Science.gov

Sample records for polyadenylation element binding

  1. Efficient translation of Dnmt1 requires cytoplasmic polyadenylation and Musashi binding elements.

    PubMed

    Rutledge, Charlotte E; Lau, Ho-Tak; Mangan, Hazel; Hardy, Linda L; Sunnotel, Olaf; Guo, Fan; MacNicol, Angus M; Walsh, Colum P; Lees-Murdock, Diane J

    2014-01-01

    Regulation of DNMT1 is critical for epigenetic control of many genes and for genome stability. Using phylogenetic analysis we characterized a block of 27 nucleotides in the 3'UTR of Dnmt1 mRNA identical between humans and Xenopus and investigated the role of the individual elements contained within it. This region contains a cytoplasmic polyadenylation element (CPE) and a Musashi binding element (MBE), with CPE binding protein 1 (CPEB1) known to bind to the former in mouse oocytes. The presence of these elements usually indicates translational control by elongation and shortening of the poly(A) tail in the cytoplasm of the oocyte and in some somatic cell types. We demonstrate for the first time cytoplasmic polyadenylation of Dnmt1 during periods of oocyte growth in mouse and during oocyte activation in Xenopus. Furthermore we show by RNA immunoprecipitation that Musashi1 (MSI1) binds to the MBE and that this element is required for polyadenylation in oocytes. As well as a role in oocytes, site-directed mutagenesis and reporter assays confirm that mutation of either the MBE or CPE reduce DNMT1 translation in somatic cells, but likely act in the same pathway: deletion of the whole conserved region has more severe effects on translation in both ES and differentiated cells. In adult cells lacking MSI1 there is a greater dependency on the CPE, with depletion of CPEB1 or CPEB4 by RNAi resulting in substantially reduced levels of endogenous DNMT1 protein and concurrent upregulation of the well characterised CPEB target mRNA cyclin B1. Our findings demonstrate that CPE- and MBE-mediated translation regulate DNMT1 expression, representing a novel mechanism of post-transcriptional control for this gene.

  2. The Alternative Splicing of Cytoplasmic Polyadenylation Element Binding Protein 2 Drives Anoikis Resistance and the Metastasis of Triple Negative Breast Cancer.

    PubMed

    Johnson, Ryan M; Vu, Ngoc T; Griffin, Brian P; Gentry, Amanda E; Archer, Kellie J; Chalfant, Charles E; Park, Margaret A

    2015-10-16

    Triple negative breast cancer (TNBC) represents an anomalous subset of breast cancer with a greatly reduced (30%) 5-year survival rate. The enhanced mortality and morbidity of TNBC arises from the high metastatic rate, which requires the acquisition of AnR, a process whereby anchorage-dependent cells become resistant to cell death induced by detachment. In this study TNBC cell lines were selected for AnR, and these cell lines demonstrated dramatic enhancement in the formation of lung metastases as compared with parental cells. Genetic analysis of the AnR subclones versus parental cells via next generation sequencing and analysis of global alternative RNA splicing identified that the mRNA splicing of cytoplasmic polyadenylation element binding 2 (CPEB2), a translational regulator, was altered in AnR TNBC cells. Specifically, increased inclusion of exon 4 into the mature mRNA to produce the CPEB2B isoform was observed in AnR cell lines. Molecular manipulations of CPEB2 splice variants demonstrated a key role for this RNA splicing event in the resistance of cells to anoikis. Specifically, down-regulation of the CPEB2B isoform using siRNA re-sensitized the AnR cell lines to detachment-induced cell death. The ectopic expression of CPEB2B in parental TNBC cell lines induced AnR and dramatically increased metastatic potential. Importantly, alterations in the alternative splicing of CPEB2 were also observed in human TNBC and additional subtypes of human breast cancer tumors linked to a high metastatic rate. Our findings demonstrate that the regulation of CPEB2 mRNA splicing is a key mechanism in AnR and a driving force in TNBC metastasis.

  3. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA.

    PubMed Central

    de Moor, C H; Richter, J D

    1999-01-01

    During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented. PMID:10205182

  4. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.

    PubMed Central

    McGrew, L L; Richter, J D

    1990-01-01

    The expression of certain maternal mRNAs during oocyte maturation is regulated by cytoplasmic polyadenylation. To understand this process, we have focused on a maternal mRNA from Xenopus termed G10. This mRNA is stored in the cytoplasm of stage 6 oocytes until maturation when the process of poly(A) elongation stimulates its translation. Deletion analysis of the 3' untranslated region of G10 RNA has revealed that two sequence elements, UUUUUUAU and AAUAAA were both necessary and sufficient for polyadenylation and polysomal recruitment. In this communication, we have defined the U-rich region that is optimal for polyadenylation as UUUUUUAUAAAG, henceforth referred to as the cytoplasmic polyadenylation element (CPE). We have also identified unique sequence requirements in the 3' terminus of the RNA that can modulate polyadenylation even in the presence of wild-type cis elements. A time course of cytoplasmic polyadenylation in vivo shows that it is an early event of maturation and that it requires protein synthesis within the first 15 min of exposure to progesterone. MPF and cyclin can both induce polyadenylation but, at least with respect to MPF, cannot obviate the requirement for protein synthesis. To identify factors that may be responsible for maturation-specific polyadenylation, we employed extracts from oocytes and unfertilized eggs, the latter of which correctly polyadenylates exogenously added RNA. UV crosslinking demonstrated that an 82 kd protein binds to the U-rich CPE in egg, but not oocyte, extracts. The data suggest that progesterone, either in addition to or through MPF/cyclin, induces the synthesis of a factor during very early maturation that stimulates polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig.1 Fig.2 Fig.3 Fig.4 Fig.5 Fig.6 Fig.7 Fig.8 Fig.9 PMID:2145153

  5. Alternative Polyadenylation of Human Bocavirus at Its 3′ End Is Regulated by Multiple Elements and Affects Capsid Expression

    PubMed Central

    Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Xu, Huanzhou; Wang, Hanzhong

    2016-01-01

    ABSTRACT Alternative processing of human bocavirus (HBoV) P5 promoter-transcribed RNA is critical for generating the structural and nonstructural protein-encoding mRNA transcripts. The regulatory mechanism by which HBoV RNA transcripts are polyadenylated at proximal [(pA)p] or distal [(pA)d] polyadenylation sites is still unclear. We constructed a recombinant HBoV infectious clone to study the alternative polyadenylation regulation of HBoV. Surprisingly, in addition to the reported distal polyadenylation site, (pA)d, a novel distal polyadenylation site, (pA)d2, which is located in the right-end hairpin (REH), was identified during infectious clone transfection or recombinant virus infection. (pA)d2 does not contain typical hexanucleotide polyadenylation signal, upstream elements (USE), or downstream elements (DSE) according to sequence analysis. Further study showed that HBoV nonstructural protein NS1, REH, and cis elements of (pA)d were necessary and sufficient for efficient polyadenylation at (pA)d2. The distance and sequences between (pA)d and (pA)d2 also played a key role in the regulation of polyadenylation at (pA)d2. Finally, we demonstrated that efficient polyadenylation at (pA)d2 resulted in increased HBoV capsid mRNA transcripts and protein translation. Thus, our study revealed that all the bocaviruses have distal poly(A) signals on the right-end palindromic terminus, and alternative polyadenylation at the HBoV 3′ end regulates its capsid expression. IMPORTANCE The distal polyadenylation site, (pA)d, of HBoV is located about 400 nucleotides (nt) from the right-end palindromic terminus, which is different from those of bovine parvovirus (BPV) and canine minute virus (MVC) in the same genus whose distal polyadenylation is located in the right-end stem-loop structure. A novel polyadenylation site, (pA)d2, was identified in the right-end hairpin of HBoV during infectious clone transfection or recombinant virus infection. Sequence analysis showed that (pA)d2

  6. The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation.

    PubMed

    Lyons, Rebecca; Iwase, Akira; Gänsewig, Thomas; Sherstnev, Alexander; Duc, Céline; Barton, Geoffrey J; Hanada, Kousuke; Higuchi-Takeuchi, Mieko; Matsui, Minami; Sugimoto, Keiko; Kazan, Kemal; Simpson, Gordon G; Shirasu, Ken

    2013-10-09

    RNA-binding proteins (RBPs) play an important role in plant host-microbe interactions. In this study, we show that the plant RBP known as FPA, which regulates 3'-end mRNA polyadenylation, negatively regulates basal resistance to bacterial pathogen Pseudomonas syringae in Arabidopsis. A custom microarray analysis reveals that flg22, a peptide derived from bacterial flagellins, induces expression of alternatively polyadenylated isoforms of mRNA encoding the defence-related transcriptional repressor ETHYLENE RESPONSE FACTOR 4 (ERF4), which is regulated by FPA. Flg22 induces expression of a novel isoform of ERF4 that lacks the ERF-associated amphiphilic repression (EAR) motif, while FPA inhibits this induction. The EAR-lacking isoform of ERF4 acts as a transcriptional activator in vivo and suppresses the flg22-dependent reactive oxygen species burst. We propose that FPA controls use of proximal polyadenylation sites of ERF4, which quantitatively limit the defence response output.

  7. αCP Poly(C) Binding Proteins Act as Global Regulators of Alternative Polyadenylation

    PubMed Central

    Ji, Xinjun; Wan, Ji; Vishnu, Melanie

    2013-01-01

    We have previously demonstrated that the KH-domain protein αCP binds to a 3′ untranslated region (3′UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3′ processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3′ processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5′ to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3′ processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome. PMID:23629627

  8. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation.

    PubMed

    Kühn, Uwe; Buschmann, Juliane; Wahle, Elmar

    2017-04-01

    The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.

  9. Characterization of Rous sarcoma virus polyadenylation site use in vitro

    SciTech Connect

    Maciolek, Nicole L.; McNally, Mark T.

    2008-05-10

    Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.

  10. The rotaviral NSP3 protein stimulates translation of polyadenylated target mRNAs independently of its RNA-binding domain

    SciTech Connect

    Keryer-Bibens, Cecile; Legagneux, Vincent; Namanda-Vanderbeken, Allen; Cosson, Bertrand; Paillard, Luc; Poncet, Didier; Osborne, H. Beverley

    2009-12-11

    The non-structural protein 3 (NSP3) of rotaviruses is an RNA-binding protein that specifically recognises a 4 nucleotide sequence at the 3' extremity of the non-polyadenylated viral mRNAs. NSP3 also has a high affinity for eIF4G. These two functions are clearly delimited in separate domains the structures of which have been determined. They are joined by a central domain implicated in the dimerisation of the full length protein. The bridging function of NSP3 between the 3' end of the viral mRNA and eIF4G has been proposed to enhance the synthesis of viral proteins. However, this role has been questioned as knock-down of NSP3 did not impair viral protein synthesis. We show here using a MS2/MS2-CP tethering assay that a C-terminal fragment of NSP3 containing the eIF4G binding domain and the dimerisation domain can increase the expression of a protein encoded by a target reporter mRNA in HEK 293 cells. The amount of reporter mRNA in the cells is not significantly affected by the presence of the NSP3 derived fusion protein showing that the enhanced protein expression is due to increased translation. These results show that NSP3 can act as a translational enhancer even on a polyadenylated mRNA that should be a substrate for PABP1.

  11. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation.

    PubMed

    Ozsolak, Fatih; Kapranov, Philipp; Foissac, Sylvain; Kim, Sang Woo; Fishilevich, Elane; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-12-10

    The emerging discoveries on the link between polyadenylation and disease states underline the need to fully characterize genome-wide polyadenylation states. Here, we report comprehensive maps of global polyadenylation events in human and yeast generated using refinements to the Direct RNA Sequencing technology. This direct approach provides a quantitative view of genome-wide polyadenylation states in a strand-specific manner and requires only attomole RNA quantities. The polyadenylation profiles revealed an abundance of unannotated polyadenylation sites, alternative polyadenylation patterns, and regulatory element-associated poly(A)(+) RNAs. We observed differences in sequence composition surrounding canonical and noncanonical human polyadenylation sites, suggesting novel noncoding RNA-specific polyadenylation mechanisms in humans. Furthermore, we observed the correlation level between sense and antisense transcripts to depend on gene expression levels, supporting the view that overlapping transcription from opposite strands may play a regulatory role. Our data provide a comprehensive view of the polyadenylation state and overlapping transcription.

  12. Alterations in Polyadenylation and Its Implications for Endocrine Disease

    PubMed Central

    Rehfeld, Anders; Plass, Mireya; Krogh, Anders; Friis-Hansen, Lennart

    2013-01-01

    Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added – a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with different 3′ untranslated regions (3′ UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3′ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for micro-RNAs and RNA-binding proteins. Implications of alterations in polyadenylation for endocrine disease: Alterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome, and many cancer diseases, including several types of endocrine tumor diseases. Perspectives: Recent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A) site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. Summary: This review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field. PMID:23658553

  13. The structure of human cleavage factor I(m) hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5' capping and splicing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2011-01-01

    3'-end cleavage and subsequent polyadenylation are critical steps in mRNA maturation. The precise location where cleavage occurs (referred to as poly(A) site) is determined by a tripartite mechanism in which a A(A/U)UAAA hexamer, GU rich downstream element and UGUA upstream element are recognized by the cleavage and polyadenylation factor (CPSF), cleavage stimulation factor (CstF) and cleavage factor I(m) (CFI(m)), respectively. CFI(m) is composed of a smaller 25 kDa subunit (CFI(m)25) and a larger 59, 68 or 72 kDa subunit. CFI(m)68 interacts with CFI(m)25 through its N-terminal RNA recognition motif (RRM). We recently solved the crystal structures of CFI(m)25 bound to RNA and of a complex of CFI(m)25, the RRM domain of CFI(m)68 and RNA. Our study illustrated the molecular basis for UGUA recognition by the CFI(m) complex, suggested a possible mechanism for CFI(m) mediated alternative polyadenylation, and revealed potential links between CFI(m) and other mRNA processing factors, such as the 20 kDa subunit of the cap binding protein (CBP20), and the splicing regulator U2AF65.

  14. Compilation of mRNA Polyadenylation Signals in Arabidopsis Revealed a New Signal Element and Potential Secondary Structures1[w

    PubMed Central

    Loke, Johnny C.; Stahlberg, Eric A.; Strenski, David G.; Haas, Brian J.; Wood, Paul Chris; Li, Qingshun Quinn

    2005-01-01

    Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3′-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3′-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a single-nucleotide profile scan on the 3′-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3′-ends for gene annotation. PMID:15965016

  15. Sex-specific splicing and polyadenylation of dsx pre-mRNA requires a sequence that binds specifically to tra-2 protein in vitro.

    PubMed

    Hedley, M L; Maniatis, T

    1991-05-17

    Somatic sex determination in Drosophila involves a hierarchy of regulated alternative pre-mRNA processing. Female-specific splicing and/or polyadenylation of doublesex (dsx) pre-mRNA, the final gene in this pathway, requires transformer (tra) and transformer-2 (tra-2) proteins. The mechanisms by which these proteins regulate RNA processing has not been characterized. In this paper we show that tra-2 produced in Escherichia coli binds specifically to a site within the female-specific exon of dsx pre-mRNA. This site, which contains six copies of a 13 nucleotide repeat, is required not only for female-specific splicing, but also for female-specific polyadenylation. These observations suggest that tra-2 is a positive regulator of dsx pre-mRNA processing.

  16. Cleavage and polyadenylation specificity factor 30: An RNA-binding zinc-finger protein with an unexpected 2Fe–2S cluster

    PubMed Central

    Shimberg, Geoffrey D.; Michalek, Jamie L.; Oluyadi, Abdulafeez A.; Rodrigues, Andria V.; Zucconi, Beth E.; Neu, Heather M.; Ghosh, Shanchari; Sureschandra, Kanisha; Wilson, Gerald M.; Stemmler, Timothy L.; Michel, Sarah L. J.

    2016-01-01

    Cleavage and polyadenylation specificity factor 30 (CPSF30) is a key protein involved in pre-mRNA processing. CPSF30 contains five Cys3His domains (annotated as “zinc-finger” domains). Using inductively coupled plasma mass spectrometry, X-ray absorption spectroscopy, and UV-visible spectroscopy, we report that CPSF30 is isolated with iron, in addition to zinc. Iron is present in CPSF30 as a 2Fe–2S cluster and uses one of the Cys3His domains; 2Fe–2S clusters with a Cys3His ligand set are rare and notably have also been identified in MitoNEET, a protein that was also annotated as a zinc finger. These findings support a role for iron in some zinc-finger proteins. Using electrophoretic mobility shift assays and fluorescence anisotropy, we report that CPSF30 selectively recognizes the AU-rich hexamer (AAUAAA) sequence present in pre-mRNA, providing the first molecular-based evidence to our knowledge for CPSF30/RNA binding. Removal of zinc, or both zinc and iron, abrogates binding, whereas removal of just iron significantly lessens binding. From these data we propose a model for RNA recognition that involves a metal-dependent cooperative binding mechanism. PMID:27071088

  17. Nuclear Relocalization of Polyadenylate Binding Protein during Rift Valley Fever Virus Infection Involves Expression of the NSs Gene

    PubMed Central

    Copeland, Anna Maria; Altamura, Louis A.; Van Deusen, Nicole M.

    2013-01-01

    Rift Valley fever virus (RVFV), an ambisense member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever, an important zoonotic infection in Africa and the Middle East. Phlebovirus proteins are translated from virally transcribed mRNAs that, like host mRNA, are capped but, unlike host mRNAs, are not polyadenylated. Here, we investigated the role of PABP1 during RVFV infection of HeLa cells. Immunofluorescence studies of infected cells demonstrated a gross relocalization of PABP1 to the nucleus late in infection. Immunofluorescence microscopy studies of nuclear proteins revealed costaining between PABP1 and markers of nuclear speckles. PABP1 relocalization was sharply decreased in cells infected with a strain of RVFV lacking the gene encoding the RVFV nonstructural protein S (NSs). To determine whether PABP1 was required for RVFV infection, we measured the production of nucleocapsid protein (N) in cells transfected with small interfering RNAs (siRNAs) targeting PABP1. We found that the overall percentage of RVFV N-positive cells was not changed by siRNA treatment, indicating that PABP1 was not required for RVFV infection. However, when we analyzed populations of cells producing high versus low levels of PABP1, we found that the percentage of RVFV N-positive cells was decreased in cell populations producing physiologic levels of PABP1 and increased in cells with reduced levels of PABP1. Together, these results suggest that production of the NSs protein during RVFV infection leads to sequestration of PABP1 in the nuclear speckles, creating a state within the cell that favors viral protein production. PMID:23966414

  18. A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression.

    PubMed

    Sachs, A B; Bond, M W; Kornberg, R D

    1986-06-20

    Nuclear and cytoplasmic poly(A)-binding proteins have been purified from Saccharomyces cerevisiae, and antisera have been used to isolate a gene that encodes them. The gene occurs in a single copy on chromosome 5 and gives rise to a unique, unspliced 2.1 kb transcript. The nuclear protein appears to be derived from the cytoplasmic one by proteolytic cleavage into 53 and 17 kd polypeptides that remain associated during isolation. DNA sequence determination reveals four tandemly arrayed 90 amino acid regions of homology that probably represent poly(A)-binding domains. A 55 residue A-rich region upstream of the initiator methionine codon in the mRNA shows an affinity for poly(A)-binding protein comparable to that of poly(A)180-220, raising the possibility of feedback regulation of translation.

  19. LPS injection reprograms the expression and the 3' UTR of a CAP gene by alternative polyadenylation and the formation of a GAIT element in Ciona intestinalis.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Longo, Valeria; Sanfratello, Maria Antonietta; Parrinello, Daniela; Cammarata, Matteo; Colombo, Paolo

    2016-09-01

    The diversification of cellular functions is one of the major characteristics of multicellular organisms which allow cells to modulate their gene expression, leading to the formation of transcripts and proteins with different functions and concentrations in response to different stimuli. CAP genes represent a widespread family of proteins belonging to the cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 superfamily which, it has been proposed, play key roles in the infection process and the modulation of immune responses in host animals. The ascidian Ciona intestinalis represents a group of proto-chordates with an exclusively innate immune system that has been widely studied in the field of comparative and developmental immunology. Using this biological system, we describe the identification of a novel APA mechanism by which an intronic polyadenylation signal is activated by LPS injection, leading to the formation of a shorter CAP mRNA capable of expressing the first CAP exon plus 19 amino acid residues whose sequence is contained within the first intron of the annotated gene. Furthermore, such an APA event causes the expression of a translational controlling cis-acting GAIT element which is not present in the previously isolated CAP isoform and identified in the 3'-UTR of other immune-related genes, suggesting an intriguing scenario in which both transcriptional and post-transcriptional control mechanisms are involved in the activation of the CAP gene during inflammatory response in C. intestinalis.

  20. The STAR protein QKI-7 recruits PAPD4 to regulate post-transcriptional polyadenylation of target mRNAs

    PubMed Central

    Yamagishi, Ryota; Tsusaka, Takeshi; Mitsunaga, Hiroko; Maehata, Takaharu; Hoshino, Shin-ichi

    2016-01-01

    Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27kip1 and β-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27kip1 mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells. PMID:26926106

  1. Transcription termination and polyadenylation in retroviruses.

    PubMed Central

    Guntaka, R V

    1993-01-01

    The provirus structure of retroviruses is bracketed by long terminal repeats (LTRs). The two LTRs (5' and 3') are identical in nucleotide sequence and organization. They contain signals for transcription initiation as well as termination and cleavage polyadenylation. As in eukaryotic pre-mRNAs, the two common signals, the polyadenylation signal, AAUAAA, or a variant AGUAAA, and the G+U-rich sequence are present in all retroviruses. However, the AAUAAA sequence is present in the U3 region in some retroviruses and in the R region in other retroviruses. As in animal cell RNAs, both AAUAAA and G+U-rich sequences apparently contribute to the 3'-end processing of retroviral RNAs. In addition, at least in a few cases examined, the sequences in the U3 region determine the efficiency of 3'-end processing. In retroviruses in which the AAUAAA is localized in the R region, the poly(A) signal in the 3' LTR but not the 5' LTR must be selectively used for the production of genomic RNA. It appears that the short distance between the 5' cap site and polyadenylation signal in the 5' LTR precludes premature termination and polyadenylation. Since 5' and 3' LTRs are identical in sequence and structural organization yet function differently, it is speculated that flanking cellular DNA sequences, chromatin structure, and binding of transcription factors may be involved in the functional divergence of 5' and 3' LTRs of retroviruses. PMID:7902524

  2. Elevated levels of the polyadenylation factor CstF 64 enhance formation of the 1kB Testis brain RNA-binding protein (TB-RBP) mRNA in male germ cells.

    PubMed

    Chennathukuzhi, V M; Lefrancois, S; Morales, C R; Syed, V; Hecht, N B

    2001-04-01

    The single copy mouse Testis Brain RNA-Binding Protein (TB-RBP) gene encodes three mRNAs of 3.0, 1.7, and 1.0 kb which only differ in their 3' UTRs. The 1 kb TB-RBP mRNA predominates in testis, while somatic cells preferentially express the 3.0 kb TB-RBP mRNA. Here we show that the 1 kb mRNA is translated several-fold more efficiently than the 3 kb TB-RBP in rabbit reticulocyte lysates and cells with elevated levels of the 1 kB TB-RBP mRNA express high levels of TB-RBP. To determine if the cleavage stimulatory factor CstF 64 can modulate the alternative splicing of the TB-RBP pre-mRNA and therefore TB-RBP expression, CstF 64 levels and binding to alternative polyadenylation sites were examined. CstF 64 is abundant in the testis and preferentially binds to a distal site in the TB-RBP pre-mRNA that produces the 3 kb TB-RBP. Moreover, upregulation or overexpression of CstF 64 increases the poly(A) site selection for the 1 kb TB-RBP mRNA. We propose that the level of the polyadenylation factor CstF 64 modulates the level of TB-RBP synthesis in male germ cells by an alternative processing of the TB-RBP pre-mRNA.

  3. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes.

    PubMed

    Komrskova, Pavla; Susor, Andrej; Malik, Radek; Prochazkova, Barbora; Liskova, Lucie; Supolikova, Jaroslava; Hladky, Stepan; Kubelka, Michal

    2014-01-01

    Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.

  4. Preliminary crystallographic analysis of a polyadenylate synthase from Megavirus

    PubMed Central

    Lartigue, Audrey; Jeudy, Sandra; Bertaux, Lionel; Abergel, Chantal

    2013-01-01

    Megavirus chilensis, a close relative of the Mimivirus giant virus, is also the most complex virus sequenced to date, with a 1.26 Mb double-stranded DNA genome encoding 1120 genes. The two viruses share common regulatory elements such as a peculiar palindrome governing the termination/polyadenylation of viral transcripts. They also share a predicted polyadenylate synthase that presents a higher than average percentage of residue conservation. The Megavirus enzyme Mg561 was overexpressed in Escherichia coli, purified and crystallized. A 2.24 Å resolution MAD data set was recorded from a single crystal on the ID29 beamline at the ESRF. PMID:23295487

  5. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    PubMed

    Chen, Huei-Mei; Futcher, Bruce; Leatherwood, Janet

    2011-01-01

    The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/G)AAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  6. A bipartite U1 site represses U1A expression by synergizing with PIE to inhibit nuclear polyadenylation.

    PubMed

    Guan, Fei; Caratozzolo, Rose M; Goraczniak, Rafal; Ho, Eric S; Gunderson, Samuel I

    2007-12-01

    U1A protein negatively autoregulates itself by polyadenylation inhibition of its own pre-mRNA by binding as two molecules to a 3'UTR-located Polyadenylation Inhibitory Element (PIE). The (U1A)2-PIE complex specifically blocks U1A mRNA biosynthesis by inhibiting polyA tail addition, leading to lower mRNA levels. U1 snRNP bound to a 5'ss-like sequence, which we call a U1 site, in the 3'UTRs of certain papillomaviruses leads to inhibition of viral late gene expression via a similar mechanism. Although such U1 sites can also be artificially used to potently silence reporter and endogenous genes, no naturally occurring U1 sites have been found in eukaryotic genes. Here we identify a conserved U1 site in the human U1A gene that is, unexpectedly, within a bipartite element where the other part represses the U1 site via a base-pairing mechanism. The bipartite element inhibits U1A expression via a synergistic action with the nearby PIE. Unexpectedly, synergy is not based on stabilizing binding of the inhibitory factors to the 3'UTR, but rather is a property of the larger ternary complex. Inhibition targets the biosynthetic step of polyA tail addition rather than altering mRNA stability. This is the first example of a functional U1 site in a cellular gene and of a single gene containing two dissimilar elements that inhibit nuclear polyadenylation. Parallels with other examples where U1 snRNP inhibits expression are discussed. We expect that other cellular genes will harbor functional U1 sites.

  7. RNA unwinding by the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex.

    PubMed

    Jia, Huijue; Wang, Xuying; Anderson, James T; Jankowsky, Eckhard

    2012-05-08

    Many RNA-processing events in the cell nucleus involve the Trf4/Air2/Mtr4 polyadenylation (TRAMP) complex, which contains the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for processing by the nuclear exosome. In addition, TRAMP functions as an exosome cofactor during RNA degradation, and it has been speculated that this role involves disruption of RNA secondary structure. However, it is unknown whether TRAMP displays RNA unwinding activity. It is also not clear how unwinding would be coordinated with polyadenylation and the function of the RNA helicase Mtr4p in modulating poly(A) addition. Here, we show that TRAMP robustly unwinds RNA duplexes. The unwinding activity of Mtr4p is significantly stimulated by Trf4p/Air2p, but the stimulation of Mtr4p does not depend on ongoing polyadenylation. Nonetheless, polyadenylation enables TRAMP to unwind RNA substrates that it otherwise cannot separate. Moreover, TRAMP displays optimal unwinding activity on substrates with a minimal Mtr4p binding site comprised of adenylates. Our results suggest a model for coordination between unwinding and polyadenylation activities by TRAMP that reveals remarkable synergy between helicase and poly(A) polymerase.

  8. Protein binding elements in the human beta-polymerase promoter.

    PubMed Central

    Englander, E W; Wilson, S H

    1990-01-01

    The core promoter for human DNA polymerase beta contains discrete binding sites for mammalian nuclear proteins, as revealed by DNasel footprinting and gel mobility shift assays. Two sites correspond to sequences identical with the Sp1 factor binding element, and a third site includes an eight residue palindromic sequence, TGACGTCA, known as the CRE element of several cAMP responsive promoters; the 5 to 10 residues flanking this palindrome on each side have no apparent sequence homology with known elements in other promoters. Nuclear extract from a variety of tissues and cells were examined; these included rat liver and testes and cultured cells of human and hamster origin. The DNasel footprint is strong over and around the palindromic element for each of the extracts and is equivalent in size (approximately 22 residues); footprinting over the Sp1 binding sites is seen also. Two potential tissue-specific binding sites, present in liver but not in testes, were found corresponding to residues -13 to -10 and +33 to +48, respectively. Protein binding to the palindromic element was confirmed by an electrophoretic mobility shift assay with the core promoter as probe. Binding specificity of the 22 residue palindromic element, as revealed by oligonucleotide competition, is different from that of AP-1 binding element. Controlled proteolysis with trypsin was used to study structural properties of proteins forming the mobility shift bands. Following digestion with trypsin, most of the palindrome binding activity of each extract corresponded to a sharp, faster migrating band, potentially representing a DNA binding domain of the palindrome binding protein. Images PMID:2315044

  9. Experimental Genome-Wide Determination of RNA Polyadenylation in Chlamydomonas reinhardtii

    PubMed Central

    Bell, Stephen A.; Shen, Chi; Brown, Alishea; Hunt, Arthur G.

    2016-01-01

    The polyadenylation of RNA is a near-universal feature of RNA metabolism in eukaryotes. This process has been studied in the model alga Chlamydomonas reinhardtii using low-throughput (gene-by-gene) and high-throughput (transcriptome sequencing) approaches that recovered poly(A)-containing sequence tags which revealed interesting features of this critical process in Chlamydomonas. In this study, RNA polyadenylation has been studied using the so-called Poly(A) Tag Sequencing (PAT-Seq) approach. Specifically, PAT-Seq was used to study poly(A) site choice in cultures grown in four different media types—Tris-Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt (HS), and High-Salt-Acetate (HAS). The results indicate that: 1. As reported before, the motif UGUAA is the primary, and perhaps sole, cis-element that guides mRNA polyadenylation in the nucleus; 2. The scope of alternative polyadenylation events with the potential to change the coding sequences of mRNAs is limited; 3. Changes in poly(A) site choice in cultures grown in the different media types are very few in number and do not affect protein-coding potential; 4. Organellar polyadenylation is considerable and affects primarily ribosomal RNAs in the chloroplast and mitochondria; and 5. Organellar RNA polyadenylation is a dynamic process that is affected by the different media types used for cell growth. PMID:26730730

  10. Frequency distribution of pre-messenger RNA sequences in polyadenylated and non-polyadenylated nuclear RNA from Friend cells.

    PubMed Central

    Balmain, A; Minty, A J; Birnie, G D

    1980-01-01

    Hybridisation of cDNA probes for abundant and rare polysomal polyadenylated RNAs with polyadenylated and non-polyadenylated nuclear RNA from Friend cells indicated that the abundant polysomal polyadenylated RNA sequences were present at a higher concentration in the nucleus than rare polysomal sequences, but at a reduced range of concentrations. The ratio of the concentrations of abundant and rare sequences was about 3 in non-polyadenylated nuclear RNA, 9 in polyadenylated nuclear RNA and 13 in polysomal polyadenylated RNA. This suggests that polyadenylation may play a role in the quantitative selection of sequences for transport to the cytoplasm. Polyadenylation cannot be the only signal for transport, since a highly complex population of nucleus-confined polyadenylated molecules exists, each of which is present on average at less than one copy per cell. PMID:7433127

  11. Chromatin landscape dictates HSF binding to target DNA elements.

    PubMed

    Guertin, Michael J; Lis, John T

    2010-09-09

    Sequence-specific transcription factors (TFs) are critical for specifying patterns and levels of gene expression, but target DNA elements are not sufficient to specify TF binding in vivo. In eukaryotes, the binding of a TF is in competition with a constellation of other proteins, including histones, which package DNA into nucleosomes. We used the ChIP-seq assay to examine the genome-wide distribution of Drosophila Heat Shock Factor (HSF), a TF whose binding activity is mediated by heat shock-induced trimerization. HSF binds to 464 sites after heat shock, the vast majority of which contain HSF Sequence-binding Elements (HSEs). HSF-bound sequence motifs represent only a small fraction of the total HSEs present in the genome. ModENCODE ChIP-chip datasets, generated during non-heat shock conditions, were used to show that inducibly bound HSE motifs are associated with histone acetylation, H3K4 trimethylation, RNA Polymerase II, and coactivators, compared to HSE motifs that remain HSF-free. Furthermore, directly changing the chromatin landscape, from an inactive to an active state, permits inducible HSF binding. There is a strong correlation of bound HSEs to active chromatin marks present prior to induced HSF binding, indicating that an HSE's residence in "active" chromatin is a primary determinant of whether HSF can bind following heat shock.

  12. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins.

    PubMed

    Sztuba-Solinska, Joanna; Rausch, Jason W; Smith, Rodman; Miller, Jennifer T; Whitby, Denise; Le Grice, Stuart F J

    2017-04-05

    Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.

  13. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    PubMed Central

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  14. Putting an ‘End’ to HIV mRNAs: capping and polyadenylation as potential therapeutic targets

    PubMed Central

    2013-01-01

    Like most cellular mRNAs, the 5′ end of HIV mRNAs is capped and the 3′ end matured by the process of polyadenylation. There are, however, several rather unique and interesting aspects of these post-transcriptional processes on HIV transcripts. Capping of the highly structured 5′ end of HIV mRNAs is influenced by the viral TAT protein and a population of HIV mRNAs contains a trimethyl-G cap reminiscent of U snRNAs involved in splicing. HIV polyadenylation involves active repression of a promoter-proximal polyadenylation signal, auxiliary upstream regulatory elements and moonlighting polyadenylation factors that have additional impacts on HIV biology outside of the constraints of classical mRNA 3’ end formation. This review describes these post-transcriptional novelties of HIV gene expression as well as their implications in viral biology and as possible targets for therapeutic intervention. PMID:24330569

  15. Polyadenylic acid at the 3'-terminus of poliovirus RNA.

    PubMed

    Yogo, Y; Wimmer, E

    1972-07-01

    Poliovirus RNA that has been derivatized at the 3'-end with NaIO(4)-NaB(3)H(4) yields, after hydrolysis with alkali or RNase T2, predominantly labeled residues of modified adenosine; no labeled nucleoside derivative is produced by digestion with RNase A or RNase T1. The 3'-terminal bases of the RNA are, therefore,...ApA(OH). Hydrolyzates of poliovirus [(32)P]RNA, after exhaustive digestion with RNase T1 or RNase A, contain, besides internal oligonucleotides, polynucleotides resistant to further action of ribonucleases T1 and A, respectively; these polynucleotides were isolated by membrane-filter binding or ion-exchange chromatography. The sequence of the T1-resistant polynucleotide was determined to be (Ap)(n)A(OH), that of the RNase A-resistant polynucleotide was GpGp(Ap)(n)A(OH). The chain length (n) of the polyadenylic acid, as analyzed by different methods, averages 89 nucleotides. Gel electrophoresis revealed heterogeneity of the size of poly(A). Poliovirus RNA, when labeled in vitro at the 3'-end, contains [3'-(3)H]poly(A); when labeled in vivo with [(3)H]A, it contains [(3)H](Ap)(n)A(OH). The data establish that... YpGpGp(Ap)([unk])A(OH) is the 3'-terminal sequence of poliovirus RNA, Type 1 (Mahoney). Since this mammalian virus reproduces in the cell cytoplasm, these observations may modify prior interpretations of the function of polyadenylate ends on messenger RNAs.

  16. Splicing and Polyadenylation of Human Papillomavirus Type 16 mRNAs

    PubMed Central

    Wu, Chengjun; Kajitani, Naoko; Schwartz, Stefan

    2017-01-01

    The human papillomavirus type 16 (HPV16) life cycle can be divided into an early stage in which the HPV16 genomic DNA is replicated, and a late stage in which the HPV16 structural proteins are synthesized and virions are produced. A strong coupling between the viral life cycle and the differentiation state of the infected cell is highly characteristic of all HPVs. The switch from the HPV16 early gene expression program to the late requires a promoter switch, a polyadenylation signal switch and a shift in alternative splicing. A number of cis-acting RNA elements on the HPV16 mRNAs and cellular and viral factors interacting with these elements are involved in the control of HPV16 gene expression. This review summarizes our knowledge of HPV16 cis-acting RNA elements and cellular and viral trans-acting factors that regulate HPV16 gene expression at the level of splicing and polyadenylation. PMID:28208770

  17. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  18. In vivo analysis of polyadenylation in prokaryotes.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2014-01-01

    Polyadenylation at the 3' ends of mRNAs, tRNAs, rRNAs, and sRNAs plays important roles in RNA metabolism in both prokaryotes and eukaryotes. However, the nature of poly(A) tails in prokaryotes is distinct compared to their eukaryotic counterparts. Specifically, depending on the organism, eukaryotic poly(A) tails average between 50 and >200 nt and can easily be isolated by several techniques involving oligo(dT)-dependent cDNA amplification. In contrast, the bulk of the poly(A) tails present on prokaryotic transcripts is relatively short (<10 nt) and is difficult to characterize using similar techniques. This chapter describes methods that can circumvent these problems. For example, we discuss how to isolate total RNA and characterize its overall polyadenylation status employing a poly(A) sizing assay. Furthermore, we describe a technique involving RNase H treatment of total RNA followed by northern analysis in order to distinguish length of poly(A) tails on various types of transcripts. Finally, we outline a useful procedure to clone the poly(A) tails of specific transcripts using 5'-3' end-ligated RNA, which is independent of oligo(dT)-dependent cDNA amplification. These approaches are particularly helpful in analyzing transcripts with either short or long poly(A) tails both in prokaryotes and eukaryotes.

  19. Stabilization of Oncostatin-M mRNA by Binding of Nucleolin to a GC-Rich Element in Its 3'UTR.

    PubMed

    Saha, Sucharita; Chakraborty, Alina; Bandyopadhyay, Sumita Sengupta

    2016-04-01

    Oncostatin-M (OSM) is a patho-physiologically important pleiotropic, multifunctional cytokine. OSM mRNA sequence analysis revealed that its 3'UTR contains three highly conserved GC-rich cis-elements (GCREs) whose role in mRNA stability is unidentified. In the present study, the functional role of the proximal GC-rich region of osm 3'-UTR (GCRE-1) in post-transcriptional regulation of osm expression in U937 cells was assessed by transfecting construct containing GCRE-1 at 3'-end of a fairly stable reporter gene followed by analysis of the expression of the reporter. GCRE-1 showed mRNA destabilizing activity; however, upon PMA treatment the reporter message containing GCRE-1 was stabilized. This stabilization is owing to a time-dependent progressive binding of trans-factors (at least five proteins) to GCRE-1 post-PMA treatment. Nucleolin was identified as one of the proteins in the RNP complex of GCRE-1 with PMA-treated U937 cytosolic extracts by oligo-dT affinity chromatography of poly-adenylated GCRE-1. Immuno-blot revealed time-dependent enhancement of nucleolin in the cytoplasm which in turn directly binds GCRE-1. RNA co-immunoprecipitation confirmed the GCRE-1-nucleolin interaction in vivo. To elucidate the functional role of nucleolin in stabilization of osm mRNA, nucleolin was overexpressed in U937 cells and found to stabilize the intrinsic osm mRNA, where co-transfection with the reporter containing GCRE-1 confirms the role of GCRE-1 in stabilization of the reporter mRNA. Thus, in conclusion, the results asserted that PMA treatment in U937 cells leads to cytoplasmic translocation of nucleolin that directly binds GCRE-1, one of the major GC-rich instability elements, thereby stabilizing the osm mRNA.

  20. Analysis of figwort mosaic virus (plant pararetrovirus) polyadenylation signal.

    PubMed

    Sanfaçon, H

    1994-01-01

    Analysis of the cauliflower mosaic virus (CaMV) polyadenylation (poly(A)) signal has revealed several striking differences to poly(A) signals from animal genes such as the absence of activating sequences downstream from the cleavage site. Instead, upstream sequences were shown to induce recognition of an AAUAAA sequence. To test whether these features are representative of other plant pararetrovirus poly(A) signals, a characterization of the figwort mosaic virus (FMV) poly(A) signal is presented here. The FMV RNAs were isolated from infected plants and mapped, and the different elements composing the FMV poly(A) signal were identified. Multiple upstream sequences were found to be essential for efficient processing at the FMV poly(A) site and could be replaced by the CaMV upstream elements. The FMV upstream sequences showed homologies to other characterized upstream sequences from CaMV, from animal viruses, and from plant poly(A) signals. Surprisingly, neither the FMV nor the CaMV upstream elements could induce recognition of an AAUAAA sequence present in the FMV poly(A) signal, instead a UAUAAA sequence 55 nucleotides further downstream was utilized. It is proposed that additional features may be required for appropriate cleavage such as the context of the AAUAAA-like sequence or perhaps the cleavage site itself.

  1. An in-depth map of polyadenylation sites in cancer.

    PubMed

    Lin, Yuefeng; Li, Zhihua; Ozsolak, Fatih; Kim, Sang Woo; Arango-Argoty, Gustavo; Liu, Teresa T; Tenenbaum, Scott A; Bailey, Timothy; Monaghan, A Paula; Milos, Patrice M; John, Bino

    2012-09-01

    We present a comprehensive map of over 1 million polyadenylation sites and quantify their usage in major cancers and tumor cell lines using direct RNA sequencing. We built the Expression and Polyadenylation Database to enable the visualization of the polyadenylation maps in various cancers and to facilitate the discovery of novel genes and gene isoforms that are potentially important to tumorigenesis. Analyses of polyadenylation sites indicate that a large fraction (∼30%) of mRNAs contain alternative polyadenylation sites in their 3' untranslated regions, independent of the cell type. The shortest 3' untranslated region isoforms are preferentially upregulated in cancer tissues, genome-wide. Candidate targets of alternative polyadenylation-mediated upregulation of short isoforms include POLR2K, and signaling cascades of cell-cell and cell-extracellular matrix contact, particularly involving regulators of Rho GTPases. Polyadenylation maps also helped to improve 3' untranslated region annotations and identify candidate regulatory marks such as sequence motifs, H3K36Me3 and Pabpc1 that are isoform dependent and occur in a position-specific manner. In summary, these results highlight the need to go beyond monitoring only the cumulative transcript levels for a gene, to separately analysing the expression of its RNA isoforms.

  2. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  3. Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism.

    PubMed

    Ueda, Keiji; Ishikawa, Kayo; Nishimura, Ken; Sakakibara, Shuhei; Do, Eunju; Yamanishi, Koichi

    2002-12-01

    The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, a homologue of Epstein-Barr virus BRLF1 or Rta, is a strong transactivator and inducer of lytic replication. RTA acting alone can induce lytic replication of KSHV in infected cell lines that originated from primary effusion lymphomas, leading to virus production. During the lytic replication process, RTA activates many kinds of genes, including polyadenylated nuclear RNA, K8, K9 (vIRF), ORF57, and so on. We focused here on the mechanism of how RTA upregulates the K9 (vIRF) promoter and identified two independent cis-acting elements in the K9 (vIRF) promoter that responded to RTA. These elements were finally confined to the sequence 5'-TCTGGGACAGTC-3' in responsive element (RE) I-2B and the sequence 5'-GTACTTAAAATA-3' in RE IIC-2, both of which did not share sequence homology. Multiple factors bound specifically with these elements, and their binding was correlated with the RTA-responsive activity. Electrophoretic mobility shift assay with nuclear extract from infected cells and the N-terminal part of RTA expressed in Escherichia coli, however, did not show that RTA interacted directly with these elements, in contrast to the RTA responsive elements in the PAN/K12 promoter region, the ORF57/K8 promoter region. Thus, it was likely that RTA could transactivate several kinds of unique cis elements without directly binding to the responsive elements, probably through cooperation with other DNA-binding factors.

  4. Proton Transfer in the Mechanism of Polyadenylate Polymerase

    PubMed Central

    Balbo, Paul B.; Bohm, Andrew

    2011-01-01

    Polyadenylate polymerase (PAP) is the template-independent RNA polymerase responsible for synthesis of the 3' poly(A) tails of mRNA. To investigate the role of proton transfer in the catalytic mechanism of PAP, the pH dependence of the steady state kinetic parameters of yeast PAP were determined for the forward (adenylyltransfer) and reverse (pyrophosphorolysis) reactions. The results indicate that productive formation of an enzyme-RNA-MgATP complex is pH independent over a broad pH range, but that formation of an active enzyme-RNA-MgPPi complex is strongly pH dependent, consistent with the production of a proton on the enzyme in the forward reaction. The pH dependence of the maximum velocity of the forward reaction suggests two protonic species are involved in enzyme catalysis. Optimal enzyme activity requires one species to be protonated, and the other, deprotonated. The deuterium solvent isotope effect on Vmax is also consistent with proton transfer involved in catalysis of a rate determining step. Finally, pKa calculations of PAP were performed by the multiconformational continuum electrostatic (MCCE) method. Together, the data support that the protonation of residues K215 and Y224 exhibit cooperativity important for MgATP2− and MgPPi2− binding/dissociation, and suggest these residues function in electrostatic, but not in general acid catalysis. PMID:19281452

  5. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    SciTech Connect

    Mao, Grace; Brody, James P.

    2007-11-09

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s{sup -1}. We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase.

  6. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  7. APADB: a database for alternative polyadenylation and microRNA regulation events.

    PubMed

    Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn

    2014-01-01

    Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3' untranslated region (3'UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3'UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3' end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3' end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3'UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/.

  8. Identification of a complex associated with processing and polyadenylation in vitro of herpes simplex virus type 1 thymidine kinase precursor RNA.

    PubMed Central

    Zhang, F; Cole, C N

    1987-01-01

    Cleavage and polyadenylation of substrate RNAs containing the herpes simplex virus type 1 (HSV-1) thymidine kinase (tk) gene polyadenylation signal region were examined in HeLa cell nuclear extract. 3'-End RNA processing was accurate and efficient and required ATP and Mg2+. Cleavage, but not polyadenylation, occurred in the presence of EDTA or when ATP was replaced with 3' dATP (cordycepin) or AMP(CH2)PP, a nonhydrolyzable analog of ATP. Processing in vitro and in vivo showed the same signal element requirements: a series of substrates containing linker scanning, internal deletion, and small insertion mutations was processed with the same relative efficiencies and at the same sites in vitro and in vivo. A complex involved in 3'-end RNA processing was identified by gel mobility shift analysis. This complex formed rapidly, reached a maximum level after 20 to 30 min, and was much reduced after 2 h. Very little complex was formed at 0 degree C or with substrates lacking a polyadenylation signal. Entry of 32P-labeled tk substrate into the complex could be prevented by addition of excess 35S-labeled tk or adenovirus L3 precursor RNAs. Competition was not observed with tk RNAs lacking a complete polyadenylation signal. Images PMID:2823124

  9. Upregulation of functional Kv11.1 isoform expression by inhibition of intronic polyadenylation with antisense morpholino oligonucleotides.

    PubMed

    Gong, Qiuming; Stump, Matthew R; Zhou, Zhengfeng

    2014-11-01

    The KCNH2 gene encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative processing; intron 9 splicing leads to the formation of a functional, full-length Kv11.1a isoform, while polyadenylation within intron 9 generates a non-functional, C-terminally truncated Kv11.1a-USO isoform. The relative expression of Kv11.1 isoforms plays an important role in the regulation of Kv11.1 channel function and the pathogenesis of long QT syndrome. In this study, we identified cis-acting elements that are required for KCNH2 intron 9 poly(A) signal activity. Mutation of these elements decreased Kv11.1a-USO expression and increased the expression of Kv11.1a mRNA, protein and channel current. More importantly, blocking these elements by antisense morpholino oligonucleotides shifted the alternative processing of KCNH2 intron 9 from the polyadenylation to the splicing pathway, leading to the predominant production of Kv11.1a and a significant increase in Kv11.1 current. Our findings indicate that the expression of the Kv11.1a isoform can be upregulated by an antisense approach. Antisense inhibition of KCNH2 intronic polyadenylation represents a novel approach to increase Kv11.1 channel function.

  10. Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea

    PubMed Central

    Lakshmanan, Vairavan; Bansal, Dhiru; Kulkarni, Jahnavi; Poduval, Deepak; Krishna, Srikar; Sasidharan, Vidyanand; Anand, Praveen; Seshasayee, Aswin; Palakodeti, Dasaradhi

    2016-01-01

    In eukaryotes, 3′ untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3′UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3′UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3′UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration. PMID:27489207

  11. A nucleolar localizing Rev binding element inhibits HIV replication

    PubMed Central

    Michienzi, Alessandro; De Angelis, Fernanda G; Bozzoni, Irene; Rossi, John J

    2006-01-01

    The Rev protein of the human immunodeficiency virus (HIV) facilitates the nuclear export of intron containing viral mRNAs allowing formation of infectious virions. Rev traffics through the nucleolus and shuttles between the nucleus and cytoplasm. Rev multimerization and interaction with the export protein CRM1 takes place in the nucleolus. To test the importance of Rev nucleolar trafficking in the HIV-1 replication cycle, we created a nucleolar localizing Rev Response Element (RRE) decoy and tested this for its anti-HIV activity. The RRE decoy provided marked inhibition of HIV-1 replication in both the CEM T-cell line and in primary CD34+ derived monocytes. These results demonstrate that titration of Rev in the nucleolus impairs HIV-1 replication and supports a functional role for Rev trafficking in this sub-cellular compartment. PMID:16712721

  12. Time-of-day regulates subcellular trafficking, tripartite synaptic localization and polyadenylation of the astrocytic Fabp7 mRNA

    PubMed Central

    Gerstner, Jason R.; Vanderheyden, William M.; LaVaute, Timothy; Westmark, Cara J.; Rouhana, Labib; Pack, Allan I.; Wickens, Marv; Landry, Charles F.

    2012-01-01

    The astrocyte brain fatty acid binding protein (Fabp7) has previously been shown to have a coordinated diurnal regulation of mRNA and protein throughout mouse brain, and an age-dependent decline in protein expression within synaptoneurosomal fractions. Mechanisms that control time-of-day changes in expression and trafficking Fabp7 to the perisynaptic process are not known. In this study, we confirmed an enrichment of Fabp7 mRNA and protein in the astrocytic perisynaptic compartment, and observed a diurnal change in the intracellular distribution of Fabp7 mRNA in molecular layers of hippocampus. Northern blotting revealed a coordinated time-of-day dependent oscillation for the Fabp7 mRNA poly(A) tail throughout murine brain. Cytoplasmic polyadenylation element-(CPE-) binding protein (CPEB1) regulates subcellular trafficking and translation of synaptic plasticity-related mRNAs. Here we show that Fabp7 mRNA co-immunoprecipitated with CPEB1 from primary mouse astrocyte extracts, and its 3′UTR contains phylogenetically conserved CPEs capable of regulating translation of reporter mRNAs during Xenopus oocyte maturation. Given that Fabp7 expression is confined to astrocytes and neural progenitors in adult mouse brain, the synchronized cycling pattern of Fabp7 mRNA is therefore novel of known CPE-regulated transcripts. These results implicate circadian, sleep and/or metabolic control of CPEB-mediated subcellular trafficking and localized translation of Fabp7 mRNA in the tripartite synapse of mammalian brain. PMID:22279223

  13. Polyadenylation factor CPSF-73 is the pre-mRNA 3’-end processing endonuclease

    PubMed Central

    Mandel, Corey R.; Kaneko, Syuzo; Zhang, Hailong; Gebauer, Damara; Vethantham, Vasupradha; Manley, James L.; Tong, Liang

    2013-01-01

    Most eukaryotic messenger RNA precursors (pre-mRNAs) undergo extensive maturational processing, including 3’-end cleavage and polyadenylation1–8. Despite the characterization of a large number of proteins that are required for the cleavage reaction, the identity of the endoribonuclease is not known4,9,10. Recent analyses suggested that the 73 kD subunit of cleavage and polyadenylation specificity factor (CPSF-73) may be the endonuclease for this and related reactions10–15, although no direct data confirmed this. Here we report the crystal structures of human CPSF-73 at 2.1 Å resolution, complexed with zinc ions and a sulfate that may mimic the phosphate group of the substrate, and the related yeast protein CPSF-100 (Ydh1p) at 2.5 Å resolution. Both CPSF-73 and CPSF-100 contain two domains, a metallo-β-lactamase domain and a novel β-CASP domain. The active site of CPSF-73, with two zinc ions, is located at the interface of the two domains. Purified recombinant CPSF-73 possesses endoribonuclease activity, and mutations that disrupt zinc binding in the active site abolish this activity. Our studies provide the first direct experimental evidence that CPSF-73 is the pre-mRNA 3’-end processing endonuclease. PMID:17128255

  14. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  15. Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers

    PubMed Central

    Pérez-Guijarro, Eva; Karras, Panagiotis; Cifdaloz, Metehan; Martínez-Herranz, Raúl; Cañón, Estela; Graña, Osvaldo; Horcajada-Reales, Celia; Alonso-Curbelo, Direna; Calvo, Tonantzin G.; Gómez-López, Gonzalo; Bellora, Nicolas; Riveiro-Falkenbach, Erica; Ortiz-Romero, Pablo L.; Rodríguez-Peralto, José L.; Maestre, Lorena; Roncador, Giovanna; de Agustín Asensio, Juan C.; Goding, Colin R.; Eyras, Eduardo; Megías, Diego; Méndez, Raúl; Soengas, María S.

    2016-01-01

    Nuclear 3'-end-polyadenylation is essential for the transport, stability and translation of virtually all eukaryotic mRNAs. Poly(A) tail extension can also occur in the cytoplasm, but the transcripts involved are incompletely understood, particularly in cancer. Here we identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma. CPEB4 is upregulated early in melanoma progression, as defined by computational and histological analyses. Melanoma cells are distinct from other tumour cell types in their dependency on CPEB4, not only to prevent mitotic aberrations, but to progress through G1/S cell cycle checkpoints. RNA immunoprecipitation, sequencing of bound transcripts and poly(A) length tests link the melanoma-specific functions of CPEB4 to signalling hubs specifically enriched in this disease. Essential in these CPEB4-controlled networks are the melanoma drivers MITF and RAB7A, a feature validated in clinical biopsies. These results provide new mechanistic links between cytoplasmic polyadenylation and lineage specification in melanoma. PMID:27857118

  16. Putative alternative polyadenylation (APA) events in the early interaction of Salmonella enterica Typhimurium and human host cells.

    PubMed

    Afonso-Grunz, Fabian

    2015-12-01

    The immune response of epithelial cells upon infection is mediated by changing activity levels of a variety of proteins along with changes in mRNA, and also ncRNA abundance. Alternative polyadenylation (APA) represents a mechanism that diversifies gene expression similar to alternative splicing. T-cell activation, neuronal activity, development and several human diseases including viral infections involve APA, but at present it remains unclear if this mechanism is also implicated in the response to bacterial infections. Our recently published study of interacting Salmonella enterica Typhimurium and human host cells includes genome-wide expression profiles of human epithelial cells prior and subsequent to infection with the invasive pathogen. The generated dataset (GEO accession number: GSE61730) covers several points of time post infection, and one of these interaction stages was additionally profiled with MACE-based dual 3'Seq, which allows for identification of polyadenylation (PA) sites. The present study features the polyadenylation landscape in early interacting cells based on this data, and provides a comparison of the identified PA sites with those of a corresponding 3P-Seq dataset of non-interacting cells. Differential PA site usage of FTL, PRDX1 and VAPA results in transcription of mRNA isoforms with distinct sets of miRNA and protein binding sites that influence processing, localization, stability, and translation of the respective mRNA. APA of these candidate genes consequently harbors the potential to modulate the host cell response to bacterial infection.

  17. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements.

    PubMed

    Gustin, Kortney M; Guan, Bo-Jhih; Dziduszko, Agnieszka; Brian, David A

    2009-06-01

    Nonstructural protein 1 (nsp1), a 28-kDa protein in the bovine coronavirus (BCoV) and closely related mouse hepatitis coronavirus, is the first protein cleaved from the open reading frame 1 (ORF 1) polyprotein product of genome translation. Recently, a 30-nucleotide (nt) cis-replication stem-loop VI (SLVI) has been mapped at nt 101 to 130 within a 288-nt 5'-terminal segment of the 738-nt nsp1 cistron in a BCoV defective interfering (DI) RNA. Since a similar nsp1 coding region appears in all characterized groups 1 and 2 coronavirus DI RNAs and must be translated in cis for BCoV DI RNA replication, we hypothesized that nsp1 might regulate ORF 1 expression by binding this intra-nsp1 cistronic element. Here, we (i) establish by mutation analysis that the 72-nt intracistronic SLV immediately upstream of SLVI is also a DI RNA cis-replication signal, (ii) show by gel shift and UV-cross-linking analyses that cellular proteins of approximately 60 and 100 kDa, but not viral proteins, bind SLV and SLVI, (SLV-VI) and (iii) demonstrate by gel shift analysis that nsp1 purified from Escherichia coli does not bind SLV-VI but does bind three 5' untranslated region (UTR)- and one 3' UTR-located cis-replication SLs. Notably, nsp1 specifically binds SLIII and its flanking sequences in the 5' UTR with approximately 2.5 muM affinity. Additionally, under conditions enabling expression of nsp1 from DI RNA-encoded subgenomic mRNA, DI RNA levels were greatly reduced, but there was only a slight transient reduction in viral RNA levels. These results together indicate that nsp1 is an RNA-binding protein that may function to regulate viral genome translation or replication but not by binding SLV-VI within its own coding region.

  18. Amino acid residues Leu135 and Tyr236 are required for RNA binding activity of CFIm25 in Entamoeba histolytica.

    PubMed

    Ospina-Villa, Juan David; Zamorano-Carrillo, Absalom; Lopez-Camarillo, Cesar; Castañon-Sanchez, Carlos A; Soto-Sanchez, Jacqueline; Ramirez-Moreno, Esther; Marchat, Laurence A

    2015-08-01

    Pre-mRNA 3' end processing in the nucleus is essential for mRNA stability, efficient nuclear transport, and translation in eukaryotic cells. In Human, the cleavage/polyadenylation machinery contains the 25 kDa subunit of the Cleavage Factor Im (CFIm25), which specifically recognizes two UGUA elements and regulates the assembly of polyadenylation factors, poly(A) site selection and polyadenylation. In Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, EhCFIm25 has been reported as a RNA binding protein that interacts with the Poly(A) Polymerase. Here, we follow-up with the study of EhCFIm25 to characterize its interaction with RNA. Using in silico strategy, we identified Leu135 and Tyr236 in EhCFIm25 as conserved amino acids among CFIm25 homologues. We therefore generated mutant EhCFIm25 proteins to investigate the role of these residues for RNA interaction. Results showed that RNA binding activity was totally abrogated when Leu135 and Tyr236 were replaced with Ala residue, and Tyr236 was changed for Phe. In contrast, RNA binding activity was less affected when Leu135 was substituted by Thr. Our data revealed for the first time -until we know-the functional relevance of the conserved Leu135 and Tyr236 in EhCFIm25 for RNA binding activity. They also gave some insights about the possible chemical groups that could be interacting with the RNA molecule.

  19. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding.

    PubMed

    Webb, Christopher J; Zakian, Virginia A

    2015-09-08

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.

  20. GAGA factor binding to DNA via a single trinucleotide sequence element.

    PubMed Central

    Wilkins, R C; Lis, J T

    1998-01-01

    GAGA transcription factor (GAF) is an essential protein in Drosophila , important for the transcriptional regulation of numerous genes. GAF binds to GA repeats in the promoters of these genes via a DNA-binding domain containing a single zinc finger. While GAF binding sites are typically composed of 3.5 GA repeats, the Drosophila hsp70 gene contains much smaller elements, some of which are as little as three bases (GAG) in length. Interestingly, the binding of GAF to more distant trinucleotide elements is relatively strong and not appreciably affected by the removal of larger GA arrays in the promoter. Moreover, a simple synthetic GAG sequence is sufficient to bind GAF in vitro . Here we directly compare the affinity of GAF for different sequence elements by immunoprecipitation and gel mobility shift analysis. Furthermore, our measures of the concentration of GAF in vivo indicate that it is a highly abundant nuclear protein, prevalent enough to occupy a sizable fraction of correspondingly abundant trinucleotide sites. PMID:9592153

  1. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.

    PubMed Central

    Rajendra, S; Vandenberg, R J; Pierce, K D; Cunningham, A M; French, P W; Barry, P H; Schofield, P R

    1995-01-01

    A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily. Images PMID:7621814

  2. Binding among Select Episodic Elements Is Altered via Active Short-Term Retrieval

    ERIC Educational Resources Information Center

    Bridge, Donna J.; Voss, Joel L.

    2015-01-01

    Of the many elements that comprise an episode, are any disproportionately bound to the others? We tested whether active short-term retrieval selectively increases binding. Individual objects from multiobject displays were retrieved after brief delays. Memory was later tested for the other objects. Cueing with actively retrieved objects facilitated…

  3. APADB: a database for alternative polyadenylation and microRNA regulation events

    PubMed Central

    Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M.; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn

    2014-01-01

    Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/ PMID:25052703

  4. Identification and characterization of DNA sequences that prevent glucocorticoid receptor binding to nearby response elements.

    PubMed

    Telorac, Jonas; Prykhozhij, Sergey V; Schöne, Stefanie; Meierhofer, David; Sauer, Sascha; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H

    2016-07-27

    Out of the myriad of potential DNA binding sites of the glucocorticoid receptor (GR) found in the human genome, only a cell-type specific minority is actually bound, indicating that the presence of a recognition sequence alone is insufficient to specify where GR binds. Cooperative interactions with other transcription factors (TFs) are known to contribute to binding specificity. Here, we reasoned that sequence signals preventing GR recruitment to certain loci provide an alternative means to confer specificity. Motif analyses uncovered candidate Negative Regulatory Sequences (NRSs) that interfere with genomic GR binding. Subsequent functional analyses demonstrated that NRSs indeed prevent GR binding to nearby response elements. We show that NRS activity is conserved across species, found in most tissues and that they also interfere with the genomic binding of other TFs. Interestingly, the effects of NRSs appear not to be a simple consequence of changes in chromatin accessibility. Instead, we find that NRSs interact with proteins found at sub-nuclear structures called paraspeckles and that these proteins might mediate the repressive effects of NRSs. Together, our studies suggest that the joint influence of positive and negative sequence signals partition the genome into regions where GR can bind and those where it cannot.

  5. Molecular cloning and expression of chicken carbohydrate response element binding protein and Max-like protein X gene homologues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) are transcription factors that are known to be key regulators of glucose metabolism and lipid synthesis in mammals. Since ChREBP and its co-activator Max-like protein X (Mlx) have not ...

  6. Discovery of new binding elements in DPP-4 inhibition and their applications in novel DPP-4 inhibitor design.

    PubMed

    Liang, Gui-Bai; Qian, Xiaoxia; Biftu, Tesfaye; Singh, Suresh; Gao, Ying-Duo; Scapin, Giovanna; Patel, Sangita; Leiting, Barbara; Patel, Reshma; Wu, Joseph; Zhang, Xiaoping; Thornberry, Nancy A; Weber, Ann E

    2008-07-01

    Probing with tool molecules, and by modeling and X-ray crystallography the binding modes of two structurally distinct series of DPP-4 inhibitors led to the discovery of a rare aromatic fluorine H-bond and the spatial requirement for better biaryl binding in the DPP-4 enzyme active site. These newly found binding elements were successfully incorporated into novel DPP-4 inhibitors.

  7. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  8. The trehalose/maltose-binding protein as the sensitive element of a glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fonin, A. V.; Povarova, O. I.; Staiano, M.; D'Auria, S.; Turoverov, K. K.; Kuznetsova, I. M.

    2014-08-01

    The promising direction of the development of a modern glucometer is the construction of sensing element on the basis of stained (dyed) protein which changes its fluorescence upon glucose binding. One of the proteins that can be used for this purpose is the D-trehalose/D-maltose-binding protein (TMBP) from the thermophilic bacteria Thermococcus litoralis. We investigated the physical-chemical properties of the protein and evaluated its stability to the denaturing action of GdnHCl and heating. It was confirmed that TMBP is an extremely stable protein. In vivo, the intrinsic ligands of TMBP are trehalose and maltose, but TMBP can also bind glucose. The dissociation constant of the TMBP-glucose complex is in the range of 3-8 mM. The binding of glucose does not noticeably change the intrinsic fluorescence of the TMBP. To register protein-glucose binding, we used the fluorescence of the thiol-reactive dye BADAN attached to TMBP. Because the fluorescence of BADAN attached to the cysteine Cys182 of TMBP does not change upon glucose binding, the mutant forms ТМВР/C182S/X_Cys were created. In these mutant proteins, Cys182 is replaced by Ser, removing intrinsic binding site of BADAN and a new dye binding sites were introduced. The largest increase (by 1.4 times) in the intensity of the dye fluorescence was observed upon TMBP/C182S/A14C-BADAN-Glc complex formation. The dissociation constant of this complex is 3.4 ± 0.1 mM. We consider TMBP/C182S/A14C mutant form with attached fluorescent dye BADAN as a good basis for further research aimed to develop of series of TMBP mutant forms with different affinities to glucose labeled with fluorescent dyes.

  9. Streptococcus pneumoniae Genome-wide Identification and Characterization of BOX Element-binding Domains.

    PubMed

    Zhang, Qiao; Wang, Changzheng; Wan, Min; Wu, Yin; Ma, Qianli

    2015-11-01

    The BOX elements are short repetitive DNA sequences that distribute randomly in intergenic regions of the Streptococcus pneumoniae genome. The function and origin of such elements are still unknown, but they were found to modulate expression of neighboring genes. Evidences suggested that the modulation's mechanism can be fulfilled by sequence-specific interaction of BOX elements with transcription factor family proteins. However, the type and function of these BOX-binding proteins still remain largely unexplored to date. In the current study we described a synthetic protocol to investigate the recognition and interaction between a highly conserved site of BOX elements and the DNA-binding domains of a variety of putative transcription factors in the pneumococcal genome. With the protocol we were able to predict those high-affinity domain binders of the conserved BOX DNA site (BOX DNA) in a high-throughput manner, and analyzed sequence-specific interaction in the domainDNA recognition at molecular level. Consequently, a number of putative transcription factor domains with both high affinity and specificity for the BOX DNA were identified, from which the helix-turn-helix (HTH) motif of a small heat shock factor was selected as a case study and tested for its binding capability toward the double-stranded BOX DNA using fluorescence anisotropy analysis. As might be expected, a relatively high affinity was detected for the interaction of HTH motif with BOX DNA with dissociation constant at nanomolar level. Molecular dynamics simulation, atomic structure examination and binding energy analysis revealed a complicated network of intensive nonbonded interactions across the complex interface, which confers both stability and specificity for the complex architecture.

  10. Effects of binding factors on structural elements in F-actin.

    PubMed

    Scoville, Damon; Stamm, John D; Altenbach, Christian; Shvetsov, Alexander; Kokabi, Kaveh; Rubenstein, Peter A; Hubbell, Wayne L; Reisler, Emil

    2009-01-20

    Understanding the dynamics of the actin filament is essential to a detailed description of their interactions and role in the cell. Previous studies have linked the dynamic properties of actin filaments (F-actin) to three structural elements contributing to a hydrophobic pocket, namely, the hydrophobic loop, the DNase I binding loop, and the C-terminus. Here, we examine how these structural elements are influenced by factors that stabilize or destabilize F-actin, using site-directed spin-labeled (SDSL) electron paramagnetic resonance (EPR), fluorescence, and cross-linking techniques. Specifically, we employ cofilin, an actin destabilizing protein that binds and severs filaments, and phalloidin, a fungal toxin that binds and stabilizes F-actin. We find that cofilin shifts both the DNase I binding loop and the hydrophobic loop away from the C-terminus in F-actin, as demonstrated by weakened spin-spin interactions, and alters the environment of spin probes on residues of these two loops. In contrast, although phalloidin strongly stabilizes F-actin, it causes little or no local change in the environment of the loop residues. This indicates that the stabilizing effect of phalloidin is achieved mainly through constraining structural fluctuations in F-actin and suggests that factors and interactions that control these fluctuations have an important role in the cytoskeleton dynamics.

  11. Identification and characterization of a critical CP2-binding element in the human interleukin-4 promoter.

    PubMed

    Casolaro, V; Keane-Myers, A M; Swendeman, S L; Steindler, C; Zhong, F; Sheffery, M; Georas, S N; Ono, S J

    2000-11-24

    Expression of cytokine genes in T cells is thought to result from a complex network of antigen- and mitogen-activated transcriptional regulators. CP2, a factor homologous to Drosophila Elf-1 and previously found to be a critical regulator of several viral and cellular genes in response to developmental signals, is rapidly activated in T helper (Th) cells in response to mitogenic stimulation. Here we show that overexpression of CP2 enhances interleukin (IL)-4 promoter-driven chloramphenicol acetyltransferase expression, while repressing IL-2 promoter activity, in transiently transfected Jurkat cells. A CP2-protected element, partially overlapping the nuclear factor of activated T cell-binding P2 sequence, was required for IL-4 promoter activation in CP2-overexpressing Jurkat cells. This CP2-response element is the site of a cooperative interaction between CP2 and an inducible heteromeric co-factor(s). Mutation of conserved nucleotide contacts within the CP2-response element prevented CP2 binding and significantly reduced constitutive and induced IL-4 promoter activity. Expression of a CP2 mutant lacking the Elf-1-homology region of the DNA-binding domain inhibited IL-4 promoter activity in a dominant negative fashion in transiently transfected Jurkat cells. Moreover, overexpressed CP2 markedly enhanced, while its dominant negative mutant consistently suppressed, expression of the endogenous IL-4 gene in the murine Th2 cell line D10. Taken together, these findings point to CP2 as a critical IL-4 transactivator in Th cells.

  12. Ebola Virus GP Gene Polyadenylation Versus RNA Editing.

    PubMed

    Volchkova, Valentina A; Vorac, Jaroslav; Repiquet-Paire, Laurie; Lawrence, Philip; Volchkov, Viktor E

    2015-10-01

    Synthesis of Ebola virus (EBOV) surface glycoprotein (GP) is dependent on transcriptional RNA editing. Northern blot analysis of EBOV-infected cells using GP-gene-specific probes reveals that, in addition to full-length GP messenger RNAs (mRNAs), a shorter RNA is also synthesized, representing >40% of the total amount of GP mRNA. Sequence analysis demonstrates that this RNA is a truncated version of the full-length GP mRNA that is polyadenylated at the editing site and thus lacks a stop codon. An absence of detectable levels of protein synthesis in cellulo is consistent with the existence of tight regulation of the translation of such mRNA. However, nonstop GP mRNA was shown to be only slightly less stable than the same mRNA containing a stop codon, against the general belief in nonstop decay mechanisms aimed at detecting and destroying mRNAs lacking a stop codon. In conclusion, we demonstrate that the editing site indeed serves as a cryptic transcription termination/polyadenylation site, which rarely also functions to edit GP mRNA for expression of surface GP. This new data suggest that the downregulation of surface GP expression is even more dramatic than previously thought, reinforcing the importance of the GP gene editing site for EBOV replication and pathogenicity.

  13. Deformed protein binding sites and cofactor binding sites are required for the function of a small segment-specific regulatory element in Drosophila embryos.

    PubMed Central

    Zeng, C; Pinsonneault, J; Gellon, G; McGinnis, N; McGinnis, W

    1994-01-01

    How each of the homeotic selector proteins can regulate distinct sets of DNA target elements in embryos is not understood. Here we describe a detailed functional dissection of a small element that is specifically regulated by the Deformed homeotic protein. This 120 bp element (module E) is part of a larger 2.7 kb autoregulatory enhancer that maintains Deformed (Dfd) transcription in the epidermis of the maxillary and mandibular segments of Drosophila embryos. In vitro binding assays show that module E contains only one Dfd protein binding site. Mutations in the Dfd binding site that increase or decrease its in vitro affinity for Dfd protein generate parallel changes in the regulatory activity of module E in transgenic embryos, strong evidence that the in vitro-defined binding site is a direct target of Dfd protein in embryos. However, a monomer or multimer of the Dfd binding region alone is not sufficient to supply Dfd-dependent, segment-specific reporter gene expression. An analysis of a systematic series of clustered point mutations in module E revealed that an additional region containing an imperfect inverted repeat sequence is also required for the function of this homeotic protein response element. The Dfd binding site and the putative cofactor binding site(s) in the region of the inverted repeat are both necessary and in combination sufficient for the function of module E. Images PMID:7910795

  14. The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice

    PubMed Central

    Grozdanov, Petar N.; Bergeson, Susan E.; Grammas, Paula

    2016-01-01

    Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction. PMID:27812195

  15. The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice.

    PubMed

    Harris, Jaryse C; Martinez, Joseph M; Grozdanov, Petar N; Bergeson, Susan E; Grammas, Paula; MacDonald, Clinton C

    2016-01-01

    Polyadenylation is an essential mechanism for the processing of mRNA 3' ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.

  16. Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    PubMed Central

    Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.

    2014-01-01

    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655

  17. Replication protein A binds to regulatory elements in yeast DNA repair and DNA metabolism genes.

    PubMed Central

    Singh, K K; Samson, L

    1995-01-01

    Saccharomyces cerevisiae responds to DNA damage by arresting cell cycle progression (thereby preventing the replication and segregation of damaged chromosomes) and by inducing the expression of numerous genes, some of which are involved in DNA repair, DNA replication, and DNA metabolism. Induction of the S. cerevisiae 3-methyladenine DNA glycosylase repair gene (MAG) by DNA-damaging agents requires one upstream activating sequence (UAS) and two upstream repressing sequences (URS1 and URS2) in the MAG promoter. Sequences similar to the MAG URS elements are present in at least 11 other S. cerevisiae DNA repair and metabolism genes. Replication protein A (Rpa) is known as a single-stranded-DNA-binding protein that is involved in the initiation and elongation steps of DNA replication, nucleotide excision repair, and homologous recombination. We now show that the MAG URS1 and URS2 elements form similar double-stranded, sequence-specific, DNA-protein complexes and that both complexes contain Rpa. Moreover, Rpa appears to bind the MAG URS1-like elements found upstream of 11 other DNA repair and DNA metabolism genes. These results lead us to hypothesize that Rpa may be involved in the regulation of a number of DNA repair and DNA metabolism genes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7761422

  18. Four major sequence elements of simian virus 40 large T antigen coordinate its specific and nonspecific DNA binding.

    PubMed Central

    Simmons, D T; Loeber, G; Tegtmeyer, P

    1990-01-01

    By mutational analysis, we have identified a motif critical to the proper recognition and binding of simian virus 40 large tumor antigen (T antigen) to virus DNA sequences at the origin of DNA replication. This motif is tripartite and consists of two elements (termed A1 and B2) that are necessary for sequence-specific binding of the origin and a central element (B1) which is required for nonspecific DNA-binding activity. Certain amino acids in elements A1 (residues 152 to 155) and B2 (203 to 207) may make direct contact with the GAGGC pentanucleotide sequences in binding sites I and II on the DNA. Alternatively, these two elements could determine the proper structure of the DNA-binding domain, although for a number of reasons we favor the first possibility. In contrast, element B1 (183 to 187) is most likely important for recognizing a general structural feature of DNA. Elements A1 and B2 are nearly identical in all known papovavirus T antigens, whereas B1 is identical only in the closely related papovaviruses simian virus 40, BK virus, and JC virus. In addition to these three elements, a fourth (B3; residues 215 to 219) is necessary for the binding of T antigen to site II but not to site I. We propose that additional contact sites on T antigen are involved in the interaction with site II to initiate the replication of the viral DNA. PMID:2157865

  19. Binding of stereognostically designed ligands to trivalent, pentavalent, and hexavalent f-block elements

    SciTech Connect

    Sinkov, Sergey I.; Lumetta, Gregg J.; Warner, Marvin G.; Pittman, Jonathan W.

    2012-03-26

    Stability constants were determined for the complexes formed from two stereognostically designed ligands and the f-block elements Nd(III), Np(V), and Pu(VI). The ligands investigated were tris[3-(2-carboxyphenoxy)propyl]amine (NPB) and tris-N,N',N''-[2-(2-carboxy-4-ethyl-phenoxy)ethyl]-1,4,7-triazacyclononane (EETAC). A stereognostically blind ligand, nitrilotriacetic acid (NTA), was also investigated for comparison. The results suggest that there is no significant stereognostic effect for complexation of NPB or EETAC to Np(V). On the other hand, a modest stereognostic effect is seen for the NPB ligand when complexed to Pu(VI), leading to an approximately 8-fold increase in the binding strength. A more significant effect is observed for the EETAC system in which a 250-fold increase in binding is observed for Pu(VI) versus Nd(III).

  20. FBI-1, a factor that binds to the HIV-1 inducer of short transcripts (IST), is a POZ domain protein.

    PubMed

    Morrison, D J; Pendergrast, P S; Stavropoulos, P; Colmenares, S U; Kobayashi, R; Hernandez, N

    1999-03-01

    The HIV-1 promoter directs the synthesis of two classes of transcripts, short, non-polyadenylated transcripts and full-length, polyadenylated transcripts. The synthesis of short transcripts is activated by a bipartite DNA element, the inducer of short transcripts or IST, located downstream of the HIV-1 transcriptional start site, while the synthesis of full-length transcripts is activated by the viral activator Tat. Tat binds to the RNA element TAR, which is encoded largely between the two IST half-elements. Upon activation by Tat, the synthesis of short RNAs is repressed. We have previously purified a factor called FBI-1 (for factor that binds to IST) whose binding to wild-type and mutated ISTs correlated well with the abilities of these ISTs to direct the synthesis of short transcripts. Here, we report the cloning of cDNAs encoding FBI-1. FBI-1 contains a POZ domain at its N-terminus and four Krüppel-type zinc fingers at its C-terminus. The C-terminus is sufficient for specific binding, and FBI-1 can form homomers through its POZ domain and, in vivo, through its zinc finger domain as well. In addition, FBI-1 associates with Tat, suggesting that repression of the short transcripts by Tat may be mediated through interactions between the two factors.

  1. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3'-end-seq.

    PubMed

    Haenni, Simon; Ji, Zhe; Hoque, Mainul; Rust, Nigel; Sharpe, Helen; Eberhard, Ralf; Browne, Cathy; Hengartner, Michael O; Mellor, Jane; Tian, Bin; Furger, André

    2012-07-01

    Despite the many advantages of Caenorhabditis elegans, biochemical approaches to study tissue-specific gene expression in post-embryonic stages are challenging. Here, we report a novel experimental approach for efficient determination of tissue-specific transcriptomes involving the rapid release and purification of nuclei from major tissues of post-embryonic animals by fluorescence-activated nuclei sorting (FANS), followed by deep sequencing of linearly amplified 3'-end regions of transcripts (3'-end-seq). We employed these approaches to compile the transcriptome of the developed C. elegans intestine and used this to analyse tissue-specific cleavage and polyadenylation. In agreement with intestinal-specific gene expression, highly expressed genes have enriched GATA-elements in their promoter regions and their functional properties are associated with processes that are characteristic for the intestine. We systematically mapped pre-mRNA cleavage and polyadenylation sites, or polyA sites, including more than 3000 sites that have previously not been identified. The detailed analysis of the 3'-ends of the nuclear mRNA revealed widespread alternative polyA site use (APA) in intestinally expressed genes. Importantly, we found that intestinal polyA sites that undergo APA tend to have U-rich and/or A-rich upstream auxiliary elements that may contribute to the regulation of 3'-end formation in the intestine.

  2. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila.

    PubMed

    Ajuria, Leiore; Nieva, Claudia; Winkler, Clint; Kuo, Dennis; Samper, Núria; Andreu, María José; Helman, Aharon; González-Crespo, Sergio; Paroush, Ze'ev; Courey, Albert J; Jiménez, Gerardo

    2011-03-01

    RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.

  3. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation.

    PubMed

    Miles, Wayne O; Lembo, Antonio; Volorio, Angela; Brachtel, Elena; Tian, Bin; Sgroi, Dennis; Provero, Paolo; Dyson, Nicholas

    2016-12-15

    Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3' untranslated region (3' UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3' UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype-specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. Cancer Res; 76(24); 7231-41. ©2016 AACR.

  4. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  5. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark.

    PubMed

    Slomovic, Shimyn; Laufer, David; Geiger, Dan; Schuster, Gadi

    2005-08-01

    RNA polyadenylation serves a purpose in bacteria and organelles opposite from the role it plays in nuclear systems. The majority of nucleus-encoded transcripts are characterized by stable poly(A) tails at their mature 3' ends, which are essential for stabilization and translation initiation. In contrast, in bacteria, chloroplasts, and plant mitochondria, polyadenylation is a transient feature which promotes RNA degradation. Surprisingly, in spite of their prokaryotic origin, human mitochondrial transcripts possess stable 3'-end poly(A) tails, akin to nucleus-encoded mRNAs. Here we asked whether human mitochondria retain truncated and transiently polyadenylated transcripts in addition to stable 3'-end poly(A) tails, which would be consistent with the preservation of the largely ubiquitous polyadenylation-dependent RNA degradation mechanisms of bacteria and organelles. To this end, using both molecular and bioinformatic methods, we sought and revealed numerous examples of such molecules, dispersed throughout the mitochondrial genome. The broad distribution but low abundance of these polyadenylated truncated transcripts strongly suggests that polyadenylation-dependent RNA degradation occurs in human mitochondria. The coexistence of this system with stable 3'-end polyadenylation, despite their seemingly opposite effects, is so far unprecedented in bacteria and other organelles.

  6. Sterol Regulatory Element Binding Protein Is a Principal Regulator of Anaerobic Gene Expression in Fission Yeast†

    PubMed Central

    Todd, Bridget L.; Stewart, Emerson V.; Burg, John S.; Hughes, Adam L.; Espenshade, Peter J.

    2006-01-01

    Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in Schizosaccharomyces pombe, we performed transcriptional profiling experiments after a shift to anaerobic conditions for 1.5 h. Of the 4,940 genes analyzed, expression levels of 521 (10.5%) and 686 (13.9%) genes were significantly increased and decreased, respectively, under anaerobic conditions. Sre1p controlled 68% of genes induced ≥2-fold. Oxygen-requiring biosynthetic pathways for ergosterol, heme, sphingolipid, and ubiquinone were primary targets of Sre1p. Induction of glycolytic genes and repression of mitochondrial oxidative phosphorylation genes largely did not require Sre1p. Using chromatin immunoprecipitation, we demonstrated that Sre1p acts directly at target gene promoters and stimulates its own transcription under anaerobic conditions. sre1+ promoter analysis identified two DNA elements that are both necessary and sufficient for oxygen-dependent, Sre1p-dependent transcription. Interestingly, these elements are homologous to sterol regulatory elements bound by mammalian SREBP, highlighting the evolutionary conservation between Sre1p and SREBP. We conclude that Sre1p is a principal activator of anaerobic gene expression, upregulating genes required for nonrespiratory oxygen consumption. PMID:16537923

  7. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    PubMed Central

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes. PMID:23530060

  8. General expressions for the matrix elements of the tight-binding operator within the Racah-Wigner algebra*

    NASA Astrophysics Data System (ADS)

    Möller, Thomas

    2016-12-01

    General expressions for the matrix elements of the tight-binding operator are presented using the Racah-Wigner algebra, where the wave functions are expressed as coupled multiplet wave functions within a given angular momentum coupling scheme. The knowledge of all possible Slater determinants is not necessary and the matrix elements can be written as compact expressions computable with arbitrary accuracy.

  9. Protein Phosphatase 2A (PP2A) Regulates Low Density Lipoprotein Uptake through Regulating Sterol Response Element-binding Protein-2 (SREBP-2) DNA Binding*

    PubMed Central

    Rice, Lyndi M.; Donigan, Melissa; Yang, Muhua; Liu, Weidong; Pandya, Devanshi; Joseph, Biny K.; Sodi, Valerie; Gearhart, Tricia L.; Yip, Jenny; Bouchard, Michael; Nickels, Joseph T.

    2014-01-01

    LDL-cholesterol (LDL-C) uptake by Ldlr is regulated at the transcriptional level by the cleavage-dependent activation of membrane-associated sterol response element-binding protein (SREBP-2). Activated SREBP-2 translocates to the nucleus, where it binds to an LDLR promoter sterol response element (SRE), increasing LDLR gene expression and LDL-C uptake. SREBP-2 cleavage and translocation steps are well established. Several SREBP-2 phosphorylation sites have been mapped and functionally characterized. The phosphatases dephosphorylating these sites remain elusive. The phosphatase(s) regulating SREBP-2 represents a novel pharmacological target for treating hypercholesterolemia. Here we show that protein phosphatase 2A (PP2A) promotes SREBP-2 LDLR promoter binding in response to cholesterol depletion. No binding to an LDLR SRE was observed in the presence of the HMG-CoA reductase inhibitor, lovastatin, when PP2A activity was inhibited by okadaic acid or depleted by siRNA methods. SREBP-2 cleavage and nuclear translocation were not affected by loss of PP2A. PP2A activity was required for SREBP-2 DNA binding. In response to cholesterol depletion, PP2A directly interacted with SREBP-2 and altered its phosphorylation state, causing an increase in SREBP-2 binding to an LDLR SRE site. Increased binding resulted in induced LDLR gene expression and increased LDL uptake. We conclude that PP2A activity regulates cholesterol homeostasis and LDL-C uptake. PMID:24770487

  10. Strategy for molecular beacon binding readout: separating molecular recognition element and signal reporter.

    PubMed

    Wang, Yongxiang; Li, Jishan; Jin, Jianyu; Wang, Hao; Tang, Hongxing; Yang, Ronghua; Wang, Kemin

    2009-12-01

    A new strategy for molecular beacon binding readout is proposed by using separation of the molecular recognition element and signal reporter. The signal transduction of the target binding event is based on displacing interaction between the target DNA and a competitor, the signal transducer. The target-free capture DNA is first interacted with the competitor, forming an assembled complex. In the presence of a target DNA that the affinity is stronger than that of the competitor, hybridization between capture DNA and the target disassembles the assembled complex and releases the free competitor to change the readout of the signal reporter. To demonstrate the feasibility of the design, a thymine-rich oligonucleotide was examined as a model system. Hg2+ was selected as the competitor, and mercaptoacetic acid-coated CdTe/ZnS quantum dots served as the fluorescent reporter. Selective binding of Hg2+ between the two thymine bases of the capture DNA forms a hairpin-structure. Hybridization between the capture DNA and target DNA destroys the hairpin-structure, releasing Hg2+ ions to quench the quantum dots fluorescence. Under the optimal conditions, fluorescence intensity of the quantum dots against the concentration of perfect cDNA was linear over the concentration range of 0.1-1.6 microM, with a limit of detection of 25 nM. This new assay method is simple in design, avoiding any oligonucleotide labeling. Furthermore, this strategy is generalizable since any target binding can in principle release the signal transducer and be detected with separated signal reporter.

  11. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation

    PubMed Central

    Shen, Yingjia; Ji, Guoli; Haas, Brian J.; Wu, Xiaohui; Zheng, Jianti; Reese, Greg J.; Li, Qingshun Quinn

    2008-01-01

    The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites. PMID:18411206

  12. Transcriptomic profiling of Ichthyophthirius multifiliis reveals polyadenylation of the large subunit ribosomal RNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyadenylation of eukaryotic transcripts is usually restricted to mRNA, whereby providing transcripts with stability from degradation by nucleases. Conversely, an RNA degradation pathway can be signaled through poly (A) tailing in prokaryotic, archeal, and organeller biology. Recently polyadenyla...

  13. Coordination of RNA Polymerase II Pausing and 3′ End Processing Factor Recruitment with Alternative Polyadenylation

    PubMed Central

    Fusby, Becky; Kim, Soojin; Erickson, Benjamin; Kim, Hyunmin; Peterson, Martha L.

    2015-01-01

    Most mammalian genes produce transcripts whose 3′ ends are processed at multiple alternative positions by cleavage/polyadenylation (CPA). Poly(A) site cleavage frequently occurs cotranscriptionally and is facilitated by CPA factor binding to the RNA polymerase II (Pol II) C-terminal domain (CTD) phosphorylated on Ser2 residues of its heptad repeats (YS2PTSPS). The function of cotranscriptional events in the selection of alternative poly(A) sites is poorly understood. We investigated Pol II pausing, CTD Ser2 phosphorylation, and processing factor CstF recruitment at wild-type and mutant IgM transgenes that use alternative poly(A) sites to produce mRNAs encoding the secreted and membrane-bound forms of the immunoglobulin (Ig) heavy chain. The results show that the sites of Pol II pausing and processing factor recruitment change depending on which poly(A) site is utilized. In contrast, the extent of Pol II CTD Ser2 phosphorylation does not closely correlate with poly(A) site selection. We conclude that changes in properties of the transcription elongation complex closely correlate with utilization of different poly(A) sites, suggesting that cotranscriptional events may influence the decision between alternative modes of pre-mRNA 3′ end processing. PMID:26527620

  14. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue.

    PubMed

    Sonoiki, Ebere; Ng, Caroline L; Lee, Marcus C S; Guo, Denghui; Zhang, Yong-Kang; Zhou, Yasheen; Alley, M R K; Ahyong, Vida; Sanz, Laura M; Lafuente-Monasterio, Maria Jose; Dong, Chen; Schupp, Patrick G; Gut, Jiri; Legac, Jenny; Cooper, Roland A; Gamo, Francisco-Javier; DeRisi, Joseph; Freund, Yvonne R; Fidock, David A; Rosenthal, Philip J

    2017-03-06

    Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg(-1), respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these mutations in the active site, where AN3661 is predicted to bind. Transcripts for three trophozoite-expressed genes were lost in AN3661-treated trophozoites, which was not observed in parasites selected or engineered for AN3661 resistance. Our results identify the pre-mRNA processing factor PfCPSF3 as a promising antimalarial drug target.

  15. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue

    PubMed Central

    Sonoiki, Ebere; Ng, Caroline L.; Lee, Marcus C. S.; Guo, Denghui; Zhang, Yong-Kang; Zhou, Yasheen; Alley, M. R. K.; Ahyong, Vida; Sanz, Laura M.; Lafuente-Monasterio, Maria Jose; Dong, Chen; Schupp, Patrick G.; Gut, Jiri; Legac, Jenny; Cooper, Roland A.; Gamo, Francisco-Javier; DeRisi, Joseph; Freund, Yvonne R.; Fidock, David A.; Rosenthal, Philip J.

    2017-01-01

    Benzoxaboroles are effective against bacterial, fungal and protozoan pathogens. We report potent activity of the benzoxaborole AN3661 against Plasmodium falciparum laboratory-adapted strains (mean IC50 32 nM), Ugandan field isolates (mean ex vivo IC50 64 nM), and murine P. berghei and P. falciparum infections (day 4 ED90 0.34 and 0.57 mg kg−1, respectively). Multiple P. falciparum lines selected in vitro for resistance to AN3661 harboured point mutations in pfcpsf3, which encodes a homologue of mammalian cleavage and polyadenylation specificity factor subunit 3 (CPSF-73 or CPSF3). CRISPR-Cas9-mediated introduction of pfcpsf3 mutations into parental lines recapitulated AN3661 resistance. PfCPSF3 homology models placed these mutations in the active site, where AN3661 is predicted to bind. Transcripts for three trophozoite-expressed genes were lost in AN3661-treated trophozoites, which was not observed in parasites selected or engineered for AN3661 resistance. Our results identify the pre-mRNA processing factor PfCPSF3 as a promising antimalarial drug target. PMID:28262680

  16. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2013-10-01

    Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL) PRINCIPAL INVESTIGATOR: Chioniso Masamha, Ph.D. CONTRACTING ORGANIZATION...CONTRACT NUMBER W81XWH-12-1-0218 Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL) 5b...shorten the 3’UTR of their mRNAs has important implications in cancer. Truncation of the cyclin D1 mRNA in mantle cell lymphoma (MCL) is one of the

  17. Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis.

    PubMed

    Attanasio, Catia; Nord, Alex S; Zhu, Yiwen; Blow, Matthew J; Biddie, Simon C; Mendenhall, Eric M; Dixon, Jesse; Wright, Crystal; Hosseini, Roya; Akiyama, Jennifer A; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Afzal, Veena; Ren, Bing; Bernstein, Bradley E; Rubin, Edward M; Visel, Axel; Pennacchio, Len A

    2014-06-01

    The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.

  18. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice

    PubMed Central

    Horie, Takahiro; Nishino, Tomohiro; Baba, Osamu; Kuwabara, Yasuhide; Nakao, Tetsushi; Nishiga, Masataka; Usami, Shunsuke; Izuhara, Masayasu; Sowa, Naoya; Yahagi, Naoya; Shimano, Hitoshi; Matsumura, Shigenobu; Inoue, Kazuo; Marusawa, Hiroyuki; Nakamura, Tomoyuki; Hasegawa, Koji; Kume, Noriaki; Yokode, Masayuki; Kita, Toru; Kimura, Takeshi; Ono, Koh

    2013-01-01

    MicroRNAs (miRs) are small non-protein-coding RNAs that bind to specific mRNAs and inhibit translation or promote mRNA degradation. Recent reports have indicated that miR-33, which is located within the intron of sterol regulatory element-binding protein (SREBP) 2, controls cholesterol homoeostasis and may be a potential therapeutic target for the treatment of atherosclerosis. Here we show that deletion of miR-33 results in marked worsening of high-fat diet-induced obesity and liver steatosis. Using miR-33−/−Srebf1+/− mice, we demonstrate that SREBP-1 is a target of miR-33 and that the mechanisms leading to obesity and liver steatosis in miR-33−/− mice involve enhanced expression of SREBP-1. These results elucidate a novel interaction between SREBP-1 and SREBP-2 mediated by miR-33 in vivo. PMID:24300912

  19. Core-level binding-energy shifts for the metallic elements

    NASA Astrophysics Data System (ADS)

    Johansson, Börje; Mårtensson, Nils

    1980-05-01

    A general treatment of core-level binding-energy shifts in metals relative to the free atom is introduced and applied to all elemental metals in the Periodic Table. The crucial ingredients of the theoretical description are (a) the assumption of a fully screened final state in the metallic case and (b) the (Z+1) approximation for the screening valence charge distribution around the core-ionized site. This core-ionized site is, furthermore, treated as an impurity in an otherwise perfect metal. The combination of the complete screening picture and the (Z+1) approximation makes it possible to introduce a Born-Haber cycle which connects the initial state with the final state of the core-ionization process. From this cycle it becomes evident that the main contributions to the core-level shift are the cohesive energy difference between the (Z+1) and Z metal and an appropriate ionization energy of the (Z+1) atom (usually the first ionization potential). The appearance of the ionization potential in the shift originates from the assumption of a charge-neutral final state, while the contribution from the cohesive energies essentially describes the change of bonding properties between the initial and final state of the site. The calculated shifts show very good agreement with available experimental values (at present, for 19 elements). For the other elements we have made an effort to combine experimental ionization potentials with theoretical calculations in order to obtain accurate estimates of some of the atomic-core-level binding energies. Such energies together with measured metallic binding energies give "pseudoexperimental" shifts for many elements. Our calculated core-level shifts agree exceedingly well also with these data. For some of the transition elements the core-level shift shows a deviating behavior in comparison with that of neighboring elements. This is shown to be due to a difference in the atomic ground-state configuration, such as, for example, d5s in

  20. Promoter-proximal polyadenylation sites reduce transcription activity

    PubMed Central

    Andersen, Pia K.; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels. PMID:23028143

  1. Polyadenylated mRNA from the photosynthetic procaryote Rhodospirillum rubrum

    SciTech Connect

    Majumdar, P.K.; McFadden, B.A.

    1984-03-01

    Total cellular RNA extracted from Rhodospirillum rubrum cultured in butyrate-containing medium under strict photosynthetic conditions to the stationary phase of growth has been fractionated on an oligodeoxy-thymidylic acid-cellulose column into polyadenylated (poly(A)/sup +/) RNA and poly(A)/sup -/ RNA fractions. The poly(A)/sup +/ fraction was 9 to 10% of the total bulk RNA isolated. Analysis of the poly(A)/sup +/ RNA on a denaturing urea-polyacrylamide gel revealed four sharp bands of RNA distributed in heterodisperse fashion between 16S and 9S. Similar fractionation of the poly(A)/sup -/ RNA resulted in the separation of 23, 16, and 5S rRNAs and 4S tRNA. Poly(A)/sup +/ fragments isolated after combined digestion with pancreatic A and T/sub 1/ RNases and analysis by denaturing gel electrophoresis demonstrated two major components of 80 and 100 residues. Alkaline hydrolysis of the nuclease-resistant, purified residues showed AMP-rich nucleotides. Through the use of snake venom phosphodiesterase, poly(A) tracts were placed at the 3' end of poly(A)/sup +/ RNA. Stimulation of (/sup 3/H)leucine

  2. Phosphate binding protein as the biorecognition element in a biosensor for phosphate

    NASA Technical Reports Server (NTRS)

    Salins, Lyndon L E.; Deo, Sapna K.; Daunert, Sylvia

    2004-01-01

    This work explores the potential use of a member of the periplasmic family of binding proteins, the phosphate binding protein (PBP), as the biorecognition element in a sensing scheme for the detection of inorganic phosphate (Pi). The selectivity of this protein originates from its natural role which, in Escherichia coli, is to serve as the initial receptor for the highly specific translocation of Pi to the cytoplasm. The single polypeptide chain of PBP is folded into two similar domains connected by three short peptide linkages that serve as a hinge. The Pi binding site is located deep within the cleft between the two domains. In the presence of the ligand, the two globular domains engulf the former in a hinge-like manner. The resultant conformational change constitutes the basis of the sensor development. A mutant of PBP (MPBP), where an alanine was replaced by a cysteine residue, was prepared by site-directed mutagenesis using the polymerase chain reaction (PCR). The mutant was expressed, from plasmid pSD501, in the periplasmic space of E. coli and purified in a single chromatographic step on a perfusion anion-exchange column. Site-specific labeling was achieved by attaching the fluorophore, N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC), to the protein through the sulfhydryl group of the cysteine moiety. Steady-state fluorescence studies of the MPBP-MDCC conjugate showed a change in the intensity of the signal upon addition of Pi. Calibration curves for Pi were constructed by relating the intensity of the fluorescence signal with the amount of analyte present in the sample. The sensing system was first developed and optimized on a spectrofluorometer using ml volumes of sample. It was then adapted to be used on a microtiter plate arrangement with microliter sample volumes. The system's versatility was finally proven by developing a fiber optic fluorescence-based sensor for monitoring Pi. In all three cases the detection limits for the

  3. Structure of a Thyroid Hormone Receptor DNA-Binding Domain Homodimer Bound to an Inverted Palindrome DNA Response Element

    SciTech Connect

    Chen, Yi; Young, Matthew A.

    2010-10-22

    Thyroid hormone receptor (TR), as a member of the nuclear hormone receptor family, can recognize and bind different classes of DNA response element targets as either a monomer, a homooligomer, or a heterooligomer. We report here the first crystal structure of a homodimer TR DNA-binding domain (DBD) in complex with an inverted repeat class of thyroid response element (TRE). The structure shows a nearly symmetric structure of the TR DBD assembled on the F2 TRE where the base recognition contacts in the homodimer DNA complex are conserved relative to the previously published structure of a TR-9-cis-retinoic acid receptor heterodimer DNA complex. The new structure also reveals that the T-box region of the DBD can function as a structural hinge that enables a large degree of flexibility in the position of the C-terminal extension helix that connects the DBD to the ligand-binding domain. Although the isolated TR DBDs exist as monomers in solution, we have measured highly cooperative binding of the two TR DBD subunits onto the inverted repeat DNA sequence. This suggests that elements of the DBD can influence the specific TR oligomerization at target genes, and it is not just interactions between the ligand-binding domains that are responsible for TR oligomerization at target genes. Mutational analysis shows that intersubunit contacts at the DBD C terminus account for some, but not all, of the cooperative homodimer TR binding to the inverted repeat class TRE.

  4. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements.

    PubMed

    Luo, Lin; Xue, Jing; Kwan, Ann; Gamsjaeger, Roland; Wielens, Jerome; von Kleist, Lisa; Cubeddu, Liza; Guo, Zhong; Stow, Jennifer L; Parker, Michael W; Mackay, Joel P; Robinson, Phillip J

    2016-04-29

    Dynamin is a GTPase that mediates vesicle fission during synaptic vesicle endocytosis. Its long C-terminal proline-rich domain contains 13 PXXP motifs, which orchestrate its interactions with multiple proteins. The SH3 domains of syndapin and endophilin bind the PXXP motifs called Site 2 and 3 (Pro-786-Pro-793) at the N-terminal end of the proline-rich domain, whereas the amphiphysin SH3 binds Site 9 (Pro-833-Pro-836) toward the C-terminal end. In some proteins, SH3/peptide interactions also involve short distance elements, which are 5-15 amino acid extensions flanking the central PXXP motif for high affinity binding. Here we found two previously unrecognized elements in the central and the C-terminal end of the dynamin proline-rich domain that account for a significant increase in syndapin binding affinity compared with a previously reported Site 2 and Site 3 PXXP peptide alone. The first new element (Gly-807-Gly-811) is short distance element on the C-terminal side of Site 2 PXXP, which might contact a groove identified under the RT loop of the SH3 domain. The second element (Arg-838-Pro-844) is located about 50 amino acids downstream of Site 2. These two elements provide additional specificity to the syndapin SH3 domain outside of the well described polyproline-binding groove. Thus, the dynamin/syndapin interaction is mediated via a network of multiple contacts outside the core PXXP motif over a previously unrecognized extended region of the proline-rich domain. To our knowledge this is the first example among known SH3 interactions to involve spatially separated and extended long-range elements that combine to provide a higher affinity interaction.

  5. A zinc-dependent DNA-binding activity co-operates with cAMP-responsive-element-binding protein to activate the human thyroglobulin enhancer.

    PubMed Central

    Berg, V; Vassart, G; Christophe, D

    1997-01-01

    Footprinting experiments involving the human thyroglobulin gene enhancer and thyroid nuclear extracts revealed a protected region called X2, containing an incomplete cAMP-responsive element (CRE). Band-shift experiments identified two binding activities recognizing the X2 element: a CRE-binding protein (CREB)/activating transcription factor (ATF) relative that binds the half CRE motif and a second factor that interacts with a G-rich motif located just upstream from the CRE. The first factor appears to be CREB itself, as indicated by the supershifting when using an antibody directed against CREB, and the second DNA-binding activity involved was shown to be zinc-dependent and exhibited an apparent molecular mass of 42-44 kDa in South-Western blotting experiments. This factor may represent a novel entity, which we named CAF, for 'CREB Associated Factor'. Three copies of X2 sequence conferred a strong cAMP-dependent transcriptional activation to a heterologous promoter in transient transfection assay in cAMP-stimulated primary thyrocytes and HeLa cells. Transfection experiments of constructs containing the X2 element mutated in either the CRE or the G-rich site showed that both motifs were required for this transcription activating function. Moreover, the combination of several individual X2 elements mutated in either the CRE or the G-rich motif did not exhibit full transcriptional activity. This suggests that, in the context of the X2 element, CREB requires a close interaction with CAF to achieve both basal and cAMP-dependent transcriptional activation. PMID:9163323

  6. An intact DNA-binding domain is not required for peroxisome proliferator-activated receptor gamma (PPARgamma) binding and activation on some PPAR response elements.

    PubMed

    Temple, Karla A; Cohen, Ronald N; Wondisford, Sarah R; Yu, Christine; Deplewski, Dianne; Wondisford, Fredric E

    2005-02-04

    Peroxisome proliferator-activated receptor gamma (PPARgamma) interacts with retinoid X receptor (RXR) on PPAR response elements (PPREs) to regulate transcription of PPAR-responsive genes. To investigate the binding of PPARgamma and RXR to PPREs, three mutations were constructed in the DNA-binding domains of PPARgamma; two of the mutants maintained the structure of zinc finger I (PPARgamma-GS and PPARgamma-AA), and a third mutation disrupted the protein structure of zinc finger I (PPARgamma-CS). Results indicated that the mutations of PPARgamma that maintained intact zinc fingers were capable of binding to a variety of PPREs in the presence of RXR and could activate transcription on several PPREs. In parallel, a mutation was created in the DNA-binding domain of RXRalpha that maintained the structure of the zinc fingers (RXR-GS) but did not bind DNA and was transcriptionally inactive. Examination of the 3' half-site of several PPREs revealed that variations from the consensus sequence reduced or abolished transcriptional activity, but conversion to consensus improved transcriptional activity with PPARgamma-GS and PPARgamma-AA. Examination of the 5' half-site indicated that the upstream three nucleotides were more important for transcriptional activity than the downstream three nucleotides. Our data demonstrated that stringent binding of RXR to the 3' half-site of a PPRE is more influential on the binding of the PPARgamma/RXR heterodimer than the ability of PPARgamma to bind DNA. Thus, unlike RXR, PPARgamma exhibits promiscuity in binding on a PPRE, suggesting that the definition of a PPRE for PPARgamma may need to be expanded.

  7. Productive life cycle of adeno-associated virus serotype 2 in the complete absence of a conventional polyadenylation signal

    PubMed Central

    Wang, Lina; Yin, Zifei; Wang, Yuan; Lu, Yuan; Zhang, Daniel; Srivastava, Arun; Ling, Changquan

    2015-01-01

    We showed that WT adeno-associated virus serotype 2 (AAV2) genome devoid of a conventional polyadenylation [poly(A)] signal underwent complete genome replication, encapsidation and progeny virion production in the presence of adenovirus. The infectivity of the progeny virion was also retained. Using recombinant AAV2 vectors devoid of a human growth hormone poly(A) signal, we also demonstrated that a subset of mRNA transcripts contained the inverted terminal repeat (ITR) sequence at the 3′ end, which we designated ITR in RNA (ITRR). Furthermore, AAV replication (Rep) proteins were able to interact with the ITRR. Taken together, our studies suggest a new function of the AAV2 ITR as an RNA element to mediate transgene expression from poly(A)-deleted mRNA. PMID:26297494

  8. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements.

    PubMed Central

    Zechel, C; Shen, X Q; Chambon, P; Gronemeyer, H

    1994-01-01

    We have previously reported that the binding site repertoires of heterodimers formed between retinoid X receptor (RXR) and either retinoic acid receptor (RAR) or thyroid hormone receptor (TR) bound to response elements consisting of directly repeated PuG(G/T)TCA motifs spaced by 1-5 bp [direct repeat (DR) elements 1-5] are highly similar to those of their corresponding DNA binding domains (DBDs). We have now mapped the dimerization surfaces located in the DBDs of RXR, RAR and TR, which are responsible for cooperative interaction on DR4 (RXR and TR) and DR5 (RXR and RAR). The D-box of the C-terminal CII finger of RXR provides one of the surfaces which is specifically required for the formation of the heterodimerization interfaces on both DR4 and DR5. Heterodimerization with the RXR DBD on DR5 specifically requires the tip of the RAR CI finger as the complementary surface, while a 7 amino acid sequence encompassing the 'prefinger region', but not the TR CI finger, is specifically required for efficient dimerization of TR and RXR DBDs on DR4. Importantly, DBD swapping experiments demonstrate not only that the binding site repertoires of the full-length receptors are dictated by those of their DBDs, but also that the formation of distinct dimerization interfaces between the DBDs are the critical determinants for cooperative DNA binding of these receptors to specific DRs. Images PMID:8137825

  9. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation

    PubMed Central

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2014-01-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P<0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3’-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack there of (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation. PMID:25560149

  10. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation.

    PubMed

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2015-02-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P < 0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3'-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack thereof (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation.

  11. Heat Stress Enhances the Accumulation of Polyadenylated Mitochondrial Transcripts in Arabidopsis thaliana

    PubMed Central

    Adamo, Alessio; Pinney, John W.; Kunova, Andrea; Westhead, David R.; Meyer, Peter

    2008-01-01

    Background Polyadenylation of RNA has a decisive influence on RNA stability. Depending on the organisms or subcellular compartment, it either enhances transcript stability or targets RNAs for degradation. In plant mitochondria, polyadenylation promotes RNA degradation, and polyadenylated mitochondrial transcripts are therefore widely considered to be rare and unstable. We followed up a surprising observation that a large number of mitochondrial transcripts are detectable in microarray experiments that used poly(A)-specific RNA probes, and that these transcript levels are significantly enhanced after heat treatment. Methodology/Principal Findings As the Columbia genome contains a complete set of mitochondrial genes, we had to identify polymorphisms to differentiate between nuclear and mitochondrial copies of a mitochondrial transcript. We found that the affected transcripts were uncapped transcripts of mitochondrial origin, which were polyadenylated at multiple sites within their 3′region. Heat-induced enhancement of these transcripts was quickly restored during a short recovery period. Conclusions/Significance Our results show that polyadenylated transcripts of mitochondrial origin are more stable than previously suggested, and that their steady-state levels can even be significantly enhanced under certain conditions. As many microarrays contain mitochondrial probes, due to the frequent transfer of mitochondrial genes into the genome, these effects need to be considered when interpreting microarray data. PMID:18682831

  12. A petunia ocs element binding factor, PhOBF1, plays an important role in antiviral RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a common strategy of reverse genetics for characterizing function of genes in plant. The detailed mechanism governing RNA silencing efficiency triggered by virus is largely unclear. Here, we revealed that a petunia (Petunia hybrida) ocs element binding factor, ...

  13. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation.

    PubMed

    Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing

    2014-09-01

    Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients.

  14. SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps.

    PubMed

    Setty, Manu; Leslie, Christina S

    2015-05-01

    Genome-wide maps of transcription factor (TF) occupancy and regions of open chromatin implicitly contain DNA sequence signals for multiple factors. We present SeqGL, a novel de novo motif discovery algorithm to identify multiple TF sequence signals from ChIP-, DNase-, and ATAC-seq profiles. SeqGL trains a discriminative model using a k-mer feature representation together with group lasso regularization to extract a collection of sequence signals that distinguish peak sequences from flanking regions. Benchmarked on over 100 ChIP-seq experiments, SeqGL outperformed traditional motif discovery tools in discriminative accuracy. Furthermore, SeqGL can be naturally used with multitask learning to identify genomic and cell-type context determinants of TF binding. SeqGL successfully scales to the large multiplicity of sequence signals in DNase- or ATAC-seq maps. In particular, SeqGL was able to identify a number of ChIP-seq validated sequence signals that were not found by traditional motif discovery algorithms. Thus compared to widely used motif discovery algorithms, SeqGL demonstrates both greater discriminative accuracy and higher sensitivity for detecting the DNA sequence signals underlying regulatory element maps. SeqGL is available at http://cbio.mskcc.org/public/Leslie/SeqGL/.

  15. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway.

    PubMed

    Bhattacharya, Bonhi S; Sweby, Peter K; Minihane, Anne-Marie; Jackson, Kim G; Tindall, Marcus J

    2014-05-21

    Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.

  16. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    PubMed Central

    Iizuka, Katsumi

    2017-01-01

    Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP) is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase), fructolysis (Glut5, ketohexokinase), and lipogenesis (acetyl CoA carboxylase, fatty acid synthase). ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome. PMID:28241431

  17. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    PubMed

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  18. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction

    SciTech Connect

    Son, Jieun; Lee, Jong-Ho; Kim, Ha-Neui; Ha, Hyunil Lee, Zang Hee

    2010-07-23

    Research highlights: {yields} CREB is highly expressed in advanced breast cancer cells. {yields} Tumor-related factors such as TGF-{beta} further elevate CREB expression. {yields} CREB upregulation stimulates metastatic potential of breast cancer cells. {yields} CREB signaling is required for breast cancer-induced bone destruction. -- Abstract: cAMP-response-element-binding protein (CREB) signaling has been reported to be associated with cancer development and poor clinical outcome in various types of cancer. However, it remains to be elucidated whether CREB is involved in breast cancer development and osteotropism. Here, we found that metastatic MDA-MB-231 breast cancer cells exhibited higher CREB expression than did non-metastatic MCF-7 cells and that CREB expression was further increased by several soluble factors linked to cancer progression, such as IL-1, IGF-1, and TGF-{beta}. Using wild-type CREB and a dominant-negative form (K-CREB), we found that CREB signaling positively regulated the proliferation, migration, and invasion of MDA-MB-231 cells. In addition, K-CREB prevented MDA-MB-231 cell-induced osteolytic lesions in a mouse model of cancer metastasis. Furthermore, CREB signaling in cancer cells regulated the gene expression of PTHrP, MMPs, and OPG, which are closely involved in cancer metastasis and bone destruction. These results indicate that breast cancer cells acquire CREB overexpression during their development and that this CREB upregulation plays an important role in multiple steps of breast cancer bone metastasis.

  19. Modeling RNA-ligand interactions: the Rev-binding element RNA-aminoglycoside complex.

    PubMed

    Leclerc, F; Cedergren, R

    1998-01-15

    An approach to the modeling of ligand-RNA complexes has been developed by combining three-dimensional structure-activity relationship (3D-SAR) computations with a docking protocol. The ability of 3D-SAR to predict bound conformations of flexible ligands was first assessed by attempting to reconstruct the known, bound conformations of phenyloxazolines complexed with human rhinovirus 14 (HRV14) RNA. Subsequently, the same 3D-SAR analysis was applied to the identification of bound conformations of aminoglycosides which associate with the Rev-binding element (RBE) RNA. Bound conformations were identified by parsing ligand conformational data sets with pharmacophores determined by the 3D-SAR analysis. These "bioactive" structures were docked to the receptor RNA, and optimization of the complex was undertaken by extensive searching of ligand conformational space coupled with molecular dynamics computations. The similarity between the bound conformations of the ligand from the 3D-SAR analysis and those found in the docking protocol suggests that this methodology is valid for the prediction of bound ligand conformations and the modeling of the structure of the ligand-RNA complexes.

  20. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    SciTech Connect

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; Eslamimanesh, Ali; Lencka, Malgorzata M.; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E.; Navrotsky, Alexandra; Jiao, Yongqin

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  1. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags

    DOE PAGES

    Park, Dan M.; Reed, David W.; Yung, Mimi C.; ...

    2016-02-02

    In this study, with the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb3+ could be effectively recovered using citrate,more » consistent with thermodynamic speciation calculations that predicted strong complexation of Tb3+ by citrate. No reduction in Tb3+ adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.« less

  2. A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway

    PubMed Central

    Bhattacharya, Bonhi S.; Sweby, Peter K.; Minihane, Anne-Marie; Jackson, Kim G.; Tindall, Marcus J.

    2014-01-01

    Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature. PMID:24444765

  3. Small yet effective: the ethylene responsive element binding factor-associated amphiphilic repression (EAR) motif.

    PubMed

    Kagale, Sateesh; Rozwadowski, Kevin

    2010-06-01

    The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high degree of conservation across evolutionarily diverse plant species. Our comprehensive genome-wide analysis enabled refining EAR motifs as comprising either LxLxL or DLNxxP. Comparing the representation of these sequence signatures in TRs to that of other repressor motifs we show that the EAR motif is the one most frequently represented, detected in 10 to 25% of the TRs from diverse plant species. The mechanisms involved in regulation of EAR motif function and the cellular fates of EAR repressors are currently not well understood. Our earlier analysis had implicated amino acid residues flanking the EAR motifs in regulation of their functionality. Here, we present additional evidence supporting possible regulation of EAR motif function by phosphorylation of integral or adjacent Ser and/or Thr residues. Additionally, we discuss potential novel roles of EAR motifs in plant-pathogen interaction and processes other than transcriptional repression.

  4. CstF-64 and 3′-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα

    PubMed Central

    Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.

    2016-01-01

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945

  5. CstF-64 and 3'-UTR cis-element determine Star-PAP specificity for target mRNA selection by excluding PAPα.

    PubMed

    Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S

    2016-01-29

    Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation.

  6. Arabidopsis Acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats.

    PubMed

    Li, Hong-Ye; Chye, Mee-Len

    2004-01-01

    Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.

  7. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae.

    PubMed

    Liko, Dritan; Slattery, Matthew G; Heideman, Warren

    2007-09-07

    Transfer of quiescent Saccharomyces cerevisiae cells to fresh medium rapidly induces hundreds of genes needed for growth. A large subset of these genes is regulated via a DNA sequence motif known as the ribosomal RNA processing element (RRPE). However, no RRPE-binding proteins have been identified. We screened a panel of 6144 glutathione S-transferase-open reading frame fusions for RRPE-binding proteins and identified Stb3 as a specific RRPE-binding protein, both in vitro and in vivo. Chromatin immunoprecipitation experiments showed that glucose increases Stb3 binding to RRPE-containing promoters. Microarray experiments demonstrated that the loss of Stb3 inhibits the transcriptional response to fresh glucose, especially for genes with RRPE motifs. However, these experiments also showed that not all genes containing RRPEs were dependent on Stb3 for expression. Overall our data support a model in which Stb3 plays an important but not exclusive role in the transcriptional response to growth conditions.

  8. Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes.

    PubMed Central

    Wormington, M; Searfoss, A M; Hurney, C A

    1996-01-01

    The translational regulation of maternal mRNAs is the primary mechanism by which stage-specific programs of protein synthesis are executed during early development. Translation of a variety of maternal mRNAs requires either the maintenance or cytoplasmic elongation of a 3' poly(A) tail. Conversely, deadenylation results in translational inactivation. Although its precise function remains to be elucidated, the highly conserved poly(A) binding protein I (PABP) mediates poly(A)-dependent events in translation initiation and mRNA stability. Xenopus oocytes contain less than one PABP per poly(A) binding site suggesting that the translation of maternal mRNAs could be either limited by or independent of PABP. In this report, we have analyzed the effects of overexpressing PABP on the regulation of mRNAs during Xenopus oocyte maturation. Increased levels of PABP prevent the maturation-specific deadenylation and translational inactivation of maternal mRNAS that lack cytoplasmic polyadenylation elements. Overexpression of PABP does not interfere with maturation-specific polyadenylation, but reduces the recruitment of some mRNAs onto polysomes. Deletion of the C-terminal basic region and a single RNP motif from PABP significantly reduces both its binding to polyadenylated RNA in vivo and its ability to prevent deadenylation. In contrast to a yeast PABP-dependent poly(A) nuclease, PABP inhibits Xenopus oocyte deadenylase in vitro. These results indicate that maturation-specific deadenylation in Xenopus oocytes is facilitated by a low level of PABP consistent with a primary function for PABP to confer poly(A) stability. Images PMID:8631310

  9. A human endogenous long terminal repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in normal placenta.

    PubMed

    Goodchild, N L; Wilkinson, D A; Mager, D L

    1992-11-16

    We have been investigating the impact that the long terminal repeats (LTRs) of the RTVL-H family of human endogenous retroviral-like elements may have on the expression of adjacent cellular genes. Using a differential hybridization strategy, we have screened a cDNA library from a normal full-term human placenta and have identified two clones containing non-RTVL-H-related cellular sequences that have been polyadenylated within an RTVL-H LTR. One of these clones, cPj-LTR, contains an open reading frame (ORF) of 223 amino acids. Southern analysis indicated that the corresponding gene, termed PLT, is most probably a single multi-exon locus and that related sequences are present in the mouse genome, suggesting that this gene has been evolutionarily conserved. Database searches detected no significant homology to previously published sequences, indicating that PLT is a novel gene. Northern analysis identified several PLT-related transcripts in placental RNA samples, one of which is associated with the LTR. The presence of this PLT-LTR fusion transcript in normal placenta was also confirmed by PCR. Additional hybridization studies with RNAs from various cell lines suggested that the PLT locus is differentially expressed in different cell types. To investigate the structure of the non-LTR-associated PLT-related transcripts, additional clones were isolated from the placental cDNA library. Analysis of these clones suggests that the PLT mRNA undergoes alternative splicing at its 3' end, with polyadenylation within an RTVL-H LTR occurring in one of the resulting transcripts.

  10. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.

    PubMed

    Záhonová, Kristína; Hadariová, Lucia; Vacula, Rostislav; Yurchenko, Vyacheslav; Eliáš, Marek; Krajčovič, Juraj; Vesteg, Matej

    2014-03-03

    Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corresponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 5'-end of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in secondary plastids.

  11. cAMP-responsive element binding protein: a vital link in embryonic hormonal adaptation.

    PubMed

    Schindler, Maria; Fischer, Sünje; Thieme, René; Fischer, Bernd; Santos, Anne Navarrete

    2013-06-01

    The transcription factor cAMP responsive element-binding protein (CREB) and activating transcription factors (ATFs) are downstream components of the insulin/IGF cascade, playing crucial roles in maintaining cell viability and embryo survival. One of the CREB target genes is adiponectin, which acts synergistically with insulin. We have studied the CREB-ATF-adiponectin network in rabbit preimplantation development in vivo and in vitro. From the blastocyst stage onwards, CREB and ATF1, ATF3, and ATF4 are present with increasing expression for CREB, ATF1, and ATF3 during gastrulation and with a dominant expression in the embryoblast (EB). In vitro stimulation with insulin and IGF-I reduced CREB and ATF1 transcripts by approximately 50%, whereas CREB phosphorylation was increased. Activation of CREB was accompanied by subsequent reduction in adiponectin and adiponectin receptor (adipoR)1 expression. Under in vivo conditions of diabetes type 1, maternal adiponectin levels were up-regulated in serum and endometrium. Embryonic CREB expression was altered in a cell lineage-specific pattern. Although in EB cells CREB localization did not change, it was translocated from the nucleus into the cytosol in trophoblast (TB) cells. In TB, adiponectin expression was increased (diabetic 427.8 ± 59.3 pg/mL vs normoinsulinaemic 143.9 ± 26.5 pg/mL), whereas it was no longer measureable in the EB. Analysis of embryonic adipoRs showed an increased expression of adipoR1 and no changes in adipoR2 transcription. We conclude that the transcription factors CREB and ATFs vitally participate in embryo-maternal cross talk before implantation in a cell lineage-specific manner. Embryonic CREB/ATFs act as insulin/IGF sensors. Lack of insulin is compensated by a CREB-mediated adiponectin expression, which may maintain glucose uptake in blastocysts grown in diabetic mothers.

  12. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  13. In situ detection of a heat-shock regulatory element binding protein using a soluble synthetic enhancer sequence.

    PubMed Central

    Harel-Bellan, A; Brini, A T; Ferris, D K; Robin, P; Farrar, W L

    1989-01-01

    In various studies, enhancer binding proteins have been successfully absorbed out by competing sequences inserted into plasmids, resulting in the inhibition of the plasmid expression. Theoretically, such a result could be achieved using synthetic enhancer sequences not inserted into plasmids. In this study, a double stranded DNA sequence corresponding to the human heat shock regulatory element was chemically synthesized. By in vitro retardation assays, the synthetic sequence was shown to bind specifically a protein in extracts from the human T cell line Jurkat. When the synthetic enhancer was electroporated into Jurkat cells, not only the enhancer was shown to remain undegraded into the cells for up to 2 days, but also it was shown to bind intracellularly a protein. The binding was specific and was modulated upon heat shock. Furthermore, the binding protein was shown to be of the expected molecular weight by UV crosslinking. However, when the synthetic enhancer element was co-electroporated with an HSP 70-CAT reporter construct, the expression of the reporter plasmid was consistently enhanced in the presence of the exogenous synthetic enhancer. Images PMID:2740211

  14. The conserved lymphokine element-0 in the IL5 promoter binds to a high mobility group-1 protein.

    PubMed

    Marrugo, J; Marsh, D G; Ghosh, B

    1996-10-01

    The conserved lymphokine elements-0 (CLE0) in the IL5 promoter is essential for the expression of IL-5. Here, we report the cloning and expression of a cDNA encoding a novel CLE0-binding protein, CLEBP-1 from a mouse Th2 clone, D10.G4.1. Interestingly, it was found that the CLEBP1 cDNA sequence was almost identical to the sequences of known high mobility group-1 (HMG1) cDNAs. When expressed as a recombinant fusion protein in Escherichia coli, CLEBP-1 was shown to bind to the IL5-CLE0 element in electrophoretic mobility-shift assays (EMSA) and southwestern blot analysis. The CLEBP-1 fusion protein cross-reacts with and-HMG-1/2 in Western blot analysis. It also binds to the CLE0 elements of IL4, GMCSF and GCSF genes. CLEBP-1 and closely related HMG-1 and HMG-2 proteins may play key roles in facilitating the expression of the lymphokine genes that contain CLE0 elements.

  15. The Human CCHC-type Zinc Finger Nucleic Acid-Binding Protein Binds G-Rich Elements in Target mRNA Coding Sequences and Promotes Translation.

    PubMed

    Benhalevy, Daniel; Gupta, Sanjay K; Danan, Charles H; Ghosal, Suman; Sun, Hong-Wei; Kazemier, Hinke G; Paeschke, Katrin; Hafner, Markus; Juranek, Stefan A

    2017-03-21

    The CCHC-type zinc finger nucleic acid-binding protein (CNBP/ZNF9) is conserved in eukaryotes and is essential for embryonic development in mammals. It has been implicated in transcriptional, as well as post-transcriptional, gene regulation; however, its nucleic acid ligands and molecular function remain elusive. Here, we use multiple systems-wide approaches to identify CNBP targets and function. We used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to identify 8,420 CNBP binding sites on 4,178 mRNAs. CNBP preferentially bound G-rich elements in the target mRNA coding sequences, most of which were previously found to form G-quadruplex and other stable structures in vitro. Functional analyses, including RNA sequencing, ribosome profiling, and quantitative mass spectrometry, revealed that CNBP binding did not influence target mRNA abundance but rather increased their translational efficiency. Considering that CNBP binding prevented G-quadruplex structure formation in vitro, we hypothesize that CNBP is supporting translation by resolving stable structures on mRNAs.

  16. The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation.

    PubMed

    Chowdhury, A; Liu, G; Kemp, M; Chen, X; Katrangi, N; Myers, S; Ghosh, M; Yao, J; Gao, Y; Bubulya, P; Leffak, M

    2010-03-01

    Template unwinding during DNA replication initiation requires the loading of the MCM helicase activator Cdc45 at replication origins. We show that Cdc45 interacts with the DNA unwinding element (DUE) binding protein DUE-B and that these proteins localize to the DUEs of active replication origins. DUE-B and Cdc45 are not bound at the inactive c-myc replicator in the absence of a functional DUE or at the recently identified ataxin 10 (ATX10) origin, which is silent before disease-related (ATTCT)(n) repeat length expansion of its DUE sequence, despite the presence of the origin recognition complex (ORC) and MCM proteins at these origins. Addition of a heterologous DUE to the ectopic c-myc origin, or expansion of the ATX10 DUE, leads to origin activation, DUE-B binding, and Cdc45 binding. DUE-B, Cdc45, and topoisomerase IIbeta binding protein 1 (TopBP1) form complexes in cell extracts and when expressed from baculovirus vectors. During replication in Xenopus egg extracts, DUE-B and Cdc45 bind to chromatin with similar kinetics, and DUE-B immunodepletion blocks replication and the loading of Cdc45 and a fraction of TopBP1. The coordinated binding of DUE-B and Cdc45 to origins and the physical interactions of DUE-B, Cdc45, and TopBP1 suggest that complexes of these proteins are necessary for replication initiation.

  17. Molecular biology of beta-estradiol-estrogen receptor complex binding to estrogen response element and the effect on cell proliferation.

    PubMed

    Heger, Zbynek; Zitka, Ondrej; Krizkova, Sona; Beklova, Miroslava; Kizek, Rene; Adam, Vojtech

    2013-01-01

    Group of estrogen pollutants, where the highest estrogen activity is reported at estradiol, is characterized by the fact that even at very low concentrations have potential to cause xenoestrogenic effects. During exposure of excessive amounts of estradiols may be produced undesirable effects resulting in the feminization of males of water organisms. The presence of estradiols in drinking water implies also a risk for the human population in the form of cancers of endocrine systems, abnormalities in reproduction or dysfunctions of neuronal and immune system. Currently, the research is focused mainly to uncover the relationship between the estrogen receptors binding affinity with an estrogen response element and estradiol. In this review we summarized facts about molecular biological principles of β estradiol-estrogen receptor complex binding with estrogen response element and its successive effect on cancer genes expression.

  18. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    SciTech Connect

    Istrate, Monica A.; Nussler, Andreas K.; Eichelbaum, Michel; Burk, Oliver

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  19. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    PubMed Central

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  20. Structure and function of the c-myc DNA-unwinding element-binding protein DUE-B.

    PubMed

    Kemp, Michael; Bae, Brian; Yu, John Paul; Ghosh, Maloy; Leffak, Michael; Nair, Satish K

    2007-04-06

    Local zones of easily unwound DNA are characteristic of prokaryotic and eukaryotic replication origins. The DNA-unwinding element of the human c-myc replication origin is essential for replicator activity and is a target of the DNA-unwinding element-binding protein DUE-B in vivo. We present here the 2.0A crystal structure of DUE-B and complementary biochemical characterization of its biological activity. The structure corresponds to a dimer of the N-terminal domain of the full-length protein and contains many of the structural elements of the nucleotide binding fold. A single magnesium ion resides in the putative active site cavity, which could serve to facilitate ATP hydrolytic activity of this protein. The structure also demonstrates a notable similarity to those of tRNA-editing enzymes. Consistent with this structural homology, the N-terminal core of DUE-B is shown to display both D-aminoacyl-tRNA deacylase activity and ATPase activity. We further demonstrate that the C-terminal portion of the enzyme is disordered and not essential for dimerization. However, this region is essential for DNA binding in vitro and becomes ordered in the presence of DNA.

  1. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model

    PubMed Central

    Schauwaers, Kris; De Gendt, Karel; Saunders, Philippa T. K.; Atanassova, Nina; Haelens, Annemie; Callewaert, Leen; Moehren, Udo; Swinnen, Johannes V.; Verhoeven, Guido; Verrijdt, Guy; Claessens, Frank

    2007-01-01

    Androgens influence transcription of their target genes through the activation of the androgen receptor (AR) that subsequently interacts with specific DNA motifs in these genes. These DNA motifs, called androgen response elements (AREs), can be classified in two classes: the classical AREs, which are also recognized by the other steroid hormone receptors; and the AR-selective AREs, which display selectivity for the AR. For in vitro interaction with the selective AREs, the androgen receptor DNA-binding domain is dependent on specific residues in its second zinc-finger. To evaluate the physiological relevance of these selective elements, we generated a germ-line knockin mouse model, termed SPARKI (SPecificity-affecting AR KnockIn), in which the second zinc-finger of the AR was replaced with that of the glucocorticoid receptor, resulting in a chimeric protein that retains its ability to bind classical AREs but is unable to bind selective AREs. The reproductive organs of SPARKI males are smaller compared with wild-type animals, and they are also subfertile. Intriguingly, however, they do not display any anabolic phenotype. The expression of two testis-specific, androgen-responsive genes is differentially affected by the SPARKI mutation, which is correlated with the involvement of different types of response elements in their androgen responsiveness. In this report, we present the first in vivo evidence of the existence of two functionally different types of AREs and demonstrate that AR-regulated gene expression can be targeted based on this distinction. PMID:17360365

  2. Cytoplasmic RNA-binding proteins and the control of complex brain function.

    PubMed

    Darnell, Jennifer C; Richter, Joel D

    2012-08-01

    The formation and maintenance of neural circuits in the mammal central nervous system (CNS) require the coordinated expression of genes not just at the transcriptional level, but at the translational level as well. Recent evidence shows that regulated messenger RNA (mRNA) translation is necessary for certain forms of synaptic plasticity, the cellular basis of learning and memory. In addition, regulated translation helps guide axonal growth cones to their targets on other neurons or at the neuromuscular junction. Several neurologic syndromes have been correlated with and indeed may be caused by aberrant translation; one important example is the fragile X mental retardation syndrome. Although translation in the CNS is regulated by multiple mechanisms and factors, we focus this review on regulatory mRNA-binding proteins with particular emphasis on fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding (CPEB) because they have been shown to be at the nexus of translational control and brain function in health and disease.

  3. Association of a polyadenylation polymorphism in the serotonin transporter and panic disorder

    PubMed Central

    Gyawali, Sandeep; Subaran, Ryan; Weissman, Myrna M.; Hershkowitz, Dylan; McKenna, Morgan C.; Talari, Ardesheer; Fyer, Abby J.; Wickramaratne, Priya; Adams, Phillip B.; Hodge, Susan E.; Schmidt, Carl J.; Bannon, Michael J.; Glatt, Charles E.

    2010-01-01

    Background Genetic markers in the serotonin transporter are associated with panic disorder. The associated polymorphisms do not include the serotonin transporter-linked polymorphic region and display no obvious functional attributes. A common polymorphism (rs3813034) occurs in one of the two reported polyadenylation signals for the serotonin transporter and is in linkage disequilibrium with the panic disorder-associated markers. If functional, rs3813034 may be the risk factor that explains the association of the serotonin transporter and panic disorder. Methods Quantitative PCR on human brain samples (n=65) and lymphoblast cultures (n=71) was used to test rs3813034 for effects on expression of the polyadenylation forms of the serotonin transporter. rs3813034 was also tested for association in a sample of panic disorder cases (n=307) and a control sample (n=542) that has similar population structure. Results The balance of the two polyadenylation forms of the serotonin transporter is associated with rs3813034 in brain (P<0.001) and lymphoblasts (P<0.001). The balance of the polyadenylation forms is also associated with gender in brain only (P<0.05). Association testing of rs3813034 in panic disorder identified a significant association (P=0.0068) with a relative risk of 1.56 and 1.81 for the heterozygous and homozygous variant genotypes respectively. Conclusions rs3813034 is a functional polymorphism in the serotonin transporter that alters the balance of the two polyadenylation forms of the serotonin transporter. rs3813034 is a putative risk factor for panic disorder and other behavioral disorders that involve dysregulation of serotonergic neurotransmission. PMID:19969287

  4. Maturation and Activity of Sterol Regulatory Element Binding Protein 1 Is Inhibited by Acyl-CoA Binding Domain Containing 3

    PubMed Central

    Chen, Yong; Patel, Vishala; Bang, Sookhee; Cohen, Natalie; Millar, John; Kim, Sangwon F.

    2012-01-01

    Imbalance of lipid metabolism has been linked with pathogenesis of a variety of human pathological conditions such as diabetes, obesity, cancer and neurodegeneration. Sterol regulatory element binding proteins (SREBPs) are the master transcription factors controlling the homeostasis of fatty acids and cholesterol in the body. Transcription, expression, and activity of SREBPs are regulated by various nutritional, hormonal or stressful stimuli, yet the molecular and cellular mechanisms involved in these adaptative responses remains elusive. In the present study, we found that overexpressed acyl-CoA binding domain containing 3 (ACBD3), a Golgi-associated protein, dramatically inhibited SREBP1-sensitive promoter activity of fatty acid synthase (FASN). Moreover, lipid deprivation-stimulated SREBP1 maturation was significantly attenuated by ACBD3. With cell fractionation, gene knockdown and immunoprecipitation assays, it was showed that ACBD3 blocked intracellular maturation of SREBP1 probably through directly binding with the lipid regulator rather than disrupted SREBP1-SCAP-Insig1 interaction. Further investigation revealed that acyl-CoA domain-containing N-terminal sequence of ACBD3 contributed to its inhibitory effects on the production of nuclear SREBP1. In addition, mRNA and protein levels of FASN and de novo palmitate biosynthesis were remarkably reduced in cells overexpressed with ACBD3. These findings suggest that ACBD3 plays an essential role in maintaining lipid homeostasis via regulating SREBP1's processing pathway and thus impacting cellular lipogenesis. PMID:23166793

  5. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.

    PubMed

    Sasse, Sarah K; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A; Jain, Mukesh K; Phang, Tzu L; Stormo, Gary D; Gerber, Anthony N

    2015-08-07

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes.

  6. Inhibition of U4 snRNA in Human Cells Causes the Stable Retention of Polyadenylated Pre-mRNA in the Nucleus

    PubMed Central

    Hett, Anne; West, Steven

    2014-01-01

    Most human pre-mRNAs contain introns that are removed by splicing. Such a complex process needs strict control and regulation in order to prevent the expression of aberrant or unprocessed transcripts. To analyse the fate of pre-mRNAs that cannot be spliced, we inhibited splicing using an anti-sense morpholino (AMO) against U4 snRNA. As a consequence, splicing of several selected transcripts was strongly inhibited. This was accompanied by the formation of enlarged nuclear speckles containing polyadenylated RNA, splicing factors and the nuclear poly(A) binding protein. Consistently, more polyadenylated pre-mRNA could be isolated from nucleoplasmic as well as chromatin-associated RNA fractions following U4 inhibition. Further analysis demonstrated that accumulated pre-mRNAs were stable in the nucleus and that nuclear RNA degradation factors did not re-localise to nuclear speckles following splicing inhibition. The accumulation of pre-mRNA and the formation of enlarged speckles were sensitive to depletion of the 3′ end processing factor, CPSF73, suggesting a requirement for poly(A) site processing in this mechanism. Finally, we provide evidence that the pre-mRNAs produced following U4 snRNA inhibition remain competent for splicing, perhaps providing a biological explanation for their stability. These data further characterise processes ensuring the nuclear retention of pre-mRNA that cannot be spliced and suggest that, in some cases, unspliced transcripts can complete splicing sometime after their initial synthesis. PMID:24796696

  7. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin.

    PubMed

    Sowd, Gregory A; Serrao, Erik; Wang, Hao; Wang, Weifeng; Fadel, Hind J; Poeschla, Eric M; Engelman, Alan N

    2016-02-23

    Integration is vital to retroviral replication and influences the establishment of the latent HIV reservoir. HIV-1 integration favors active genes, which is in part determined by the interaction between integrase and lens epithelium-derived growth factor (LEDGF)/p75. Because gene targeting remains significantly enriched, relative to random in LEDGF/p75 deficient cells, other host factors likely contribute to gene-tropic integration. Nucleoporins 153 and 358, which bind HIV-1 capsid, play comparatively minor roles in integration targeting, but the influence of another capsid binding protein, cleavage and polyadenylation specificity factor 6 (CPSF6), has not been reported. In this study we knocked down or knocked out CPSF6 in parallel or in tandem with LEDGF/p75. CPSF6 knockout changed viral infectivity kinetics, decreased proviral formation, and preferentially decreased integration into transcriptionally active genes, spliced genes, and regions of chromatin enriched in genes and activating histone modifications. LEDGF/p75 depletion by contrast preferentially altered positional integration targeting within gene bodies. Dual factor knockout reduced integration into genes to below the levels observed with either single knockout and revealed that CPSF6 played a more dominant role than LEDGF/p75 in directing integration to euchromatin. CPSF6 complementation rescued HIV-1 integration site distribution in CPSF6 knockout cells, but complementation with a capsid binding mutant of CPSF6 did not. We conclude that integration targeting proceeds via two distinct mechanisms: capsid-CPSF6 binding directs HIV-1 to actively transcribed euchromatin, where the integrase-LEDGF/p75 interaction drives integration into gene bodies.

  8. Pyrazole-based cathepsin S inhibitors with arylalkynes as P1 binding elements

    SciTech Connect

    Ameriks, Michael K.; Axe, Frank U.; Bembenek, Scott D.; Edwards, James P.; Gu, Yin; Karlsson, Lars; Randal, Mike; Sun, Siquan; Thurmond, Robin L.; Zhu, Jian

    2010-01-12

    A crystal structure of 1 bound to a Cys25Ser mutant of cathepsin S helped to elucidate the binding mode of a previously disclosed series of pyrazole-based CatS inhibitors and facilitated the design of a new class of arylalkyne analogs. Optimization of the alkyne and tetrahydropyridine portions of the pharmacophore provided potent CatS inhibitors (IC{sub 50} = 40-300 nM), and an X-ray structure of 32 revealed that the arylalkyne moiety binds in the S1 pocket of the enzyme.

  9. Alteration of Cyclic-AMP Response Element Binding Protein in the Postmortem Brain of Subjects with Bipolar Disorder and Schizophrenia

    PubMed Central

    Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.

    2013-01-01

    Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789

  10. The mouse albumin enhancer contains a negative regulatory element that interacts with a novel DNA-binding protein.

    PubMed Central

    Herbst, R S; Boczko, E M; Darnell, J E; Babiss, L E

    1990-01-01

    The far-upstream mouse albumin enhancer (-10.5 to -8.43 kilobases) has both positive and negative regulatory domains which contribute to the rate and tissue specificity of albumin gene transcription. (R. S. Herbst, N. Friedman, J. E. Darnell, Jr., and L. E. Babiss, Proc. Natl. Acad. Sci. USA 86:1553-1557). In this work, the negative regulatory region has been functionally localized to sequences -8.7 to -8.43 kilobases upstream of the albumin gene cap site. In the absence of the albumin-modulating region (in which there are binding sites for the transcription factor C/EBP), the negative region can suppress a neighboring positive-acting element, thereby interfering with albumin enhancer function. The negative region is also capable of negating the positive action of the heterologous transthyretin enhancer in an orientation-independent fashion. Within this negative-acting region we can detect two DNA-binding sites, both of which are recognized by a protein present in all cell types tested. This DNA-binding activity is not competed for by any of a series of known DNA-binding sites, and hence this new protein is a candidate for a role in suppressing the albumin gene in nonhepatic cells. Images PMID:2370857

  11. Roles of Binding Elements, FOXL2 Domains, and Interactions With cJUN and SMADs in Regulation of FSHβ

    PubMed Central

    Roybal, Lacey L.; Hambarchyan, Arpi; Meadows, Jason D.; Barakat, Nermeen H.; Pepa, Patricia A.; Breen, Kellie M.; Mellon, Pamela L.

    2014-01-01

    We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter. PMID:25105693

  12. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element.

    PubMed

    Vashisth, Harish; Abrams, Cameron F

    2013-06-01

    Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.

  13. The Study of Stability of Compression-loaded Multispan Composite Panel Upon Failure of elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  14. The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster

    PubMed Central

    Grönke, Sebastian; Stewart, James B.; Mourier, Arnaud; Ruzzenente, Benedetta; Kukat, Christian; Wibom, Rolf; Habermann, Bianca; Partridge, Linda; Larsson, Nils-Göran

    2011-01-01

    The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation. PMID:22022283

  15. The contribution of AAUAAA and the upstream element UUUGUA to the efficiency of mRNA 3'-end formation in plants.

    PubMed Central

    Rothnie, H M; Reid, J; Hohn, T

    1994-01-01

    The requirement for sequence specificity in the AAUAAA motif of the cauliflower mosaic virus (CaMV) polyadenylation signal was examined by saturation mutagenesis. While deletion of AAUAAA almost abolished processing at the CaMV polyadenylation site, none of the 18 possible single base mutations had a dramatic effect on processing efficiency. The effect of replacing all six nucleotides simultaneously varied depending on the sequence used, but some replacements were as detrimental as the deletion mutant. Taken together, these results confirm that AAUAAA is an essential component of the CaMV polyadenylation signal, but indicate that a high degree of sequence variation can be tolerated. A repeated UUUGUA motif was identified as an important upstream accessory element of the CaMV polyadenylation signal. This sequence was able to induce processing at a heterologous polyadenylation site in a sequence-specific and additive manner. The effect of altering the spacing between this upstream element and the AAUAAA was examined; moving these two elements closer together or further apart reduces the processing efficiency. The upstream element does not function to signal processing at the CaMV polyadenylation site if placed downstream of the cleavage site. Analysis of further upstream sequences revealed that almost all of the 200 nt fragment required for maximal processing contributes positively to processing efficiency. Furthermore, isolated far upstream sequences distinct from UUUGUA were also able to induce processing at a heterologous polyadenylation site. Images PMID:8187773

  16. Protein phosphatase 2A and Cdc7 kinase regulate the DNA unwinding element-binding protein in replication initiation.

    PubMed

    Gao, Yanzhe; Yao, Jianhong; Poudel, Sumeet; Romer, Eric; Abu-Niaaj, Lubna; Leffak, Michael

    2014-12-26

    The DNA unwinding element (DUE)-binding protein (DUE-B) binds to replication origins coordinately with the minichromosome maintenance (MCM) helicase and the helicase activator Cdc45 in vivo, and loads Cdc45 onto chromatin in Xenopus egg extracts. Human DUE-B also retains the aminoacyl-tRNA proofreading function of its shorter orthologs in lower organisms. Here we report that phosphorylation of the DUE-B unstructured C-terminal domain unique to higher organisms regulates DUE-B intermolecular binding. Gel filtration analyses show that unphosphorylated DUE-B forms multiple high molecular weight (HMW) complexes. Several aminoacyl-tRNA synthetases and Mcm2-7 proteins were identified by mass spectrometry of the HMW complexes. Aminoacyl-tRNA synthetase binding is RNase A sensitive, whereas interaction with Mcm2-7 is nuclease resistant. Unphosphorylated DUE-B HMW complex formation is decreased by PP2A inhibition or direct DUE-B phosphorylation, and increased by inhibition of Cdc7. These results indicate that the state of DUE-B phosphorylation is maintained by the equilibrium between Cdc7-dependent phosphorylation and PP2A-dependent dephosphorylation, each previously shown to regulate replication initiation. Alanine mutation of the DUE-B C-terminal phosphorylation target sites increases MCM binding but blocks Cdc45 loading in vivo and inhibits cell division. In egg extracts alanine mutation of the DUE-B C-terminal phosphorylation sites blocks Cdc45 loading and inhibits DNA replication. The effects of DUE-B C-terminal phosphorylation reveal a novel S phase kinase regulatory mechanism for Cdc45 loading and MCM helicase activation.

  17. Role of polyadenylic acid in a deoxyribonucleic acid-membrane fraction extracted from pneumococci.

    PubMed Central

    Firshein, W; Meyer, B; Epner, E; Viggiani, J

    1976-01-01

    After the addition of radioactive polyadenylic acid to cell suspensions of pneumocci, part of the radioactivity becomes associated with a deoxyribonucleic acid (DNA)-membrane fraction extracted from the cells. A variety of techniques show that a portion of this associated radioactivity may represent oligoadenylates complexed to DNA, probaby as part of a ribonucleic acid (RNA) component. Polyadenylic acid, which had previously been shown to enhance DNA synthesis in cell suspensions (Firshein and Benson, 1968), also enhances the extent of DNA synthesis by the DNA-membrane fraction in vitro under specific conditions of concentration and conformation. The mechanism of action of this enhancement may be related to the ability of oligoadenylates to increase the number of initiation sites for DNA replication by stimulating the production of an RNA primer, thus providing additional 3'-OH groups with which DNA polymerase can react. PMID:6428

  18. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    DTIC Science & Technology

    2015-12-01

    for APA in MCL. In addition, by using RNA Seq. CFIm25 has been identified as an important global regulator of shortening of cyclin D1 mRNA and other...These data provides a clear link between CFIm25 and regulation of APA and the utility of using novel RNA Seq. technology. This provides a strong...research platform for continued research on this project. 15. SUBJECT TERMS Mantle cell lymphoma, alternative cleavage and polyadenylation, RNA -Seq

  19. Genome-Wide Analysis and Functional Characterization of the Polyadenylation Site in Pigs Using RNAseq Data.

    PubMed

    Wang, Hongyang; Li, Rui; Zhou, Xiang; Xue, Liyao; Xu, Xuewen; Liu, Bang

    2016-11-04

    Polyadenylation, a critical step in the production of mature mRNA for translation in most eukaryotes, involves cleavage and poly(A) tail addition at the 3' end of mRNAs at the polyadenylation site (PAS). Sometimes, one gene can have more than one PAS, which can produce the alternative polyadenylation (APA) phenomenon and affect the stability, localization and translation of the mRNA. In this study, we discovered 28,363 PASs using pig RNAseq data, with 13,033 located in 7,403 genes. Among the genes, 41% were identified to have more than one PAS. PAS distribution analysis indicated that the PAS position was highly variable in genes. Additionally, the analysis of RNAseq data from the liver and testis showed a difference in their PAS number and usage. RT-PCR and qRT-PCR were performed to confirm our findings by detecting the expression of 3'UTR isoforms for five candidate genes. The analysis of RNAseq data under a different androstenone level and salmonella inoculation indicated that the functional usage of PAS might participate in the immune response and may be related to the androstenone level in pigs. This study provides new insights into pig PAS and facilitates further functional research of PAS.

  20. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants

    PubMed Central

    Chakrabarti, Manohar; Hunt, Arthur G.

    2015-01-01

    Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules. PMID:26061761

  1. Genome-Wide Analysis and Functional Characterization of the Polyadenylation Site in Pigs Using RNAseq Data

    PubMed Central

    Wang, Hongyang; Li, Rui; Zhou, Xiang; Xue, Liyao; Xu, Xuewen; Liu, Bang

    2016-01-01

    Polyadenylation, a critical step in the production of mature mRNA for translation in most eukaryotes, involves cleavage and poly(A) tail addition at the 3′ end of mRNAs at the polyadenylation site (PAS). Sometimes, one gene can have more than one PAS, which can produce the alternative polyadenylation (APA) phenomenon and affect the stability, localization and translation of the mRNA. In this study, we discovered 28,363 PASs using pig RNAseq data, with 13,033 located in 7,403 genes. Among the genes, 41% were identified to have more than one PAS. PAS distribution analysis indicated that the PAS position was highly variable in genes. Additionally, the analysis of RNAseq data from the liver and testis showed a difference in their PAS number and usage. RT-PCR and qRT-PCR were performed to confirm our findings by detecting the expression of 3′UTR isoforms for five candidate genes. The analysis of RNAseq data under a different androstenone level and salmonella inoculation indicated that the functional usage of PAS might participate in the immune response and may be related to the androstenone level in pigs. This study provides new insights into pig PAS and facilitates further functional research of PAS. PMID:27812017

  2. Identification of the DNA damage-responsive element of RNR2 and evidence that four distinct cellular factors bind it.

    PubMed Central

    Elledge, S J; Davis, R W

    1989-01-01

    The RNR2 gene encodes the small subunit of ribonucleotide reductase, the enzyme that catalyzes the first step in the pathway for the production of the deoxyribonucleotides needed for DNA synthesis. Transcription of this gene is induced approximately 20-fold in response to environmental stimuli that damage DNA or block DNA replication. Deletion and subcloning analysis identified two, and possibly three, upstream activating sequences (UAS) and one repressing (URS) element in the RNR2 regulatory region. A 42-base-pair (bp) fragment from this region was found to be necessary for proper regulation of RNR2 and to be capable of conferring DNA damage inducibility upon a heterologous promoter. This fragment contained both positively and negatively acting sequences. Four DNA-binding factors interacted with the RNR2 regulatory region. One factor was identified as the GRF1 protein, the product of the RAP1 gene. GRF1 bound to the UAS2 element of RNR2, which was found to be directly adjacent to the 42-bp fragment. UAS2 activity was repressed by the 42-bp fragment. Three other factors bound to the 42-bp fragment; one of these factors, RRF3, had a second binding site in the RNR2 promoter. These factors are likely to mediate the response of RNR2 to DNA damage. Images PMID:2685561

  3. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    SciTech Connect

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda; Subramanyam, Chivukula . E-mail: csubramanyam@hotmail.com

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtained from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.

  4. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels

    PubMed Central

    Zhou, Weixin; Chung, Yang Jo; Parrilla Castellar, Edgardo R.; Zheng, Ying; Chung, Hye-Jung; Bandle, Russell; Liu, Juhong; Tessarollo, Lino; Batchelor, Eric; Aplan, Peter D.; Levens, David

    2017-01-01

    The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1−/−) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1−/− hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1−/− hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1−/− embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression. PMID:26774856

  5. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters.

    PubMed

    Chen, Jiang; Yi, Qiang; Cao, Yao; Wei, Bin; Zheng, Lanjie; Xiao, Qianling; Xie, Ying; Gu, Yong; Li, Yangping; Huang, Huanhuan; Wang, Yongbin; Hou, Xianbin; Long, Tiandan; Zhang, Junjie; Liu, Hanmei; Liu, Yinghong; Yu, Guowu; Huang, Yubi

    2016-03-01

    Starch synthesis is a key process that influences crop yield and quality, though little is known about the regulation of this complex metabolic pathway. Here, we present the identification of ZmbZIP91 as a candidate regulator of starch synthesis via co-expression analysis in maize (Zea mays L.). ZmbZIP91 was strongly associated with the expression of starch synthesis genes. Reverse tanscription-PCR (RT-PCR) and RNA in situ hybridization indicated that ZmbZIP91 is highly expressed in maize endosperm, with less expression in leaves. Particle bombardment-mediated transient expression in maize endosperm and leaf protoplasts demonstrated that ZmbZIP91 could positively regulate the expression of starch synthesis genes in both leaves and endosperm. Additionally, the Arabidopsis mutant vip1 carried a mutation in a gene (VIP1) that is homologous to ZmbZIP91, displayed altered growth with less starch in leaves, and ZmbZIP91 was able to complement this phenotype, resulting in normal starch synthesis. A yeast one-hybrid experiment and EMSAs showed that ZmbZIP91 could directly bind to ACTCAT elements in the promoters of starch synthesis genes (pAGPS1, pSSI, pSSIIIa, and pISA1). These results demonstrate that ZmbZIP91 acts as a core regulatory factor in starch synthesis by binding to ACTCAT elements in the promoters of starch synthesis genes.

  6. Proteasomal Activity Is Required to Initiate and to Sustain Translational Activation of Messenger RNA Encoding the Stem-Loop-Binding Protein During Meiotic Maturation in Mice1

    PubMed Central

    Yang, Qin; Allard, Patrick; Huang, Michael; Zhang, Wenling; Clarke, Hugh J.

    2009-01-01

    Developmentally regulated translation plays a key role in controlling gene expression during oogenesis. In particular, numerous mRNA species are translationally repressed in growing oocytes and become translationally activated during meiotic maturation. While many studies have focused on a U-rich sequence, termed the cytoplasmic polyadenylation element (CPE), located in the 3′-untranslated region (UTR) and the CPE-binding protein (CPEB) 1, multiple mechanisms likely contribute to translational control in oocytes. The stem-loop-binding protein (SLBP) is expressed in growing oocytes, where it is required for the accumulation of nonpolyadenylated histone mRNAs, and then accumulates substantially during meiotic maturation. We report that, in immature oocytes, Slbp mRNA carries a short poly(A) tail, and is weakly translated, and that a CPE-like sequence in the 3′-UTR is required to maintain this low activity. During maturation, Slbp mRNA becomes polyadenylated and translationally activated. Unexpectedly, proteasomal activity is required both to initiate and to sustain translational activation. This proteasomal activity is not required for the polyadenylation of Slbp mRNA during early maturation; however, it is required for a subsequent deadenylation of the mRNA that occurs during late maturation. Moreover, although CPEB1 is degraded during maturation, inhibiting its degradation by blocking mitogen-activated protein kinase 1/3 activity does not prevent the accumulation of SLBP, indicating that CPEB1 is not the protein whose degradation is required for translational activation of Slbp mRNA. These results identify a new role for proteasomal activity in initiating and sustaining translational activation during meiotic maturation. PMID:19759367

  7. The Hinge Region as a Key Regulatory Element of Androgen Receptor Dimerization, DNA Binding, and Transactivation

    DTIC Science & Technology

    2005-05-01

    led to a structure depicted in figure 1A. Two zinc coordinating modules that constitute the receptors DNA-binding domain, are involved in the...expression plasmid (reviewed in Claessens et al. 2001). This led first to the description of the PB-ARE-2 (Claessens et al. 1996), later of scARE and...constructs for specific mutants: has been done and is ongoing. This has led to most of the observations reported in section II of this report. iii.c

  8. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome.

    PubMed

    Wang, Shichen; Yang, Shuo; Yin, Yuejia; Guo, Xiaosen; Wang, Shan; Hao, Dongyun

    2009-01-01

    Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis of the transcription factor binding site (TFBS) contexts and machine learning approach. Using this strategy, we conducted a genome-wide investigation into novel direct target genes of dehydration responsive element binding proteins (DREBs), the members of AP2-EREBPs transcription factor super family which is reported to be responsive to various abiotic stresses in Arabidopsis. The genome-wide searching yielded in total 474 target gene candidates. With reference to the microarray data for abiotic stresses-inducible gene expression profile, 268 target gene candidates out of the total 474 genes predicted, were induced during the 24-h exposure to abiotic stresses. This takes about 57% of total predicted targets. Furthermore, GO annotations revealed that these target genes are likely involved in protein amino acid phosphorylation, protein binding and Endomembrane sorting system. The results suggested that the predicted target gene candidates were adequate to meet the essential biological principle of stress-resistance in plants.

  9. Modeling Group IV elements with new transferable tight-binding models

    SciTech Connect

    Kwon, I.; Biswas, R.

    1993-10-01

    An outstanding problem in the computer-based microscopic description of Group IV materials, is the need for an accurate transferable model of the energetic and electronic properties of semiconductor structures. The three complementary approaches have been the ab-initio method including Car-Parinello simulations, the classical molecular dynamics method, and tight-binding molecular dynamics. While being very accurate, the ab-initio molecular dynamics has been performed on small systems ({approximately}100 atoms) for short time scales ({approximately}10 ps). On the other hand, classical potential models have had much success in describing melting of silicon, amorphous silicon structures, thin film growth and a variety of computationally intensive molecular dynamics simulations. However, the classical based models do not contain important electronic information which is essential in a variety of problems in electronic materials such as determining the gap states for structural defects. The accuracy of the classical models in configurations, far from the fitting database, may be uncertain. Our approach is to find transferable tight-binding models for silicon that are in between the ab-initio simulations and the classical models for molecular dynamics in level of sophistication.

  10. Identification of a new hybrid serum response factor and myocyte enhancer factor 2-binding element in MyoD enhancer required for MyoD expression during myogenesis.

    PubMed

    L'honore, Aurore; Rana, Vanessa; Arsic, Nikola; Franckhauser, Celine; Lamb, Ned J; Fernandez, Anne

    2007-06-01

    MyoD is a critical myogenic factor induced rapidly upon activation of quiescent satellite cells, and required for their differentiation during muscle regeneration. One of the two enhancers of MyoD, the distal regulatory region, is essential for MyoD expression in postnatal muscle. This enhancer contains a functional divergent serum response factor (SRF)-binding CArG element required for MyoD expression during myoblast growth and muscle regeneration in vivo. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and microinjection analyses show this element is a hybrid SRF- and MEF2 Binding (SMB) sequence where myocyte enhancer factor 2 (MEF2) complexes can compete out binding of SRF at the onset of differentiation. As cells differentiate into postmitotic myotubes, MyoD expression no longer requires SRF but instead MEF2 binding to this dual-specificity element. As such, the MyoD enhancer SMB element is the site for a molecular relay where MyoD expression is first initiated in activated satellite cells in an SRF-dependent manner and then increased and maintained by MEF2 binding in differentiated myotubes. Therefore, SMB is a DNA element with dual and stage-specific binding activity, which modulates the effects of regulatory proteins critical in controlling the balance between proliferation and differentiation.

  11. Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein

    PubMed Central

    Wang, Yong; Chu, Xiakun; Longhi, Sonia; Roche, Philippe; Han, Wei; Wang, Erkang; Wang, Jin

    2013-01-01

    Numerous relatively short regions within intrinsically disordered proteins (IDPs) serve as molecular recognition elements (MoREs). They fold into ordered structures upon binding to their partner molecules. Currently, there is still a lack of in-depth understanding of how coupled binding and folding occurs in MoREs. Here, we quantified the unbound ensembles of the α-MoRE within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein. We developed a multiscaled approach by combining a physics-based and an atomic hybrid model to decipher the mechanism by which the α-MoRE interacts with the X domain of the measles virus phosphoprotein. Our multiscaled approach led to remarkable qualitative and quantitative agreements between the theoretical predictions and experimental results (e.g., chemical shifts). We found that the free α-MoRE rapidly interconverts between multiple discrete partially helical conformations and the unfolded state, in accordance with the experimental observations. We quantified the underlying global folding–binding landscape. This leads to a synergistic mechanism in which the recognition event proceeds via (minor) conformational selection, followed by (major) induced folding. We also provided evidence that the α-MoRE is a compact molten globule-like IDP and behaves as a downhill folder in the induced folding process. We further provided a theoretical explanation for the inherent connections between “downhill folding,” “molten globule,” and “intrinsic disorder” in IDP-related systems. Particularly, we proposed that binding and unbinding of IDPs proceed in a stepwise way through a “kinetic divide-and-conquer” strategy that confers them high specificity without high affinity. PMID:24043820

  12. A 3’UTR Pumilio binding element directs translational activation in olfactory sensory neurons

    PubMed Central

    Kaye, Julia A.; Rose, Natalie C.; Goldsworthy, Brett; Goga, Andrei; L'Etoile, Noelle D.

    2014-01-01

    Summary Prolonged stimulation leads to specific and stable changes in an animal’s behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here we show that the PUF FBF-1 is required in the adult AWC for adaptation and in the odor-adapted animal, increases translation from the egl-4 3’ UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation; this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation. PMID:19146813

  13. Nonmuscle and muscle tropomyosin isoforms are expressed from a single gene by alternative RNA splicing and polyadenylation.

    PubMed Central

    Helfman, D M; Cheley, S; Kuismanen, E; Finn, L A; Yamawaki-Kataoka, Y

    1986-01-01

    The molecular basis for the expression of rat embryonic fibroblast tropomyosin 1 and skeletal muscle beta-tropomyosin was determined. cDNA clones encoding these tropomyosin isoforms exhibit complete identity except for two carboxy-proximal regions (amino acids 189 to 213 and 258 to 284) and different 3'-untranslated sequences. The isoform-specific regions delineate the troponin T-binding domains of skeletal muscle tropomyosin. Analysis of genomic clones indicates that there are two separate loci in the rat genome that contain sequences complementary to these mRNAs. One locus is a pseudogene. The other locus contains a single gene made up of 11 exons and spans approximately 10 kilobases. Sequences common to all mRNAs were found in exons 1 through 5 (amino acids 1 to 188) and exons 8 and 9 (amino acids 214 to 257). Exons 6 and 11 are specific for fibroblast mRNA (amino acids 189 to 213 and 258 to 284, respectively), while exons 7 and 10 are specific for skeletal muscle mRNA (amino acids 189 to 213 and 258 to 284, respectively). In addition, exons 10 and 11 each contain the entire 3'-untranslated sequences of the respective mRNAs including the polyadenylation site. Although the gene is also expressed in smooth muscle (stomach, uterus, and vas deferens), only the fibroblast-type splice products can be detected in these tissues. S1 and primer extension analyses indicate that all mRNAs expressed from this gene are transcribed from a single promoter. The promoter was found to contain G-C-rich sequences, a TATA-like sequence TTTTA, no identifiable CCAAT box, and two putative Sp1-binding sites. Images PMID:2432392

  14. Prolactin Regulatory Element Binding Protein Is Involved in Hepatitis C Virus Replication by Interaction with NS4B

    PubMed Central

    Kong, Lingbao; Fujimoto, Akira; Nakamura, Mariko; Aoyagi, Haruyo; Matsuda, Mami; Watashi, Koichi; Suzuki, Ryosuke; Arita, Minetaro; Yamagoe, Satoshi; Dohmae, Naoshi; Suzuki, Takehiro; Sakamaki, Yuriko; Ichinose, Shizuko; Suzuki, Tetsuro; Wakita, Takaji

    2016-01-01

    ABSTRACT It has been proposed that the hepatitis C virus (HCV) NS4B protein triggers the membranous HCV replication compartment, but the underlying molecular mechanism is not fully understood. Here, we screened for NS4B-associated membrane proteins by tandem affinity purification and proteome analysis and identified 202 host proteins. Subsequent screening of replicon cells with small interfering RNA identified prolactin regulatory element binding (PREB) to be a novel HCV host cofactor. The interaction between PREB and NS4B was confirmed by immunoprecipitation, immunofluorescence, and proximity ligation assays. PREB colocalized with double-stranded RNA and the newly synthesized HCV RNA labeled with bromouridine triphosphate in HCV replicon cells. Furthermore, PREB shifted to detergent-resistant membranes (DRMs), where HCV replication complexes reside, in the presence of NS4B expression in Huh7 cells. However, a PREB mutant lacking the NS4B-binding region (PREBd3) could not colocalize with double-stranded RNA and did not shift to the DRM in the presence of NS4B. These results indicate that PREB locates at the HCV replication complex by interacting with NS4B. PREB silencing inhibited the formation of the membranous HCV replication compartment and increased the protease and nuclease sensitivity of HCV replicase proteins and RNA in DRMs, respectively. Collectively, these data indicate that PREB promotes HCV RNA replication by participating in the formation of the membranous replication compartment and by maintaining its proper structure by interacting with NS4B. Furthermore, PREB was induced by HCV infection in vitro and in vivo. Our findings provide new insights into HCV host cofactors. IMPORTANCE The hepatitis C virus (HCV) protein NS4B can induce alteration of the endoplasmic reticulum and the formation of a membranous web structure, which provides a platform for the HCV replication complex. The molecular mechanism by which NS4B induces the membranous HCV replication

  15. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern: Dicranopteris linearis.

    PubMed

    Wei, Zhenggui; Hong, Fashui; Yin, Ming; Li, Huixin; Hu, Feng; Zhao, Guiwen; Wong, Jonathan Woonchung

    2005-09-01

    Chloroplasts and chlorophylls were isolated from the leaves of Dicranopteris linearis, a natural perennial fern sampled at rare earth element (REE) mining areas in the South-Jiangxi region (southern China). The inductively coupled plasma-mass spectrometry (ICP-MS) results indicated that REEs were present in the chloroplasts and chlorophylls of D. linearis. The in vivo coordination environment of light REE (lanthanum) or heavy REE (yttrium) ions in D. linearis chlorophyll-a was determined by the extended X-ray absorption fine structure (EXAFS). Results revealed that there were eight nitrogen atoms in the first coordination shell of the lanthanum atom, whereas there were four nitrogen atoms in the first coordination shell of yttrium. It was postulated that the lanthanum-chlorophyll-a complex might have a double-layer sandwich-like structure, but yttrium-binding chlorophyll-a might be in a single-layer form. Because the content of REE-binding chlorophylls in D. linearis chlorophylls was very low, it is impossible to obtain structural characteristics of REE-binding chlorophylls by direct analysis of the Fourier transform infrared (FTIR) and ultraviolet (UV)-visible spectra of D. linearis chlorophylls. In order to acquire more structural information of REE-binding chlorophyll-a in D. linearis, lanthanum - and yttrium-chlorophyll-a complexes were in vitro synthesized in acetone solution. Element analyses and EXAFS results indicated that REE ions (lanthanum or yttrium) of REE-chlorophyll-a possessed the same coordination environment whether in vivo or in vitro. The FTIR spectra of the REE-chlorophyll-a complexes indicated that REEs were bound to the porphyrin rings of chlorophylls. UV-visible results showed that the intensity ratios of Soret to the Q-band of REE-chlorophyll-a complexes were higher than those of standard chlorophyll-a and pheophytin-a, indicating that REE-chlorophyll-a might have a much stronger ability to absorb the ultraviolet light. The MCD spectrum in

  16. Interplay between estrogen response element sequence and ligands controls in vivo binding of estrogen receptor to regulated genes.

    PubMed

    Krieg, Adam J; Krieg, Sacha A; Ahn, Bonnie S; Shapiro, David J

    2004-02-06

    To examine the role of the estrogen response element (ERE) sequence in binding of liganded estrogen receptor (ER) to promoters, we analyzed in vivo interaction of liganded ER with the imperfect ERE in the pS2 gene and the composite estrogen-responsive unit (ERU) in the proteinase inhibitor 9 (PI-9) gene. In transient transfections of ER-positive HepG2-ER7 cells, PI-9 was strongly induced by estrogen, moxestrol (MOX), and 4-hydroxytamoxifen (OHT). PI-9 was not induced by raloxifene or ICI 182,780. Quantitative reverse transcriptase-PCR showed that moxestrol strongly induced cellular PI-9 and pS2 mRNAs, whereas OHT moderately induced PI-9 mRNA and weakly induced pS2 mRNA. Chromatin immunoprecipitation experiments demonstrated strong and similar association of 17beta-estradiol-hERalpha and MOX-hERalpha with the PI-9 ERU and with the pS2 ERE. Binding of MOX-hERalpha to the PI-9 ERU and the pS2 ERE was rapid and continuous. Although MOX-hERalpha bound strongly to the PI-9 ERU and less well to the pS2 ERE in chromatin immunoprecipitation, gel shift assays showed that estrogen-hERalpha binds with higher affinity to the deproteinized pS2 ERE than to the PI-9 ERU. Across a broad range of OHT concentrations, OHT-hERalpha associated strongly with the pS2 ERE and weakly with the PI-9 ERU. ICI-hERalpha bound poorly to the PI-9 ERU and effectively to the pS2 ERE. Raloxifene-hERalpha and MOX-hERalpha exhibited similar binding to the PI-9 ERU and the pS2 ERE. These studies demonstrate that ER ligand and ERE sequence work together to regulate in vivo binding of ER to estrogen-responsive promoters.

  17. Song-induced phosphorylation of cAMP response element-binding protein in the songbird brain.

    PubMed

    Sakaguchi, H; Wada, K; Maekawa, M; Watsuji, T; Hagiwara, M

    1999-05-15

    We have investigated the participation of cAMP response element-binding protein (CREB) in the response of the songbird brain to a natural auditory stimulus, a conspecific song. The cells in the two song control nuclei, the higher vocal center (HVC) and area X of zebra finches (Taeniopygia guttata), were intensely stained with an anti-CREB monoclonal antibody. Double-labeling studies showed that CREB immunoreactivity was detected only in area X-projecting neurons in the HVC. The cloned CREB cDNA from zebra finches (zCREB) is highly homologous to mammalian delta CREB. Phosphorylation of zCREB at Ser119 in area X-projecting HVC neurons was induced by hearing tape-recorded conspecific songs of zebra finches, but not by birdsongs of another species or white noise. These results raise the possibility that zCREB plays a crucial role in the sensory process of song learning.

  18. MicroRNA-181b targets cAMP responsive element binding protein 1 in gastric adenocarcinomas.

    PubMed

    Chen, Lin; Yang, Qian; Kong, Wei-Qing; Liu, Tao; Liu, Min; Li, Xin; Tang, Hua

    2012-07-01

    MicroRNAs are a class of small endogenous non-coding RNAs that function as post-transcriptional regulators. In our previous study, we found that miR-181b was significantly downregulated in human gastric adenocarcinoma tissue samples compared to the adjacent normal gastric tissues. In this study, we confirm the down-regulation of miR-181b in human gastric cancer cell lines versus the gastric epithelial cells. Overexpression of miR-181b suppressed the proliferation and colony formation rate of gastric cancer cells. miR-181b downregulated the expression of cAMP responsive element binding protein 1 (CREB1) by binding its 3' untranslated region. Overexpression of CREB1 counteracted the suppression of growth in gastric cancer cells caused by ectopic expression of miR-181b. These results indicate that miR-181b may function as a tumor suppressor in gastric adenocarcinoma cells through negative regulation of CREB1.

  19. Regulation of steroid 5-{alpha} reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    SciTech Connect

    Seo, Young-Kyo; Zhu, Bing; Jeon, Tae-Il; Osborne, Timothy F.

    2009-11-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  20. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation.

    PubMed

    Miyata, Shingo; Inoue, Jun; Shimizu, Makoto; Sato, Ryuichiro

    2015-08-14

    Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome.

  1. Xanthohumol Improves Diet-induced Obesity and Fatty Liver by Suppressing Sterol Regulatory Element-binding Protein (SREBP) Activation*

    PubMed Central

    Miyata, Shingo; Inoue, Jun; Shimizu, Makoto; Sato, Ryuichiro

    2015-01-01

    Sterol regulatory element-binding proteins (SREBPs) are key transcription factors that stimulate the expression of genes involved in fatty acid and cholesterol biosynthesis. Here, we demonstrate that a prenylated flavonoid in hops, xanthohumol (XN), is a novel SREBP inactivator that reduces the de novo synthesis of fatty acid and cholesterol. XN independently suppressed the maturation of SREBPs of insulin-induced genes in a manner different from sterols. Our results suggest that XN impairs the endoplasmic reticulum-to-Golgi translocation of the SREBP cleavage-activating protein (SCAP)-SREBP complex by binding to Sec23/24 and blocking SCAP/SREBP incorporation into common coated protein II vesicles. Furthermore, in diet-induced obese mice, dietary XN suppressed SREBP-1 target gene expression in the liver accompanied by a reduction of the mature form of hepatic SREBP-1, and it inhibited the development of obesity and hepatic steatosis. Altogether, our data suggest that XN attenuates the function of SREBP-1 by repressing its maturation and that it has the potential of becoming a nutraceutical food or pharmacological agent for improving metabolic syndrome. PMID:26140926

  2. Small Molecule Inhibition of cAMP Response Element Binding Protein in Human Acute Myeloid Leukemia Cells

    PubMed Central

    Mitton, Bryan; Chae, Hee-Don; Hsu, Katie; Dutta, Ritika; Aldana-Masangkay, Grace; Ferrari, Roberto; Davis, Kara; Tiu, Bruce C.; Kaul, Arya; Lacayo, Norman; Dahl, Gary; Xie, Fuchun; Li, Bingbing X.; Breese, Marcus R.; Landaw, Elliot M.; Nolan, Garry; Pellegrini, Matteo; Romanov, Sergei; Xiao, Xiangshu; Sakamoto, Kathleen M.

    2016-01-01

    The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, which may represent a novel approach for AML therapy. PMID:27211267

  3. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum

    PubMed Central

    DuBois, Juwen C.; Smulian, A. George

    2016-01-01

    The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence. PMID:27711233

  4. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction.

    PubMed

    Fusco, Salvatore; Ripoli, Cristian; Podda, Maria Vittoria; Ranieri, Sofia Chiatamone; Leone, Lucia; Toietta, Gabriele; McBurney, Michael W; Schütz, Günther; Riccio, Antonella; Grassi, Claudio; Galeotti, Tommaso; Pani, Giovambattista

    2012-01-10

    Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD(+)-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.

  5. A Repetitive DNA Element Regulates Expression of the Helicobacter pylori Sialic Acid Binding Adhesin by a Rheostat-like Mechanism

    PubMed Central

    Vallström, Anna; Olofsson, Annelie; Öhman, Carina; Rakhimova, Lena; Borén, Thomas; Engstrand, Lars; Brännström, Kristoffer; Arnqvist, Anna

    2014-01-01

    During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors. PMID:24991812

  6. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein.

    PubMed

    Li, Wencheng; Liu, Jiao; Hammond, Sean L; Tjalkens, Ronald B; Saifudeen, Zubaida; Feng, Yumei

    2015-07-15

    We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter.

  7. The human GIMAP5 gene has a common polyadenylation polymorphism increasing risk to systemic lupus erythematosus

    PubMed Central

    Hellquist, Anna; Zucchelli, Marco; Kivinen, Katja; Saarialho‐Kere, Ulpu; Koskenmies, Sari; Widen, Elisabeth; Julkunen, Heikki; Wong, Andrew; Karjalainen‐Lindsberg, Marja‐Liisa; Skoog, Tiina; Vendelin, Johanna; Cunninghame‐Graham, Deborah S; Vyse, Timothy J; Kere, Juha; Lindgren, Cecilia M

    2007-01-01

    Background Several members of the GIMAP gene family have been suggested as being involved in different aspects of the immune system in different species. Recently, a mutation in the GIMAP5 gene was shown to cause lymphopenia in a rat model of autoimmune insulin‐dependent diabetes. Thus it was hypothesised that genetic variation in GIMAP5 may be involved in susceptibility to other autoimmune disorders where lymphopenia is a key feature, such as systemic lupus erythematosus (SLE). Material and methods To investigate this, seven single nucleotide polymorphisms in GIMAP5 were analysed in five independent sets of family‐based SLE collections, containing more than 2000 samples. Result A significant increase in SLE risk associated with the most common GIMAP5 haplotype was found (OR 1.26, 95% CI 1.02 to 1.54, p = 0.0033). In families with probands diagnosed with trombocytopenia, the risk was increased (OR 2.11, 95% CI 1.09 to 4.09, p = 0.0153). The risk haplotype bears a polymorphic polyadenylation signal which alters the 3′ part of GIMAP5 mRNA by producing an inefficient polyadenylation signal. This results in higher proportion of non‐terminated mRNA for homozygous individuals (p<0.005), a mechanism shown to be causal in thalassaemias. To further assess the functional effect of the polymorphic polyadenylation signal in the risk haplotype, monocytes were treated with several cytokines affecting apoptosis. All the apoptotic cytokines induced GIMAP5 expression in two monocyte cell lines (1.5–6 times, p<0.0001 for all tests). Conclusion Taken together, the data suggest the role of GIMAP5 in the pathogenesis of SLE. PMID:17220214

  8. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway in depressive disorder.

    PubMed

    Wang, Hongyan; Zhang, Yingquan; Qiao, Mingqi

    2013-03-25

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  9. Addition of Polyadenylate Sequences to Virus-Specific RNA during Adenovirus Replication

    PubMed Central

    Philipson, L.; Wall, R.; Glickman, G.; Darnell, J. E.

    1971-01-01

    Adenovirus-specific nuclear and polysomal RNA, both early and late in the infectious cycle, contain a covalently linked region of polyadenylic acid 150-250 nucleotides long. A large proportion of the adenovirus-specific messenger RNA contains poly(A). As revealed by hybridization experiments, the poly(A) is not transcribed from adenovirus DNA. Furthermore, an adenosine analogue, cordycepin, blocks the synthesis of poly(A) and also inhibits the accumulation of adenovirus messenger RNA on polysomes. Addition of poly(A) to viral RNA may involve a host-controlled mechanism that regulates the processing and transport of messenger RNA. PMID:5315962

  10. Addition of polyadenylate sequences to virus-specific RNA during adenovirus replication.

    PubMed

    Philipson, L; Wall, R; Glickman, G; Darnell, J E

    1971-11-01

    Adenovirus-specific nuclear and polysomal RNA, both early and late in the infectious cycle, contain a covalently linked region of polyadenylic acid 150-250 nucleotides long. A large proportion of the adenovirus-specific messenger RNA contains poly(A). As revealed by hybridization experiments, the poly(A) is not transcribed from adenovirus DNA. Furthermore, an adenosine analogue, cordycepin, blocks the synthesis of poly(A) and also inhibits the accumulation of adenovirus messenger RNA on polysomes. Addition of poly(A) to viral RNA may involve a host-controlled mechanism that regulates the processing and transport of messenger RNA.

  11. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.

    PubMed

    Nibuya, M; Nestler, E J; Duman, R S

    1996-04-01

    The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant psychotropic drugs did not influence expression of CREB mRNA, demonstrating the pharmacological specificity of this effect. In situ hybridization analysis demonstrates that antidepressant administration increases expression of CREB mRNA in CA1 and CA3 pyramidal and dentate gyrus granule cell layers of the hippocampus. In addition, levels of CRE immunoreactivity and of CRE binding activity were increased by chronic antidepressant administration, which indicates that expression and function of CREB protein are increased along with its mRNA. Chronic administration of the phosphodiesterase (PDE) inhibitors rolipram or papaverine also increased expression of CREB mRNA in hippocampus, demonstrating a role for the cAMP cascade. Moreover, coadministration of rolipram with imipramine resulted in a more rapid induction of CREB than with either treatment alone. Increased expression and function of CREB suggest that specific target genes may be regulated by these treatments. We have found that levels of brain-derived neurotrophic factor (BDNF) and trkB mRNA are also increased by administration of antidepressants or PDE inhibitors. These findings indicate that upregulation of CREB is a common action of chronic antidepressant treatments that may lead to regulation of specific target genes, such as BDNF and trkB, and to the long-term effects of these treatments on brain function.

  12. Delayed secondary glucocorticoid response elements. Unusual nucleotide motifs specify glucocorticoid receptor binding to transcribed regions of alpha 2u-globulin DNA.

    PubMed

    Chan, G C; Hess, P; Meenakshi, T; Carlstedt-Duke, J; Gustafsson, J A; Payvar, F

    1991-11-25

    Glucocorticoids stimulate the transcription of rat alpha 2u-globulin (RUG) genes. Because this induction occurs after a time lag of several hours and is blocked by inhibitors of protein synthesis, it exemplifies a delayed secondary response to steroid hormones. In this report, we show that a region of RUG-transcribed DNA (approximately +1800 to +2174) contains multiple footprint sites for glucocorticoid receptor that are, apparently, organized into at least three independent binding clusters. The DNA sequences bound by the receptor and the location of binding sites were determined. A family of sequences related to half-sites of the consensus primary glucocorticoid response element (GRE) is discernible at each cluster of sites. Compared to the consensus GRE, which contains two pseudo-palindromic hexanucleotides arranged in a tail-to-tail fashion and separated by three bases, the arrangements of hexanucleotides within this segment of RUG DNA are unusual and heterogeneous. Methylation interference of a binding cluster containing three receptor footprints demonstrates that certain guanines of the GRE-like hexanucleotides are essential for efficient receptor binding. A synthetic 29-base pair (bp) RUG element, containing one receptor footprint from this cluster, selectively binds the receptor. Within this 29-bp element, six nucleotides separate two directly repeated copies of GRE-like hexanucleotides. RUG DNA fragments containing all or part of the three binding clusters, including the 29-bp element, confer a delayed secondary hormone responsiveness upon a linked heterologous promoter and reporter gene in stably transfected cell lines. We speculate that the unusual DNA sequence motifs of the receptor-binding sites are crucial for the generation of certain delayed secondary responses.

  13. Different motif requirements for the localization zipcode element of β-actin mRNA binding by HuD and ZBP1

    PubMed Central

    Kim, Hak Hee; Lee, Seung Joon; Gardiner, Amy S.; Perrone-Bizzozero, Nora I.; Yoo, Soonmoon

    2015-01-01

    Interactions of RNA-binding proteins (RBPs) with their target transcripts are essential for regulating gene expression at the posttranscriptional level including mRNA export/localization, stability, and translation. ZBP1 and HuD are RBPs that play pivotal roles in mRNA transport and local translational control in neuronal processes. While HuD possesses three RNA recognition motifs (RRMs), ZBP1 contains two RRMs and four K homology (KH) domains that either increase target specificity or provide a multi-target binding capability. Here we used isolated cis-element sequences of the target mRNA to examine directly protein-RNA interactions in cell-free systems. We found that both ZBP1 and HuD bind the zipcode element in rat β-actin mRNA's 3′ UTR. Differences between HuD and ZBP1 were observed in their binding preference to the element. HuD showed a binding preference for U-rich sequence. In contrast, ZBP1 binding to the zipcode RNA depended more on the structural level, as it required the proper spatial organization of a stem-loop that is mainly determined by the U-rich element juxtaposed to the 3′ end of a 5′-ACACCC-3′ motif. On the basis of this work, we propose that ZBP1 and HuD bind to overlapping sites in the β-actin zipcode, but they recognize different features of this target sequence. PMID:26152301

  14. Role of polyadenylation in regulation of the flagella cascade and motility in Escherichia coli.

    PubMed

    Maes, Alexandre; Gracia, Céline; Bréchemier, Dominique; Hamman, Philippe; Chatre, Elodie; Lemelle, Laurence; Bertin, Philippe N; Hajnsdorf, Eliane

    2013-02-01

    Polyadenylation is recognized as part of a surveillance machinery for eliminating defective RNA molecules in eukaryotes and prokaryotes. Escherichia coli strains, deficient in poly(A)polymerase I (PAP I), expressed less flagellin compared to wild-type strains. Because flagellin synthesis is a late step in the flagellar biosynthesis pathway, we assessed the role of PAP I in this cascade and in flagella function. Transcription of flhDC, fliA, and fliC was decreased in the PAP I mutant. These results provide evidence that polyadenylation positively controls the expression of genes belonging to the flagellar biosynthesis pathway and that this effect is mediated through the FlhDC master regulator. However, the downshift in flagella gene expression in the mutant strain did not provoke any noticeable defects in the synthesis of flagella, in biofilm formation and in swimming speed although there was a reduction in motility on soft agar. Our data support an alternative hypothesis that the reduced motility of the mutant resulted from an alteration of the cell membrane composition caused in part by the higher level of GlmS (Glucosamine-6P synthase) which accumulates in the mutant. In agreement with this hypothesis the mutant is more sensitive to hydrophobic agents and antibiotics and in particular to vancomycin. We propose that PAP I participates in the ability of the bacteria to adapt to and survive detrimental conditions by constantly monitoring and adjusting to its environment.

  15. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence.

    PubMed

    Ettinger, Susan L; Sobel, Richard; Whitmore, Tanis G; Akbari, Majid; Bradley, Dawn R; Gleave, Martin E; Nelson, Colleen C

    2004-03-15

    Androgen ablation, the most common therapeutic treatment used for advanced prostate cancer, triggers the apoptotic regression of prostate tumors. However, remissions are temporary because surviving prostate cancer cells adapt to the androgen-deprived environment and form androgen-independent (AI) tumors. We hypothesize that adaptive responses of surviving tumor cells result from dysregulated gene expression of key cell survival pathways. Therefore, we examined temporal alterations to gene expression profiles in prostate cancer during progression to androgen independence at several time points using the LNCaP xenograft tumor model. Two key genes, sterol response element-binding protein (SREBP)-1 and -2 (SREBP-1a,-1c, and -2), were consistently dysregulated. These genes are known to coordinately control the expression of the groups of enzymes responsible for lipid and cholesterol synthesis. Northern blots revealed modest increased expression of SREBP-1a, -1c, and -2 after castration, and at androgen independence (day 21-28), the expression levels of both SREBP-1a and -1c were significantly greater than precastrate levels. Changes in SREBP-1 and -2 protein expression were observed by Western analysis. SREBP-1 68-kDa protein levels were maintained throughout progression, however, SREBP-2 68-kDa protein expression increased after castration and during progression (3-fold). SREBPs are transcriptional regulators of over 20 functionally related enzymes that coordinately control the metabolic pathways of lipogenesis and cholesterol synthesis, some of which were likewise dysregulated during progression to androgen independence. RNA levels of acyl-CoA-binding protein/diazepam-binding inhibitor and fatty acid synthase decreased significantly after castration, and then, during progression, increased to levels greater than or equal to precastrate levels. Expression of farnesyl diphosphate synthase did not decrease after castration but did increase significantly during

  16. A Novel Pregnane X Receptor-mediated and Sterol Regulatory Element-binding Protein-independent Lipogenic Pathway*

    PubMed Central

    Zhou, Jie; Zhai, Yonggong; Mu, Ying; Gong, Haibiao; Uppal, Hirdesh; Toma, David; Ren, Songrong; Evans, Ronald M.; Xie, Wen

    2014-01-01

    The pregnane X receptor (PXR) was isolated as a xenosensor regulating xenobiotic responses. In this study, we show that PXR plays an endobiotic role by impacting lipid homeostasis. Expression of an activated PXR in the livers of transgenic mice resulted in an increased hepatic deposit of triglycerides. This PXR-mediated lipid accumulation was independent of the activation of the lipogenic transcriptional factor SREBP-1c (sterol regulatory element-binding protein 1c) and its primary lipogenic target enzymes, including fatty-acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC-1). Instead, the lipid accumulation in transgenic mice was associated with an increased expression of the free fatty acid transporter CD36 and several accessory lipogenic enzymes, such as stearoyl-CoA desaturase-1 (SCD-1) and long chain free fatty acid elongase. Studies using transgenic and knock-out mice showed that PXR is both necessary and sufficient for Cd36 activation. Promoter analyses revealed a DR-3-type of PXR-response element in the mouse Cd36 promoter, establishing Cd36 as a direct transcriptional target of PXR. The hepatic lipid accumulation and Cd36 induction were also seen in the hPXR “humanized” mice treated with the hPXR agonist rifampicin. The activation of PXR was also associated with an inhibition of pro-β-oxidative genes, such as peroxisome proliferator-activated receptor α (PPARα) and thiolase, and an up-regulation of PPARγ, a positive regulator of CD36. The cross-regulation of CD36 by PXR and PPARγ suggests that this fatty acid transporter may function as a common target of orphan nuclear receptors in their regulation of lipid homeostasis. PMID:16556603

  17. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  18. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  19. Specific binding of Synechococcus sp. strain PCC 7942 proteins to the enhancer element of psbAII required for high-light-induced expression.

    PubMed Central

    Li, R; Dickerson, N S; Mueller, U W; Golden, S S

    1995-01-01

    The psbAII gene of the cyanobacterium Synechococcus sp. strain PCC 7942 is a member of a three-gene family that encodes the D1 protein of the photosystem II reaction center. Transcription of psbAII is rapidly induced when the light intensity reaching the culture increases from 125 microE.m-2.s-1 (low light) to 750 microE.m-2.s-1 (high light). The DNA segment upstream of psbAII that corresponds to the untranslated leader of its major transcript has enhancer activity and confers high-light induction. We show that one or more soluble proteins from PCC 7942 specifically bind to this region of psbAII (designated the enhancer element). In vivo footprinting showed protein binding to the enhancer element in high-light-exposed cell samples but not in those maintained at low light, even though in vitro mobility shifts were detectable with extracts from low- or high-light-grown cells. When 12 bp were deleted from the psbAII enhancer element, protein binding was impaired and high-light induction of both transcriptional and translational psbAII-lacZ reporters was significantly reduced. This finding indicates that protein binding to this region is required for high-light induction of psbAII. The mutant element also showed impaired enhancer activity when combined with a heterologous promoter. PMID:7836280

  20. Phosphorylation of sterol regulatory element binding protein-1a by protein kinase A (PKA) regulates transcriptional activity.

    PubMed

    Dong, Qingming; Giorgianni, Francesco; Deng, Xiong; Beranova-Giorgianni, Sarka; Bridges, Dave; Park, Edwards A; Raghow, Rajendra; Elam, Marshall B

    2014-07-11

    The counter-regulatory hormone glucagon inhibits lipogenesis via downregulation of sterol regulatory element binding protein 1 (SREBP-1). The effect of glucagon is mediated via protein kinase A (PKA). To determine if SREBP-1 is a direct phosphorylation target of PKA, we conducted mass spectrometry analysis of recombinant n-terminal SREBP-1a following PKA treatment in vitro. This analysis identified serines 331/332 as bona-fide phosphorylation targets of PKA. To determine the functional consequences of phosphorylation at these sites, we constructed mammalian expression vector for both nSREBP-1a and 1c isoforms in which the candidate PKA phosphorylation sites were mutated to active phosphomimetic or non-phosphorylatable amino acids. The transcriptional activity of SREBP was reduced by the phosphomimetic mutation of S332 of nSREBP-1a and the corresponding serine (S308) of nSREBP-1c. This site is a strong candidate for mediating the negative regulatory effect of glucagon on SREBP-1 and lipogenesis.

  1. Enhanced phosphorylation of cyclic AMP response element binding protein in Brain of mice following repetitive hypoxic exposure

    SciTech Connect

    Gao Yanan; Gao Ge; Long Caixia; Han Song; Zu Pengyu; Fang Li . E-mail: lfang@utmb.edu; Li Junfa . E-mail: junfali@cpums.edu.cn

    2006-02-10

    Cerebral ischemic/hypoxic preconditioning (I/HPC) is a phenomenon of endogenous protection that renders Brain tolerant to sustained ischemia/hypoxia. This profound protection induced by I/HPC makes it an attractive target for developing potential clinical therapeutic approaches. However, the molecular mechanism of I/HPC is unclear. Cyclic AMP (cAMP) response element binding protein (CREB), a selective nuclear transcriptional factor, plays a key role in the neuronal functions. Phosphorylation of CREB on Ser-133 may facilitate its transcriptional activity in response to various stresses. In the current study, we observed the changes in CREB phosphorylation (Ser-133) and protein expression in Brain of auto-hypoxia-induced HPC mice by using Western blot analysis. We found that the levels of phosphorylated CREB (Ser-133), but not protein expression of CREB, increased significantly (p < 0.05) in the hippocampus and the frontal cortex of mice after repetitive hypoxic exposure (H2-H4, n = 6 for each group), when compared to that of the normoxic (H0, n = 6) or hypoxic exposure once group (H1, n = 6). In addition, a significant enhancement (p < 0.05) of CREB phosphorylation (Ser-133) could also be found in the nuclear extracts from the whole hippocampus of hypoxic preconditioned mice (H2-H4, n = 6 for each group). These results suggest that the phosphorylation of CREB might be involved in the development of cerebral hypoxic preconditioning.

  2. Gentiana manshurica Kitagawa reverses acute alcohol-induced liver steatosis through blocking sterol regulatory element-binding protein-1 maturation.

    PubMed

    Lian, Li-Hua; Wu, Yan-Ling; Song, Shun-Zong; Wan, Ying; Xie, Wen-Xue; Li, Xin; Bai, Ting; Ouyang, Bing-Qing; Nan, Ji-Xing

    2010-12-22

    This study was undertaken to investigate the protective effects of Gentiana manshurica Kitagawa (GM) on acute alcohol-induced fatty liver. Mice were treated with ethanol (5 g/kg of body weight) by gavage every 12 h for a total of three doses to induce acute fatty liver. Methanol extract of GM (50, 100, or 200 mg/kg) or silymarin (100 mg/kg) was gavaged simultaneously with ethanol for three doses. GM administration significantly reduced the increases in serum ALT and AST levels, the serum and hepatic triglyceride levels, at 4 h after the last ethanol administration. GM was also found to prevent ethanol-induced hepatic steatosis and necrosis, as indicated by liver histopathological studies. Additionally, GM suppressed the elevation of malondialdehyde (MDA) levels, restored the glutathione (GSH) levels, and enhanced the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities. The concurrent administration of GM efficaciously abrogated cytochrome P450 2E1 (CYP2E1) induction. Moreover, GM significantly reduced the nuclear translocation of sterol regulatory element-binding protein-1 (nSREBP-1) in ethanol-treated mice. These data indicated that GM possessed the ability to prevent ethanol-induced acute liver steatosis, possibly through blocking CYP2E1-mediated free radical scavenging effects and SREBP-1-regulated fatty acid synthesis. Especially, GM may be developed as a potential therapeutic candidate for ethanol-induced oxidative damage in liver.

  3. Forkhead transcription factor 1 inhibits endometrial cancer cell proliferation via sterol regulatory element-binding protein 1

    PubMed Central

    Zhang, Yifang; Zhang, Lili; Sun, Hengzi; Lv, Qingtao; Qiu, Chunping; Che, Xiaoxia; Liu, Zhiming; Jiang, Jie

    2017-01-01

    The morbidity and mortality associated with endometrial cancer (EC) has increased in recent years. Regarded as a tumor suppressor, forkhead transcription factor 1 (FOXO1) has various biological activities and participates in cell cycle progression, apoptosis and differentiation. Notably, FOXO1 also functions in the regulation of lipogenesis and energy metabolism. Lipogenesis is a feature of cancer and is upregulated in EC. Sterol regulatory element-binding protein 1 (SREBP1) is a transcription factor that is also able to regulate lipogenesis. Increased expression of SREBP1 is directly correlated with malignant transformation of tumors. A previous study demonstrated that SREBP1 was highly expressed in EC and directly resulted in tumorigenesis. However, the association between FOXO1 and SREBP1 in EC is not clear. In the present study, lentiviruses overexpressing FOXO1 were used in cell transfection and transduction. Cell viability assays demonstrated that the overexpression of FOXO1 was able to suppress cell proliferation significantly in Ishikawa and AN3 CA cell lines. In addition, FOXO1 overexpression significantly inhibited cell migration and invasion ability in vitro. In xenograft models, overexpression of FOXO1 suppressed cell tumorigenesis, and western blot analysis demonstrated that SREBP1 expression was markedly reduced in the FOXO1-overexpressing cells. It may therefore be concluded that FOXO1 is able to inhibit the proliferative capacity of cells in vitro and in vivo, in addition to the migratory and invasive capacities in vitro by directly targeting SREBP1. PMID:28356952

  4. Microbiota Modulates Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling

    PubMed Central

    Zeng, Li; Zeng, Benhua; Wang, Haiyang; Li, Bo; Huo, Ran; Zheng, Peng; Zhang, Xiaotong; Du, Xiangyu; Liu, Meiling; Fang, Zheng; Xu, Xuejiao; Zhou, Chanjuan; Chen, Jianjun; Li, Wenxia; Guo, Jing; Wei, Hong; Xie, Peng

    2016-01-01

    Evolutionary pressure drives gut microbiota–host coevolution and results in complex interactions between gut microbiota and neural development; however, the molecular mechanisms by which the microbiota governs host behavior remain obscure. Here, we report that colonization early in life is crucial for the microbiota to modulate brain development and behavior; later colonization or deletion of microbiota cannot completely reverse the behaviors. Microarray analysis revealed an association between absence of gut microbiota and expression in cAMP responding element-binding protein (CREB) regulated genes in the hippocampus. The absence of gut microbiota from birth was shown to be associated with decreased CREB expression, followed by decreases of protein kinase C beta (PRKCB) and AMPA receptors expression, and an increase of phosphorylation CREB (pCREB) expression. Microbiota colonization in adolescence restored CREB and pCREB expression, but did not alter PRKCB and AMPARs expression. The removal of the gut microbiota from SPF mice using antibiotics only reduced pCREB expression. These findings suggest that (i) colonization of the gut microbiota early in life might facilitate neurodevelopment via PKC–CREB signaling and (ii) although GF mice and ABX mice display reduced anxiety-related behaviors, the molecular mechanisms behind this might differ. PMID:27444685

  5. In vivo promoter analysis on refeeding response of hepatic sterol regulatory element-binding protein-1c expression

    SciTech Connect

    Takeuchi, Yoshinori; Yahagi, Naoya; Nakagawa, Yoshimi; Matsuzaka, Takashi; Shimizu, Ritsuko; Sekiya, Motohiro; Iizuka, Yoko; Ohashi, Ken; Gotoda, Takanari; Yamamoto, Masayuki; Nagai, Ryozo; Kadowaki, Takashi; Yamada, Nobuhiro; Osuga, Jun-ichi; Shimano, Hitoshi

    2007-11-16

    Sterol regulatory element-binding protein (SREBP)-1c is the master regulator of lipogenic gene expression in liver. The mRNA abundance of SREBP-1c is markedly induced when animals are refed after starvation, although the regulatory mechanism is so far unknown. To investigate the mechanism of refeeding response of SREBP-1c gene expression in vivo, we generated a transgenic mouse model that carries 2.2 kb promoter region fused to the luciferase reporter gene. These transgenic mice exhibited refeeding responses of the reporter in liver and adipose tissues with extents essentially identical to those of endogenous SREBP-1c mRNA. The same results were obtained from experiments using adenovirus-mediated SREBP-1c-promoter-luciferase fusion gene transduction to liver. These data demonstrate that the regulation of SREBP-1c gene expression is at the transcription level, and that the 2.2 kb 5'-flanking region is sufficient for this regulation. Moreover, when these transgenic or adenovirus-infected mice were placed on insulin-depleted state by streptozotocin treatment, the reporter expression was upregulated as strongly as in control mice, demonstrating that this regulation is not dominated by serum insulin level. These mice are the first models to provide the mechanistic insight into the transcriptional regulation of SREBP-1c gene in vivo.

  6. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements

    PubMed Central

    Misulovin, Ziva; Gause, Maria; Rickels, Ryan A; Shilatifard, Ali

    2016-01-01

    The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers. PMID:27662615

  7. SEC-ICP-MS studies for elements binding to different molecular weight fractions of humic substances in compost extract obtained from urban solid waste.

    PubMed

    Sadi, Baki B M; Wrobel, Kazimierz; Wrobel, Katarzyna; Kannamkumarath, Sasi S; Castillo, J R; Caruso, J A

    2002-12-01

    In this work, the speciation of elements in compost was studied with emphasis on their binding to humic substances. In order to assess the distribution of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, U, Th and Zn among molecular weight fractions of humic substances, the compost extract (extracted by 0.1 mol l(-1) sodium pyrophosphate) was analyzed by size exclusion chromatography coupled on-line with UV-Vis spectrophotometric and ICP-MS detection. Similar chromatograms were obtained for standard humic acid (Fluka) and for compost extract (254 nm, 400 nm) and three size fractions were operationally defined that corresponded to the apparent molecular weight ranges > 15 kDa, 1-15 kDa and < 1 kDa. The percentage of total element content in compost that was leached to the extract ranged from 30% up to 100% for different elements. The elution profiles of Co, Cr, Cu, Ni and Pb (ICP-MS) followed that of humic substances, while for other elements the bulk elution peak matched the retention time observed for the element in the absence of compost extract. Spiking experiments were carried out to confirm elements' binding and to estimate the affinity of individual elements for humic substances derived from compost. The results obtained indicated the following order of decreasing affinity: Cu > Ni > Co > Pb > Cd > (Cr, U, Th) > (As, Mn, Mo, Zn). After standard addition, further binding of Cu, Ni and Co with the two molecular weight fractions of humic substances was observed, indicating that humic substances derived from compost were not saturated with these elements.

  8. Identification of novel proteins binding the AU-rich element of α-prothymosin mRNA through the selection of open reading frames (RIDome).

    PubMed

    Patrucco, Laura; Peano, Clelia; Chiesa, Andrea; Guida, Filomena; Luisi, Imma; Boria, Ilenia; Mignone, Flavio; De Bellis, Gianluca; Zucchelli, Silvia; Gustincich, Stefano; Santoro, Claudio; Sblattero, Daniele; Cotella, Diego

    2015-01-01

    We describe here a platform for high-throughput protein expression and interaction analysis aimed at identifying the RNA-interacting domainome. This approach combines the selection of a phage library displaying "filtered" open reading frames with next-generation DNA sequencing. The method was validated using an RNA bait corresponding to the AU-rich element of α-prothymosin, an RNA motif that promotes mRNA stability and translation through its interaction with the RNA-binding protein ELAVL1. With this strategy, we not only confirmed known RNA-binding proteins that specifically interact with the target RNA (such as ELAVL1/HuR and RBM38) but also identified proteins not previously known to be ARE-binding (R3HDM2 and RALY). We propose this technology as a novel approach for studying the RNA-binding proteome.

  9. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets.

    PubMed

    Farazi, Thalia A; Leonhardt, Carl S; Mukherjee, Neelanjan; Mihailovic, Aleksandra; Li, Song; Max, Klaas E A; Meyer, Cindy; Yamaji, Masashi; Cekan, Pavol; Jacobs, Nicholas C; Gerstberger, Stefanie; Bognanni, Claudia; Larsson, Erik; Ohler, Uwe; Tuschl, Thomas

    2014-07-01

    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.

  10. X-ray Crystallographic and Steady State Fluorescence Characterization of the Protein Dynamics of Yeast Polyadenylate Polymerase.

    SciTech Connect

    Balbo,P.; Toth, J.; Bohm, A.

    2007-01-01

    Polyadenylate polymerase (PAP) catalyzes the synthesis of poly(A) tails on the 3'-end of pre-mRNA. PAP is composed of three domains: an N-terminal nucleotide-binding domain (homologous to the palm domain of DNA and RNA polymerases), a middle domain (containing other conserved, catalytically important residues), and a unique C-terminal domain (involved in protein-protein interactions required for 3'-end formation). Previous X-ray crystallographic studies have shown that the domains are arranged in a V-shape such that they form a central cleft with the active site located at the base of the cleft at the interface between the N-terminal and middle domains. In the previous studies, the nucleotides were bound directly to the N-terminal domain and exhibited a conspicuous lack of adenine-specific interactions that would constitute nucleotide recognition. Furthermore, it was postulated that base-specific contacts with residues in the middle domain could occur either as a result of a change in the conformation of the nucleotide or domain movement. To address these issues and to better characterize the structural basis of substrate recognition and catalysis, we report two new crystal structures of yeast PAP. A comparison of these structures reveals that the N-terminal and C-terminal domains of PAP move independently as rigid bodies along two well defined axes of rotation. Modeling of the nucleotide into the most closed state allows us to deduce specific nucleotide interactions involving residues in the middle domain (K215, Y224 and N226) that are proposed to be involved in substrate binding and specificity. To further investigate the nature of PAP domain flexibility, 2-aminopurine labeled molecular probes were employed in steady state fluorescence and acrylamide quenching experiments. The results suggest that the closed domain conformation is stabilized upon recognition of the correct substrate, MgATP, in an enzyme-substrate ternary complex. The implications of these results

  11. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation.

    PubMed

    Johansson, Cecilia; Somberg, Monika; Li, Xiaoze; Backström Winquist, Ellenor; Fay, Joanna; Ryan, Fergus; Pim, David; Banks, Lawrence; Schwartz, Stefan

    2012-05-22

    We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2.

  12. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation

    PubMed Central

    Johansson, Cecilia; Somberg, Monika; Li, Xiaoze; Backström Winquist, Ellenor; Fay, Joanna; Ryan, Fergus; Pim, David; Banks, Lawrence; Schwartz, Stefan

    2012-01-01

    We provide evidence that the human papillomavirus (HPV) E2 protein regulates HPV late gene expression. High levels of E2 caused a read-through at the early polyadenylation signal pAE into the late region of the HPV genome, thereby inducing expression of L1 and L2 mRNAs. This is a conserved property of E2 of both mucosal and cutaneous HPV types. Induction could be reversed by high levels of HPV-16 E1 protein, or by the polyadenylation factor CPSF30. HPV-16 E2 inhibited polyadenylation in vitro by preventing the assembly of the CPSF complex. Both the N-terminal and hinge domains of E2 were required for induction of HPV late gene expression in transfected cells as well as for inhibition of polyadenylation in vitro. Finally, overexpression of HPV-16 E2 induced late gene expression from a full-length genomic clone of HPV-16. We speculate that the accumulation of high levels of E2 during the viral life cycle, not only turns off the expression of the pro-mitotic viral E6 and E7 genes, but also induces the expression of the late HPV genes L1 and L2. PMID:22617423

  13. Antisense Transcript and RNA Processing Alterations Suppress Instability of Polyadenylated mRNA in Chlamydomonas Chloroplasts

    PubMed Central

    Nishimura, Yoshiki; Kikis, Elise A.; Zimmer, Sara L.; Komine, Yutaka; Stern, David B.

    2004-01-01

    In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Δ26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Δ26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3′ poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS−, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Δ26, in which atpB mRNA is unstable because of the lack of a 3′ stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3′→5

  14. Structure of the Drosophila HeT-A transposon: a retrotransposon-like element forming telomeres.

    PubMed

    Danilevskaya, O; Slot, F; Pavlova, M; Pardue, M L

    1994-06-01

    Telomeres of Drosophila appear to be very different from those of other organisms. A transposable element, HeT-A, plays a major role in forming telomeres and may be the sole structural element, since telomerase-generated repeats are not found. HeT-A transposes only to chromosome ends. It appears to be a retrotransposon but has novel structural features, which may be related to its telomere functions. A consensus sequence from cloned HeT-A elements defines an element of approximately 6 kb. The coding region has retrotransposon-like overlapping open reading frames (ORFs) with a -1 frameshift in a sequence resembling the frameshift region of the mammalian HIV-1 retrovirus. Both the HeT-A ORFs contain motifs suggesting RNA binding. HeT-A-specific features include a long non-coding region, 3' of the ORFs, which makes up about half of the element. This region has a regular array of imperfect sequence repeats and ends with oligo(A), marking the end of the element and suggesting a polyadenylated RNA transposition intermediate. This 3' repeat region may have a structural role in heterochromatin. The most distal part of each complete HeT-A on the chromosome, the region 5' of the ORFs, has unusual conserved features, which might produce a terminal structure for the chromosome.

  15. Hydraulic Binding Between Structural Elements and Groundwater Circulation in a Volcanic Aquifer : Insights from Riano Quarries District (Rome Italy)

    NASA Astrophysics Data System (ADS)

    Rossi, David; Preziosi, Elisabetta; Ghergo, Stefano; Parrone, Daniele; Amalfitano, Stefano; Bruna Petrangeli, Anna; Zoppini, Annamaria

    2016-04-01

    A field survey and laboratory analysis of fracture systems crosscutting volcanic rocks was performed in the North-East of Rome urban area (Central Italy) to assess the hydraulic binding between structural elements, groundwater circulation and geochemistry. Fracture features (orientation, density, apertures, length and spacing) as well as groundwater heads and geochemical characteristics of rock and groundwater were analysed. We present and discuss the macro and mesostructural deformation pattern of the Riano quarries district (Central Italy) to highlight the close relationships between geological heterogeneity and water circulation. Laboratory analyses were carried out on rock samples: using XRF, microwave acid digestion and diffractometer to identify the chemical and mineralogical characters of the outcropping rock samples with a special focus on altered bands of fractures. On water samples using ICP-OES for major cations, ICP-MS for trace elements, IC for major anions and Spectrophotometry for NO2, PO4, NH4 . A total of 26 quarries with different dimension, shape and depth were examined by both remote and field analyses. Despite all the quarries were realized within the same tuff formation interval, a different fracture spatial distribution was recognized. From North to South a progressively increment of fracture density was observed. It was possible to observe a close relationship between orientation, spatial distribution and length. For each single fractured set, a 5° max orientation variation was observed, suggesting that fracture genesis was likely related to an extensional/transtensional tectonic process. Most of the fractures directly examined show an alteration band with different colors and thickness around the whole fracture shape. A preliminary overview of the laboratory results highlights that altered and unaltered tuffs (belonging to the same formation) show different chemical compositions. In particular, an enrichment of Mn, accompanied by a

  16. Bile acids down-regulate caveolin-1 in esophageal epithelial cells through sterol responsive element-binding protein.

    PubMed

    Prade, Elke; Tobiasch, Moritz; Hitkova, Ivana; Schäffer, Isabell; Lian, Fan; Xing, Xiangbin; Tänzer, Marc; Rauser, Sandra; Walch, Axel; Feith, Marcus; Post, Stefan; Röcken, Christoph; Schmid, Roland M; Ebert, Matthias P A; Burgermeister, Elke

    2012-05-01

    Bile acids are synthesized from cholesterol and are major risk factors for Barrett adenocarcinoma (BAC) of the esophagus. Caveolin-1 (Cav1), a scaffold protein of membrane caveolae, is transcriptionally regulated by cholesterol via sterol-responsive element-binding protein-1 (SREBP1). Cav1 protects squamous epithelia by controlling cell growth and stabilizing cell junctions and matrix adhesion. Cav1 is frequently down-regulated in human cancers; however, the molecular mechanisms that lead to this event are unknown. We show that the basal layer of the nonneoplastic human esophageal squamous epithelium expressed Cav1 mainly at intercellular junctions. In contrast, Cav1 was lost in 95% of tissue specimens from BAC patients (n = 100). A strong cytoplasmic expression of Cav1 correlated with poor survival in a small subgroup (n = 5) of BAC patients, and stable expression of an oncogenic Cav1 variant (Cav1-P132L) in the human BAC cell line OE19 promoted proliferation. Cav1 was also detectable in immortalized human squamous epithelial, Barrett esophagus (CPC), and squamous cell carcinoma cells (OE21), but was low in BAC cell lines (OE19, OE33). Mechanistically, bile acids down-regulated Cav1 expression by inhibition of the proteolytic cleavage of 125-kDa pre-SREBP1 from the endoplasmic reticulum/Golgi apparatus and nuclear translocation of active 68-kDa SREBP1. This block in SREBP1's posttranslational processing impaired transcriptional activation of SREBP1 response elements in the proximal human Cav1 promoter. Cav1 was also down-regulated in esophagi from C57BL/6 mice on a diet enriched with 1% (wt/wt) chenodeoxycholic acid. Mice deficient for Cav1 or the nuclear bile acid receptor farnesoid X receptor showed hyperplasia and hyperkeratosis of the basal cell layer of esophageal epithelia, respectively. These data indicate that bile acid-mediated down-regulation of Cav1 marks early changes in the squamous epithelium, which may contribute to onset of Barrett esophagus

  17. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity.

    PubMed

    Martinez, E; Wahli, W

    1989-12-01

    The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.

  18. Hormonally induced alterations of chromatin structure in the polyadenylation and transcription termination regions of the chicken ovalbumin gene.

    PubMed Central

    Bellard, M; Dretzen, G; Bellard, F; Kaye, J S; Pratt-Kaye, S; Chambon, P

    1986-01-01

    We have studied the chromatin structure of a 16-kb region of the chicken genome containing the 3'-terminal 2 kb of the ovalbumin pre-mRNA coding sequence and the 14-kb segment located immediately downstream from the main mRNA polyadenylation site. Using the indirect end-labelling technique, four major and two minor DNase I-hypersensitive regions were found in the oviduct chromatin, whereas they were not present in liver, kidney or erythrocyte chromatin. The first hypersensitive region (region A) was present in chromatin of oviducts from laying hen and estrogen- or progesterone-stimulated immature chicks, in which the ovalbumin gene is expressed, but not in the chromatin of 'acute withdrawn' chicks where the gene is no longer transcribed. Region A spans 1.3 kb, from 7.2 to 8.5 kb downstream from the ovalbumin gene capsite (position +1), and encompasses the 3' moiety of the last exon including the major polyadenylation signal and polyadenylation site located at +7546 and +7564, respectively. Region A also contains a minor polyadenylation signal present at +7294 and the corresponding polyadenylation site at +7368. Two putative termination sequences at +8445 and +8483 are also found at the 3' extremity of region A in a 170-bp DNA segment within which 90% of the ovalbumin primary transcripts apparently terminate. Two minor hormone-independent DNase I-hypersensitive regions (a1 and a2) located at +8.6 and +8.8 kb are also specific to oviduct chromatin.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3011414

  19. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element

    PubMed Central

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-01-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea. Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea. These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  20. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    PubMed

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells.

  1. Cloning and characterization of the dehydration-responsive element-binding protein 2A gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Zhang, X K; Li, Y Y; Li, D Y; Ma, M Y; Cai, D T; Wu, W H; Huang, B Q

    2016-08-05

    Eruca vesicaria subsp sativa is one of the most tolerant Cruciferae species to drought, and dehydration-responsive element-binding protein 2A (DREB2A) is involved in responses to salinity, heat, and particularly drought. In this study, a gene encoding EvDREB2A was cloned and characterized in E. vesicaria subsp sativa. The full-length EvDREB2A cDNA sequence contained a 388-bp 5'-untranslated region (UTR), a 348-bp 3'-UTR, and a 1002-bp open reading frame that encoded 334 amino acid residues. The theoretical isoelectric point of the EvDREB2A protein was 4.80 and the molecular weight was 37.64 kDa. The genomic sequence of EvDREB2A contained no introns. Analysis using SMART indicated that EvDREB2A contains a conserved AP2 domain, similar to other plant DREBs. Phylogenetic analysis revealed that EvDREB2A and DREB2As from Brassica rapa, Eutrema salsugineum, Arabidopsis thaliana, Arabidopsis lyrata, and Arachis hypogaea formed a small subgroup, which clustered with DREB2Bs from A. lyrata, A. thaliana, Camelina sativa, and B. rapa to form a larger subgroup. EvDREB2A is most closely related to B. rapa DREB2A, followed by DREB2As from E. salsugineum, A. thaliana, A. hypogaea, and A. lyrata. A quantitative real-time polymerase chain reaction indicated that EvDREB2A expression was highest in the leaves, followed by the roots and hypocotyls, and was lowest in the flower buds. EvDREB2A could be used to improve drought tolerance in crops.

  2. Region-dependent dynamics of cAMP response element-binding protein phosphorylation in the basal ganglia

    PubMed Central

    Liu, Fu-Chin; Graybiel, Ann M.

    1998-01-01

    The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine. PMID:9539803

  3. Involvement of Transducer of Regulated cAMP Response Element-Binding Protein Activity on Corticotropin Releasing Hormone Transcription

    PubMed Central

    Liu, Ying; Coello, Ana G.; Grinevich, Valery; Aguilera, Greti

    2010-01-01

    We have recently shown that phospho-cAMP response element-binding protein (CREB) is essential but not sufficient for activation of CRH transcription, suggesting the requirement of a coactivator. Here, we test the hypothesis that the CREB coactivator, transducer of regulated CREB activity (TORC), is required for activation of CRH transcription, using the cell line 4B and primary cultures of hypothalamic neurons. Immunohistochemistry and Western blot experiments in 4B cells revealed time-dependent nuclear translocation of TORC1,TORC 2, and TORC3 by forskolin [but not by the phorbol ester, phorbol 12-myristate 13-acetate (PMA)] in a concentration-dependent manner. In reporter gene assays, cotransfection of TORC1 or TORC2 potentiated the stimulatory effect of forskolin on CRH promoter activity but had no effect in cells treated with PMA. Knockout of endogenous TORC using silencing RNA markedly inhibited forskolin-activated CRH promoter activity in 4B cells, as well as the induction of endogenous CRH primary transcript by forskolin in primary neuronal cultures. Coimmunoprecipitation and chromatin immunoprecipitation experiments in 4B cells revealed association of CREB and TORC in the nucleus, and recruitment of TORC2 by the CRH promoter, after 20-min incubation with forskolin. These studies demonstrate a correlation between nuclear translocation of TORC with association to the CRH promoter and activation of CRH transcription. The data suggest that TORC is required for transcriptional activation of the CRH promoter by acting as a CREB coactivator. In addition, cytoplasmic retention of TORC during PMA treatment is likely to explain the failure of phorbolesters to activate CRH transcription in spite of efficiently phosphorylating CREB. PMID:20080871

  4. NALP1 is a transcriptional target for cAMP-response-element-binding protein (CREB) in myeloid leukaemia cells

    PubMed Central

    2004-01-01

    NALP1 (also called DEFCAP, NAC, CARD7) has been shown to play a central role in the activation of inflammatory caspases and processing of pro-IL1β (pro-interleukin-1β). Previous studies showed that NALP1 is highly expressed in peripheral blood mononuclear cells. In the present study, we report that expression of NALP1 is absent from CD34+ haematopoietic blast cells, and its levels are upregulated upon differentiation of CD34+ cells into granulocytes and to a lesser extent into monocytes. In peripheral blood cells, the highest levels of NALP1 were observed in CD3+ (T-lymphocytes), CD15+ (granulocytes) and CD14+ (monocytes) cell populations. Notably, the expression of NALP1 was significantly increased in the bone marrow blast cell population of some patients with acute leukaemia, but not among tissue samples from thyroid and renal cancer. A search for consensus sites within the NALP1 promoter revealed a sequence for CREB (cAMP-response-element-binding protein) that was required for transcriptional activity. Moreover, treatment of TF1 myeloid leukaemia cells with protein kinase C and protein kinase A activators induced CREB phosphorylation and upregulated the mRNA and protein levels of NALP1. Conversely, ectopic expression of a dominant negative form of CREB in TF1 cells blocked the transcriptional activity of the NALP1 promoter and significantly reduced the expression of NALP1. Thus NALP1 is transcriptionally regulated by CREB in myeloid cells, a mechanism that may contribute to modulate the response of these cells to pro-inflammatory stimuli. PMID:15285719

  5. Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4α.

    PubMed

    Hanse, Eric A; Mashek, Douglas G; Becker, Jennifer R; Solmonson, Ashley D; Mullany, Lisa K; Mashek, Mara T; Towle, Howard C; Chau, Anhtung T; Albrecht, Jeffrey H

    2012-07-15

    Following acute hepatic injury, the metabolic capacity of the liver is altered during the process of compensatory hepatocyte proliferation by undefined mechanisms. In this study, we examined the regulation of de novo lipogenesis by cyclin D1, a key mediator of hepatocyte cell cycle progression. In primary hepatocytes, cyclin D1 significantly impaired lipogenesis in response to glucose stimulation. Cyclin D1 inhibited the glucose-mediated induction of key lipogenic genes, and similar effects were seen using a mutant (D1-KE) that does not activate cdk4 or induce cell cycle progression. Cyclin D1 (but not D1-KE) inhibited the activity of the carbohydrate response element-binding protein (ChREBP) by regulating the glucose-sensing motif of this transcription factor. Because changes in ChREBP activity could not fully explain the effect of cyclin D1, we examined hepatocyte nuclear factor 4α (HNF4α), which regulates numerous differentiated functions in the liver including lipid metabolism. We found that both cyclins D1 and D1-KE bound to HNF4α and significantly inhibited its recruitment to the promoter region of lipogenic genes in hepatocytes. Conversely, knockdown of cyclin D1 in the AML12 hepatocyte cell line promoted HNF4α activity and lipogenesis. In mouse liver, HNF4α bound to a central domain of cyclin D1 involved in transcriptional repression. Cyclin D1 inhibited lipogenic gene expression in the liver following carbohydrate feeding. Similar findings were observed in the setting of physiologic cyclin D1 expression in the regenerating liver. In conclusion, these studies demonstrate that cyclin D1 represses ChREBP and HNF4α function in hepatocytes via Cdk4-dependent and -independent mechanisms. These findings provide a direct link between the cell cycle machinery and the transcriptional control of metabolic function of the liver.

  6. The role of alternative polyadenylation in the antiviral innate immune response

    PubMed Central

    Jia, Xin; Yuan, Shaochun; Wang, Yao; Fu, Yonggui; Ge, Yong; Ge, Yutong; Lan, Xihong; Feng, Yuchao; Qiu, Feifei; Li, Peiyi; Chen, Shangwu; Xu, Anlong

    2017-01-01

    Alternative polyadenylation (APA) is an important regulatory mechanism of gene functions in many biological processes. However, the extent of 3′ UTR variation and the function of APA during the innate antiviral immune response are unclear. Here, we show genome-wide poly(A) sites switch and average 3′ UTR length shortens gradually in response to vesicular stomatitis virus (VSV) infection in macrophages. Genes with APA and mRNA abundance change are enriched in immune-related categories such as the Toll-like receptor, RIG-I-like receptor, JAK-STAT and apoptosis-related signalling pathways. The expression of 3′ processing factors is down-regulated upon VSV infection. When the core 3′ processing factors are knocked down, viral replication is affected. Thus, our study reports the annotation of genes with APA in antiviral immunity and highlights the roles of 3′ processing factors on 3′ UTR variation upon viral infection. PMID:28233779

  7. Alternative polyadenylation in a family of paralogous EPB41 genes generates protein 4.1 diversity.

    PubMed

    Rangel, Laura; Lospitao, Eva; Ruiz-Sáenz, Ana; Alonso, Miguel A; Correas, Isabel

    2017-02-01

    Alternative polyadenylation (APA) is a step in mRNA 3'-end processing that contributes to the complexity of the transcriptome by generating isoforms that differ in either their coding sequence or their 3'-untranslated regions (UTRs). The EPB41 genes, EPB41, EPB41L2, EPB41L3 and EPB41L1, encode an impressively complex array of structural adaptor proteins (designated 4.1R, 4.1G, 4.1B and 4.1N, respectively) by using alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing. The great variety of 4.1 proteins mainly results from 5'-end and internal processing of the EPB41 pre-mRNAs. Thus, 4.1 proteins can vary in their N-terminal extensions but all contain a highly homologous C-terminal domain (CTD). Here we study a new group of EPB41-related mRNAs that originate by APA and lack the exons encoding the CTD characteristic of prototypical 4.1 proteins, thereby encoding a new type of 4.1 protein. For the EPB41 gene, this type of processing was observed in all 11 human tissues analyzed. Comparative genomic analysis of EPB41 indicates that APA is conserved in various mammals. In addition, we show that APA also functions for the EPB41L2, EPB41L3 and EPB41L1 genes, but in a more restricted manner in the case of the latter 2 than it does for the EPB41 and EPB41L2 genes. Our study shows alternative polyadenylation to be an additional mechanism for the generation of 4.1 protein diversity in the already complex EPB41-related genes. Understanding the diversity of EPB41 RNA processing is essential for a full appreciation of the many 4.1 proteins expressed in normal and pathological tissues.

  8. Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

    SciTech Connect

    Rudolf, Jeffrey D.; Bigelow, Lance; Chang, Changsoo; Cuff, Marianne E.; Lohman, Jeremy R.; Chang, Chin-Yuan; Ma, Ming; Yang, Dong; Clancy, Shonda; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N.; Shen, Ben

    2015-11-17

    The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 angstrom, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.

  9. A DNA-binding factor specific for xenobiotic responsive elements of P-450c gene exists as a cryptic form in cytoplasm: Its possible translocation to nucleus

    SciTech Connect

    Fujisawa-Sehara, Atsuko; Yamane, Miyuki; Fujii-Kuriyama, Yoshiaki

    1988-08-01

    Transcription of the drug-metabolizing cytochrome P-450c gene is induced by 3-methylcholanthrene or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previously, the authors defined two xenobiotic responsive elements (XREs) of {approx}15 base pairs, both of which activate transcription in cis in response to these xenobiotics. Using a gel mobility shift assay, they have identified a factor that specifically binds to the XREs. This factor appears in nuclei of mouse hepatoma cell line Hepa-1 only when the cells are treated with the xenobiotics, while the factor is undetectable in the nuclei of a 3-methylcholanthrene-treated mutant of Hepa-1 with defective function of a xenobiotic receptor. In addition, the nuclear factor bound to the XRE in the gel was found to be associated with ({sup 3}H)TCDD when the cells were treated with it, suggesting that the xenobiotic receptor is at least a component of the DNA-binding factor. The cytoplasmic fraction from nontreated Hepa-1 cells also contains the factor as a cryptic form and prominently reveals its DNA-binding activity by incubation with 3-methylcholanthrene in vitro. These results not only suggest the involvement of the XRE-binding factor in transcriptional activation via XREs but also provide evidence that the binding of ligands to the preexisting factor in a cryptic form induces its XRE-binding activity, which is probably followed by its translocation from cytoplasm to nucleus.

  10. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    PubMed Central

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-01-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor. Images PMID:2554307

  11. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene.

    PubMed

    Hume, David A; Sasmono, Tedjo; Himes, S Roy; Sharma, Sudarshana M; Bronisz, Agnieszka; Constantin, Myrna; Ostrowski, Michael C; Ross, Ian L

    2008-05-15

    Many macrophage-specific promoters lack classical transcriptional start site elements such as TATA boxes and Sp1 sites. One example is the CSF-1 receptor (CSF-1R, CD115, c-fms), which is used as a model of the transcriptional regulation of macrophage genes. To understand the molecular basis of start site recognition in this gene, we identified cellular proteins binding specifically to the transcriptional start site (TSS) region. The mouse and human csf1r TSS were identified using cap analysis gene expression (CAGE) data. Conserved elements flanking the TSS cluster were analyzed using EMSAs to identify discrete DNA-binding factors in primary bone marrow macrophages as candidate transcriptional regulators. Two complexes were identified that bind in a highly sequence-specific manner to the mouse and human TSS proximal region and also to high-affinity sites recognized by myeloid zinc finger protein 1 (Mzf1). The murine proteins were purified by DNA affinity isolation from the RAW264.7 macrophage cell line and identified by mass spectrometry as EWS and FUS/TLS, closely related DNA and RNA-binding proteins. Chromatin immunoprecipitation experiments in bone marrow macrophages confirmed that EWS, but not FUS/TLS, was present in vivo on the CSF-1R proximal promoter in unstimulated primary macrophages. Transfection assays suggest that EWS does not act as a conventional transcriptional activator or repressor. We hypothesize that EWS contributes to start site recognition in TATA-less mammalian promoters.

  12. Transforming Growth Factor β Suppresses Peroxisome Proliferator-Activated Receptor γ Expression via Both SMAD Binding and Novel TGF-β Inhibitory Elements.

    PubMed

    Lakshmi, Sowmya P; Reddy, Aravind T; Reddy, Raju C

    2017-01-18

    Transforming growth factor β (TGF-β) contributes to wound healing and, when dysregulated, to pathological fibrosis. TGF-β and the anti-fibrotic nuclear hormone receptor peroxisome proliferator-activated receptor γ (PPARγ) repress each other's expression, and such PPARγ downregulation is prominent in fibrosis and mediated, via previously unknown mechanisms, by SMAD signaling. Here we show that TGF-β induces association of SMAD3 with both SMAD4, needed for translocation of the complex into the nucleus, and the essential context-sensitive corepressors E2F4 and p107. The complex mediates TGF-β-induced repression by binding to regulatory elements in the target promoter. In the PPARG promoter, we found that the SMAD3-SMAD4 complex binds both to a previously unknown consensus TGF-β inhibitory element (TIE) and also to canonical SMAD-binding elements (SBEs). Furthermore, the TIE and SBEs independently mediated partial repression of PPARG transcription, the first demonstration of a TIE and SBEs functioning within the same promoter. Also, TGF-β-treated fibroblasts contained SMAD complexes that activated a SMAD target gene in addition to those repressing PPARG transcription, the first finding of such dual activity within the same cell. These findings describe in detail novel mechanisms by which TGF-β represses PPARG transcription, thereby facilitating its own pro-fibrotic activity.

  13. Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response.

    PubMed Central

    Fawcett, T W; Martindale, J L; Guyton, K Z; Hai, T; Holbrook, N J

    1999-01-01

    Gadd153, also known as chop, encodes a member of the CCAAT/enhancer-binding protein (C/EBP) transcription factor family and is transcriptionally activated by cellular stress signals. We recently demonstrated that arsenite treatment of rat pheochromocytoma PC12 cells results in the biphasic induction of Gadd153 mRNA expression, controlled in part through binding of C/EBPbeta and two uncharacterized protein complexes to the C/EBP-ATF (activating transcription factor) composite site in the Gadd153 promoter. In this report, we identified components of these additional complexes as two ATF/CREB (cAMP-responsive-element-binding protein) transcription factors having differential binding activities dependent upon the time of arsenite exposure. During arsenite treatment of PC12 cells, we observed enhanced binding of ATF4 to the C/EBP-ATF site at 2 h as Gadd153 mRNA levels increased, and enhanced binding of ATF3 complexes at 6 h as Gadd153 expression declined. We further demonstrated that ATF4 activates, while ATF3 represses, Gadd153 promoter activity through the C/EBP-ATF site. ATF3 also repressed ATF4-mediated transactivation and arsenite-induced activation of the Gadd153 promoter. Our results suggest that numerous members of the ATF/CREB family are involved in the cellular stress response, and that regulation of stress-induced biphasic Gadd153 expression in PC12 cells involves the ordered, sequential binding of multiple transcription factor complexes to the C/EBP-ATF composite site. PMID:10085237

  14. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  15. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene.

    PubMed Central

    Riccio, A; Pedone, P V; Lund, L R; Olesen, T; Olsen, H S; Andreasen, P A

    1992-01-01

    Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action. Images PMID:1549130

  16. HRP-2, the Caenorhabditis elegans homolog of mammalian heterogeneous nuclear ribonucleoproteins Q and R, is an alternative splicing factor that binds to UCUAUC splicing regulatory elements.

    PubMed

    Kabat, Jennifer L; Barberan-Soler, Sergio; Zahler, Alan M

    2009-10-16

    Alternative splicing is regulated by cis sequences in the pre-mRNA that serve as binding sites for trans-acting alternative splicing factors. In a previous study, we used bioinformatics and molecular biology to identify and confirm that the intronic hexamer sequence UCUAUC is a nematode alternative splicing regulatory element. In this study, we used RNA affinity chromatography to identify trans factors that bind to this sequence. HRP-2, the Caenorhabditis elegans homolog of human heterogeneous nuclear ribonucleoproteins Q and R, binds to UCUAUC in the context of unc-52 intronic regulatory sequences as well as to RNAs containing tandem repeats of this sequence. The three Us in the hexamer are the most important determinants of this binding specificity. We demonstrate, using RNA interference, that HRP-2 regulates the alternative splicing of two genes, unc-52 and lin-10, both of which have cassette exons flanked by an intronic UCUAUC motif. We propose that HRP-2 is a protein responsible for regulating alternative splicing through binding interactions with the UCUAUC sequence.

  17. Recognition of the high affinity binding site in rev-response element RNA by the human immunodeficiency virus type-1 rev protein.

    PubMed Central

    Iwai, S; Pritchard, C; Mann, D A; Karn, J; Gait, M J

    1992-01-01

    The Human Immunodeficiency Virus type-1 rev protein binds with high affinity to a bubble structure located within the rev-response element (RRE) RNA in stemloop II. After this initial interaction, additional rev molecules bind to the RRE RNA in an ordered assembly process which requires a functional bubble structure, since mutations in the bubble sequence that reduce rev affinity block multiple complex formation. We have used synthetic chemistry to characterize the interaction between rev protein and its high affinity binding site. A minimal synthetic duplex RNA (RBC6) carrying the bubble and 12 flanking base pairs is able to bind rev with 1 to 1 stoichiometry and with high affinity. When the bubble structure is inserted into synthetic RNA molecules carrying longer stretches of flanking double-stranded RNA, rev forms additional complexes resembling the multimers observed with the RRE RNA. The ability of rev to bind to RBC6 analogues containing functional group modifications on base and sugar moieties of nucleoside residues was also examined. The results provide strong evidence that the bubble structure contains specific configurations of non-Watson--Crick G:G and G:A base pairs and suggest that high affinity recognition of RRE RNA by rev requires hydrogen bonding to functional groups in the major groove of a distorted RNA structure. Images PMID:1282702

  18. A binuclear zinc transcription factor binds the host isoflavonoid-responsive element in a fungal cytochrome p450 gene responsible for detoxification.

    PubMed

    Khan, Rana; Tan, Reynold; Mariscal, Amanda Galvez; Straney, David

    2003-07-01

    The PDA1 gene of the filamentous fungus Nectria haematococca MPVI (anamorph: Fusarium solani) encodes pisatin demethylase, a cytochrome P450. Pisatin is a fungistatic isoflavonoid produced by garden pea (Pisum sativum), a host for this fungus. Pisatin demethylase detoxifies pisatin and functions as a virulence factor for this fungus. Pisatin induces PDA1 expression both in cultured mycelia as well as during pathogenesis on pea. The regulatory element within PDA1 that provides pisatin-responsive expression was identified using a combination of in vivo functional analysis and in vitro binding analysis. The 40 bp pisatin-responsive element is located 635 bp upstream of the PDA1 transcription start site. This element was sufficient to provide strong pisatin-induced expression to a minimal promoter in vivo and was required for pisatin regulation of the PDA1 promoter. A gene encoding a DNA-binding protein specific to this 40 bp element was isolated from a N. haematococca cDNA library using the yeast one-hybrid screen. The cloned gene possesses sequence motifs found in the binuclear zinc (Cys 6-Zn 2) family of transcription factors unique to fungi. The results suggest that it is a regulator of this fungal cytochrome P450 gene and may provide pisatin-responsive regulation.

  19. Hx, a novel fluorescent, minor groove and sequence specific recognition element: design, synthesis, and DNA binding properties of p-anisylbenzimidazole-imidazole/pyrrole-containing polyamides.

    PubMed

    Chavda, Sameer; Liu, Yang; Babu, Balaji; Davis, Ryan; Sielaff, Alan; Ruprich, Jennifer; Westrate, Laura; Tronrud, Christopher; Ferguson, Amanda; Franks, Andrew; Tzou, Samuel; Adkins, Chandler; Rice, Toni; Mackay, Hilary; Kluza, Jerome; Tahir, Sharjeel A; Lin, Shicai; Kiakos, Konstantinos; Bruce, Chrystal D; Wilson, W David; Hartley, John A; Lee, Moses

    2011-04-19

    With the aim of incorporating a recognition element that acts as a fluorescent probe upon binding to DNA, three novel pyrrole (P) and imidazole (I)-containing polyamides were synthesized. The compounds contain a p-anisylbenzimidazolecarboxamido (Hx) moiety attached to a PP, IP, or PI unit, giving compounds HxPP (2), HxIP (3), and HxPI (4), respectively. These fluorescent hybrids were tested against their complementary nonfluorescent, non-formamido tetraamide counterparts, namely, PPPP (5), PPIP (6), and PPPI (7) (cognate sequences 5'-AAATTT-3', 5'-ATCGAT-3', and 5'-ACATGT-3', respectively). The binding affinities for both series of polyamides for their cognate and noncognate sequences were ascertained by surface plasmon resonance (SPR) studies, which revealed that the Hx-containing polyamides gave binding constants in the 10(6) M(-1) range while little binding was observed for the noncognates. The binding data were further compared to the corresponding and previously reported formamido-triamides f-PPP (8), f-PIP (9), and f-PPI (10). DNase I footprinting studies provided additional evidence that the Hx moiety behaved similarly to two consecutive pyrroles (PP found in 5-7), which also behaved like a formamido-pyrrole (f-P) unit found in distamycin and many formamido-triamides, including 8-10. The biophysical characterization of polyamides 2-7 on their binding to the abovementioned DNA sequences was determined using thermal melts (ΔT(M)), circular dichroism (CD), and isothermal titration calorimetry (ITC) studies. Density functional calculations (B3LYP) provided a theoretical framework that explains the similarity between PP and Hx on the basis of molecular electrostatic surfaces and dipole moments. Furthermore, emission studies on polyamides 2 and 3 showed that upon excitation at 322 nm binding to their respective cognate sequences resulted in an increase in fluorescence at 370 nm. These low molecular weight polyamides show promise for use as probes for monitoring

  20. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30

    SciTech Connect

    Bercovich, Natalia; Levin, Mariano J.; Vazquez, Martin P.

    2009-03-20

    In trypanosomes transcription is polycistronic and individual mRNAs are generated by a trans-splicing/polyadenylation coupled reaction. We identified a divergent trypanosome FIP1-like, a factor required for mRNA 3' end formation from yeasts to human. Here we showed that it is a nuclear protein with a speckled distribution essential for trypanosome viability. A strong interaction was found between TcFIP1-like and TcCPSF30, a component of the polyadenylation complex. We determined the specific amino acids in each protein involved in the interaction. Significant differences were found between the trypanosome interaction surface and its human counterpart. Although CPSF30/FIP1 interaction is known in other organisms, this is the first report mapping the interaction surface at the amino acid level.

  1. A Boundary Element Between Tsix and Xist Binds the Chromatin Insulator Ctcf and Contributes to Initiation of X-Chromosome Inactivation

    PubMed Central

    Spencer, Rebecca J.; del Rosario, Brian C.; Pinter, Stefan F.; Lessing, Derek; Sadreyev, Ruslan I.; Lee, Jeannie T.

    2011-01-01

    In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI. PMID:21840866

  2. A boundary element between Tsix and Xist binds the chromatin insulator Ctcf and contributes to initiation of X-chromosome inactivation.

    PubMed

    Spencer, Rebecca J; del Rosario, Brian C; Pinter, Stefan F; Lessing, Derek; Sadreyev, Ruslan I; Lee, Jeannie T

    2011-10-01

    In mammals, X-chromosome inactivation (XCI) equalizes X-linked gene expression between XY males and XX females and is controlled by a specialized region known as the X-inactivation center (Xic). The Xic harbors two chromatin interaction domains, one centered around the noncoding Xist gene and the other around the antisense Tsix counterpart. Previous work demonstrated the existence of a chromatin transitional zone between the two domains. Here, we investigate the region and discover a conserved element, RS14, that presents a strong binding site for Ctcf protein. RS14 possesses an insulatory function suggestive of a boundary element and is crucial for cell differentiation and growth. Knocking out RS14 results in compromised Xist induction and aberrant XCI in female cells. These data demonstrate that a junction element between Tsix and Xist contributes to the initiation of XCI.

  3. Specificity of RSG-1.2 peptide binding to RRE-IIB RNA element of HIV-1 over Rev peptide is mainly enthalpic in origin.

    PubMed

    Kumar, Santosh; Bose, Debojit; Suryawanshi, Hemant; Sabharwal, Harshana; Mapa, Koyeli; Maiti, Souvik

    2011-01-01

    Rev is an essential HIV-1 regulatory protein which binds to the Rev responsive element (RRE) present within the env gene of HIV-1 RNA genome. This binding facilitates the transport of the RNA to the cytoplasm, which in turn triggers the switch between viral latency and active viral replication. Essential components of this complex have been localized to a minimal arginine rich Rev peptide and stem IIB region of RRE. A synthetic peptide known as RSG-1.2 binds with high binding affinity and specificity to the RRE-IIB than the Rev peptide, however the thermodynamic basis of this specificity has not yet been addressed. The present study aims to probe the thermodynamic origin of this specificity of RSG-1.2 over Rev Peptide for RRE-IIB. The temperature dependent melting studies show that RSG-1.2 binding stabilizes the RRE structure significantly (ΔT(m) = 4.3°C), in contrast to Rev binding. Interestingly the thermodynamic signatures of the binding have also been found to be different for both the peptides. At pH 7.5, RSG-1.2 binds RRE-IIB with a K(a) = 16.2±0.6×10(7) M(-1) where enthalpic change ΔH = -13.9±0.1 kcal/mol is the main driving force with limited unfavorable contribution from entropic change TΔS = -2.8±0.1 kcal/mol. A large part of ΔH may be due to specific stacking between U72 and Arg15. In contrast binding of Rev (K(a) = 3.1±0.4×10(7) M(-1)) is driven mainly by entropy (ΔH = 0 kcal/mol and TΔS = 10.2±0.2 kcal/mol) which arises from major conformational changes in the RNA upon binding.

  4. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues

    PubMed Central

    Lyons, Shawn M.; Cunningham, Clark H.; Welch, Joshua D.; Groh, Beezly; Guo, Andrew Y.; Wei, Bruce; Whitfield, Michael L.; Xiong, Yue; Marzluff, William F.

    2016-01-01

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. PMID:27402160

  5. Fkh1 and Fkh2 Bind Multiple Chromosomal Elements in the S. cerevisiae Genome with Distinct Specificities and Cell Cycle Dynamics

    PubMed Central

    Knott, Simon R. V.; Fox, Catherine A.; Tavaré, Simon; Aparicio, Oscar M.

    2014-01-01

    Forkhead box (FOX) transcription factors regulate a wide variety of cellular functions in higher eukaryotes, including cell cycle control and developmental regulation. In Saccharomyces cerevisiae, Forkhead proteins Fkh1 and Fkh2 perform analogous functions, regulating genes involved in cell cycle control, while also regulating mating-type silencing and switching involved in gamete development. Recently, we revealed a novel role for Fkh1 and Fkh2 in the regulation of replication origin initiation timing, which, like donor preference in mating-type switching, appears to involve long-range chromosomal interactions, suggesting roles for Fkh1 and Fkh2 in chromatin architecture and organization. To elucidate how Fkh1 and Fkh2 regulate their target DNA elements and potentially regulate the spatial organization of the genome, we undertook a genome-wide analysis of Fkh1 and Fkh2 chromatin binding by ChIP-chip using tiling DNA microarrays. Our results confirm and extend previous findings showing that Fkh1 and Fkh2 control the expression of cell cycle-regulated genes. In addition, the data reveal hundreds of novel loci that bind Fkh1 only and exhibit a distinct chromatin structure from loci that bind both Fkh1 and Fkh2. The findings also show that Fkh1 plays the predominant role in the regulation of a subset of replication origins that initiate replication early, and that Fkh1/2 binding to these loci is cell cycle-regulated. Finally, we demonstrate that Fkh1 and Fkh2 bind proximally to a variety of genetic elements, including centromeres and Pol III-transcribed snoRNAs and tRNAs, greatly expanding their potential repertoire of functional targets, consistent with their recently suggested role in mediating the spatial organization of the genome. PMID:24504085

  6. Identification of negative-acting and protein-binding elements in the mouse alpha A-crystallin -1556/-1165 region.

    PubMed

    Sax, C M; Cvekl, A; Kantorow, M; Sommer, B; Chepelinsky, A B; Piatigorsky, J

    1994-07-08

    The mouse alpha A-crystallin-encoding gene (alpha A-cry) is expressed in a highly lens-preferred manner. To date, it has been shown that this lens-preferred expression is controlled by four proximal positive-acting transcriptional regulatory elements: DE1 (-111/-97), alpha A-CRYBP1 (-66/-57), PE1/TATA (-35/-19) and PE2 (+24/+43). The present study extends our knowledge of mouse alpha A-cry transcriptional regulatory elements to the far upstream region of that gene by demonstrating that the -1556 to -1165 region contains negative-acting sequence elements which function in transfected lens cells derived from mouse, rabbit and chicken. This is the first negative-acting regulatory region identified in mouse alpha A-cry. The -1556 to -1165 region contains sequences similar to repressor/silencer elements identified in other genes, including those highly expressed in the lens, such as the delta 1-crystallin (delta 1-cry) and vimentin (vim) genes. The -1480 to -1401 region specifically interacts with nuclear proteins isolated from the alpha TN4-1 mouse lens cell line. Contained within this protein-binding region and positioned at -1453 to -1444 is a sequence (RS1) similar to the chicken delta 1-cry intron 3 repressor, and which competes for the formation of -1480 to -1401 DNA-protein complexes. Our findings suggest that lens nuclear proteins bind to the mouse alpha A-cry RS1 region. We demonstrate that the chicken delta 1-cry intron repressor binds similar nuclear proteins in chicken embryonic lens cells and mouse alpha TN4-1 lens cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize.

    PubMed Central

    Cui, Xiangqin; Hsia, An-Ping; Liu, Feng; Ashlock, Daniel A; Wise, Roger P; Schnable, Patrick S

    2003-01-01

    Even in the absence of excisional loss of the associated Mu transposons, some Mu-induced mutant alleles of maize can lose their capacity to condition a mutant phenotype. Three of five Mu-derived rf2a alleles are susceptible to such Mu suppression. The suppressible rf2a-m9437 allele has a novel Mu transposon insertion (Mu10) in its 5' untranslated region (UTR). The suppressible rf2a-m9390 allele has a Mu1 insertion in its 5' UTR. During suppression, alternative transcription initiation sites flanking the Mu1 transposon yield functional transcripts. The suppressible rf2a-m8110 allele has an rcy/Mu7 insertion in its 3' UTR. Suppression of this allele occurs via a previously unreported mechanism; sequences in the terminal inverted repeats of rcy/Mu7 function as alternative polyadenylation sites such that the suppressed rf2a-m8110 allele yields functional rf2a transcripts. No significant differences were observed in the nucleotide compositions of these alternative polyadenylation sites as compared with 94 other polyadenylation sites from maize genes. PMID:12618406

  8. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA.

    PubMed

    Gueydan, C; Droogmans, L; Chalon, P; Huez, G; Caput, D; Kruys, V

    1999-01-22

    In monocyte/macrophages, the translation of tumor necrosis factor alpha (TNF-alpha) mRNA is tightly regulated. In unstimulated cells, translation of TNF-alpha mRNA is blocked. Upon stimulation with lipopolysaccharides, this repression is overcome, and the mRNA becomes efficiently translated. The key element in this regulation is the AU-rich element (ARE). We have previously reported the binding of two cytosolic protein complexes to the TNF-alpha mRNA ARE. One of these complexes (complex 1) forms with extracts of both unstimulated and lipopolysaccharide-stimulated macrophages and requires a large fragment of the ARE containing clustered AUUUA pentamers. The other complex (complex 2) is only detected after cell activation, binds to a minimal UUAUUUAUU nonamer, and is composed of a 55-kDa protein. Here, we report the identification of the RNA-binding protein TIAR as a protein involved in complex 1. The RNA sequence bound by TIAR and the cytoplasmic localization of this protein in macrophages argue for an involvement of TIAR in TNF mRNA posttranscriptional regulation.

  9. Multi-Ligand-Binding Flavoprotein Dodecin as a Key Element for Reversible Surface Modification in Nano-biotechnology.

    PubMed

    Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert

    2015-01-01

    In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.

  10. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.

    PubMed

    Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-12-01

    There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes.

  11. Polyadenylation helps regulate functional tRNA levels in Escherichia coli

    PubMed Central

    Mohanty, Bijoy K.; Maples, Valerie F.; Kushner, Sidney R.

    2012-01-01

    Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3′ → 5′ exonucleases involved in the final step of 3′-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that are ≤10 nt in length coupled with a 2.3- to 4.2-fold decrease in the level of aminoacylated tRNAs and a >2-fold decrease in growth rate. Only 7 out of 86 tRNAs are not regulated by this mechanism and are also not substrates for RNase T, RNase PH or PAP I. Surprisingly, neither PNPase nor RNase II has any effect on tRNA poly(A) tail length. Our data suggest that the polyadenylation of tRNAs by PAP I likely proceeds in a distributive fashion unlike what is observed with mRNAs. PMID:22287637

  12. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs

    PubMed Central

    Ruzzenente, Benedetta; Metodiev, Metodi D; Wredenberg, Anna; Bratic, Ana; Park, Chan Bae; Cámara, Yolanda; Milenkovic, Dusanka; Zickermann, Volker; Wibom, Rolf; Hultenby, Kjell; Erdjument-Bromage, Hediye; Tempst, Paul; Brandt, Ulrich; Stewart, James B; Gustafsson, Claes M; Larsson, Nils-Göran

    2012-01-01

    Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine-rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino-acid substitution of this protein causes the French-Canadian type of Leigh syndrome (LSFC), a neurodegenerative disorder characterized by complex IV deficiency. We have generated conditional Lrpprc knockout mice and show here that the gene is essential for embryonic development. Tissue-specific disruption of Lrpprc in heart causes mitochondrial cardiomyopathy with drastic reduction in steady-state levels of most mitochondrial mRNAs. LRPPRC forms an RNA-dependent protein complex that is necessary for maintaining a pool of non-translated mRNAs in mammalian mitochondria. Loss of LRPPRC does not only decrease mRNA stability, but also leads to loss of mRNA polyadenylation and the appearance of aberrant mitochondrial translation. The translation pattern without the presence of LRPPRC is misregulated with excessive translation of some transcripts and no translation of others. Our findings point to the existence of an elaborate machinery that regulates mammalian mtDNA expression at the post-transcriptional level. PMID:22045337

  13. Endothelin-converting enzyme-1 (ECE-1) is post-transcriptionally regulated by alternative polyadenylation.

    PubMed

    Whyteside, Alison R; Turner, Anthony J; Lambert, Daniel W

    2014-01-01

    Endothelin-converting enzyme-1 (ECE-1) is the enzyme predominantly responsible for producing active endothelin-1 (ET-1), a mitogenic peptide implicated in the aetiology of a number of diseases, including cancer. Elevated levels of ECE-1 have been observed in a range of malignancies, with high expression conferring poor prognosis and aiding the acquisition of androgen independence in prostate cancer. The mechanisms regulating the expression of ECE-1 in cancer cells are poorly understood, hampering the development of novel therapies targeting the endothelin axis. Here we provide evidence that the expression of ECE-1 is markedly inhibited by its 3'UTR, and that alternative polyadenylation (APA) results in the production of ECE-1 transcripts with truncated 3'UTRs which promote elevated protein expression. Abolition of the ECE-1 APA sites reduced protein expression from a reporter vector in prostate cancer cells, suggesting these sites are functional. This is the first study to identify ECE-1 as a target for APA, a regulatory mechanism aberrantly activated in cancer cells, and provides novel information about the mechanisms leading to ECE-1 overexpression in malignant cells.

  14. Polyadenylated tail length variation pattern in ultra-rapid vitrified bovine oocytes

    PubMed Central

    Dutta, D. J.; Raj, Himangshu; Dev, and Hiramoni

    2016-01-01

    Aim: Thecurrent study aims at investigating the polyadenylated (poly[A]) tail length of morphologically high and low competent oocytes at different developmental stages. Furthermore, effect of ultra-rapid vitrification on the poly(A) tail length was studied. Materials and Methods: Fresh bovine cumulus oocyte complexes from abattoir originated ovaries were graded based on morphological characters and matured in vitro. Cryopreservation was done by ultra-rapid vitrification method. mRNA was isolated from different categories of oocyte and subjected to ligation-mediated poly(A) test followed by polymerase chain reaction for determining the poly(A) tail length of β actin, gap junction protein alpha 1 (GJA1), poly(A) polymerase alpha (PAPOLA), and heat shock 70 kDa protein (HSP70) transcripts. Results: GJA1, PAPOLA, and HSP70 showed significantly higher poly(A) in immature oocytes of higher competence irrespective of vitrification effects as compared to mature oocytes of higher competence. Conclusion: mRNA poly(A) tail size increases in developmentally high competent immature bovine oocytes. There was limited effect of ultra-rapid vitrification of bovine oocytes on poly(A). PMID:27847415

  15. From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.

    PubMed

    Misra, Ashish; Green, Michael R

    2016-01-01

    Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.

  16. Estrogen-mediated regulation of Igf1 transcription and uterine growth involves direct binding of estrogen receptor alpha to estrogen-responsive elements.

    PubMed

    Hewitt, Sylvia C; Li, Yin; Li, Leping; Korach, Kenneth S

    2010-01-22

    Estrogen enables uterine proliferation, which depends on synthesis of the IGF1 growth factor. This proliferation and IGF1 synthesis requires the estrogen receptor (ER), which binds directly to target DNA sequences (estrogen-responsive elements or EREs), or interacts with other transcription factors, such as AP1, to impact transcription. We observe neither uterine growth nor an increase in Igf1 transcript in a mouse with a DNA-binding mutated ER alpha (KIKO), indicating that both Igf1 regulation and uterine proliferation require the DNA binding function of the ER. We identified several potential EREs in the Igf1 gene, and chromatin immunoprecipitation analysis revealed ER alpha binding to these EREs in wild type but not KIKO chromatin. STAT5 is also reported to regulate Igf1; uterine Stat5a transcript is increased by estradiol (E(2)), but not in KIKO or alpha ERKO uteri, indicating ER alpha- and ERE-dependent regulation. ER alpha binds to a potential Stat5a ERE. We hypothesize that E(2) increases Stat5a transcript through ERE binding; that ER alpha, either alone or together with STAT5, then acts to increase Igf1 transcription; and that the resulting lack of IGF1 impairs KIKO uterine growth. Treatment with exogenous IGF1, alone or in combination with E(2), induces proliferation in wild type but not KIKO uteri, indicating that IGF1 replacement does not rescue the KIKO proliferative response. Together, these observations suggest in contrast to previous in vitro studies of IGF-1 regulation involving AP1 motifs that direct ER alpha-DNA interaction is required to increase Igf1 transcription. Additionally, full ER alpha function is needed to mediate other cellular signals of the growth factor for uterine growth.

  17. Identification of the mismatch repair genes PMS2 and MLH1 as p53 target genes by using serial analysis of binding elements

    PubMed Central

    Chen, Jiguo; Sadowski, Ivan

    2005-01-01

    The ability to determine the global location of transcription factor binding sites in vivo is important for a comprehensive understanding of gene regulation in human cells. We have developed a technology, called serial analysis of binding elements (SABE), involving subtractive hybridization of chromatin immunoprecipitation-enriched DNA fragments followed by the generation and analysis of concatamerized sequence tags. We applied the SABE technology to search for p53 target genes in the human genome, and have identified several previously described p53 targets in addition to numerous potentially novel targets, including the DNA mismatch repair genes MLH1 and PMS2. Both of these genes were determined to be responsive to DNA damage and p53 activation in normal human fibroblasts, and have p53-response elements within their first intron. These two genes may serve as a sensor in DNA repair mechanisms and a critical determinant for the decision between cell-cycle arrest and apoptosis. These results also demonstrate the potential for use of SABE as a broadly applicable means to globally identify regulatory elements for human transcription factors in vivo. PMID:15781865

  18. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-07-01

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  19. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules.

    PubMed

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  20. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    SciTech Connect

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging the ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.

  1. Genetic effects of sterol regulatory element binding proteins and fatty acid-binding protein4 on the fatty acid composition of Korean cattle (Hanwoo)

    PubMed Central

    Oh, Dong-Yep; Lee, Jea-Young; Jang, Ji-Eun; Lee, Seung-Uk

    2017-01-01

    Objective This study identifies single-nucleotide polymorphisms (SNP) or gene combinations that affect the flavor and quality of Korean cattle (Hanwoo) by using the SNP Harvester method. Methods Four economic traits (oleic acid [C18:1], saturated fatty acids), monounsaturated fatty acids, and marbling score) were adjusted for environmental factors in order to focus solely on genetic effects. The SNP Harvester method was used to investigate gene combinations (two-way gene interactions) associated with these economic traits. Further, a multifactor dimensionality reduction method was used to identify superior genotypes in gene combinations. Results Table 3 to 4 show the analysis results for differences between superior genotypes and others for selected major gene combinations using the multifactor dimensionality reduction method. Environmental factors were adjusted for in order to evaluate only the genetic effect. Table 5 shows the adjustment effect by comparing the accuracy before and after correction in two-way gene interactions. Conclusion The g.3977-325 T>C and (g.2988 A>G, g.3977-325 T>C) combinations of fatty acid-binding protein4 were the superior gene, and the superior genotype combinations across all economic traits were the CC genotype at g.3977-325 T>C and the AACC, GACC, GGCC genotypes of (g.2988 A>G, g.3977-325 T>C). PMID:27492349

  2. 5-Aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB).

    PubMed Central

    Giono, L E; Varone, C L; Cánepa, E T

    2001-01-01

    The first and rate-controlling step of the haem biosynthetic pathway in mammals and fungi is catalysed by the mitochondrial-matrix enzyme 5-aminolaevulinate synthase (ALAS). The purpose of this work was to explore the molecular mechanisms involved in the cAMP regulation of rat housekeeping ALAS gene expression. Thus we have examined the ALAS promoter for putative transcription-factor-binding sites that may regulate transcription in a cAMP-dependent protein kinase (PKA)-induced context. Applying both transient transfection assays with a chloramphenicol acetyltransferase reporter gene driven by progressive ALAS promoter deletions in HepG2, and electrophoresis mobility-shift assays we have identified two putative cAMP-response elements (CREs) at positions -38 and -142. Functional analysis showed that both CRE-like sites were necessary for complete PKA induction, but only one for basal expression. Co-transfection with a CRE-binding protein (CREB) expression vector increased PKA-mediated induction of ALAS promoter transcriptional activity. However, in the absence of co-transfected PKA, CREB worked as a specific repressor for ALAS promoter activity. A CREB mutant deficient in a PKA phosphorylation site was unable to induce expression of the ALAS gene but could inhibit non-stimulated promoter activity. Furthermore, a DNA-binding mutant of CREB did not interfere with ALAS promoter basal activity. Site-directed-mutagenesis studies showed that only the nearest element to the transcription start site was able to inhibit the activity of the promoter. Therefore, we conclude that CREB, through its binding to CRE-like sites, mediates the effect of cAMP on ALAS gene expression. Moreover, we propose that CREB could also act as a repressor of ALAS transcription, but is able to reverse its role after PKA activation. Dephosphorylated CREB would interfere in a spatial-disposition-dependent manner with the transcriptional machinery driving inhibition of gene expression. PMID:11139395

  3. Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, and cyclic AMP response element binding protein.

    PubMed

    Shenkar, R; Abraham, E

    1999-07-15

    Acute inflammatory lung injury occurs frequently in the setting of severe infection or blood loss. Accumulation of activated neutrophils in the lungs and increased pulmonary proinflammatory cytokine levels are major characteristics of acute lung injury. In the present experiments, we examined mechanisms leading to neutrophil accumulation and activation in the lungs after endotoxemia or hemorrhage. Levels of IL-1 beta, TNF-alpha, and macrophage inflammatory protein-2 mRNA were increased in lung neutrophils from endotoxemic or hemorrhaged mice compared with those present in lung neutrophils from control mice or in peripheral blood neutrophils from endotoxemic, hemorrhaged, or control mice. The transcriptional regulatory factors NF-kappa B and cAMP response element binding protein were activated in lung but not blood neutrophils after hemorrhage or endotoxemia. Xanthine oxidase inhibition, achieved by feeding allopurinol or tungsten-containing diets, did not affect neutrophil trafficking to the lungs after hemorrhage or endotoxemia. Xanthine oxidase inhibition did prevent hemorrhage- but not endotoxemia-induced increases in proinflammatory cytokine expression among lung neutrophils. Hemorrhage- or endotoxemia-associated activation of NF-kappa B in lung neutrophils was not affected by inhibition of xanthine oxidase. cAMP response element binding protein activation was increased after hemorrhage, but not endotoxemia, in mice fed xanthine oxidase-inhibiting diets. Our results indicate that xanthine oxidase modulates cAMP response element binding protein activation and proinflammatory cytokine expression in lung neutrophils after hemorrhage, but not endotoxemia. These findings suggest that the mechanisms leading to acute inflammatory lung injury after hemorrhage differ from those associated with endotoxemia.

  4. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  5. Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence.

    PubMed

    Brevini, T A L; Lonergan, P; Cillo, F; Francisci, C; Favetta, L A; Fair, T; Gandolfi, F

    2002-12-01

    In this study we analyzed the pattern of polyadenylation changes that takes place between the resumption of meiosis and the first cleavage of bovine oocytes. Moreover, we investigated whether the delayed occurrence of the first cleavage division, which characterizes embryos of low developmental competence, is accompanied by an altered polyadenylation pattern of individual transcripts. We determined the polyadenylation status of a group of genes that characterize physiological processes, involved in early differentiation (Oct-4), compaction, and cavitation (beta-actin, plakophilin, connexin-32, connexin-43), energy metabolism (glucose transporter type 1, pyruvate dehydrogenase phosphatase), RNA processing (RNA poly(A) polymerase), and stress (heat shock protein 70). RNA was isolated from pools of 20 oocytes or embryos at the germinal vesicle (GV) stage, at the end of in vitro maturation, at the end of in vitro fertilization, and at the time of the first cleavage. Cleavage was assessed 27, 30, 36, 42 hr post insemination (hpi), and at the latter time the remaining uncleaved oocytes were retained as a group. Between oocyte isolation and first cleavage at 27 hpi (best quality embryos), the poly(A) tail of individual transcripts followed four patterns: no changes (beta-actin, PDP); gradual reduction (Cx-43, Oct-4, Plako); gradual elongation (Cx-32, TPA); reduction followed by elongation (PAP, HSP-70, Glut-1). If the interval between insemination and first cleavage was longer than 27 hpi (progressively lower quality embryos) further changes of polyadenylation were observed, which differed for each gene considered. These data indicated that specific changes in polyadenylation contribute to the modulation of gene expression in bovine embryos at this stage of development. Defective developmental competence is accompanied by abnormal polyadenylation levels of specific maternal mRNAs with synchrony between polyadenylation and cleavage emerging as an apparently important

  6. Immunoproteomic and two-dimensional difference gel electrophoresis analysis of Arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato.

    PubMed

    Nakamura, Rika; Satoh, Rie; Nakamura, Ryosuke; Shimazaki, Takayoshi; Kasuga, Mie; Yamaguchi-Shinozaki, Kazuko; Kikuchi, Akira; Watanabe, Kazuo N; Teshima, Reiko

    2010-01-01

    To produce crops that are more tolerant to stresses such as heat, cold, and salt, transgenic plants have been produced those express stress-associated proteins. In this study, we used immunoproteomic and two-dimensional difference gel electrophoresis (2D-DIGE) methods to investigate the allergenicity of transgenic potatoes expressing Arabidopsis DREB1A (dehydration responsive element-binding protein 1A), driven by the rd29A promoter or the 35S promoter. Immunoproteomic analysis using sera from potato-allergic patients revealed several immunoglobulin E (IgE)-binding protein spots. The patterns of protein binding were almost the same between transgenic and non-transgenic potatoes. The IgE-binding proteins in potato were identified as patatin precursors, a segment of serine protease inhibitor 2, and proteinase inhibitor II by matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) MS/MS. 2D-DIGE analysis revealed several differences in protein expression between non-transgenic potato and transgenic potato; those showing increased expression in transgenic potatoes were identified as precursors of patatin, a major potato allergen, and those showing decreased expression in transgenic potatoes were identified as lipoxygenase and glycogen (starch) synthase. These results suggested that transgenic potatoes may express slightly higher levels of allergens, but their IgE-binding patterns were almost the same as those of control potatoes. Further research on changes in protein expressions in response to environmental factors is required to confirm whether the differences observed in this study are due to gene transfection, rather than environmental factors.

  7. Structural characterization of a unique interface between carbohydrate response element-binding protein (ChREBP) and 14-3-3β protein.

    PubMed

    Ge, Qiang; Huang, Nian; Wynn, R Max; Li, Yang; Du, Xinlin; Miller, Bonnie; Zhang, Hong; Uyeda, Kosaku

    2012-12-07

    Carbohydrate response element-binding protein (ChREBP) is an insulin-independent, glucose-responsive transcription factor that is expressed at high levels in liver hepatocytes where it plays a critical role in converting excess carbohydrates to fat for storage. In response to fluctuating glucose levels, hepatic ChREBP activity is regulated in large part by nucleocytoplasmic shuttling of ChREBP protein via interactions with 14-3-3 proteins. The N-terminal ChREBP regulatory region is necessary and sufficient for glucose-responsive ChREBP nuclear import and export. Here, we report the crystal structure of a complex of 14-3-3β bound to the N-terminal regulatory region of ChREBP at 2.4 Å resolution. The crystal structure revealed that the α2 helix of ChREBP (residues 117-137) adopts a well defined α-helical conformation and binds 14-3-3 in a phosphorylation-independent manner that is different from all previously characterized 14-3-3 and target protein-binding modes. ChREBP α2 interacts with 14-3-3 through both electrostatic and van der Waals interactions, and the binding is partially mediated by a free sulfate or phosphate. Structure-based mutagenesis and binding assays indicated that disrupting the observed 14-3-3 and ChREBP α2 interface resulted in a loss of complex formation, thus validating the novel protein interaction mode in the 14-3-3β·ChREBP α2 complex.

  8. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    PubMed

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  9. Role of cAMP-response element-binding protein phosphorylation in hepatic apoptosis under protein kinase C alpha suppression during sepsis.

    PubMed

    Hsieh, Ya-Ching; Chen, Yen-Hsu; Jao, Hsiao-Ching; Hsu, Hseng-Kuang; Huang, Li-Ju; Hsu, Chin

    2005-10-01

    Previous studies have shown that a decrease in protein kinase C (PKC) alpha levels contributes to hepatic failure and/or apoptosis during sepsis, and suppression of PKCalpha plays a critical role in triggering caspase-dependent apoptosis, which can modulate expression of Bcl-xL. However, the underlying molecular mechanism remains uncertain. In the present study, we examined whether a decrease in the nuclear PKCalpha levels causes hepatic apoptosis via modulation of cAMP-response element-binding protein (CREB) or nuclear factor-kappaB (NFkappaB), the crucial factors regulating the expression of prosurvival Bcl-xL. For polymicrobial sepsis induction, a cecal ligation and puncture model was used; at 9 or 18 h after CLP, experiments were terminated, referring as early or late sepsis, respectively. Additionally, PKCalpha was suppressed by stable transfection of antisense PKCalpha plasmid into a Clone-9 rat hepatic epithelial cell. The results showed that the nuclear PKCalpha was significantly decreased in the liver during sepsis, which was accompanied by decreases in phospho-CREB content, DNA-binding activity of CREB, and Bcl-xL expression. Likewise, the binding activity of NFkappaB increased significantly, which was associated with a decrease in cytosolic inhibitory-kappaBalpha content. The in vitro suppression of PKCalpha also resulted in decreases in the phospho-CREB content and DNA-binding activity, which were accompanied by down-regulation of Bcl-xL and apoptosis, but no significant alteration in NFkappaB-binding activity. The in vivo and in vitro results suggest that the suppression of PKCalpha results in a decreased CREB phosphorylation and subsequent down-regulation of Bcl-xL, which may contribute to the hepatic apoptosis during sepsis.

  10. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.

    PubMed

    Edwards, Katie A; Baeumner, Antje J

    2013-03-05

    A periplasmic binding protein (PBP) was investigated as a novel binding species in a similar manner to an antibody in a competitive enzyme linked immunosorbent assay (ELISA), resulting in a highly sensitive and specific assay utilizing liposome-based signal amplification. PBPs are located at high concentrations (10(-4) M) between the inner and outer membranes of gram negative bacteria and are involved in the uptake of solutes and chemotaxis of bacteria toward nutrient sources. Previous sensors relying on PBPs took advantage of the change in local environment or proximity of site-specific fluorophore labels resulting from the significant conformational shift of these proteins' two globular domains upon target binding. Here, rather than monitoring conformational shifts, we have instead utilized the maltose binding protein (MBP) in lieu of an antibody in an ELISA. To our knowledge, this is the first PBP-based sensor without the requirement for engineering site-specific modifications within the protein. MBP conjugated fluorescent dye-encapsulating liposomes served to provide recognition and signal amplification in a competitive assay for maltose using amylose magnetic beads in a microtiter plate-based format. The development of appropriate binding buffers and competitive surfaces are described, with general observations expected to extend to PBPs for other analytes. The resulting assay was specific for d-(+)-maltose versus other sugar analogs including d-(+)-raffinose, sucrose, d-trehalose, d-(+)-xylose, d-fructose, 1-thio-β-d-glucose sodium salt, d-(+)-galactose, sorbitol, glycerol, and dextrose. Cross-reactivity with d-lactose and d-(+)-glucose occurred only at concentrations >10(4)-fold greater than d-(+)-maltose. The limit of detection was 78 nM with a dynamic range covering over 3 orders of magnitude. Accurate detection of maltose as an active ingredient in a pharmaceutical preparation was demonstrated. This method offers a significant improvement over existing

  11. Recruitment of cAMP-response element-binding protein and histone deacetylase has opposite effects on glucocorticoid receptor gene transcription.

    PubMed

    Govindan, Manjapra Variath

    2010-02-12

    Glucocorticoids control the synthesis of the glucocorticoid receptor (GR) in various tissues through a negative feedback regulation of the mRNA. In this study, we have identified feedback regulatory domains in the human GR gene promoter and examined the roles of GR, the cAMP-response element-binding protein (CREB), and HDAC-6 in association with promoter elements of the human GR gene. Using breast cancer T47D and HeLa-GR cells, we identify specific negative glucocorticoid-response elements in the GR gene. The feedback regulatory domains were also involved in interactions with CREB. GR-bound negative glucocorticoid-response elements recruited HDAC-6, and this was dependent on treatment with dexamethasone. Both CREB and HDAC-6 formed complexes with GR-dexamethasone. The HDAC-6 LXXLL motif between amino acids 313 and 418 made direct contact with the GR AF-1 domain. Interestingly enough, although the level of GR decreased in CREB knockdown cells, it was elevated in HDAC-6 knockdown cells. Our results suggest that CREB-P is dephosphorylated and that HDAC-6 is recruited by the GR, and they play opposite roles in the negative feedback regulation of the GR gene.

  12. PlantAPA: A Portal for Visualization and Analysis of Alternative Polyadenylation in Plants

    PubMed Central

    Wu, Xiaohui; Zhang, Yumin; Li, Qingshun Q.

    2016-01-01

    Alternative polyadenylation (APA) is an important layer of gene regulation that produces mRNAs that have different 3′ ends and/or encode diverse protein isoforms. Up to 70% of annotated genes in plants undergo APA. Increasing numbers of poly(A) sites collected in various plant species demand new methods and tools to access and mine these data. We have created an open-access web service called PlantAPA (http://bmi.xmu.edu.cn/plantapa) to visualize and analyze genome-wide poly(A) sites in plants. PlantAPA provides various interactive and dynamic graphics and seamlessly integrates a genome browser that can profile heterogeneous cleavage sites and quantify expression patterns of poly(A) sites across different conditions. Particularly, through PlantAPA, users can analyze poly(A) sites in extended 3′ UTR regions, intergenic regions, and ambiguous regions owing to alternative transcription or RNA processing. In addition, it also provides tools for analyzing poly(A) site selections, 3′ UTR lengthening or shortening, non-canonical APA site switching, and differential gene expression between conditions, making it more powerful for the study of APA-mediated gene expression regulation. More importantly, PlantAPA offers a bioinformatics pipeline that allows users to upload their own short reads or ESTs for poly(A) site extraction, enabling users to further explore poly(A) site selection using stored PlantAPA poly(A) sites together with their own poly(A) site datasets. To date, PlantAPA hosts the largest database of APA sites in plants, including Oryza sativa, Arabidopsis thaliana, Medicago truncatula, and Chlamydomonas reinhardtii. As a user-friendly web service, PlantAPA will be a valuable addition to the community of biologists studying APA mechanisms and gene expression regulation in plants. PMID:27446120

  13. Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants.

    PubMed

    Lee, Hye Eun; Shin, Dongjin; Park, Sang Ryeol; Han, Sang-Eun; Jeong, Mi-Jeong; Kwon, Tack-Ryun; Lee, Seong-Kon; Park, Soo-Chul; Yi, Bu Young; Kwon, Hawk-Bin; Byun, Myung-Ok

    2007-02-23

    To identify components of the plant stress signal transduction cascade and response mechanisms, we screened plant genes using reverse Northern blot analysis, and chose the ethylene responsive element binding protein 1 (StEREBP1) for further characterization. To investigate its biological function in the potato, we performed Northern blot analysis and observed enhanced levels of transcription in response to several environmental stresses including low temperature. In vivo targeting experiments using a green fluorescent protein (GFP) reporter indicated that StEREBP1 localized to the nucleus of onion epidermal cells. StEREBP1 was found to bind to GCC and DRE/CRT cis-elements and both microarray and RT-PCR analyses indicated that overexpression of StEREBP1 induced expression of several GCC box-containing stress response genes. In addition, overexpression of StEREBP1 enhanced tolerance to cold and salt stress in transgenic potato plants. The results of this study suggest that StEREBP1 is a functional transcription factor that may be involved in abiotic stress responses in plants.

  14. Relaxase DNA binding and cleavage are two distinguishable steps in conjugative DNA processing that involve different sequence elements of the nic site.

    PubMed

    Lucas, María; González-Pérez, Blanca; Cabezas, Matilde; Moncalian, Gabriel; Rivas, Germán; de la Cruz, Fernando

    2010-03-19

    TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR(2)). Mutation analysis in the nic region indicated that recognition of the IR(2) proximal arm and the nucleotides located between IR(2) and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR(2) cruciform and recognition of the distal IR(2) arm and loop were not necessary for these reactions to take place. On the other hand, IR(2) was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR(2)-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.

  15. Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product

    PubMed Central

    Hung, Chuan-Tien; Kung, Yu-An; Li, Mei-Ling; Lee, Kuo-Ming; Liu, Shih-Tung; Shih, Shin-Ru

    2016-01-01

    The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection. PMID:27780225

  16. Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion

    SciTech Connect

    Chen, Y.; Zhang, X.; Dantas Machado, A. C.; Ding, Y.; Chen, Z.; Qin, P. Z.; Rohs, R.; Chen, L.

    2013-07-08

    The p53 core domain binds to response elements (REs) that contain two continuous half-sites as a cooperative tetramer, but how p53 recognizes discontinuous REs is not well understood. Here we describe the crystal structure of the p53 core domain bound to a naturally occurring RE located at the promoter of the Bcl-2-associated X protein (BAX) gene, which contains a one base-pair insertion between the two half-sites. Surprisingly, p53 forms a tetramer on the BAX-RE that is nearly identical to what has been reported on other REs with a 0-bp spacer. Each p53 dimer of the tetramer binds in register to a half-site and maintains the same protein–DNA interactions as previously observed, and the two dimers retain all the protein–protein contacts without undergoing rotation or translation. To accommodate the additional base pair, the DNA is deformed and partially disordered around the spacer region, resulting in an apparent unwinding and compression, such that the interactions between the dimers are maintained. Furthermore, DNA deformation within the p53-bound BAX-RE is confirmed in solution by site-directed spin labeling measurements. Our results provide a structural insight into the mechanism by which p53 binds to discontinuous sites with one base-pair spacer.

  17. Heat Shock Protein 90 Modulates Lipid Homeostasis by Regulating the Stability and Function of Sterol Regulatory Element-binding Protein (SREBP) and SREBP Cleavage-activating Protein.

    PubMed

    Kuan, Yen-Chou; Hashidume, Tsutomu; Shibata, Takahiro; Uchida, Koji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2017-02-17

    Sterol regulatory element-binding proteins (SREBPs) are the key transcription factors that modulate lipid biosynthesis. SREBPs are synthesized as endoplasmic reticulum-bound precursors that require proteolytic activation in the Golgi apparatus. The stability and maturation of precursor SREBPs depend on their binding to SREBP cleavage-activating protein (SCAP), which escorts the SCAP-SREBP complex to the Golgi apparatus. In this study, we identified heat shock protein (HSP) 90 as a novel SREBP regulator that binds to and stabilizes SCAP-SREBP. In HepG2 cells, HSP90 inhibition led to proteasome-dependent degradation of SCAP-SREBP, which resulted in the down-regulation of SREBP target genes and the reduction in intracellular triglyceride and cholesterol levels. We also demonstrated in vivo that HSP90 inhibition decreased SCAP-SREBP protein, down-regulated SREBP target genes, and reduced lipids levels in mouse livers. We propose that HSP90 plays an indispensable role in SREBP regulation by stabilizing the SCAP-SREBP complex, facilitating the activation of SREBP to maintain lipids homeostasis.

  18. Conformational changes in the DNA-binding domains of the ecdysteroid receptor during the formation of a complex with the hsp27 response element.

    PubMed

    Pakuła, Szymon; Orłowski, Marek; Rymarczyk, Grzegorz; Krusiński, Tomasz; Jakób, Michał; Zoglowek, Anna; Ożyhar, Andrzej; Dobryszycki, Piotr

    2012-01-01

    The ecdysone receptor (EcR) and the ultraspiracle protein (Usp) form the functional receptor for ecdysteroids that initiates metamorphosis in insects. The Usp and EcR DNA-binding domains (UspDBD and EcRDBD, respectively) form a heterodimer on the natural pseudopalindromic element from the hsp27 gene promoter. The conformational changes in the protein-DNA during the formation of the UspDBD-EcRDBD-hsp27 complex were analyzed. Recombined UspDBD and EcRDBD proteins were purified and fluorescein labeled (FL) using the intein method at the C-ends of both proteins. The changes in the distances from the respective C-ends of EcRDBD and/or UspDBD to the 5'- and/or 3'-end of the response element were measured using fluorescence resonance energy transfer (FRET) methodology. The binding of EcRDBD induced a strong conformational change in UspDBD and caused the C-terminal fragment of the UspDBD molecule to move away from both ends of the regulatory element. UspDBD also induced a significant conformational change in the EcRDBD molecule. The EcRDBD C-terminus moved away from the 5'-end of the regulatory element and moved close to the 3'-end. An analysis was also done on the effect that DHR38DBD, the Drosophila ortholog of the mammalian NGFI-B, had on the interaction of UspDBD and EcRDBD with hsp27. FRET analysis demonstrated that hsp27 bending was induced by DHR38DBD. Fluorescence data revealed that hsp27 had a shorter end-to-end distance both in the presence of EcRDBD as well as in the presence of EcRDBD together with DHR38DBD, with DNA bend angles of about 36.2° and 33.6°, respectively. A model of how DHR38DBD binds to hsp27 in the presence of EcRDBD is presented.

  19. The RNA-binding protein Tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome.

    PubMed

    Haneklaus, Moritz; O'Neil, John D; Clark, Andrew R; Masters, Seth L; O'Neill, Luke A J

    2017-03-16

    The NLRP3 inflammasome is a central regulator of inflammation in many common diseases, including atherosclerosis and Type 2 diabetes, driving the production of pro-inflammatory mediators such as IL-1β and IL-18. Due to its function as an inflammatory gatekeeper, expression and activation of NLRP3 need to be tightly regulated. In this study, we highlight novel post-transcriptional mechanisms that can modulate NLRP3 expression. We have identified the RNA-binding protein Tristetraprolin (TTP) as a negative regulator of NLRP3 in human macrophages. TTP targets AU-rich elements in the NLRP3 3' untranslated region (UTR) and represses NLRP3 expression. Knocking down TTP in primary macrophages leads to an increased induction of NLRP3 by LPS, which is also accompanied by increased Caspase-1 and IL-1β cleavage upon NLRP3, but not AIM2 or NLRC4 inflammasome activation. Furthermore, we found that human NLRP3 can be alternatively polyadenylated, producing a short 3'UTR isoform that excludes regulatory elements, including the TTP and miRNA-223 binding sites. Since TTP also represses IL-1β expression, it is a dual inhibitor of the IL-1β system, regulating expression of the cytokine and the upstream controller NLRP3.

  20. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  1. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Protein-RNA interactions are integral components of nearly every aspect of biology, including regulation of gene expression, assembly of cellular architectures, and pathogenesis of human diseases. However, studies in the past few decades have only uncovered a small fraction of the vast landscape of the protein-RNA interactome in any organism, and even less is known about the dynamics of protein-RNA interactions under changing developmental and environmental conditions. Results Here, we describe the gPAR-CLIP (global photoactivatable-ribonucleoside-enhanced crosslinking and immunopurification) approach for capturing regions of the untranslated, polyadenylated transcriptome bound by RNA-binding proteins (RBPs) in budding yeast. We report over 13,000 RBP crosslinking sites in untranslated regions (UTRs) covering 72% of protein-coding transcripts encoded in the genome, confirming 3' UTRs as major sites for RBP interaction. Comparative genomic analyses reveal that RBP crosslinking sites are highly conserved, and RNA folding predictions indicate that secondary structural elements are constrained by protein binding and may serve as generalizable modes of RNA recognition. Finally, 38% of 3' UTR crosslinking sites show changes in RBP occupancy upon glucose or nitrogen deprivation, with major impacts on metabolic pathways as well as mitochondrial and ribosomal gene expression. Conclusions Our study offers an unprecedented view of the pervasiveness and dynamics of protein-RNA interactions in vivo. PMID:23409723

  2. Structural basis of the RNA-binding specificity of human U1A protein.

    PubMed Central

    Allain, F H; Howe, P W; Neuhaus, D; Varani, G

    1997-01-01

    The RNP domain is a very common eukaryotic protein domain involved in recognition of a wide range of RNA structures and sequences. Two structures of human U1A in complex with distinct RNA substrates have revealed important aspects of RNP-RNA recognition, but have also raised intriguing questions concerning the origin of binding specificity. The beta-sheet of the domain provides an extensive RNA-binding platform for packing aromatic RNA bases and hydrophobic protein side chains. However, many interactions between functional groups on the single-stranded nucleotides and residues on the beta-sheet surface are potentially common to RNP proteins with diverse specificity and therefore make only limited contribution to molecular discrimination. The refined structure of the U1A complex with the RNA polyadenylation inhibition element reported here clarifies the role of the RNP domain principal specificity determinants (the variable loops) in molecular recognition. The most variable region of RNP proteins, loop 3, plays a crucial role in defining the global geometry of the intermolecular interface. Electrostatic interactions with the RNA phosphodiester backbone involve protein side chains that are unique to U1A and are likely to be important for discrimination. This analysis provides a novel picture of RNA-protein recognition, much closer to our current understanding of protein-protein recognition than that of DNA-protein recognition. PMID:9312034

  3. The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1

    PubMed Central

    Yao, Kezhen; Wu, Yongyan; Chen, Qi; Zhang, Zihan; Chen, Xin; Zhang, Yong

    2016-01-01

    The mouse intracellular pathogen resistance 1 (Ipr1) gene plays important roles in mediating host immunity and previous work showed that it enhances macrophage apoptosis upon mycobacterium infection. However, to date, little is known about the regulation pattern of Ipr1 action. Recent studies have investigated the protein-coding genes and microRNAs regulated by Ipr1 in mouse macrophages, but the structure and the functional motif of the Ipr1 protein have yet to be explored. In this study, we analyzed the domains and functional motif of the Ipr1 protein. The resulting data reveal that Ipr1 protein forms a homodimer and that the Sp100-like domain mediates the targeting of Ipr1 protein to nuclear dots (NDs). Moreover, we found that an Ipr1 mutant lacking the classic nuclear localization signal (cNLS) also translocated into the nuclei, suggesting that the cNLS is not the only factor that directs Ipr1 nuclear localization. Additionally, mechanistic studies revealed that an arginine/lysine-rich element within the DNA-binding domain (SAND domain) is critical for Ipr1 binding to the importin protein receptor NPI-1, demonstrating that this element plays an essential role in mediating the nuclear localization of Ipr1 protein. Furthermore, our results show that this arginine/lysine-rich element contributes to the transcriptional regulation and apoptotic activity of Ipr1. These findings highlight the structural foundations of Ipr1 action and provide new insights into the mechanism of Ipr1-mediated resistance to mycobacterium. PMID:27622275

  4. Tumorigenesis by Meis1 overexpression is accompanied by a change of DNA target-sequence specificity which allows binding to the AP-1 element

    PubMed Central

    Dardaei, Leila; Penkov, Dmitry; Mathiasen, Lisa; Bora, Pranami; Morelli, Marco J.; Blasi, Francesco

    2015-01-01

    Meis1 overexpression induces tumorigenicity but its activity is inhibited by Prep1 tumor suppressor. Why does overexpression of Meis1 cause cancer and how does Prep1 inhibit? Tumor profiling and ChIP-sequencing data in a genetically-defined set of cell lines show that: 1) The number of Meis1 and Prep1 DNA binding sites increases linearly with their concentration resulting in a strong increase of “extra” target genes. 2) At high concentration, Meis1 DNA target specificity changes such that the most enriched consensus becomes that of the AP-1 regulatory element, whereas the specific OCTA consensus is not enriched because diluted within the many extra binding sites. 3) Prep1 inhibits Meis1 tumorigenesis preventing the binding to many of the “extra” genes containing AP-1 sites. 4) The overexpression of Prep1, but not of Meis1, changes the functional genomic distribution of the binding sites, increasing seven fold the number of its “enhancer” and decreasing its “promoter” targets. 5) A specific Meis1 “oncogenic” and Prep1 “tumor suppressing” signature has been identified selecting from the pool of genes bound by each protein those whose expression was modified uniquely by the “tumor-inducing” Meis1 or tumor-inhibiting Prep1 overexpression. In both signatures, the enriched gene categories are the same and are involved in signal transduction. However, Meis1 targets stimulatory genes while Prep1 targets genes that inhibit the tumorigenic signaling pathways. PMID:26259236

  5. Cyclic AMP response element-binding protein in post-mortem brain of teenage suicide victims: specific decrease in the prefrontal cortex but not the hippocampus.

    PubMed

    Pandey, Ghanshyam N; Dwivedi, Yogesh; Ren, Xinguo; Rizavi, Hooriyah S; Roberts, Rosalinda C; Conley, Robert R

    2007-10-01

    Abnormalities in both adenylyl cyclase (AC) and phosphoinositide (PI) signalling systems have been observed in the post-mortem brain of suicide victims. Cyclic AMP response element-binding protein (CREB) is a transcription factor that is activated by phosphorylating enzymes such as protein kinase A (PKA) and protein kinase C (PKC), which suggests that both AC and PI signalling systems converge at the level of CREB. CREB is involved in the transcription of many neuronally expressed genes that have been implicated in the pathophysiology of depression and suicide. Since we observed abnormalities of both PKA and PKC in the post-mortem brain of teenage suicide victims, we examined if these abnormalities are also associated with abnormalities of CREB, which is activated by these phosphorylating enzymes. We determined CRE-DNA binding using the gel shift assay, as well as protein expression of CREB using the Western blot technique, and the mRNA expression of CREB using a quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) technique in the prefrontal cortex (PFC), and hippocampus obtained from 17 teenage suicide victims and 17 matched normal control subjects. We observed that the CRE-DNA binding and the protein expression of CREB were significantly decreased in the PFC of teenage suicide victims compared with controls. There was also a significant decrease in mRNA expression of CREB in the PFC of teenage suicide victims compared with control subjects. However, there were no significant differences in CRE-DNA binding or the protein and mRNA expression of CREB in the hippocampus of teenage suicide victims compared with control subjects. These results suggest that the abnormalities of PKA, and of PKC, observed in teenage suicide victims are also associated with abnormalities of the transcription factor CREB, and that this may also cause alterations of important neuronally expressed genes, and provide further support of the signal transduction of abnormalities

  6. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening.

    PubMed

    Kuang, Jian-Fei; Chen, Jian-Ye; Liu, Xun-Cheng; Han, Yan-Chao; Xiao, Yun-Yi; Shan, Wei; Tang, Yang; Wu, Ke-Qiang; He, Jun-Xian; Lu, Wang-Jin

    2017-04-01

    Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network.

  7. Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast.

    PubMed

    Lloyd, S Julie-Ann; Raychaudhuri, Sumana; Espenshade, Peter J

    2013-07-19

    The membrane-bound sterol regulatory element-binding protein (SREBP) transcription factors regulate lipogenesis in mammalian cells and are activated through sequential cleavage by the Golgi-localized Site-1 and Site-2 proteases. The mechanism of fission yeast SREBP cleavage is less well defined and, in contrast, requires the Golgi-localized Dsc E3 ligase complex. The Dsc E3 ligase consists of five integral membrane subunits, Dsc1 through Dsc5, and resembles membrane E3 ligases that function in endoplasmic reticulum-associated degradation. Using immunoprecipitation assays and blue native electrophoresis, we determined the subunit architecture for the complex of Dsc1 through Dsc5, showing that the Dsc proteins form subcomplexes and display defined connectivity. Dsc2 is a rhomboid pseudoprotease family member homologous to mammalian UBAC2 and a central component of the Dsc E3 ligase. We identified conservation in the architecture of the Dsc E3 ligase and the multisubunit E3 ligase gp78 in mammals. Specifically, Dsc1-Dsc2-Dsc5 forms a complex resembling gp78-UBAC2-UBXD8. Further characterization of Dsc2 revealed that its C-terminal UBA domain can bind to ubiquitin chains but that the Dsc2 UBA domain is not essential for yeast SREBP cleavage. Based on the ability of rhomboid superfamily members to bind transmembrane proteins, we speculate that Dsc2 functions in SREBP recognition and binding. Homologs of Dsc1 through Dsc4 are required for SREBP cleavage and virulence in the human opportunistic pathogen Aspergillus fumigatus. Thus, these studies advance our organizational understanding of multisubunit E3 ligases involved in endoplasmic reticulum-associated degradation and fungal pathogenesis.

  8. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation*

    PubMed Central

    Guo, Jianfei; Öz, Orhan K.

    2015-01-01

    Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the −36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance. PMID:26260319

  9. Effects of organic ligands on fractionation of rare earth elements (REEs) in hydroponic plants: an application to the determination of binding capacities by humic acid for modeling.

    PubMed

    Ding, ShiMing; Liang, Tao; Zhang, ChaoSheng; Yan, JunCai; Zhang, ZiLi

    2006-12-01

    Previous studies have revealed the fractionation processes of rare earth elements (REEs) in hydroponic plants, with a heavy REE (HREE, the elements from Gd to Lu) enrichment in leaves. In this study, effects on the HREE enrichment in soybean leaves with additions of carboxylic acids (acetate, malate, citrate, NTA, EDTA and DTPA) and two soil humic acids (HAs) were investigated. REE speciation in carboxylic acid and HA solutions was simulated using Visual MINTEQ and Model V, respectively. The results showed that the effects caused by carboxylic acids were strongly dependent on the differences between their binding strengths for light REEs (LREEs, the elements from La to Eu) and those for HREEs. A good correlation existed between these effects and the changes of free REE ions in solutions. This relationship was also observed for the HA treatments, provided that the intrinsic equilibrium constants of REEs for cation-proton exchange with HA (i.e., pK(MHA)) in Model V were estimated using a free-energy relationship with the stability constants for REE complexation with lactic acid. It is suggested that this set of pK(MHA) values is more suitable for use in Model V for the simulation of REE complexation with HA.

  10. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation.

    PubMed

    Hajibeigi, Asghar; Dioum, Elhadji M; Guo, Jianfei; Öz, Orhan K

    2015-09-25

    Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance.

  11. Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2.

    PubMed

    Oem, Jae-Ku; Jackel-Cram, Candice; Li, Yi-Ping; Zhou, Yan; Zhong, Jin; Shimano, Hitoshi; Babiuk, Lorne A; Liu, Qiang

    2008-05-01

    Transcriptional factor sterol regulatory element-binding protein 1c (SREBP-1c) activates the transcription of lipogenic genes, including fatty acid synthase (FAS). Hepatitis C virus (HCV) infection is often associated with lipid accumulation within the liver, known as steatosis in the clinic. The molecular mechanisms of HCV-associated steatosis are not well characterized. Here, we showed that HCV non-structural protein 2 (NS2) activated SREBP-1c transcription in human hepatic Huh-7 cells as measured by using a human SREBP-1c promoter-luciferase reporter plasmid. We further showed that sterol regulatory element (SRE) and liver X receptor element (LXRE) in the SREBP-1c promoter were involved in SREBP-1c activation by HCV NS2. Furthermore, expression of HCV NS2 resulted in the upregulation of FAS transcription. We also showed that FAS upregulation by HCV NS2 was SREBP-1-dependent since deleting the SRE sequence in a FAS promoter and expressing a dominant-negative SREBP-1 abrogated FAS promoter upregulation by HCV NS2. Taken together, our results suggest that HCV NS2 can upregulate the transcription of SREBP-1c and FAS, and thus is probably a contributing factor for HCV-associated steatosis.

  12. Binding of TFIIIC to SINE Elements Controls the Relocation of Activity-Dependent Neuronal Genes to Transcription Factories

    PubMed Central

    Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella

    2013-01-01

    In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877

  13. Structure and Functional Characterization of the RNA-Binding Element of the NLRX1 Innate Immune Modulator

    SciTech Connect

    Hong, Minsun; Yoon, Sung-il; Wilson, Ian A.

    2012-06-20

    Mitochondrial NLRX1 is a member of the family of nucleotide-binding domain and leucine-rich-repeat-containing proteins (NLRs) that mediate host innate immunity as intracellular surveillance sensors against common molecular patterns of invading pathogens. NLRX1 functions in antiviral immunity, but the molecular mechanism of its ligand-induced activation is largely unknown. The crystal structure of the C-terminal fragment (residues 629975) of human NLRX1 (cNLRX1) at 2.65 {angstrom} resolution reveals that cNLRX1 consists of an N-terminal helical (LRRNT) domain, central leucine-rich repeat modules (LRRM), and a C-terminal three-helix bundle (LRRCT). cNLRX1 assembles into a compact hexameric architecture that is stabilized by intersubunit and interdomain interactions of LRRNT and LRRCT in the trimer and dimer components of the hexamer, respectively. Furthermore, we find that cNLRX1 interacts directly with RNA and supports a role for NLRX1 in recognition of intracellular viral RNA in antiviral immunity.

  14. LPS challenge regulates gene expression and tissue localization of a Ciona intestinalis gene through an alternative polyadenylation mechanism.

    PubMed

    Vizzini, Aiti; Bonura, Angela; Parrinello, Daniela; Sanfratello, Maria Antonietta; Longo, Valeria; Colombo, Paolo

    2013-01-01

    A subtractive hybridization strategy for the identification of differentially expressed genes was performed between LPS-challenged and naive Ciona intestinalis. This strategy allowed the characterization of two transcripts (Ci8short and Ci8long) generated by the use of two Alternative Polyadenylation sites. The Ci8long transcript contains a protein domain with relevant homology to several components of the Receptor Transporting Protein (RTP) family not present in the Ci8short mRNA. By means of Real Time PCR and Northern Blot, the Ci8short and Ci8long transcripts showed a different pattern of gene expression with the Ci8short mRNA being strongly activated after LPS injection in the pharynx. In situ hybridization analysis demonstrated that the activation of the APA site also influenced the tissue localization of the Ci8short transcript. This analysis showed that the Ci8long mRNA was expressed in hemocytes meanwhile the Ci8short mRNA was highly transcribed also in vessel endothelial cells and in the epithelium of pharynx. These findings demonstrated that regulation of gene expression based on different polyadenylation sites is an ancestral powerful strategy influencing both the level of expression and tissue distribution of alternative transcripts.

  15. Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus

    PubMed Central

    Zhu, Dong Ya; Lau, Lorraine; Liu, Shu Hong; Wei, Jian She; Lu, You Ming

    2004-01-01

    New neurons are generated in adult mammalians and may contribute to repairing the brain after injury. Here, we show that the number of new neurons in the dentate gyrus of adult rats increased in cerebral ischemic stroke and correlated with activation of the cAMP-response-element-binding protein (CREB). Inhibition of endogenous CREB by expression of a dominant-negative mutant of CREB (CREB-S133A or CREB-R287L) blocked ischemia-induced neurogenesis in the dentate gyrus of adult rats, whereas expression of constitutively active CREB, VP16-CREB, increased the number of new neurons. Thus, our findings provide roles and regulatory mechanisms for CREB in adult neurogenesis and possibly suggest a practical strategy for replacing dead neurons in brain injury. PMID:15197280

  16. MAP kinases Erk1/2 phosphorylate sterol regulatory element-binding protein (SREBP)-1a at serine 117 in vitro.

    PubMed

    Roth, G; Kotzka, J; Kremer, L; Lehr, S; Lohaus, C; Meyer, H E; Krone, W; Müller-Wieland, D

    2000-10-27

    Sterol regulatory element-binding protein (SREBP)-1a is a transcription factor sensing cellular cholesterol levels and integrating gene regulatory signals mediated by MAP kinase cascades. Here we report the identification of serine 117 in SREBP-1a as the major phosphorylation site of the MAP kinases Erk1/2. This site was identified by nanoelectrospray mass spectrometry and peptide sequencing of recombinant fusion proteins phosphorylated by Erk1/2 in vitro. Serine 117 was verified as the major phosphorylation site by in vitro mutagenesis. Mutation of serine 117 to alanine abolished Erk2-mediated phosphorylation in vitro and the MAP kinase-related transcriptional activation of SREBP-1a by insulin and platelet-derived growth factor in vivo. Our data indicate that the MAP kinase-mediated effects on SREBP-1a-regulated target genes are linked to this phosphorylation site.

  17. Calcium/calmodulin dependent protein kinase II regulates the phosphorylation of cyclic AMP-responsive element-binding protein of spinal cord in rats following noxious stimulation.

    PubMed

    Fang, Li; Wu, Jing; Zhang, Xuan; Lin, Qing; Willis, William D

    2005-02-01

    We have previously reported that intradermal capsaicin injection causes the phosphorylation of cyclic adenosine monophosphate-responsive element-binding protein (CREB) in the spinal cord of rats. The present study was designed to investigate the role of calcium/camodulin protein dependent protein kinase II (CaM kinase II) in the regulation of phosphorylation of CREB after capsaicin injection. We found that capsaicin injection produces a significant upregulation of phosphorylated CREB in the spinal cord of rat. Intrathecal treatment with a CaM kinase II inhibitor, KN-93, significantly blocked the increased phosphorylation of CREB, but did not affect the CREB protein itself. These results suggest that increased phosphorylation of CREB protein may contribute to central sensitization following acute peripheral noxious stimuli, and the effect may be regulated through the activation of CaM kinase cascades.

  18. Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice.

    PubMed

    von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2004-02-25

    The promoter for the kv3.1 potassium channel gene is regulated by a Ca2+-cAMP responsive element, which binds the transcription factor cAMP response element-binding protein (CREB). Kv3.1 is expressed in a tonotopic gradient within the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem, where Kv3.1 levels are highest at the medial end, which corresponds to high auditory frequencies. We have compared the levels of Kv3.1, CREB, and the phosphorylated form of CREB (pCREB) in a mouse strain that maintains good hearing throughout life, CBA/J (CBA), with one that suffers early cochlear hair cell loss, C57BL/6 (BL/6). A gradient of Kv3.1 immunoreactivity in the MNTB was detected in both young (6 week) and older (8 month) CBA mice. Although no gradient of CREB was detected, pCREB-immunopositive cells were grouped together in distinct clusters along the tonotopic axis. The same pattern of Kv3.1, CREB, and pCREB localization was also found in young BL/6 mice at a time (6 weeks) when hearing is normal. In contrast, at 8 months, when hearing is impaired, the gradient of Kv3.1 was abolished. Moreover, in the older BL/6 mice there was a decrease in CREB expression along the tonotopic axis, and the pattern of pCREB labeling appeared random, with no discrete clusters of pCREB-positive cells along the tonotopic axis. Our findings are consistent with the hypothesis that ongoing activity in auditory brainstem neurons is necessary for the maintenance of Kv3.1 tonotopicity through the CREB pathway.

  19. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.

    PubMed

    Kagale, Sateesh; Links, Matthew G; Rozwadowski, Kevin

    2010-03-01

    The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif is a transcriptional regulatory motif identified in members of the ethylene-responsive element binding factor, C2H2, and auxin/indole-3-acetic acid families of transcriptional regulators. Sequence comparison of the core EAR motif sites from these proteins revealed two distinct conservation patterns: LxLxL and DLNxxP. Proteins containing these motifs play key roles in diverse biological functions by negatively regulating genes involved in developmental, hormonal, and stress signaling pathways. Through a genome-wide bioinformatics analysis, we have identified the complete repertoire of the EAR repressome in Arabidopsis (Arabidopsis thaliana) comprising 219 proteins belonging to 21 different transcriptional regulator families. Approximately 72% of these proteins contain a LxLxL type of EAR motif, 22% contain a DLNxxP type of EAR motif, and the remaining 6% have a motif where LxLxL and DLNxxP are overlapping. Published in vitro and in planta investigations support approximately 40% of these proteins functioning as negative regulators of gene expression. Comparative sequence analysis of EAR motif sites and adjoining regions has identified additional preferred residues and potential posttranslational modification sites that may influence the functionality of the EAR motif. Homology searches against protein databases of poplar (Populus trichocarpa), grapevine (Vitis vinifera), rice (Oryza sativa), and sorghum (Sorghum bicolor) revealed that the EAR motif is conserved across these diverse plant species. This genome-wide analysis represents the most extensive survey of EAR motif-containing proteins in Arabidopsis to date and provides a resource enabling investigations into their biological roles and the mechanism of EAR motif-mediated transcriptional regulation.

  20. Neuronal Activity-Induced Sterol Regulatory Element Binding Protein-1 (SREBP1) is Disrupted in Dysbindin-Null Mice-Potential Link to Cognitive Impairment in Schizophrenia.

    PubMed

    Chen, Yong; Bang, Sookhee; McMullen, Mary F; Kazi, Hala; Talbot, Konrad; Ho, Mei-Xuan; Carlson, Greg; Arnold, Steven E; Ong, Wei-Yi; Kim, Sangwon F

    2017-04-01

    Schizophrenia is a chronic debilitating neuropsychiatric disorder that affects about 1 % of the population. Dystrobrevin-binding protein 1 (DTNBP1 or dysbindin) is one of the Research Domain Constructs (RDoC) associated with cognition and is significantly reduced in the brain of schizophrenia patients. To further understand the molecular underpinnings of pathogenesis of schizophrenia, we have performed microarray analyses of the hippocampi from dysbindin knockout mice, and found that genes involved in the lipogenic pathway are suppressed. Moreover, we discovered that maturation of a master transcriptional regulator for lipid synthesis, sterol regulatory element binding protein-1 (SREBP1) is induced by neuronal activity, and is required for induction of the immediate early gene ARC (activity-regulated cytoskeleton-associated protein), necessary for synaptic plasticity and memory. We found that nuclear SREBP1 is dramatically reduced in dysbindin-1 knockout mice and postmortem brain tissues from human patients with schizophrenia. Furthermore, activity-dependent maturation of SREBP1 as well as ARC expression were attenuated in dysbindin-1 knockout mice, and these deficits were restored by an atypical antipsychotic drug, clozapine. Together, results indicate an important role of dysbindin-1 in neuronal activity induced SREBP1 and ARC, which could be related to cognitive deficits in schizophrenia.

  1. The far-upstream element-binding protein 2 is correlated with proliferation and doxorubicin resistance in human breast cancer cell lines.

    PubMed

    Wang, Ying-Ying; Gu, Xiao-Ling; Wang, Chao; Wang, Hua; Ni, Qi-Chao; Zhang, Chun-Hui; Yu, Xia-Fei; Yang, Li-Yi; He, Zhi-Xian; Mao, Guo-Xin; Yang, Shu-Yun

    2016-07-01

    Far-upstream element (FUSE)-binding protein 2 (FBP2) was a member of single-stranded DNA-binding protein family; it played an important role in regulating transcription and post-transcription and is involved in the regulation of C-MYC gene expression in liver tumors. However, the role of FBP2 in breast cancer and its mechanism has not been studied yet. Here, we discovered that FBP2 was up-regulated in breast cancer tissues and breast cancer cell lines. Moreover, immunohistochemistry analysis demonstrated that up-regulated FBP2 was highly associated with tumor grade, Ki-67, and poor prognosis, which was an independent prognostic factor for survival of breast cancer patients. At the cellular level, we found that FBP2 was correlated with cell cycle progression by accelerating G1/S transition, and knockdown of FBP2 could weaken cell proliferation, anchorage-independent cell growth, while enhancing the sensitivity of breast cancer cells to doxorubicin. More importantly, we found that activation of PI3K/AKT pathway could phosphorylate FBP2, and then make FBP2 shuttle from cytoplasm into the nucleus, which was the main mechanism of breast cancer cell proliferation and drug resistance. Taken together, our findings supported the notion that FBP2 might via PI3K/AKT pathway influence breast cancer progression and drug resistance, which might provide a new target for the design of anti-cancer drugs for breast cancer patients.

  2. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes.

    PubMed Central

    Zhou, J; Tang, X; Martin, G B

    1997-01-01

    In tomato, the Pto kinase confers resistance to bacterial speck disease by recognizing the expression of a corresponding avirulence gene, avrPto, in the pathogen Pseudomonas syringae pv. tomato. Using the yeast two-hybrid system, we have identified three genes, Pti4, Pti5 and Pti6, that encode proteins that physically interact with the Pto kinase. Pti4/5/6 each encode a protein with characteristics that are typical of transcription factors and are similar to the tobacco ethylene-responsive element-binding proteins (EREBPs). Using a gel mobility-shift assay, we demonstrate that, similarly to EREBPs, Pti4/5/6 specifically recognize and bind to a DNA sequence that is present in the promoter region of a large number of genes encoding 'pathogenesis-related' (PR) proteins. Expression of several PR genes and a tobacco EREBP gene is specifically enhanced upon Pto-avrPto recognition in tobacco. These observations establish a direct connection between a disease resistance gene and the specific activation of plant defense genes. PMID:9214637

  3. KorSA from the Streptomyces Integrative Element pSAM2 Is a Central Transcriptional Repressor: Target Genes and Binding Sites

    PubMed Central

    Sezonov, Guennadi; Possoz, Christophe; Friedmann, Annick; Pernodet, Jean-Luc; Guérineau, Michel

    2000-01-01

    pSAM2, a 10.9-kb mobile integrative genetic element from Streptomyces ambofaciens, possesses, as do a majority of Streptomyces conjugative plasmids, a kil-kor system associated with its transfer. The kor function of pSAM2 was attributed to the korSA gene, but its direct role remained unclear. The present study was focused on the determination of the KorSA targets. It was shown that KorSA acts as a transcriptional repressor by binding to a conserved 17-nucleotide sequence found upstream of only two genes: its own gene, korSA, and pra, a gene positively controlling pSAM2 replication, integration, and excision. A unique feature of KorSA, compared to Kor proteins from other Streptomyces conjugative plasmids, is that it does not directly regulate pSAM2 transfer. KorSA does not bind to the pSAM2 genes coding for transfer and intramycelial spreading. Through the repression of pra, KorSA is able to negatively regulate pSAM2 functions activated by Pra and, consequently, to maintain pSAM2 integrated in the chromosome. PMID:10671443

  4. KorSA from the Streptomyces integrative element pSAM2 is a central transcriptional repressor: target genes and binding sites.

    PubMed

    Sezonov, G; Possoz, C; Friedmann, A; Pernodet, J L; Guérineau, M

    2000-03-01

    pSAM2, a 10.9-kb mobile integrative genetic element from Streptomyces ambofaciens, possesses, as do a majority of Streptomyces conjugative plasmids, a kil-kor system associated with its transfer. The kor function of pSAM2 was attributed to the korSA gene, but its direct role remained unclear. The present study was focused on the determination of the KorSA targets. It was shown that KorSA acts as a transcriptional repressor by binding to a conserved 17-nucleotide sequence found upstream of only two genes: its own gene, korSA, and pra, a gene positively controlling pSAM2 replication, integration, and excision. A unique feature of KorSA, compared to Kor proteins from other Streptomyces conjugative plasmids, is that it does not directly regulate pSAM2 transfer. KorSA does not bind to the pSAM2 genes coding for transfer and intramycelial spreading. Through the repression of pra, KorSA is able to negatively regulate pSAM2 functions activated by Pra and, consequently, to maintain pSAM2 integrated in the chromosome.

  5. Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome

    PubMed Central

    2013-01-01

    Background Hereditary Hyperferritinaemia Cataract Syndrome (HHCS) is a rare autosomal dominant disease characterized by increased serum ferritin levels and early onset of bilateral cataract. The disease is caused by mutations in the Iron-Responsive Element (IRE) located in the 5′ untranslated region of L-Ferritin (FTL) mRNA, which post-transcriptionally regulates ferritin expression. Methods We describe two families presenting high serum ferritin levels and juvenile cataract with novel mutations in the L-ferritin IRE. The mutations were further characterized by in vitro functional studies. Results We have identified two novel mutations in the IRE of L-Ferritin causing HHCS: the Badalona +36C > U and the Heidelberg +52 G > C mutation. Both mutations conferred reduced binding affinity on recombinant Iron Regulatory Proteins (IPRs) in EMSA experiments. Interestingly, the Badalona +36C > U mutation was found not only in heterozygosity, as expected for an autosomal dominant disease, but also in the homozygous state in some affected subjects. Additionally we report an update of all mutations identified so far to cause HHCS. Conclusions The Badalona +36C > U and Heidelberg +52 G > C mutations within the L-ferritin IRE only mildly alter the binding capacity of the Iron Regulatory Proteins but are still causative for the disease. PMID:23421845

  6. Sterol Regulatory Element-binding Protein (SREBP) Cleavage Regulates Golgi-to-Endoplasmic Reticulum Recycling of SREBP Cleavage-activating Protein (SCAP)*

    PubMed Central

    Shao, Wei; Espenshade, Peter J.

    2014-01-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are central regulators of cellular lipogenesis. Release of membrane-bound SREBP requires SREBP cleavage-activating protein (SCAP) to escort SREBP from the endoplasmic reticulum (ER) to the Golgi for cleavage by site-1 and site-2 proteases. SCAP then recycles to the ER for additional rounds of SREBP binding and transport. Mechanisms regulating ER-to-Golgi transport of SCAP-SREBP are understood in molecular detail, but little is known about SCAP recycling. Here, we have demonstrated that SCAP Golgi-to-ER transport requires cleavage of SREBP at site-1. Reductions in SREBP cleavage lead to SCAP degradation in lysosomes, providing additional negative feedback control to the SREBP pathway. Current models suggest that SREBP plays a passive role prior to cleavage. However, we show that SREBP actively prevents premature recycling of SCAP-SREBP until initiation of SREBP cleavage. SREBP regulates SCAP in human cells and yeast, indicating that this is an ancient regulatory mechanism. PMID:24478315

  7. Intermittent hypoxic exposure during light phase induces changes in cAMP response element binding protein activity in the rat CA1 hippocampal region: water maze performance correlates.

    PubMed

    Goldbart, A; Row, B W; Kheirandish, L; Schurr, A; Gozal, E; Guo, S Z; Payne, R S; Cheng, Z; Brittian, K R; Gozal, D

    2003-01-01

    Intermittent hypoxia (IH) during sleep, a characteristic feature of sleep-disordered breathing (SDB) is associated with time-dependent apoptosis and spatial learning deficits in the adult rat. The mechanisms underlying such neurocognitive deficits remain unclear. Activation of the cAMP-response element binding protein (CREB) transcription factor mediates critical components of neuronal survival and memory consolidation in mammals. CREB phosphorylation and DNA binding, as well as the presence of apoptosis in the CA1 region of the hippocampus were examined in Sprague-Dawley male rats exposed to IH. Spatial reference task learning was assessed with the Morris water maze. IH induced significant decreases in Ser-133 phosphorylated CREB (pCREB) without changes in total CREB, starting as early as 1 h IH, peaking at 6 h-3 days, and returning toward normoxic levels by 14-30 days. Double-labeling immunohistochemistry for pCREB and Neu-N (a neuronal marker) confirmed these findings. The expression of cleaved caspase 3 (cC3) in the CA1, a marker of apoptosis, peaked at 3 days and returned to normoxic values at 14 days. Initial IH-induced impairments in spatial learning were followed by partial functional recovery starting at 14 days of IH exposure. We postulate that IH elicits time-dependent changes in CREB phosphorylation and nuclear binding that may account for decreased neuronal survival and spatial learning deficits in the adult rat. We suggest that CREB changes play an important role in the neurocognitive morbidity of SDB patients.

  8. Saturated fatty acids induce post-transcriptional regulation of HAMP mRNA via AU-rich element-binding protein, human antigen R (HuR).

    PubMed

    Lu, Sizhao; Mott, Justin L; Harrison-Findik, Duygu Dee

    2015-10-02

    Iron is implicated in fatty liver disease pathogenesis. The human hepcidin gene, HAMP, is the master switch of iron metabolism. The aim of this study is to investigate the regulation of HAMP expression by fatty acids in HepG2 cells. For these studies, both saturated fatty acids (palmitic acid (PA) and stearic acid (SA)) and unsaturated fatty acid (oleic acid (OA)) were used. PA and, to a lesser extent, SA, but not OA, up-regulated HAMP mRNA levels, as determined by real-time PCR. To understand whether PA regulates HAMP mRNA at the transcriptional or post-transcriptional level, the transcription inhibitor actinomycin D was employed. PA-mediated induction of HAMP mRNA expression was not blocked by actinomycin D. Furthermore, PA activated HAMP 3'-UTR, but not promoter, activity, as shown by reporter assays. HAMP 3'-UTR harbors a single AU-rich element (ARE). Mutation of this ARE abolished the effect of PA, suggesting the involvement of ARE-binding proteins. The ARE-binding protein human antigen R (HuR) stabilizes mRNA through direct interaction with AREs on 3'-UTR. HuR is regulated by phosphorylation-mediated nucleo-cytoplasmic shuttling. PA activated this process. The binding of HuR to HAMP mRNA was also induced by PA in HepG2 cells. Silencing of HuR by siRNA abolished PA-mediated up-regulation of HAMP mRNA levels. PKC is known to phosphorylate HuR. Staurosporine, a broad-spectrum PKC inhibitor, inhibited both PA-mediated translocation of HuR and induction of HAMP expression. Similarly, rottlerin, a novel class PKC inhibitor, abrogated PA-mediated up-regulation of HAMP expression. In conclusion, lipids mediate post-transcriptional regulation of HAMP throughPKC- and HuR-dependent mechanisms.

  9. Tissue-specific response of carbohydrate-responsive element binding protein (ChREBP) to mammalian hibernation in 13-lined ground squirrels.

    PubMed

    Logan, Samantha M; Storey, Kenneth B

    2016-10-01

    Mammalian hibernation is characterized by a general suppression of energy expensive processes and a switch to lipid oxidation as the primary fuel source. Glucose-responsive carbohydrate responsive element binding protein (ChREBP) has yet to be studied in hibernating organisms, which prepare for the cold winter months by feeding until they exhibit an obesity-like state that is accompanied by naturally-induced and completely reversible insulin resistance. Studying ChREBP expression and activity in the hibernating 13-lined ground squirrel is important to better understand the molecular mechanisms that regulate energy metabolism under cellular stress. Immunoblotting was used to determine the relative expression level and subcellular localization of ChREBP, as well as serine phosphorylation at 95 kDa, comparing euthermic and late torpid ground squirrel liver, kidney, heart and muscle. DNA-binding ELISAs and RT-PCR were used to explore ChREBP transcriptional activity during cold stress. ChREBP activity seemed generally suppressed in liver and kidney. During torpor, ChREBP total protein levels decreased to 44% of EC in liver, phosphoserine levels increased 2.1-fold of EC in kidney, and downstream Fasn/Pkl transcript levels decreased to <60% of EC in liver. By contrast, ChREBP activity generally increased during torpor in cardiac and skeletal muscle, where ChREBP total protein levels increased over 1.5-fold and 5-fold of EC in muscle and heart, respectively; where DNA-binding increased by ∼2-fold of EC in muscle; and where Fasn transcript levels increased over 3-fold and 7-fold in both muscle and heart, respectively. In summary, ChREBP has a tissue-specific role in regulating energy metabolism during hibernation.

  10. Thy-1 mRNA destabilization by norepinephrine requires a 3′ UTR cAMP responsive decay element and involves RNA binding proteins1

    PubMed Central

    LaJevic, Melissa D.; Koduvayur, Sujatha P.; Caffrey, Veronique; Cohen, Rhonna L.; Chambers, Donald A.

    2010-01-01

    Thy-1 is a cell surface protein important in immunologic and neurologic processes, including T cell activation and proliferation, and neuronal outgrowth. In murine thymocytes, Thy-1 is downregulated in response to norepinephrine (NE) through posttranscriptional destabilization of its mRNA mediated by βAR/AC/cAMP/PKA signaling. In this study we investigated factors involved in NE/cAMP mediated Thy-1 mRNA destabilization in S49 thymoma cells, and identified a region containing two copies of the AUUUA regulatory element (ARE), a motif commonly associated with mRNA decay, in the Thy-1 mRNA 3′ UTR. Insertion of the Thy-1 ARE region into a reporter gene, resulted in cAMP induced destabilization of the reporter gene mRNA. RNA-protein binding studies revealed multiple Thy-1 ARE binding proteins, including AUF1, HuR, and TIAR. RNA silencing of HuR enhanced cAMP mediated downregulation of Thy-1 mRNA, in contrast, silencing AUF1 had no effect. Immunoblotting revealed multiple proteins phosphorylated by PKA as a result of NE or cAMP signaling. These results reveal that the machinery of NE/cAMP modulation of Thy-1 mRNA decay involves a cAMP responsive ARE in its 3′ UTR and multiple site specific ARE binding proteins. These findings add to our knowledge of Thy-1 mRNA regulation and provide insight into the regulation of ARE containing mRNAs, which impacts stress-related immunosuppression. PMID:20412850

  11. Honokiol reverses alcoholic fatty liver by inhibiting the maturation of sterol regulatory element binding protein-1c and the expression of its downstream lipogenesis genes

    SciTech Connect

    Yin Huquan; Kim, Youn-Chul; Chung, Young-Suk; Kim, Young-Chul; Shin, Young-Kee; Lee, Byung-Hoon

    2009-04-01

    Ethanol induces hepatic steatosis via a complex mechanism that is not well understood. Among the variety of molecules that have been proposed to participate in this mechanism, the sterol regulatory element (SRE)-binding proteins (SREBPs) have been identified as attractive targets for therapeutic intervention. In the present study, we evaluated the effects of honokiol on alcoholic steatosis and investigated its possible effect on the inhibition of SREBP-1c maturation. In in vitro studies, H4IIEC3 rat hepatoma cells developed increased lipid droplets when exposed to ethanol, but co-treatment with honokiol reversed this effect. Honokiol inhibited the maturation of SREBP-1c and its translocation to the nucleus, the binding of nSREBP-1c to SRE or SRE-related sequences of its lipogenic target genes, and the expression of genes for fatty acid synthesis. In contrast, magnolol, a structural isomer of honokiol, had no effect on nSREBP-1c levels. Male Wistar rats fed with a standard Lieber-DeCarli ethanol diet for 4 weeks exhibited increased hepatic triglyceride and decreased hepatic glutathione levels, with concomitantly increased serum alanine aminotransferase and TNF-{alpha} levels. Daily administration of honokiol (10 mg/kg body weight) by gavage during the final 2 weeks of ethanol treatment completely reversed these effects on hepatotoxicity markers, including hepatic triglyceride, hepatic glutathione, and serum TNF-{alpha}, with efficacious abrogation of fat accumulation in the liver. Inhibition of SREBP-1c protein maturation and of the expression of Srebf1c and its target genes for hepatic lipogenesis were also observed in vivo. A chromatin immunoprecipitation assay demonstrated inhibition of specific binding of SREBP-1c to the Fas promoter by honokiol in vivo. These results demonstrate that honokiol has the potential to ameliorate alcoholic steatosis by blocking fatty acid synthesis regulated by SREBP-1c.

  12. Poly(A) Tail Recognition by a Viral RNA Element Through Assembly of a Triple Helix

    SciTech Connect

    M Mitton-Fry; S DeGregorio; J Wang; T Steitz; J Steitz

    2011-12-31

    Kaposi's sarcoma-associated herpesvirus produces a highly abundant, nuclear noncoding RNA, polyadenylated nuclear (PAN) RNA, which contains an element that prevents its decay. The 79-nucleotide expression and nuclear retention element (ENE) was proposed to adopt a secondary structure like that of a box H/ACA small nucleolar RNA (snoRNA), with a U-rich internal loop that hybridizes to and protects the PAN RNA poly(A) tail. The crystal structure of a complex between the 40-nucleotide ENE core and oligo(A){sub 9} RNA at 2.5 angstrom resolution reveals that unlike snoRNAs, the U-rich loop of the ENE engages its target through formation of a major-groove triple helix. A-minor interactions extend the binding interface. Deadenylation assays confirm the functional importance of the triple helix. Thus, the ENE acts as an intramolecular RNA clamp, sequestering the PAN poly(A) tail and preventing the initiation of RNA decay.

  13. Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements.

    PubMed

    Åsman, Anna K M; Fogelqvist, Johan; Vetukuri, Ramesh R; Dixelius, Christina

    2016-08-01

    Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Recent evidence has suggested that pathogen-derived sRNAs can modulate the expression of plant defense genes. Here, we studied the sRNA classes and functions associated with Phytophthora infestans Argonaute (Ago) proteins. sRNAs were co-immunoprecipitated with three PiAgo proteins and deep sequenced. Twenty- to twenty-two-nucleotide (nt) sRNAs were identified as the main interaction partners of PiAgo1 and high enrichment of 24-26-nt sRNAs was seen in the PiAgo4-bound sample. The frequencies and sizes of transposable element (TE)-derived sRNAs in the different PiAgo libraries suggested diversified roles of the PiAgo proteins in the control of different TE classes. We further provide evidence for the involvement of PiAgo1 in the P. infestans microRNA (miRNA) pathway. Protein-coding genes are probably regulated by the shared action of PiAgo1 and PiAgo5, as demonstrated by analysis of differential expression. An abundance of sRNAs from genes encoding host cell death-inducing Crinkler (CRN) effectors was bound to PiAgo1, implicating this protein in the regulation of the expanded CRN gene family. The data suggest that PiAgo1 plays an essential role in gene regulation and that at least two RNA silencing pathways regulate TEs in the plant-pathogenic oomycete P. infestans.

  14. Transcriptional regulation of the mouse alpha A-crystallin gene: activation dependent on a cyclic AMP-responsive element (DE1/CRE) and a Pax-6-binding site.

    PubMed Central

    Cvekl, A; Kashanchi, F; Sax, C M; Brady, J N; Piatigorsky, J

    1995-01-01

    Two cis-acting promoter elements (-108 to -100 and -49 to -33) of the mouse alpha A-crystallin gene, which is highly expressed in the ocular lens, were studied. Here we show that DE1 (-108 to -100; 5'TGACGGTG3'), which resembles the consensus cyclic AMP (cAMP)-responsive element sequence (CRE; 5'TGACGT[A/C][A/G]3'), behaves like a functional CRE site. Transfection experiments and electrophoretic mobility shift assays (EMSAs) using site-specific mutations correlated a loss of function with deviations from the CRE consensus sequence. Results of EMSAs in the presence of antisera against CREB, delta CREB, and CREM were consistent with the binding of CREB-like proteins to the DE1 sequence. Stimulation of alpha A-crystallin promoter activity via 8-bromo-cAMP, forskolin, or human T-cell leukemia virus type I Tax1 in transfections and reduction of activity of this site in cell-free transcription tests by competition with the somatostatin CRE supported the idea that DE1 is a functional CRE. Finally, Pax-6, a member of the paired-box family of transcription factors, activated the mouse alpha A-crystallin promoter in cotransfected COP-8 fibroblasts and bound to the -59 to -29 promoter sequence in EMSAs. These data provide evidence for a synergistic role of Pax-6 and CREB-like proteins for high expression of the mouse alpha A-crystallin gene in the lens. PMID:7823934

  15. A nuclear factor that binds purine-rich, single-stranded oligonucleotides derived from S1-sensitive elements upstream of the CFTR gene and the MUC1 gene.

    PubMed Central

    Hollingsworth, M A; Closken, C; Harris, A; McDonald, C D; Pahwa, G S; Maher, L J

    1994-01-01

    We have identified two regions of non-random purine/pyrimidine strand asymmetry that were nearly identical in sequence in the 5' flanking (promoter) regions of the human cystic fibrosis transmembrane conductance regulator (CFTR) gene and the human MUC1 gene. These regions contain perfect mirror repeat elements, a sequence motif previously found to be associated with the formation of H-DNA conformations. In this report we demonstrate that a single-stranded non-B DNA conformation exists at low pH in supercoiled plasmids containing the similar mirror repeat elements, and that S1 nuclease digestion maps the single-stranded region to the position of the mirror repeats. In addition, we identify a nuclear protein of approximately 27 kD that binds to single-stranded oligonucleotides corresponding to the purine-rich strand of this region, but not to the pyrimidine-rich strands or to double-stranded oligonucleotides with corresponding purine/pyrimidine strand asymmetry. Images PMID:7513081

  16. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels.

    PubMed

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L

    2014-01-23

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail "neck", are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the "outer ion" site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies, shows that this site forms a previously unknown determinant of CaV high-affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily.

  17. Structure of a prokaryotic sodium channel pore reveals essential gating elements and an outer ion binding site common to eukaryotic channels

    PubMed Central

    Shaya, David; Findeisen, Felix; Abderemane-Ali, Fayal; Arrigoni, Cristina; Wong, Stephanie; Nurva, Shailika Reddy; Loussouarn, Gildas; Minor, Daniel L.

    2013-01-01

    Voltage-gated sodium channels (NaVs) are central elements of cellular excitation. Notwithstanding advances from recent bacterial NaV (BacNaV) structures, key questions about gating and ion selectivity remain. Here, we present a closed conformation of NaVAe1p, a pore-only BacNaV derived from NaVAe1, a BacNaV from the arsenite oxidizer Alkalilimnicola ehrlichei found in Mono Lake, California, that provides insight into both fundamental properties. The structure reveals a pore domain in which the pore-lining S6 helix connects to a helical cytoplasmic tail. Electrophysiological studies of full-length BacNaVs show that two elements defined by the NaVAe1p structure, an S6 activation gate position and the cytoplasmic tail ‘neck’, are central to BacNaV gating. The structure also reveals the selectivity filter ion entry site, termed the ‘outer ion’ site. Comparison with mammalian voltage-gated calcium channel (CaV) selectivity filters, together with functional studies shows that this site forms a previously unknown determinant of CaV high affinity calcium binding. Our findings underscore commonalities between BacNaVs and eukaryotic voltage-gated channels and provide a framework for understanding gating and ion permeation in this superfamily. PMID:24120938

  18. A mammary cell-specific enhancer in mouse mammary tumor virus DNA is composed of multiple regulatory elements including binding sites for CTF/NFI and a novel transcription factor, mammary cell-activating factor.

    PubMed Central

    Mink, S; Härtig, E; Jennewein, P; Doppler, W; Cato, A C

    1992-01-01

    Mouse mammary tumor virus (MMTV) is a milk-transmitted retrovirus involved in the neoplastic transformation of mouse mammary gland cells. The expression of this virus is regulated by mammary cell type-specific factors, steroid hormones, and polypeptide growth factors. Sequences for mammary cell-specific expression are located in an enhancer element in the extreme 5' end of the long terminal repeat region of this virus. This enhancer, when cloned in front of the herpes simplex thymidine kinase promoter, endows the promoter with mammary cell-specific response. Using functional and DNA-protein-binding studies with constructs mutated in the MMTV long terminal repeat enhancer, we have identified two main regulatory elements necessary for the mammary cell-specific response. These elements consist of binding sites for a transcription factor in the family of CTF/NFI proteins and the transcription factor mammary cell-activating factor (MAF) that recognizes the sequence G Pu Pu G C/G A A G G/T. Combinations of CTF/NFI- and MAF-binding sites or multiple copies of either one of these binding sites but not solitary binding sites mediate mammary cell-specific expression. The functional activities of these two regulatory elements are enhanced by another factor that binds to the core sequence ACAAAG. Interdigitated binding sites for CTF/NFI, MAF, and/or the ACAAAG factor are also found in the 5' upstream regions of genes encoding whey milk proteins from different species. These findings suggest that mammary cell-specific regulation is achieved by a concerted action of factors binding to multiple regulatory sites. Images PMID:1328867

  19. Analysis in Cos-1 cells of processing and polyadenylation signals by using derivatives of the herpes simplex virus type 1 thymidine kinase gene.

    PubMed Central

    Cole, C N; Santangelo, G M

    1983-01-01

    Bal31 nuclease was used to resect the herpes simplex virus type 1 thymidine kinase (tk) gene from its 3' end, and a plasmid, pTK206, was isolated that lacked the processing and polyadenylation signals normally found at the 3' end of the gene. The wild-type gene, pTK2, and pTK206 were each transferred to pSV010, a plasmid containing the simian virus 40 (SV40) origin of DNA replication, allowing replication and analysis of the patterns of transcription in Cos-1 cells. Fragments of DNA containing processing and polyadenylation signals from SV40 and polyoma virus were inserted into the 3' end of the resected tk gene, pTK206. We found that tk gene expression requires a processing and polyadenylation signal, that signals from SV40 and polyoma virus could substitute for the herpes simplex virus tk signal, and that considerable differences in the levels of tk mRNA were present in Cos-1 cells transfected by these gene constructs. In addition, tk gene expression was restored to a low level after the insertion of an 88-base-pair fragment from the middle of the SV40 early region. Processing and polyadenylation do not occur in the vicinity of this fragment in SV40, even though it contains the hexanucleotide 5'-AAUAAA-3'. Images PMID:6300661

  20. Temporal expression of the human alcohol dehydrogenase gene family during liver development correlates with differential promoter activation by hepatocyte nuclear factor 1, CCAAT/enhancer-binding protein alpha, liver activator protein, and D-element-binding protein.

    PubMed Central

    van Ooij, C; Snyder, R C; Paeper, B W; Duester, G

    1992-01-01

    The human class I alcohol dehydrogenase (ADH) gene family consists of ADH1, ADH2, and ADH3, which are sequentially activated in early fetal, late fetal, and postnatal liver, respectively. Analysis of ADH promoters revealed differential activation by several factors previously shown to control liver transcription. In cotransfection assays, the ADH1 promoter, but not the ADH2 or ADH3 promoter, was shown to respond to hepatocyte nuclear factor 1 (HNF-1), which has previously been shown to regulate transcription in early liver development. The ADH2 promoter, but not the ADH1 or ADH3 promoter, was shown to respond to CCAAT/enhancer-binding protein alpha (C/EBP alpha), a transcription factor particularly active during late fetal liver and early postnatal liver development. The ADH1, ADH2, and ADH3 promoters all responded to the liver transcription factors liver activator protein (LAP) and D-element-binding protein (DBP), which are most active in postnatal liver. For all three promoters, the activation by LAP or DBP was higher than that seen by HNF-1 or C/EBP alpha, and a significant synergism between C/EBP alpha and LAP was noticed for the ADH2 and ADH3 promoters when both factors were simultaneously cotransfected. A hierarchy of ADH promoter responsiveness to C/EBP alpha and LAP homo- and heterodimers is suggested. In all three ADH genes, LAP bound to the same four sites previously reported for C/EBP alpha (i.e., -160, -120, -40, and -20 bp), but DBP bound strongly only to the site located at -40 bp relative to the transcriptional start. Mutational analysis of ADH2 indicated that the -40 bp element accounts for most of the promoter regulation by the bZIP factors analyzed. These studies suggest that HNF-1 and C/EBP alpha help establish ADH gene family transcription in fetal liver and that LAP and DBP help maintain high-level ADH gene family transcription in postnatal liver. Images PMID:1620113

  1. Fibrotic lung fibroblasts show blunted inhibition by cAMP due to deficient cAMP response element-binding protein phosphorylation.

    PubMed

    Liu, Xiaoqiu; Sun, Shu Qiang; Ostrom, Rennolds S

    2005-11-01

    Pulmonary fibroblasts regulate extracellular matrix production and degradation; thus, they are critical for maintenance of lung structure, function, and repair. In pulmonary fibrosis, fibroblasts produce excess collagen and form fibrotic foci that eventually impair lung function, but the mechanisms responsible for these alterations are not known. Receptors coupled to the stimulation of cAMP production can inhibit activation of fibroblasts and thereby are antifibrotic. To test whether this signaling pathway is altered in pulmonary fibrosis, we compared the ability of normal adult human pulmonary fibroblasts to generate and respond to cAMP with that of cells isolated from lungs with idiopathic pulmonary fibrosis. Serum- and transforming growth factor (TGF)-beta-stimulated cell proliferation was inhibited approximately 50% by forskolin and approximately 100% by prostaglandin (PG) E(2) in the normal cells but substantially less in the diseased cells. Collagen synthesis was also inhibited >50% by the same drugs in the normal cells but significantly less so in the diseased cells, despite responding with similar increases in cAMP production. Although expression of protein kinase A (PKA) and cAMP-stimulated PKA activity were similar in both the normal and diseased cell types, forskolin- and PGE(2)-stimulated cAMP response element-binding protein (CREB) phosphorylation was decreased in the diseased cell lines compared with the normal cells. cAMP-mediated activation and TGF-beta-mediated inhibition of CREB DNA binding was also diminished in the diseased cells. Thus, pulmonary fibroblasts derived from patients with pulmonary fibrosis are refractory to the inhibition by cAMP due to altered activity of components distal to the activity of PKA, in particular the phosphorylation of CREB.

  2. Sp1 Upregulates cAMP Response Element-Binding Protein Expression During Retinoic Acid-Induced Mucous Differentiation of Normal Human Bronchial Epithelial Cells

    PubMed Central

    Hong, Jeong Soo; Kim, Seung-Wook; Koo, Ja Seok

    2010-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) response-element (CRE) binding protein (CREB) is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA rapidly activates CREB without using retinoic acid (RA) receptors RAR and RXR in normal human tracheobronchial epithelial (NHTBE) cells. However, little is known about RA’s role in the physiologic regulation of CREB expression in the early mucous differentiation of NHTBE cells. Here, we report that RA upregulated CREB gene expression and that using 5′-serial deletion promoter analysis and mutagenesis analyses, two Sp1-binding sites located at nucleotides −217 and −150, which flank the transcription initiation site, were essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nucleotides −119 and −98 contributed to basal promoter activity. Interestingly, RA also upregulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using small interfering RNA (siRNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA upregulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in upregulating human CREB gene expression. This result implies that cooperation of these two transcription factors play a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells. PMID:17937658

  3. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  4. Potassium Acts as a GTPase-Activating Element on Each Nucleotide-Binding Domain of the Essential Bacillus subtilis EngA

    PubMed Central

    Foucher, Anne-Emmanuelle; Reiser, Jean-Baptiste; Ebel, Christine; Housset, Dominique; Jault, Jean-Michel

    2012-01-01

    EngA proteins form a unique family of bacterial GTPases with two GTP-binding domains in tandem, namely GD1 and GD2, followed by a KH (K-homology) domain. They have been shown to interact with the bacterial ribosome and to be involved in its biogenesis. Most prokaryotic EngA possess a high GTPase activity in contrast to eukaryotic GTPases that act mainly as molecular switches. Here, we have purified and characterized the GTPase activity of the Bacillus subtilis EngA and two shortened EngA variants that only contain GD1 or GD2-KH. Interestingly, the GTPase activity of GD1 alone is similar to that of the whole EngA, whereas GD2-KH has a 150-fold lower GTPase activity. At physiological concentration, potassium strongly stimulates the GTPase activity of each protein construct. Interestingly, it affects neither the affinities for nucleotides nor the monomeric status of EngA or the GD1 domain. Thus, potassium likely acts as a chemical GTPase-activating element as proposed for another bacterial GTPase like MnmE. However, unlike MnmE, potassium does not promote dimerization of EngA. In addition, we solved two crystal structures of full-length EngA. One of them contained for the first time a GTP-like analogue bound to GD2 while GD1 was free. Surprisingly, its overall fold was similar to a previously solved structure with GDP bound to both sites. Our data indicate that a significant structural change must occur upon K+ binding to GD2, and a comparison with T. maritima EngA and MnmE structures allowed us to propose a model explaining the chemical basis for the different GTPase activities of GD1 and GD2. PMID:23056455

  5. The DNA replication-related element (DRE)/DRE-binding factor system is a transcriptional regulator of the Drosophila E2F gene.

    PubMed

    Sawado, T; Hirose, F; Takahashi, Y; Sasaki, T; Shinomiya, T; Sakaguchi, K; Matsukage, A; Yamaguchi, M

    1998-10-02

    Two mRNA species were observed for the Drosophila E2F (dE2F) gene, differing with regard to the first exons (exon 1-a and exon 1-b), which were expressed differently during development. A single transcription initiation site for mRNA containing exon 1-b was mapped by primer extension analysis and numbered +1. We found three tandemly aligned sequences, similar to the DNA replication-related element (DRE; 5'-TATCGATA), which is commonly required for transcription of genes related to DNA replication and cell proliferation, in the region upstream of this site. Band mobility shift analyses using oligonucleotides containing the DRE-related sequences with or without various base substitutions revealed that two out of three DRE-related sequences are especially important for binding to the DRE-binding factor (DREF). On footprinting analysis with Kc cell nuclear extracts and a glutathione S-transferase fusion protein with the N-terminal fragment (1-125 amino acid residues) of DREF, all three DRE-related sequences were found to be protected. Transient luciferase expression assays in Kc cells demonstrated that the region containing the three DRE-related sequences is required for high promoter activity. We have established transgenic lines of Drosophila in which ectopic expression of DREF was targeted to the eye imaginal disc cells. Overexpression of DREF in eye imaginal disc cells enhanced the promoter activity of dE2F. The obtained results indicate that the DRE/DREF system activates transcription of the dE2F gene.

  6. Molecular analysis of the beta-glucuronidase gene: novel mutations in mucopolysaccharidosis type VII and heterogeneity of the polyadenylation region.

    PubMed

    Vervoort, R; Buist, N R; Kleijer, W J; Wevers, R; Fryns, J P; Liebaers, I; Lissens, W

    1997-04-01

    We used polymerase chain reaction (PCR)/single-strand conformation polymorphism analysis and direct sequencing of the coding region of the beta-glucuronidase cDNA and gene to detect mutations causing beta-glucuronidase enzyme deficiency in five MPS VII patients. Four patients presented with hydrops fetalis, one with an early infantile form of the disease. Genetic heterogeneity of MPS VII alleles was further confirmed in this study. Recurrent mutations were observed in patients of related origin. Previously unknown alleles detected were RII0X, F361delta9, 1270 + 1G-->A, S52F and 1480delta4. Reverse transcription/PCR analysis of the 1270 + 1G-->A messenger showed aberrant splicing: inclusion of intron 7 or skipping of exons 6-7 and 9. Messenger RNA transcribed from the R110X and 1480delta4 alleles was unstable. We detected a 2154A/G change in the 3' non-coding region of the gene, in the neighbourhood of the two consensus polyadenylation sites. 3'-Rapid amplification of cDNA ends/PCR of fibroblast cDNA revealed equal usage of two alternative polyadenylation sites. The 2154A/G substitution did not influence adenylation-site choice, nor the amount of stable messenger produced. The finding that 2 out of 30 normal controls carried the 2154G allele indicated that the 2154A/G substitution is a harmless polymorphism. The S52F and F361delta9 cDNAs were constructed in vitro and used to transfect COS cells transiently. Both mutations completely abolished enzyme activity.

  7. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem.

    PubMed

    Zhao, Kai; Shen, Xinjie; Yuan, Huazhao; Liu, Yun; Liao, Xiong; Wang, Qi; Liu, Linlin; Li, Fang; Li, Tianhong

    2013-09-01

    DREB2 (dehydration-responsive element-binding factor 2)-type transcription factors play a critical role in the stress-related regulation network in plants. In this study, we isolated and characterized a DREB2 homolog from Malus sieversii Roem., designated MsDREB2C (GenBank accession No. JQ790526). MsDREB2C localized to the nucleus and transactivated reporter genes in yeast strain YGR-2. Quantitative real-time PCR analysis demonstrated that MsDREB2C was constitutively expressed and significantly induced by drought, salt, cold, heat and ABA. Transgenic Arabidopsis plants overexpressing MsDREB2C exhibited increased root and leaf growth and proline levels, and reduced water loss and stomatal aperture. The transcriptional level of genes that function downstream of dehydration-responsive elements was greater in the transgenic Arabidopsis plants than in wild-type plants under control and abiotic stress conditions. Furthermore, constitutive expression of MsDREB2C repressed the expression of pathogenesis-related (PR) genes and the activity of peroxidase in transgenic plants under control and pathogenic conditions. As a result, transgenic plants were more tolerant to drought, heat and cold, but more sensitive to Pst DC3000 (Pseudomonas syringae pv . tomato DC3000) infection than control plants. β-Glucuronidase expression analysis of the MsDREB2C promoter in transgenic tobacco plants showed that MsDREB2C was mainly expressed in the vascular tissues and seeds. Deletion analysis identified the regulatory regions responsible for the plant's response to drought (-831 to -680), ABA (-831 to -680 and -335 to -148), salt (-831 to -335), cold (-1,317 to -831 and -335 to -148) and heat (-335 to -148).

  8. Amino Acid Change in the Carbohydrate Response Element Binding Protein is associated with lower triglycerides and myocardial infarction incidence depending on level of adherence to the Mediterranean diet in the PREDIMED trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variant (rs3812316, C771G, and Gln241His) in the MLXIPL (Max-like protein X interacting protein-like) gene encoding the carbohydrate response element binding protein has been associated with lower triglycerides. However, its association with cardiovascular diseases and gene-diet interactions modul...

  9. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1.

    PubMed

    Nambiar, Dhanya K; Deep, Gagan; Singh, Rana P; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-30

    Prostate cancer (PCA) kills thousands of men every year, demanding additional approaches to better understand and target this malignancy. Recently, critical role of aberrant lipogenesis is highlighted in prostate carcinogenesis, offering a unique opportunity to target it to reduce PCA. Here, we evaluated efficacy and associated mechanisms of silibinin in inhibiting lipid metabolism in PCA cells. At physiologically achievable levels in human, silibinin strongly reduced lipid and cholesterol accumulation specifically in human PCA cells but not in non-neoplastic prostate epithelial PWR-1E cells. Silibinin also decreased nuclear protein levels of sterol regulatory element binding protein 1 and 2 (SREBP1/2) and their target genes only in PCA cells. Mechanistically, silibinin activated AMPK, thereby increasing SREBP1 phosphorylation and inhibiting its nuclear translocation; AMPK inhibition reversed silibinin-mediated decrease in nuclear SREBP1 and lipid accumulation. Additionally, specific SREBP inhibitor fatostatin and stable overexpression of SREBP1 further confirmed the central role of SREBP1 in silibinin-mediated inhibition of PCA cell proliferation and lipid accumulation and cell cycle arrest. Importantly, silibinin also inhibited synthetic androgen R1881-induced lipid accumulation and completely abrogated the development of androgen-independent LNCaP cell clones via targeting SREBP1/2. Together, these mechanistic studies suggest that silibinin would be effective against PCA by targeting critical aberrant lipogenesis.

  10. Effects of retinoic acid and hydrogen peroxide on sterol regulatory element-binding protein-1a activation during adipogenic differentiation of 3T3-L1 cells.

    PubMed

    Abd Eldaim, Mabrouk A; Okamatsu-Ogura, Yuko; Terao, Akira; Kimura, Kazuhiro

    2010-11-01

    Both retinoic acid (RA) and oxidative stress (H2O2) increased transcription and cleavage of membrane-bound sterol regulatory element-binding protein (SREBP)-1, leading to enhanced transcription of fatty acid synthase (FAS) in hepatoma cells. On the other hand, RA and H2O2 decreased and increased lipogenesis in adipocytes, respectively, although roles of SREBP-1 activation in these effects remain to be elucidated. To elucidate its involvement, we examined the activation of SREBP-la, expression of FAS genes and lipid accumulation in 3T3-L1 cells in the presence of RA and/or H2O2. RA (1 microM) treatment suppressed expression of SREBP-1a and FAS genes and lipid accumulation. H2O2 (2 microM) treatment induced increased cleavage of SREBP-1a, without affecting amounts of SREBP-1a mRNA and precursor protein, and enhanced expression of FAS gene and lipid accumulation. Increased cleavage of SREBP-1a by H2O2 was also observed even in the presence of RA. These results suggest that H2O2, enhances a cleavage of SREBP-1a precursor protein, which independently occurs with the RA suppression of SREBP-1a gene expression, and that RA itself has no role in the SREBP-1a activation in adipocytes.

  11. Prophylactic Melatonin Attenuates Isoflurane-Induced Cognitive Impairment in Aged Rats through Hippocampal Melatonin Receptor 2 - cAMP Response Element Binding Signalling.

    PubMed

    Liu, Yajie; Ni, Cheng; Li, Zhengqian; Yang, Ning; Zhou, Yang; Rong, Xiaoying; Qian, Min; Chui, Dehua; Guo, Xiangyang

    2017-03-01

    Melatonin exerts many physiological effects via melatonin receptors, among which the melatonin-2 receptor (MT2 ) plays a critical role in circadian rhythm disorders, Alzheimer's disease and other neurological disorders. A melatonin replacement strategy has been tested previously, and MT2 was a critical target during the process. cAMP response element binding (CREB) is an essential transcription factor for memory formation and could be involved in MT2 signalling. Therefore, the present study was designed to investigate the effects of prophylactic melatonin on inhaled anaesthetic isoflurane-induced cognitive impairment, and to determine whether the protective effects of melatonin are dependent on MT2 and downstream CREB signalling in the hippocampus of aged rats. The results showed that prophylactic melatonin attenuated isoflurane-induced decreases in plasma/hippocampal melatonin levels and cognitive impairment in aged rats. Furthermore, 4P-PDOT, a selective MT2 antagonist, blocked the protective effects of melatonin on isoflurane-induced decreases in both hippocampal MT2 expression and downstream CREB phosphorylation. And 4P-PDOT blocked the attenuation of melatonin on isoflurane-induced memory impairment. Collectively, the results suggest that the protective effects of prophylactic melatonin are dependent on hippocampal MT2 -CREB signalling, which could be a potential therapeutic target for anaesthetic-induced cognitive impairment.

  12. Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae.

    PubMed

    Honjo, Ken; Furukubo-Tokunaga, Katsuo

    2005-08-31

    The fruit fly Drosophila melanogaster has been successfully used as a model animal for the study of the genetic and molecular mechanisms of learning and memory. Although most of the Drosophila learning studies have used the adult fly, the relative complexity of its neural network hinders cellular and molecular studies at high resolution. In contrast, the Drosophila larva has a simple brain with uniquely identifiable neural networks, providing an opportunity of an attractive alternative system for elucidation of underlying mechanisms involved in learning and memory. In this paper, we describe a novel paradigm of larval associative learning with a single odor and a positive gustatory reinforcer, sucrose. Mutant analyses have suggested importance of cAMP signaling and potassium channel activities in larval learning as has been demonstrated with the adult fly. Intriguingly, larval memory produced by the appetitive conditioning lasts medium term and depends on both amnesiac and cAMP response element-binding protein (CREB). A significant part of memory was disrupted at very early phase by CREB blockade without affecting immediate learning performance. Moreover, we also show that synaptic output of larval mushroom body neurons is required for retrieval but not for acquisition and retention of the larval memory, including the CREB-dependent component.

  13. The gene transcription factor cyclic AMP-responsive element binding protein: role in positive and negative affective states of alcohol addiction.

    PubMed

    Pandey, Subhash C

    2004-10-01

    The gene transcription factor cyclic adenosine monophosphate (cAMP)-responsive element binding (CREB) protein is a nuclear protein that regulates synaptic plasticity via modulating the expression of several (cAMP)-inducible genes. Alcohol addiction is a complex psychiatric disorder and is characterized by a compulsive and uncontrolled pattern of alcohol drinking by an individual in spite of the adverse consequences of its abuse. Ethanol produces both euphoric (reward and reinforcing) and dysphoric (negative withdrawal reactions) effects and these are most likely involved in the initiation and maintenance of alcohol use and abuse. Several neurotransmitter systems in the brain might be involved in the effects of alcohol but the exact molecular mechanisms of both the positive and negative affective states of alcohol abuse are still unclear. Recent research in molecular neurosciences using animal models have identified the role of extended amygdaloid (shell structures of nucleus accumbens [NAc] and central and medial amygdaloid nuclei) CREB signaling in positive and negative affective states of alcohol drinking behaviors. This review article highlights the current findings on the role of nucleus accumbal and amygdaloid CREB signaling in behavioral consequences of alcohol use and abuse.

  14. Rolipram stimulates angiogenesis and attenuates neuronal apoptosis through the cAMP/cAMP-responsive element binding protein pathway following ischemic stroke in rats.

    PubMed

    Hu, Shouye; Cao, Qingwen; Xu, Peng; Ji, Wenchen; Wang, Gang; Zhang, Yuelin

    2016-03-01

    Rolipram, a phosphodiesterase-4 inhibitor, can activate the cyclic adenosine monophosphate (cAMP)/cAMP-responsive element binding protein (CREB) pathway to facilitate functional recovery following ischemic stroke. However, to date, the effects of rolipram on angiogenesis and cerebral ischemia-induced neuronal apoptosis are yet to be fully elucidated. In this study, the aim was to reveal the effect of rolipram on the angiogenesis and neuronal apoptosis following brain cerebral ischemia. Rat models of ischemic stroke were established following transient middle cerebral artery occlusion and rolipram was administered for three, seven and 14 days. The results were examined using behavioral tests, triphenyl tetrazolium chloride staining, immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) to evaluate the effects of rolipram therapy on functional outcome, angiogenesis and apoptosis. Western blot analysis was used to show the phosphorylated- (p-)CREB protein level in the ischemic hemisphere. The rolipram treatment group exhibited a marked reduction in infarct size and modified neurological severity score compared with the vehicle group, and rolipram treatment significantly promoted the microvessel density in the ischemic boundary region and increased p-CREB protein levels in the ischemic hemisphere. Furthermore, a significant reduction in the number of TUNEL-positive cells was observed in the rolipram group compared with the vehicle group. These findings suggest that rolipram has the ability to attenuate cerebral ischemic injury, stimulate angiogenesis and reduce neuronal apoptosis though the cAMP/CREB pathway.

  15. Detection of novelty, but not memory of spatial habituation, is associated with an increase in phosphorylated cAMP response element-binding protein levels in the hippocampus.

    PubMed

    Winograd, Milena; Viola, Haydée

    2004-01-01

    There is a growing body of evidence showing that the formation of associative memories is associated with an increase in phosphorylated cAMP response element-binding protein (pCREB) levels. We recently reported increased pCREB levels in the rat hippocampus after an exploration to a novel environment. In the present work, we studied whether this increment in CREB activation is associated with the formation of memory of habituation to a novel environment or with the detection of novelty. Rats were submitted to consecutive open field sessions at 3-h intervals. Measurement of the hippocampal pCREB level, carried out 1 h after each training session, showed that (1) it did not increase when rats explored a familiar environment; (2) it did not increase after a reexposure that improves the memory of habituation; (3) it increased after a brief novel exploration unable to form memory of habituation; and (4) it increased in amnesic rats for spatial habituation. Taken as a whole, our results suggest that the elevated pCREB level after a single open field exploration is not associated with the memory formation of habituation. It is indeed associated with the detection of a novel environment.

  16. The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility

    PubMed Central

    Sillam-Dussès, David; Hanus, Robert; Poulsen, Michael; Roy, Virginie; Favier, Maryline

    2016-01-01

    Termites are among the few animals that themselves can digest the most abundant organic polymer, cellulose, into glucose. In mice and Drosophila, glucose can activate genes via the transcription factor carbohydrate-responsive element-binding protein (ChREBP) to induce glucose utilization and de novo lipogenesis. Here, we identify a termite orthologue of ChREBP and its downstream lipogenic targets, including acetyl-CoA carboxylase and fatty acid synthase. We show that all of these genes, including ChREBP, are upregulated in mature queens compared with kings, sterile workers and soldiers in eight different termite species. ChREBP is expressed in several tissues, including ovaries and fat bodies, and increases in expression in totipotent workers during their differentiation into neotenic mature queens. We further show that ChREBP is regulated by a carbohydrate diet in termite queens. Suppression of the lipogenic pathway by a pharmacological agent in queens elicits the same behavioural alterations in sterile workers as observed in queenless colonies, supporting that the ChREBP pathway partakes in the biosynthesis of semiochemicals that convey the signal of the presence of a fertile queen. Our results highlight ChREBP as a likely key factor for the regulation and signalling of queen fertility. PMID:27249798

  17. Farnesoid X receptor ligand CDCA suppresses human prostate cancer cells growth by inhibiting lipid metabolism via targeting sterol response element binding protein 1

    PubMed Central

    Liu, Nian; Zhao, Jun; Wang, Jinguo; Teng, Haolin; Fu, Yaowen; Yuan, Hang

    2016-01-01

    Aim: A wealth of studies have demonstrated that abnormal cellular lipid metabolism plays an important role in prostate cancer (PCa) development. Therefore, manipulating lipid metabolism is a potential PCa therapy strategy. In this study, our goal is to investigate the role of farnesoid X receptor (FXR) in regulating the proliferation and lipid metabolism of human PCa cells following its ligand chenodexycholic acid (CDCA) treatment. Methods: Oil Red O was used to stain lipid contents in PCa cells, and siRNA knockdown was performed to deplete FXR expression. To study the cell proliferation when treated by CDCA or FXR knockdown, cell counting kit 8 (CCK8) was adopted to evaluate tumor cell growth. Western blot was used for protein analysis. Results: Our data suggest that activation of FXR by CDCA reduces lipid accumulation and significantly inhibits cells proliferation in prostate tumor cells. Instead, CDCA treatment doesn’t affect normal prostate epithelial RWPE-1 cells growth in vitro. FXR activation decreases mRNA and protein levels of sterol regulatory element binding protein 1 (SREBP1) and some other key regulators involved in lipid metabolism. Depletion of FXR by siRNA attenuates the inhibitory effects. Conclusion: Our study indicates that activation of FXR inhibits lipid metabolism via SREBP1 pathway and further suppresses prostate tumor growth in vitro. PMID:27904713

  18. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  19. Binding of G-quadruplexes to the N-terminal Recognition Domain of the RNA Helicase Associated with AU-rich Element (RHAU)*

    PubMed Central

    Meier, Markus; Patel, Trushar R.; Booy, Evan P.; Marushchak, Oksana; Okun, Natalie; Deo, Soumya; Howard, Ryan; McEleney, Kevin; Harding, Stephen E.; Stetefeld, Jörg; McKenna, Sean A.

    2013-01-01

    Polynucleotides containing consecutive tracts of guanines can adopt an intramolecular G-quadruplex structure where multiple planar tetrads of hydrogen-bound guanines stack on top of each other. Remodeling of G-quadruplexes impacts numerous aspects of nucleotide biology including transcriptional and translational control. RNA helicase associated with AU-rich element (RHAU), a member of the ATP-dependent DEX(H/D) family of RNA helicases, has been established as a major cellular quadruplex resolvase. RHAU contains a core helicase domain responsible for ATP binding/hydrolysis/helicase activity and is flanked on either side by N- and C-terminal extensions. The N-terminal extension is required for quadruplex recognition, and we have previously demonstrated complex formation between this domain and a quadruplex from human telomerase RNA. Here we used an integrated approach that includes small angle x-ray scattering, nuclear magnetic resonance spectroscopy, circular dichroism, and dynamic light scattering methods to demonstrate the recognition of G-quadruplexes by the N-terminal domain of RHAU. Based on our results, we conclude that (i) quadruplex from the human telomerase RNA and its DNA analog both adopt a disc shape in solution, (ii) RHAU53–105 adopts a defined and extended conformation in solution, and (iii) the N-terminal domain mediates an interaction with a guanine tetrad face of quadruplexes. Together, these data form the foundation for understanding the recognition of quadruplexes by the N-terminal domain of RHAU. PMID:24151078

  20. α-Terpineol induces fatty liver in mice mediated by the AMP-activated kinase and sterol response element binding protein pathway.

    PubMed

    Choi, You-Jin; Sim, Woo-Cheol; Choi, Hyun Kyu; Lee, Seung-Ho; Lee, Byung-Hoon

    2013-05-01

    The use of herbal medicines in disease prevention and treatment is growing rapidly worldwide, without careful consideration of safety issues. α-Terpineol is a monoterpene alcoholic component of Melaleuca alternifolia, Salvia officinalis and Carthamus tinctorius that is used widely as a flavor and essential oil in food. The present study showed that α-terpineol induces fatty liver via the AMP-activated protein kinase (AMPK)-mTOR-sterol regulatory element-binding protein-1 (SREBP-1) pathway. α-Terpineol-treated hepatocytes had significantly increased neutral lipid accumulation. α-Terpineol suppressed AMPK phosphorylation, and increased p70S6 kinase (p70S6K) phosphorylation and SREBP-1 activation. It also increased luciferase activity in cells transfected with LXRE-tk-Luc and SRE-tk-Luc. Inhibition of mTOR signaling by co-treatment with rapamycin or co-transfection with dominant negative p70S6K blocked completely the effects of α-terpineol. α-Terpineol oral administration to mice for 2weeks led to decreased AMPK phosphorylation and increased SREBP-1 activation in the liver, followed by hepatic lipid accumulation. Conversely, rapamycin co-treatment reversed α-terpineol-induced SREBP-1 activation and fatty liver in mice. These data provide evidence that α-terpineol causes fatty liver, an effect mediated by the AMPK/mTOR/SREBP-1 pathway.

  1. PF1: an A-T hook-containing DNA binding protein from rice that interacts with a functionally defined d(AT)-rich element in the oat phytochrome A3 gene promoter.

    PubMed Central

    Nieto-Sotelo, J; Ichida, A; Quail, P H

    1994-01-01

    Phytochrome-imposed down-regulation of the expression of its own phytochrome A gene (PHYA) is one of the fastest light-induced effects on transcription reported in plants to date. Functional analysis of the oat PHYA3 promoter in a transfection assay has revealed two positive elements, PE1 and PE3, that function synergistically to support high levels of transcription in the absence of light. We have isolated a rice cDNA clone (pR4) encoding a DNA binding protein that binds to the AT-rich PE1 element. We tested the selectivity of the pR4-encoded DNA binding activity using linker substitution mutations of PE1 that are known to disrupt positive expression supported by the PHYA3 promoter in vivo. Binding to these linker substitution mutants was one to two orders of magnitude less than to the native PE1 element. Because this is the behavior expected of positive factor 1 (PF1), the presumptive nuclear transcription factor that acts in trans at the PE1 element in vivo, the data support the conclusion that the protein encoded by pR4 is in fact rice PF1. The PF1 polypeptide encoded by pR4 is 213 amino acids long and contains four repeats of the A-T hook DNA binding motif found in high-mobility group I-Y (HMGI-Y) proteins. In addition, PF1 contains an 11-amino acid-long hydrophobic region characteristic of HMG I proteins, its N-terminal region shows strong similarities to a pea H1 histone sequence and a short peptide sequence from wheat HMGa, and it shows a high degree of similarity along its entire length to the HMG Y-like protein encoded by a soybean cDNA, SB16. In vitro footprinting and quantitative gel shift analyses showed that PF1 binds preferentially to the PE1 element but also at lower affinity to two other AT-rich regions upstream of PE1. This feature is consistent with the binding characteristics of HMG I-Y proteins that are known to bind to most runs of six or more AT base pairs. Taken together, the properties of PF1 suggest that it belongs to a newly described

  2. The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein.

    PubMed Central

    Mengaud, J M; Horwitz, M A

    1993-01-01

    Legionella pneumophila has high iron requirements, and its intracellular growth in human monocytes is dependent on the availability of intracellular iron. To learn more about iron metabolism in L. pneumophila, we have undertaken an analysis of the iron proteins of the bacterium. We first developed an assay to identify proteins by 59Fe labelling and nondenaturing polyacrylamide gel electrophoresis. The assay revealed seven iron proteins (IPs) with apparent molecular weights of 500, 450, 250, 210, 150, 130, and 85. IP150 comigrates with superoxide dismutase activity and is probably the Fe-superoxide dismutase of L. pneumophila. IP210 is the major iron-containing protein (MICP). To identify and characterize MICP, we purified the protein and cloned and sequenced its gene. MICP is a monomeric protein containing 891 amino acids, and it has a calculated molecular mass of 98,147 Da. Analysis of the sequence revealed that MICP has two interesting homologies. First, MICP is highly homologous with the human iron-responsive element-binding protein, consistent with the hypothesis that this critical iron-regulatory molecule of humans has a prokaryotic ancestor. Second, MICP is highly homologous with the Escherichia coli aconitase and to a lesser extent with porcine heart mitochondrial aconitase. Consistent with this, we found that MICP exhibits aconitase activity. In contrast to other aconitases, MICP has a single amino acid change of a potentially deleterious type at a site thought to be critical for substrate binding and enzymatic activity. However, the specific activity of MICP is roughly comparable to that of other aconitases, suggesting that the mutation has at most a mild effect on the aconitase activity of MICP. The abundance of MICP in L. pneumophila suggests either that L. pneumophila requires high aconitase and perhaps tricarboxylic acid cycle activity or that the bacterium requires large amounts of this protein to serve an additional role in bacterial physiology. A

  3. Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice.

    PubMed

    Zhang, Qian; Bian, Ganlan; Chen, Peng; Liu, Ling; Yu, Caiyong; Liu, Fangfang; Xue, Qian; Chung, Sookja K; Song, Bing; Ju, Gong; Wang, Jian

    2016-01-01

    Inflammatory reactions are the most critical pathological processes occurring after spinal cord injury (SCI). Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. However, the mechanism of microglia/macrophage polarization to M1/M2 at the injured spinal cord environment remains unknown. In this study, wild-type (WT) or aldose reductase (AR)-knockout (KO) mice were subjected to SCI by a spinal crush injury model. The expression pattern of AR, behavior tests for locomotor activity, and lesion size were assessed at between 4 h and 28 days after SCI. We found that the expression of AR is upregulated in microglia/macrophages after SCI in WT mice. In AR KO mice, SCI led to smaller injury lesion areas compared to WT. AR deficiency-induced microglia/macrophages induce the M2 rather than the M1 response and promote locomotion recovery after SCI in mice. In the in vitro experiments, microglia cell lines (N9 or BV2) were treated with the AR inhibitor (ARI) fidarestat. AR inhibition caused 4-hydroxynonenal (HNE) accumulation, which induced the phosphorylation of the cAMP response element-binding protein (CREB) to promote Arg1 expression. KG501, the specific inhibitor of phosphorylated CREB, could cancel the upregulation of Arg1 by ARI or HNE stimulation. Our results suggest that AR works as a switch which can regulate microglia by polarizing cells to either the M1 or the M2 phenotype under M1 stimulation based on its states of activity. We suggest that inhibiting AR may be a promising therapeutic method for SCI in the future.

  4. cAMP-Response Element-Binding 3-Like Protein 1 (CREB3L1) is Required for Decidualization and its Expression is Decreased in Women with Endometriosis.

    PubMed

    Ahn, J I; Yoo, J-Y; Kim, T H; Kim, Y I; Ferguson, S D; Fazleabas, A T; Young, S L; Lessey, B A; Ahn, J Y; Lim, J M; Jeong, J-W

    2016-01-01

    Endometriosis is a major cause of infertility and pelvic pain, affecting more than 10% of reproductive-aged women. Progesterone resistance has been observed in the endometrium of women with this disease, as evidenced by alterations in progesterone-responsive gene and protein expression. cAMPResponse Element-Binding 3-like protein 1 (Creb3l1) has previously been identified as a progesterone receptor (PR) target gene in mouse uterus via high density DNA microarray analysis. However, CREB3L1 function has not been studied in the context of endometriosis and uterine biology. In this study, we validated progesterone (P4) regulation of Creb3l1 in the uteri of wild-type and progesterone receptor knockout (PRKO) mice. Furthermore, we observed that CREB3L1 expression was significantly higher in secretory phase human endometrium compared to proliferative phase and that CREB3L1 expression was significantly decreased in the endometrium of women with endometriosis. Lastly, by transfecting CREB3L1 siRNA into cultured human endometrial stromal cells (hESCs) prior to hormonal induction of in vitro decidualization, we showed that CREB3L1 is required for the decidualization process. Interestingly, phosphorylation of ERK1/2, critical factor for decidualization, was also significantly reduced in CREB3L1-silenced hESCs. It is known that hESCs from patients with endometriosis show impaired decidualization and that dysregulation of the P4-PR signaling axis is linked to a variety of endometrial diseases including infertility and endometriosis. Therefore, these results suggest that CREB3L1 is required for decidualization in mice and humans and may be linked to the pathogenesis of endometriosis in a P4-dependent manner.

  5. U18666A, an Activator of Sterol Regulatory Element Binding Protein (SREBP) Pathway Modulates Presynaptic Dopaminergic Phenotype of SH-SY5Y Neuroblastoma Cells.

    PubMed

    Schmitt, Mathieu; Dehay, Benjamin; Bezard, Erwan; Garcia-Ladona, F Javier

    2017-04-13

    The therapeutic use of statins has been associated to a reduced risk of Parkinson's disease (PD) and may hold neuroprotective potential by counteracting the degeneration of dopaminergic neurons. Transcriptional activation of the sterol regulatory element-binding protein (SREBP) is one of the major downstream signalling pathways triggered by the cholesterol-lowering effect of statins. In a previous study in neuroblastoma cells, we have shown that statins consistently induce the up-regulation of presynaptic dopaminergic proteins as well as changes of their function and these effects were accompanied by downstream activation of SREBP. In current study, we aimed to determine the direct role of SREBP pathway in the modulation of dopaminergic phenotype. We demonstrate that treatment of SH-SY5Y cells with U18666A, a SREBP activator, increases the translocation of SREBPs into the nucleus, increases expression of SREBP-1, SREBP-2 and of the presynaptic dopaminergic markers such as vesicular monoamine transporter 2, synaptic vesicle glycoprotein 2A and 2C, synaptogyrin-3 and tyrosine hydroxylase. The addition of SREBP inhibitor, PF-429242, blocks the increase of U18666A-induced expression of SREBPs and of presynaptic markers. Our results, in line with previously reported effects of statins, demonstrate that direct stimulation of SREBP translocation is associated to differentiation towards a dopaminergic-like phenotype and suggest that SREBP-mediated transcriptional activity may lead to the restoration of the presynaptic dopamine markers and may contribute to neuroprotection of dopaminergic neurons. These findings further support the potential protective role of statin in PD and shed light upon SREBP as a potential new target for developing disease-modifying treatment in PD. This article is protected by copyright. All rights reserved.

  6. The Hepatitis C Virus-induced NLRP3 Inflammasome Activates the Sterol Regulatory Element-binding Protein (SREBP) and Regulates Lipid Metabolism*

    PubMed Central

    McRae, Steven; Iqbal, Jawed; Sarkar-Dutta, Mehuli; Lane, Samantha; Nagaraj, Abhiram; Ali, Naushad; Waris, Gulam

    2016-01-01

    Hepatitis C virus (HCV) relies on host lipids and lipid droplets for replication and morphogenesis. The accumulation of lipid droplets in infected hepatocytes manifests as hepatosteatosis, a common pathology observed in chronic hepatitis C patients. One way by which HCV promotes the accumulation of intracellular lipids is through enhancing de novo lipogenesis by activating the sterol regulatory element-binding proteins (SREBPs). In general, activation of SREBPs occurs during cholesterol depletion. Interestingly, during HCV infection, the activation of SREBPs occurs under normal cholesterol levels, but the underlying mechanisms are still elusive. Our previous study has demonstrated the activation of the inflammasome complex in HCV-infected human hepatoma cells. In this study, we elucidate the potential link between chronic hepatitis C-associated inflammation and alteration of lipid homeostasis in infected cells. Our results reveal that the HCV-activated NLRP3 inflammasome is required for the up-regulation of lipogenic genes such as 3-hydroxy-3-methylglutaryl-coenzyme A synthase, fatty acid synthase, and stearoyl-CoA desaturase. Using pharmacological inhibitors and siRNA against the inflammasome components (NLRP3, apoptosis-associated speck-like protein containing a CARD, and caspase-1), we further show that the activation of the NLRP3 inflammasome plays a critical role in lipid droplet formation. NLRP3 inflammasome activation in HCV-infected cells enables caspase-1-mediated degradation of insulin-induced gene proteins. This subsequently leads to the transport of the SREBP cleavage-activating protein·SREBP complex from the endoplasmic reticulum to the Golgi, followed by proteolytic activation of SREBPs by S1P and S2P in the Golgi. Typically, inflammasome activation leads to viral clearance. Paradoxically, here we demonstrate how HCV exploits the NLRP3 inflammasome to activate SREBPs and host lipid metabolism, leading to liver disease pathogenesis associated with

  7. Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase.

    PubMed

    Deng, Xiong; Dong, Qingming; Bridges, Dave; Raghow, Rajendra; Park, Edwards A; Elam, Marshall B

    2015-12-01

    In hyperinsulinemic states including obesity and T2DM, overproduction of fatty acid and triglyceride contributes to steatosis of the liver, hyperlipidemia and hepatic insulin resistance. This effect is mediated in part by the transcriptional regulator sterol responsive element binding protein-1c (SREBP-1c), which stimulates the expression of genes involved in hepatic fatty acid and triglyceride synthesis. SREBP-1c is up regulated by insulin both via increased transcription of nascent full-length SREBP-1c and by enhanced proteolytic processing of the endoplasmic reticulum (ER)-bound precursor to yield the transcriptionally active n-terminal form, nSREBP-1c. Polyunsaturated fatty acids of marine origin (n-3 PUFA) prevent induction of SREBP-1c by insulin thereby reducing plasma and hepatic triglycerides. Despite widespread use of n-3 PUFA supplements to reduce triglycerides in clinical practice, the exact mechanisms underlying their hypotriglyceridemic effect remain elusive. Here we demonstrate that the n-3 PUFA docosahexaenoic acid (DHA; 22:5 n-3) reduces nSREBP-1c by inhibiting regulated intramembrane proteolysis (RIP) of the nascent SREBP-1c. We further show that this effect of DHA is mediated both via activation of AMP-activated protein kinase (AMPK) and by inhibition of mechanistic target of rapamycin complex 1 (mTORC1). The inhibitory effect of AMPK on SREBP-1c processing is linked to phosphorylation of serine 365 of SREBP-1c in the rat. We have defined a novel regulatory mechanism by which n-3 PUFA inhibit induction of SREBP-1c by insulin. These findings identify AMPK as an important negative regulator of hepatic lipid synthesis and as a potential therapeutic target for hyperlipidemia in obesity and T2DM.

  8. Neonatal handling and the maternal odor preference in rat pups: involvement of monoamines and cyclic AMP response element-binding protein pathway in the olfactory bulb.

    PubMed

    Raineki, C; De Souza, M A; Szawka, R E; Lutz, M L; De Vasconcellos, L F T; Sanvitto, G L; Izquierdo, I; Bevilaqua, L R; Cammarota, M; Lucion, A B

    2009-03-03

    Early-life environmental events, such as the handling procedure, can induce long-lasting alterations upon several behavioral and neuroendocrine systems. However, the changes within the pups that could be causally related to the effects in adulthood are still poorly understood. In the present study, we analyzed the effects of neonatal handling on behavioral (maternal odor preference) and biochemical (cyclic AMP response element-binding protein (CREB) phosphorylation, noradrenaline (NA), and serotonin (5-HT) levels in the olfactory bulb (OB)) parameters in 7-day-old male and female rat pups. Repeated handling (RH) abolished preference for the maternal odor in female pups compared with nonhandled (NH) and the single-handled (SH) ones, while in RH males the preference was not different than NH and SH groups. In both male and female pups, RH decreased NA activity in the OB, but 5-HT activity increased only in males. Since preference for the maternal odor involves the synergic action of NA and 5-HT in the OB, the maintenance of the behavior in RH males could be related to the increased 5-HT activity, in spite of reduction in the NA activity in the OB. RH did not alter CREB phosphorylation in the OB of both male and females compared with NH pups. The repeated handling procedure can affect the behavior of rat pups in response to the maternal odor and biochemical parameters related to the olfactory learning mechanism. Sex differences were already detected in 7-day-old pups. Although the responsiveness of the hypothalamic-pituitary-adrenal axis to stressors is reduced in the neonatal period, environmental interventions may impact behavioral and biochemical mechanisms relevant to the animal at that early age.

  9. Upregulation of Far Upstream Element-Binding Protein 1 (FUBP1) Promotes Tumor Proliferation and Tumorigenesis of Clear Cell Renal Cell Carcinoma

    PubMed Central

    Duan, Junyao; Bao, Xu; Ma, Xin; Zhang, Yu; Ni, Dong; Wang, Hanfeng; Zhang, Fan; Du, Qingshan; Fan, Yang; Chen, Jianwen; Wu, Shengpan; Li, Xintao; Gao, Yu

    2017-01-01

    Objective The far upstream element (FUSE)-binding protein 1 (FUBP1) is a transactivator of human c-myc proto-oncogene transcription, with important roles in carcinogenesis. However, the expression pattern and potential biological function of FUBP1 in clear cell renal cell carcinoma (ccRCC) is yet to be established. Methods FUBP1 expression was detected in ccRCC tissues and cell lines by real-time RT-PCR, Western blot analysis, and immunohistochemistry. The correlations of FUBP1 mRNA expression levels with clinicopathological factors were evaluated. The biological function of FUBP1 during tumor cell proliferation was studied by MTS, colony formation, and soft-agar colony formation. The effects of FUBP1 on cell cycle distribution and apoptosis were analyzed by flow cytometry. Western blot analysis was used to identify the potential mechanism of FUBP1 regulating cell cycle and apoptosis. Results The levels of FUBP1 mRNA and protein expression were upregulated in human ccRCC tissues compared with adjacent noncancerous tissues. High levels of FUBP1 mRNA expression were associated with higher tumor stage and tumor size. FUBP1 knockdown inhibited cell proliferation and induced cell cycle arrest and apoptosis. Meanwhile, the expression levels of c-myc and p21 mRNA were correlated with that of FUBP1 mRNA. Conclusions FUBP1 acts as a potential oncogene in ccRCC and may be considered as a novel biomarker or an attractive treatment target of ccRCC. PMID:28076379

  10. Association Study Between Metabolic Syndrome and rs8066560 Polymorphism in the Promoter Region of Sterol Regulatory Element-binding Transcription Factor 1 Gene in Iranian Children and Adolescents

    PubMed Central

    Miranzadeh-Mahabadi, Hajar; Emadi-Baygi, Modjtaba; Nikpour, Parvaneh; Kelishadi, Roya

    2016-01-01

    Background: Metabolic syndrome (MetS) is a prevalent disorder in pediatric age groups, described by a combination of genetic and environmental factors. Sterol regulatory element-binding transcription factor 1 (SREBF-1) induces the expression of a family of genes involved in fatty acid synthesis. Moreover, dysregulation of miR-33b, which is located within the intron 17 of the SREBF-1 gene, disrupts fatty acid oxidation and insulin signaling, thus leading to MetS. The aim of the present study was to investigate the association between SREBF-1 rs8066560 polymorphism and MetS in Iranian children and adolescents. Methods: This study includes 100 MetS and 100 normal individuals aged 9–19 years. Anthropological and biochemical indexes were measured. The -1099G > A polymorphism was genotyped by TaqMan real-time polymerase chain reaction. Results: Significant differences were observed in anthropometric measurements and lipid profiles between MetS and normal children. There were no differences in the genotype frequencies or allele distribution for -1099G > A polymorphism between MetS and control groups. High-density lipoprotein cholesterol levels were significantly higher in the MetS GG group than in the A allele carrier group. The genotype AA controls had significantly increased cholesterol and low-density lipoprotein cholesterol levels than AG genotypes. By logistic regression using different genetic models, no significant association was observed between SREBF-1 rs8066560 polymorphism and the risk of MetS. Conclusions: We conclude that the -1099G > A variant on SREBF-1 gene associated with serum lipid profiles, however, it may not be a major risk factor for the MetS in Iranian children and adolescents. PMID:27076879

  11. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats.

    PubMed

    Xu, J; Nakamura, M T; Cho, H P; Clarke, S D

    1999-08-13

    Polyunsaturated fatty acids (PUFA) coordinately suppress the transcription of a wide array of hepatic lipogenic genes including fatty acid synthase (FAS) and acetyl-CoA carboxylase. Interestingly, the over-expression of sterol regulatory element binding protein-1 (SREBP-1) induces the expression of all of the enzymes suppressed by PUFA. This observation led us to hypothesize that PUFA coordinately inhibit lipogenic gene transcription by suppressing the expression of SREBP-1. Our initial studies revealed that the SREBP-1 and FAS mRNA contents of HepG2 cells were reduced by 20:4(n-6) in a dose-dependent manner (i.e. EC(50) approximately 10 microM), whereas 18:1(n-9) had no effect. Similarly, supplementing a fat-free, high glucose diet with oils rich in (n-6) or (n-3) PUFA reduced the hepatic content of precursor and nuclear SREBP-1 60 and 85%, respectively; however, PUFA had no effect on the nuclear content of upstream stimulatory factor (USF)-1. The PUFA-dependent decrease in nuclear content of mature SREBP-1 was paralleled by a 70-90% suppression in FAS gene transcription. In contrast, dietary 18:1(n-9), i.e. triolein, had no inhibitory influence on the expression of SREBP-1 or FAS. The decrease in hepatic expression of SREBP-1 and FAS associated with PUFA ingestion was mimicked by supplementing the fat-free diet with the PPARalpha-activator, WY 14, 643. Interestingly, nuclear run-on assays revealed that changes in SREBP-1 mRNA abundance were not accompanied by changes in SREBP-1 gene transcription. These results support the concept that PUFA coordinately inhibit lipogenic gene transcription by suppressing the expression of SREBP-1 and that the PUFA regulation of SREBP-1 appears to occur at the post-transcriptional level.

  12. Heterology Expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 Gene Confers Elevated Tolerance to Chilling and Oxidative Stresses in Transgenic Tomato1

    PubMed Central

    Hsieh, Tsai-Hung; Lee, Jent-Turn; Yang, Pei-Tzu; Chiu, Li-Hui; Charng, Yee-yung; Wang, Yu-Chie; Chan, Ming-Tsair

    2002-01-01

    In an attempt to improve stress tolerance of tomato (Lycopersicon esculentum) plants, an expression vector containing an Arabidopsis C-repeat/dehydration responsive element binding factor 1 (CBF1) cDNA driven by a cauliflower mosaic virus 35S promoter was transferred into tomato plants. Transgenic expression of CBF1 was proved by northern- and western-blot analyses. The degree of chilling tolerance of transgenic T1 and T2 plants was found to be significantly greater than that of wild-type tomato plants as measured by survival rate, chlorophyll fluorescence value, and radical elongation. The transgenic tomato plants exhibited patterns of growth retardation; however, they resumed normal growth after GA3 (gibberellic acid) treatment. More importantly, GA3-treated transgenic plants still exhibited a greater degree of chilling tolerance compared with wild-type plants. Subtractive hybridization was performed to isolate the responsive genes of heterologous Arabidopsis CBF1 in transgenic tomato plants. CATALASE1 (CAT1) was obtained and showed activation in transgenic tomato plants. The CAT1 gene and catalase activity were also highly induced in the transgenic tomato plants. The level of H2O2 in the transgenic plants was lower than that in the wild-type plants under either normal or cold conditions. The transgenic plants also exhibited considerable tolerance against oxidative damage induced by methyl viologen. Results from the current study suggest that heterologous CBF1 expression in transgenic tomato plants may induce several oxidative-stress responsive genes to protect from chilling stress. PMID:12114563

  13. Bidirectional regulation of the cAMP response element binding protein encodes spatial map alignment in prism-adapting barn owls.

    PubMed

    Nichols, Grant S; DeBello, William M

    2008-10-01

    The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown. Here we tested the hypothesis that CREB (cAMP response element-binding protein) provides a cell-specific readout of instructive information. Owls were fitted with prismatic or control spectacles and provided rich auditory-visual experience: hunting live mice. CREB activation was analyzed within 30 min of hunting using phosphorylation state-specific CREB (pCREB) and CREB antibodies, confocal imaging, and immunofluorescence measurements at individual cell nuclei. In control owls or prism-adapted owls, which experience small instructive signals, the frequency distributions of pCREB/CREB values obtained for cell nuclei within the external nucleus of the inferior colliculus (ICX) were unimodal. In contrast, in owls adapting to prisms or readapting to normal conditions, the distributions were bimodal: certain cells had received a signal that positively regulated CREB and, by extension, transcription of CREB-dependent genes, whereas others received a signal that negatively regulated it. These changes were restricted to the subregion of the inferior colliculus that received optically displaced input, the rostral ICX, and were not evident in the caudal ICX or central nucleus. Finally, the topographic pattern of CREB regulation was patchy, not continuous, as expected from the actions of a topographically precise signal encoding discrete events. These results support a model in which the magnitude of CREB activation within individual cells provides a readout of the instructive signal that guides plasticity and learning.

  14. Sterol Regulatory Element-Binding Protein-1c Regulates Inflammasome Activation in Gingival Fibroblasts Infected with High-Glucose-Treated Porphyromonas gingivalis

    PubMed Central

    Kuo, Hsing-Chun; Chang, Li-Ching; Chen, Te-Chuan; Lee, Ko-Chao; Lee, Kam-Fai; Chen, Cheng-Nan; Yu, Hong-Ren

    2016-01-01

    Background: Porphyromonas gingivalis is a major bacterial species implicated in the progression of periodontal disease, which is recognized as a common complication of diabetes. The interleukin (IL)-1β, processed by the NLR family pyrin domain containing 3 (NLRP3) inflammasome, has been identified as a target for pathogenic infection of the inflammatory response. However, the effect of P. gingivalis in a high-glucose situation in the modulation of inflammasome activation in human gingival fibroblasts (HGFs) is not well-understood. Methods: P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the regulation of HGF NLRP3 expression by the infection of high-glucose-treated P. gingivalis (HGPg). Results: HGF infection with HGPg increases the expression of IL-1β and NLRP3. We further demonstrated that the upregulation of sterol regulatory element-binding protein (SREBP)-1c by activation of the Akt and p70S6K pathways is critical for HGPg-induced NLRP3 expression. We showed that the inhibition of Janus kinase 2 (JAK2) blocks the Akt- and p70S6K-mediated SREBP-1c, NLRP3, and IL-1β expression. The effect of HGPg on HGF signaling and NLRP3 expression is mediated by β1 integrin. In addition, gingival tissues from diabetic patients with periodontal disease exhibited higher NLRP3 and SREBP-1c expression. Conclusions: Our findings identify the molecular pathways underlying HGPg-dependent NLRP3 inflammasome expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs. PMID:28083517

  15. High glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells.

    PubMed

    Kitsunai, Hiroya; Makino, Yuichi; Sakagami, Hidemitsu; Mizumoto, Katsutoshi; Yanagimachi, Tsuyoshi; Atageldiyeva, Kuralay; Takeda, Yasutaka; Fujita, Yukihiro; Abiko, Atsuko; Takiyama, Yumi; Haneda, Masakazu

    2016-03-01

    Persistent high concentration of glucose causes cellular stress and damage in diabetes via derangement of gene expressions. We previously reported high glucose activates hypoxia-inducible factor-1αand downstream gene expression in mesangial cells, leading to an extracellular matrix expansion in the glomeruli. A glucose-responsive transcription factor carbohydrate response element-binding protein (ChREBP) is a key mediator for such perturbation of gene regulation. To provide insight into glucose-mediated gene regulation in mesangial cells, we performed chromatin immunoprecipitation followed byDNAmicroarray analysis and identified platelet-derived growth factor-C (PDGF-C) as a novel target gene of ChREBP In streptozotocin-induced diabetic mice, glomerular cells showed a significant increase inPDGF-C expression; the ratio ofPDGF-C-positive cells to the total number glomerular cells demonstrated more than threefold increase when compared with control animals. In cultured human mesangial cells, high glucose enhanced expression ofPDGF-C protein by 1.9-fold. Knock-down of ChREBPabrogated this induction response. UpregulatedPDGF-C contributed to the production of typeIVand typeVIcollagen, possibly via an autocrine mechanism. Interestingly, urinaryPDGF-C levels in diabetic model mice were significantly elevated in a fashion similar to urinary albumin. Taken together, we hypothesize that a high glucose-mediated induction ofPDGF-C via ChREBPin mesangial cells contributes to the development of glomerular mesangial expansion in diabetes, which may provide a platform for novel predictive and therapeutic strategies for diabetic nephropathy.

  16. Preventing phosphorylation of sterol regulatory element-binding protein 1a by MAP-kinases protects mice from fatty liver and visceral obesity.

    PubMed

    Kotzka, Jorg; Knebel, Birgit; Haas, Jutta; Kremer, Lorena; Jacob, Sylvia; Hartwig, Sonja; Nitzgen, Ulrike; Muller-Wieland, Dirk

    2012-01-01

    The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK) or p38 stress activated MAP kinases. Serine 117 is also the major phosphorylation site in SREBP-1a for JNK. In contrast to that the major phosphorylation sites of p38 MAPK family are serine 63 and threonine 426. Functional analyses reveal that phosphorylation of SREBP-1a does not alter protein/DNA interaction. The identified phosphorylation sites are specific for both kinase families also in cellular context. To provide direct evidence that phosphorylation of SREBP-1a is a regulatory principle of biological and clinical relevance, we generated transgenic mice expressing mature transcriptionally active N-terminal domain of human SREBP-1a variant lacking all identified phosphorylaton sites designed as alb-SREBP-1aΔP and wild type SREBP-1a designed as alb-SREBP-1a liver specific under control of the albumin promoter and a liver specific enhancer. In contrast to alb-SREBP-1a mice the phosphorylation-deficient mice develop no enlarged fatty livers under normocaloric conditions. Phenotypical examination reveales a massive accumulation of adipose tissue in alb-SREBP-1a but not in the phosphorylation deficient alb-SREBP-1aΔP mice. Moreover, preventing phosphorylation of SREBP-1a protects mice also from dyslipidemia. In conclusion, phosphorylation of SREBP-1a by ERK, JNK and p38 MAPK-families resembles a biological principle and plays a significant role, in vivo.

  17. Sterol regulatory element binding transcription factor 1 expression and genetic polymorphism significantly affect intramuscular fat deposition in the longissimus muscle of Erhualian and Sutai pigs.

    PubMed

    Chen, J; Yang, X J; Xia, D; Chen, J; Wegner, J; Jiang, Z; Zhao, R Q

    2008-01-01

    Two experiments were performed to elucidate the role of sterol regulatory element binding transcription factor 1 (SREBF1) in i.m. fat (IMF) deposition in pigs. In Exp. 1, LM samples were removed from 4 male and 4 female Erhualian piglets at 3, 20, and 45 d of age, and SREBF1 mRNA expression level and IMF content were measured. Intramuscular fat content and expression of SREBF1 mRNA was greater (P < 0.05) in females than males at all 3 stages of age, providing initial evidence that the level of SREBF1 mRNA expression is related to IMF deposition in muscle of suckling pigs. Additionally, in Exp. 2 there was a positive correlation between the SREBF1 mRNA level and IMF content (r = 0.67, P < 0.01) in 100 Sutai finishing pigs, a synthetic line produced by crossing Erhualian and Duroc pigs. Single-strand conformation polymorphism (SSCP) analysis of the reverse transcription PCR products of the SREBF1 gene revealed 3 genotypes in Sutai pigs with frequencies of 50% for AA, 36% for AB, and 14% for BB, respectively. Both SREBF1 mRNA level and IMF content in muscle were greater (P < 0.05) in AB and BB animals than in AA animals, whereas no difference in backfat thickness was observed among the 3 genotypes. Sequencing analysis identified 2 SNP at T1006C and C1033T within the open reading frame of the SREBF1 gene (NM_214157). Although both are silent mutations, they affected the secondary structure of SREBF1 mRNA. These results suggest that SREBF1 might play an important role in regulation of muscle fat deposition during postnatal growth of pigs. The SNP identified in the SREBF1 gene suggest that it could be used as a genetic marker to improve IMF content in pigs.

  18. Expression of Sterol Regulatory Element-Binding Proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: preliminary study

    PubMed Central

    Pérez-Belmonte, Luis M.; Moreno-Santos, Inmaculada; Cabrera-Bueno, Fernando; Sánchez-Espín, Gemma; Castellano, Daniel; Such, Miguel; Crespo-Leiro, María G; Carrasco-Chinchilla, Fernando; Alonso-Pulpón, Luis; López-Garrido, Miguel; Ruiz-Salas, Amalio; Becerra-Muñoz, Víctor M.; Gómez-Doblas, Juan J.; de Teresa-Galván, Eduardo; Jiménez-Navarro, Manuel

    2017-01-01

    Objectives: Sterol regulatory element-binding proteins (SREBP) genes are crucial in lipid biosynthesis and cardiovascular homeostasis. Their expression in epicardial adipose tissue (EAT) and their influence in the development of coronary artery disease (CAD) and type-2 diabetes mellitus remain to be determined. The aim of our study was to evaluate the expression of SREBP genes in EAT in patients with CAD according to diabetes status and its association with clinical and biochemical data. Methods: SREBP-1 and SREBP-2 mRNA expression levels were measured in EAT from 49 patients with CAD (26 with diabetes) and 23 controls without CAD or diabetes. Results: Both SREBPs mRNA expression were significantly higher in patients with CAD and diabetes (p<0.001) and were identified as independent cardiovascular risk factor for coronary artery disease in patients with type-2 diabetes (SREBP-1: OR 1.7, 95%CI 1.1-2.5, p=0.02; SREBP-2: OR 1.6, 95%CI 1.2-3, p=0.02) and were independently associated with the presence of multivessel CAD, left main and anterior descending artery stenosis, and higher total and LDL cholesterol levels, and lower HDL cholesterol levels, in patients with CAD and diabetes. Conclusions: SREBP genes are expressed in EAT and were higher in CAD patients with diabetes than those patients without CAD or diabetes. SREBP expression was associated as cardiovascular risk factor for the severity of CAD and the poor lipid control. In this preliminary study we suggest the importance of EAT in the lipid metabolism and cardiovascular homeostasis for coronary atherosclerosis of patients with diabetes and highlight a future novel therapeutic target. PMID:28367087

  19. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder.

    PubMed

    Wei, Yange; Bu, Shufang; Liu, Xican; Li, Hengfen

    2015-06-01

    Major depressive disorder is a common chronic emotional disorder, and cyclic adenosine monophosphate response element binding protein 1 (CREB1) is hypothesized to play a role in its pathogenesis. The aim of the present study was to investigate the associations between major depressive disorder and relevant single nucleotide polymorphisms (SNPs) in the CREB1 gene. A total of 1,038 subjects of Han Chinese descent were recruited, including 456 patients with major depressive disorder (case group) and 582 healthy volunteers (control group). The frequency distributions of the genotypes and alleles were estimated in the case and control groups, and analyzed for any correlation with major depressive disorder. Three relevant SNP sites in CREB1 were analyzed using quantitative polymerase chain reaction, and statistical analyses were performed to estimate their use as risk factors for major depressive disorder. The analyses revealed that rs2254137 and rs16839883 in CREB1 showed polymorphisms in the sample population, and the genotype and allele frequencies of rs16839883 differed significantly when comparing the patients and healthy controls (P<0.05). No statistically significant differences were detected in the two SNP sites between the male and female patients (P>0.05). Furthermore, no statistically significant differences were detected in rs2254137 genotype and allele distribution when comparing the male and female patients with their corresponding control groups (P>0.05). However, statistically significant differences were observed in the genotype and allele frequencies of rs16839883 when the male and female patients were compared with their respective controls (P<0.05). Therefore, the results demonstrated that there is a close correlation between the rs16839883 polymorphism in CREB1 and major depressive disorder, which suggests that this SNP site should be further studied as a potential biomarker for major depressive disorder.

  20. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens.

    PubMed

    Pliakas, A M; Carlson, R R; Neve, R L; Konradi, C; Nestler, E J; Carlezon, W A

    2001-09-15

    Drugs of abuse regulate the transcription factor cAMP response element-binding protein (CREB) in striatal regions, including the nucleus accumbens (NAc). To explore how regulation of CREB in the NAc affects behavior, we used herpes simplex virus (HSV) vectors to elevate CREB expression in this region or to overexpress a dominant-negative mutant CREB (mCREB) that blocks CREB function. Rats treated with HSV-mCREB in place conditioning studies spent more time in environments associated with cocaine, indicating increased cocaine reward. Conversely, rats treated with HSV-CREB spent less time in cocaine-associated environments, indicating increased cocaine aversion. Studies in which drug-environment pairings were varied to coincide with either the early or late effects of cocaine suggest that CREB-associated place aversions reflect increased cocaine withdrawal. Because cocaine withdrawal can be accompanied by symptoms of depression, we examined how altered CREB function in the NAc affects behavior in the forced swim test (FST). Elevated CREB expression increased immobility in the FST, an effect that is opposite to that caused by standard antidepressants and is consistent with a link between CREB and dysphoria. Conversely, overexpression of mCREB decreased immobility, an effect similar to that caused by antidepressants. Moreover, the kappa opioid receptor antagonist nor-Binaltorphimine decreased immobility in HSV-CREB- and HSV-mCREB-treated rats, suggesting that CREB-mediated induction of dynorphin (an endogenous kappa receptor ligand) contributes to immobility behavior in the FST. Exposure to the FST itself dramatically increased CREB function in the NAc. These findings raise the possibility that CREB-mediated transcription within the NAc regulates dysphoric states.

  1. Far upstream element-binding protein 1 (FUBP1) is a potential c-Myc regulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression.

    PubMed

    Yang, Lei; Zhu, Jun-Ya; Zhang, Jian-Guo; Bao, Bo-Jun; Guan, Cheng-Qi; Yang, Xiao-Jing; Liu, Yan-Hua; Huang, Yue-Jiao; Ni, Run-Zhou; Ji, Li-Li

    2016-03-01

    The human far upstream element (FUSE) binding protein 1 (FUBP1) belongs to an ancient family which is required for proper regulation of the c-Myc proto-oncogene. Although c-Myc plays an important role in development of various carcinomas, the relevance of FUBP1 and their contribution to esophageal squamous cell carcinoma (ESCC) development remain unclear. In this study, we aimed to investigate the relationship between FUBP1 and c-Myc as well as their contribution to ESCC development. Western blot and immunohistochemical analyses were performed to evaluate FUBP1 expression. Coimmunoprecipitation analysis was performed to explore the correlation between FUBP1 and c-Myc in ESCC. In addition, the role of FUBP1 in ESCC proliferation was studied in ESCC cells through knocking FUBP1 down. The regulation of FUBP1 on proliferation was confirmed by Cell Counting Kit-8 (CCK-8) assay, flow cytometric assays, and clone formation assays. The expressions of FUBP1 and c-Myc were both upregulated in ESCC tissues. In addition to correlation between expression of FUBP1 and tumor grade, we also confirmed the correlation of FUBP1, c-Myc, and Ki-67 expression by twos. Moreover, upregulation of FUBP1 and c-Myc in ESCC was associated with poor survival. FUBP1 was confirmed to activate c-Myc in ESCC tissues and cells. FUBP1 was demonstrated to promote proliferation of ESCC cells. Moreover, downregulation of both FUBP1 and c-Myc was confirmed to inhibit proliferation of ESCC cells. Our results indicated that FUBP1 may potentially stimulate c-Myc expression in ESCC and its expression may promote ESCC progression.

  2. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation.

    PubMed

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-09-15

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation.

  3. Tlr4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation

    PubMed Central

    Zhang, Zhi-Hui; Liu, Xiao-Qian; Zhang, Cheng; He, Wei; Wang, Hua; Chen, Yuan-Hua; Liu, Xiao-Jing; Chen, Xi; Xu, De-Xiang

    2016-01-01

    Previous studies demonstrated that acute alcohol intoxication caused hepatic lipid accumulation. The present study showed that acute alcohol intoxication caused hepatic lipid accumulation in Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic sterol-regulatory element binding protein (SREBP)-1, a transcription factor regulating fatty acid and triglyceride (TG) synthesis, was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic Fas, Acc, Scd-1 and Dgat-2, the key genes for fatty acid and TG synthesis, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Additional experiment showed that hepatic MyD88 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic NF-κB was activated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Moreover, hepatic GSH content was reduced and hepatic MDA level was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic CYP2E1 was elevated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Hepatic p67phox and gp91phox, two NADPH oxidase subunits, were up-regulated in alcohol-treated Tlr4-wild-type mice but not in Tlr4-mutant mice. Alpha-phenyl-N-t-butylnitrone (PBN), a free radical spin-trapping agent, protected against alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. In conclusion, Tlr4-mutant mice are resistant to acute alcohol-induced hepatic SREBP-1 activation and hepatic lipid accumulation. PMID:27627966

  4. Prognostic value of coexistence of abnormal expression of micro-RNA-200b and cyclic adenosine monophosphate-responsive element-binding protein 1 in human astrocytoma.

    PubMed

    Zhang, Jun-qing; Yao, Qing-he; Kuang, Yong-qin; Ma, Yuan; Yang, Li-bin; Huang, Hai-dong; Cheng, Jing-ming; Yang, Tao; Liu, En-yu; Liang, Liang; Fan, Ke-xia; Zhao, Kai; Xia, Xun; Gu, Jian-wen

    2014-10-01

    Our aim was to investigate the expression of micro-RNA-200b (miR-200b) and cAMP-responsive element-binding protein 1 (CREB-1) in astrocytoma and its efficacy for predicting outcome. Both miR-200b and CREB-1 messenger RNA expression was measured in 122 astrocytomas and 30 nonneoplastic brain specimens by quantitative real-time polymerase chain reaction. Expression of miR-200b was significantly lower in astrocytoma than in nonneoplastic brain (P < .001), whereas CREB-1 messenger RNA expression was significantly elevated in the tumors (P < .001). Both miR-200b down-regulation and CREB-1 up-regulation were significantly associated with advanced pathologic grade (P = .002 and P = .006, respectively). Low miR-200b expression correlated negatively with Karnofsky performance score (P = .03), and high CREB-1 expression correlated positively with mean tumor diameter (P = .03). By Kaplan-Meier analysis, low miR-200b, high CREB-1, and coexistence of abnormal miR-200b and CREB-1 expression (low miR-200b/high CREB-1) were predictive of shorter progression-free survival and overall survival in both grade III and grade IV astrocytoma. By multivariate analysis, only low miR-200b/high CREB-1 expression was an independent prognostic factor for poor prognosis in astrocytoma of advanced grade. Both miR-200b and CREB-1 may play important cooperative roles in the progression of human astrocytoma. The efficacy of miR-200b and CREB-1 together as a predictor of prognosis in astrocytoma patients is shown for the first time.

  5. The regulation of hepcidin expression by serum treatment: requirements of the BMP response element and STAT- and AP-1-binding sites.

    PubMed

    Kanamori, Yohei; Murakami, Masaru; Matsui, Tohru; Funaba, Masayuki

    2014-11-10

    Expression of hepcidin, a central regulator of systemic iron metabolism, is transcriptionally regulated by the bone morphogenetic protein (BMP) pathway. However, the factors other than the BMP pathway also participate in the regulation of hepcidin expression. In the present study, we show that serum treatment increased hepcidin expression and transcription without inducing the phosphorylation of Smad1/5/8 in primary hepatocytes, HepG2 cells or Hepa1-6 cells. Co-treatment with LDN-193189, an inhibitor of the BMP type I receptor, abrogated this hepcidin induction. Reporter assays using mutated reporters revealed the involvement of the BMP response element-1 (BMP-RE1) and signal transducers and activator of transcription (STAT)- and activator protein (AP)-1-binding sites in serum-induced hepcidin transcription in HepG2 cells. Serum treatment induced the expression of the AP-1 components c-fos and junB in primary hepatocytes and HepG2 cells. Forced expression of c-fos or junB enhanced the response of hepcidin transcription to serum treatment. By contrast, the expression of dominant negative (dn)-c-fos and dn-junB decreased hepcidin transcription. The present study reveals that serum contains factors stimulating hepcidin transcription. Basal BMP activity is essential for the serum-induced hepcidin transcription, although serum treatment does not stimulate the BMP pathway. The induction of c-fos and junB by serum treatment stimulates hepcidin transcription, through possibly cooperation with BMP-mediated signaling. Considering that AP-1 is induced by various stimuli, the present results suggest that hepcidin expression is regulated by more diverse factors than had been previously considered.

  6. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast.

    PubMed Central

    Dorsman, J C; van Heeswijk, W C; Grivell, L A

    1988-01-01

    Two abundant factors, GFI and GFII which interact with the 5' flanking regions of nuclear genes coding for proteins of the mitochondrial respiratory chain have been identified. In one case (subunit VIII of QH2: cytochrome c oxidoreductase) the binding sites for both factors overlap completely and their binding is mutually exclusive. For the other 5' regions tested the GFI and GFII binding sites do not coincide. Interestingly, binding sites for GFI and GFII are also present in or at the 3' ends of the coding regions of two genes of the PHO gene family and in DNA elements important for optimal ARS and CEN function respectively. The sites recognized by GFI conform to the consensus RTCRNNNNNNACGNR, while those recognized by GFII contain the element RTCACGTG. We speculate that GFI and GFII may play a role in different cellular processes, dependent on the context of their binding sites and that one of these processes may be the coordination of the expression of genes involved in mitochondrial biogenesis with the progress of the cell cycle. Images PMID:3045755

  7. Regulation of the mRNA-binding protein HuR by posttranslational modification: spotlight on phosphorylation.

    PubMed

    Eberhardt, Wolfgang; Doller, Anke; Pfeilschifter, Josef

    2012-06-01

    The ubiquitous mRNA-binding protein human antigen R (HuR) and its neuronal relatives (HuB, HuC, HuD) participate in the post-transcriptional regulation of many AU-rich element-bearing mRNAs. In addition to its originally described role in controlling mRNA decay, the binding of HuR to target mRNAs can affect many aspects of mRNA processing including splicing, polyadenylation, intracellular trafficking, translation and modulation of mRNA repression by miRNAs. In accordance to the growing list of signalling events which are involved in regulating these different HuR functions, recent data implicate that posttranslational modification, namely protein kinase-triggered phosphorylation of HuR plays a crucial role in connecting extracellular signal inputs to a specific post-transcriptional program by HuR. Notably, in addition to directly targeting HuR functions, posttranslational modifications of HuR have a major impact on the sequestration and binding to various HuR ligand proteins as has been demonstrated e.g. for the 14-3-3 chaperones. However, the detailed mechanisms of how a specific modification of HuR coordinates different aspects in HuR regulation are currently poorly understood. Due to the fact that most of the described HuR activities are closely related to its subcellular localization and the binding to cargo mRNA, this review will focus on these aspects of HuR functions and their control by posttranslational modification, particularly by HuR phosphorylations by different protein kinases.

  8. mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoylphorbol-13-acetate, response element.

    PubMed Central

    Ivashkiv, L B; Liou, H C; Kara, C J; Lamph, W W; Verma, I M; Glimcher, L H

    1990-01-01

    Proto-oncogene products c-Fos and c-Jun form a complex which binds with high affinity to the 12-O-tetradecanoylphorbol-13-acetate (TPA) response DNA element and which stimulates transcription of phorbol ester- inducible genes. We have previously identified, by screening a lambda gt11 expression library, murine protein mXBP, which binds to a sequence which overlaps the 3' end of the murine class II major histocompatibility complex A alpha gene X box, a conserved transcription element found upstream of all class II genes. Here, we demonstrate that the target sequence for mXBP is a consensus cyclic AMP response element (CRE). mXBP is a member of the leucine zipper family of DNA-binding proteins and has significant homology to oncoproteins c-Fos and c-Jun. The inferred amino acid sequence of mXBP shows near identity to human CRE-BP1, except it does not contain an internal proline-rich domain. Immunoprecipitation and glutaraldehyde cross-linking studies show that mXBP/CRE-BP2 can form a complex with c-Jun. Complex formation is dependent on intact leucine zipper domains in both proteins. mXBP-c-Jun complexes can coexist with c-Fos-c-Jun complexes and can bind with high affinity to CRE, but not to TPA response DNA element, sequences. These results suggest that changes in the expression of mXBP/CRE-BP2, c-Fos, and c-Jun, which alter the ratio of mXBP-c-Jun to c-Fos-c-Jun complexes, would affect the relative expression of cyclic AMP and phorbol ester-responsive genes. This provides support for a combinatorial model of gene regulation, whereby protein-protein interactions which alter the DNA binding specificity of protein complexes can expand the flexibility of cellular transcriptional responses. Images PMID:2138707

  9. Kaposi's sarcoma-associated herpesvirus Rta tetramers make high-affinity interactions with repetitive DNA elements in the Mta promoter to stimulate DNA binding of RBP-Jk/CSL.

    PubMed

    Palmeri, Diana; Carroll, Kyla Driscoll; Gonzalez-Lopez, Olga; Lukac, David M

    2011-11-01

    Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 [HHV-8]) is the etiologic agent of Kaposi's sarcoma (KS) and lymphoproliferative diseases. We previously demonstrated that the KSHV lytic switch protein Rta stimulates DNA binding of the cellular RBP-Jk/CSL protein, the nuclear component of the Notch pathway, on Rta target promoters. In the current study, we define the promoter requirements for formation of transcriptionally productive Rta/RBP-Jk/DNA complexes. We show that highly pure Rta footprints 7 copies of a previously undescribed repetitive element in the promoter of the essential KSHV Mta gene. We have termed this element the "CANT repeat." CANT repeats are found on both strands of DNA and have a consensus sequence of ANTGTAACANT(A/T)(A/T)T. We demonstrate that Rta tetramers make high-affinity interactions (i.e., nM) with 64 bp of the Mta promoter but not single CANT units. The number of CANT repeats, their presence in palindromes, and their positions relative to the RBP-Jk binding site determine the optimal target for Rta stimulation of RBP-Jk DNA binding and formation of ternary Rta/RBP-Jk/DNA complexes. DNA binding and tetramerization mutants of Rta fail to stimulate RBP-Jk DNA binding. Our chromatin immunoprecipitation assays show that RBP-Jk DNA binding is broadly, but selectively, stimulated across the entire KSHV genome during reactivation. We propose a model in which tetramerization of Rta allows it to straddle RBP-Jk and contact repeat units on both sides of RBP-Jk. Our study integrates high-affinity Rta DNA binding with the requirement for a cellular transcription factor in Rta transactivation.

  10. Expression of the rat sterol regulatory element-binding protein-1c gene in response to insulin is mediated by increased transactivating capacity of specificity protein 1 (Sp1).

    PubMed

    Deng, Xiong; Yellaturu, Chandrahasa; Cagen, Lauren; Wilcox, Henry G; Park, Edwards A; Raghow, Rajendra; Elam, Marshall B

    2007-06-15

    The induction of genes involved in lipid biosynthesis by insulin is mediated in part by the sterol regulatory element-binding protein-1c (SREBP-1c). SREBP-1c is directly regulated by insulin by transcriptional and post-transcriptional mechanisms. Previously, we have demonstrated that the insulin-responsive cis-acting unit of the rat SREBP-1c promoter is composed of several elements that include a sterol regulatory element, two liver X receptor elements, and a number of conserved GC boxes. Here we systematically dissected the role of these GC boxes and report that five bona fide Sp1-binding elements of the SREBP-1c promoter determine its basal and insulin-induced activation. Luciferase expression driven by the rat SREBP-1c promoter was accelerated by ectopic expression of Sp1, and insulin further enhanced the transactivation potential of Sp1. Introduction of a small interfering RNA against Sp1 reduced both basal and insulin-induced activation of the SREBP-1c promoter. We also found that Sp1 interacted with both SREBP-1c and LXRalpha proteins and that insulin promoted these interactions. Chromatin immunoprecipitation studies revealed that insulin facilitated the recruitment of the steroid receptor coactivator-1 to the SREBP-1c promoter. These studies identify a novel mechanism by which maximal activation of the rat SREBP-1c gene expression by insulin is mediated by Sp1 and its enhanced ability to interact with other transcriptional regulatory proteins.

  11. Accurate Profiling of Gene Expression and Alternative Polyadenylation with Whole Transcriptome Termini Site Sequencing (WTTS-Seq)

    PubMed Central

    Zhou, Xiang; Li, Rui; Michal, Jennifer J.; Wu, Xiao-Lin; Liu, Zhongzhen; Zhao, Hui; Xia, Yin; Du, Weiwei; Wildung, Mark R.; Pouchnik, Derek J.; Harland, Richard M.; Jiang, Zhihua

    2016-01-01

    Construction of next-generation sequencing (NGS) libraries involves RNA manipulation, which often creates noisy, biased, and artifactual data that contribute to errors in transcriptome analysis. In this study, a total of 19 whole transcriptome termini site sequencing (WTTS-seq) and seven RNA sequencing (RNA-seq) libraries were prepared from Xenopus tropicalis adult and embryo samples to determine the most effective library preparation method to maximize transcriptomics investigation. We strongly suggest that appropriate primers/adaptors are designed to inhibit amplification detours and that PCR overamplification is minimized to maximize transcriptome coverage. Furthermore, genome annotation must be improved so that missing data can be recovered. In addition, a complete understanding of sequencing platforms is critical to limit the formation of false-positive results. Technically, the WTTS-seq method enriches both poly(A)+ RNA and complementary DNA, adds 5′- and 3′-adaptors in one step, pursues strand sequencing and mapping, and profiles both gene expression and alternative polyadenylation (APA). Although RNA-seq is cost prohibitive, tends to produce false-positive results, and fails to detect APA diversity and dynamics, its combination with WTTS-seq is necessary to validate transcriptome-wide APA. PMID:27098915

  12. Calcium binding by synaptotagmin's C2A domain is an essential element of the electrostatic switch that triggers synchronous synaptic transmission.

    PubMed

    Striegel, Amelia R; Biela, Laurie M; Evans, Chantell S; Wang, Zhao; Delehoy, Jillian B; Sutton, R Bryan; Chapman, Edwin R; Reist, Noreen E

    2012-01-25

    Synaptotagmin is the major calcium sensor for fast synaptic transmission that requires the synchronous fusion of synaptic vesicles. Synaptotagmin contains two calcium-binding domains: C2A and C2B. Mutation of a positively charged residue (R233Q in rat) showed that Ca2+-dependent interactions between the C2A domain and membranes play a role in the electrostatic switch that initiates fusion. Surprisingly, aspartate-to-asparagine mutations in C2A that inhibit Ca2+ binding support efficient synaptic transmission, suggesting that Ca2+ binding by C2A is not required for triggering synchronous fusion. Based on a structural analysis, we generated a novel mutation of a single Ca2+-binding residue in C2A (D229E in Drosophila) that inhibited Ca2+ binding but maintained the negative charge of the pocket. This C2A aspartate-to-glutamate mutation resulted in ∼80% decrease in synchronous transmitter release and a decrease in the apparent Ca2+ affinity of release. Previous aspartate-to-asparagine mutations in C2A partially mimicked Ca2+ binding by decreasing the negative charge of the pocket. We now show that the major function of Ca2+ binding to C2A is to neutralize the negative charge of the pocket, thereby unleashing the fusion-stimulating activity of synaptotagmin. Our results demonstrate that Ca2+ binding by C2A is a critical component of the electrostatic switch that triggers synchronous fusion. Thus, Ca2+ binding by C2B is necessary and sufficient to regulate the precise timing required for coupling vesicle fusion to Ca2+ influx, but Ca2+ binding by both C2 domains is required to flip the electrostatic switch that triggers efficient synchronous synaptic transmission.

  13. FoxO1 inhibits sterol regulatory element-binding protein-1c (SREBP-1c) gene expression via transcription factors Sp1 and SREBP-1c.

    PubMed

    Deng, Xiong; Zhang, Wenwei; O-Sullivan, InSug; Williams, J Bradley; Dong, Qingming; Park, Edwards A; Raghow, Rajendra; Unterman, Terry G; Elam, Marshall B

    2012-06-08

    Induction of lipogenesis in response to insulin is critically dependent on the transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c). FoxO1, a forkhead box class-O transcription factor, is an important mediator of insulin action, but its role in the regulation of lipid metabolism has not been clearly defined. We examined the effects of FoxO1 on srebp1 gene expression in vivo and in vitro. In vivo studies showed that constitutively active (CA) FoxO1 (CA-FoxO1) reduced basal expression of SREBP-1c mRNA in liver by ∼60% and blunted induction of SREBP-1c in response to feeding. In liver-specific FoxO knock-out mice, SREBP-1c expression was increased ∼2-fold. Similarly, in primary hepatocytes, CA-FoxO1 suppressed SREBP1-c expression and inhibited basal and insulin-induced SREBP-1c promoter activity. SREBP-1c gene expression is induced by the liver X receptor (LXR), but CA-FoxO1 did not block the activation of SREBP-1c by the LXR agonist TO9. Insulin stimulates SREBP-1c transcription through Sp1 and via "feed forward" regulation by newly synthesized SREBP-1c. CA-FoxO1 inhibited SREBP-1c by reducing the transactivational capacity of both Sp1 and SREBP-1c. In addition, chromatin immunoprecipitation assays indicate that FoxO1 can associate with the proximal promoter region of the srebp1 gene and disrupt the assembly of key components of the transcriptional complex of the SREBP-1c promoter. We conclude that FoxO1 inhibits SREBP-1c transcription via combined actions on multiple transcription factors and that this effect is exerted at least in part through reduced transcriptional activity of Sp1 and SREBP-1c and disrupted assembly of the transcriptional initiation complex on the SREBP-1c promoter.

  14. Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2.

    PubMed

    Fujino, Hiromichi; Salvi, Sambhitab; Regan, John W

    2005-07-01

    The EP2 and EP4 prostanoid receptors are G-protein-coupled receptors whose activation by their endogenous ligand, prostaglandin (PG) E2, stimulates the formation of intracellular cAMP. We have previously reported that the stimulation of cAMP formation in EP4-expressing cells is significantly less than in EP2-expressing cells, despite nearly identical levels of receptor expression (J Biol Chem 277:2614-2619, 2002). In addition, a component of EP4 receptor signaling, but not of EP2 receptor signaling, was found to involve the activation of phosphatidylinositol 3-kinase (PI3K). In this study, we report that PGE2 stimulation of cells expressing either the EP2 or EP4 receptor results in the phosphorylation of the cAMP response element binding protein (CREB) at serine-133. Pretreatment of cells with N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H-89), an inhibitor of protein kinase A (PKA), attenuated the PGE2-mediated phosphorylation of CREB in EP2-expressing cells, but not in EP4-expressing cells. Pretreatment of cells with wortmannin, an inhibitor of PI3K, had no effects on the PGE2-mediated phosphorylation of CREB in either EP2- or EP4-expressing cells, although it significantly increased the PGE2-mediated activation of PKA in EP4-expressing cells. However, combined pretreatment with H-89 and wortmannin blocked PGE2-mediated phosphorylation in EP2-expressing cells as well as in EP2-expressing cells. PGE2-mediated intracellular cAMP formation was not affected by pretreatment with wortmannin, or combined treatment with wortmannin and H-89, in either the EP2- or EP4-expressing cells. These findings suggest that PGE2 stimulation of EP4 receptors, but not EP2 receptors, results in the activation of a PI3K signaling pathway that inhibits the activity of PKA and that the PGE2-mediated phosphorylation of CREB by these receptors occurs through different signaling pathways

  15. Sterol regulatory element binding protein (SREBP)-1 expression in brain is affected by age but not by hormones or metabolic changes.

    PubMed

    Okamoto, Kenjirou; Kakuma, Tetsuya; Fukuchi, Satoshi; Masaki, Takayuki; Sakata, Toshiie; Yoshimatsu, Hironobu

    2006-04-07

    Sterol regulatory element binding protein (SREBP)-1 is a membrane-bound transcription factor that regulates the expression of several genes involved in cellular fatty acid synthesis in the peripheral tissues, including liver. Although SREBP-1 is expressed in brain, little is known about its function. The aim of the present study was to clarify the characteristics of SREBP-1 mRNA expression in rat brain under various nutritional and hormonal conditions. In genetically obese (fa/fa) Zucker rats, expression of SREBP-1 mRNA was greater in liver than in hypothalamus or cerebrum compared to the lean littermates of these rats. Fasting for 45 h and refeeding for 3 h did not affect expression in brains of Wistar rats of SREBP-1 mRNA or the mRNAs of lipogenic enzymes that are targets of SREBP-1, i.e., fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC). Infusion of 2.0 mIU insulin or 3.0 microg leptin into the third cerebroventricle did not affect SREBP-1 mRNA expression in either hypothalamus or cerebrum. SREBP-1 mRNA expression in brains of transgenic mice that overexpressed leptin did not differ from that of wild-type mice. However, we observed a unique age-related alteration in SREBP-1 mRNA expression in brains of Sprague-Dawley rats. Specifically, SREBP-1 mRNA expression increased between 1 and 20 months of age, while there was no such change in the expression of FAS or ACC. This raises the possibility that increased SREBP-1 expression secondary to aging-related decline of polyunsaturated fatty acid (PUFA) might compensate for the reduction of FAS expression in brain. These findings suggest that the expression of SREBP-1 and downstream lipogenic enzymes in brain is probably not regulated by peripheral nutritional conditions or humoral factors. Aging-related changes in SREBP-1 mRNA expression may be involved in developmental changes in brain lipid metabolism.

  16. Suppression of granulocyte-macrophage colony-stimulating factor expression by glucocorticoids involves inhibition of enhancer function by the glucocorticoid receptor binding to composite NF-AT/activator protein-1 elements.

    PubMed

    Smith, P J; Cousins, D J; Jee, Y K; Staynov, D Z; Lee, T H; Lavender, P

    2001-09-01

    Increased expression of a number of cytokines including GM-CSF is associated with chronic inflammatory conditions such as bronchial asthma. Glucocorticoid therapy results in suppression of cytokine levels by a mechanism(s) not yet fully understood. We have examined regulation of GM-CSF expression by the synthetic glucocorticoid dexamethasone in human T cells. Transient transfection assays with reporter constructs revealed that dexamethasone inhibited the function of the GM-CSF enhancer, but had no effect on regulation of GM-CSF expression occurring through the proximal promoter. Activation of the GM-CSF enhancer involves cooperative interaction between the transcription factors NF-AT and AP-1. We demonstrate here that glucocorticoid-mediated inhibition of enhancer function involves glucocorticoid receptor (GR) binding to the NF-AT/AP-1 sites. These elements, which do not constitute recognizable glucocorticoid response elements, support binding of the GR, primarily as a dimer. This binding correlates with the ability of dexamethasone to inhibit enhancer activity of the NF-AT/AP-1 elements, suggesting a competition between NF-AT/AP-1 proteins and GR.

  17. The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes.

    PubMed

    Rasheedi, Sheeba; Shun, Ming-Chieh; Serrao, Erik; Sowd, Gregory A; Qian, Juan; Hao, Caili; Dasgupta, Twishasri; Engelman, Alan N; Skowronski, Jacek

    2016-05-27

    HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.

  18. In silico characterization of a RNA binding protein of cattle filarial parasite Setaria digitata

    PubMed Central

    Nagaratnam, Nirupa; Karunanayake, Eric Hamilton; Tennekoon, Kamani Hemamala; Samarakoon, Sameera Ranganath; Mayan, Karthika

    2014-01-01

    Human lymphatic filariasis (HLF) is a neglected tropical disease which threatens nearly 1.4 billion people in 73 countries worldwide. Wuchereria bancrofti is the major causative agent of HLF and it closely resembles cattle filarial parasite Setaria digitata. Due to difficulties in procuring W. bancrofti parasite material, S. digitata cDNA library has been constructed to identify novel drug targets against HLF and many of the cDNA sequences are yet to be assigned structure and function. In this study, a 549 bp long cDNA (sdrbp) has been sequenced and characterized in silico. The shortest ORF of 249 bp from the isolated cDNA encodes a polypeptide of 82 amino acids and shows an amino acid identity of 54% with the RRM domain of human cleavage stimulation factor-64 kDa subunit (CstF-64). Structure of the protein (sdRBP) obtained by homology modelling using RRM of CstF-64 as template adopts classical RRM topology (β1α1β2β3α2β4). sdRBP model built was validated by superimposition tools and Ramachandran plot analysis. CstF-64 plays an important role in pre-mRNA polyadenylation by interacting with specific GU-rich downstream sequence element. Molecular docking studies of sdRBP with different RNA molecules revealed that sdRBP has greater binding affinity to GU-rich RNA and comparable results were obtained upon similar docking of RRM of CstF-64 with the same RNA molecules. Therefore, sdRBP is likely to perform homologous function in S. digitata. This study brings new dimensions to the functional analysis of RNA binding proteins of S. digitata and their evaluation as new drug targets against HLF. PMID:25258487

  19. In silico characterization of a RNA binding protein of cattle filarial parasite Setaria digitata.

    PubMed

    Nagaratnam, Nirupa; Karunanayake, Eric Hamilton; Tennekoon, Kamani Hemamala; Samarakoon, Sameera Ranganath; Mayan, Karthika

    2014-01-01

    Human lymphatic filariasis (HLF) is a neglected tropical disease which threatens nearly 1.4 billion people in 73 countries worldwide. Wuchereria bancrofti is the major causative agent of HLF and it closely resembles cattle filarial parasite Setaria digitata. Due to difficulties in procuring W. bancrofti parasite material, S. digitata cDNA library has been constructed to identify novel drug targets against HLF and many of the cDNA sequences are yet to be assigned structure and function. In this study, a 549 bp long cDNA (sdrbp) has been sequenced and characterized in silico. The shortest ORF of 249 bp from the isolated cDNA encodes a polypeptide of 82 amino acids and shows an amino acid identity of 54% with the RRM domain of human cleavage stimulation factor-64 kDa subunit (CstF-64). Structure of the protein (sdRBP) obtained by homology modelling using RRM of CstF-64 as template adopts classical RRM topology (β1α1β2β3α2β4). sdRBP model built was validated by superimposition tools and Ramachandran plot analysis. CstF-64 plays an important role in pre-mRNA polyadenylation by interacting with specific GU-rich downstream sequence element. Molecular docking studies of sdRBP with different RNA molecules revealed that sdRBP has greater binding affinity to GU-rich RNA and comparable results were obtained upon similar docking of RRM of CstF-64 with the same RNA molecules. Therefore, sdRBP is likely to perform homologous function in S. digitata. This study brings new dimensions to the functional analysis of RNA binding proteins of S. digitata and their evaluation as new drug targets against HLF.

  20. Heavy Chain-Only IgG2b Llama Antibody Effects Near-Pan HIV-1 Neutralization by Recognizing a CD4-Induced Epitope That Includes Elements of Coreceptor- and CD4-Binding Sites

    PubMed Central

    Luongo, Timothy S.; Georgiev, Ivelin S.; Matz, Julie; Schmidt, Stephen D.; Louder, Mark K.; Kessler, Pascal; Yang, Yongping; McKee, Krisha; O'Dell, Sijy; Chen, Lei; Baty, Daniel; Chames, Patrick; Martin, Loïc; Mascola, John R.

    2013-01-01

    The conserved HIV-1 site of coreceptor binding is protected from antibody-directed neutralization by conformational and steric restrictions. While inaccessible to most human antibodies, the coreceptor site has been shown to be accessed by antibody fragments. In this study, we used X-ray crystallography, surface plasmon resonance, and pseudovirus neutralization to characterize the gp120-envelope glycoprotein recognition and HIV-1 neutralization of a heavy chain-only llama antibody, named JM4. We describe full-length IgG2b and IgG3 versions of JM4 that target the coreceptor-binding site and potently neutralize over 95% of circulating HIV-1 isolates. Contrary to established trends that show improved access to the coreceptor-binding region by smaller antibody fragments, the single-domain (VHH) version of JM4 neutralized less well than the full-length IgG2b version of JM4. The crystal structure at 2.1-Å resolution of VHH JM4 bound to HIV-1 YU2 gp120 stabilized in the CD4-bound state by the CD4-mimetic miniprotein, M48U1, revealed a JM4 epitope that combined regions of coreceptor recognition (including the gp120 bridging sheet, V3 loop, and β19 strand) with gp120 structural elements involved in recognition of CD4 such as the CD4-binding loop. The structure of JM4 with gp120 thus defines a novel CD4-induced site of vulnerability involving elements of both coreceptor- and CD4-binding sites. The potently neutralizing JM4 IgG2b antibody that targets this newly defined site of vulnerability adds to the expanding repertoire of broadly neutralizing antibodies that effectively neutralize HIV-1 and thereby potentially provides a new template for vaccine development and target for HIV-1 therapy. PMID:23843638

  1. Heavy chain-only IgG2b llama antibody effects near-pan HIV-1 neutralization by recognizing a CD4-induced epitope that includes elements of coreceptor- and CD4-binding sites.

    PubMed

    Acharya, Priyamvada; Luongo, Timothy S; Georgiev, Ivelin S; Matz, Julie; Schmidt, Stephen D; Louder, Mark K; Kessler, Pascal; Yang, Yongping; McKee, Krisha; O'Dell, Sijy; Chen, Lei; Baty, Daniel; Chames, Patrick; Martin, Loïc; Mascola, John R; Kwong, Peter D

    2013-09-01

    The conserved HIV-1 site of coreceptor binding is protected from antibody-directed neutralization by conformational and steric restrictions. While inaccessible to most human antibodies, the coreceptor site has been shown to be accessed by antibody fragments. In this study, we used X-ray crystallography, surface plasmon resonance, and pseudovirus neutralization to characterize the gp120-envelope glycoprotein recognition and HIV-1 neutralization of a heavy chain-only llama antibody, named JM4. We describe full-length IgG2b and IgG3 versions of JM4 that target the coreceptor-binding site and potently neutralize over 95% of circulating HIV-1 isolates. Contrary to established trends that show improved access to the coreceptor-binding region by smaller antibody fragments, the single-domain (VHH) version of JM4 neutralized less well than the full-length IgG2b version of JM4. The crystal structure at 2.1-Å resolution of VHH JM4 bound to HIV-1 YU2 gp120 stabilized in the CD4-bound state by the CD4-mimetic miniprotein, M48U1, revealed a JM4 epitope that combined regions of coreceptor recognition (including the gp120 bridging sheet, V3 loop, and β19 strand) with gp120 structural elements involved in recognition of CD4 such as the CD4-binding loop. The structure of JM4 with gp120 thus defines a novel CD4-induced site of vulnerability involving elements of both coreceptor- and CD4-binding sites. The potently neutralizing JM4 IgG2b antibody that targets this newly defined site of vulnerability adds to the expanding repertoire of broadly neutralizing antibodies that effectively neutralize HIV-1 and thereby potentially provides a new template for vaccine development and target for HIV-1 therapy.

  2. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5.

    PubMed

    Shin, J-H; Janer, M; McNeney, B; Blay, S; Deutsch, K; Sanjeevi, C B; Kockum, I; Lernmark, A; Graham, J; Arnqvist, Hans; Björck, Elizabeth; Eriksson, Jan; Nyström, Lennarth; Ohlson, Lars Olof; Scherstén, Bengt; Ostman, Jan; Aili, M; Bååth, L E; Carlsson, E; Edenwall, H; Forsander, G; Granström, B W; Gustavsson, I; Hanås, R; Hellenberg, L; Hellgren, H; Holmberg, E; Hörnell, H; Ivarsson, Sten-A; Johansson, C; Jonsell, G; Kockum, K; Lindblad, B; Lindh, A; Ludvigsson, J; Myrdal, U; Neiderud, J; Segnestam, K; Sjöblad, S; Skogsberg, L; Strömberg, L; Ståhle, U; Thalme, B; Tullus, K; Tuvemo, T; Wallensteen, M; Westphal, O; Aman, J

    2007-09-01

    In a large case-control study of Swedish incident type I diabetes patients and controls, 0-34 years of age, we tested the hypothesis that the GIMAP5 gene, a key genetic factor for lymphopenia in spontaneous BioBreeding rat diabetes, is associated with type I diabetes; with islet autoantibodies in incident type I diabetes patients or with age at clinical onset in incident type I diabetes patients. Initial scans of allelic association were followed by more detailed logistic regression modeling that adjusted for known type I diabetes risk factors and potential confounding variables. The single nucleotide polymorphism (SNP) rs6598, located in a polyadenylation signal of GIMAP5, was associated with the presence of significant levels of IA-2 autoantibodies in the type I diabetes patients. Patients with the minor allele A of rs6598 had an increased prevalence of IA-2 autoantibody levels compared to patients without the minor allele (OR=2.2; Bonferroni-corrected P=0.003), after adjusting for age at clinical onset (P=8.0 x 10(-13)) and the numbers of HLA-DQ A1*0501-B1*0201 haplotypes (P=2.4 x 10(-5)) and DQ A1*0301-B1*0302 haplotypes (P=0.002). GIMAP5 polymorphism was not associated with type I diabetes or with GAD65 or insulin autoantibodies, ICA, or age at clinical onset in patients. These data suggest that the GIMAP5 gene is associated with islet autoimmunity in type I diabetes and add to recent findings implicating the same SNP in another autoimmune disease.

  3. Polyadenylated mRNA staining reveals distinct neuronal phenotypes following endothelin 1, focal brain ischemia, and global brain ischemia/ reperfusion

    PubMed Central

    Jamison, Jill T.; Lewis, Monique K.; Kreipke, Christian W.; Rafols, Jose A.; DeGracia, Donald J.

    2011-01-01

    Objectives Most work on ischemia-induced neuronal death has revolved around the relative contributions of necrosis and apoptosis, but this work has not accounted for the role of ischemia-induced stress responses. An expanded view recognizes a competition between ischemia-induced damage mechanisms and stress responses in the genesis of ischemia-induced neuronal death. An important marker of post-ischemic stress responses is inhibition of neuronal protein synthesis, a morphological correlate of which is the compartmentalization of mRNA away from ribosomes in the form of cytoplasmic mRNA granules. Methods Here we assessed the generality of this mRNA granule response following either 10 or 15 minutes global brain ischemia and 1 hour reperfusion, 4 hours focal cerebral ischemia alone, and endothelin 1 intraventricular injection. Results Both global and focal ischemia led to prominent neuronal cytoplasmic mRNA granule formation in layer II cortical neurons. In addition, we report here new post-ischemic cellular phenotypes characterized by the loss of nuclear polyadenylated mRNA staining in cortical neurons following endothelin 1 treatment and 15 minutes global ischemia. Both mRNA granulation and loss of nuclear mRNAs occurred in non-shrunken post-ischemic neurons. Discussion Where cytoplasmic mRNA granules generally appear to mark a protective response in surviving cells, loss of nuclear mRNAs may mark cellular damage leading to cell atrophy/death. Hence, staining for total mRNA may reveal facets of the competition between stress responses and damage mechanisms at early stages in post-ischemic neurons. PMID:21499502

  4. 170 SUPPLEMENT OF GROWTH DIFFERENTIATION FACTOR 8 ON PORCINE OOCYTE DURING IN VITRO MATURATION ACTIVATES SMAD2 AND cAMP RESPONSIVE ELEMENT BINDING PROTEIN SIGNALING.

    PubMed

    Yoon, J D; Lee, E; Hyun, S-H

    2016-01-01

    -related genes HAS2, PTX3, and TNFAIP6 mRNA expression levels after IVM (4 times). To determine effect of GDF8 treatment during IVM, GDF8 downstream effector and oocyte ovulation-related protein expression and activation levels were analysed in CC after IVM by Western blotting. The 1 and 10ngmL(-1) treatment groups showed significantly increased phosphorylated (P)-SMAD2 (1.25 and 1.23 times increased compared with the control) and cyclic adenosine monophosphate responsive element binding protein (CREB; 1.31 and 1.32 times increased compared with the control) activation levels (4 times). In conclusion, supplementation of 10ngmL(-1) of GDF8 during IVM effectively increased the oocytes cytoplasmic maturation by reducing of intracellular ROS, and it seems correlated with significantly increased P-SMAD2, which is possibly related with induction of the cumulus cell expansion related genes expression and P-CREB while process of IVM.

  5. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Zhao, W S; Yang, Y C; Tian, H B; Shi, H B; Bionaz, M

    2016-01-01

    Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to

  6. ACRIDINE ORANGE BINDING BY MICROCOCCUS LYSODEIKTICUS

    PubMed Central

    Beers, Roland F.

    1964-01-01

    Beers, Roland F., Jr. (Johns Hopkins University, Baltimore, Md). Acridine orange binding by Micrococcus lysodeikticus. J. Bacteriol. 88:1249–1256. 1964.—Micrococcus lysodeikticus cells bind acridine orange (AO) reversibly. The adsorption isotherm is consistent with a highly cooperative-type binding similar to that observed with polyadenylic acid. The cells exhibit a strong buffering action on the concentration of free AO which remains constant (1 μg/ml) over a range from 5 to 95% saturation of the cells by AO. The cells stain either fluorescent orange or green. The fraction stained orange is directly proportional to the quantity of dye adsorbed, indicating that these cells bind a fixed amount of AO (10% of dry weight). The green-stained cells contain less than 1% of the AO bound to orange-stained cells. The results suggest that the abrupt increase in amount of AO bound by the orange-stained cells occurs when the concentration of free AO reaches a threshold concentration. Similar results were obtained with Bacillus cereus. Mg increases the free AO concentration and the extent of binding capacity of the cells. PMID:14234778

  7. A unique element resembling a processed pseudogene.

    PubMed

    Robins, A J; Wang, S W; Smith, T F; Wells, J R

    1986-01-05

    We describe a unique DNA element with structural features of a processed pseudogene but with important differences. It is located within an 8.4-kilobase pair region of chicken DNA containing five histone genes, but it is not related to these genes. The presence of terminal repeats, an open reading frame (and stop codon), polyadenylation/processing signal, and a poly(A) rich region about 20 bases 3' to this, together with a lack of 5' promoter motifs all suggest a processed pseudogene. However, no parent gene can be detected in the genome by Southern blotting experiments and, in addition, codon boundary values and mid-base correlations are not consistent with a protein coding region of a eukaryotic gene. The element was detected in DNA from different chickens and in peafowl, but not in quail, pheasant, or turkey.

  8. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  9. An AU-Rich Sequence Element (UUUN[A/U]U) Downstream of the Edited C in Apolipoprotein B mRNA Is a High-Affinity Binding Site for Apobec-1: Binding of Apobec-1 to This Motif in the 3′ Untranslated Region of c-myc Increases mRNA Stability

    PubMed Central

    Anant, Shrikant; Davidson, Nicholas O.

    2000-01-01

    Apobec-1, the catalytic subunit of the mammalian apolipoprotein B (apoB) mRNA-editing enzyme, is a cytidine deaminase with RNA binding activity for AU-rich sequences. This RNA binding activity is required for Apobec-1 to mediate C-to-U RNA editing. Filter binding assays, using immobilized Apobec-1, demonstrate saturable binding to a 105-nt apoB RNA with a Kd of ∼435 nM. A series of AU-rich templates was used to identify a high-affinity (∼50 nM) binding site of consensus sequence UUUN[A/U]U, with multiple copies of this sequence constituting the high-affinity binding site. In order to determine whether this consensus site could be functionally demonstrated from within an apoB RNA, circular-permutation analysis was performed, revealing one major (UUUGAU) and one minor (UU) site located 3 and 16 nucleotides, respectively, downstream of the edited base. Secondary-structure predictions reveal a stem-loop flanking the edited base with Apobec-1 binding to the consensus site(s) at an open loop. A similar consensus (AUUUA) is present in the 3′ untranslated regions of several mRNAs, including that of c-myc, that are known to undergo rapid degradation. In this context, it is presumed that the consensus motif acts as a destabilizing element. As an independent test of the ability of Apobec-1 to bind to this sequence, F442A cells were transfected with Apobec-1 and the half-life of c-myc mRNA was determined following actinomycin D treatment. These studies demonstrated an increase in the half-life of c-myc mRNA from 90 to 240 min in control versus Apobec-1-expressing cells. Apobec-1 expression mutants, in which RNA binding activity is eliminated, failed to alter c-myc mRNA turnover. Taken together, the data establish a consensus binding site for Apobec-1 embedded in proximity to the edited base in apoB RNA. Binding to this site in other target RNAs raises the possibility that Apobec-1 may be involved in other aspects of RNA metabolism, independent of its role as an apoB RNA

  10. Identification of a Bipartite Jasmonate-Responsive Promoter Element in the Catharanthus roseus ORCA3 Transcription Factor Gene That Interacts Specifically with AT-Hook DNA-Binding Proteins1[W

    PubMed Central

    Vom Endt, Débora; Soares e Silva, Marina; Kijne, Jan W.; Pasquali, Giancarlo; Memelink, Johan

    2007-01-01

    Jasmonates are plant signaling molecules that play key roles in defense against certain pathogens and insects, among others, by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the APETALA2-domain transcription factor ORCA3 is involved in the jasmonate-responsive activation of terpenoid indole alkaloid biosynthetic genes. ORCA3 gene expression is itself induced by jasmonate. By loss- and gain-of-function experiments, we located a 74-bp region within the ORCA3 promoter, which contains an autonomous jasmonate-responsive element (JRE). The ORCA3 JRE is composed of two important sequences: a quantitative sequence responsible for a high level of expression and a qualitative sequence that appears to act as an on/off switch in response to methyl jasmonate. We isolated 12 different DNA-binding proteins having one of four different types of DNA-binding domains, using the ORCA3 JRE as bait in a yeast (Saccharomyces cerevisiae) one-hybrid transcription factor screening. The binding of one class of proteins bearing a single AT-hook DNA-binding motif was affected by mutations in the quantitative sequence within the JRE. Two of the AT-hook proteins tested had a weak activating effect on JRE-mediated reporter gene expression, suggesting that AT-hook family members may be involved in determining the level of expression of ORCA3 in response to jasmonate. PMID:17496112

  11. STAT5a promotes the transcription of mature mmu-miR-135a in 3T3-L1 cells by binding to both miR-135a-1 and miR-135a-2 promoter elements.

    PubMed

    Wei, Xiajie; Cheng, Xiaoyan; Peng, Yongdong; Zheng, Rong; Chai, Jin; Jiang, Siwen

    2016-08-01

    Despite extensive research on the role of miR-135a in biological processes, very little attention has been paid to the regulation of its transcription. We have previously reported that miR-135a suppresses 3T3-L1 preadipocyte differentiation and adipogenesis by directly targeting the adenomatous polyposis coli (APC) gene and activating the canonical Wnt/β-catenin signaling pathway, but the regulatory elements that regulate the expression of the two isoforms of miR-135a (miR-135a-1 and miR-135a-2) remain poorly understood. Here, by using deletion analysis, we predicted two binding sites (-874/-856 and -2020/-2002) for the transcription factor Signal Transducers and Activators of Transcription 5a (STAT5a) within the core promoters of miR-135a-1 and miR-135a-2 (-1128/-556 and -2264/-1773), and the subsequent site-directed mutagenesis indicated that the two STAT5a binding sites regulated the activity of the miR-135a-1 and miR-135a-2 promoters. The binding of STAT5a to the miR-135a-1/2 core promoters in vitro and in cell culture was identified by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assays. Overexpression and RNAi knockdown of STAT5a showed that the transcription factor regulated the endogenous miR-135a expression. Additionally, The expression time frame of STAT5a and APC indicated a potential negative feedback between them. In sum, the overall results from this study indicate that STAT5a regulates miR-135a transcription by binding to both miR-135a-1 and miR135a-2 promoter elements and the findings provide novel insights into the molecular regulatory mechanisms of miR-135a during adipogenesis.

  12. Binding of estrogen receptors to switch sites and regulatory elements in the immunoglobulin heavy chain locus of activated B cells suggests a direct influence of estrogen on antibody expression.

    PubMed

    Jones, Bart G; Penkert, Rhiannon R; Xu, Beisi; Fan, Yiping; Neale, Geoff; Gearhart, Patricia J; Hurwitz, Julia L

    2016-09-01

    Females and males differ in antibody isotype expression patterns and in immune responses to foreign- and self-antigens. For example, systemic lupus erythematosus is a condition that associates with the production of isotype-skewed anti-self antibodies, and exhibits a 9:1 female:male disease ratio. To explain differences between B cell responses in males and females, we sought to identify direct interactions of the estrogen receptor (ER) with the immunoglobulin heavy chain locus. This effort was encouraged by our previous identification of estrogen response elements (ERE) in heavy chain switch (S) regions. We conducted a full-genome chromatin immunoprecipitation analysis (ChIP-seq) using DNA from LPS-activated B cells and an ERα-specific antibody. Results revealed ER binding to a wide region of DNA, spanning sequences from the JH cluster to Cδ, with peaks in Eμ and Sμ sites. Additional peaks of ERα binding were coincident with hs1,2 and hs4 sites in the 3' regulatory region (3'RR) of the heavy chain locus. This first demonstration of direct binding of ER to key regulatory elements in the immunoglobulin locus supports our hypothesis that estrogen and other nuclear hormone receptors and ligands may directly influence antibody expression and class switch recombination (CSR). Our hypothesis encourages the conduct of new experiments to evaluate the consequences of ER binding. A better understanding of ER:DNA interactions in the immunoglobulin heavy chain locus, and respective mechanisms, may ultimately translate to better control of antibody expression, better protection against pathogens, and prevention of pathologies caused by auto-immune disease.

  13. Members of the nuclear factor 1 family and hepatocyte nuclear factor 4 bind to overlapping sequences of the L-II element on the rat pyruvate kinase L gene promoter and regulate its expression.

    PubMed

    Yamada, K; Tanaka, T; Noguchi, T

    1997-06-15

    The L-II element (-149 to -126 bp) in the enhancer unit of the rat pyruvate kinase L (PKL) gene is required for cell-type-specific transcription and induction by carbohydrates. This element was found to bind multiple nuclear proteins with different heat stabilities. A heat-labile factor was shown to be hepatocyte nuclear factor (HNF) 4 by the electrophoretic mobility-shift assay (EMSA) using various competitor DNAs and anti-HNF4 serum. A heat-stable factor was purified from rat liver nuclear extract and was resolved as two protein bands migrating at about 33 kDa on SDS/polyacrylamide gels. Peptide sequence analysis revealed that these proteins were nuclear factor (NF) 1-L and NF1/Red1. The heat-stable factor was also identified as a member of the NF1 family by using various competitor DNAs and anti-NF1 serum in an EMSA. In addition, we found that a factor bound to the accessory site of the rat S14 gene, which is necessary for carbohydrate responsiveness of this gene, was also a member of the NF1 family, raising the possibility that the NF1 family is involved in the carbohydrate regulation of gene transcription by interactions with other proteins. The NF1 family members and HNF4 interacted with overlapping sequences of the L-II element, wherein the 5' half-site was more critical for NF1 binding, and the 3' site was more important for HNF4 binding. Co-transfection of a vector expressing either NF1-L or NF1/Red1 repressed the transcription of the PKL enhancer unit-chloramphenicol acetyltransferase (CAT) fusion gene in HepG2 cells, whereas co-transfection of a vector expressing HNF4 activated the transcription of the same reporter gene. Furthermore NF1 family members antagonized the effect of HNF4 on PKL enhancer unit-CAT fusion gene expression when both expression plasmids were co-transfected. We conclude that NF1 family members and HNF4 regulate transcription of the PKL gene in an opposing manner by binding overlapping sequences of the L-II element.

  14. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP.

    PubMed

    Higgins, Christina E; Gross, Steven S

    2011-04-08

    GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.

  15. TRE5-A retrotransposition profiling reveals putative RNA polymerase III transcription complex binding sites on the Dictyostelium extrachromosomal rDNA element.

    PubMed

    Spaller, Thomas; Groth, Marco; Glöckner, Gernot; Winckler, Thomas

    2017-01-01

    The amoeba Dictyostelium discoideum has a haploid genome in which two thirds of the DNA encodes proteins. Consequently, the space available for selfish mobile elements to expand without excess damage to the host genome is limited. The non-long terminal repeat retrotransposon TRE5-A maintains an active population in the D. discoideum genome and apparently adapted to this gene-dense environment by targeting positions ~47 bp upstream of tRNA genes that are devoid of protein-coding regions. Because only ~24% of tRNA genes are associated with a TRE5-A element in the reference genome, we evaluated whether TRE5-A retrotransposition is limited to this subset of tRNA genes. We determined that a tagged TRE5-A element (TRE5-Absr) integrated at 384 of 405 tRNA genes, suggesting that expansion of the current natural TRE5-A population is not limited by the availability of targets. We further observed that TRE5-Absr targets the ribosomal 5S gene on the multicopy extrachromosomal DNA element that carries the ribosomal RNA genes, indicating that TRE5-A integration may extend to the entire RNA polymerase III (Pol III) transcriptome. We determined that both natural TRE5-A and cloned TRE5-Absr retrotranspose to locations on the extrachromosomal rDNA element that contain tRNA gene-typical A/B box promoter motifs without displaying any other tRNA gene context. Based on previous data suggesting that TRE5-A targets tRNA genes by locating Pol III transcription complexes, we propose that A/B box loci reflect Pol III transcription complex assembly sites that possess a function in the biology of the extrachromosomal rDNA element.

  16. A large protein containing zinc finger domains binds to related sequence elements in the enhancers of the class I major histocompatibility complex and kappa immunoglobulin genes.

    PubMed Central

    Baldwin, A S; LeClair, K P; Singh, H; Sharp, P A

    1990-01-01

    A cDNA from a B-cell library was previously isolated that encodes a sequence-specific DNA-binding protein with affinities for related sites in a class I major histocompatibility complex (MHC) and kappa immunoglobulin gene enhancers. We report here approximately 6.5 kilobases of sequence of the MBP-1 (MHC enhancer binding protein 1) cDNA. MBP-1 protein has a molecular weight predicted to be greater than 200,000. A DNA-binding domain with high affinity for the MHC enhancer sequence TGGGGATTCCCCA was localized to an 118-amino-acid protein fragment containing two zinc fingers of the class Cys2-X12-His2. Analysis of expression of MBP-1 mRNA revealed relatively high expression in HeLa cells and in a human retinal cell line, with lower levels in Jurkat T cells and in two B-cell lines. Interestingly, expression of MBP-1 mRNA was inducible by mitogen and phorbol ester treatment of Jurkat T cells and by serum treatment of confluent serum-deprived human fibroblasts. Images PMID:2108316

  17. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3′-untranslated region

    PubMed Central

    Li, Xuelin; Lu, Liang; Bush, Donald J.; Zhang, Xiaowen; Zheng, Lei; Suswam, Esther A.; King, Peter H.

    2009-01-01

    Vascular endothelial growth factor (VEGF) is a neurotrophic factor essential for maintenance of motor neurons. Loss of this factor produces a phenotype similar to amyotrophic lateral sclerosis (ALS). We recently showed that ALS-producing mutations of Cu/Zn-superoxide dismutase (SOD1) disrupt post-transcriptional regulation of VEGF mRNA, leading to significant loss of expression. Mutant SOD1 was present in the ribonucleoprotein complex associated with adenine/uridine-rich elements (ARE) of the VEGF 3′-untranslated region (UTR). Here, we show by electrophoretic mobility shift assay that mutant SOD1 bound directly to the VEGF 3′-UTR with a predilection for AREs similar to the RNA stabilizer HuR. SOD1 mutants A4V and G37R showed higher affinity for the ARE than L38V or G93A. Wild-type SOD1 bound very weakly with an apparent Kd 11- to 72-fold higher than mutant forms. Mutant SOD1 showed an additional lower shift with VEGF ARE that was accentuated in the metal-free state. A similar pattern of binding was observed with AREs of tumor necrosis factor-α and interleukin-8, except only a single shift predominated. Using an ELISA-based assay, we demonstrated that mutant SOD1 competes with HuR and neuronal HuC for VEGF 3′-UTR binding. To define potential RNA-binding domains, we truncated G37R, G93A and wild-type SOD1 and found that peptides from the N-terminal portion of the protein that included amino acids 32-49 could recapitulate the binding pattern of full-length protein. Thus, the strong RNA-binding affinity conferred by ALS-associated mutations of SOD1 may contribute to the post-transcriptional dysregulation of VEGF mRNA. PMID:19196430

  18. Expression of tetanus toxin fragment C in yeast: gene synthesis is required to eliminate fortuitous polyadenylation sites in AT-rich DNA.

    PubMed Central

    Romanos, M A; Makoff, A J; Fairweather, N F; Beesley, K M; Slater, D E; Rayment, F B; Payne, M M; Clare, J J

    1991-01-01

    Fragment C is a non-toxic 50 kDa fragment of tetanus toxin which is a candidate subunit vaccine against tetanus. The AT-rich Clostridium tetani DNA encoding fragment C could not be expressed in Saccharomyces cerevisiae due to the presence of several fortuitous polyadenylation sites which gave rise to truncated mRNAs. The polyadenylation sites were eliminated by chemically synthesising the DNA with increased GC-content (from 29% to 47%). Synthesis of the entire gene (1400 base pairs) was necessary to generate full-length transcripts and for protein production in yeast. Using a GAL1 promoter vector, fragment C was expressed to 2-3% of soluble cell protein. Fragment C could also be secreted using the alpha-factor leader peptide as a secretion signal. The protein was present at 5-10 mg/l in the culture medium in two forms: a high molecular mass hyper-glycosylated protein (75-200 kDa) and a core-glycosylated protein (65 kDa). Intracellular fragment C was as effective in vaccinating mice against tetanus authentic fragment C. The glycosylated material was inactive, though it was rendered fully active by de-glycosylation. Images PMID:2027754

  19. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana.

    PubMed

    Lange, Heike; Holec, Sarah; Cognat, Valérie; Pieuchot, Laurent; Le Ret, Monique; Canaday, Jean; Gagliardi, Dominique

    2008-05-01

    Yeast Rrp6p and its human counterpart, PM/Scl100, are exosome-associated proteins involved in the degradation of aberrant transcripts and processing of precursors to stable RNAs, such as the 5.8S rRNA, snRNAs, and snoRNAs. The activity of yeast Rrp6p is stimulated by the polyadenylation of its RNA substrates. We identified three RRP6-like proteins in Arabidopsis thaliana: AtRRP6L3 is restricted to the cytoplasm, whereas AtRRP6L1 and -2 have different intranuclear localizations. Both nuclear RRP6L proteins are functional, since AtRRP6L1 complements the temperature-sensitive phenotype of a yeast rrp6Delta strain and mutation of AtRRP6L2 leads to accumulation of an rRNA maturation by-product. This by-product corresponds to the excised 5' part of the 18S-5.8S-25S rRNA precursor and accumulates as a polyadenylated transcript, suggesting that RRP6L2 is involved in poly(A)-mediated RNA degradation in plant nuclei. Interestingly, the rRNA maturation by-product is a substrate of AtRRP6L2 but not of AtRRP6L1. This result and the distinctive subcellular distribution of AtRRP6L1 to -3 indicate a specialization of RRP6-like proteins in Arabidopsis.

  20. In vitro transcription of a Drosophila U1 small nuclear RNA gene requires TATA box-binding protein and two proximal cis-acting elements with stringent spacing requirements.

    PubMed Central

    Zamrod, Z; Tyree, C M; Song, Y; Stumph, W E

    1993-01-01

    Transcription of a Drosophila U1 small nuclear RNA gene was functionally analyzed in cell extracts derived from 0- to 12-h embryos. Two promoter elements essential for efficient initiation of transcription in vitro by RNA polymerase II were identified. The first, termed PSEA, is located between positions -41 and -61 relative to the transcription start site, is crucial for promoter activity, and is the dominant element for specifying the transcription initiation site. PSEA thus appears to be functionally homologous to the proximal sequence element of vertebrate small nuclear RNA genes. The second element, termed PSEB, is located at positions -25 to -32 and is required for an efficient level of transcription initiation because mutation of PSEB, or alteration of the spacing between PSEA and PSEB, severely reduced transcriptional activity relative to that of the wild-type promoter. Although the PSEB sequence does not have any obvious sequence similarity to a TATA box, conversion of PSEB to the canonical TATA sequence dramatically increased the efficiency of the U1 promoter and simultaneously relieved the requirement for the upstream PSEA. Despite these effects, introduction of the TATA sequence into the U1 promoter had no effect on the choice of start site or on the RNA polymerase II specificity of the promoter. Finally, evidence is presented that the TATA box-binding protein is required for transcription from the wild-type U1 promoter as well as from the TATA-containing U1 promoter. Images PMID:8355718

  1. p190RhoGEF Binds to a destabilizing element in the 3' untranslated region of light neurofilament subunit mRNA and alters the stability of the transcript.

    PubMed

    Cañete-Soler, R; Wu, J; Zhai, J; Shamim, M; Schlaepfer, W W

    2001-08-24

    Stabilization of neurofilament (NF) mRNAs plays a major role in regulating levels of NF expression and in establishing axonal size and rate of axonal conduction. Previous studies have identified a 68-nucleotide destabilizing element at the junction of the coding region and 3' untranslated region of the light NF subunit (NF-L) mRNA. The present study has used the destabilizing element (probe A) to screen a rat brain cDNA library for interactive proteins. A cDNA clone encoding 1068 nucleotides in the C-terminal domain of p190RhoGEF (clone 39) was found to bind strongly and specifically to the RNA probe. The interaction was confirmed using a glutathione S-transferase/clone 39 fusion protein in Northwestern, gel-shift, and cross-linkage studies. The glutathione S-transferase/clone 39 fusion protein also enhanced the cross-linkage of a major 43-kDa protein in brain extract to the destabilizing element. Functional studies on stably transfected neuronal cells showed that p190RhoGEF expression increased the half-life of a wild-type NF-L mRNA but did not alter the half-life of a mutant NF-L mRNA lacking the destabilizing element. The findings reveal a novel interactive feature of p190RhoGEF that links the exchange factor with NF mRNA stability and regulation of the axonal cytoskeleton.

  2. Induction of the Ly-6A/E gene by interferon alpha/beta and gamma requires a DNA element to which a tyrosine-phosphorylated 91-kDa protein binds.

    PubMed Central

    Khan, K D; Shuai, K; Lindwall, G; Maher, S E; Darnell, J E; Bothwell, A L

    1993-01-01

    The murine Ly-6A/E gene is transcriptionally induced in cells exposed to interferon alpha/beta or gamma (IFN-alpha/beta or IFN-gamma). Analysis of the 5' flanking sequence using reporter plasmids that contain upstream elements of the Ly-6E gene has previously identified an approximately 850-base-pair IFN-responsive region that lacked an IFN-alpha-stimulated response element (ISRE), the element present and required for an IFN-alpha response of a number of genes. Analysis by deletion and stable transfection of the IFN-responsive region of the Ly-6E promoter has defined an 80-base-pair region containing an IFN-gamma activation site (GAS) but no ISRE that allows IFN-gamma and IFN-alpha inducibility of the Ly-6E gene. As tested by specific antiserum, a 91-kDa protein known to be activated in IFN-alpha- or IFN-gamma-treated cells binds to the GAS element from the Ly-6E promoter. The 91-kDa protein exists as an inactive cytoplasmic precursor and depends on tyrosine phosphorylation for its activation. Thus the same 91-kDa protein appears to act in the signal transduction pathways of both types of IFN for the Ly-6-A/E gene. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7688129

  3. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.

    PubMed

    Sudhakaran, Indulekha P; Ramaswami, Mani

    2016-10-11

    Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs

  4. Selective Modulation of Some Forms of Schaffer Collateral-CA1 Synaptic Plasticity in Mice with a Disruption of the "CPEB-1" Gene

    ERIC Educational Resources Information Center

    Alarcon, Juan M.; Hodgman, Rebecca; Theis, Martin; Huang, Yi-Shuian; Kandel, Eric R.; Richter, Joel D.

    2004-01-01

    CPEB-1 is a sequence-specific RNA binding protein that stimulates the polyadenylation-induced translation of mRNAs containing the cytoplasmic polyadenylation element (CPE). Although CPEB-1 was identified originally in Xenopus oocytes, it has also been found at postsynaptic sites of hippocampal neurons where, in response to N-methyl-D-aspartate…

  5. Anoxic induction of a sarcoma virus-related VL30 retrotransposon is mediated by a cis-acting element which binds hypoxia-inducible factor 1 and an anoxia-inducible factor.

    PubMed Central

    Estes, S D; Stoler, D L; Anderson, G R

    1995-01-01

    Cells exposed to hypoxia undergo substantial changes in gene expression generally associated with metabolic adaptation and increasing oxygen delivery. In contrast, responses distinct from those elicited by hypoxia are induced in anoxic fibroblasts; this includes activation of a set of VL30 elements. The responses seen in anoxically cultured fibroblasts are expressed physiologically in vivo during the anaerobic phase of wound healing. A fundamental question is whether transcriptional regulatory pathways utilized during anoxia are distinct from those already characterized for hypoxic cells. We report here the isolation of a 14-bp sequence within a VL30 retrotransposon promoter which mediates its anoxia responsiveness. Analyses of the protein complexes binding to this sequence demonstrated the presence of two distinct inducible DNA binding activities. The first is present in both hypoxic and anoxic fibroblasts and is indistinguishable from hypoxia-inducible factor 1. The second activity, which is present only in anoxic fibroblasts, is a previously uncharacterized heterodimeric DNA binding activity that appears to arise via posttranslational modification of an existing complex found in aerobic cells. These results indicate that the strong VL30 transcriptional induction seen with anoxia occurs through a mechanism specific to anoxia. PMID:7666534

  6. Efficient Binding of the NOS1AP C-Terminus to the nNOS PDZ Pocket Requires the Concerted Action of the PDZ Ligand Motif, the Internal ExF Site and Structural Integrity of an Independent Element

    PubMed Central

    Li, Li-Li; Cisek, Katryna; Courtney, Michael J.

    2017-01-01

    Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, ∼3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand. PMID:28360833

  7. Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites

    PubMed Central

    Hemberg, Martin; Gray, Jesse M.; Cloonan, Nicole; Kuersten, Scott; Grimmond, Sean; Greenberg, Michael E.; Kreiman, Gabriel

    2012-01-01

    More than 98% of a typical vertebrate genome does not code for proteins. Although non-coding regions are sprinkled with short (<200 bp) islands of evolutionarily conserved sequences, the function of most of these unannotated conserved islands remains unknown. One possibility is that unannotated conserved islands could encode non-coding RNAs (ncRNAs); alternatively, unannotated conserved islands could serve as promoter-distal regulatory factor binding sites (RFBSs) like enhancers. Here we assess these possibilities by comparing unannotated conserved islands in the human and mouse genomes to transcribed regions and to RFBSs, relying on a detailed case study of one human and one mouse cell type. We define transcribed regions by applying a novel transcript-calling algorithm to RNA-Seq data obtained from total cellular RNA, and we define RFBSs using ChIP-Seq and DNAse-hypersensitivity assays. We find that unannotated conserved islands are four times more likely to coincide with RFBSs than with unannotated ncRNAs. Thousands of conserved RFBSs can be categorized as insulators based on the presence of CTCF or as enhancers based on the presence of p300/CBP and H3K4me1. While many unannotated conserved RFBSs are transcriptionally active to some extent, the transcripts produced tend to be unspliced, non-polyadenylated and expressed at levels 10 to 100-fold lower than annotated coding or ncRNAs. Extending these findings across multiple cell types and tissues, we propose that most conserved non-coding genomic DNA in vertebrate genomes corresponds to promoter-distal regulatory elements. PMID:22684627

  8. Requirement of upstream Hfq-binding (ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY.

    PubMed

    Salim, Nilshad N; Faner, Martha A; Philip, Jane A; Feig, Andrew L

    2012-09-01

    Hfq is an important RNA-binding protein that helps bacteria adapt to stress. Its primary function is to promote pairing between trans-acting small non-coding RNAs (sRNAs) and their target mRNAs. Identification of essential Hfq-binding motifs in up-stream regions of rpoS and fhlA led us to ask the question whether these elements are a common occurrence among other Hfq-dependent mRNAs as well. Here, we confirm the presence of a similar (ARN)(x) motif in glmS RNA, a gene controlled by two sRNAs (GlmZ and GlmY) in an Hfq-dependent manner. GlmZ represents a canonical sRNA:mRNA pairing system, whereas GlmY is non-canonical, interfacing with the RNA processing protein YhbJ. We show that glmS interacts with both Hfq-binding surfaces in the absence of sRNAs. Even though two (ARN)(x) motifs are present, using a glmS:gfp fusion system, we determined that only one specific (ARN)(x) element is essential for regulation. Furthermore, we show that residues 66-72 in the C-terminal extension of Escherichia coli Hfq are essential for activation of GlmS expression by GlmY, but not with GlmZ. This result shows that the C-terminal extension of Hfq may be required for some forms of non-canonical sRNA regulation involving ancillary components such as additional RNAs or proteins.

  9. Synergy of aromatic residues and phosphoserines within the intrinsically disordered DNA-binding inhibitory elements of the Ets-1 transcription factor.

    PubMed

    Desjardins, Geneviève; Meeker, Charles A; Bhachech, Niraja; Currie, Simon L; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2014-07-29

    The E26 transformation-specific (Ets-1) transcription factor is autoinhibited by a conformationally disordered serine-rich region (SRR) that transiently interacts with its DNA-binding ETS domain. In response to calcium signaling, autoinhibition is reinforced by calmodulin-dependent kinase II phosphorylation of serines within the SRR. Using mutagenesis and quantitative DNA-binding measurements, we demonstrate that phosphorylation-enhanced autoinhibition requires the presence of phenylalanine or tyrosine (ϕ) residues adjacent to the SRR phosphoacceptor serines. The introduction of additional phosphorylated Ser-ϕ-Asp, but not Ser-Ala-Asp, repeats within the SRR dramatically reinforces autoinhibition. NMR spectroscopic studies of phosphorylated and mutated SRR variants, both within their native context and as separate trans-acting peptides, confirmed that the aromatic residues and phosphoserines contribute to the formation of a dynamic complex with the ETS domain. Complementary NMR studies also identified the SRR-interacting surface of the ETS domain, which encompasses its positively charged DNA-recognition interface and an adjacent region of neutral polar and nonpolar residues. Collectively, these studies highlight the role of aromatic residues and their synergy with phosphoserines in an intrinsically disordered regulatory sequence that integrates cellular signaling and gene expression.

  10. The Arabidopsis ETHYLENE RESPONSE FACTOR1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different cis-Acting Elements in Response to Different Stress Signals1[W][OA

    PubMed Central

    Cheng, Mei-Chun; Liao, Po-Ming; Kuo, Wei-Wen; Lin, Tsan-Piao

    2013-01-01

    ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals. PMID:23719892

  11. Functional analysis of basic transcription element (BTE)-binding protein (BTEB) 3 and BTEB4, a novel Sp1-like protein, reveals a subfamily of transcriptional repressors for the BTE site of the cytochrome P4501A1 gene promoter.

    PubMed Central

    Kaczynski, Joanna A; Conley, Abigail A; Fernandez Zapico, Martin; Delgado, Sharon M; Zhang, Jin-San; Urrutia, Raul

    2002-01-01

    The Sp1-like family of transcription factors is emerging as an integral part of the cellular machinery involved in the control of gene expression. Members of this family of proteins contain three highly homologous C-terminal zinc-finger motifs that bind GC-rich sequences found in the promoters of a diverse number of genes, such as the basic transcription element (BTE) in the promoter of the carcinogen-metabolizing cytochrome P4501A1 (CYP1A1) gene. In the present study, we report the molecular and functional characterization of BTE-binding protein (BTEB) 4, a novel ubiquitously expressed member of the Sp1-like proteins family. This protein represents a new homologue of BTEB1, originally described as a regulator of the BTE site in the CYP1A1 gene promoter. Similarly to the recently described BTEB3, we demonstrate that the N-terminal region of BTEB4 directly represses transcription and binds the co-repressor mSin3A. In addition, we show that the C-terminal zinc-finger domain of BTEB4 binds specifically the BTE site of the CYP1A1 promoter, similar to BTEB1 and BTEB3. Also, we show that both BTEB3 and BTEB4 repress the CYP1A1 gene promoter via the BTE site in HepG2 and BxPC3 cells. Thus the identification of this protein expands the repertoire of BTEB-like members of the Sp1-like protein family involved in transcriptional repression. Furthermore, our results demonstrate that the BTEB subfamily can repress the CYP1A1 gene promoter via the BTE site. PMID:12036432

  12. Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements.

    PubMed

    Xiao, Jun; Cheng, Hongtao; Li, Xianghua; Xiao, Jinghua; Xu, Caiguo; Wang, Shiping

    2013-12-01

    Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.

  13. Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing.

    PubMed Central

    Huang, Y; Wimler, K M; Carmichael, G G

    1999-01-01

    We have reported recently that a small element within the mouse histone H2a-coding region permits efficient cytoplasmic accumulation of intronless beta-globin cDNA transcripts. This sequence lowers the levels of spliced products from intron-containing constructs and can functionally replace Rev and the Rev-responsive element (RRE) in the nuclear export of unspliced HIV-1-related mRNAs. In work reported here, we further investigate the molecular mechanisms by which this element might work. We demonstrate here through both in vivo and in vitro assays that, in addition to promoting mRNA nuclear export, this element acts as a polyadenylation enhancer and as a potent inhibitor of splicing. Surprisingly, two other described intronless mRNA transport elements (from the herpes simplex virus thymidine kinase gene and hepatitis B virus) appear to function in a similar manner. These findings prompt us to suggest that a general feature of intronless mRNA transport elements might be a collection of phenotypes, including the inhibition of splicing and the enhancement of both polyadenylation and mRNA export. PMID:10075934

  14. High-throughput amplification of mature microRNAs in uncharacterized animal models using polyadenylated RNA and stem-loop reverse transcription polymerase chain reaction.

    PubMed

    Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B

    2014-10-01

    This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification.

  15. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide.

    PubMed

    Satam, Vijay; Babu, Balaji; Patil, Pravin; Brien, Kimberly A; Olson, Kevin; Savagian, Mia; Lee, Megan; Mepham, Andrew; Jobe, Laura Beth; Bingham, John P; Pett, Luke; Wang, Shuo; Ferrara, Maddi; Bruce, Chrystal D; Wilson, W David; Lee, Moses; Hartley, John A; Kiakos, Konstantinos

    2015-09-01

    The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)).

  16. A rapid interference between glucocorticoids and cAMP-activated signalling in hypothalamic neurones prevents binding of phosphorylated cAMP response element binding protein and glucocorticoid receptor at the CRE-Like and composite GRE sites of thyrotrophin-releasing hormone gene promoter.

    PubMed

    Díaz-Gallardo, M Y; Cote-Vélez, A; Charli, J L; Joseph-Bravo, P

    2010-04-01

    Glucocorticoids or cAMP increase, within minutes, thyrotrophin-releasing hormone (TRH) transcription in hypothalamic primary cultures, although this effect is prevented if cells are simultaneously incubated with both drugs. Rat TRH promoter contains a CRE site at -101/-94 bp and a composite GRE element (cGRE) at -218/-197 bp. Nuclear extracts of hypothalamic cells incubated with 8Br-cAMP or dexamethasone, and not their combination, bind to oligonucleotides containing the CRE or cGRE sequences. Adjacent to CRE are Sp/Krüppel response elements, and flanking the GRE half site, two AP1 binding sites. The present study aimed to identify the hypothalamic transcription factors that bind to these sites. We verified that the effects of glucocorticoid were not mimicked by corticosterone-bovine serum albumin. Footprinting and chromatin immunoprecipitation (ChIP) assays were used to examine the interaction of cAMP- and glucocorticoid-mediated regulation of TRH transcription at the CRE and cGRE regions of the TRH promoter. Nuclear extracts from hypothalamic cells incubated for 1 h with cAMP or glucocorticoids protected CRE. The GRE half site was recognised by nuclear proteins from cells stimulated with glucocorticoids and, for the adjacent AP-1 sites, by nuclear proteins from cells stimulated with cAMP or phorbol esters. Protection of CRE or cGRE was lost if cells were coincubated with dexamethasone and 8Br-cAMP. ChIP assays revealed phospho-CREB, c-Jun, Sp1, c-Fos and GR antibodies bound the TRH promoter of cells treated with cAMP or glucocorticoids; anti:RNA-polymerase II immunoprecipitated TRH promoter in a similar proportion as anti:pCREB or anti:GR. Recruitment of pCREB, SP1 or GR was lost when cells were exposed simultaneously to 8Br-cAMP and glucocorticoids. The data show that while pCREB and Sp1 bind to CRE-2, or GR to cGRE of the TRH promoter, the mutual antagonism between cAMP and glucocorticoid signalling, which prevent their binding to TRH promoter, could serve as

  17. Human immunodeficiency virus type 1 Tat increases the expression of cleavage and polyadenylation specificity factor 73-kilodalton subunit modulating cellular and viral expression.

    PubMed

    Calzado, Marco A; Sancho, Rocío; Muñoz, Eduardo

    2004-07-01

    The human immunodeficiency virus type 1 (HIV-1) Tat protein, which is essential for HIV gene expression and viral replication, is known to mediate pleiotropic effects on various cell functions. For instance, Tat protein is able to regulate the rate of transcription of host cellular genes and to interact with the signaling machinery, leading to cellular dysfunction. To study the effect that HIV-1 Tat exerts on the host cell, we identified several genes that were up- or down-regulated in tat-expressing cell lines by using the differential display method. HIV-1 Tat specifically increases the expression of the cleavage and polyadenylation specificity factor (CPSF) 73-kDa subunit (CPSF3) without affecting the expression of the 160- and 100-kDa subunits of the CPSF complex. This complex comprises four subunits and has a key function in the 3'-end processing of pre-mRNAs by a coordinated interaction with other factors. CPSF3 overexpression experiments and knockdown of the endogenous CPSF3 by mRNA interference have shown that this subunit of the complex is an important regulatory protein for both viral and cellular gene expression. In addition to the known CPSF3 function in RNA polyadenylation, we also present evidence that this protein exerts transcriptional activities by repressing the mdm2 gene promoter. Thus, HIV-1-Tat up-regulation of CPSF3 could represent a novel mechanism by which this virus increases mRNA processing, causing an increase in both cell and viral gene expression.

  18. Discrimination of individual and concurrent glycosylation and polyadenylation mutations causing pseudo-deficiency of arylsulfatase A from mutations causing metachromatic leukodystrophy

    SciTech Connect

    Ben-Yoseph, Y.; Mitchell, D.A.

    1994-09-01

    Pseudo-deficiency (PD) of arylsulfatase A (ASA) is a benign condition of ASA deficiency that cannot be distinguished biochemically from metachromatic leukodystrophy (MLD). Two A{r_arrow}G transitions were identified in a number of PD alleles. One abolishes an N-glycosylation site and the other modifies a polyadenylation signal. These mutations were detected simultaneously be allele-specific PCR amplification of about 1 kilobase of DNA stretching from the glycosylation site in exon 6 to the adenylation site at the 3{prime} end of the ASA gene. A pair of normal primers and a pair of mutant primers were used in this simultaneous detection procedure. This method did not work when only one of the two mutations was present. To allow detection of the individual PD mutations, we used a distinct wild-type or mutant-specific primer on one side of the amplified fragment and a common primer on the other side. Detection of individual PD mutations was also accomplished by restriction digestion. The polyadenylation mutation created a Mae III restriction site. In the case of the N-glycosylation mutation that did not produce or destroy any known restriction site, we modified a single nucleotide in one primer and were able to create a Bfa I restriction site in the mutant allele. With these methods we detected PD alleles with individual and concurrent glycosylation and adenylation mutations. While the adenylation mutation alone was rare, the glycosylation mutation alone was more common that the concurrent presence of both mutations. Detection of PD mutations in the ASA gene by allele-specific amplification and by restriction digestion should help to resolve genotypic ambiguities in diagnosis and carrier detection of MLD.

  19. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription.

    PubMed

    Vidaković, Melita; Gluch, Angela; Qiao, Junhua; Oumard, Andrè; Frisch, Matthias; Poznanović, Goran; Bode, Juergen

    2009-05-15

    This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.

  20. Ginsenoside F2 reduces hair loss by controlling apoptosis through the sterol regulatory element-binding protein cleavage activating protein and transforming growth factor-β pathways in a dihydrotestosterone-induced mouse model.

    PubMed

    Shin, Heon-Sub; Park, Sang-Yong; Hwang, Eun-Son; Lee, Don-Gil; Mavlonov, Gafurjon Turdalievich; Yi, Tae-Hoo

    2014-01-01

    This study was conducted to test whether ginsenoside F2 can reduce hair loss by influencing sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and the transforming growth factor beta (TGF-β) pathway of apoptosis in dihydrotestosterone (DHT)-treated hair cells and in a DHT-induced hair loss model in mice. Results for ginsenoside F2 were compared with finasteride. DHT inhibits proliferation of hair cells and induces androgenetic alopecia and was shown to activate an apoptosis signal pathway both in vitro and in vivo. The cell-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the proliferation rates of DHT-treated human hair dermal papilla cells (HHDPCs) and HaCaTs increased by 48% in the ginsenoside F2-treated group and by 12% in the finasteride-treated group. Western blot analysis showed that ginsenoside F2 decreased expression of TGF-β2 related factors involved in hair loss. The present study suggested a hair loss related pathway by changing SCAP related apoptosis pathway, which has been known to control cholesterol metabolism. SCAP, sterol regulatory element-binding protein (SREBP) and caspase-12 expression in the ginsenoside F2-treated group were decreased compared to the DHT and finasteride-treated group. C57BL/6 mice were also prepared by injection with DHT and then treated with ginsenoside F2 or finasteride. Hair growth rate, density, thickness measurements and tissue histotological analysis in these groups suggested that ginsenoside F2 suppressed hair cell apoptosis and premature entry to catagen more effectively than finasteride. Our results indicated that ginsenoside F2 decreased the expression of TGF-β2 and SCAP proteins, which have been suggested to be involved in apoptosis and entry into catagen. This study provides evidence those factors in the SCAP pathway could be targets for hair loss prevention drugs.

  1. The BARD1 C-Terminal Domain Structure and Interactions with Polyadenylation Factor CstF-50

    SciTech Connect

    Edwards, Ross A.; Lee, Megan S.; Tsutakawa, Susan E.; Williams, R. Scott; Tainer, John A.; Glover, J. N. Mark

    2009-07-13

    The BARD1 N-terminal RING domain binds BRCA1 while the BARD1 C-terminal ankyrin and tandem BRCT repeat domains bind CstF-50 to modulate mRNA processing and RNAP II stability in response to DNA damage. Here we characterize the BARD1 structural biochemistry responsible for CstF- 50 binding. The crystal structure of the BARD1 BRCT domain uncovers a degenerate phosphopeptide binding pocket lacking the key arginine required for phosphopeptide interactions in other BRCT proteins.Small angle X-ray scattering together with limited proteolysis results indicates that ankyrin and BRCT domains are linked by a flexible tether and do not adopt a fixed orientation relative to one another. Protein pull-down experiments utilizing a series of purified BARD1 deletion mutants indicate that interactions between the CstF-50 WD-40 domain and BARD1 involve the ankyrin-BRCT linker but do not require ankyrin or BRCT domains. The structural plasticity imparted by the ANK-BRCT linker helps to explain the regulated assembly of different protein BARD1 complexes with distinct functions in DNA damage signaling including BARD1-dependent induction of apoptosis plus p53 stabilization and interactions. BARD1 architecture and plasticity imparted by the ANK-BRCT linker are suitable to allow the BARD1 C-terminus to act as a hub with multiple binding sites to integrate diverse DNA damage signals directly to RNA polymerase.

  2. Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector-binding elements of citrus canker susceptibility genes.

    PubMed

    Abe, Valeria Yukari; Benedetti, Celso Eduardo

    2016-10-01

    Citrus canker, caused by Xanthomonas citri, affects most commercial citrus varieties. All X. citri strains possess at least one transcription activator-like effector of the PthA family that activates host disease susceptibility (S) genes. The X. citri strain 306 encodes four PthA effectors; nevertheless, only PthA4 is known to elicit cankers on citrus. As none of the PthAs act as avirulence factors on citrus, we hypothesized that PthAs 1-3 might also contribute to pathogenicity on certain hosts. Here, we show that, although PthA4 is indispensable for canker formation in six Brazilian citrus varieties, PthAs 1 and 3 contribute to canker development in 'Pera' sweet orange, but not in 'Tahiti' lemon. Deletions in two or more pthA genes reduce bacterial growth in planta more pronouncedly than single deletions, suggesting an additive role of PthAs in pathogenicity and bacterial fitness. The contribution of PthAs 1 and 3 in canker formation in 'Pera' plants does not correlate with the activation of the canker S gene, LOB1 (LATERAL ORGAN BOUNDARIES 1), but with the induction of other PthA targets, including LOB2 and citrus dioxygenase (DIOX). LOB1, LOB2 and DIOX show differential PthA-dependent expression between 'Pera' and 'Tahiti' plants that appears to be associated with nucleotide polymorphisms found at or near PthA-binding sites. We also present evidence that LOB1 activation alone is not sufficient to elicit cankers on citrus, and that DIOX acts as a canker S gene in 'Pera', but not 'Tahiti', plants. Our results suggest that the activation of multiple S genes, such as LOB1 and DIOX, is necessary for full canker development.

  3. Mogrol Derived from Siraitia grosvenorii Mogrosides Suppresses 3T3-L1 Adipocyte Differentiation by Reducing cAMP-Response Element-Binding Protein Phosphorylation and Increasing AMP-Activated Protein Kinase Phosphorylation

    PubMed Central

    Harada, Naoki; Ishihara, Mikako; Horiuchi, Hiroko; Ito, Yuta; Tabata, Hiromitsu; Suzuki, Yasushi A.; Nakano, Yoshihisa; Yamaji, Ryoichi; Inui, Hiroshi

    2016-01-01

    This study investigated the effects of mogrol, an aglycone of mogrosides from Siraitia grosvenorii, on adipogenesis in 3T3-L1 preadipocytes. Mogrol, but not mogrosides, suppressed triglyceride accumulation by affecting early (days 0–2) and late (days 4–8), but not middle (days 2–4), differentiation stages. At the late stage, mogrol increased AMP-activated protein kinase (AMPK) phosphorylation and reduced glycerol-3-phosphate dehydrogenase activity. At the early stage, mogrol promoted AMPK phosphorylation, inhibited the induction of CCAAT/enhancer-binding protein β (C/EBPβ; a master regulator of adipogenesis), and reduced 3T3-L1 cell contents (e.g., clonal expansion). In addition, mogrol, but not the AMPK activator AICAR, suppressed the phosphorylation and activity of the cAMP response element-binding protein (CREB), which regulates C/EBPβ expression. These results indicated that mogrol suppressed adipogenesis by reducing CREB activation in the initial stage of cell differentiation and by activating AMPK signaling in both the early and late stages of this process. PMID:27583359

  4. Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy.

    PubMed

    Corbett, Grant T; Roy, Avik; Pahan, Kalipada

    2013-03-22

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are believed to be genuine molecular mediators of neuronal growth and homeostatic synapse activity. However, levels of these neurotrophic factors decrease in different brain regions of patients with Alzheimer disease (AD). Induction of astrocytic neurotrophin synthesis is a poorly understood phenomenon but represents a plausible therapeutic target because neuronal neurotrophin production is aberrant in AD and other neurodegenerative diseases. Here, we delineate that sodium phenylbutyrate (NaPB), a Food and Drug Administration-approved oral medication for hyperammonemia, induces astrocytic BDNF and NT-3 expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway. NaPB treatment increased the direct association between PKC and CREB followed by phosphorylation of CREB (Ser(133)) and induction of DNA binding and transcriptional activation of CREB. Up-regulation of markers for synaptic function and plasticity in cultured hippocampal neurons by NaPB-treated astroglial supernatants and its abrogation by anti-TrkB blocking antibody suggest that NaPB-induced astroglial neurotrophins are functionally active. Moreover, oral administration of NaPB increased the levels of BDNF and NT-3 in the CNS and improved spatial learning and memory in a mouse model of AD. Our results highlight a novel neurotrophic property of NaPB that may be used to augment neurotrophins in the CNS and improve synaptic function in disease states such as AD.

  5. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-10-29

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.

  6. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang).

    PubMed

    Hong, Jong-Pil; Kim, Woo Taek

    2005-04-01

    Through the use of subtractive hybridization analysis, we have identified 14 partial cDNA clones (pCa-DSRs) that are rapidly induced by dehydration in hot pepper (Capsicum annuum L.) roots. The predicted proteins encoded by Ca-DSRs are putatively involved in processes as diverse as primary and secondary metabolism, protein degradation, and stress responses, indicating the complexity of cellular responses to water deficit in hot pepper roots. Particularly, we investigated the detailed structural properties and expression profiles of Ca-DSR2 (Ca-DREBLP1: dehydration-responsive element binding-factor-like protein 1) encoding a protein that contains a single ERF/AP2 DNA-binding domain. Based on the conserved 14th valine and 19th glutamic acid residues in the ERF/AP2 domain, a basic amino acid stretch (PKKPAGRKKFR) near its N-terminal region, and DSAW signature sequence at the end of its ERF/AP2 domain, Ca-DREBLP1 was classified as a member of a DREB1-type subfamily. Gel retardation assays revealed that Ca-DREBLP1 was able to form a specific complex with the DRE/CRT motif, but not with the GCC box. When fused to the GAL4 DNA-binding domain, the Ca-DREBLP1(190-215) mutant could effectively function as a trans-activator in yeast. This suggests that the extreme C-terminal region plays an essential role in transcription activation. In hot pepper plants, Ca-DREBLP1 was rapidly induced by dehydration, high salinity and, to a lesser extent, mechanical wounding, but not by cold stress. Thus, although the structural features of Ca-DREBLP1 resemble those of the DREB1-type proteins of Arabidopsis thaliana and rice plants, its induction patterns are reminiscent of the DREB2-type proteins, indicating that Ca-DREBLP1 is a novel class DREB subfamily in hot pepper.

  7. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    PubMed

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  8. 3'UTR AU-Rich Elements (AREs) and the RNA-Binding Protein Tristetraprolin (TTP) Are Not Required for the LPS-Mediated Destabilization of Phospholipase-Cβ-2 mRNA in Murine Macrophages.

    PubMed

    Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph

    2017-04-01

    We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP(-/-)). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP(-/-) macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP(-/-) macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.

  9. API2-MALT1 fusion protein induces transcriptional activation of the API2 gene through NF-{kappa}B binding elements: Evidence for a positive feed-back loop pathway resulting in unremitting NF-{kappa}B activation

    SciTech Connect

    Hosokawa, Yoshitaka . E-mail: yhosokaw@aichi-cc.jp; Suzuki, Hiroko; Nakagawa, Masao; Lee, Tae H.; Seto, Masao

    2005-08-19

    t(11;18)(q21;q21) is a characteristic as well as the most frequent chromosomal translocation in mucosa-associated lymphoid tissue (MALT) type lymphoma, and this translocation results in a fusion transcript, API2-MALT1. Although API2-MALT1 has been shown to enforce activation of NF-{kappa}B signaling, the transcriptional target genes of this fusion protein remains to be identified. Our analyses of the API2-MALT transfectants suggested that one of the target genes may be the apoptotic inhibitor API2 gene. Luciferase reporter assays with deletion and mutational constructs of the API2 promoter and electrophoretic mobility shift assays established that API2-MALT1 induces transcriptional activation of the API2 gene through two NF-{kappa}B binding elements. Moreover, supershift experiments indicated that these elements are recognized by the NF-{kappa}B p50/p65 heterodimer. Taken together, our results strongly indicated that API2-MALT1 possesses a novel mechanism of self-activation by up-regulating its own expression in t(11;18)(q21;q21)-carrying MALT lymphomas, highlighting a positive feedback-loop pathway resulting in unremitting NF-{kappa}B activation.

  10. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression.

    PubMed

    Melanson, Brian D; Cabrita, Miguel A; Bose, Reetesh; Hamill, Jeffrey D; Pan, Elysia; Brochu, Christian; Marcellus, Kristen A; Zhao, Tong T; Holcik, Martin; McKay, Bruce C

    2013-06-01

    The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.

  11. A sugar beet chlorophyll a/b binding protein promoter void of G-box like elements confers strong and leaf specific reporter gene expression in transgenic sugar beet

    PubMed Central

    Stahl, Dietmar J; Kloos, Dorothee U; Hehl, Reinhard

    2004-01-01

    Background Modification of leaf traits in sugar beet requires a strong leaf specific promoter. With such a promoter, expression in taproots can be avoided which may otherwise take away available energy resources for sugar accumulation. Results Suppression Subtractive Hybridization (SSH) was utilized to generate an enriched and equalized cDNA library for leaf expressed genes from sugar beet. Fourteen cDNA fragments corresponding to thirteen different genes were isolated. Northern blot analysis indicates the desired tissue specificity of these genes. The promoters for two chlorophyll a/b binding protein genes (Bvcab11 and Bvcab12) were isolated, linked to reporter genes, and transformed into sugar beet using promoter reporter gene fusions. Transient and transgenic analysis indicate that both promoters direct leaf specific gene expression. A bioinformatic analysis revealed that the Bvcab11 promoter is void of G-box like regulatory elements with a palindromic ACGT core sequence. The data indicate that the presence of a G-box element is not a prerequisite for leaf specific and light induced gene expression in sugar beet. Conclusions This work shows that SSH can be successfully employed for the identification and subsequent isolation of tissue specific sugar beet promoters. These promoters are shown to drive strong leaf specific gene expression in transgenic sugar beet. The application of these promoters for expressing resistance improving genes against foliar diseases is discussed. PMID:15579211

  12. Short interspersed elements (SINEs) from insectivores. Two classes of mammalian SINEs distinguished by A-rich tail structure.

    PubMed

    Borodulina, O R; Kramerov, D A

    2001-10-01

    Four tRNA-related SINE families were isolated from the genome of the shrew Sorex araneus (SOR element), mole Mogera robusta (TAL element), and hedgehog Mesechinus dauuricus (ERI-1 and ERI-2 elements). Each of these SINEs families is specific for a single Insectivora family: SOR, for Soricidae (shrews); TAL, for Talpidae (moles and desmans); ERI-1 and ERI-2, for Erinaceidae (hedgehogs). There is a long polypyrimidine region (TC-motif) in TAL, ERI-1, and ERI-2 elements located immediately upstream of an A-rich tail with polyadenylation signals (AATAAA) and an RNA polymerase III terminator (T(4-6)) or TCT(3-4)). Ten out of 14 analyzed mammalian tRNA-related SINE families have an A-rich tail similar to that of TAL, ERI-1, and ERI-2 elements. These elements were assigned to class T+. The other four SINEs including SOR element have no polyadenylation signal and transcription terminator in their A-rich tail and were assigned to class T-. Class T+ SINEs occur only in mammals, and most of them have a long polypyrimidine region. Possible models of retroposition of class T+ and T- SINEs are discussed.

  13. Transposable elements in cancer and other human diseases.

    PubMed

    Chenais, Benoit

    2015-01-01

    Transposable elements (TEs) are mobile DNA sequences representing a substantial fraction of most genomes. Through the creation of new genes and functions, TEs are important elements of genome plasticity and evolution. However TE insertion in human genomes may be the cause of genetic dysfunction and alteration of gene expression contributing to cancer and other human diseases. Besides the chromosome rearrangements induced by TE repeats, this mini-review shows how gene expression may be altered following TE insertion, for example by the creation of new polyadenylation sites, by the creation of new exons (exonization), by exon skipping and by other modification of alternative splicing, and also by the alteration of regulatory sequences. Through the correlation between TE mobility and the methylation status of DNA, the importance of chromatin regulation is evident in several diseases. Finally this overview ends with a brief presentation of the use of TEs as biotechnology tools for insertional mutagenesis screening and gene therapy with DNA transposons.

  14. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy.

  15. Functional interaction of nitrogenous organic bases with cytochrome P450: a critical assessment and update of substrate features and predicted key active-site elements steering the access, binding, and orientation of amines.

    PubMed

    Hlavica, Peter

    2006-04-01

    The widespread use of nitrogenous organic bases as environmental chemicals, food additives, and clinically important drugs necessitates precise knowledge about the molecular principles governing biotransformation of this category of substrates. In this regard, analysis of the topological background of complex formation between amines and P450s, acting as major catalysts in C- and N-oxidative attack, is of paramount importance. Thus, progress in collaborative investigations, combining physico-chemical techniques with chemical-modification as well as genetic engineering experiments, enables substantiation of hypothetical work resulting from the design of pharmacophores or homology modelling of P450s. Based on a general, CYP2D6-related construct, the majority of prospective amine-docking residues was found to cluster near the distal heme face in the six known SRSs, made up by the highly variant helices B', F and G as well as the N-terminal portion of helix C and certain beta-structures. Most of the contact sites examined show a frequency of conservation < 20%, hinting at the requirement of some degree of conformational versatility, while a limited number of amino acids exhibiting a higher level of conservation reside close to the heme core. Some key determinants may have a dual role in amine binding and/or maintenance of protein integrity. Importantly, a series of non-SRS elements are likely to be operative via long-range effects. While hydrophobic mechanisms appear to dominate orientation of the nitrogenous compounds toward the iron-oxene species, polar residues seem to foster binding events through H-bonding or salt-bridge formation. Careful uncovering of structure-function relationships in amine-enzyme association together with recently developed unsupervised machine learning approaches will be helpful in both tailoring of novel amine-type drugs and early elimination of potentially toxic or mutagenic candidates. Also, chimeragenesis might serve in the construction

  16. cAMP Response Element-binding Protein (CREB) and Nuclear Factor κB Mediate the Tamoxifen-induced Up-regulation of Glutamate Transporter 1 (GLT-1) in Rat Astrocytes*

    PubMed Central

    Karki, Pratap; Webb, Anton; Smith, Keisha; Lee, Kyuwon; Son, Deok-Soo; Aschner, Michael; Lee, Eunsook

    2013-01-01

    Tamoxifen (TX), a selective estrogen receptor modulator, exerts antagonistic effects on breast tissue and is used to treat breast cancer. Recent evidence also suggests that it may act as an agonist in brain tissue. We reported previously that TX enhanced the expression and function of glutamate transporter 1 (GLT-1) in rat astrocytes, an effect that was mediated by TGF-α. To gain further insight into the mechanisms that mediate TX-induced up-regulation of GLT-1 (EAAT2 in humans), we investigated its effect on GLT-1 at the transcriptional level. TX phosphorylated the cAMP response element-binding protein (CREB) and recruited CREB to the GLT-1 promoter consensus site. The effect of TX on astrocytic GLT-1 was attenuated by the inhibition of PKA, the upstream activator of the CREB pathway. In addition, the effect of TX on GLT-1 promoter activity was abolished by the inhibition of the NF-κB pathway. Furthermore, TX recruited the NF-κB subunits p65 and p50 to the NF-κB binding domain of the GLT-1 promoter. Mutation of NF-κB (triple, −583/-282/-251) or CRE (-308) sites on the GLT-1 promoter led to significant repression of the promoter activity, but neither mutant completely abolished the TX-induced GLT-1 promoter activity. Mutation of both the NF-κB (-583/-282/-251) and CRE (-308) sites led to a complete abrogation of the effect of TX on GLT-1 promoter activity. Taken together, our findings establish that TX regulates GLT-1 via the CREB and NF-κB pathways. PMID:23955341

  17. Role of Hypoxia-Inducible Factor 1, α Subunit and cAMP-Response Element Binding Protein 1 in Synergistic Release of Interleukin 8 by Prostaglandin E2 and Nickel in Lung Fibroblasts

    PubMed Central

    Fabisiak, James P.

    2013-01-01

    Numerous epidemiological studies have linked exposure to particulate matter (PM) air pollution with acute respiratory infection and chronic respiratory and cardiovascular diseases. We have previously shown that soluble nickel (Ni), a common component of PM, alters the release of CXC chemokines from cultured human lung fibroblasts (HLF) in response to microbial stimuli via a pathway dependent on disrupted prostaglandin (PG)E2 signaling. The current study sought to identify the molecular events underlying Ni-induced alterations in PGE2 signaling and its effects on IL-8 production. PGE2 synergistically enhances Ni-induced IL-8 release from HLF in a concentration-dependent manner. The effects of PGE2 were mimicked by butaprost and PGE1-alcohol and inhibited with antagonists AH6809 and L-161,982, indicating PGE2 signals via PGE2 receptors 2 and 4. PGE2 and forskolin stimulated cAMP, but it was only in the presence of Ni-induced hypoxia-inducible factor 1, α subunit (HIF1A) that these agents stimulated IL-8 release. The Ni-induced HIF1A DNA binding was enhanced by PGE2 and mediated, in part, by activation of p38 MAPK. Negation of cAMP-response element binding protein 1 or HIF1A using short interfering RNA blocked the synergistic interactions between Ni and PGE2. The results of the current study provide novel information on the ability of atmospheric hypoxia-mimetic metals to disrupt the release of immune-modulating chemokines by HLF in response to PGE2. Moreover, in the presence of HIF1A, cAMP-mediated signaling pathways may be altered to exacerbate inflammatory-like processes in lung tissue, imparting a susceptibility of PM-exposed populations to adverse respiratory health effects. PMID:23526216

  18. A Novel Sterol Regulatory Element-Binding Protein Gene (sreA) Identified in Penicillium digitatum Is Required for Prochloraz Resistance, Full Virulence and erg11 (cyp51) Regulation

    PubMed Central

    Liu, Jing; Yuan, Yongze; Wu, Zhi; Li, Na; Chen, Yuanlei; Qin, Tingting; Geng, Hui; Xiong, Li; Liu, Deli

    2015-01-01

    Penicillium digitatum is the most destructive postharvest pathogen of citrus fruits, causing fruit decay and economic loss. Additionally, control of the disease is further complicated by the emergence of drug-resistant strains due to the extensive use of triazole antifungal drugs. In this work, an orthologus gene encoding a putative sterol regulatory element-binding protein (SREBP) was identified in the genome of P. digitatum and named sreA. The putative SreA protein contains a conserved domain of unknown function (DUF2014) at its carboxyl terminus and a helix-loop-helix (HLH) leucine zipper DNA binding domain at its amino terminus, domains that are functionally associated with SREBP transcription factors. The deletion of sreA (ΔsreA) in a prochloraz-resistant strain (PdHS-F6) by Agrobacterium tumefaciens-mediated transformation led to increased susceptibility to prochloraz and a significantly lower EC50 value compared with the HS-F6 wild-type or complementation strain (COsreA). A virulence assay showed that the ΔsreA strain was defective in virulence towards citrus fruits, while the complementation of sreA could restore the virulence to a large extent. Further analysis by quantitative real-time PCR demonstrated that prochloraz-induced expression of cyp51A and cyp51B in PdHS-F6 was completely abolished in the ΔsreA strain. These results demonstrate that sreA is a critical transcription factor gene required for prochloraz resistance and full virulence in P. digitatum and is involved in the regulation of cyp51 expression. PMID:25699519

  19. Functional interaction of hepatic nuclear factor-4 and peroxisome proliferator-activated receptor-gamma coactivator 1alpha in CYP7A1 regulation is inhibited by a key lipogenic activator, sterol regulatory element-binding protein-1c.

    PubMed

    Ponugoti, Bhaskar; Fang, Sungsoon; Kemper, Jongsook Kim

    2007-11-01

    Insulin inhibits transcription of cholesterol 7alpha-hydroxylase (Cyp7a1), a key gene in bile acid synthesis, and the hepatic nuclear factor-4 (HNF-4) site in the promoter was identified as a negative insulin response sequence. Using a fasting/feeding protocol in mice and insulin treatment in HepG2 cells, we explored the inhibition mechanisms. Expression of sterol regulatory element-binding protein-1c (SREBP-1c), an insulin-induced lipogenic factor, inversely correlated with Cyp7a1 expression in mouse liver. Interaction of HNF-4 with its coactivator, peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha), was observed in livers of fasted mice and was reduced after feeding. Conversely, HNF-4 interaction with SREBP-1c was increased after feeding. In vitro studies suggested that SREBP-1c competed with PGC-1alpha for direct interaction with the AF2 domain of HNF-4. Reporter assays showed that SREBP-1c, but not of a SREBP-1c mutant lacking the HNF-4 interacting domain, inhibited HNF-4/PGC-1alpha transactivation of Cyp7a1. SREBP-1c also inhibited PGC-1alpha-coactivation of estrogen receptor, constitutive androstane receptor, pregnane X receptor, and farnesoid X receptor, implying inhibition of HNF-4 by SREBP-1c could extend to other nuclear receptors. In chromatin immunoprecipitation studies, HNF-4 binding to the promoter was not altered, but PGC-1alpha was dissociated, SREBP-1c and histone deacetylase-2 (HDAC2) were recruited, and acetylation of histone H3 was decreased upon feeding. Adenovirus-mediated expression of a SREBP-1c dominant-negative mutant, which blocks the interaction of SREBP-1c and HNF-4, partially but significantly reversed the inhibition of Cyp7a1 after feeding. Our data show that SREBP-1c functions as a non-DNA-binding inhibitor and mediates, in part, suppression of Cyp7a1 by blocking functional interaction of HNF-4 and PGC-1alpha. This mechanism may be relevant t