, Korri E; Ie, Susan I; Anfuso, Beatrice; Muljono, David H; Tiribelli, Claudio

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Chronic infection of hepatitis B virus (HBV) and/or hepatitis C virus (HCV) is a major risk factor in the development of the HCC, independently from excessive alcohol abuse and metabolic disease. Since the biology of HBV and HCV is different, their oncogenic effect may go through different mechanisms, direct and/or indirect. Viral hepatitis infection is associated with cellular inflammation, oxidative stress, and DNA damage, that may lead to subsequent hepatic injuries such as chronic hepatitis, fibrosis, cirrhosis, and finally HCC. Direct oncogenic properties of these viruses are related with their genotypic characteristics and the ability of viral proteins to interact with host proteins, thus altering the molecular pathways balance of the cells. In addition, the integration of HBV DNA, especially the gene S and X, in a particular site of the host genome can disrupt chromosomal stability and may activate various oncogenic mechanisms, including those in hematopoietic cells. Recently, several studies also had demonstrated that viral hepatitis could trigger the population of hepatic cancer stem cells. This review summarize available pre-clinical and clinical data in literature regarding oncogenic properties of HBV and HCV in the early initiation of HCC. PMID:26819517

  11. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    NASA Astrophysics Data System (ADS)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  12. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    PubMed Central

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A; Woodman, Scott E; Kwong, Lawrence N

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy. PMID:26787600

  13. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  14. Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds

    PubMed Central

    Carrella, Diego; Manni, Isabella; Tumaini, Barbara; Dattilo, Rosanna; Papaccio, Federica; Mutarelli, Margherita; Sirci, Francesco; Amoreo, Carla A.; Mottolese, Marcella; Iezzi, Manuela; Ciolli, Laura; Aria, Valentina; Bosotti, Roberta; Isacchi, Antonella; Loreni, Fabrizio; Bardelli, Alberto; Avvedimento, Vittorio E.; di Bernardo, Diego; Cardone, Luca

    2016-01-01

    The discovery of inhibitors for oncogenic signalling pathways remains a key focus in modern oncology, based on personalized and targeted therapeutics. Computational drug repurposing via the analysis of FDA-approved drug network is becoming a very effective approach to identify therapeutic opportunities in cancer and other human diseases. Given that gene expression signatures can be associated with specific oncogenic mutations, we tested whether a “reverse” oncogene-specific signature might assist in the computational repositioning of inhibitors of oncogenic pathways. As a proof of principle, we focused on oncogenic PI3K-dependent signalling, a molecular pathway frequently driving cancer progression as well as raising resistance to anticancer-targeted therapies. We show that implementation of “reverse” oncogenic PI3K-dependent transcriptional signatures combined with interrogation of drug networks identified inhibitors of PI3K-dependent signalling among FDA-approved compounds. This led to repositioning of Niclosamide (Niclo) and Pyrvinium Pamoate (PP), two anthelmintic drugs, as inhibitors of oncogenic PI3K-dependent signalling. Niclo inhibited phosphorylation of P70S6K, while PP inhibited phosphorylation of AKT and P70S6K, which are downstream targets of PI3K. Anthelmintics inhibited oncogenic PI3K-dependent gene expression and showed a cytostatic effect in vitro and in mouse mammary gland. Lastly, PP inhibited the growth of breast cancer cells harbouring PI3K mutations. Our data indicate that drug repositioning by network analysis of oncogene-specific transcriptional signatures is an efficient strategy for identifying oncogenic pathway inhibitors among FDA-approved compounds. We propose that PP and Niclo should be further investigated as potential therapeutics for the treatment of tumors or diseases carrying the constitutive activation of the PI3K/P70S6K signalling axis. PMID:27542212

  15. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro.

    PubMed

    Hedley, M L; Maniatis, T

    1991-05-17

    Somatic sex determination in Drosophila involves a hierarchy of regulated alternative pre-mRNA processing. Female-specific splicing and/or polyadenylation of doublesex (dsx) pre-mRNA, the final gene in this pathway, requires transformer (tra) and transformer-2 (tra-2) proteins. The mechanisms by which these proteins regulate RNA processing has not been characterized. In this paper we show that tra-2 produced in Escherichia coli binds specifically to a site within the female-specific exon of dsx pre-mRNA. This site, which contains six copies of a 13 nucleotide repeat, is required not only for female-specific splicing, but also for female-specific polyadenylation. These observations suggest that tra-2 is a positive regulator of dsx pre-mRNA processing.

  16. Dimerize RACK1 upon transformation with oncogenic ras

    SciTech Connect

    Chu, L.-Y.; Chen, Y.-H.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-05-06

    From our previous studies, we learned that syndecan-2/p120-GAP complex provided docking site for Src to prosecute tyrosine kinase activity upon transformation with oncogenic ras. And, RACK1 protein was reactive with syndecan-2 to keep Src inactivated, but not when Ras was overexpressed. In the present study, we characterized the reaction between RACK1 protein and Ras. RACK1 was isolated from BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus and RACK1 was revealed to react with GTP-K{sub B}-Ras(Q{sub 61}K), not GDP-K{sub B}-Ras(Q{sub 61}K). This selective interaction between RACK1 and GTP-K{sub B}-Ras(Q{sub 61}K) was further confirmed with RACK1 of human placenta and mouse RACK1-encoded fusion protein. We found that RACK1 was dimerized upon reaction with GTP-K{sub B}-Ras(Q{sub 61}K), as well as with 14-3-3{beta} and geranylgeranyl pyrophosphate, as revealed by phosphorylation with Src tyrosine kinase. We reported the complex of RACK1/GTP-K{sub B}-Ras(Q{sub 61}K) reacted selectively with p120-GAP. This interaction was sufficient to dissemble RACK1 into monomers, a preferred form to compete for the binding of syndecan-2. These data indicate that the reaction of GTP-K{sub B}-Ras(Q{sub 61}K) with RACK1 in dimers may operate a mechanism to deplete RACK1 from reaction with syndecan-2 upon transformation by oncogenic ras and the RACK1/GTP-Ras complex may provide a route to react with p120-GAP and recycle monomeric RACK1 to syndecan-2.

  17. “Hit-and-Run” Transformation by Adenovirus Oncogenes

    PubMed Central

    Nevels, Michael; Täuber, Birgitt; Spruss, Thilo; Wolf, Hans; Dobner, Thomas

    2001-01-01

    According to classical concepts of viral oncogenesis, the persistence of virus-specific oncogenes is required to maintain the transformed cellular phenotype. In contrast, the “hit-and-run” hypothesis claims that viruses can mediate cellular transformation through an initial “hit,” while maintenance of the transformed state is compatible with the loss (“run”) of viral molecules. It is well established that the adenovirus E1A and E1B gene products can cooperatively transform primary human and rodent cells to a tumorigenic phenotype and that these cells permanently express the viral oncogenes. Additionally, recent studies have shown that the adenovirus E4 region encodes two novel oncoproteins, the products of E4orf6 and E4orf3, which cooperate with the viral E1A proteins to transform primary rat cells in an E1B-like fashion. Unexpectedly, however, cells transformed by E1A and either E4orf6 or E4orf3 fail to express the viral E4 gene products, and only a subset contain E1A proteins. In fact, the majority of these cells lack E4- and E1A-specific DNA sequences, indicating that transformation occurred through a hit-and-run mechanism. We provide evidence that the unusual transforming activities of the adenoviral oncoproteins may be due to their mutagenic potential. Our results strongly support the possibility that even tumors that lack any detectable virus-specific molecules can be of viral origin, which could have a significant impact on the use of adenoviral vectors for gene therapy. PMID:11238835

  18. Glycerophospholipid profile in oncogene-induced senescence.

    PubMed

    Cadenas, Cristina; Vosbeck, Sonja; Hein, Eva-Maria; Hellwig, Birte; Langer, Alice; Hayen, Heiko; Franckenstein, Dennis; Büttner, Bettina; Hammad, Seddik; Marchan, Rosemarie; Hermes, Matthias; Selinski, Silvia; Rahnenführer, Jörg; Peksel, Begüm; Török, Zsolt; Vígh, László; Hengstler, Jan G

    2012-09-01

    Alterations in lipid metabolism and in the lipid composition of cellular membranes are linked to the pathology of numerous diseases including cancer. However, the influence of oncogene expression on cellular lipid profile is currently unknown. In this work we analyzed changes in lipid profiles that are induced in the course of ERBB2-expression mediated premature senescence. As a model system we used MCF-7 breast cancer cells with doxycycline-inducible expression of NeuT, an oncogenic ERBB2 variant. Affymetrix gene array data showed NeuT-induced alterations in the transcription of many enzymes involved in lipid metabolism, several of which (ACSL3, CHPT1, PLD1, LIPG, MGLL, LDL and NPC1) could be confirmed by quantitative realtime PCR. A study of the glycerophospholipid and lyso-glycerophospholipid profiles, obtained by high performance liquid chromatography coupled to Fourier-transform ion cyclotron resonance-mass spectrometry revealed senescence-associated changes in numerous lipid species, including mitochondrial lipids. The most prominent changes were found in PG(34:1), PG(36:1) (increased) and LPE(18:1), PG(40:7) and PI(36:1) (decreased). Statistical analysis revealed a general trend towards shortened phospholipid acyl chains in senescence and a significant trend to more saturated acyl chains in the class of phosphatidylglycerol. Additionally, the cellular cholesterol content was elevated and accumulated in vacuoles in senescent cells. These changes were accompanied by increased membrane fluidity. In mitochondria, loss of membrane potential along with altered intracellular distribution was observed. In conclusion, we present a comprehensive overview of altered cholesterol and glycerophospholipid patterns in senescence, showing that predominantly mitochondrial lipids are affected and lipid species less susceptible to peroxidation are increased.

  19. K-ras oncogene mutation in pterygium.

    PubMed

    Ozturk, B T; Yıldırım, M S; Zamani, A; Bozkurt, B

    2017-03-01

    PurposePterygium is claimed to be a benign proliferation triggered by prolonged exposure to ultraviolet radiation. The frequency of K-ras oncogene mutation, which is among the initial mutations in tumorigenesis, is evaluated in this study.Patients and methodsIn this prospective randomized clinical, trial pterygium tissues and normal conjunctiva tissue specimens are obtained from the superotemporal quadrant of patients who underwent primary pterygium excision with autograft transplantation. DNA extraction from tissues was performed using the QIAamp DNA FFPE tissue kit. A PCR reaction was performed to amplify sequences containing codons 12, 13, and 61 of the K-ras gene in DNA. These PCR products then underwent the 'pyrosequencing' procedure for mutations at these codons.ResultsPterygium and normal conjunctival tissue samples of 25 patients (10 females, 15 males) were evaluated in the study. The mean age of the patients was 54.54±13.13 years. Genetic analysis revealed no K-ras mutations in normal conjunctival tissues, whereas pterygium tissues of the same cases demonstrated mutation at codon 12 in one case and mutations at codon 61 in seven cases, which was statistically significant (P<0.05). The point missense mutations at codon 61 were glutamine to arginine (Glu61Arg CAA>CGA) in four cases and glutamine to leucine (Glu61Leu CAA>CTA) in three cases.ConclusionThe significantly higher frequency of codon 61 mutation of the ras oncogene in primary and bilateral pterygium specimens compared with normal conjunctiva supports the tumoral origin of pterygium, and thus set the stage for research into a targeted therapy for pterygium with better outcomes than surgical excision.

  20. Absence of RET proto-oncogene abnormalities in sporadic parathyroid tumors

    SciTech Connect

    Pausova, Z.; Janicic, N.; Konrad, E.

    1994-09-01

    Parathyroid tumors can occur either sporadically or as a part of inherited cancer syndromes such as multiple endocrine neoplasia (MEN) type 2A. Recently, development of this syndrome has been shown to be related to specific mutations in the RET proto-oncogene, a putative receptor tyrosine kinase. Activation of this proto-oncogene has been demonstrated not only in tumors of the MEN 2A syndrome, but also in other neoplasia of neuroectoderm origin, namely papillary thyroid carcinoma where a rearrangement of the RET proto-oncogene has been found. In the present study, a role of the RET proto-oncogene in the development of sporadic parathyroid tumors was investigated by analyzing DNA samples obtained from 13 parathyroid adenomas and 6 parathyroid hyperplasias. Southern blot, using BamHI restricted DNA, did not reveal any gross alteration of the gene. Polymerase chain reaction (PCR) was then employed to amplify DNA fragments corresponding to exons 10 and 11 in which all MEN 2A mutations have been identified. Amplified DNA fragments were all of expected size (exon 10, 182 bp; exon 11, 233 bp). Since a single point mutation at codon 634 has been found to be associated in close to 90% of cases with development of parathyroid tumors in patients with the MEN 2A syndrome, exon 11, containing this codon, was further examined by direct sequence analysis. Sequences obtained from all tumors tested, however, did not differ from the wild type sequence. Therefore, the mutation of the RET proto-oncogene commonly associated with parathyroid neoplasias in MEN 2A is uncommon in sporadic parathyroid tumors. This suggests that the pathogenesis of parathyroid tumors occurring sporadically may be different from those occurring in patients with the MEN 2A syndrome.

  1. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence.

    PubMed

    Zheng, Hui; Seit-Nebi, Alim; Han, Xuemei; Aslanian, Aaron; Tat, John; Liao, Rong; Yates, John R; Sun, Peiqing

    2013-06-06

    Oncogene-induced senescence is an important tumor-suppressing defense mechanism. However, relatively little is known about the signaling pathway mediating the senescence response. Here, we demonstrate that a multifunctional acetyltransferase, Tip60, plays an essential role in oncogenic ras-induced senescence. Further investigation reveals a cascade of posttranslational modifications involving p38, Tip60, and PRAK, three proteins that are essential for ras-induced senescence. Upon activation by ras, p38 induces the acetyltransferase activity of Tip60 through phosphorylation of Thr158; activated Tip60 in turn directly interacts with and induces the protein kinase activity of PRAK through acetylation of K364 in a manner that depends on phosphorylation of both Tip60 and PRAK by p38. These posttranslational modifications are critical for the prosenescent function of Tip60 and PRAK, respectively. These results have defined a signaling pathway that mediates oncogene-induced senescence, and identified posttranslational modifications that regulate the enzymatic activity and biological functions of Tip60 and PRAK.

  2. Accurate Profiling of Gene Expression and Alternative Polyadenylation with Whole Transcriptome Termini Site Sequencing (WTTS-Seq)

    PubMed Central

    Zhou, Xiang; Li, Rui; Michal, Jennifer J.; Wu, Xiao-Lin; Liu, Zhongzhen; Zhao, Hui; Xia, Yin; Du, Weiwei; Wildung, Mark R.; Pouchnik, Derek J.; Harland, Richard M.; Jiang, Zhihua

    2016-01-01

    Construction of next-generation sequencing (NGS) libraries involves RNA manipulation, which often creates noisy, biased, and artifactual data that contribute to errors in transcriptome analysis. In this study, a total of 19 whole transcriptome termini site sequencing (WTTS-seq) and seven RNA sequencing (RNA-seq) libraries were prepared from Xenopus tropicalis adult and embryo samples to determine the most effective library preparation method to maximize transcriptomics investigation. We strongly suggest that appropriate primers/adaptors are designed to inhibit amplification detours and that PCR overamplification is minimized to maximize transcriptome coverage. Furthermore, genome annotation must be improved so that missing data can be recovered. In addition, a complete understanding of sequencing platforms is critical to limit the formation of false-positive results. Technically, the WTTS-seq method enriches both poly(A)+ RNA and complementary DNA, adds 5′- and 3′-adaptors in one step, pursues strand sequencing and mapping, and profiles both gene expression and alternative polyadenylation (APA). Although RNA-seq is cost prohibitive, tends to produce false-positive results, and fails to detect APA diversity and dynamics, its combination with WTTS-seq is necessary to validate transcriptome-wide APA. PMID:27098915

  3. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins.

    PubMed

    Sztuba-Solinska, Joanna; Rausch, Jason W; Smith, Rodman; Miller, Jennifer T; Whitby, Denise; Le Grice, Stuart F J

    2017-04-05

    Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.

  4. The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster

    PubMed Central

    Grönke, Sebastian; Stewart, James B.; Mourier, Arnaud; Ruzzenente, Benedetta; Kukat, Christian; Wibom, Rolf; Habermann, Bianca; Partridge, Linda; Larsson, Nils-Göran

    2011-01-01

    The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation. PMID:22022283

  5. Compilation of mRNA Polyadenylation Signals in Arabidopsis Revealed a New Signal Element and Potential Secondary Structures1[w

    PubMed Central

    Loke, Johnny C.; Stahlberg, Eric A.; Strenski, David G.; Haas, Brian J.; Wood, Paul Chris; Li, Qingshun Quinn

    2005-01-01

    Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3′-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3′-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a single-nucleotide profile scan on the 3′-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3′-ends for gene annotation. PMID:15965016

  6. Copper is required for oncogenic BRAF signaling and tumorigenesis

    PubMed Central

    Brady, Donita C.; Crowe, Matthew S.; Turski, Michelle L.; Hobbs, G. Aaron; Yao, Xiaojie; Chaikuad, Apirat; Knapp, Stefan; Xiao, Kunhong; Campbell, Sharon L.; Thiele, Dennis J.; Counter, Christopher M.

    2014-01-01

    The BRAF kinase is mutated, typically V600E, to induce an active oncogenic state in a large fraction of melanoma, thyroid, hairy cell leukemia, and to a lesser extent, a wide spectrum of other cancers1,2. BRAFV600E phosphorylates and activates the kinases MEK1 and MEK2, which in turn phosphorylate and activate the kinases ERK1 and ERK2, stimulating the MAPK pathway to promote cancer3. Targeting MEK1/2 is proving to be an important therapeutic strategy, as a MEK1/2 inhibitor provides a survival advantage in metastatic melanoma4, which is increased when co-administered with a BRAFV600E inhibitor5. In this regard, we previously found that copper (Cu) influx enhances MEK1 phosphorylation of ERK1/2 through a Cu-MEK1 interaction6. We now show that genetic loss of the high affinity Cu transporter Ctr1 or mutations in MEK1 that disrupt Cu binding reduced BRAFV600E-driven signaling and tumorigenesis. Conversely, a MEK1-MEK5 chimera that phosphorylates ERK1/2 independent of Cu or an active ERK2 restored tumor growth to cells lacking Ctr1. Importantly, Cu chelators used in the treatment of Wilson disease7 reduced tumor growth of both BRAFV600E-transformed cells and cells resistant to BRAF inhibition. Taken together, these results suggest that Cu-chelation therapy could be repurposed to treat BRAFV600E mutation-positive cancers. PMID:24717435

  7. Characterization of c-Ki-ras and N-ras oncogenes in aflatoxin B sub 1 -induced rat liver tumors

    SciTech Connect

    McMahon, G.; Davis, E.F.; Huber, L.J.; Kim, Youngsoo; Wogan, G.N. )

    1990-02-01

    c-Ki-ras and N-ras oncogenes have been characterized in aflatoxin B{sub 1}-induced hepatocellular carcinomas. Detection of different protooncogene and oncogene sequences and estimation of their frequency distribution were accomplished by polymerase chain reaction, cloning, and plaque screening methods. Two c-Ki-ras oncogene sequences were identified in DNA from liver tumors that contained nucleotide changes absent in DNA from livers of untreated control rats. Sequence changes involving G{center dot}C to T{center dot}A or G{center dot}C to A{center dot}T nucleotide substitutions in codon 12 were scored in three of eight tumor-bearing animals. Distributions of c-Ki-ras sequences in tumors and normal liver DNA indicated that the observed nucleotide changes were consistent with those expected to result from direct mutagenesis of the germ-line protooncogene by aflatoxin B{sub 1}. N-ras oncogene sequences were identified in DNA from two of eight tumors. Three N-ras gene regions were identified, one of which was shown to be associated with an oncogene containing a putative activating amino acid residing at codon 13. All three N-ras sequences, including the region detected in N-ras oncogenes, were present at similar frequencies in DNA samples from control livers as well as liver tumors. The presence of a potential germ-line oncogene may be related to the sensitivity of the Fischer rat strain to liver carcinogenesis by aflatoxin B{sub 1} and other chemical carcinogens.

  8. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition

    PubMed Central

    Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-01-01

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  9. Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy.

    PubMed

    Pandolfi, Silvia; Stecca, Barbara

    2015-02-09

    The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.

  10. CPI-17 drives oncogenic Ras signaling in human melanomas via Ezrin-Radixin-Moesin family proteins

    PubMed Central

    Riecken, Lars Björn; Zoch, Ansgar; Wiehl, Ulrike; Reichert, Sabine; Scholl, Ingmar; Cui, Yan; Ziemer, Mirjana; Anderegg, Ulf; Hagel, Christian; Morrison, Helen

    2016-01-01

    Hyperactive Ras signaling has strong oncogenic effects causing several different forms of cancer. Hyperactivity is frequently induced by mutations within Ras itself, which account for up to 30% of all human cancers. In addition, hyperactive Ras signaling can also be triggered independent of Ras by either mutation or by misexpression of various upstream regulators and immediate downstream effectors. We have previously reported that C-kinase potentiated protein phosphatase-1 inhibitor of 17 kDa (CPI-17) can drive Ras activity and promote tumorigenic transformation by inhibition of the tumor suppressor Merlin. We now describe an additional element of this oncogenic mechanism in the form of the ezrin-radixin-moesin (ERM) protein family, which exhibits opposing roles in Ras activity control. Thus, CPI-17 drives Ras activity and tumorigenesis in a two-fold way; inactivation of the tumor suppressor merlin and activation of the growth promoting ERM family. The in vivo significance of this oncogenic switch is highlighted by demonstrating CPI-17's involvement in human melanoma pathogenesis. PMID:27793041

  11. Oncogene transfection of mink lung cells: effect on growth characteristics in vitro and in vivo.

    PubMed

    Khan, M Z; Spandidos, D A; Kerr, D J; McNicol, A M; Lang, J C; De Ridder, L; Freshney, R I

    1991-01-01

    Three sublines have been derived from the parental line Mv1Lu by transfection with normal and mutated Ha-ras, and myc oncogenes, and subsequent cloning. All the oncogenes have increased the growth rate of the cell in vitro, increased their plating efficiency in monolayer and suspension, and reduced their serum dependence. Growth in vivo as xenografts in nude mice has also been increased. Very few tumours were generated from the parental line and those that did form did so after a prolonged lag period, while the transfected lines produced tumours with 100% efficiency, and a short lag period. In general the effects of ras transfection were more extreme, with the highest growth rates and plating efficiencies in vitro and the shortest lag period and doubling times in vivo. There was no increase in plasminogen activator activity as a result of transfection, and the invasive behaviour of the lines in organotypic culture was broadly similar.

  12. Targeting CK2-driven non-oncogene addiction in B-cell tumors.

    PubMed

    Mandato, E; Manni, S; Zaffino, F; Semenzato, G; Piazza, F

    2016-11-24

    Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug

  13. Therapeutic Potential of Targeting the Oncogenic SHP2 Phosphatase

    PubMed Central

    2015-01-01

    The Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) is an oncogenic phosphatase associated with various kinds of leukemia and solid tumors. Thus, there is substantial interest in developing SHP2 inhibitors as potential anticancer and antileukemia agents. Using a structure-guided and fragment-based library approach, we identified a novel hydroxyindole carboxylic acid-based SHP2 inhibitor 11a-1, with an IC50 value of 200 nM and greater than 5-fold selectivity against 20 mammalian PTPs. Structural and modeling studies reveal that the hydroxyindole carboxylic acid anchors the inhibitor to the SHP2 active site, while interactions of the oxalamide linker and the phenylthiophene tail with residues in the β5–β6 loop contribute to 11a-1’s binding potency and selectivity. Evidence suggests that 11a-1 specifically attenuates the SHP2-dependent signaling inside the cell. Moreover, 11a-1 blocks growth factor mediated Erk1/2 and Akt activation and exhibits excellent antiproliferative activity in lung cancer and breast cancer as well as leukemia cell lines. PMID:25003231

  14. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy.

    PubMed

    Aberger, Fritz; Ruiz I Altaba, Ariel

    2014-09-01

    Canonical Hedgehog (HH) signaling leads to the regulation of the GLI code: the sum of all positive and negative functions of all GLI proteins. In humans, the three GLI factors encode context-dependent activities with GLI1 being mostly an activator and GLI3 often a repressor. Modulation of GLI activity occurs at multiple levels, including by co-factors and by direct modification of GLI structure. Surprisingly, the GLI proteins, and thus the GLI code, is also regulated by multiple inputs beyond HH signaling. In normal development and homeostasis these include a multitude of signaling pathways that regulate proto-oncogenes, which boost positive GLI function, as well as tumor suppressors, which restrict positive GLI activity. In cancer, the acquisition of oncogenic mutations and the loss of tumor suppressors - the oncogenic load - regulates the GLI code toward progressively more activating states. The fine and reversible balance of GLI activating GLI(A) and GLI repressing GLI(R) states is lost in cancer. Here, the acquisition of GLI(A) levels above a given threshold is predicted to lead to advanced malignant stages. In this review we highlight the concepts of the GLI code, the oncogenic load, the context-dependency of GLI action, and different modes of signaling integration such as that of HH and EGF. Targeting the GLI code directly or indirectly promises therapeutic benefits beyond the direct blockade of individual pathways.

  15. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma.

    PubMed

    Romei, Cristina; Ciampi, Raffaele; Elisei, Rossella

    2016-04-01

    The rearranged during transfection (RET) proto-oncogene was identified in 1985 and, very soon thereafter, a rearrangement named RET/PTC was discovered in papillary thyroid carcinoma (PTC). After this discovery, other RET rearrangements were found in PTCs, particularly in those induced by radiation. For many years, it was thought that these genetic alterations only occurred in PTC, but, in the past couple of years, some RET/PTC rearrangements have been found in other human tumours. 5 years after the discovery of RET/PTC rearrangements in PTC, activating point mutations in the RET proto-oncogene were discovered in both hereditary and sporadic forms of medullary thyroid carcinoma (MTC). In contrast to the alterations found in PTC, the activation of RET in MTC is mainly due to activating point mutations. Interestingly, in the past year, RET rearrangements that were different to those described in PTC were observed in sporadic MTC. The identification of RET mutations is relevant to the early diagnosis of hereditary MTC and the prognosis of sporadic MTC. The diagnostic and prognostic role of the RET/PTC rearrangements in PTC is less relevant but still important in patient management, particularly for deciding if a targeted therapy should be initiated. In this Review, we discuss the pathogenic, diagnostic and prognostic roles of the RET proto-oncogene in both PTC and MTC.

  16. PIK3CA is implicated as an oncogene in ovarian cancer

    SciTech Connect

    Shayesteh, Laleh; Lu, Yiling; Kuo, Wen-Lin; Baldocchi, Russell; Godfrey, Tony; Collins, Colin; Pinkel, Daniel; Powell, Bethan; Mills,Gordon B.; Gray, Joe W.

    1998-03-25

    Ovarian cancer is the leading cause of death from gynecological malignancy and the fourth leading cause of cancer death among American women, yet little is known about its molecular aetiology. Studies using comparative genomic hybridization (CGH) have revealed several regions of recurrent, abnormal, DNA sequence copy number that may encode genes involved in the genesis or progression of the disease. One region at 3q26 found to be increased in copy number in approximately 40 percent of ovarian and other cancers contains PIK3CA, which encodes the p110 a catalytic subunit of phosphatidylinositol 3-kinase(PI3-kinase). The association between PIK3CA copy number and PI3-kinase activity makes PIK3CA a candidate oncogene because a broad range of cancer-related functions have been associated with PI3-kinase mediated signaling. These include proliferation, glucose transport and catabolism, cell adhesion, apoptosis, RAS signaling and oncogenic transformation. In addition, downstream effectors of PI3-kinase,AKT1 and AKT2, have been found to be amplified or activated in human tumors, including ovarian cancer. We show here that PIK3CA is frequently increased in copy number in ovarian cancers, that the increased copy number is associated with increased PIK3CA transcription, p110 a protein expression and PI3-kinase activity and that treatment with the PI3-kinase inhibitor LY294002 decreases proliferation and increases apoptosis. Our observations suggest PIK3CA is an oncogene that has an important role in ovarian cancer.

  17. Sensitizers, protectors and oncogenic transformation in vitro

    SciTech Connect

    Miller, R.C.; Osmak, R.; Zimmerman, M.; Hall, E.J.

    1982-03-01

    Systems developed to assay oncogenic transformation in vitro represent a rapid and powerful tool to screen and compare new radiosensitizers in their carcinogenic potential, and to search for compounds that reduce or inhibit carcinogenesis produced by both radiation and sensitizers. An established line of mouse embryo fibroblasts (C3H/10T1/2 cells) has been used to determine the incidence of transformation produced by a variety of 2 and 5 substituted nitroimidazoles; these include metronidazole, desmethylmisonidazle, misonidazole, SR 2508, SR 2555, R0-07-0741, RSU-1047 and RSU-1021. Most of these sensitizers produce a similar level of transformation; for example a three day exposure of aerated cells to a concentration of 1 mM of the drug results in a transformation incidence comparable to 1 Gy of X rays. The notable exception is SR 2508 which produces a five-fold higher incidence of transformation. The potential carcinogenicity of sensitizers must be considered in choosing which of the currently available new drugs is to be used in clinical trials as an alternative to misonidazle. Superoxide dismutase (SOD), a known free radical scavenger, has been shown to reduce the level of transformation produced by radiation and sensitizers. To be effective, SOD must be present for prolonged periods during the fixation and expression period of the transformation process.

  18. Biological basis of personalized anticoagulation in cancer: oncogene and oncomir networks as putative regulators of coagulopathy.

    PubMed

    D'Asti, Esterina; Rak, Janusz

    2016-04-01

    Activation of stromal response pathways in cancer is increasingly viewed as both a local and systemic extension of molecular alterations driving malignant transformation. Rather than reflecting passive and unspecific responses to anatomical abnormalities, the coagulation system is a target of oncogenic deregulation, impacting the role of clotting and fibrinolytic proteins, and integrating hemostasis, inflammation, angiogenesis and cellular growth effects in cancer. These processes signify, but do not depend on, the clinically manifest coagulopathy and thrombosis. In this regard, the role of driver mutations affecting oncoprotein coding genes such as RAS, EGFR or MET and tumour suppressors (PTEN, TP53) are well described as regulators of tissue factor (TF), protease activated receptors (PAR-1/2) and ectopic coagulation factors (FVII). Indeed, in both adult and pediatric brain tumours the expression patterns of coagulation and angiogenesis regulators (coagulome and angiome, respectively) reflect the molecular subtypes of the underlying diseases (glioblastoma or medulloblastoma) as defined by their oncogenic classifiers and clinical course. This emerging understanding is still poorly established in relation to the transforming effects of non-coding genes, including those responsible for the expression of microRNA (miR). Indeed, several miRs have been recently found to regulate TF and other effectors. We recently documented that in the context of the aggressive embryonal tumour with multilayered rosettes (ETMR) the oncogenic driver miR (miR-520g) suppresses the expression of TF and correlates with hypocoagulant tumour characteristics. Unlike in adult cancers, the growth of pediatric embryonal brain tumour cells as spheres (to maintain stem cell properties) results in upregulation of miR-520g and downregulation of TF expression and activity. We postulate that oncogenic protein and miR coding genes form alternative pathways of coagulation system regulation in different

  19. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs.

    PubMed Central

    Nebreda, A R; Hunt, T

    1993-01-01

    During studies of the activation and inactivation of the cyclin B-p34cdc2 protein kinase (MPF) in cell-free extracts of Xenopus oocytes and eggs, we found that a bacterially expressed fusion protein between the Escherichia coli maltose-binding protein and the Xenopus c-mos protein kinase (malE-mos) activated a 42 kDa MAP kinase. The activation of MAP kinase on addition of malE-mos was consistent, whereas the activation of MPF was variable and failed to occur in some oocyte extracts in which cyclin A or okadaic acid activated both MPF and MAP kinase. In cases when MPF activation was transient, MAP kinase activity declined after MPF activity was lost, and MAP kinase, but not MPF, could be maintained at a high level by the presence of malE-mos. When intact oocytes were treated with progesterone, however, the activation of MPF and MAP kinase occurred simultaneously, in contrast to the behaviour of extracts. These observations suggest that one role of c-mos may be to maintain high MAP kinase activity in meiosis. They also imply that the activation of MPF and MAP kinase in vivo are synchronous events that normally rely on an agent that has still to be identified. Images PMID:8387916

  20. CXCR4 in breast cancer: oncogenic role and therapeutic targeting

    PubMed Central

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8–12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer. PMID:26356032

  1. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene.

    PubMed

    Kumar, Ravinder

    2016-12-14

    Proper and timely segregation of genetic endowment is necessary for survival and perpetuation of every species. Mis-segregation of chromosomes and resulting aneuploidy leads to genetic instability, which can jeopardize the survival of an individual or population as a whole. Abnormality with segregation of genetic contents has been associated with several medical consequences including cancer, sterility, mental retardation, spontaneous abortion, miscarriages, and other birth related defects. Separase, by irreversible cleavage of cohesin complex subunit, paves the way for metaphase/anaphase transition during the cell cycle. Both over or reduced expression and altered level of separase have been associated with several medical consequences including cancer, as a result separase now emerges as an important oncogene and potential molecular target for medical intervenes. Recently, separase is also found to be essential in separation and duplication of centrioles. Here, I review the role of separase in mitosis, meiosis, non-canonical roles of separase, separase regulation, as a regulator of centriole disengagement, nonproteolytic roles, diverse substrates, structural insights, and association of separase with cancer. At the ends, I proposed a model which showed that separase is active throughout the cell cycle and there is a mere increase in separase activity during metaphase contrary to the common believes that separase is inactive throughout cell cycle except for metaphase. J. Cell. Biochem. 9999: 1-17, 2016. © 2016 Wiley Periodicals, Inc.

  2. CXCR4 in breast cancer: oncogenic role and therapeutic targeting.

    PubMed

    Xu, Chao; Zhao, Hong; Chen, Haitao; Yao, Qinghua

    2015-01-01

    Chemokines are 8-12 kDa peptides that function as chemoattractant cytokines and are involved in cell activation, differentiation, and trafficking. Chemokines bind to specific G-protein-coupled seven-span transmembrane receptors. Chemokines play a fundamental role in the regulation of a variety of cellular, physiological, and developmental processes. Their aberrant expression can lead to a variety of human diseases including cancer. C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or CD184, is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1 also called CXCL12). CXCR4 belongs to the superfamily of the seven transmembrane domain heterotrimeric G protein-coupled receptors and is functionally expressed on the cell surface of various types of cancer cells. CXCR4 also plays a role in the cell proliferation and migration of these cells. Recently, CXCR4 has been reported to play an important role in cell survival, proliferation, migration, as well as metastasis of several cancers including breast cancer. This review is mainly focused on the current knowledge of the oncogenic role and potential drugs that target CXCR4 in breast cancer. Additionally, CXCR4 proangiogenic molecular mechanisms will be reviewed. Strict biunivocal binding affinity and activation of CXCR4/CXCL12 complex make CXCR4 a unique molecular target for prevention and treatment of breast cancer.

  3. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation.

    PubMed Central

    Helfman, D M; Cheley, S; Kuismanen, E; Finn, L A; Yamawaki-Kataoka, Y

    1986-01-01

    The molecular basis for the expression of rat embryonic fibroblast tropomyosin 1 and skeletal muscle beta-tropomyosin was determined. cDNA clones encoding these tropomyosin isoforms exhibit complete identity except for two carboxy-proximal regions (amino acids 189 to 213 and 258 to 284) and different 3'-untranslated sequences. The isoform-specific regions delineate the troponin T-binding domains of skeletal muscle tropomyosin. Analysis of genomic clones indicates that there are two separate loci in the rat genome that contain sequences complementary to these mRNAs. One locus is a pseudogene. The other locus contains a single gene made up of 11 exons and spans approximately 10 kilobases. Sequences common to all mRNAs were found in exons 1 through 5 (amino acids 1 to 188) and exons 8 and 9 (amino acids 214 to 257). Exons 6 and 11 are specific for fibroblast mRNA (amino acids 189 to 213 and 258 to 284, respectively), while exons 7 and 10 are specific for skeletal muscle mRNA (amino acids 189 to 213 and 258 to 284, respectively). In addition, exons 10 and 11 each contain the entire 3'-untranslated sequences of the respective mRNAs including the polyadenylation site. Although the gene is also expressed in smooth muscle (stomach, uterus, and vas deferens), only the fibroblast-type splice products can be detected in these tissues. S1 and primer extension analyses indicate that all mRNAs expressed from this gene are transcribed from a single promoter. The promoter was found to contain G-C-rich sequences, a TATA-like sequence TTTTA, no identifiable CCAAT box, and two putative Sp1-binding sites. Images PMID:2432392

  4. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5.

    PubMed

    Shin, J-H; Janer, M; McNeney, B; Blay, S; Deutsch, K; Sanjeevi, C B; Kockum, I; Lernmark, A; Graham, J; Arnqvist, Hans; Björck, Elizabeth; Eriksson, Jan; Nyström, Lennarth; Ohlson, Lars Olof; Scherstén, Bengt; Ostman, Jan; Aili, M; Bååth, L E; Carlsson, E; Edenwall, H; Forsander, G; Granström, B W; Gustavsson, I; Hanås, R; Hellenberg, L; Hellgren, H; Holmberg, E; Hörnell, H; Ivarsson, Sten-A; Johansson, C; Jonsell, G; Kockum, K; Lindblad, B; Lindh, A; Ludvigsson, J; Myrdal, U; Neiderud, J; Segnestam, K; Sjöblad, S; Skogsberg, L; Strömberg, L; Ståhle, U; Thalme, B; Tullus, K; Tuvemo, T; Wallensteen, M; Westphal, O; Aman, J

    2007-09-01

    In a large case-control study of Swedish incident type I diabetes patients and controls, 0-34 years of age, we tested the hypothesis that the GIMAP5 gene, a key genetic factor for lymphopenia in spontaneous BioBreeding rat diabetes, is associated with type I diabetes; with islet autoantibodies in incident type I diabetes patients or with age at clinical onset in incident type I diabetes patients. Initial scans of allelic association were followed by more detailed logistic regression modeling that adjusted for known type I diabetes risk factors and potential confounding variables. The single nucleotide polymorphism (SNP) rs6598, located in a polyadenylation signal of GIMAP5, was associated with the presence of significant levels of IA-2 autoantibodies in the type I diabetes patients. Patients with the minor allele A of rs6598 had an increased prevalence of IA-2 autoantibody levels compared to patients without the minor allele (OR=2.2; Bonferroni-corrected P=0.003), after adjusting for age at clinical onset (P=8.0 x 10(-13)) and the numbers of HLA-DQ A1*0501-B1*0201 haplotypes (P=2.4 x 10(-5)) and DQ A1*0301-B1*0302 haplotypes (P=0.002). GIMAP5 polymorphism was not associated with type I diabetes or with GAD65 or insulin autoantibodies, ICA, or age at clinical onset in patients. These data suggest that the GIMAP5 gene is associated with islet autoimmunity in type I diabetes and add to recent findings implicating the same SNP in another autoimmune disease.

  5. Nuclear Relocalization of Polyadenylate Binding Protein during Rift Valley Fever Virus Infection Involves Expression of the NSs Gene

    PubMed Central

    Copeland, Anna Maria; Altamura, Louis A.; Van Deusen, Nicole M.

    2013-01-01

    Rift Valley fever virus (RVFV), an ambisense member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever, an important zoonotic infection in Africa and the Middle East. Phlebovirus proteins are translated from virally transcribed mRNAs that, like host mRNA, are capped but, unlike host mRNAs, are not polyadenylated. Here, we investigated the role of PABP1 during RVFV infection of HeLa cells. Immunofluorescence studies of infected cells demonstrated a gross relocalization of PABP1 to the nucleus late in infection. Immunofluorescence microscopy studies of nuclear proteins revealed costaining between PABP1 and markers of nuclear speckles. PABP1 relocalization was sharply decreased in cells infected with a strain of RVFV lacking the gene encoding the RVFV nonstructural protein S (NSs). To determine whether PABP1 was required for RVFV infection, we measured the production of nucleocapsid protein (N) in cells transfected with small interfering RNAs (siRNAs) targeting PABP1. We found that the overall percentage of RVFV N-positive cells was not changed by siRNA treatment, indicating that PABP1 was not required for RVFV infection. However, when we analyzed populations of cells producing high versus low levels of PABP1, we found that the percentage of RVFV N-positive cells was decreased in cell populations producing physiologic levels of PABP1 and increased in cells with reduced levels of PABP1. Together, these results suggest that production of the NSs protein during RVFV infection leads to sequestration of PABP1 in the nuclear speckles, creating a state within the cell that favors viral protein production. PMID:23966414

  6. Time-of-day regulates subcellular trafficking, tripartite synaptic localization and polyadenylation of the astrocytic Fabp7 mRNA

    PubMed Central

    Gerstner, Jason R.; Vanderheyden, William M.; LaVaute, Timothy; Westmark, Cara J.; Rouhana, Labib; Pack, Allan I.; Wickens, Marv; Landry, Charles F.

    2012-01-01

    The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we confirmed an enrichment of Fabp7 mRNA and protein in the astrocytic perisynaptic compartment, and observed a diurnal change in the intracellular distribution of Fabp7 mRNA in molecular layers of hippocampus. Northern blotting revealed a coordinated time-of-day dependent oscillation for the Fabp7 mRNA poly(A) tail throughout murine brain. Cytoplasmic polyadenylation element-(CPE-) binding protein (CPEB1) regulates subcellular trafficking and translation of synaptic plasticity-related mRNAs. Here we show that Fabp7 mRNA co-immunoprecipitated with CPEB1 from primary mouse astrocyte extracts, and its 3′UTR contains phylogenetically conserved CPEs capable of regulating translation of reporter mRNAs during Xenopus oocyte maturation. Given that Fabp7 expression is confined to astrocytes and neural progenitors in adult mouse brain, the synchronized cycling pattern of Fabp7 mRNA is therefore novel of known CPE-regulated transcripts. These results implicate circadian, sleep and/or metabolic control of CPEB-mediated subcellular trafficking and localized translation of Fabp7 mRNA in the tripartite synapse of mammalian brain. PMID:22279223

  7. Polyadenylated mRNA staining reveals distinct neuronal phenotypes following endothelin 1, focal brain ischemia, and global brain ischemia/ reperfusion

    PubMed Central

    Jamison, Jill T.; Lewis, Monique K.; Kreipke, Christian W.; Rafols, Jose A.; DeGracia, Donald J.

    2011-01-01

    Objectives Most work on ischemia-induced neuronal death has revolved around the relative contributions of necrosis and apoptosis, but this work has not accounted for the role of ischemia-induced stress responses. An expanded view recognizes a competition between ischemia-induced damage mechanisms and stress responses in the genesis of ischemia-induced neuronal death. An important marker of post-ischemic stress responses is inhibition of neuronal protein synthesis, a morphological correlate of which is the compartmentalization of mRNA away from ribosomes in the form of cytoplasmic mRNA granules. Methods Here we assessed the generality of this mRNA granule response following either 10 or 15 minutes global brain ischemia and 1 hour reperfusion, 4 hours focal cerebral ischemia alone, and endothelin 1 intraventricular injection. Results Both global and focal ischemia led to prominent neuronal cytoplasmic mRNA granule formation in layer II cortical neurons. In addition, we report here new post-ischemic cellular phenotypes characterized by the loss of nuclear polyadenylated mRNA staining in cortical neurons following endothelin 1 treatment and 15 minutes global ischemia. Both mRNA granulation and loss of nuclear mRNAs occurred in non-shrunken post-ischemic neurons. Discussion Where cytoplasmic mRNA granules generally appear to mark a protective response in surviving cells, loss of nuclear mRNAs may mark cellular damage leading to cell atrophy/death. Hence, staining for total mRNA may reveal facets of the competition between stress responses and damage mechanisms at early stages in post-ischemic neurons. PMID:21499502

  8. Mutant calreticulin requires both its mutant C-terminus and the thrombopoietin receptor for oncogenic transformation

    PubMed Central

    Elf, Shannon; Abdelfattah, Nouran S.; Chen, Edwin; Perales-Patón, Javier; Rosen, Emily A.; Ko, Amy; Peisker, Fabian; Florescu, Natalie; Giannini, Silvia; Wolach, Ofir; Morgan, Elizabeth A.; Tothova, Zuzana; Losman, Julie-Aurore; Schneider, Rebekka K.; Al-Shahrour, Fatima; Mullally, Ann

    2016-01-01

    Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN) but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of CALR-mutant MPN patients. We further show that the thrombopoietin receptor, MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. PMID:26951227

  9. EGF RECEPTOR SIGNALING IS ESSENTIAL FOR K-RAS ONCOGENE-DRIVEN PANCREATIC DUCTAL ADENOCARCINOMA

    PubMed Central

    Navas, Carolina; Hernández-Porras, Isabel; Schuhmacher, Alberto J; Sibilia, Maria; Guerra, Carmen; Barbacid, Mariano

    2013-01-01

    Clinical evidence indicates that mutation/activation of EGF receptors (EGFRs) is mutually exclusive with the presence of K-RAS oncogenes in lung and colon tumors. We have validated these observations using genetically engineered mouse models. However, pancreatic ductal adenocarcinomas driven by K-Ras oncogenes are totally dependent on EGFR signaling. Similar results were obtained using human pancreatic tumor cell lines. EGFRs were also essential even in the context of pancreatic injury and absence of p16Ink4a/p19Arf. Only loss of p53 made pancreatic tumors independent of EGFR signaling. Additional inhibition of PI3K and STAT3 effectively prevented proliferation of explants derived from these p53–defective pancreatic tumors. These findings may provide the bases for more rational approaches to treat pancreatic tumors in the clinic. PMID:22975375

  10. Role of Notch and its oncogenic signaling crosstalk in breast cancer

    PubMed Central

    Guo, Shanchun; Liu, Mingli; Gonzalez-Perez, Ruben R.

    2011-01-01

    The Notch signaling plays a key role in cell differentiation, survival, and proliferation through diverse mechanisms. Notch signaling is also involved in vasculogenesis and angiogenesis. Moreover, Notch expression is regulated by hypoxia and inflammatory cytokines (IL-1, IL-6 and leptin). Entangled crosstalk between Notch and other developmental signaling (Hedgehog and Wnt), and signaling triggered by growth factors, estrogens and oncogenic kinases, could impact on Notch targeted genes. Thus, alterations of the Notch signaling can lead to a variety of disorders, including human malignancies. Notch signaling is activated by ligand binding, followed by ADAM/Tumor necrosis factor-α-converting enzyme (TACE) metalloprotease and γ-secretase cleavages that produce the Notch intracellular domain (NICD). Translocation of NICD into the nucleus induces the transcriptional activation of Notch target genes. The relationships between Notch deregulated signaling, cancer stem cells and the carcinogenesis process reinforced by Notch crosstalk with many oncogenic signaling pathways suggest that Notch signaling may be a critical drug target for breast and other cancers. Since current status of knowledge in this field changes quickly, our insight should be continuously revised. In this review, we will focus on recent advancements in identification of aberrant Notch signaling in breast cancer and the possible underlying mechanisms, including potential role of Notch in breast cancer stem cells, tumor angiogenesis, as well as its crosstalk with other oncogenic signaling pathways in breast cancer. We will also discuss the prognostic value of Notch proteins and therapeutic potential of targeting Notch signaling for cancer treatment. PMID:21193018

  11. Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes.

    PubMed Central

    Levy, P.; Munier, A.; Baron-Delage, S.; Di Gioia, Y.; Gespach, C.; Capeau, J.; Cherqui, G.

    1996-01-01

    The products of ras and src proto-oncogenes are frequently activated in a constitutive state in human colorectal cancer. In this study we attempted to establish whether the tumorigenic progression induced by oncogenic activation of p21ras and pp60c-src in human colonic Caco-2 cells is associated with specific alterations of syndecan-1, a membrane-anchored proteoglycan playing a role in cell-matrix interaction and neoplastic growth control. To this end, we used Caco-2 cells made highly tumorigenic by transfection with an activated (Val 12) human Ha-ras gene or with the polyoma middle T (Py-MT) oncogene, a constitutive activator of pp60c-src tyrosine kinase activity. Compared with control vector-transfected Caco-2 cells, both oncogene-transfected cell lines (1) contained smaller amounts of membrane-anchored PGs; (2) exhibited decreased syndecan-1 expression at the protein but not the mRNA level; (3) synthesized 35S-labelled syndecan-1 with decreased specific activity; (4) produced a syndecan-1 ectodomain with a lower molecular mass and reduced GAG chain size and sulphation; and (5) expressed heparanase degradative activity. These results show that the dramatic activation of the tumorigenic potential induced by oncogenic p21ras or Py-MT/pp60c-src in Caco-2 cells is associated with marked alterations of syndecan-1 expression at the translational and post-translational levels. Images Figure 2 PMID:8695359

  12. Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells.

    PubMed

    Cengel, Keith A; Voong, K Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B; Stanbridge, Eric; Kao, Gary D; McKenna, W Gillies; Bernhard, Eric J

    2007-04-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor alpha was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers.

  13. Oncogenic K-Ras Signals through Epidermal Growth Factor Receptor and Wild-Type H-Ras to Promote Radiation Survival in Pancreatic and Colorectal Carcinoma Cells1

    PubMed Central

    Cengel, Keith A.; Voong, K. Rahn; Chandrasekaran, Sanjay; Maggiorella, Laurence; Brunner, Thomas B.; Stanbridge, Eric; Kao, Gary D.; McKenna, W. Gillies; Bernhard, Eric J.

    2007-01-01

    Pancreatic and colorectal carcinomas frequently express oncogenic/mutant K-Ras that contributes to both tumorigenesis and clinically observed resistance to radiation treatment. We have previously shown that farnesyltransferase inhibitors (FTI) radiosensitize many pancreatic and colorectal cancer cell lines that express oncogenic K-ras at doses that inhibit the prenylation and activation of H-Ras but not K-Ras. In the present study, we have examined the mechanism of FTI-mediated radiosensitization in cell lines that express oncogenic K-Ras and found that wild-type H-Ras is a contributor to radiation survival in tumor cells that express oncogenic K-Ras. In these experiments, inhibiting the expression of oncogenic K-Ras, wild-type H-Ras, or epidermal growth factor receptor (EGFR) led to similar levels of radiosensitization as treatment with the FTI tipifarnib. Treatment with the EGFR inhibitor gefitinib led to similar levels of radiosensitization, and the combinations of tipifarnib or gefitinib plus inhibition of K-Ras, H-Ras, or EGFR expression did not provide additional radiosensitization compared with tipifarnib or gefitinib alone. Finally, supplementing culture medium with the EGFR ligand transforming growth factor α was able to reverse the radiosensitizing effect of inhibiting K-ras expression. Taken together, these findings suggest that EGFR-activated H-Ras signaling is initiated by oncogenic K-Ras to promote radiation survival in pancreatic and colorectal cancers. PMID:17460778

  14. Fusion oncogenes in salivary gland tumors: molecular and clinical consequences.

    PubMed

    Stenman, Göran

    2013-07-01

    Salivary gland tumors constitute a heterogeneous group of uncommon diseases that pose significant diagnostic and therapeutic challenges. However, the recent discovery of a translocation-generated gene fusion network in salivary gland carcinomas as well in benign salivary gland tumors opens up new avenues for improved diagnosis, prognostication, and development of specific targeted therapies. The gene fusions encode novel fusion oncoproteins or ectopically expressed normal or truncated oncoproteins. The major targets of the translocations are transcriptional coactivators, tyrosine kinase receptors, and transcription factors involved in growth factor signaling and cell cycle regulation. Notably, several of these targets or pathways activated by these targets are druggable. Examples of clinically significant gene fusions in salivary gland cancers are the MYB-NFIB fusion specific for adenoid cystic carcinoma, the CRTC1-MAML2 fusion typical of low/intermediate-grade mucoepidermoid carcinoma, and the recently identified ETV6-NTRK3 fusion in mammary analogue secretory carcinoma. Similarly, gene fusions involving the PLAG1 and HMGA2 oncogenes are specific for benign pleomorphic adenomas. Continued studies of the molecular consequences of these fusion oncoproteins and their down-stream targets will ultimately lead to the identification of novel driver genes in salivary gland neoplasms and will also form the basis for the development of new therapeutic strategies for salivary gland cancers and, perhaps, other neoplasms.

  15. Control of autophagy by oncogenes and tumor suppressor genes.

    PubMed

    Maiuri, M C; Tasdemir, E; Criollo, A; Morselli, E; Vicencio, J M; Carnuccio, R; Kroemer, G

    2009-01-01

    Multiple oncogenes (in particular phosphatidylinositol 3-kinase, PI3K; activated Akt1; antiapoptotic proteins from the Bcl-2 family) inhibit autophagy. Similarly, several tumor suppressor proteins (such as BH3-only proteins; death-associated protein kinase-1, DAPK1; the phosphatase that antagonizes PI3K, PTEN; tuberous sclerosic complex 1 and 2, TSC1 and TSC2; as well as LKB1/STK11) induce autophagy, meaning that their loss reduces autophagy. Beclin-1, which is required for autophagy induction acts as a haploinsufficient tumor suppressor protein, and other essential autophagy mediators (such as Atg4c, UVRAG and Bif-1) are bona fide oncosuppressors. One of the central tumor suppressor proteins, p53 exerts an ambiguous function in the regulation of autophagy. Within the nucleus, p53 can act as an autophagy-inducing transcription factor. Within the cytoplasm, p53 exerts a tonic autophagy-inhibitory function, and its degradation is actually required for the induction of autophagy. The role of autophagy in oncogenesis and anticancer therapy is contradictory. Chronic suppression of autophagy may stimulate oncogenesis. However, once a tumor is formed, autophagy inhibition may be a therapeutic goal for radiosensitization and chemosensitization. Altogether, the current state-of-the art suggests a complex relationship between cancer and deregulated autophagy that must be disentangled by further in-depth investigation.

  16. Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas

    SciTech Connect

    Duerst, M.; Croce, C.M.; Gissmann, L.; Schwarz, E.; Huebner, K.

    1987-02-01

    The chromosomal locations of cellular sequences flanking integrated papillomavirus DNA in four cervical cell lines and a primary cervical carcinoma have been determined. The two human papillomavirus (HPV) 16 flanking sequences derived from the tumor were localized to chromosomes regions 20pter..-->..20q13 and 3p25..-->..3qter, regions that also contain the protooncogenes c-src-1 and c-raf-1, respectively. The HPV 16 integration site in the SiHa cervical carcinoma-derived cell line is in chromosome region 13q14..-->..13q32. The HPV 18 integration site in SW756 cervical carcinoma cells is in chromosome 12 but is not closely linked to the Ki-ras2 gene. Finally, in two cervical carcinoma cell lines, HeLa and C4-I, HPV 18 DNA is integrated in chromosome 8, 5' of the c-myc gene. The HeLaHPV 18 integration site is within 40 kilobases 5' of the c-myc gene, inside the HL60 amplification unit surrounding and including the c-myc gene. Additionally, steady-state levels of c-myc mRNA are elevated in HeLa and C4-I cells relative to other cervical carcinoma cell lines. Thus, in at least some genital tumors, cis-activation of cellular oncogenes by HPV may be involved in malignant transformation of cervical cells.

  17. The LMO2 oncogene regulates DNA replication in hematopoietic cells

    PubMed Central

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F. T.; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, EL Bachir; Verreault, Alain; Hoang, Trang

    2016-01-01

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression. PMID:26764384

  18. The LMO2 oncogene regulates DNA replication in hematopoietic cells.

    PubMed

    Sincennes, Marie-Claude; Humbert, Magali; Grondin, Benoît; Lisi, Véronique; Veiga, Diogo F T; Haman, André; Cazaux, Christophe; Mashtalir, Nazar; Affar, El Bachir; Verreault, Alain; Hoang, Trang

    2016-02-02

    Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.

  19. Novel Oncogenic PDGFRA Mutations in Pediatric High-Grade Gliomas

    PubMed Central

    Paugh, Barbara S.; Zhu, Xiaoyan; Qu, Chunxu; Endersby, Raelene; Diaz, Alexander K.; Zhang, Junyuan; Bax, Dorine A.; Carvalho, Diana; Reis, Rui M.; Onar-Thomas, Arzu; Broniscer, Alberto; Wetmore, Cynthia; Zhang, Jinghui; Jones, Chris; Ellison, David W.; Baker, Suzanne J.

    2013-01-01

    The outcome for children with high-grade gliomas (HGG) remains dismal, with a two-year survival rate of only 10–30%. Diffuse intrinsic pontine glioma (DIPG) comprise a subset of HGG that arise in brainstem almost exclusively in children. Genome-wide analyses of copy number imbalances previously showed that platelet derived growth factor receptor alpha (PDGFRA) is the most frequent target of focal amplification in pediatric HGGs, including DIPGs. To determine whether PDGFRA is also targeted by more subtle mutations missed by copy number analysis, we sequenced all PDGFRA coding exons from a cohort of pediatric HGGs. Somatic activating mutations were identified in 14.4% (13/90) of non-brainstem pediatric HGGs and 4.7% (2/43) of DIPGs, including missense mutations and in-frame deletions and insertions not previously described. 40% of tumors with mutation showed concurrent amplification, while 60% carried heterozygous mutations. Six different mutations impacting different domains all resulted in ligand-independent receptor activation that was blocked by small molecule inhibitors of PDGFR. Expression of mutants in p53-null primary mouse astrocytes conferred a proliferative advantage in vitro, and generated HGGs in vivo with complete penetrance when implanted into brain. The gene expression signatures of these murine HGGs reflected the spectrum of human diffuse HGGs. PDGFRA intragenic deletion of exons 8 and 9 were previously shown in adult HGG, but were not detected in 83 non-brainstem pediatric HGG and 57 DIPGs. Thus, a distinct spectrum of mutations confers constitutive receptor activation and oncogenic activity to PDGFRα in childhood HGG. PMID:23970477

  20. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18.

    PubMed Central

    Le Douarin, B; Zechel, C; Garnier, J M; Lutz, Y; Tora, L; Pierrat, P; Heery, D; Gronemeyer, H; Chambon, P; Losson, R

    1995-01-01

    Nuclear receptors (NRs) bound to response elements mediate the effects of cognate ligands on gene expression. Their ligand-dependent activation function, AF-2, presumably acts on the basal transcription machinery through intermediary proteins/mediators. We have isolated a mouse nuclear protein, TIF1, which enhances RXR and RAR AF-2 in yeast and interacts in a ligand-dependent manner with several NRs in yeast and mammalian cells, as well as in vitro. Remarkably, these interactions require the amino acids constituting the AF-2 activating domain conserved in all active NRs. Moreover, the oestrogen receptor (ER) AF-2 antagonist hydroxytamoxifen cannot promote ER-TIF1 interaction. We propose that TIF1, which contains several conserved domains found in transcriptional regulatory proteins, is a mediator of ligand-dependent AF-2. Interestingly, the TIF1 N-terminal moiety is fused to B-raf in the mouse oncoprotein T18. Images PMID:7744009

  1. Bim Regulation of Lumen Formation in Cultured Mammary Epithelial Acini Is Targeted by Oncogenes

    PubMed Central

    Reginato, Mauricio J.; Mills, Kenna R.; Becker, Esther B. E.; Lynch, Danielle K.; Bonni, Azad; Muthuswamy, Senthil K.; Brugge, Joan S.

    2005-01-01

    Epithelial cells organize into cyst-like structures that contain a spherical monolayer of cells that enclose a central lumen. Using a three-dimensional basement membrane culture model in which mammary epithelial cells form hollow, acinus-like structures, we previously demonstrated that lumen formation is achieved, in part, through apoptosis of centrally localized cells. We demonstrate that the proapoptotic protein Bim may selectively trigger apoptosis of the centrally localized acinar cells, leading to temporally controlled lumen formation. Bim is not detectable during early stages of three-dimensional mammary acinar morphogenesis and is then highly upregulated in all cells of acini, coincident with detection of apoptosis in the centrally localized acinar cells. Inhibition of Bim expression by RNA interference transiently blocks luminal apoptosis and delays lumen formation. Oncogenes that induce acinar luminal filling, such as ErbB2 and v-Src, suppress expression of Bim through a pathway dependent on Erk-mitogen-activated protein kinase; however, HPV 16 E7, an oncogene that stimulates cell proliferation but not luminal filling, is unable to reduce Bim expression. Thus, Bim is a critical regulator of luminal apoptosis during mammary acinar morphogenesis in vitro and may be an important target of oncogenes that disrupt glandular epithelial architecture. PMID:15899862

  2. HER2 missense mutations have distinct effects on oncogenic signaling and migration.

    PubMed

    Zabransky, Daniel J; Yankaskas, Christopher L; Cochran, Rory L; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M; Red Brewer, Monica; Rosen, D Marc; Dalton, W Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A; Manto, Kristen M; Bose, Ron; Lauring, Josh; Arteaga, Carlos L; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-11-10

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as "negative" by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them.

  3. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  4. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor

    PubMed Central

    Rossi, Ferdinand; Ehlers, Imke; Agosti, Valter; Socci, Nicholas D.; Viale, Agnes; Sommer, Gunhild; Yozgat, Yasemin; Manova, Katia; Antonescu, Cristina R.; Besmer, Peter

    2006-01-01

    Kit receptor-activating mutations are critical in the pathogenesis of gastrointestinal stromal tumors (GIST). We investigated mechanisms of oncogenic Kit signaling and the consequences of therapeutic intervention in a mouse model of human GIST. Treatment of GIST mice with imatinib decreased cell proliferation and increased apoptosis in the tumor. Analysis of tumor tissue from imatinib-treated mice showed diminished phosphatidylinositol 3-kinase (PI3-kinase) and mammalian target of rapamycin (mTOR) signaling suggesting that oncogenic Kit signaling critically contributes to the translational response in GIST. Treatment with RAD001 (everolimus), an mTOR inhibitor, diminished the translational response and cell proliferation in tumor lesions, pointing to mTOR inhibition as a therapeutic approach for imatinib-resistant GIST. Analysis of RNA expression profiles in GIST lesions with and without imatinib treatment showed changes in expression of IFN-inducible genes and cell cycle regulators. These results convincingly show that KitV558Δ/+ mice represent a unique faithful mouse model of human familial GIST, and they demonstrate the utility of these mice for preclinical investigations and to elucidate oncogenic signaling mechanisms by using genetic approaches and targeted pharmacological intervention. PMID:16908864

  5. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells.

    PubMed

    Mason, J A; Davison-Versagli, C A; Leliaert, A K; Pape, D J; McCallister, C; Zuo, J; Durbin, S M; Buchheit, C L; Zhang, S; Schafer, Z T

    2016-08-01

    In order for cancer cells to survive during metastasis, they must overcome anoikis, a caspase-dependent cell death process triggered by extracellular matrix (ECM) detachment, and rectify detachment-induced metabolic defects that compromise cell survival. However, the precise signals used by cancer cells to facilitate their survival during metastasis remain poorly understood. We have discovered that oncogenic Ras facilitates the survival of ECM-detached cancer cells by using distinct effector pathways to regulate metabolism and block anoikis. Surprisingly, we find that while Ras-mediated phosphatidylinositol (3)-kinase signaling is critical for rectifying ECM-detachment-induced metabolic deficiencies, the critical downstream effector is serum and glucocorticoid-regulated kinase-1 (SGK-1) rather than Akt. Our data also indicate that oncogenic Ras blocks anoikis by diminishing expression of the phosphatase PHLPP1 (PH Domain and Leucine-Rich Repeat Protein Phosphatase 1), which promotes anoikis through the activation of p38 MAPK. Thus, our study represents a novel paradigm whereby oncogene-initiated signal transduction can promote the survival of ECM-detached cells through divergent downstream effectors.

  6. DEK Proto-Oncogene Expression Interferes with the Normal Epithelial Differentiation Program

    PubMed Central

    Wise-Draper, Trisha M.; Morreale, Richard J.; Morris, Teresa A.; Mintz-Cole, Rachael A.; Hoskins, Elizabeth E.; Balsitis, Scott J.; Husseinzadeh, Nader; Witte, David P.; Wikenheiser-Brokamp, Kathryn A.; Lambert, Paul F.; Wells, Susanne I.

    2009-01-01

    Overexpression of the DEK gene is associated with multiple human cancers, but its specific roles as a putative oncogene are not well defined. DEK transcription was previously shown to be induced by the high-risk human papillomavirus (HPV) E7 oncogene via E2F and Rb pathways. Transient DEK overexpression was able to inhibit both senescence and apoptosis in cultured cells. In at least the latter case, this mechanism involved the destabilization of p53 and the decreased expression of p53 target genes. We show here that DEK overexpression disrupts the normal differentiation program in a manner that is independent of either p53 or cell death. DEK expression was distinctly repressed upon the differentiation of cultured primary human keratinocytes, and stable DEK overexpression caused epidermal thickening in an organotypic raft model system. The observed hyperplasia involved a delay in keratinocyte differentiation toward a more undifferentiated state, and expansion of the basal cell compartment was due to increased proliferation, but not apoptosis. These phenotypes were accompanied by elevated p63 expression in the absence of p53 destabilization. In further support of bona fide oncogenic DEK activities, we report here up-regulated DEK protein levels in both human papilloma virus-positive hyperplastic murine skin and a subset of human squamous cell carcinomas. We suggest that DEK up-regulation may contribute to carcinoma development at least in part through increased proliferation and retardation of differentiation. PMID:19036808

  7. MUC1 alters oncogenic events and transcription in human breast cancer cells

    PubMed Central

    Hattrup, Christine L; Gendler, Sandra J

    2006-01-01

    Introduction MUC1 is an oncoprotein whose overexpression correlates with aggressiveness of tumors and poor survival of cancer patients. Many of the oncogenic effects of MUC1 are believed to occur through interaction of its cytoplasmic tail with signaling molecules. As expected for a protein with oncogenic functions, MUC1 is linked to regulation of proliferation, apoptosis, invasion, and transcription. Methods To clarify the role of MUC1 in cancer, we transfected two breast cancer cell lines (MDA-MB-468 and BT-20) with small interfering (si)RNA directed against MUC1 and analyzed transcriptional responses and oncogenic events (proliferation, apoptosis and invasion). Results Transcription of several genes was altered after transfection of MUC1 siRNA, including decreased MAP2K1 (MEK1), JUN, PDGFA, CDC25A, VEGF and ITGAV (integrin αv), and increased TNF, RAF1, and MMP2. Additional changes were seen at the protein level, such as increased expression of c-Myc, heightened phosphorylation of AKT, and decreased activation of MEK1/2 and ERK1/2. These were correlated with cellular events, as MUC1 siRNA in the MDA-MB-468 line decreased proliferation and invasion, and increased stress-induced apoptosis. Intriguingly, BT-20 cells displayed similar levels of apoptosis regardless of siRNA, and actually increased proliferation after MUC1 siRNA. Conclusion These results further the growing knowledge of the role of MUC1 in transcription, and suggest that the regulation of MUC1 in breast cancer may be more complex than previously appreciated. The differences between these two cell lines emphasize the importance of understanding the context of cell-specific signaling events when analyzing the oncogenic functions of MUC1, and caution against generalizing the results of individual cell lines without adequate confirmation in intact biological systems. PMID:16846534

  8. Ligand-independent dimerization of oncogenic v-erbB products involves covalent interactions.

    PubMed Central

    Adelsman, M A; Huntley, B K; Maihle, N J

    1996-01-01

    Mutant v-erbB products of avian c-erbB1 have previously been used to correlate structural domains of the receptor encoded by this proto-oncogene with tissue-specific transformation potential. In these studies, deletion of the ligand-binding domain of the receptor has been shown to be required for transformation of erythroblasts, fibroblasts, and endothelial cells. It has, therefore, been postulated that deletion of this domain results in an allosteric change in the receptor analogous to the ligand-bound state of the epidermal growth factor receptor; i.e., it induces a receptor conformation that is constitutively active with respect to mitogenic signaling. While oncogenic v-erbB products have been shown to be expressed on the cell surface of both fibroblasts and erythroblasts, no comprehensive analysis of the oligomeric potential of these products has been conducted. Since the first event known to follow epidermal growth factor binding to its receptor is oligomerization, and receptor dimerization has been correlated with mitogenic signaling, we have carefully analyzed the ability of several v-erbB products to oligomerize in the three target cell types transformed by these oncogenes. In this report, we demonstrate the v-erbB products can efficiently homodimerize in all three target tissues, that this dimerization is ligand independent and occurs at the cell surface, and that there is no apparent correlation between v-erbB dimerization and transformation of avian fibroblasts. Furthermore, both oncogenic and nononcogenic v-erbB products can heterodimerize with the native c-erbB1 product in chicken embryo fibroblasts, suggesting that heterodimerization between v-erB and native c-erbB1 is not sufficient to result in c-erbB1-mediated sarcomagenesis. PMID:8642683

  9. The Precise Sequence of FGF Receptor Autophosphorylation Is Kinetically Driven and Is Disrupted by Oncogenic Mutations

    PubMed Central

    Lew, Erin D.; Furdui, Cristina M.; Anderson, Karen S.; Schlessinger, Joseph

    2009-01-01

    Autophosphorylation of the tyrosine kinase domain of fibroblast growth factor receptor 1 (FGFR1) is mediated by a sequential and precisely ordered three-stage autophosphorylation reaction. First-stage autophosphorylation of an activation loop tyrosine leads to 50- to 100-fold stimulation of kinase activity and is followed by second-stage phosphorylation of three additional tyrosine residues, which are binding sites for signaling molecules. Finally, third-stage phosphorylation of a second activation loop tyrosine leads to an additional 10-fold stimulation of FGFR1 catalytic activity. In this report, we show that sequential autophosphorylation of five tyrosines in the FGFR1 kinase domain is under kinetic control, mediated by both the amino acid sequence surrounding the tyrosines and their locations within the kinase structure and, moreover, that phosphoryl transfer is the rate-limiting step. Furthermore, the strict order of autophosphorylation is disrupted by a glioblastoma-derived, oncogenic FGFR1 point mutation in the kinase domain. We propose that disrupted stepwise activation of tyrosine autophosphorylation caused by oncogenic and other activating FGFR mutations may lead to aberrant activation of and assembly of signaling molecules by the activated receptor. PMID:19224897

  10. The Fanconi anemia pathway controls oncogenic response in hematopoietic stem and progenitor cells by regulating PRMT5-mediated p53 arginine methylation

    PubMed Central

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Pang, Qishen

    2016-01-01

    The Fanconi anemia (FA) pathway is involved in DNA damage and other cellular stress responses. We have investigated the role of the FA pathway in oncogenic stress response by employing an in vivo stress-response model expressing the Gadd45β-luciferase transgene. Using two inducible models of oncogenic activation (LSL-K-rasG12D and MycER), we show that hematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA core complex components Fanca or Fancc exhibit aberrant short-lived response to oncogenic insults. Mechanistic studies reveal that FA deficiency in HSPCs impairs oncogenic stress-induced G1 cell-cycle checkpoint, resulting from a compromised K-rasG12D-induced arginine methylation of p53 mediated by the protein arginine methyltransferase 5 (PRMT5). Furthermore, forced expression of PRMT5 in HSPCs from LSL-K-rasG12D/CreER-Fanca−/− mice prolongs oncogenic response and delays leukemia development in recipient mice. Our study defines an arginine methylation-dependent FA-p53 interplay that controls oncogenic stress response. PMID:27507053

  11. Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    PubMed Central

    Yang, Yanan; Iwanaga, Kentaro; Raso, Maria Gabriela; Wislez, Marie; Hanna, Amy E.; Wieder, Eric D.; Molldrem, Jeffrey J.; Wistuba, Ignacio I.; Powis, Garth; Demayo, Francesco J.; Kim, Carla F.; Kurie, Jonathan M.

    2008-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients. PMID:18493606

  12. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents

    PubMed Central

    Perera, David; Venkitaraman, Ashok R.

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  13. Heparin-binding epidermal growth factor-like growth factor, a v-Jun target gene, induces oncogenic transformation

    PubMed Central

    Fu, Shu-ling; Bottoli, Ivan; Goller, Martin; Vogt, Peter K.

    1999-01-01

    Jun is a transcription factor belonging to the activator protein 1 family. A mutated version of Jun (v-Jun) transduced by the avian retrovirus ASV17 induces oncogenic transformation in avian cell cultures and sarcomas in young galliform birds. The oncogenicity of Jun probably results from transcriptional deregulation of v-Jun-responsive target genes. Here we describe the identification and characterization of a growth-related v-Jun target, a homolog of heparin-binding epidermal growth factor-like growth factor (HB-EGF). HB-EGF is strongly expressed in chicken embryo fibroblasts (CEF) transformed by v-Jun. HB-EGF expression is not detectable or is marginal in nontransformed CEF. Using a hormone-inducible Jun-estrogen receptor chimera, we found that HB-EGF expression is correlated with v-Jun activity. In this system, induction of v-Jun is followed within 1 hr by elevated levels of HB-EGF. In CEF infected with various Jun mutants, HB-EGF expression is correlated with the oncogenic potency of the mutant. Constitutive expression of HB-EGF conveys to CEF the ability to grow in soft agar and to form multilayered foci of transformed cells on a solid substrate. These observations suggest that HB-EGF is an effector of Jun-induced oncogenic transformation. PMID:10318950

  14. A RAS oncogene imparts growth factor independence to myeloid cells that abnormally regulate protein kinase C: a nonautocrine transformation pathway.

    PubMed

    Boswell, H S; Nahreini, T S; Burgess, G S; Srivastava, A; Gabig, T G; Inhorn, L; Srour, E F; Harrington, M A

    1990-06-01

    The factor-dependent cell line FDC-P1 has been utilized as a model of interleukin 3 (IL-3)-dependent myeloid cell proliferation. However, it has been recently observed that active phorbol esters (e.g., phorbol 12-myristate 13-acetate) may entirely replace IL-3 to promote its proliferation. These observations reveal abnormal regulation of protein kinase C (pkC) (absence of downregulation or overexpression). This property allowed a test of the hypothesis that the T24 RAS (codon 12) oncogene acts by constitutive and persistent pkC activation, driving proliferation. FDC-P1 cells were transfected by electroporation with the T24 RAS-containing vector pAL 8, or with a control vector pSVX Zip Neo, and neomycin-resistant clones were selected. Multiple RAS-transfectant clones were categorized for their growth factor requirement and incorporation of the 6.6-kb human mutant H-RAS genome. IL-3-independent clones had incorporated multiple (more than two) copies of the entire 6.6-kb RAS genome. The incorporation of multiple 6.6-kb RAS genomes was correlated with high-level p21 RAS expression. No evidence for autostimulatory growth factor production by clones containing the RAS oncogene was observed. Thus, acquisition of growth factor independence in myeloid cells by abundant expression of a RAS oncogene is linked, in part, to abnormal regulation of pkC, which acts as a collaborating oncogene.

  15. Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation

    PubMed Central

    Obata, Yuuki; Toyoshima, Shota; Wakamatsu, Ei; Suzuki, Shunichi; Ogawa, Shuhei; Esumi, Hiroyasu; Abe, Ryo

    2014-01-01

    Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation. PMID:25493654

  16. Inhibition of U4 snRNA in Human Cells Causes the Stable Retention of Polyadenylated Pre-mRNA in the Nucleus

    PubMed Central

    Hett, Anne; West, Steven

    2014-01-01

    Most human pre-mRNAs contain introns that are removed by splicing. Such a complex process needs strict control and regulation in order to prevent the expression of aberrant or unprocessed transcripts. To analyse the fate of pre-mRNAs that cannot be spliced, we inhibited splicing using an anti-sense morpholino (AMO) against U4 snRNA. As a consequence, splicing of several selected transcripts was strongly inhibited. This was accompanied by the formation of enlarged nuclear speckles containing polyadenylated RNA, splicing factors and the nuclear poly(A) binding protein. Consistently, more polyadenylated pre-mRNA could be isolated from nucleoplasmic as well as chromatin-associated RNA fractions following U4 inhibition. Further analysis demonstrated that accumulated pre-mRNAs were stable in the nucleus and that nuclear RNA degradation factors did not re-localise to nuclear speckles following splicing inhibition. The accumulation of pre-mRNA and the formation of enlarged speckles were sensitive to depletion of the 3′ end processing factor, CPSF73, suggesting a requirement for poly(A) site processing in this mechanism. Finally, we provide evidence that the pre-mRNAs produced following U4 snRNA inhibition remain competent for splicing, perhaps providing a biological explanation for their stability. These data further characterise processes ensuring the nuclear retention of pre-mRNA that cannot be spliced and suggest that, in some cases, unspliced transcripts can complete splicing sometime after their initial synthesis. PMID:24796696

  17. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure

    PubMed Central

    Pagliarini, Raymond; Shao, Wenlin; Sellers, William R

    2015-01-01

    A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as ‘oncogene addiction’. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies. PMID:25680965

  18. Avian oncogenic virus differential diagnosis in chickens using oligonucleotide microarray.

    PubMed

    Wang, Lih-Chiann; Huang, Dean; Pu, Chang-En; Wang, Ching-Ho

    2014-12-15

    Avian oncogenic viruses include the avian leukosis virus (ALV), reticuloendotheliosis virus (REV) and Marek's disease virus (MDV). Multiple oncogenic viral infections are frequently seen, with even Marek's disease vaccines reported to be contaminated with ALV and REV. The gross lesions caused by avian oncogenic viruses often overlap, making differentiation diagnosis based on histopathology difficult. The objective of this study is to develop a rapid approach to simultaneously differentiate, subgroup and pathotype the avian oncogenic viruses. The oligonucleotide microarray was employed in this study. Particular DNA sequences were recognized using specific hybridization between the DNA target and probe on the microarray, followed with colorimetric development through enzyme reaction. With 10 designed probes, ALV-A, ALV-E, ALV-J, REV, MDV pathogenic and vaccine strains were clearly discriminated on the microarray with the naked eyes. The detection limit was 27 copy numbers, which was 10-100 times lower than multiplex PCR. Of 102 field samples screened using the oligonucleotide microarray, 32 samples were positive for ALV-E, 17 samples were positive for ALV-J, 6 samples were positive for REV, 4 samples were positive for MDV, 7 samples were positive for both ALV-A and ALV-E, 5 samples were positive for ALV-A, ALV-E and ALV-J, one sample was positive for both ALV-J and MDV, and 3 samples were positive for both REV and MDV. The oligonucleotide microarray, an easy-to-use, high-specificity, high-sensitivity and extendable assay, presents a potent technique for rapid differential diagnosis of avian oncogenic viruses and the detection of multiple avian oncogenic viral infections under field conditions.

  19. In vivo evolution of c-rel oncogenic potential.

    PubMed

    Hrdlicková, R; Nehyba, J; Humphries, E H

    1994-04-01

    The c-rel proto-oncogene belongs to the NF-kappa B/rel and I kappa B gene families, which regulate several inducible processes, including self-defense/repair and embryogenesis. Transduction of the c-rel transcription factor by the avian retrovirus resulted in the formation of a highly oncogenic virus, reticuloendotheliosis virus strain T (REV-T), that encodes the oncogene v-rel. To examine the oncogenic potential of c-rel, we inserted it into a REV-T-based retroviral vector, rescued virus [REV-C(CSV)], and infected 1-day-old chicks. All birds developed tumors, and all cell lines established from REV-C-induced tumors expressed c-rel proteins that lacked C-terminal sequences. These proteins, responsible for both in vivo and in vitro cell proliferation, were apparently selected for their oncogenic potential. In order to examine the cooperation of C-terminal deletions with other oncogenic alterations in vivo, point mutations present in the N-terminal and middle regions of v-rel were analyzed by a similar protocol. The data obtained support four conclusions. (i) c-rel proteins bearing any of three single-amino-acid mutations present in the N-terminal portion of v-rel were sufficiently oncogenic to induce tumor development in the absence of additional mutations. (ii) Combining a mutation from the N-terminal region of v-rel with a deletion of the C-terminal sequences of c-rel increases the oncogenicity of the protein in an additive manner. (iii) Mutations present in the middle of v-rel cooperated synergistically with C-terminal deletions to produce highly transforming viruses. (iv) Deletion of c-rel produced a variety of transforming rel proteins with sizes that extended from 42 to 65 kDa. The most frequently isolated rel deletion was 62 kDa in size. To examine the basis for the selection of different rel mutants, their ability to induce immunoregulatory surface receptors was analyzed. The data revealed a correlation between the induction capacity of these mutants and

  20. Partially transformed, anchorage-independent human diploid fibroblasts result from overexpression of the c-sis oncogene: Mitogenic activity of an apparent monomeric platelet-derived growth factor 2 species

    SciTech Connect

    Stevens, C.W.; Brondyk, W.H.; Burgess, J.A.; Manoharan, T.H.; Hane, B.G.; Fahl, W.E.

    1988-05-01

    A human c-sis cDNA in an expression vector was introduced into human diploid fibroblasts by transfection or electroporation. Fibroblast clones showing an aberrant, densely packed colony morphology were isolated and found to overexpress a 3.6-kilobase sis mRNA species and associated immunoprecipitable platelet-derived growth factor (PDGF) 2 proteins. Parallel analyses in cell clones of sis mRNA expression and colony formation in agar indicated that, above a threshold, a linear, positive correlation existed between sis overexpression and acquired anchorage independence. The sis-overexpressing cells formed transient, regressing tumor nodules when injected into nude mice, consistent with the finite life span which they retained. Protein products generated from the transfected c-sis construct in two overexpressing clones were immunoprecipitated with anti-human PDGF antibodies. One clone contained an apparent PDGF dimer of 21 kilodaltons; the second clone contained only on apparent PDGF monomer of 12 kilodaltons, which was shown to account for all of the mitogenic activity present in the cells, essentially all of which was concentrated in the membrane fraction. The results demonstrate a clear link between sis overexpression and acquisition of a partially transformed, anchorage-independent phenotype, and when combined with previous observations of sis overexpression in human tumors, clearly implicate sis overexpression as a genetic mechanism which contributes to human cell transformation.

  1. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    SciTech Connect

    Coppé, Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  2. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    PubMed Central

    Seki, Yoshitaka; Mizukami, Tatsuji; Kohno, Takashi

    2015-01-01

    Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them. PMID:26437441

  3. Retroviral transduction of the human c-Ha-ras-1 oncogene into midgestation mouse embryos promotes rapid epithelial hyperplasia.

    PubMed Central

    Compere, S J; Baldacci, P A; Sharpe, A H; Jaenisch, R

    1989-01-01

    Infection of mouse embryos at 8 days of gestation with a replication-defective retrovirus carrying the human c-Ha-ras-1 oncogene led to efficient and rapid induction of hyperplastic lesions. Twenty-four percent of viable off-spring developed abnormal growths after infection with purified virus. The lesions contained a single integrated provirus and produced viral RNA and the Ha-ras oncogene product (p21). The latency period between the time of infection and appearance of the lesions suggested that secondary alterations in addition to activated ras were necessary for neoplasms to develop. The earliest and most abundant growths were cutaneous and appeared from 4 to 36 weeks of age, with a median of 4 weeks of age. A number of subcutaneous lesions also developed over the same time span but at a median of 18 weeks of age. The rapid development of cutaneous lesions in response to transduction of the ras oncogene contrasts with other studies in which adult skin required secondary treatment with promoters prior to ras induction of epithelial hyperplasia. These results demonstrate that infection of midgestation mouse embryos allows rapid analysis of oncogene potency in skin. Images PMID:2648134

  4. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    PubMed Central

    Coppé, Jean-Philippe; Sun, Yu; Muñoz, Denise P; Goldstein, Joshua; Nelson, Peter S; Desprez, Pierre-Yves; Campisi, Judith

    2008-01-01

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. PMID:19053174

  5. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion

    PubMed Central

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression. PMID:25723869

  6. Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.

    PubMed

    Vanni, Cristina; Ognibene, Marzia; Finetti, Federica; Mancini, Patrizia; Cabodi, Sara; Segalerba, Daniela; Torrisi, Maria Rosaria; Donnini, Sandra; Bosco, Maria Carla; Varesio, Luigi; Eva, Alessandra

    2015-01-01

    The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression.To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and 3-dimensional cultures of MCF-10 A cells. We show that upon Dbl expression MCF-10 A cells undergo EMT. In addition, we found that Dbl overexpression sustains Cdc42 and Rac activation inducing morphological alterations, characterized by the presence of lamellipodia and conferring a high migratory capacity to the cells. Moreover, Dbl expressing MCF-10 A cells form altered 3D structures and can induce angiogenesis by producing proangiogenic factors such as CCL2. These results support a role for Dbl oncogene in epithelial cell differentiation and transformation and suggest the relevance of GEF deregulation in tumor onset and progression.

  7. Mouse Elk oncogene maps to chromosome X and a novel Elk oncogene (Elk3) maps to chromosome 10

    SciTech Connect

    Tamai, Yoshitaka; Taketo, Makoto; Nozaki, Masami

    1995-03-20

    The Elk protein is a member of the Ets family found in both vertebrates and invertebrates. Human ELK1 encoded by ELK1 binds alone or together with serum response factor to DNA and regulates gene expression in a variety of biological processes. Using a panel of interspecific backcross mice, we have mapped the Elk oncogene (Elk) and a novel type Elk oncogene (Elk3), closely related to ELK1. Elk maps to Chr X, and Elk3 maps to the proximal region of Chr 10. 18 refs., 1 fig., 1 tab.

  8. The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes.

    PubMed

    Rasheedi, Sheeba; Shun, Ming-Chieh; Serrao, Erik; Sowd, Gregory A; Qian, Juan; Hao, Caili; Dasgupta, Twishasri; Engelman, Alan N; Skowronski, Jacek

    2016-05-27

    HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.

  9. Human papillomavirus DNA and oncogene alterations in colorectal tumors.

    PubMed

    Pérez, Luis Orlando; Barbisan, Gisela; Ottino, Anabel; Pianzola, Horacio; Golijow, Carlos Daniel

    2010-09-01

    The aim of the present study is to determine the presence and molecular integrity of high-risk HPV types in colorectal adenocarcinomas and to assess whether viral DNA is related to common proto-oncogene alterations, such as k-ras mutations and c-myc gene amplification, in colorectal cancer. Seventy-five colorectal adenocarcinomas were screened for HPV infection using nested-PCR (MY09/11-GP5+/6+). HPV typing was performed by type-specific PCR for HPV 16 and HPV 18 DNA. Unidentified samples were subsequently sequenced to determine the viral genotype. The physical status of HPV was determined by a nested PCR approach for type-specific E2 sequences. C-myc amplification was assessed by co-amplification with β-globin as control locus, and mutation in k-ras codons 12 and 13 by ARMS-PCR. Overall, HPV was detected in thirty-three colorectal specimens (44%). HPV 16 was the prevalent type (16/75), followed by HPV 18 (15/75), HPV 31 (1/75) and HPV 66 (1/75). E2 disruption was detected in 56.3% of HPV 16 and in 40% of HPV 18 positive tumors. C-myc amplification was detected in 29.4% of cases, while k-ras mutations in 30.7%. There was no significant trend for HPV infection in tumors harboring either k-ras or c-myc alterations. This study demonstrates HPV DNA and viral integration in colorectal tumors, suggesting a potential role of this virus in colorectal carcinogenesis. There was no concurrence, however, of k-ras and c-myc activation with viral infection.

  10. Oncogenic cancer/testis antigens: prime candidates for immunotherapy.

    PubMed

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-06-30

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.

  11. Folate levels modulate oncogene-induced replication stress and tumorigenicity

    PubMed Central

    Lamm, Noa; Maoz, Karin; Bester, Assaf C; Im, Michael M; Shewach, Donna S; Karni, Rotem; Kerem, Batsheva

    2015-01-01

    Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development. PMID:26197802

  12. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation

    PubMed Central

    Tape, Christopher J.; Ling, Stephanie; Dimitriadi, Maria; McMahon, Kelly M.; Worboys, Jonathan D.; Leong, Hui Sun; Norrie, Ida C.; Miller, Crispin J.; Poulogiannis, George; Lauffenburger, Douglas A.; Jørgensen, Claus

    2016-01-01

    Summary Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRASG12D) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRASG12D signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRASG12D engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRASG12D. Consequently, reciprocal KRASG12D produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRASG12D alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. Video Abstract PMID:27087446

  13. Regulation of oncogene expression in T-DNA-transformed host plant cells.

    PubMed

    Zhang, Yi; Lee, Chil-Woo; Wehner, Nora; Imdahl, Fabian; Svetlana, Veselova; Weiste, Christoph; Dröge-Laser, Wolfgang; Deeken, Rosalia

    2015-01-01

    Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance

  14. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes

    PubMed Central

    Marchi, Saverio; Giorgi, Carlotta; Oparka, Monika; Duszynski, Jerzy; Wieckowski, Mariusz R; Pinton, Paolo

    2014-01-01

    The different mechanisms employed by proto-oncogenes and tumor suppressors to regulate cell death pathways are strictly linked to their localization. In addition to the canonical control of apoptosis at a transcriptional/nuclear level, intracellular zones are emerging as pivotal sites for the activities of several proapoptotic and antiapoptotic factors. Here, we review the function of the endoplasmic reticulum-mitochondria interface as a primary platform for decoding danger signals as well as a structural accommodation for several regulator or effector proteins. PMID:27308328

  15. Osa Protein Constitutes a Strong Oncogenic Suppression System That Can Block vir-Dependent Transfer of IncQ Plasmids between Agrobacterium Cells and the Establishment of IncQ Plasmids in Plant Cells

    PubMed Central

    Lee, Lan-Ying; Gelvin, Stanton B.

    2004-01-01

    The osa (oncogenic suppressive activity) gene of the IncW group plasmid pSa is sufficient to suppress tumorigenesis by Agrobacterium tumefaciens. osa confers oncogenic suppression by inhibiting VirE2 protein export. This result is similar, but not identical, to that of oncogenic suppression by the IncQ plasmid RSF1010. We conducted a series of experiments to compare oncogenic suppression by these two systems. Agrobacterium strains harboring plasmids containing osa are more able to effect oncogenic suppression than are similar strains containing various RSF1010 derivatives. When osa is present within a donor Agrobacterium strain that also carries a derivative of RSF1010, the transfer of RSF1010 derivatives to recipient bacteria and their establishment in plants are blocked. Oncogenic suppression is still effected when the osa gene is integrated into the Agrobacterium chromosome, suggesting that it is the osa gene product that is active in suppression and that suppression does not require a protein-nucleic acid intermediate like that described for IncQ plasmids. Extracellular complementation experiments with tobacco leaf disks indicated that Osa blocks stable transfer of RSF1010 to plant cells by inhibiting transfer of VirE2, which is essential for the transfer of RSF1010 into plant cells, and not by inhibiting the actual transfer of RSF1010 itself. Our results suggest that Osa and RSF1010 cause oncogenic suppression by using different mechanisms. PMID:15489437

  16. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  17. STAT5 Outcompetes STAT3 To Regulate the Expression of the Oncogenic Transcriptional Modulator BCL6

    PubMed Central

    Walker, Sarah R.; Nelson, Erik A.; Yeh, Jennifer E.; Pinello, Luca; Yuan, Guo-Cheng

    2013-01-01

    Inappropriate activation of the transcription factors STAT3 and STAT5 has been shown to drive cancer pathogenesis through dysregulation of genes involved in cell survival, growth, and differentiation. Although STAT3 and STAT5 are structurally related, they can have opposite effects on key genes, including BCL6. BCL6, a transcriptional repressor, has been shown to be oncogenic in diffuse large B cell lymphoma. BCL6 also plays an important role in breast cancer pathogenesis, a disease in which STAT3 and STAT5 can be activated individually or concomitantly. To determine the mechanism by which these oncogenic transcription factors regulate BCL6 transcription, we analyzed their effects at the levels of chromatin and gene expression. We found that STAT3 increases expression of BCL6 and enhances recruitment of RNA polymerase II phosphorylated at a site associated with transcriptional initiation. STAT5, in contrast, represses BCL6 expression below basal levels and decreases the association of RNA polymerase II at the gene. Furthermore, the repression mediated by STAT5 is dominant over STAT3-mediated induction. STAT5 exerts this effect by displacing STAT3 from one of the two regulatory regions to which it binds. These findings may underlie the divergent biology of breast cancers containing activated STAT3 alone or in conjunction with activated STAT5. PMID:23716595

  18. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A.

    PubMed

    Pereg, Yaron; Liu, Bob Y; O'Rourke, Karen M; Sagolla, Meredith; Dey, Anwesha; Komuves, Laszlo; French, Dorothy M; Dixit, Vishva M

    2010-04-01

    The dual specificity (Tyr/Thr) phosphatase Cdc25A activates cyclin-dependent kinases (Cdks) to promote cell-cycle progression and has significant oncogenic potential. Cdc25A protein levels are regulated tightly in normal tissues, but many human cancers overexpress Cdc25A. The underlying mechanism for overexpression has been enigmatic. Here we show that Cdc25A is stabilized by the ubiquitin hydrolase Dub3. Upon binding Cdc25A, Dub3 removes the polyubiquitin modifications that mark Cdc25A for proteasomal degradation. Dub3 knockdown in cells increased Cdc25A ubiquitylation and degradation, resulting in reduced Cdk/Cyclin activity and arrest at G1/S and G2/M phases of the cell cycle. In contrast, acute Dub3 overexpression produced a signature response to oncogene induction: cells accumulated in S and G2 because of replication stress, and activated a DNA damage response. Dub3 also transformed NIH-3T3 cells and cooperated with activated H-Ras to promote growth in soft agar. Importantly, we show that Dub3 overexpression is responsible for an abnormally high level of Cdc25A in a subset of human breast cancers. Moreover, Dub3 knockdown significantly retarded the growth of breast tumour xenografts in nude mice. As a major regulator of Cdc25A, Dub3 is an example of a transforming ubiquitin hydrolase that subverts a key component of the cell cycle machinery.

  19. Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas

    PubMed Central

    Bognar, M K; Vincendeau, M; Erdmann, T; Seeholzer, T; Grau, M; Linnemann, J R; Ruland, J; Scheel, C H; Lenz, P; Ott, G; Lenz, G; Hauck, S M; Krappmann, D

    2016-01-01

    Constitutive activation of the antiapoptotic nuclear factor-κB (NF-κB) signaling pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphomas (DLBCL). Recurrent oncogenic mutations are found in the scaffold protein CARMA1 (CARD11) that connects B-cell receptor (BCR) signaling to the canonical NF-κB pathway. We asked how far additional downstream processes are activated and contribute to the oncogenic potential of DLBCL-derived CARMA1 mutants. To this end, we expressed oncogenic CARMA1 in the NF-κB negative DLBCL lymphoma cell line BJAB. By a proteomic approach we identified recruitment of β-catenin and its destruction complex consisting of APC, AXIN1, CK1α and GSK3β to oncogenic CARMA1. Recruitment of the β-catenin destruction complex was independent of CARMA1-BCL10-MALT1 complex formation or constitutive NF-κB activation and promoted the stabilization of β-catenin. The β-catenin destruction complex was also recruited to CARMA1 in ABC DLBCL cell lines, which coincided with elevated β-catenin expression. In line, β-catenin was frequently detected in non-GCB DLBCL biopsies that rely on chronic BCR signaling. Increased β-catenin amounts alone were not sufficient to induce classical WNT target gene signatures, but could augment TCF/LEF-dependent transcriptional activation in response to WNT signaling. In conjunction with NF-κB, β-catenin enhanced expression of immunosuppressive interleukin-10 and suppressed antitumoral CCL3, indicating that β-catenin can induce a favorable tumor microenvironment. Thus, parallel activation of NF-κB and β-catenin signaling by gain-of-function mutations in CARMA1 augments WNT stimulation and is required for regulating the expression of distinct NF-κB target genes to trigger cell-intrinsic and extrinsic processes that promote DLBCL lymphomagenesis. PMID:26776161

  20. Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways.

    PubMed

    Kaipparettu, Benny Abraham; Ma, Yewei; Park, Jun Hyoung; Lee, Tin-Lap; Zhang, Yiqun; Yotnda, Patricia; Creighton, Chad J; Chan, Wai-Yee; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial-nucleus cross talks and mitochondrial retrograde regulation can play a significant role in cellular properties. Transmitochondrial cybrid systems (cybrids) are an excellent tool to study specific effects of altered mitochondria under a defined nuclear background. The majority of the studies using the cybrid model focused on the significance of specific mitochondrial DNA variations in mitochondrial function or tumor properties. However, most of these variants are benign polymorphisms without known functional significance. From an objective of rectifying mitochondrial defects in cancer cells and to establish mitochondria as a potential anticancer drug target, understanding the role of functional mitochondria in reversing oncogenic properties under a cancer nuclear background is very important. Here we analyzed the potential reversal of oncogenic properties of a highly metastatic cell line with the introduction of non-cancerous mitochondria. Cybrids were established by fusing the mitochondria DNA depleted 143B TK- ρ0 cells from an aggressive osteosarcoma cell line with mitochondria from benign breast epithelial cell line MCF10A, moderately metastatic breast cancer cell line MDA-MB-468 and 143B cells. In spite of the uniform cancerous nuclear background, as observed with the mitochondria donor cells, cybrids with benign mitochondria showed high mitochondrial functional properties including increased ATP synthesis, oxygen consumption and respiratory chain activities compared to cybrids with cancerous mitochondria. Interestingly, benign mitochondria could reverse different oncogenic characteristics of 143B TK(-) cell including cell proliferation, viability under hypoxic condition, anti-apoptotic properties, resistance to anti-cancer drug, invasion, and colony formation in soft agar, and in vivo tumor growth in nude mice. Microarray analysis suggested that several oncogenic pathways observed in cybrids with cancer mitochondria are inhibited in cybrids with

  1. Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice.

    PubMed

    Sebti, S M; Tkalcevic, G T; Jani, J P

    1991-05-01

    Post-translational modification of oncogenic p21ras proteins with farnesyl, a lipid intermediate in cholesterol biosynthesis, is required for p21ras membrane association and for the ability of p21ras to transform cultured cells. We have tested the ability of lovastatin, a specific inhibitor of cholesterol biosynthesis, to inhibit the growth of ras oncogene-transformed cells in vivo. Balb/c mouse 3T3 cells, transfected with H-ras oncogene from human EJ bladder carcinoma, were highly tumorigenic in nude mice. Immunoprecipitation studies with transformed EJ cells showed that lovastatin (1-100 microM) inhibited p21ras membrane association in a concentration-dependent manner and that a 10 microM concentration reduced the amount of p21ras bound to the membrane by 50%. Lovastatin also inhibited EJ cell growth in a concentration range that closely paralleled that required for inhibition of p21ras membrane association. Treatment of nude mice bearing subcutaneous (s.c.) EJ tumors with lovastatin (50 mg/kg) significantly inhibited the abilities of these tumors to grow as early as four days and, by day 12, the lovastatin treated group of animals had tumors with an average size that was 3-fold smaller than those in the saline treated group. Western blotting studies showed that lovastatin (50 mg/kg) was also able to inhibit p21ras membrane association in EJ tumors implanted s.c. in nude mice. These results demonstrate that lovastatin, an inhibitor of cholesterol biosynthesis, inhibited in vivo tumor growth of H-ras oncogene transformed cells. The results also suggest that inhibition of p21ras membrane association, an essential step in ras oncogene neoplastic transformation, is one mechanism by which lovastatin may express its antitumor activity.

  2. An Adenoviral Vaccine Encoding Full-Length Inactivated Human HER2 Exhibits Potent Immunogenicty and Enhanced Therapeutic Efficacy Without Oncogenicity

    PubMed Central

    Hartman, Zachary; Wei, Junping; Osada, Takuya; Glass, Oliver; Lei, Gangjun; Yang, Xiao-Yi; Peplinski, Sharon; Kim, Dong-Wan; Xia, Wenle; Spector, Neil; Marks, Jeffrey; Barry, William; Hobeika, Amy; Devi, Gayathri; Amalfitano, Andrea; Morse, Michael A.; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Purpose Overexpression of the breast cancer oncogene HER2 correlates with poor survival. Current HER2-directed therapies confer limited clinical benefits and most patients experience progressive disease. Because refractory tumors remain strongly HER2+, vaccine approaches targeting HER2 have therapeutic potential, but wild type (wt) HER2 cannot safely be delivered in imunogenic viral vectors because it is a potent oncogene. We designed and tested several HER2 vaccines devoid of oncogenic activity to develop a safe vaccine for clinical use. Experimental Design We created recombinant adenoviral vectors expressing the extracellular domain of HER2 (Ad-HER2-ECD), ECD plus the transmembrane domain (Ad-HER2-ECD-TM) and full length HER2 inactivated for kinase function (Ad-HER2-ki) and determined their immunogenicity and anti-tumor effect in wild type (WT) and HER2 tolerant mice. To assess their safety, we compared their effect on the cellular transcriptome, cell proliferation, anchorage-dependent growth, and transformation potential in vivo. Results Ad-HER2-ki was the most immunogenic vector in WT animals, retained immunogenicity in HER2-transgenic tolerant animals, and showed strong therapeutic efficacy in treatment models. Despite being highly expressed, HER2-ki protein was not phosphorylated and did not produce an oncogenic gene signature in primary human cells. And, in contrast to HER2-wt, cells overexpressing HER2-ki were less proliferative, displayed less anchorage independent growth and were not transformed in vivo. Conclusions Vaccination with mutationally inactivated, non-oncogenic Ad-HER2-ki results in robust polyclonal immune responses to HER2 in tolerant models, which translates into strong and effective anti-tumor responses in vivo. Ad-HER2-ki is thus a safe and promising vaccine for evaluation in clinical trials. PMID:20179231

  3. IL-33 Facilitates Oncogene Induced Cholangiocarcinoma in Mice by an IL-6 Sensitive Mechanism

    PubMed Central

    Yamada, Daisaku; Rizvi, Sumera; Razumilava, Nataliya; Bronk, Steven F.; Davila, Jaime I.; Champion, Mia D.; Borad, Mitesh J.; Bezerra, Jorge A.; Chen, Xin; Gores, Gregory J.

    2015-01-01

    Cholangiocarcinoma (CCA) is a lethal hepatobiliary neoplasm originating from the biliary apparatus. In humans, CCA risk factors include hepatobiliary inflammation and fibrosis. The recently identified IL-1 family member, IL-33, has been shown to be a biliary mitogen which also promotes liver inflammation and fibrosis. Our aim was to generate a mouse model of CCA mimicking the human disease. Ectopic oncogene expression in the biliary tract was accomplished by the Sleeping Beauty transposon transfection system with transduction of constitutively active AKT (myr-AKT) and Yes-associated protein (YAP). Intrabiliary instillation of the transposon-transposase complex was coupled with lobar bile duct ligation in CL57BL/6 mice, followed by administration of IL-33 for three consecutive days. Tumors developed in 72% of the male mice receiving both oncogenes plus IL-33 by 10 weeks, but in only 20% of the male mice transduced with the oncogenes alone. Tumors expressed SOX9 and pancytokeratin (PanCK) [features of cholangiocarcinoma] but were negative for HepPar1 [a marker of hepatocellular carcinoma (HCC)]. RNA profiling revealed substantive overlap with human CCA specimens. Not only did IL-33 induce IL-6 expression by human cholangiocytes, but IL-33 likely facilitated tumor development in vivo by an IL-6 sensitive process, as tumor development was significantly attenuated in Il-6 -/- male animals. Furthermore, tumor formation occurred at a similar rate when IL-6 was substituted for IL-33 in this model. In conclusion, the transposase-mediated transduction of constitutively active AKT and YAP in the biliary epithelium coupled with lobar obstruction and IL-33 administration results in the development of CCA with morphological and biochemical features of the human disease. This model highlights the role of inflammatory cytokines in CCA oncogenesis. PMID:25580681

  4. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia.

    PubMed

    Wan, Liling; Wen, Hong; Li, Yuanyuan; Lyu, Jie; Xi, Yuanxin; Hoshii, Takayuki; Joseph, Julia K; Wang, Xiaolu; Loh, Yong-Hwee E; Erb, Michael A; Souza, Amanda L; Bradner, James E; Shen, Li; Li, Wei; Li, Haitao; Allis, C David; Armstrong, Scott A; Shi, Xiaobing

    2017-03-09

    Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown. Here we show that the YEATS domain-containing protein ENL, but not its paralogue AF9, is required for disease maintenance in acute myeloid leukaemia. CRISPR-Cas9-mediated depletion of ENL led to anti-leukaemic effects, including increased terminal myeloid differentiation and suppression of leukaemia growth in vitro and in vivo. Biochemical and crystal structural studies and chromatin-immunoprecipitation followed by sequencing analyses revealed that ENL binds to acetylated histone H3, and co-localizes with H3K27ac and H3K9ac on the promoters of actively transcribed genes that are essential for leukaemia. Disrupting the interaction between the YEATS domain and histone acetylation via structure-based mutagenesis reduced the recruitment of RNA polymerase II to ENL-target genes, leading to the suppression of oncogenic gene expression programs. Notably, disrupting the functionality of ENL further sensitized leukaemia cells to BET inhibitors. Together, our data identify ENL as a histone acetylation reader that regulates oncogenic transcriptional programs in acute myeloid leukaemia, and suggest that displacement of ENL from chromatin may be a promising epigenetic therapy, alone or in combination with BET inhibitors, for aggressive leukaemia.

  5. Characterization of a novel oncogenic K-ras mutation in colon cancer

    SciTech Connect

    Akagi, Kiwamu . E-mail: akagi@cancer-c.pref.saitama.jp; Uchibori, Ryosuke; Yamaguchi, Kensei; Kurosawa, Keiko; Tanaka, Yoichiro; Kozu, Tomoko

    2007-01-19

    Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity.

  6. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification.

  7. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices.

    PubMed

    Leshchiner, Elizaveta S; Parkhitko, Andrey; Bird, Gregory H; Luccarelli, James; Bellairs, Joseph A; Escudero, Silvia; Opoku-Nsiah, Kwadwo; Godes, Marina; Perrimon, Norbert; Walensky, Loren D

    2015-02-10

    Activating mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) underlie the pathogenesis and chemoresistance of ∼ 30% of all human tumors, yet the development of high-affinity inhibitors that target the broad range of KRAS mutants remains a formidable challenge. Here, we report the development and validation of stabilized alpha helices of son of sevenless 1 (SAH-SOS1) as prototype therapeutics that directly inhibit wild-type and mutant forms of KRAS. SAH-SOS1 peptides bound in a sequence-specific manner to KRAS and its mutants, and dose-responsively blocked nucleotide association. Importantly, this functional binding activity correlated with SAH-SOS1 cytotoxicity in cancer cells expressing wild-type or mutant forms of KRAS. The mechanism of action of SAH-SOS1 peptides was demonstrated by sequence-specific down-regulation of the ERK-MAP kinase phosphosignaling cascade in KRAS-driven cancer cells and in a Drosophila melanogaster model of Ras85D(V12) activation. These studies provide evidence for the potential utility of SAH-SOS1 peptides in neutralizing oncogenic KRAS in human cancer.

  8. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes.

    PubMed

    Tremblay, Mathieu; Tremblay, Cédric S; Herblot, Sabine; Aplan, Peter D; Hébert, Josée; Perreault, Claude; Hoang, Trang

    2010-06-01

    Deciphering molecular events required for full transformation of normal cells into cancer cells remains a challenge. In T-cell acute lymphoblastic leukemia (T-ALL), the genes encoding the TAL1/SCL and LMO1/2 transcription factors are recurring targets of chromosomal translocations, whereas NOTCH1 is activated in >50% of samples. Here we show that the SCL and LMO1 oncogenes collaborate to expand primitive thymocyte progenitors and inhibit later stages of differentiation. Together with pre-T-cell antigen receptor (pre-TCR) signaling, these oncogenes provide a favorable context for the acquisition of activating Notch1 mutations and the emergence of self-renewing leukemia-initiating cells in T-ALL. All tumor cells harness identical and specific Notch1 mutations and Tcrbeta clonal signature, indicative of clonal dominance and concurring with the observation that Notch1 gain of function confers a selective advantage to SCL-LMO1 transgenic thymocytes. Accordingly, a hyperactive Notch1 allele accelerates leukemia onset induced by SCL-LMO1 and bypasses the requirement for pre-TCR signaling. Finally, the time to leukemia induced by the three transgenes corresponds to the time required for clonal expansion from a single leukemic stem cell, suggesting that SCL, LMO1, and Notch1 gain of function, together with an active pre-TCR, might represent the minimum set of complementing events for the transformation of susceptible thymocytes.

  9. The gsp oncogene disrupts Ras/ERK-dependent prolactin gene regulation in gsp inducible somatotroph cell line.

    PubMed

    Pertuit, M; Romano, D; Zeiller, C; Barlier, A; Enjalbert, A; Gerard, C

    2011-04-01

    The MAPK ERK1/2 cascade regulates all the critical cellular functions, and in many pathological situations, these regulatory processes are perturbed. It has been clearly established that this cascade is an integrative point in the control of the pituitary functions exerted by various extracellular signals. In particular, ERK1/2 cross talk with the cAMP pathway is determinant in the control of somatolactotroph hormonal secretion exerted via neuropeptide receptors. GH-secreting adenomas are characterized by frequent cAMP pathway alterations, such as constitutive activation of the α-subunit of the heterotrimeric Gs protein (the gsp oncogene), overexpression of Gsα, and changes in the protein kinase A regulatory subunits. However, it has not yet been established exactly how these alterations result in GH-secreting adenomas or how the ERK1/2 cascade contributes to the process of GH-secreting adenoma tumorigenesis. In this study on the conditional gsp-oncogene-expressing GH4C1 cell line, expression of the gsp oncogene, which was observed in up to 40% of GH-secreting adenomas, was found to induce sustained ERK1/2 activation, which required activation of the protein kinase A and the GTPases Ras and Rap1. All these signaling components contribute to the chronic activation of the human prolactin promoter. The data obtained here show that Ras plays a crucial role in these processes: in a physiopathological context, i.e. in the presence of the gsp oncogene, it switched from being a repressor of the cAMP/ protein kinase A ERK-sensitive prolactin gene control exerted by neuropeptides to an activator of the prolactin promoter.

  10. Discrimination of individual and concurrent glycosylation and polyadenylation mutations causing pseudo-deficiency of arylsulfatase A from mutations causing metachromatic leukodystrophy

    SciTech Connect

    Ben-Yoseph, Y.; Mitchell, D.A.

    1994-09-01

    Pseudo-deficiency (PD) of arylsulfatase A (ASA) is a benign condition of ASA deficiency that cannot be distinguished biochemically from metachromatic leukodystrophy (MLD). Two A{r_arrow}G transitions were identified in a number of PD alleles. One abolishes an N-glycosylation site and the other modifies a polyadenylation signal. These mutations were detected simultaneously be allele-specific PCR amplification of about 1 kilobase of DNA stretching from the glycosylation site in exon 6 to the adenylation site at the 3{prime} end of the ASA gene. A pair of normal primers and a pair of mutant primers were used in this simultaneous detection procedure. This method did not work when only one of the two mutations was present. To allow detection of the individual PD mutations, we used a distinct wild-type or mutant-specific primer on one side of the amplified fragment and a common primer on the other side. Detection of individual PD mutations was also accomplished by restriction digestion. The polyadenylation mutation created a Mae III restriction site. In the case of the N-glycosylation mutation that did not produce or destroy any known restriction site, we modified a single nucleotide in one primer and were able to create a Bfa I restriction site in the mutant allele. With these methods we detected PD alleles with individual and concurrent glycosylation and adenylation mutations. While the adenylation mutation alone was rare, the glycosylation mutation alone was more common that the concurrent presence of both mutations. Detection of PD mutations in the ASA gene by allele-specific amplification and by restriction digestion should help to resolve genotypic ambiguities in diagnosis and carrier detection of MLD.

  11. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    SciTech Connect

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  12. Combining immunotherapy with oncogene-targeted therapy: a new road for melanoma treatment.

    PubMed

    Aris, Mariana; Barrio, María Marcela

    2015-01-01

    Cutaneous melanoma arises from the malignant transformation of skin melanocytes; its incidence and mortality have been increasing steadily over the last 50 years, now representing 3% of total tumors. Once melanoma metastasizes, prognosis is somber and therapeutic options are limited. However, the discovery of prevalent BRAF mutations in at least 50% of melanoma tumors led to development of BRAF-inhibitors, and other drugs targeting the MAPK pathway including MEK-inhibitors, are changing this reality. These recently approved treatments for metastatic melanoma have made a significant impact on patient survival; though the results are shadowed by the appearance of drug-resistance. Combination therapies provide a rational strategy to potentiate efficacy and potentially overcome resistance. Undoubtedly, the last decade has also born a renaissance of immunotherapy, and encouraging advances in metastatic melanoma treatment are illuminating the road. Immune checkpoint blockades, such as CTLA-4 antagonist-antibodies, and multiple cancer vaccines are now invaluable arms of anti-tumor therapy. Recent work has brought to light the delicate relationship between tumor biology and the immune system. Host immunity contributes to the anti-tumor activity of oncogene-targeted inhibitors within a complex network of cytokines and chemokines. Therefore, combining immunotherapy with oncogene-targeted drugs may be the key to melanoma control. Here, we review ongoing clinical studies of combination therapies using both oncogene inhibitors and immunotherapeutic strategies in melanoma patients. We will revisit the preclinical evidence that tested sequential and concurrent schemes in suitable animal models and formed the basis for the current trials. Finally, we will discuss potential future directions of the field.

  13. In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential.

    PubMed

    Raffeiner, Philipp; Röck, Ruth; Schraffl, Andrea; Hartl, Markus; Hart, Jonathan R; Janda, Kim D; Vogt, Peter K; Stefan, Eduard; Bister, Klaus

    2014-10-15

    The oncogenic bHLH-LZ transcription factor Myc forms binary complexes with its binding partner Max. These and other bHLH-LZ-based protein-protein interactions (PPI) in the Myc-Max network are essential for the physiological and oncogenic activities of Myc. We have generated a genetically determined and highly specific protein-fragment complementation assay based on Renilla luciferase to analyze the dynamic interplay of bHLH-LZ transcription factors Myc, Max, and Mxd1 in vivo. We also applied this PPI reporter to quantify alterations of nuclear Myc-Max complexes in response to mutational events, competitive binding by the transcriptional repressor Mxd1, or perturbations by small-molecule Myc inhibitors, including recently identified potent PPI inhibitors from a Kröhnke pyridine library. We show that the specificity of Myc-Max PPI reduction by the pyridine inhibitors directly correlates with their efficient and highly specific potential to interfere with the proliferation of human and avian tumor cells displaying deregulated Myc expression. In a direct comparison with known Myc inhibitors using human and avian cell systems, the pyridine compounds reveal a unique inhibitory potential even at sub-micromolar concentrations combined with remarkable specificity for the inhibition of Myc-driven tumor cell proliferation. Furthermore, we show in direct comparisons using defined avian cell systems that different Max PPI profiles for the variant members of the Myc protein family (c-Myc, v-Myc, N-Myc, L-Myc) correlate with their diverse oncogenic potential and their variable sensitivity to the novel pyridine inhibitors.

  14. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice

    PubMed Central

    Collins, Meredith A.; Bednar, Filip; Zhang, Yaqing; Brisset, Jean-Christophe; Galbán, Stefanie; Galbán, Craig J.; Rakshit, Sabita; Flannagan, Karen S.; Adsay, N. Volkan; Pasca di Magliano, Marina

    2012-01-01

    Pancreatic cancer is almost invariably associated with mutations in the KRAS gene, most commonly KRASG12D, that result in a dominant-active form of the KRAS GTPase. However, how KRAS mutations promote pancreatic carcinogenesis is not fully understood, and whether oncogenic KRAS is required for the maintenance of pancreatic cancer has not been established. To address these questions, we generated two mouse models of pancreatic tumorigenesis: mice transgenic for inducible KrasG12D, which allows for inducible, pancreas-specific, and reversible expression of the oncogenic KrasG12D, with or without inactivation of one allele of the tumor suppressor gene p53. Here, we report that, early in tumorigenesis, induction of oncogenic KrasG12D reversibly altered normal epithelial differentiation following tissue damage, leading to precancerous lesions. Inactivation of KrasG12D in established precursor lesions and during progression to cancer led to regression of the lesions, indicating that KrasG12D was required for tumor cell survival. Strikingly, during all stages of carcinogenesis, KrasG12D upregulated Hedgehog signaling, inflammatory pathways, and several pathways known to mediate paracrine interactions between epithelial cells and their surrounding microenvironment, thus promoting formation and maintenance of the fibroinflammatory stroma that plays a pivotal role in pancreatic cancer. Our data establish that epithelial KrasG12D influences multiple cell types to drive pancreatic tumorigenesis and is essential for tumor maintenance. They also strongly support the notion that inhibiting KrasG12D, or its downstream effectors, could provide a new approach for the treatment of pancreatic cancer. PMID:22232209

  15. Multiple endocrine neoplasias type 2B and RET proto-oncogene

    PubMed Central

    2012-01-01

    Multiple Endocrine Neoplasia type 2B (MEN 2B) is an autosomal dominant complex oncologic neurocristopathy including medullary thyroid carcinoma, pheochromocytoma, gastrointestinal disorders, marphanoid face, and mucosal multiple ganglioneuromas. Medullary thyroid carcinoma is the major cause of mortality in MEN 2B syndrome, and it often appears during the first years of life. RET proto-oncogene germline activating mutations are causative for MEN 2B. The 95% of MEN 2B patients are associated with a point mutation in exon 16 (M918/T). A second point mutation at codon 883 has been found in 2%-3% of MEN 2B cases. RET proto-oncogene is also involved in different neoplastic and not neoplastic neurocristopathies. Other RET mutations cause MEN 2A syndrome, familial medullary thyroid carcinoma, or Hirschsprung's disease. RET gene expression is also involved in Neuroblastoma. The main diagnosis standards are the acetylcholinesterase study of rectal mucosa and the molecular analysis of RET. In our protocol the rectal biopsy is, therefore, the first approach. RET mutation detection offers the possibility to diagnose MEN 2B predisposition at a pre-clinical stage in familial cases, and to perform an early total prophylactic thyroidectomy. The surgical treatment of MEN 2B is total thyroidectomy with cervical limphadenectomy of the central compartment of the neck. When possible, this intervention should be performed with prophylactic aim before 1 year of age in patients with molecular genetic diagnosis. Recent advances into the mechanisms of RET proto-oncogene signaling and pathways of RET signal transduction in the development of MEN 2 and MTC will allow new treatment possibilities. PMID:22429913

  16. Combining Immunotherapy with Oncogene-Targeted Therapy: A New Road for Melanoma Treatment

    PubMed Central

    Aris, Mariana; Barrio, María Marcela

    2015-01-01

    Cutaneous melanoma arises from the malignant transformation of skin melanocytes; its incidence and mortality have been increasing steadily over the last 50 years, now representing 3% of total tumors. Once melanoma metastasizes, prognosis is somber and therapeutic options are limited. However, the discovery of prevalent BRAF mutations in at least 50% of melanoma tumors led to development of BRAF-inhibitors, and other drugs targeting the MAPK pathway including MEK-inhibitors, are changing this reality. These recently approved treatments for metastatic melanoma have made a significant impact on patient survival; though the results are shadowed by the appearance of drug-resistance. Combination therapies provide a rational strategy to potentiate efficacy and potentially overcome resistance. Undoubtedly, the last decade has also born a renaissance of immunotherapy, and encouraging advances in metastatic melanoma treatment are illuminating the road. Immune checkpoint blockades, such as CTLA-4 antagonist-antibodies, and multiple cancer vaccines are now invaluable arms of anti-tumor therapy. Recent work has brought to light the delicate relationship between tumor biology and the immune system. Host immunity contributes to the anti-tumor activity of oncogene-targeted inhibitors within a complex network of cytokines and chemokines. Therefore, combining immunotherapy with oncogene-targeted drugs may be the key to melanoma control. Here, we review ongoing clinical studies of combination therapies using both oncogene inhibitors and immunotherapeutic strategies in melanoma patients. We will revisit the preclinical evidence that tested sequential and concurrent schemes in suitable animal models and formed the basis for the current trials. Finally, we will discuss potential future directions of the field. PMID:25709607

  17. PROSPECT: Profiling of Resistance Patterns Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target Identification

    DTIC Science & Technology

    2011-06-01

    generated by this research proposal. We deliver planned and tailored statistical analyses for rapid communication of project results among project...DOI:10.1158/1940-6207.CAPR-10-0129Research Article Cancer Prevention ResearchValidation of a Novel Statistical Model for Assessing the Synergy of...novel approaches for preventing and treating lung cancer are urgently needed (2). Activation of oncogenes or amplification or mutations in growth-factor

  18. Abl: the prototype of oncogenic fusion proteins.

    PubMed

    Saglio, G; Cilloni, D

    2004-12-01

    Since it was first recognized, chronic myeloid leukemia (CML) has always represented a unique model to understand the molecular mechanisms underlying the onset and progression of a leukemic process. CML was the first recognized form of cancer to have a strong association with a recurrent chromosomal abnormality, the t(9;22) translocation, which generates the so-called Philadelphia (Ph)-chromosome. Twenty years later, this abnormality was shown to cover a specific molecular defect, a hybrid BCR-ABL gene, strongly implicated in the pathogenesis of the disease through the production of a protein with a constitutive tyrosine-kinase activity. Although we still lack a complete definition of all the transformation pathways activated by Bcr-Abl, the recent introduction into clinical practice of tyrosine kinase inhibitor represents a major breakthrough to the management of CML and, furthermore, promises to usher in molecularly targeted therapy for other types of leukemia, lymphoma and cancer.

  19. Ret Receptor: Functional Consequences of Oncogenic Rearrangements.

    DTIC Science & Technology

    1996-10-01

    kinase assay, 20 i* phosphorylation of Y505 in peptide 36b was marginal whereas phosphorylation of Y586 in peptide 42 by Ret/ptc2 was moderate. Mutation ...A600 tv) when t = time and v = volume (17). Materials-The Caenorhabditis elegans Mec-3 cDNA was obtained Affinity Precipitation and Peptide Competition...defective sympathetic innervation of the large intestine that are recognized by Engima do depend on the tyrosine ki- ( 42 , 43). Activating mutations

  20. Mutagen and Oncogen Study on Nitroguanidine

    DTIC Science & Technology

    1978-09-01

    tests measuring potential germ cell effects in mice and rats. Nitroguanidine produced no evidence of genetic activity in any of the studies comprising...vitro assays employing microbial cells, mammalian cells in culture and in vivo tests measuring potential germ cell effects in mice and rats. This...negative the impact of the positive response will be reduced. Conversely, if all tests show positive effects , the application of this broad-based response

  1. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer

    PubMed Central

    Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-01-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  2. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas.

    PubMed

    Higashitsuji, H; Itoh, K; Nagao, T; Dawson, S; Nonoguchi, K; Kido, T; Mayer, R J; Arii, S; Fujita, J

    2000-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Asia and Africa, where hepatitis virus infection and exposure to specific liver carcinogens are prevalent. Although inactivation of some tumor suppressor genes such as p53 and p16INK4Ahas been identified, no known oncogene is commonly activated in hepatocellular carcinomas. Here we have isolated genes overexpressed in hepatocellular carcinomas by cDNA subtractive hybridization, and identified an oncoprotein consisting of six ankyrin repeats (gankyrin). The expression of gankyrin was increased in all 34 hepatocellular carcinomas studied. Gankyrin induced anchorage-independent growth and tumorigenicity in NIH/3T3 cells. Gankyrin bound to the product of the retinoblastoma gene (RB1), increasing its phosphorylation and releasing the activity of the transcription factor E2F-1. Gankyrin accelerated the degradation of RB1 in vitro and in vivo, and was identical to or interacted with a subunit of the 26S proteasome. These results demonstrate the importance of ubiquitin-proteasome pathway in the regulation of cell growth and oncogenic transformation, and indicate that gankyrin overexpression contributes to hepatocarcinogenesis by destabilizing RB1.

  3. Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas.

    PubMed

    Di Renzo, M F; Olivero, M; Martone, T; Maffe, A; Maggiora, P; Stefani, A D; Valente, G; Giordano, S; Cortesina, G; Comoglio, P M

    2000-03-16

    A metastatic cancer develops by accumulation of mutations in genes that control growth, survival and spreading. The latter genes have not yet been identified. In lymph node metastases of head and neck squamous cell carcinomas (HNSCC), we found mutations in the MET oncogene, which encodes the tyrosine kinase receptor for Scatter Factor, a cytokine that stimulates epithelial cell motility and invasiveness during embryogenesis and tissue remodeling. We identified two somatic mutations: the Y1230C, known as a MET germline mutation which predisposes to hereditary renal cell carcinoma, and the Y1235D that is novel and changes a critical tyrosine, known to regulate MET kinase activity. The mutated MET receptors are constitutively active and confer an invasive phenotype to transfected cells. Interestingly, cells carrying the MET mutations are selected during metastatic spread: transcripts of the mutant alleles are highly represented in metastases, but barely detectable in primary tumors. These data indicate that cells expressing mutant MET undergo clonal expansion during HNSCC progression and suggest that MET might be one of the long sought oncogenes controlling progression of primary cancers to metastasis.

  4. RUNX3 is a novel negative regulator of oncogenic TEAD-YAP complex in gastric cancer.

    PubMed

    Qiao, Y; Lin, S J; Chen, Y; Voon, D C-C; Zhu, F; Chuang, L S H; Wang, T; Tan, P; Lee, S C; Yeoh, K G; Sudol, M; Ito, Y

    2016-05-19

    Runt-related transcription factor 3 (RUNX3) is a well-documented tumour suppressor that is frequently inactivated in gastric cancer. Here, we define a novel mechanism by which RUNX3 exerts its tumour suppressor activity involving the TEAD-YAP complex, a potent positive regulator of proliferative genes. We report that the TEAD-YAP complex is not only frequently hyperactivated in liver and breast cancer, but also confers a strong oncogenic activity in gastric epithelial cells. The increased expression of TEAD-YAP in tumour tissues significantly correlates with poorer overall survival of gastric cancer patients. Strikingly, RUNX3 physically interacts with the N-terminal region of TEAD through its Runt domain. This interaction markedly reduces the DNA-binding ability of TEAD that attenuates the downstream signalling of TEAD-YAP complex. Mutation of RUNX3 at Arginine 122 to Cysteine, which was previously identified in gastric cancer, impairs the interaction between RUNX3 and TEAD. Our data reveal that RUNX3 acts as a tumour suppressor by negatively regulating the TEAD-YAP oncogenic complex in gastric carcinogenesis.

  5. Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia

    PubMed Central

    Demarest, Renée M.; Dahmane, Nadia

    2011-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (NotchIC) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc–regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCHIC is able to maintain T-ALL tumors formed in the presence of exogenous NOTCHIC and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCHIC. We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCHIC, but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors. PMID:21217079

  6. Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase

    PubMed Central

    Lan, Yu-Yan; Hsiao, Jenn-Ren; Chang, Nan-Shan

    2015-01-01

    WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX’s suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein–Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just “the tip of the iceberg” regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis. PMID:25488911

  7. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells

    SciTech Connect

    Lee, Tae Hoon; Chennakrishnaiah, Shilpa; Audemard, Eric; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2014-08-22

    Highlights: • Oncogenic H-ras stimulates emission of extracellular vesicles containing double-stranded DNA. • Vesicle-associated extracellular DNA contains mutant N-ras sequences. • Vesicles mediate intercellular transfer of mutant H-ras DNA to normal fibroblasts where it remains for several weeks. • Fibroblasts exposed to vesicles containing H-ras DNA exhibit increased proliferation. - Abstract: Cell free DNA is often regarded as a source of genetic cancer biomarkers, but the related mechanisms of DNA release, composition and biological activity remain unclear. Here we show that rat epithelial cell transformation by the human H-ras oncogene leads to an increase in production of small, exosomal-like extracellular vesicles by viable cancer cells. These EVs contain chromatin-associated double-stranded DNA fragments covering the entire host genome, including full-length H-ras. Oncogenic N-ras and SV40LT sequences were also found in EVs emitted from spontaneous mouse brain tumor cells. Disruption of acidic sphingomyelinase and the p53/Rb pathway did not block emission of EV-related oncogenic DNA. Exposure of non-transformed RAT-1 cells to EVs containing mutant H-ras DNA led to the uptake and retention of this material for an extended (30 days) but transient period of time, and stimulated cell proliferation. Thus, our study suggests that H-ras-mediated transformation stimulates vesicular emission of this histone-bound oncogene, which may interact with non-transformed cells.

  8. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    PubMed Central

    Dikovskaya, Dina; Cole, John J.; Mason, Susan M.; Nixon, Colin; Karim, Saadia A.; McGarry, Lynn; Clark, William; Hewitt, Rachael N.; Sammons, Morgan A.; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D.G.; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W.; Brock, Claire; Morton, Jennifer P.; Wu, Hong; Berger, Shelley L.; Blyth, Karen; Adams, Peter D.

    2015-01-01

    Summary Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells. PMID:26299965

  9. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest.

    PubMed

    Dikovskaya, Dina; Cole, John J; Mason, Susan M; Nixon, Colin; Karim, Saadia A; McGarry, Lynn; Clark, William; Hewitt, Rachael N; Sammons, Morgan A; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D G; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W; Brock, Claire; Morton, Jennifer P; Wu, Hong; Berger, Shelley L; Blyth, Karen; Adams, Peter D

    2015-09-01

    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  10. Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12

    PubMed Central

    Akakura, Shin; Nochajski, Peter; Gao, Lingqiu; Sotomayor, Paul; Matsui, Sei-ichi

    2010-01-01

    A subset of AKAPs (A Kinase Anchoring Proteins) regulate signaling and cytoskeletal pathways through the spaciotemporal scaffolding of multiple protein kinases (PK), such as PKC and PKA, and associations with the plasma membrane and the actin-based cytoskeleton. SSeCKS/Gravin/Akap12 expression is severely downregulated in many advanced cancers and exhibits tumor- and metastasis-suppressing activity. akap12-null (KO) mice develop prostatic hyperplasia with focal dysplasia, but the precise mechanism how Akap12 prevents oncogenic progression remains unclear. Here, we show that KO mouse embryonic fibroblasts (MEF) exhibit premature senescence marked by polyploidy and multinucleation, and by increased susceptibility to oncogenic transformation. Although p53 and Rb pathways are activated in the absence of Akap12, senescence is dependent on Rb. Senescence is driven by the activation of PKCα, which induces p16Ink4a/Rb through a MEK-dependent downregulation of Id1, and PKCδ, which downregulates Lats1/Warts, a mitotic exit network kinase required for cytokinesis. Our data strongly suggest that Akap12 controls Rb-mediated cell aging and oncogenic progression by directly scaffolding and attenuating PKCα/δ. PMID:21099353

  11. Stromal cells can contribute oncogenic signals

    NASA Technical Reports Server (NTRS)

    Tlsty, T. D.

    2001-01-01

    The majority of studies of neoplastic transformation have focused attention on events that occur within transformed cells. These cell autonomous events result in the disruption of molecular pathways that regulate basic activities of the cells such as proliferation, death, movement and genomic integrity. Other studies have addressed the microenvironment of tumor cells and documented its importance in supporting tumor progression. Recent work has begun to expand on these initial studies of tumor microenvironment and now provide novel insights into the possible initiation and progression of malignant cells. This review will address the transforming effect of stromal cells on epithelial components. Copyright 2001 Academic Press.

  12. The Oncogenic Palmitoyl-Protein Network in Prostate Cancer

    DTIC Science & Technology

    2011-03-31

    fatty acid palmitate , or a closely related fatty acid , is affixed to proteins). Studies from our laboratory and others indicate that these lipid...an enzyme, fatty acid synthase (FASN), as a biochemically relevant protein in PCa. FASN has been described as a "metabolic oncogene," which operates...by an unknown mechanism to promote tumor growth. We know that FASN is the source of a class of lipids called long-chain fatty acids . Most of the long

  13. Mutations in the RET proto-oncogene in sporadic pheochromocytomas

    SciTech Connect

    Thibodeau, S.N.; Lindor, N.M.; Honchel, R.

    1994-09-01

    Mutations in the RET proto-oncogene have recently been demonstrated in kindreds with Multiple Endocrine Neoplasia (MEN) types 2A and 2B. Both of these autosomal dominant disorders are characterized by the development of neoplasia in cell lines of neural crest origin, such as medullary throid carcinomas and pheochromocytomas. Individuals with MEN 2B have, in addition, ganglioneuromas of the lips, tongue and colon, a marfanoid habitus, and corneal nerve thickening. Approximately 90% of patients with MEN 2A have a germline mutation in exons 10 or 11, while 95% of patients with MEN 2B have a T{yields}C transition in codon 918 of exon 16. In this study, pheochromocytomas from 29 individuals who had no clinical evidence of MEN 2A or 2B (sporadic) were examined for the presence of either germline or somatic mutations in exons 10, 11, and 16 of the RET proto-oncogene. Of the 29 tumors examined, 3 (10%) were found to have a mutation in one of the three exons. One tumor had a G{yields}A transition in codon 609 (exon 10), another had a 6 bp deletion encompassing codons 632 & 633 (exon 11), and the final tumor had a T{yields}C transition in codon 918 (exon 16). These mutations were not found in the corresponding normal DNA from these individuals, indicating that the mutation were somatic in origin. Although we cannot exclude the possibility of mutations in other regions of the RET proto-oncogene, our data suggests that: (1) individuals presenting with apparently sporadic pheochromocytomas are not likely to have undiagnosed MEN 2A or 2B; and (2) somatic mutations in the RET proto-oncogene contribute to the process of tumorigenesis in a small percentage of sporadic pheochromocytomas.

  14. Serum antibodies to some oncogenic viruses in the child.

    PubMed

    Arnaudova, V; Nastac, E; Predescu, E

    1978-01-01

    The presence of complement fixing antibodies to four viruses with oncogenic potential for animals was studied in children (including neonates and infants). Antibodies to herpes, adenovirus and avian "gs" sarcoma-leukosis antigens were detected, but there were no antibodies to SV-40. Positivity percentages varied with age and with the antigen used. Possible explanations of the appearance of these antibodies in the child are provided.

  15. Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis.

    PubMed

    Deguchi, S; Katsushima, K; Hatanaka, A; Shinjo, K; Ohka, F; Wakabayashi, T; Zong, H; Natsume, A; Kondo, Y

    2017-04-03

    Accumulating studies have demonstrated the importance of long noncoding RNAs (lncRNAs) during oncogenic transformation. However, because most lncRNAs are currently uncharacterized, the identification of novel oncogenic lncRNAs is difficult. Given that intergenic lncRNA have substantially less sequence conservation patterns than protein-coding genes across species, evolutionary conserved intergenic lncRNAs are likely to be functional. The current study identified a novel intergenic lncRNA, LINC00461 (ECONEXIN) using a combined approach consisting of searching lncRNAs by evolutionary conservation and validating their expre