Science.gov

Sample records for polyamine oxidase activity

  1. In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues.

    PubMed

    Maiale, Santiago J; Marina, María; Sánchez, Diego H; Pieckenstain, Fernando L; Ruiz, Oscar A

    2008-10-01

    Polyamine oxidase from Avena sativa L. cv. Cristal seedlings was purified to homogeneity using a simple four-step purification protocol including an infiltration washing technique. The enzyme had a high affinity for spermidine and spermine (K(m) approximately 5.5 and 1.2 microM, respectively), and also oxidized norspermidine (K(m) approximately 64.0 microM). Natural and synthetic diamines, cyclohexylamine, the putrescine analogue 1-aminooxy-3-aminopropane, and several polyamine analogues had inhibitory effects on polyamine oxidase activity and none were substrates. No inhibitory effect was observed on spermidine oxidation when the reaction product 1,3-diaminopropane was added. By contrast, 1-aminooxy-3-aminopropane showed mixed inhibition kinetics and a K(i) value of 0.113 mM. In addition, in vitro enzymatic activity assays showed that the oligoamine [3,8,13,18,23,28,33,38,43,48-deca-aza-(trans-25)-pentacontene], the tetramine 1,14-bis-[ethylamino]-5,10-diazatetradecane, and the pentamine 1,19-bis-[ethylamino]-5,10,15-triazanonadecane, displayed potent competitive inhibitory activities against polyamine oxidase with K(i) values of 5.8, 110.0 and 7.6 nM, respectively, where cyclohexylamine was a weak competitive inhibitor with a K(i) value of 0.5 mM. These analogues did not inhibit mycelial growth of the fungus Sclerotinia sclerotiorum (Lib.) De Bary and the bacterium Pseudomonas viridiflava (Burkholder) Dowson in vitro. On the contrary, with concentrations similar to those used for polyamine analogues, guazatine (a well-known fungicide and at the same time, a polyamine oxidase inhibitor) inhibited ( approximately 85%) S. sclerotiorum mycelial growth on Czapek-Dox medium. Finally, the analogue 1,19-bis-ethylamino-5,10,15-triazanonadecane inhibited polyamine oxidase activity observed in segments of maize leaves in vivo. The results obtained provide insights into research on the influence of polyamine oxidase activity on plant biotic and abiotic stresses.

  2. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  3. Inhibition of polyamine oxidase activity affects tumor development during the maize-Ustilago maydis interaction.

    PubMed

    Jasso-Robles, Francisco Ignacio; Jiménez-Bremont, Juan Francisco; Becerra-Flora, Alicia; Juárez-Montiel, Margarita; Gonzalez, María Elisa; Pieckenstain, Fernando Luis; García de la Cruz, Ramón Fernando; Rodríguez-Kessler, Margarita

    2016-05-01

    Ustilago maydis is a biotrophic plant pathogenic fungus that leads to tumor development in the aerial tissues of its host, Zea mays. These tumors are the result of cell hypertrophy and hyperplasia, and are accompanied by the reprograming of primary and secondary metabolism of infected plants. Up to now, little is known regarding key plant actors and their role in tumor development during the interaction with U. maydis. Polyamines are small aliphatic amines that regulate plant growth, development and stress responses. In a previous study, we found substantial increases of polyamine levels in tumors. In the present work, we describe the maize polyamine oxidase (PAO) gene family, its contribution to hydrogen peroxide (H2O2) production and its possible role in tumor development induced by U. maydis. Histochemical analysis revealed that chlorotic lesions and maize tumors induced by U. maydis accumulate H2O2 to significant levels. Maize plants inoculated with U. maydis and treated with the PAO inhibitor 1,8-diaminooctane exhibit a notable reduction of H2O2 accumulation in infected tissues and a significant drop in PAO activity. This treatment also reduced disease symptoms in infected plants. Finally, among six maize PAO genes only the ZmPAO1, which encodes an extracellular enzyme, is up-regulated in tumors. Our data suggest that H2O2 produced through PA catabolism by ZmPAO1 plays an important role in tumor development during the maize-U. maydis interaction.

  4. Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution.

    PubMed

    Cervelli, Manuela; Polticelli, Fabio; Angelucci, Emanuela; Di Muzio, Elena; Stano, Pasquale; Mariottini, Paolo

    2015-05-01

    Polyamine oxidases catalyse the oxidation of polyamines and acetylpolyamines and are responsible for the polyamine interconversion metabolism in animal cells. Polyamine oxidases from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, while in vertebrates two different enzymes, namely spermine oxidase and acetylpolyamine oxidase, specifically catalyse the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. In this work we proved that the specialized vertebrate spermine and acetylpolyamine oxidases have arisen from an ancestor invertebrate polyamine oxidase with lower specificity for polyamine substrates, as demonstrated by the enzymatic activity of the mollusc polyamine oxidase characterized here. This is the first report of an invertebrate polyamine oxidase, the Pacific oyster Crassostrea gigas (CgiPAO), overexpressed as a recombinant protein. This enzyme was biochemically characterized and demonstrated to be able to oxidase both N(1)-acetylspermine and spermine, albeit with different efficiency. Circular dichroism analysis gave an estimation of the secondary structure content and modelling of the three-dimensional structure of this protein and docking studies highlighted active site features. The availability of this pluripotent enzyme can have applications in crystallographic studies and pharmaceutical biotechnologies, including anticancer therapy as a source of hydrogen peroxide able to induce cancer cell death.

  5. Purification and characterization of polyamine oxidase from Ascaris suum.

    PubMed Central

    Müller, S; Walter, R D

    1992-01-01

    The interconversion of polyamines in the parasite nematode Ascaris suum by a novel type of polyamine oxidase was demonstrated. The nematode enzyme was clearly distinguishable from monoamine and diamine oxidases as well as from the mammalian polyamine oxidase, as shown by the use of the specific inhibitors pargyline, aminoguanidine and MDL 72527 respectively. All three inhibitors had no effect on the parasite polyamine oxidase, and the enzyme did not accept diamines such as putrescine, cadaverine or histamine as substrates. The parasite polyamine oxidase selectively oxidizes spermine and spermidine but not N-acetylated polyamines, whereas the mammalian tissue-type polyamine oxidase shows preference for the N-acetylated polyamines. These results suggest a regulatory function of the nematode polyamine oxidase in the degradation and interconversion of polyamines in parasite nematodes. The enzyme was purified to homogeneity by gel filtration, preparative isoelectric focusing and subsequent affinity chromatography on spermine- and berenil-Sepharose 4B. With respect to reaction type, the prosthetic group FAD, the molecular mass (66 kDa) and the contents of thiol and carbonyl groups, the polyamine oxidase from A. suum is similar to the isofunctional enzyme of mammalian tissue. Images Fig. 2. PMID:1567380

  6. Role of Polyamine Oxidase (PAOH1/SMO) in Human Breast Cancer

    DTIC Science & Technology

    2005-04-01

    activity in human breast cancer cell lines. Pledgie A, Huang Y, Hacker A, Woster PM, Casero RA, and Davidson NE. Proc AACR. Page 1224, 2004...polyamine metabolism. Biochem J. 376: 1-14, 2003. 2. Huang Y, Pledgie A, Casero RA, and Davidson NE. Molecular mechanisms of polyamine analogs in cancer...Devereux W, Hacker A, Frydman B, Woster PM, and Casero RA. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO. Biochem Biophys Res

  7. Properties of purified recombinant human polyamine oxidase, PAOh1/SMO.

    PubMed

    Wang, Yanlin; Murray-Stewart, Tracy; Devereux, Wendy; Hacker, Amy; Frydman, Benjamin; Woster, Patrick M; Casero, Robert A

    2003-05-16

    The discovery of an inducible oxidase whose apparent substrate preference is spermine indicates that polyamine catabolism is more complex than that originally proposed. To facilitate the study of this enzyme, the purification and characterization of the recombinant human PAOh1/SMO polyamine oxidase are reported. Purified PAOh1/SMO oxidizes both spermine (K(m)=1.6 microM) and N(1)-acetylspermine (K(m)=51 microM), but does not oxidize spermidine. The purified human enzyme also does not oxidize eight representative antitumor polyamine analogues; however, specific oligamine analogues were found to be potent inhibitors of the oxidation of spermine by PAOh1/SMO. The results of these studies are consistent with the hypothesis that PAOh1/SMO represents a new addition to the polyamine metabolic pathway that may represent a new target for antineoplastic drug development.

  8. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).

    PubMed

    Agostinelli, Enzo; Vianello, Fabio; Magliulo, Giuseppe; Thomas, Thresia; Thomas, T J

    2015-01-01

    Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other

  9. Ectopic Expression of Maize Polyamine Oxidase and Pea Copper Amine Oxidase in the Cell Wall of Tobacco Plants1

    PubMed Central

    Rea, Giuseppina; de Pinto, Maria Concetta; Tavazza, Raffaela; Biondi, Stefania; Gobbi, Valentina; Ferrante, Paola; De Gara, Laura; Federico, Rodolfo; Angelini, Riccardo; Tavladoraki, Paraskevi

    2004-01-01

    To test the feasibility of altering polyamine levels by influencing their catabolic pathway, we obtained transgenic tobacco (Nicotiana tabacum) plants constitutively expressing either maize (Zea mays) polyamine oxidase (MPAO) or pea (Pisum sativum) copper amine oxidase (PCuAO), two extracellular and H2O2-producing enzymes. Despite the high expression levels of the transgenes in the extracellular space, the amount of free polyamines in the homozygous transgenic plants was similar to that in the wild-type ones, suggesting either a tight regulation of polyamine levels or a different compartmentalization of the two recombinant proteins and the bulk amount of endogenous polyamines. Furthermore, no change in lignification levels and plant morphology was observed in the transgenic plants compared to untransformed plants, while a small but significant change in reactive oxygen species-scavenging capacity was verified. Both the MPAO and the PCuAO tobacco transgenic plants produced high amounts of H2O2 only in the presence of exogenously added enzyme substrates. These observations provided evidence for the limiting amount of freely available polyamines in the extracellular space in tobacco plants under physiological conditions, which was further confirmed for untransformed maize and pea plants. The amount of H2O2 produced by exogenously added polyamines in cell suspensions from the MPAO transgenic plants was sufficient to induce programmed cell death, which was sensitive to catalase treatment and required gene expression and caspase-like activity. The MPAO and PCuAO transgenic plants represent excellent tools to study polyamine secretion and conjugation in the extracellular space, as well as to determine when and how polyamine catabolism actually intervenes both in cell wall development and in response to stress. PMID:15064377

  10. Genomic identification and biochemical characterization of the mammalian polyamine oxidase involved in polyamine back-conversion.

    PubMed Central

    Vujcic, Slavoljub; Liang, Ping; Diegelman, Paula; Kramer, Debora L; Porter, Carl W

    2003-01-01

    In the polyamine back-conversion pathway, spermine and spermidine are first acetylated by spermidine/spermine N1 -acetyltransferase (SSAT) and then oxidized by polyamine oxidase (PAO) to produce spermidine and putrescine respectively. Although PAO was first purified more than two decades ago, the protein has not yet been linked to genomic sequences. In the present study, we apply a BLAST search strategy to identify novel oxidase sequences located on human chromosome 10 and mouse chromosome 7. Homologous mammalian cDNAs derived from human brain and mouse mammary tumour were deduced to encode proteins of approx. 55 kDa having 82% sequence identity. When either cDNA was transiently transfected into HEK-293 cells, intracellular spermine pools decreased by approx. 30%, whereas spermidine increased 2-4-fold. Lysates of human PAO cDNA-transfected HEK-293 cells, but not vector-transfected cells, rapidly oxidized N1-acetylspermine to spermidine. Substrate specificity determinations with the lysate assay revealed a preference ranking of N1-acetylspermine= N1-acetylspermidine> N1,N12-diacetylspermine>>spermine; spermidine was not acted upon. This ranking is identical to that reported for purified PAO and distinctly different from the recently identified spermine oxidase (SMO), which prefers spermine over N1-acetylspermine. Monoethyl- and diethylspermine analogues also served as substrates for PAO, and were internally cleaved adjacent to a secondary amine. We deduce that the present oxidase sequences are those of the FAD-dependent PAO involved in the polyamine back-conversion pathway. In Northern blot analysis, PAO mRNA was much less abundant in HEK-293 cells than SMO or SSAT mRNA, and all three were differentially induced in a similar manner by selected polyamine analogues. The identification of PAO sequences, together with the recently identified SMO sequences, provides new opportunities for understanding the dynamics of polyamine homoeostasis and for interpreting metabolic

  11. Involvement of Polyamine Oxidase in Wound Healing12[W

    PubMed Central

    Angelini, Riccardo; Tisi, Alessandra; Rea, Giuseppina; Chen, Martha M.; Botta, Maurizio; Federico, Rodolfo; Cona, Alessandra

    2008-01-01

    Hydrogen peroxide (H2O2) is involved in plant defense responses that follow mechanical damage, such as those that occur during herbivore or insect attacks, as well as pathogen attack. H2O2 accumulation is induced during wound healing processes as well as by treatment with the wound signal jasmonic acid. Plant polyamine oxidases (PAOs) are H2O2 producing enzymes supposedly involved in cell wall differentiation processes and defense responses. Maize (Zea mays) PAO (ZmPAO) is a developmentally regulated flavoprotein abundant in primary and secondary cell walls of several tissues. In this study, we investigated the effect of wounding on ZmPAO gene expression in the outer tissues of the maize mesocotyl and provide evidence that ZmPAO enzyme activity, protein, and mRNA levels increased in response to wounding as well as jasmonic acid treatment. Histochemically detected ZmPAO activity especially intensified in the epidermis and in the wound periderm, suggesting a tissue-specific involvement of ZmPAO in wound healing. The role played by ZmPAO-derived H2O2 production in peroxidase-mediated wall stiffening events was further investigated by exploiting the in vivo use of N-prenylagmatine (G3), a selective and powerful ZmPAO inhibitor, representing a reliable diagnostic tool in discriminating ZmPAO-mediated H2O2 production from that generated by peroxidase, oxalate oxidase, or by NADPH oxidase activity. Here, we demonstrate that G3 inhibits wound-induced H2O2 production and strongly reduces lignin and suberin polyphenolic domain deposition along the wound, while it is ineffective in inhibiting the deposition of suberin aliphatic domain. Moreover, ZmPAO ectopic expression in the cell wall of transgenic tobacco (Nicotiana tabacum) plants strongly enhanced lignosuberization along the wound periderm, providing evidence for a causal relationship between PAO and peroxidase-mediated events during wound healing. PMID:17993545

  12. Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana.

    PubMed

    Takahashi, Yoshihiro; Cong, Runzi; Sagor, G H M; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2010-09-01

    The genome of Arabidopsis thaliana contains five genes (AtPAO1 to AtPAO5) encoding polyamine oxidase (PAO) which is an enzyme responsible for polyamine catabolism. To understand the individual roles of the five AtPAOs, here we characterized their tissue-specific and space-temporal expression. AtPAO1 seems to have a specific function in flower organ. AtPAO2 was expressed in shoot meristem and root tip of seedlings, and to a higher extent in the later growth stage within restricted parts of the organs, such as shoot meristem, leaf petiole and also in anther. The expression of AtPAO3 was constitutive, but highest in flower organ. AtPAO3 promoter activity was detected in cotyledon, distal portion of root, boundary region of mature rosette leaf and in filaments of flower. AtPAO4 was expressed at higher level all over young seedlings including roots, and in the mature stage its expression was ubiquitous with rather lower level in stem. AtPAO5 expression was observed in the whole plant body throughout various growth stages. Its highest expression was in flowers, particularly in sepals, but not in petals. Furthermore, we determined the substrate specificity of AtPAO1 to AtPAO4. None of the AtPAO enzymes recognized putrescine (Put). AtPAO2 and AtPAO3 showed almost similar substrate recognition patterns in which the most preferable substrate is spermidine (Spd) followed by less specificity to other tetraamines tested. AtPAO4 seemed to be spermine (Spm)-specific. More interestingly, AtPAO1 preferred thermospermine (T-Spm) and norspermine (NorSpm) to Spm, but did not recognize Spd. Based on the results, the individual function of AtPAOs is discussed.

  13. Molecular evolution of the polyamine oxidase gene family in Metazoa.

    PubMed

    Polticelli, Fabio; Salvi, Daniele; Mariottini, Paolo; Amendola, Roberto; Cervelli, Manuela

    2012-06-20

    Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including, respectively, all

  14. Molecular evolution of the polyamine oxidase gene family in Metazoa

    PubMed Central

    2012-01-01

    Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs) from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO), it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported monophyletic clades including

  15. Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacum.

    PubMed

    Mellidou, Ifigeneia; Karamanoli, Katerina; Beris, Despoina; Haralampidis, Kosmas; Constantinidou, Helen-Isis A; Roubelakis-Angelakis, Kalliopi A

    2017-08-31

    Polyamines (PAs) and hydrogen peroxide (H2O2), the product of PA oxidation by polyamine oxidase (PAO), are potential players affecting plant growth, development and responses to abiotic/biotic stresses. Genetically modified Nicotiana tabacum plants with altered PA/H2O2 homeostasis due to over/underexpression of the ZmPAO gene (S-ZmPAO/AS-ZmPAO, respectively) were assessed under heat stress (HS). Underexpression of ZmPAO correlates with increased thermotolerance of the photosynthetic machinery and improved biomass accumulation, accompanied by enhanced levels of the enzymatic and non-enzymatic antioxidants, whereas ZmPAO overexpressors exhibit significant impairment of thermotolerance. These data provide important clues on PA catabolism/H2O2/thermotolerance, which merit further exploitation. Copyright © 2017. Published by Elsevier GmbH.

  16. Electron-microscopic cytochemical localization of diamine and polyamine oxidases in pea and maize tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Furey MJ, 3. d.

    1991-01-01

    An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.

  17. Electron-microscopic cytochemical localization of diamine and polyamine oxidases in pea and maize tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Furey MJ, 3. d.

    1991-01-01

    An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.

  18. A simple assay for mammalian spermine oxidase: a polyamine catabolic enzyme implicated in drug response and disease.

    PubMed

    Goodwin, Andrew C; Murray-Stewart, Tracy R; Casero, Robert A

    2011-01-01

    Spermine oxidase (SMO), the most recently characterized polyamine metabolic enzyme, catalyzes the direct back-conversion of spermine to spermidine in an FAD-dependent reaction that also yields the byproducts hydrogen peroxide (H(2)O(2)) and 3-aminopropanal. These metabolites, particularly H(2)O(2), have been implicated in cytotoxic cellular responses to specific antitumor polyamine analogs, as well as in the inflammation-associated generation of DNA damage. This chapter describes a rapid, sensitive, and inexpensive method for the chemiluminescent measurement of SMO (or alternatively, N (1)-acetyl polyamine oxidase, APAO) enzyme activity in cultured cell lysates, without the need for radioactive reagents or the use of high performance liquid chromatography (HPLC). Specifically, H(2)O(2) production by SMO is coupled to chemiluminescence generated by the horseradish peroxidase-catalyzed oxidation of luminol. Detailed protocols for preparation of reagents, harvesting cell lysates, generation of a standard curve, assaying of samples, and calculation of SMO enzyme activity are presented.

  19. Role of Polyamine Oxidase (PAOh1/SMO) in Human Breast Cancer

    DTIC Science & Technology

    2006-04-01

    Huang Y, Hacker A, Woster PM, Casero RA, and Davidson NE. Proc AACR. Page 1224, 2004 Publications: Spermine oxidase SMO(PAOh1), not N1...Hacker A, Zhang Z, Woster PM, Davidson NE, and Casero RA Jr. J Biol Chem, 280: 39843-41, 2005. Page 8 Presentations: The role of spermine oxidase...perspective of polyamine metabolism. Biochem J. 376: 1-14, 2003. 2. Huang Y, Pledgie A, Casero RA, and Davidson NE. Molecular mechanisms of polyamine

  20. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana

    PubMed Central

    Andronis, Efthimios A.; Moschou, Panagiotis N.; Toumi, Imene; Roubelakis-Angelakis, Kalliopi A.

    2014-01-01

    Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions (O2•− ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and O2•− . These results suggest that the ratio of O2•− /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of O2•− by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed. PMID:24765099

  1. Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein.

    PubMed

    Kwak, Mi-Kyoung; Kensler, Thomas W; Casero, Robert A

    2003-06-06

    The naturally occurring polycationic polyamines including putrescine, spermidine, and spermine play an important role in cell growth, differentiation, and gene expression. However, circulating polyamines are potential substrates for several oxidizing enzymes including copper-containing serum amine oxidase. These enzymes are capable of oxidizing serum polyamines to several toxic metabolites including aldehydes and H(2)O(2). In this study, we investigated the effects of polyamines as inducers of phase 2 enzymes and other genes that promote cell survival in a cell culture system in the presence of bovine serum. Spermidine and spermine (50 microM) increased NAD(P)H quinone oxidoreductase (NQO1) activity up to 3-fold in murine keratinocyte PE cells. Transcript levels for glutathione S-transferase (GST) A1, GST M1, NQO1, gamma-glutamylcysteine ligase regulatory subunit, and UDP-glucuronyltransferase 1A6 were significantly increased by spermidine and this effect was mediated through the antioxidant response element (ARE). The ARE from the mouse GST A1 promoter was activated about 9-fold by spermine and 5-fold by spermidine treatment, but could be inhibited by the amine oxidase inhibitor, aminoguanidine, suggesting that acrolein or hydrogen peroxide generated from polyamines by serum amine oxidase may be mediators for phase 2 enzyme induction. Elevations of ARE-luciferase expression and NQO1 enzyme activity by spermidine were not affected by catalase, while both were completely repressed by aldehyde dehydrogenase treatment. Direct addition of acrolein to PE cells induced multiple phase 2 genes and elevated nuclear levels of Nrf2, a transcription factor that binds to the ARE. Expression of mutant Nrf2 repressed the activation of the ARE-luciferase reporter by polyamines and acrolein. These results indicate that spermidine and spermine increase the expression of phase 2 genes in cells grown in culture through activation of the Nrf2-ARE pathway by generating the sulfhydryl

  2. Decrease in acrolein toxicity based on the decline of polyamine oxidases.

    PubMed

    Uemura, Takeshi; Nakamura, Mizuho; Sakamoto, Akihiko; Suzuki, Takehiro; Dohmae, Naoshi; Terui, Yusuke; Tomitori, Hideyuki; Casero, Robert A; Kashiwagi, Keiko; Igarashi, Kazuei

    2016-10-01

    We have shown recently that acrolein is strongly involved in cell damage during brain infarction and chronic renal failure. To study the mechanism of acrolein detoxification, we tried to isolate Neuro2a cells with reduced sensitivity to acrolein toxicity (Neuro2a-ATD cells). In one cell line, Neuro2a-ATD1, the level of glutathione (GSH) was increased. We recently isolated a second cell line, Neuro2a-ATD2, and found that acrolein-producing enzymes [polyamine oxidases (PAO); i.e. acetylpolyamine oxidase (AcPAO), and spermine oxidase (SMO)] are reduced in this cell line due to changes at the level of transcription. In the Neuro2a-ATD2 cells, the IC50 of acrolein increased from 4.2 to 6.8μM, and the levels of FosB and C/EBPβ - transcription factors involved in the transcription of AcPAO and SMO genes - were reduced. Transfection of siRNAs for FosB and C/EBPβ reduced the levels of AcPAO and SMO, respectively. In addition, the synthesis of FosB and AcPAO was also decreased by siRNA for C/EBPβ, because C/EBPβ is one of the transcription factors for the FosB gene. It was also found that transfection of siRNA for C/EBPβ decreased SMO promoter activity in Neuro2a cells but not in ATD2 cells confirming that a decrease in C/EBPβ is involved in the reduced SMO activity in Neuro2a-ATD2 cells. Furthermore, transfection of the cDNA for AcPAO or SMO into Neuro2a cells increased the toxicity of acrolein. These results suggest that acrolein is mainly produced from polyamines by PAO.

  3. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development

    PubMed Central

    Tavladoraki, Paraskevi; Cona, Alessandra; Angelini, Riccardo

    2016-01-01

    Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development. PMID:27446096

  4. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development.

    PubMed

    Tavladoraki, Paraskevi; Cona, Alessandra; Angelini, Riccardo

    2016-01-01

    Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.

  5. Spermine oxidase SMO(PAOh1), Not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines.

    PubMed

    Pledgie, Allison; Huang, Yi; Hacker, Amy; Zhang, Zhe; Woster, Patrick M; Davidson, Nancy E; Casero, Robert A

    2005-12-02

    The induction of polyamine catabolism and its production of H2O2 have been implicated in the response to specific antitumor polyamine analogues. The original hypothesis was that analogue induction of the rate-limiting spermidine/spermine N1-acetyltransferase (SSAT) provided substrate for the peroxisomal acetylpolyamine oxidase (PAO), resulting in a decrease in polyamine pools through catabolism, oxidation, and excretion of acetylated polyamines and the production of toxic aldehydes and H2O2. However, the recent discovery of the inducible spermine oxidase SMO(PAOh1) suggested the possibility that the original hypothesis may be incomplete. To examine the role of the catabolic enzymes in the response of breast cancer cells to the polyamine analogue N1,N1-bis(ethyl)norspermine (BENSpm), a stable knockdown small interfering RNA strategy was used. BENSpm differentially induced SSAT and SMO(PAOh1) mRNA and activity in several breast cancer cell lines, whereas no N1-acetylpolyamine oxidase PAO mRNA or activity was detected. BENSpm treatment inhibited cell growth, decreased intracellular polyamine levels, and decreased ornithine decarboxylase activity in all cell lines examined. The stable knockdown of either SSAT or SMO(PAOh1) reduced the sensitivity of MDA-MB-231 cells to BENSpm, whereas double knockdown MDA-MB-231 cells were almost entirely resistant to the growth inhibitory effects of the analogue. Furthermore, the H2O2 produced through BENSpm-induced polyamine catabolism was found to be derived exclusively from SMO(PAOh1) activity and not through PAO activity on acetylated polyamines. These data suggested that SSAT and SMO(PAOh1) activities are the major mediators of the cellular response of breast tumor cells to BENSpm and that PAO plays little or no role in this response.

  6. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana

    PubMed Central

    Atanasov, Kostadin E.; Barboza-Barquero, Luis; Tiburcio, Antonio F.; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine. PMID:27092150

  7. Genome Wide Association Mapping for the Tolerance to the Polyamine Oxidase Inhibitor Guazatine in Arabidopsis thaliana.

    PubMed

    Atanasov, Kostadin E; Barboza-Barquero, Luis; Tiburcio, Antonio F; Alcázar, Rubén

    2016-01-01

    Guazatine is a potent inhibitor of polyamine oxidase (PAO) activity. In agriculture, guazatine is used as non-systemic contact fungicide efficient in the protection of cereals and citrus fruits against disease. The composition of guazatine is complex, mainly constituted by a mixture of synthetic guanidated polyamines (polyaminoguanidines). Here, we have studied the effects from exposure to guazatine in the weed Arabidopsis thaliana. We report that micromolar concentrations of guazatine are sufficient to inhibit growth of Arabidopsis seedlings and induce chlorosis, whereas germination is barely affected. We observed the occurrence of quantitative variation in the response to guazatine between 107 randomly chosen Arabidopsis accessions. This enabled us to undertake genome-wide association (GWA) mapping that identified a locus on chromosome one associated with guazatine tolerance. CHLOROPHYLLASE 1 (CLH1) within this locus was studied as candidate gene, together with its paralog (CLH2). The analysis of independent clh1-2, clh1-3, clh2-3, clh2-2, and double clh1-2 clh2-3 mutant alleles indicated that CLH1 and/or CLH2 loss-of-function or expression down-regulation promote guazatine tolerance in Arabidopsis. We report a natural mechanism by which Arabidopsis populations can overcome toxicity by the fungicide guazatine.

  8. Identification and biochemical characterization of polyamine oxidases in amphioxus: Implications for emergence of vertebrate-specific spermine and acetylpolyamine oxidases.

    PubMed

    Wang, Huihui; Liu, Baobao; Li, Hongyan; Zhang, Shicui

    2016-01-10

    Polyamine oxidases (PAOs) have been identified in a wide variety of animals, as well as in fungi and plant. Generally, plant PAOs oxidize spermine (Spm), spermidine (Spd) and their acetylated derivatives, N(1)-acetylspermine (N(1)-Aspm) and N(1)-acetylspermidine (N(1)-Aspd), while yeast PAOs oxidize Spm, N(1)-Aspm and N(1)-Aspd, but not Spd. By contrast, two different enzymes, namely spermine oxidase (SMO) and acetylpolyamine oxidase (APAO), specifically catalyze the oxidation of Spm and N(1)-Aspm/N(1)-Aspd, respectively. However, our knowledge on the biochemical and structural characterization of PAOs remains rather limited, and their evolutionary history is still enigmatic. In this study, two amphioxus (Branchiostoma japonicum) PAO genes, named Bjpao1 and Bjpao2, were cloned and characterized. Both Bjpao1 and Bjpao2 displayed distinct tissue-specific expression patterns. Notably, rBjPAO1 oxidized both spermine and spermidine, but not N(1)-acetylspermine, whereas rBjPAO2 oxidizes both spermidine and N(1)-acetylspermine, but not spermine. To understand structure-function relationship, the enzymatic activities of mutant BjPAOs that were generated by site-directed mutagenesis and expressed in E. coli were examined, The results indicate that the residues H64, K301 and T460 in rBjPAO1, and H69, K315 and T467 in rBjPAO2 were all involved in substrate binding and enzyme catalytic activity to some extent. Based on our results and those of others, a model depicting the divergent evolution and functional specialization of vertebrate SMO and APAO genes is proposed.

  9. Effects of dietary polyamines and clofibrate on metabolism of polyamines in the rat.

    PubMed

    Brodal, B P; Eliassen, K A; Rönning, H; Osmundsen, H

    1999-12-01

    The activities of catalase, polyamine oxidase, diamine oxidase, ornithine decarboxylase, and peroxisomal beta-oxidation were assayed in homogenates from liver and small intestinal mucosa of rats which had been fed either a diet very low in polyamines or a diet containing five times the levels of dietary polyamines (putrescine, spermine, and spermidine) found in a standard rat diet. In rats fed the high polyamine diet, hepatic activities of catalase and polyamine oxidase were significantly decreased. Levels of the other activities were unchanged, except that intestinal ornithine decarboxylase was decreased. In rats treated simultaneously with clofibrate, the high polyamine diet restored activities of catalase, ornithine decarboxylase, and polyamine oxidase back to levels found in rats fed the low polyamine diet. The expected increase in activity of peroxisomal beta-oxidation was observed, although this was somewhat diminished in rats fed the high polyamine diet. Intestinal diamine oxidase activity was stimulated by clofibrate, particularly in rats fed the high polyamine diet. For the duration of the experiment (20 days), levels of putrescine, spermine, and spermidine in blood remained remarkably constant irrespective of treatment, suggesting that polyamine homeostasis is essentially independent of dietary supply of polyamines. It is suggested that intestinal absorption/metabolism of polyamines is of significance in this respect. Treatment with clofibrate appeared to alter polyamine homeostasis.

  10. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae.

    PubMed

    Mo, Huijuan; Wang, Xingfen; Zhang, Yan; Zhang, Guiyin; Zhang, Jinfa; Ma, Zhiying

    2015-09-01

    Verticillium dahliae is a destructive, soil-borne fungal pathogen that causes vascular wilt disease in many economically important crops worldwide. A polyamine oxidase (PAO) gene was identified and cloned by screening suppression subtractive hybridisation and cDNA libraries of cotton genotypes tolerant to Verticillium wilt and was induced early and strongly by inoculation with V. dahliae and application of plant hormone. Recombinant cotton polyamine oxidase (GhPAO) was found to catalyse the conversion of spermine (Spm) to spermidine (Spd) in vitro. Constitutive expression of GhPAO in Arabidopsis thaliana produced improved resistance to V. dahliae and maintained putrescine, Spd and Spm at high levels. Hydrogen peroxide (H2 O2 ), salicylic acid and camalexin (a phytoalexin) levels were distinctly increased in GhPAO-overexpressing Arabidopsis plants during V. dahliae infection when compared with wild-type plants, and Spm and camalexin efficiently inhibited growth of V. dahliae in vitro. Spermine promoted the accumulation of camalexin by inducing the expression of mitogen-activated protein kinases and cytochrome P450 proteins in Arabidopsis and cotton plants. The three polyamines all showed higher accumulation in tolerant cotton cultivars than in susceptible cotton cultivars after inoculation with V. dahliae. GhPAO silencing in cotton significantly reduced the Spd level and increased the Spm level, leading to enhanced susceptibility to infection by V. dahliae, and the levels of H2 O2 and camalexin were distinctly lower in GhPAO-silenced cotton plants after V. dahliae infection. Together, these results suggest that GhPAO contributes to resistance of the plant against V. dahliae through the mediation of Spm and camalexin signalling.

  11. Polyamine catabolism and disease

    PubMed Central

    CASERO, Robert A.; PEGG, Anthony E.

    2009-01-01

    In addition to polyamine homeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis, response to stressful stimuli, and contribute to the etiology of several pathological states, including cancer. The highly inducible enzymes spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMO), and, the generally constitutively expressed N1-acetylpolyamine oxidase (APAO), appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique drugable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathologies. The activity of SSAT has the potential to provide substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl CoA and ATP. The goal of this review is to cover those aspects of polyamine catabolism that have potential to impact disease etiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology. PMID:19589128

  12. Polyamine catabolism and disease.

    PubMed

    Casero, Robert A; Pegg, Anthony E

    2009-07-15

    In addition to polyamine homoeostasis, it has become increasingly clear that polyamine catabolism can play a dominant role in drug response, apoptosis and the response to stressful stimuli, and contribute to the aetiology of several pathological states, including cancer. The highly inducible enzymes SSAT (spermidine/spermine N1-acetyltransferase) and SMO (spermine oxidase) and the generally constitutively expressed APAO (N1-acetylpolyamine oxidase) appear to play critical roles in many normal and disease processes. The dysregulation of polyamine catabolism frequently accompanies several disease states and suggests that such dysregulation may both provide useful insight into disease mechanism and provide unique druggable targets that can be exploited for therapeutic benefit. Each of these enzymes has the potential to alter polyamine homoeostasis in response to multiple cell signals and the two oxidases produce the reactive oxygen species H2O2 and aldehydes, each with the potential to produce pathological states. The activity of SSAT provides substrates for APAO or substrates for the polyamine exporter, thus reducing the intracellular polyamine concentration, the net effect of which depends on the magnitude and rate of any increase in SSAT. SSAT may also influence cellular metabolism via interaction with other proteins and by perturbing the content of acetyl-CoA and ATP. The goal of the present review is to cover those aspects of polyamine catabolism that have an impact on disease aetiology or treatment and to provide a solid background in this ever more exciting aspect of polyamine biology.

  13. Ornithine decarboxylase, transglutaminase, diamine oxidase and total diamines and polyamines in maternal liver and kidney throughout rat pregnancy.

    PubMed Central

    Piacentini, M; Sartori, C; Beninati, S; Bargagli, A M; Cerù-Argento, M P

    1986-01-01

    Ornithine decarboxylase (ODC; EC 4.1.1.17), transglutaminase (EC 2.3.2.13), diamine oxidase (DAO; EC 1.4.3.6) and total di- and poly-amines were studied in rat liver and kidney cortex throughout pregnancy. In liver, ODC activity exhibited two major peaks (4.5-5 times the control activities) on days 15 and 17. Also putrescine and spermidine increased biphasically (3-4-fold), but no variation in spermine content was observed. Transglutaminase activity showed slight variations only near the end of gestation. In kidney, ODC activity did not fluctuate significantly during pregnancy, whereas both transglutaminase activity and putrescine content showed three major increases, in very early, middle and late pregnancy. No significant variations in spermidine and spermine were observed. In both organs, DAO activity, very low or undetectable until day 10, dramatically increased (10- and 20-fold in kidney and liver respectively) in the second half of pregnancy, reaching maxima on days 16-17 and 19. The results obtained for transglutaminase, ODC and total di- and poly-amines are interpreted on the basis of hyperplastic and hypertrophic events in the liver and kidney respectively. The behaviour of DAO suggests that the enzyme plays an important role in the control of intracellular diamine concentration. PMID:2872883

  14. Deregulation of apoplastic polyamine oxidase affects development and salt response of tobacco plants.

    PubMed

    Gémes, Katalin; Mellidou, Ιfigeneia; Karamanoli, Katerina; Beris, Despoina; Park, Ky Young; Matsi, Theodora; Haralampidis, Kosmas; Constantinidou, Helen-Isis; Roubelakis-Angelakis, Kalliopi A

    2017-04-01

    Polyamine (PA) homeostasis is associated with plant development, growth and responses to biotic/abiotic stresses. Apoplastic PA oxidase (PAO) catalyzes the oxidation of PAs contributing to cellular homeostasis of reactive oxygen species (ROS) and PAs. In tobacco, PAs decrease with plant age, while apoplastic PAO activity increases. Our previous results with young transgenic tobacco plants with enhanced/reduced apoplastic PAO activity (S-ZmPAO/AS-ZmPAO, respectively) established the importance of apoplastic PAO in controlling tolerance to short-term salt stress. However, it remains unclear if the apoplastic PAO pathway is important for salt tolerance at later stages of plant development. In this work, we examined whether apoplastic PAO controls also plant development and tolerance of adult plants during long-term salt stress. The AS-ZmPAO plants contained higher Ca(2+) during salt stress, showing also reduced chlorophyll content index (CCI), leaf area and biomass but taller phenotype compared to the wild-type plants during salt. On the contrary, the S-ZmPAO had more leaves with slightly greater size compared to the AS-ZmPAO and higher antioxidant genes/enzyme activities. Accumulation of proline in the roots was evident at prolonged stress and correlated negatively with PAO deregulation as did the transcripts of genes mediating ethylene biosynthesis. In contrast to the strong effect of apoplastic PAO to salt tolerance in young plants described previously, the effect it exerts at later stages of development is rather moderate. However, the different phenotypes observed in plants deregulating PAO reinforce the view that apoplastic PAO exerts multifaceted roles on plant growth and stress responses. Our data suggest that deregulation of the apoplastic PAO can be further examined as a potential approach to breed plants with enhanced/reduced tolerance to abiotic stress with minimal associated trade-offs.

  15. Polyamines

    NASA Astrophysics Data System (ADS)

    Marton, Laurence J.

    The polyamines spermidine [NH2(CH2)3NH(CH2)4NH2] and spermine [NH2(CH2)3NH(CH2)4NH(CH2)3NH2] and their diamine precursor, putrescine [NH2(CH2)4NH2], have been the subject of intense study relative to their potential as tumor markers during the past decade (1). These compounds have been implicated in numerous biochemical reactions and have been clearly associated with cellular growth processes. A number of publications have reviewed our present knowledge regarding these compounds, including their relationship to human disease (2-6).

  16. Life without putrescine: disruption of the gene-encoding polyamine oxidase in Ustilago maydis odc mutants.

    PubMed

    Valdés-Santiago, Laura; Guzmán-de-Peña, Doralinda; Ruiz-Herrera, José

    2010-11-01

    In previous communications the essential role of spermidine in Ustilago maydis was demonstrated by means of the disruption of the genes encoding ornithine decarboxylase (ODC) and spermidine synthase (SPE). However, the assignation of specific roles to each polyamine in different cellular functions was not possible because the spermidine added to satisfy the auxotrophic requirement of odc/spe double mutants is partly back converted into putrescine. In this study, we have approached this problem through the disruption of the gene-encoding polyamine oxidase (PAO), required for the conversion of spermidine into putrescine, and the construction of odc/pao double mutants that were unable to synthesize putrescine by either ornithine decarboxylation or retroconversion from spermidine. Phenotypic analysis of the mutants provided evidence that putrescine is only an intermediary in spermidine biosynthesis, and has no direct role in cell growth, dimorphic transition, or any other vital function of U. maydis. Nevertheless, our results show that putrescine may play a role in the protection of U. maydis against salt and osmotic stress, and possibly virulence. Evidence was also obtained that the retroconversion of spermidine into putrescine is not essential for U. maydis growth but may be important for its survival under natural conditions.

  17. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds

    PubMed Central

    Chen, Bing-Xian; Li, Wen-Yan; Gao, Yin-Tao; Chen, Zhong-Jian; Zhang, Wei-Na; Liu, Qin-Jian; Chen, Zhuang; Liu, Jun

    2016-01-01

    Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1–11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1–7) encode PAOs, whereas those in subfamily III (OsPAO8–11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1–7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals. PMID:27570530

  18. Mechanistic and Structural Analyses of the Role of His67 in the Yeast Polyamine Oxidase Fms1

    SciTech Connect

    Adachi, Mariya S.; Taylor, Alexander B.; Hart, P. John; Fitzpatrick, Paul F.

    2012-07-25

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. Within the active site of Fms1, His67 is positioned to form hydrogen bonds with the polyamine substrate. This residue is also conserved in other polyamine oxidases. The catalytic properties of H67Q, H67N, and H67A Fms1 have been characterized to evaluate the role of this residue in catalysis. With both spermine and N1-acetylspermine as the amine substrate, the value of the first-order rate constant for flavin reduction decreases 2-3 orders of magnitude, with the H67Q mutation having the smallest effect and H67N the largest. The k{sub cat}/K{sub O2} value changes very little upon mutation with N{sup 1}-acetylspermine as the amine substrate and decreases only an order of magnitude with spermine. The k{sub cat}/K{sub M}-pH profiles with N{sup 1}-acetylspermine are bell-shaped for all the mutants; the similarity to the profile of the wild-type enzyme rules out His67 as being responsible for either of the pK{sub a} values. The pH profiles for the rate constant for flavin reduction for all the mutant enzymes similarly show the same pK{sub a} as wild-type Fms1, about {approx}7.4; this pK{sub a} is assigned to the substrate N4. The k{sub cat}/K{sub O2}-pH profiles for wild-type Fms1 and the H67A enzyme both show a pK{sub a} of about {approx}6.9; this suggests His67 is not responsible for this pH behavior. With the H67Q, H67N, and H67A enzymes the k{sub cat} value decreases when a single residue is protonated, as is the case with the wild-type enzyme. The structure of H67Q Fms1 has been determined at a resolution of 2.4 {angstrom}. The structure shows that the mutation disrupts a hydrogen bond network in the active site, suggesting that His67 is important both for direct interactions with the substrate and to maintain the overall active site structure.

  19. Activity of peroxisomal enzymes, and levels of polyamines in LPA-transgenic mice on two different diets

    PubMed Central

    Eliassen, Knut A; Brodal, Bjørn P; Svindland, Aud; Osmundsen, Harald; Rønning, Helle; Djurovic, Srdjan; Berg, Kåre

    2005-01-01

    Background In man, elevated levels of plasma lipoprotein (a)(Lp(a)) is a cardiovascular risk factor, and oxidized phospholipids are believed to play a role as modulators of inflammatory processes such as atherosclerosis. Polyamines are potent antioxidants and anti-inflammatory agents. It was therefore of interest to examine polyamines and their metabolism in LPA transgenic mice. Concentration of the polyamines putrescine, spermidine and spermine as well as the activity of peroxisomal polyamine oxidase and two other peroxisomal enzymes, acyl-CoA oxidase and catalase were measured. The mice were fed either a standard diet or a diet high in fat and cholesterol (HFHC). Some of the mice in each feeding group were in addition given aminoguanidine (AG), a specific inhibitor of diamine oxidase, which catalyses degradation of putrescine, and also inhibits non-enzymatic glycosylation of protein which is implicated in the aetiology of atherosclerosis in diabetic patients. Non-transgenic mice were used as controls. Results Intestinal peroxisomal polyamine oxidase activity was significantly higher in LPA transgenic mice than in the non-transgenic mice, while intestinal peroxisomal catalase activity was significantly lower. Hepatic β-oxidation increased in Lp(a) transgenic mice fed the HFHC diet, but not in those on standard diet. Hepatic spermidine concentration was increased in all mice fed the HFHC diet compared to those fed a standard diet, while spermine concentration was decreased. With exception of the group fed only standard diet, transgenic mice showed a lower degree of hepatic steatosis than non-transgenic mice. AG had no significant effect on hepatic steatosis. Conclusion The present results indicate a connection between peroxisomal enzyme activity and the presence of the human LPA gene in the murine genome. The effect may be a result of changes in oxidative processes in lipid metabolism rather than resulting from a direct effect of the LPA construct on the peroximal

  20. Polyamine homoeostasis.

    PubMed

    Persson, Lo

    2009-11-04

    The polyamines are essential for a variety of functions in the mammalian cell. Although their specific effects have not been fully elucidated, it is clear that the cellular polyamines have to be kept within certain levels for normal cell function. Polyamine homoeostasis in mammalian cells is achieved by a complex network of regulatory mechanisms affecting synthesis and degradation, as well as membrane transport of polyamines. The two key enzymes in the polyamine biosynthetic pathway, ODC (ornithine decarboxylase) and AdoMetDC (S-adenosylmethionine decarboxylase), are strongly regulated by feedback mechanisms at several levels, including transcriptional, translational and post-translational. Some of these mechanisms have been shown to be truly unique and include upstream reading frames and ribosomal frameshifting, as well as ubiquitin-independent proteasomal degradation. SSAT (spermidine/spermine N1-acetyltransferase), which is a crucial enzyme for degradation and efflux of polyamines, is also highly regulated by polyamines. A cellular excess of polyamines rapidly induces SSAT, resulting in increased degradation/efflux of the polyamines. The polyamines appear to induce both transcription and translation of the SSAT mRNA. However, the major part of the polyamine-induced increase in SSAT is caused by a marked stabilization of the enzyme against degradation by the 26S proteasome. In addition, active transport of extracellular polyamines into the cell contributes to cellular polyamine homoeostasis. Depletion of cellular polyamines rapidly induces an increased uptake of exogenous polyamines, whereas an excess of polyamines down-regulates the polyamine transporter(s). However, the protein(s) involved in polyamine transport and the exact mechanisms by which the polyamines regulate the transporter(s) are not yet known.

  1. Genome-wide identification and expression analysis of the polyamine oxidase gene family in sweet orange (Citrus sinensis).

    PubMed

    Wang, Wei; Liu, Ji-Hong

    2015-01-25

    Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future.

  2. Spermine oxidase, a polyamine catabolic enzyme that links Helicobacter pylori CagA and gastric cancer risk

    PubMed Central

    Chaturvedi, Rupesh; de Sablet, Thibaut; Peek, Richard M.; Wilson, Keith T.

    2012-01-01

    We have recently reported that Helicobacter pylori strains expressing the virulence factor cytotoxin-associated gene A (CagA) stimulate increased levels of spermine oxidase (SMO) in gastric epithelial cells, while cagA– strains did not. SMO catabolizes the polyamine spermine and produces H2O2 that results in both apoptosis and DNA damage. Exogenous overexpression of CagA confirmed these findings, and knockdown or inhibition of SMO blocked CagA-mediated apoptosis and DNA damage. The strong association of SMO, apoptosis, and DNA damage was also demonstrated in humans infected with cagA+, but not cagA– strains. In infected gerbils and mice, DNA damage was CagA-dependent and only present in epithelial cells that expressed SMO. We also discovered SMOhigh gastric epithelial cells from infected animals with dysplasia that are resistant to apoptosis despite high levels of DNA damage. Inhibition of polyamine synthesis or SMO could abrogate the development of this cell population that may represent precursors for neoplastic transformation. PMID:22555547

  3. Wounding induces changes in tuber polyamine content, polyamine metabolic gene expression, and enzyme activity during closing layer formation and initiation of wound periderm formation.

    PubMed

    Lulai, Edward C; Neubauer, Jonathan D; Olson, Linda L; Suttle, Jeffrey C

    2015-03-15

    Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) are involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber wound responses. However, the time course of wound-induced changes in tuber PA content, activity of key biosynthetic enzymes and associated gene expression has not been determined and coordinated with major wound-healing processes. The objective of this study was to determine these wound-induced changes and their coordination with wound-healing processes. Wounding induced increases in putrescine (Put) and spermidine (Spd), but had only minor effects on spermine (Spm) content during the 168 h time course which encompassed the initiation and completion of the closing layer formation, and the initiation of cell division and wound periderm formation. As determinants of the first committed step in PA biosynthesis, arginine and ornithine decarboxylase (ADC and ODC, respectively) activities were below levels of detectability in resting tubers and expression of genes encoding these two enzymes was low. Within 6h of wounding, increases in the in vitro activities of ADC and ODC and expression of their cognate genes were observed. Expression of a gene encoding S-adenosylmethionine decarboxylase, required for Spd and Spm biosynthesis, was also increased 6h after wounding and remained elevated throughout the time course. Expression of a polyamine catabolic gene, encoding polyamine oxidase, was down-regulated after wounding. Results indicated a rapid wound-induced increase in PA biosynthesis during closing layer formation and the time of nuclei entry and exit from S-phase. PA content remained elevated as wound-induced cells became meristematic and initiated formation of the wound periderm suggesting sustained involvement in wound-healing.

  4. Mammalian polyamine catabolism: a therapeutic target, a pathological problem, or both?

    PubMed

    Wang, Yanlin; Casero, Robert A

    2006-01-01

    With the recent discovery of the polyamine catabolic enzyme spermine oxidase (SMO/PAOh1), the apparent complexity of the polyamine metabolic pathway has increased considerably. Alone or in combination with the two other known members of human polyamine catabolism, spermidine/spermine N(1)-acetyltransferase, and N(1)-acetylpolyamine oxidase (PAO), SMO/PAOh1 expression has the potential to alter polyamine homeostasis in response to normal cellular signals, drug treatment and environmental and/or cellular stressors. The activity of the oxidases producing toxic aldehydes and the reactive oxygen species (ROS) H(2)O(2), suggest a mechanism by which these oxidases can be exploited as an antineoplastic drug target. However, inappropriate activation of the pathways may also lead to pathological outcomes, including DNA damage that can lead to cellular transformation. The most recent data suggest that the two polyamine catabolic pathways exhibit distinct properties and understanding these properties should aid in their exploitation for therapeutic and/or chemopreventive strategies.

  5. Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury

    PubMed Central

    Barone, Sharon; Destefano-Shields, Christina; Brooks, Marybeth; Murray-Stewart, Tracy; Dunworth, Matthew; Li, Weimin; Doherty, Joanne R.; Hall, Mark A.; Smith, Roger D.; Cleveland, John L.; Casero, Robert A.; Soleimani, Manoocher

    2017-01-01

    Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum stress response (ERSR) markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI. PMID:28886181

  6. A Small Molecule Polyamine Oxidase Inhibitor Blocks Androgen-Induced Oxidative Stress and Delays Prostate Cancer Progression in the TRAMP Mouse Model

    PubMed Central

    Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George

    2009-01-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data demonstrate that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays prostate cancer progression. PMID:19773450

  7. A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model.

    PubMed

    Basu, Hirak S; Thompson, Todd A; Church, Dawn R; Clower, Cynthia C; Mehraein-Ghomi, Farideh; Amlong, Corey A; Martin, Christopher T; Woster, Patrick M; Lindstrom, Mary J; Wilding, George

    2009-10-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiologic factor in prostate cancer (CaP) occurrence, recurrence, and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase, the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells, as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data show that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays CaP progression.

  8. Polyamine analogues targeting epigenetic gene regulation.

    PubMed

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  9. A polyamine analogue prevents acute pancreatitis and restores early liver regeneration in transgenic rats with activated polyamine catabolism.

    PubMed

    Rasanen, Tiina-Liisa; Alhonen, Leena; Sinervirta, Riitta; Keinanen, Tuomo; Herzig, Karl-Heinz; Suppola, Suvikki; Khomutov, Alex R; Vepsalainen, Jouko; Janne, Juhani

    2002-10-18

    We recently generated a transgenic rat model for acute pancreatitis, which was apparently caused by a massive depletion of pancreatic polyamines spermidine and spermine due to inducible activation of their catabolism (Alhonen, L., Parkkinen, J. J., Keinänen, T., Sinervirta, R., Herzig, K. H., and Jänne, J. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8290-8295). When subjected to partial hepatectomy, these animals showed striking activation of polyamine catabolism at 24 h postoperatively with a profound decrease in hepatic spermidine and spermine pools and failure to initiate liver regeneration. Here we show that pancreatitis in this model could be totally prevented, as judged by histopathology and plasma alpha-amylase activity, by administration of 1-methylspermidine, a metabolically stable analogue of spermidine. Similarly, the analogue, given prior to partial hepatectomy, restored early liver regeneration in the transgenic rats, as indicated by a dramatic increase in the number of proliferating cell nuclear antigen-positive hepatocytes from about 1% to more than 40% in response to the drug. The present results suggest that the extremely high concentration of spermidine in the pancreas, in fact the highest in the mammalian body, may have a critical role in maintaining organ integrity. The failure to initiate liver regeneration in the absence of sufficient hepatic polyamine pools similarly indicates that polyamines are required for proper commencement of the regenerative process.

  10. Role of the FAD-dependent polyamine oxidase in the selective formation of N(1),N(8)-bis(gamma-glutamyl)spermidine protein cross-links(1).

    PubMed

    Lentini, A; Mattioli, P; Provenzano, B; Abbruzzese, A; Caraglia, M; Beninati, S

    2007-04-01

    Protein-bound gamma-glutamylpolyamines have highlighted a new pathway in polyamine metabolism. Human foreskin keratinocytes offer a suitable model for this study. Indeed, they develop polymerized envelopes, as they differentiate, rich in epsilon-(gamma-glutamyl)lysine and N(1),N(8)-bis(gamma-glutamyl)spermidine cross-links. We have found that the selective oxidation of N(1)-(gamma-glutamyl)spermidine and N-(gamma-glutamyl)spermine by FAD-dependent polyamine oxidase (PAO) may be one of the cellular mechanisms regulating the preferential formation of a sterically defined bis(gamma-glutamyl)spermidine cross-link. The significance of this finding is unknown, but it suggests that the target of this PAO-modulation is to achieve the biochemical prerequisite for production of a normal epidermal stratum corneum.

  11. Activation of Dbl restores migration in polyamine-depleted intestinal epithelial cells via Rho-GTPases

    PubMed Central

    Bavaria, Mitulkumar N.; Bhattacharya, Sujoy; Johnson, Leonard R.

    2011-01-01

    Integrin binding to the extracellular matrix (ECM) activated Rho GTPases, Src, and focal adhesion kinase in intestinal epithelial cells (IEC)-6. Polyamine depletion inhibited activities of Rac1, RhoA, and Cdc42 and thereby migration. However, constitutively active (CA) Rac1 expression abolished the inhibitory effect of polyamine depletion, indicating that polyamines are involved in a process upstream of Rac1. In the present study, we examined the role of polyamines in the regulation of the guanine nucleotide exchange factor, diffuse B-cell lymphoma (Dbl), for Rho GTPases. Polyamine depletion decreased the level as well as the activation of Dbl protein. Dbl knockdown by siRNA altered cytoskeletal structure and decreased Rac1 activity and migration. Cells expressing CA-Dbl increased migration, Rac1 activity, and proliferation. CA-Dbl restored migration in polyamine-depleted cells by activating RhoA, Rac1, and Cdc42. CA-Dbl caused extensive reorganization of the F-actin cortex into stress fibers. Inhibition of Rac1 by NSC23766 significantly decreased migration of vector-transfected cells and CA-Dbl-transfected cells. However, the inhibition of migration was significantly higher in the vector-transfected cells compared with that seen in the CA-Dbl-transfected cells. Dbl localized in the perinuclear region in polyamine-depleted cells, whereas it localized with the stress fibers in control cells. CA-Dbl localized with stress fibers in both the control and polyamine-depleted cells. These results suggest that polyamines regulate the activation of Dbl, a membrane-proximal process upstream of Rac1. PMID:21372162

  12. Ornithine decarboxylase regulates the activity and localization of rhoA via polyamination

    SciTech Connect

    Maekitie, Laura T.; Kanerva, Kristiina; Andersson, Leif C.

    2009-04-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine synthesis. Polyamines and ODC are connected to cell proliferation and transformation. Resting cells display a low ODC activity while normal, proliferating cells display fluctuations in ODC activity that coincide with changes in the actin cytoskeleton during the cell cycle. Cancerous cells display constitutively elevated ODC activity. Overexpression of ODC in NIH 3T3 fibroblasts induces a transformed phenotype. The cytoskeletal rearrangements during cytokinesis and cell transformation are intimately coupled to the ODC activity but the molecular mechanisms have remained elusive. In this study we investigated how ODC and polyamines influence the organization of the cytoskeleton. Given that the small G-proteins of the rho family are key modulators of the actin cytoskeleton, we investigated the molecular interactions of rhoA with ODC and polyamines. Our results show that transglutaminase-catalyzed polyamination of rhoA regulates its activity. The polyamination status of rhoA crucially influences the progress of the cell cycle as well as the rate of transformation of rat fibroblasts infected with temperature-sensitive v-src. We also show that ODC influences the intracellular distribution of rhoA. These findings provide novel insights into the mechanisms by which ODC and polyamines regulate the dynamics of the cytoskeleton during cell proliferation and transformation.

  13. Genistein effect on xanthine oxidase activity.

    PubMed

    Sumbayev, V V

    2001-01-01

    Genistein was defined to be an allosteric xanthine oxidase inhibitor in the concentrations 0.1-4.0 microM and xanthine oxidase activator with superoxide scavenging activity in the concentrations 5.0 microM and higher. But the most effective allosteric binding with the highest affinity was observed in the genistein concentrations 0.1-1.0 microM. Intraperitoneum injections of genistein (500 micrograms/kg) during three days with the interval 24 hours decrease xanthine oxidase activity in the liver, lung and brain of the Vistar rats.

  14. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips.

    PubMed

    Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A

    2008-03-01

    The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.

  15. Polyamine metabolism in Menkes kinky hair disease.

    PubMed

    Rennert, O M; Chan, W Y; Hidalgo, H; Cushing, W; Griesmann, G

    1980-05-09

    Clinical investigations of the urinary excretion of putrescine and the polyamines spermidine and spermine in a patient with Menkes kinky hair disease are reported. This disorder, characterized by intra- and extracellular copper deficiency, is associated with significant depression of diamine oxidase and monoamine oxidase activity. Urinary excretion of diamine and polyamines, monitored over a 2-month interval in a 4-month old patient with Menkes kinky hair disease, documented a 3- to 10-fold increase in the excretion of free putrescine, spermidine and spermine as well as the conjugated derivatives of putrescine and spermidine. These observations suggest that abnormalities in diamine and polyamine concentration occur in disease states in which the metabolic transformation of these compounds is impaired.

  16. Activation of polyphenol oxidase of chloroplasts.

    PubMed

    Tolbert, N E

    1973-02-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or -18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density.Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles x mg(-1) chlorophyll x hr(-1). Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes.Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  17. Activation of Polyphenol Oxidase of Chloroplasts 1

    PubMed Central

    Tolbert, N. E.

    1973-01-01

    Polyphenol oxidase of leaves is located mainly in chloroplasts isolated by differential or sucrose density gradient centrifugation. This activity is part of the lamellar structure that is not lost on repeated washing of the plastids. The oxidase activity was stable during prolonged storage of the particles at 4 C or —18 C. The Km (dihydroxyphenylalanine) for spinach leaf polyphenol oxidase was 7 mm by a spectrophotometric assay and 2 mm by the manometric assay. Polyphenol oxidase activity in the leaf peroxisomal fraction, after isopycnic centrifugation on a linear sucrose gradient, did not coincide with the peroxisomal enzymes but was attributed to proplastids at nearly the same specific density. Plants were grouped by the latency properties for polyphenol oxidase in their isolated chloroplasts. In a group including spinach, Swiss chard, and beet leaves the plastids immediately after preparation from fresh leaves required a small amount of light for maximal rates of oxidation of dihydroxyphenylalanine. Polyphenol oxidase activity in the dark or light increased many fold during aging of these chloroplasts for 1 to 5 days. Soluble polyphenol oxidase of the cytoplasm was not so stimulated. Chloroplasts prepared from stored leaves were also much more active than from fresh leaves. Maximum rates of dihydroxyphenylalanine oxidation were 2 to 6 mmoles × mg−1 chlorophyll × hr−1. Equal stimulation of latent polyphenol oxidase in fresh or aged chloroplasts in this group was obtained by either light, an aged trypsin digest, 3-(4-chlorophenyl)-1, 1-dimethylurea, or antimycin A. A variety of other treatments did not activate or had little effect on the oxidase, including various peptides, salts, detergents, and other proteolytic enzymes. Activation of latent polyphenol oxidase in spinach chloroplasts by trypsin amounted to as much as 30-fold. The trypsin activation occurred even after the trypsin had been treated with 10% trichloroacetic acid, 1.0 n HCl or boiled for 30

  18. The polyamine oxidase from lycophyte Selaginella lepidophylla (SelPAO5), unlike that of angiosperms, back-converts thermospermine to norspermidine.

    PubMed

    Sagor, G H M; Inoue, Masataka; Kim, Dong Wook; Kojima, Seiji; Niitsu, Masaru; Berberich, Thomas; Kusano, Tomonobu

    2015-10-07

    In the phylogeny of plant polyamine oxidases (PAOs), clade III members from angiosperms, such as Arabidopsis thaliana PAO5 and Oryza sativa PAO1, prefer spermine and thermospermine as substrates and back-convert both of these substrates to spermidine in vitro. A clade III representative of lycophytes, SelPAO5 from Selaginella lepidophylla, also prefers spermine and thermospermine but instead back-converts these substrates to spermidine and norspermidine, respectively. This finding indicates that the clade III PAOs of lycophytes and angiosperms oxidize thermospermine at different carbon positions. We discuss the physiological significance of this difference.

  19. Global Metabolic Profiling of Arabidopsis Polyamine Oxidase 4 (AtPAO4) Loss-of-Function Mutants Exhibiting Delayed Dark-Induced Senescence

    PubMed Central

    Sequera-Mutiozabal, Miren I.; Erban, Alexander; Kopka, Joachim; Atanasov, Kostadin E.; Bastida, Jaume; Fotopoulos, Vasileios; Alcázar, Rubén; Tiburcio, Antonio F.

    2016-01-01

    Early and more recent studies have suggested that some polyamines (PAs), and particularly spermine (Spm), exhibit anti-senescence properties in plants. In this work, we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4), encoding a PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4 (pao4-1 and pao4-2) loss-of-function mutants have been found that accumulate 10-fold higher Spm, and this associated with delayed entry into senescence under dark conditions. Mechanisms underlying pao4 delayed senescence have been studied using global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher levels of important metabolites involved in redox regulation, central metabolism and signaling that support a priming status against oxidative stress. During senescence, interactions between PAs and oxidative, sugar and nitrogen metabolism have been detected that additively contribute to delayed entry into senescence. Our results indicate the occurrence of metabolic interactions between PAs, particularly Spm, with cell oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with oxidative damage produced during senescence. PMID:26925084

  20. Effect of naphthalene on cytochrome oxidase activity

    SciTech Connect

    Harmon, H.J.

    1988-01-01

    Previous reports have demonstrated that naphthalene inhibits oxygen consumption in Daphnia magna tissue culture cells, and intact mitochondria and submitochondrial particles. These studies were extended to algal mitochondrial respiration as well as photosynthetic activity. The authors were able to demonstrate the specific site of apparent respiratory inhibition to be coenzyme Q (ubiquinone, UQ) and later to demonstrate the molecular basis of this inhibition at ubiquinone. The authors previously could not demonstrate an effect of naphthalene on cytochrome oxidase activity. However, the observation that naphthalene can stimulate respiration in algae prompted the reinvestigation of the effect of naphthalene on the kinetics of cytochrome oxidase. Cytochrome oxidase is a multi-subunit membranous protein responsible for the oxidation of cytochrome c and the reduction of molecular oxygen to water. Because of the complicated nature and mechanism of this enzyme, the potential exists for multiple and possibly opposite effects of naphthalene on its function.

  1. Polyphenol oxidase activity in annual forage clovers

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO)-mediated phenol reactions in red clover (Trifolium pratense L.) bind forage protein and reduce proteolysis, producing beneficial effects on forage protein degradability, silage fermentation, and soil-N cycling. We evaluated PPO activity in seven previously untested annual c...

  2. Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants.

    PubMed

    Wi, Soo Jin; Park, Ky Young

    2002-04-30

    The amount of polyamines (such as putrescine, spermidine, and spermine) increased under environmental stress conditions. We used transgenic technology in an attempt to evaluate their potential for mitigating the adverse effects of several abiotic stresses in plants. Because there is a metabolic competition for S-adenosylmethionine as a precursor between polyamine (PA) and ethylene biosyntheses, it was expected that the antisense-expression of ethylene biosynthetic genes could result in an increase in PA biosynthesis. Antisense constructs of cDNAs for senescence-related 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (CAS) and ACC oxidase (CAO) were isolated from carnation flowers that were introduced into tobacco by Agrobacterium-mediated transformation. Several transgenic lines showed higher PA contents than wild-type plants. The number and weight of seeds also increased. Stress-induced senescence was attenuated in these transgenic plants in terms of total chlorophyll loss and phenotypic changes after oxidative stress with hydrogen peroxide (H2O2), high salinity, acid stress (pH 3.0), and ABA treatment. These results suggest that the transgenic plants with antisense CAS and CAO cDNAs are more tolerant to abiotic stresses than wild-type plants. This shows a positive correlation between PA content and stress tolerance in plants.

  3. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance.

    PubMed

    Zarza, Xavier; Atanasov, Kostadin E; Marco, Francisco; Arbona, Vicent; Carrasco, Pedro; Kopka, Joachim; Fotopoulos, Vasileios; Munnik, Teun; Gómez-Cadenas, Aurelio; Tiburcio, Antonio F; Alcázar, Rubén

    2017-04-01

    The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine and its structural isomer thermospermine (tSpm) into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonate (JA) biosynthesis and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signalling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.

  4. Targets of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission.

    PubMed

    Limon, Agenor; Mamdani, Firoza; Hjelm, Brooke E; Vawter, Marquis P; Sequeira, Adolfo

    2016-07-01

    Major depressive disorder (MDD) is a leading cause of disability worldwide characterized by altered neuronal activity in brain regions involved in the control of stress and emotion. Although multiple lines of evidence suggest that altered stress-coping mechanisms underlie the etiology of MDD, the homeostatic control of neuronal excitability in MDD at the molecular level is not well established. In this review, we examine past and current evidence implicating dysregulation of the polyamine system as a central factor in the homeostatic response to stress and the etiology of MDD. We discuss the cellular effects of abnormal metabolism of polyamines in the context of their role in sensing and modulation of neuronal, electrical, and synaptic activity. Finally, we discuss evidence supporting an allostatic model of depression based on a chronic elevation in polyamine levels resulting in self-sustained stress response mechanisms maintained by maladaptive homeostatic mechanisms.

  5. Antimutagenic activity of oxidase enzymes

    SciTech Connect

    Agabeili, R.A.

    1986-11-01

    By means of a cytogenetic analysis of chromosomal aberrations in plant cells (Welsh onion, wheat) it was found that the cofactors nicotinamide adenine phosphate (NAD), nicotinamide adenine dinucleotide phosphate (NADPH), and riboflavin possess antimutagenic activity.

  6. Polyamine metabolism in a member of the phylum Microspora (Encephalitozoon cuniculi): effects of polyamine analogues

    PubMed Central

    Bacchi, Cyrus J.; Rattendi, Donna; Faciane, Evangeline; Yarlett, Nigel; Weiss, Louis M.; Frydman, Benjamin; Woster, Patrick; Wei, Benjamin; Marton, Laurence J.; Wittner, Murray

    2011-01-01

    The uptake, biosynthesis and catabolism of polyamines in the microsporidian parasite Encephalitozoon cuniculi are detailed with reference to the effects of oligoamine and arylamine analogues of polyamines. Enc. cuniculi, an intracellular parasite of mammalian cells, has both biosynthetic and catabolic enzymes of polyamine metabolism, as demonstrated in cell-free extracts of mature spores. The uptake of polyamines was measured in immature, pre-emergent spores isolated from host cells by Percoll gradient. Spermine was rapidly taken up and metabolized to spermidine and an unknown, possibly acetamidopropanal, by spermidine/spermine N1-acetyltransferase (SSAT) and polyamine oxidase (PAO). Most of the spermidine and the unknown product were found in the cell incubation medium, indicating they were released from the cell. bis(Ethyl) oligoamine analogues of polyamines, such as SL-11144 and SL-11158, as well as arylamine analogues [BW-1, a bis(phenylbenzyl) 3-7-3 analogue] blocked uptake and interconversion of spermine at micromolar levels and, in the case of BW-1, acted as substrate for PAO. The Enc. cuniculi PAO activity differed from that found in mammalian cells with respect to pH optimum, substrate specificity and sensitivity to known PAO inhibitors. SL-11158 inhibited SSAT activity with a mixed type of inhibition in which the analogue had a 70-fold higher affinity for the enzyme than the natural substrate, spermine. The interest in Enc. cuniculi polyamine metabolism and the biochemical effects of these polyamine analogues is warranted since they cure model infections of Enc. cuniculi in mice and are potential candidates for human clinical trials. PMID:15133083

  7. Platelet monoamine oxidase activity in megaloblastic anaemia.

    PubMed Central

    Glover, V; Sandler, M; Hughes, A; Hoffbrand, A V

    1980-01-01

    Platelet monoamine oxidase activity has been measured in 17 patients with megaloblastic anaemia due to either vitamin B12 or folate deficiency, and in 20 healthy subjects. There was a highly significant increase in patients compared with controls. In two patients, platelet activity decreased following successful treatment. A significant correlation between platelet activity and the severity of bone marrow megaloblastic change, assessed by the deoxyuridine suppression test and bone marrow morphology, was also observed. If the change in activity also occurs in the nervous system, this may contribute to the mental disturbance associated with vitamin B12 or folate deficiency. PMID:7430361

  8. Activated K-RAS Increases Polyamine Uptake in Human Colon Cancer Cells Through Modulation of Caveolar Endocytosis

    PubMed Central

    Basu Roy, Upal K.; Rial, Nathaniel S.; Kachel, Karen L.; Gerner, Eugene W.

    2008-01-01

    Endocytic pathways have been implicated in polyamine transport in mammalian cells, but specific mechanisms have not been described. We have shown that expression of a dominant negative (DN) form of the GTPase Dynamin, but not Eps15, diminished polyamine uptake in colon cancer cells indicating a caveolar and nonclathrin uptake mode. Polyamines co-sediment with lipid raft/caveolin-1 rich fractions, of the plasma membrane in a sucrose density gradient. Knock down of caveolin-1 significantly increased polyamine uptake. Conversely, ectopic expression of this protein resulted in diminished polyamine uptake. We also found that presence of an activated K-RAS oncogene significantly increased polyamine uptake by colon cancer cells. This effect is through an increase in caveolin-1 phosphorylation at tyrosine residue 14. Caveolin-1 is a negative regulator of caveolar endocytosis and phosphorylation in a K-RAS dependent manner leads to an increase in caveolar endocytosis. In cells expressing wild type K-RAS, addition of exogenous uPA was sufficient to stimulate caveolar endocytosis of polyamines. This effect was abrogated by the addition of a SRC kinase inhibitor. These data indicate that polyamine transport follows a dynamin-dependent and clathrin-independent endocytic uptake route, and this route is positively regulated by the oncogenic expression of K-RAS in a caveolin-1 dependent manner. PMID:18176934

  9. Altered growth and polyamine catabolism following exposure of the chocolate spot pathogen Botrytis fabae to the essential oil of Ocimum basilicum.

    PubMed

    Oxenham, Senga K; Svoboda, Katja P; Walters, Dale R

    2005-01-01

    Biomass of the fungal pathogen Botrytis fabae in liquid culture amended with two chemotypes of the essential oil of basil, Ocimum basilicum, was reduced significantly at concentrations of 50 ppm or less. The methyl chavicol chemotype oil increased the activity of the polyamine biosynthetic enzyme S-adenosylmethionine decarboxylase (AdoMetDC), but polyamine concentrations were not significantly altered. In contrast, the linalol chemotype oil decreased AdoMetDC activity in B. fabae, although again polyamine concentrations were not altered significantly. However activities of the polyamine catabolic enzymes diamine oxidase (DAO) and polyamine oxidase (PAO) were increased significantly in B. fabae grown in the presence of the essential oil of the two chemotypes. It is suggested that the elevated activities of DAO and PAO may be responsible, in part, for the antifungal effects of the basil oil, possibly via the generation of hydrogen peroxide and the subsequent triggering of programmed cell death.

  10. Polyamines and colon cancer.

    PubMed

    Wallace, H M; Caslake, R

    2001-09-01

    Colorectal cancer is a major health problem in the western world and is associated with significant morbidity and mortality. Diet makes a significant contribution to the disease, with high fat, low fibre diets correlating positively with a high incidence of colorectal cancer. Intracellular polyamine concentrations and ornithine decarboxylase activity are both increased in colorectal cancer tissue and in premalignant polyps. Measurement of the polyamine content of serum and urine of individuals has been proposed as a diagnostic marker of malignancy but a number of false positives make this idea untenable. There may, however, still be a role for the measurement of urinary polyamine content as a means of monitoring the efficacy of therapy. Inhibition of polyamine metabolism by polyamine analogues or by non-steroidal anti-inflammatory drugs may be useful in the chemotherapy and/or chemoprevention of colorectal cancer. Preliminary results suggest that a low polyamine diet might be helpful as part of a health care plan for cancer patients.

  11. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling

    PubMed Central

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm4+ > Spd3+ > Put2+. On the contrary, effects of polyamines on the plasma membrane (PM) cation and K+-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H+ pumps and Ca2+ pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca2+ influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. PMID:24795739

  12. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection.

    PubMed

    Hardbower, Dana M; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A; Verriere, Thomas; Lewis, Nuruddeen D; Chaturvedi, Rupesh; Piazuelo, M Blanca; Wilson, Keith T

    2016-10-01

    We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 (-/-) mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 (-/-) to Nos2 (-/-) mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 (-/-) mice demonstrated enhanced M1 macrophage activation, Nos2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 (-/-), but not Nos2 (-/-) or Arg2 (-/-) ;Nos2 (-/-) mice. Gastric tissues from infected Arg2 (-/-) mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N (1)-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.

  13. Individual variation in hepatic aldehyde oxidase activity.

    PubMed

    Al-Salmy, H S

    2001-04-01

    Aldehyde oxidase (AO) is a molybdo-flavo enzyme expressed predominantly in the liver, lung, and kidney. AO plays a major role in oxidation of aldehydes, as well as oxidation of various N-heterocyclic compounds of pharmacological and toxicological importance including antiviral (famciclovir), antimalarial (quinine), antitumour (methotrexate), and nicotine. The aim of this study was to investigate cytosolic aldehyde oxidase activity in human liver. Cytosolic AO was characterised using both the metabolism of N-[(2-dimethylamino)ethyl] acridine-4-carboxamide (DACA) and benzaldehyde to form DACA-9(10H)-acridone (quantified by HPLC with fluorescence detection) and benzoic acid (quantified spectrophotometrically). Thirteen livers (10 female, 3 male) were examined. The intrinsic clearance (Vmax/Km) of DACA varied 18-fold (0.03-0.50 m/min/mg). Vmax ranged from 0.20-3.10 nmol/ min/mg, and Km ranged from 3.5-14.2 microM. In the same specimens, the intrinsic clearance for benzaldehyde varied 5-fold (0.40-1.8 ml/min/mg). Vmax ranged from 3.60-12.6 nmol/min/mg and Km ranged from 3.6-14.6 microM. Furthermore, there were no differences in AO activity between male and female human livers, nor was there any relationship to age of donor (range 29-73 years), smoking status, or disease status. In conclusion, our results showed that there are variations in AO activity in human liver. These variations in aldehyde oxidase activity might reflect individual variations or they might be due to AO stability during processing and storage.

  14. Polyphenol Oxidase Activity Expression in Ralstonia solanacearum

    PubMed Central

    Hernández-Romero, Diana; Solano, Francisco; Sanchez-Amat, Antonio

    2005-01-01

    Sequencing of the genome of Ralstonia solanacearum revealed several genes that putatively code for polyphenol oxidases (PPOs). To study the actual expression of these genes, we looked for and detected all kinds of PPO activities, including laccase, cresolase, and catechol oxidase activities, in cellular extracts of this microorganism. The conditions for the PPO assays were optimized for the phenolic substrate, pH, and sodium dodecyl sulfate concentration used. It was demonstrated that three different PPOs are expressed. The genes coding for the enzymes were unambiguously correlated with the enzymatic activities detected by generation of null mutations in the genes by using insertional mutagenesis with a suicide plasmid and estimating the changes in the levels of enzymatic activities compared to the levels in the wild-type strain. The protein encoded by the RSp1530 locus is a multicopper protein with laccase activity. Two other genes, RSc0337 and RSc1501, code for nonblue copper proteins exhibiting homology to tyrosinases. The product of RSc0337 has strong tyrosine hydroxylase activity, and it has been shown that this enzyme is involved in melanin synthesis by R. solanacearum. The product of the RSc1501 gene is an enzyme that shows a clear preference for oxidation of o-diphenols. Preliminary characterization of the mutants obtained indicated that PPOs expressed by R. solanacearum may participate in resistance to phenolic compounds since the mutants exhibited higher sensitivity to l-tyrosine than the wild-type strain. These results suggest a possible role in the pathogenic process to avoid plant resistance mechanisms involving the participation of phenolic compounds. PMID:16269713

  15. Anticancer activity of some polyamine derivatives on human prostate and breast cancer cell lines.

    PubMed

    Szumilak, Marta; Galdyszynska, Malgorzata; Dominska, Kamila; Stanczak, Andrzej; Piastowska-Ciesielska, Agnieszka

    2017-01-01

    The aim of this study was to expand our knowledge about anticancer activity of some polyamine derivatives with quinoline or chromane as terminal moieties. Tested compounds were evaluated in vitro towards metastatic human prostate adenocarcinoma (PC3), human carcinoma (DU145) and mammary gland adenocarcinoma (MCF7) cell lines. Cell viability was estimated on the basis of mitochondrial metabolic activity using water-soluble tetrazolium WST1 to establish effective concentrations of the tested compounds under experimental conditions. Cytotoxic potential of polyamine derivatives was determined by the measurement of lactate dehydrogenase activity released from damaged cells, changes in mitochondrial membrane potential, the cell cycle distribution analysis and apoptosis assay. It was revealed that the tested polyamine derivatives differed markedly in their antiproliferative activity. Bischromane derivative 5a exhibited a rather cytostatic than cytotoxic effect on the tested cells, whereas quinoline derivative 3a caused changes in cell membrane integrity, inhibited cell cycle progression, as well as induced apoptosis of prostate and breast cancer cells which suggest its potential application in cancer therapy.

  16. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway

    PubMed Central

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold

    2009-01-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism. PMID:19657052

  17. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway.

    PubMed

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold; Davies, Kelvin Paul

    2009-10-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.

  18. Increased expression and cellular localization of spermine oxidase in ulcerative colitis and relationship to disease activity.

    PubMed

    Hong, Shih-Kuang S; Chaturvedi, Rupesh; Piazuelo, M Blanca; Coburn, Lori A; Williams, Christopher S; Delgado, Alberto G; Casero, Robert A; Schwartz, David A; Wilson, Keith T

    2010-09-01

    Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by TaqMan-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress.

  19. Increased Expression and Cellular Localization of Spermine Oxidase in Ulcerative Colitis and Relationship to Disease Activity

    PubMed Central

    Hong, Shih-Kuang S.; Chaturvedi, Rupesh; Blanca Piazuelo, M.; Coburn, Lori A.; Williams, Christopher S.; Delgado, Alberto G.; Casero, Robert A.; Schwartz, David A.; Wilson, Keith T.

    2010-01-01

    Background Polyamines are important in cell growth and wound repair, but have also been implicated in inflammation-induced carcinogenesis. Polyamine metabolism includes back-conversion of spermine to spermidine by the enzyme spermine oxidase (SMO), which produces hydrogen peroxide that causes oxidative stress. In ulcerative colitis (UC), levels of spermine are decreased compared to spermidine. Therefore, we sought to determine if SMO is involved in UC. Methods Colon biopsies and clinical information from subjects undergoing colonoscopy for evaluation of UC or colorectal cancer screening were utilized from 16 normal controls and 53 UC cases. Histopathologic disease severity was graded and the Mayo Disease Activity Index (DAI) and endoscopy subscore assessed. SMO mRNA expression was measured in frozen biopsies by Taq-Man-based real-time polymerase chain reaction (PCR). Formalin-fixed tissues were used for SMO immunohistochemistry. Results There was a 3.1-fold upregulation of SMO mRNA levels in UC patients compared to controls (P = 0.044), and a 3.7-fold increase in involved left colon versus paired uninvolved right colon (P < 0.001). With worsening histologic injury in UC there was a progressive increase in SMO staining of mononuclear inflammatory cells. There was a similar increase in SMO staining with worsening endoscopic disease severity and strong correlation with the DAI (r = 0.653, P < 0.001). Inflammatory cell SMO staining was increased in involved left colon versus uninvolved right colon. Conclusions SMO expression is upregulated in UC tissues, deriving from increased levels in mononuclear inflammatory cells. Dysregulated polyamine homeostasis may contribute to chronic UC by altering immune responses and increasing oxidative stress. PMID:20127992

  20. Lysyl oxidase activity in human normal skins and postburn scars.

    PubMed

    Hayakawa, T; Hino, N; Fuyamada, H; Nagatsu, T; Aoyama, H

    1976-09-06

    Lysyl oxidase activity of human normal skins derived from the frontal thighs of 33 subjects showed large variations and the mean value was 11 455 +/- 7 172 (S.D.) cpm/g of wet weight tissue. The age of lesion affected the lysyl oxidase activity in postburn scars. Granulation tissues showed a fairly low activity; however, the activity increased sharply within 2--3 months, and reached a significantly higher value than that of normal skin. The high level of activity continued for up to 2--3 years, then gradually decreased to normal range after 5 years or so. Lysyl oxidase activity was detected only after 4 M urea treatment of tissues. Benzylamine oxidase activity also showed large variations in both normal skins and postburn scars, with mean values of: 0.128 +/- 0.077 (S.D.) and 0.145 +/- 0.090 (S.D.) mmol/g of wet weight/h, respectively. No correlation was observed between lysyl oxidase and benzylamine oxidase activities. The granulation tissues showed significantly high values of benzylamine oxidase activity in contrast to the low values of lysyl oxidase activity.

  1. Conjugation with polyamines enhances the antibacterial and anticancer activity of chloramphenicol

    PubMed Central

    Kostopoulou, Ourania N.; Kouvela, Ekaterini C.; Magoulas, George E.; Garnelis, Thomas; Panagoulias, Ioannis; Rodi, Maria; Papadopoulos, Georgios; Mouzaki, Athanasia; Dinos, George P.; Papaioannou, Dionissios; Kalpaxis, Dimitrios L.

    2014-01-01

    Chloramphenicol (CAM) is a broad-spectrum antibiotic, limited to occasional only use in developed countries because of its potential toxicity. To explore the influence of polyamines on the uptake and activity of CAM into cells, a series of polyamine–CAM conjugates were synthesized. Both polyamine architecture and the position of CAM-scaffold substitution were crucial in augmenting the antibacterial and anticancer potency of the synthesized conjugates. Compounds 4 and 5, prepared by replacement of dichloro-acetyl group of CAM with succinic acid attached to N4 and N1 positions of N8,N8-dibenzylspermidine, respectively, exhibited higher activity than CAM in inhibiting the puromycin reaction in a bacterial cell-free system. Kinetic and footprinting analysis revealed that whereas the CAM-scaffold preserved its role in competing with the binding of aminoacyl-tRNA 3′-terminus to ribosomal A-site, the polyamine-tail could interfere with the rotatory motion of aminoacyl-tRNA 3′-terminus toward the P-site. Compared to CAM, compounds 4 and 5 exhibited comparable or improved antibacterial activity, particularly against CAM-resistant strains. Compound 4 also possessed enhanced toxicity against human cancer cells, and lower toxicity against healthy human cells. Thus, the designed conjugates proved to be suitable tools in investigating the ribosomal catalytic center plasticity and some of them exhibited greater efficacy than CAM itself. PMID:24939899

  2. Antimutagenic activities of naturally occurring polyamines in Chinese hamster ovary cell in vitro

    SciTech Connect

    Cozzi, R.; Perticone, P.; Bona, R.; Polani, S. )

    1991-01-01

    Spermine and spermidine, ubiquitous polyamines present in bacteria and animal cells, are also involved in cell growth. Since they interact with the double helix, they can stabilize the DNA molecule. Recent evidence of the antimutagenic and anticarcinogenic capacity of spermine has focused attention on the he mechanism(s) by which such agents can protect cells from induced damages. In the present paper the authors show the ability of spermine and spermidine to decrease the level of sister chromatid exchanges induced in Chinese hamster ovary cells cultivated in vitro, by treating them with Psoralen + UVA irradiation (able to induce mainly monoadducts and DNA cross-links). Two different mechanisms of polyamine action can be invoked to explain the preservative activity of this class of agents.

  3. Effect of contraceptive steroids on monoamine oxidase activity

    PubMed Central

    Southgate, Jennifer; Collins, G. G. S.; Pryse-Davies, J.; Sandler, M.

    1969-01-01

    Cyclical variations in monoamine oxidase activity during the human menstrual cycle, specific to the endometrium and modified in women undergoing contraceptive steroid treatment, may reflect changes in hormonal environment. Treatment of rats with individual constituents of the contraceptive pill causes analogous changes: oestrogens inhibit and progestogens potentiate uterine monoamine oxidase activity. ImagesFig. 2Fig. 3

  4. Discovery of novel polyamine analogs with anti-protozoal activity by computer guided drug repositioning

    NASA Astrophysics Data System (ADS)

    Alberca, Lucas N.; Sbaraglini, María L.; Balcazar, Darío; Fraccaroli, Laura; Carrillo, Carolina; Medeiros, Andrea; Benitez, Diego; Comini, Marcelo; Talevi, Alan

    2016-04-01

    Chagas disease is a parasitic infection caused by the protozoa Trypanosoma cruzi that affects about 6 million people in Latin America. Despite its sanitary importance, there are currently only two drugs available for treatment: benznidazole and nifurtimox, both exhibiting serious adverse effects and limited efficacy in the chronic stage of the disease. Polyamines are ubiquitous to all living organisms where they participate in multiple basic functions such as biosynthesis of nucleic acids and proteins, proliferation and cell differentiation. T. cruzi is auxotroph for polyamines, which are taken up from the extracellular medium by efficient transporters and, to a large extent, incorporated into trypanothione (bis-glutathionylspermidine), the major redox cosubstrate of trypanosomatids. From a 268-compound database containing polyamine analogs with and without inhibitory effect on T. cruzi we have inferred classificatory models that were later applied in a virtual screening campaign to identify anti-trypanosomal compounds among drugs already used for other therapeutic indications (i.e. computer-guided drug repositioning) compiled in the DrugBank and Sweetlead databases. Five of the candidates identified with this strategy were evaluated in cellular models from different pathogenic trypanosomatids ( T. cruzi wt, T. cruzi PAT12, T. brucei and Leishmania infantum), and in vitro models of aminoacid/polyamine transport assays and trypanothione synthetase inhibition assay. Triclabendazole, sertaconazole and paroxetine displayed inhibitory effects on the proliferation of T. cruzi (epimastigotes) and the uptake of putrescine by the parasite. They also interfered with the uptake of others aminoacids and the proliferation of infective T. brucei and L. infantum (promastigotes). Trypanothione synthetase was ruled out as molecular target for the anti-parasitic activity of these compounds.

  5. Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells.

    PubMed

    Arısan, Elif Damla; Coker, Ajda; Palavan-Ünsal, Narçin

    2012-02-01

    Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. In this study, we explored the potential role of polyamines in roscovitine-induced apoptosis in HCT116 colon cancer cells. Roscovitine induced apoptosis by activating mitochondrial pathway caspases and modulating the expression of Bcl-2 family members. Depletion of polyamines by treatment with difluoromethylornithine (DFMO) increased roscovitine-induced apoptosis. Transient silencing of ornithine decarboxylase, polyamine biosynthesis enzyme and special target of DFMO also increased roscovitine-induced apoptosis in HCT116 cells. Interestingly, additional putrescine treatment was found pro-apoptotic due to the presence of non-functional ornithine decarboxylase (ODC). Finally, roscovitine altered polyamine catabolic pathway and led to decrease in putrescine and spermidine levels. Therefore, the metabolic regulation of polyamines may dictate the power of roscovitine induced apoptotic responses in HCT116 colon cancer cells.

  6. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  7. Polyamine Oxidase, a Hydrogen Peroxide-Producing Enzyme, Is Up-Regulated by Light and Down-Regulated by Auxin in the Outer Tissues of the Maize Mesocotyl1

    PubMed Central

    Cona, Alessandra; Cenci, Francesco; Cervelli, Manuela; Federico, Rodolfo; Mariottini, Paolo; Moreno, Sandra; Angelini, Riccardo

    2003-01-01

    Exogenously supplied auxin (1-naphthaleneacetic acid) inhibited light-induced activity increase of polyamine oxidase (PAO), a hydrogen peroxide-producing enzyme, in the outer tissues of maize (Zea mays) mesocotyl. The same phenomenon operates at PAO protein and mRNA accumulation levels. The wall-bound to extractable PAO activity ratio was unaffected by auxin treatment, either in the dark or after light exposure. Ethylene treatment did not affect PAO activity, thus excluding an effect of auxin via increased ethylene biosynthesis. The auxin polar transport inhibitors N1-naphthylphthalamic acid or 2,3,5-triiodobenzoic acid caused a further increase of PAO expression in outer tissues after light treatment. The small increase of PAO expression, normally occurring in the mesocotyl epidermis during plant development in the dark, was also inhibited by auxin, although to a lesser extent with respect to light-exposed tissue, and was stimulated by N1-naphthylphthalamic acid or 2,3,5-triiodobenzoic acid, thus suggesting a complex regulation of PAO expression. Immunogold ultrastructural analysis in epidermal cells revealed the association of PAO with the secretory pathway and the cell walls. The presence of the enzyme in the cell walls of this tissue greatly increased in response to light treatment. Consistent with auxin effects on light-induced PAO expression, the hormone treatment inhibited the increase in immunogold staining both intraprotoplasmically and in the cell wall. These results suggest that both light and auxin finely tune PAO expression during the light-induced differentiation of the cell wall in the maize mesocotyl epidermal tissues. PMID:12586904

  8. Improved Oxidase Mimetic Activity by Praseodymium Incorporation into Ceria Nanocubes.

    PubMed

    Jiang, Lei; Fernandez-Garcia, Susana; Tinoco, Miguel; Yan, Zhaoxia; Xue, Qi; Blanco, Ginesa; Calvino, Jose J; Hungria, Ana B; Chen, Xiaowei

    2017-06-07

    Ceria nanocubes (NC) modified with increasing concentrations of praseodymium (5, 10, 15, and 20 mol %) have been successfully synthesized by a hydrothermal method. The as-synthesized Pr-modified ceria nanocubes exhibit an enhanced oxidase-like activity on the organic dye TMB within a wide range of concentrations and durations. The oxidase activity increases with increasing Pr amounts in Pr-modified ceria nanocubes within the investigated concentration range. Meanwhile, these Pr-modified ceria nanocubes also show higher reducibility than pure ceria nanocubes. The kinetics of their oxidase mimetic activity is fitted with the Michaelis-Menten equation. A mechanism has been proposed on how the Pr incorporation could affect the energy level of the bands in ceria and hence facilitate the TMB oxidation reaction. The presence of Pr(3+) species on the surface also contributes to the increasing activity of the Pr-modified ceria nanocubes present higher oxidase activity than pure ceria nanocubes.

  9. Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens)

    Treesearch

    Michelle J. Serapiglia; Rakesh Minocha; Subhash C. Minocha

    2008-01-01

    We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount...

  10. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    SciTech Connect

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J. Univ. of California, San Francisco )

    1988-08-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN.

  11. Aldehyde-induced xanthine oxidase activity in raw milk.

    PubMed

    Steffensen, Charlotte L; Andersen, Henrik J; Nielsen, Jacob H

    2002-12-04

    In the present study, the aldehyde-induced pro-oxidative activity of xanthine oxidase was followed in an accelerated raw milk system using spin-trap electron spin resonance (ESR) spectroscopy. The aldehydes acetaldehyde, propanal, hexanal, trans-2-hexenal, trans-2-heptenal, trans-2-nonenal, and 3-methyl-2-butenal were all found to initiate radical reactions when added to milk. Formation of superoxide through aldehyde-induced xanthine oxidase activity is suggested as the initial reaction, as all tested aldehydes were shown to trigger superoxide formation in an ultrahigh temperature (UHT) milk model system with added xanthine oxidase. It was found that addition of aldehydes to milk initially increased the ascorbyl radical concentration with a subsequent decay due to ascorbate depletion, which renders the formation of superoxide in milk with added aldehyde. The present study shows for the first time potential acceleration of oxidative events in milk through aldehyde-induced xanthine oxidase activity.

  12. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    PubMed

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N(1)-acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  13. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors.

    PubMed

    Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian

    2014-12-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors.

  14. The Novel Polyamine Analog CGC-11093 Enhances the Anti-Myeloma Activity of Bortezomib

    PubMed Central

    Carew, Jennifer S.; Nawrocki, Steffan T.; Reddy, Venudhar K.; Bush, Dorothy; Rehg, Jerold E.; Goodwin, Andrew; Houghton, Janet A.; Casero, Robert A.; Marton, Laurence J.; Cleveland, John L.

    2009-01-01

    Multiple myeloma (MM) is an incurable plasma cell malignancy. The recent successes of the proteasome inhibitor bortezomib in MM therapy have prompted investigations of its efficacy in combination with other anticancer agents. Polyamines play important roles in regulating tumor cell proliferation and angiogenesis and represent an important therapeutic target. CGC-11093 is a novel polyamine analog that has completed a Phase I clinical trial for the treatment of cancer. Here we report that CGC-11093 selectively augments the in vitro and in vivo anti-myeloma activity of bortezomib. Specifically, the combination of CGC-11093 and bortezomib compromised MM viability and clonogenic survival, and increased drug-induced apoptosis over that achieved by either single agent. Xenografts of MM tumors treated with this combination had marked increases in phospho-JNK-positive cells and apoptosis, and corresponding reductions in tumor burden, tumor vasculature, and the expression of PCNA and the pro-angiogenic cytokine vascular endothelial growth factor. Furthermore, inhibition of JNK with a pharmacological inhibitor or by selective knockdown blunted the efficacy of CGC-11093 and bortezomib. Therefore, CGC-11093 enhances bortezomib's anti-cancer activity by augmenting JNK-mediated apoptosis and blocking angiogenesis. These findings support study of the use of the combination of bortezomib and CGC-11093 in multiple myeloma patients that fail to respond to frontline therapy. PMID:18559525

  15. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity

    PubMed Central

    Peng, Zeyu; Dittmer, Neal T.; Lang, Minglin; Brummett, Lisa M.; Braun, Caroline L.; Davis, Lawrence C.; Kanost, Michael R.; Gorman, Maureen J.

    2015-01-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surpring because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism. PMID:25701385

  16. Multicopper oxidase-1 orthologs from diverse insect species have ascorbate oxidase activity.

    PubMed

    Peng, Zeyu; Dittmer, Neal T; Lang, Minglin; Brummett, Lisa M; Braun, Caroline L; Davis, Lawrence C; Kanost, Michael R; Gorman, Maureen J

    2015-04-01

    Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.

  17. Polyamines and nonmelanoma skin cancer

    SciTech Connect

    Gilmour, Susan K.

    2007-11-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.

  18. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Treesearch

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  19. CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity

    PubMed Central

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  20. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity.

    PubMed

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  1. Brain monoamine oxidase activity in schizophrenics and controls.

    PubMed

    Reveley, M A; Glover, V; Sandler, M; Spokes, E G

    1981-06-01

    Postmortem samples of caudate nucleus and frontal cortex from schizophrenic, schizophrenic-like, and control subjects were examined for monoamine oxidase activity using dopamine, phenylethylamine, and 5-hydroxytryptamine as substrates. There were no significant differences between the diagnostic groups with any of the three substrates. Neither was there a difference between the sexes, nor a consistent relationship of enzyme activity to age.

  2. Polyphenol oxidase activity in co-ensiled temperate grasses

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) and its o-diphenol substrates have been shown to effectively decrease proteolytic activity during the ensiling of forages such as red clover. Orchardgrass and smooth bromegrass both contain high levels of PPO activity, but lack appropriate levels of o-diphenols to adequately...

  3. DENSpm overcame Bcl-2 mediated resistance against Paclitaxel treatment in MCF-7 breast cancer cells via activating polyamine catabolic machinery.

    PubMed

    Akyol, Zeynep; Çoker-Gürkan, Ajda; Arisan, Elif Damla; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin

    2016-12-01

    The Bcl-2 mediated resistance is one of the most critical obstacle in cancer therapy. Conventional chemotherapeutics such as Paclitaxel, a commonly used in the treatment of metastatic breast cancer, is not sufficient to overcome Bcl-2 mediated drug resistance mechanism. Thus, combinational drug regimes are favored by researchers to overcome resistance phenotype against drugs. N1,N11-diethylnorspermine (DENSpm), a polyamine analogue, which is a promising drug candidate induced-cell cycle arrest and apoptosis in various cancer cells such as prostate, melanoma, colon and breast cancer cells via activated polyamine catabolism and reactive oxygen generation. Recent studies indicated the potential therapeutic role of DENSpm in phase I and II trials in breast cancer cases. Although the molecular targets of Paclitaxel in apoptotic cell death mechanism is well documented, the therapeutic effect of DENSpm and Paclitaxel in breast cancer cells has not been investigated yet. In this study, our aim was to determine the time dependent effect of DENSpm and Paclitaxel on apoptotic cell death via determination of polyamine metabolism related targets in wt and Bcl-2 overexpressing MCF-7 breast cancer cells. In our experimental study, Paclitaxel decreased cell viability in dose-dependent manner within 24h. Co-treatment of Paclitaxel (30nM) with DENSpm (20μM) further increased the cytoxicity of Paclitaxel (30nM) compared to alone Paclitaxel (30nM) treatment in MCF-7 Bcl-2+ breast cancer cells. In addition, we determined that resistance against Paclitaxel-induced apoptotic cell death in Bcl-2 overexpressed MCF-7 cells was overcome due to activation of polyamine catabolic pathway, which caused depletion of polyamines. DENSpm combinational treatment might increase the effect of low cytotoxic paclitaxel in drug-resistant breast cancer cases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Polyamine Catabolism Is Enhanced after Traumatic Brain Injury

    PubMed Central

    Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.

    2010-01-01

    Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally

  5. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.

    PubMed

    Filip-Ciubotaru, Florina; Manciuc, Carmen; Stoleriu, Gabriela; Foia, Liliana

    2016-01-01

    NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase), with its generically termed NOX isoforms, is the major source of ROS (reactive oxigen species) in biological systems. ROS are small oxygen-derived molecules with an important role in various biological processes (physiological or pathological). If under physiological conditions some processes are beneficial and necessary for life, under pathophysiological conditions they are noxious, harmful. NADPH oxidases are present in phagocytes and in a wide variety of nonphagocytic cells. The enzyme generates superoxide by transferring electrons from NADPH inside the cell across the membrane and coupling them to molecular oxygen to produce superoxide anion, a reactive free-radical. Structurally, NADPH oxidase is a multicomponent enzyme which includes two integral membrane proteins, glycoprotein gp9 1 Phox and adaptor protein p22(phox), which together form the heterodimeric flavocytochrome b558 that constitutes the core of the enzyme. During the resting state, the multidomain regulatory subunits p40P(phox), p47(phox), p67(Phox) are located in the cytosol organized as a complex. The activation of phagocytic NADPH oxidase occurs through a complex series of protein interactions.

  6. Polyamines in plant physiology

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  7. Polyamines in plant physiology

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  8. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    EPA Science Inventory

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  9. IRON REGULATES XANTHINE OXIDASE ACTIVITY IN THE LUNG

    EPA Science Inventory

    The iron chelator deferoxamine has been reported to inhibit both xanthine oxidase (XO) and xanthine dehydrogenase activity, but the relationship of this effect to the availability of iron in the cellular and tissue environment remains unexplored. XO and total xanthine oxidoreduct...

  10. [L-lysine-alpha-oxidase activity of some Trichoderma species].

    PubMed

    Smirnova, I P; Khaduev, S Kh

    1984-01-01

    Trichoderma cultures were tested for their ability to produce L-lysine-alpha-oxidase. The highest enzyme activity was manifested by T. harzianum (MGU), T. longibrachiatum Rifai VKM F-2025 and T. aureoviride Rifai VKM F-2026. The biosynthesis of the enzyme did not depend on the growth of the cultures and did not vary among the species.

  11. Monoamine oxidase activity in cultured human skin fibroblasts.

    PubMed

    Groshong, R; Gibson, D A; Baldessarini, R J

    1977-10-01

    Skin fibroblast cultures were prepared from 21 men, and found to contain types A and B activity of monoamine oxidase, with a possible slight predominance of type A, as evaluated by substrate preferences and differential inhibition by clorgyline and deprenyl. Three women had similar activities. There was a close correlation of activities with different substrates, but there was no quantitative correlation between fibroblast and blood platelet enzyme (type B) activities. The fibroblasts also contained catechol-O-methyltransferase activity exceeding, but poorly correlated with, that in erythrocytes. Fibroblasts may be advantageous in studies of monoamine oxidase in man by providing both types of enzyme as found, for example, in the central nervous system, and by providing a means of removing many in vivo chemical influences from the cells in culture. Nevertheless, great caution must be exercised in generalizing results of this "model" to other tissues, since activities of both enzymes correlated poorly with those in blood cells of the same individuals.

  12. Dopa oxidase activity and ceruloplasmin in the sera of hamsters with melanoma.

    PubMed

    Vachtenheim, J; Pavel, S; Duchon, J

    1981-01-01

    Two simple spectrophotometric assays have been employed for the measurement of dopa oxidase activity and ceruloplasmin polyphenol oxidase activity in the sera from normal hamsters and hamsters bearing melanotic melanoma. Both activities were found to be augmented in tumor animals, the dopa oxidase activity much more prominently. The levels of the enzymes tested increased proportionally to the tumor mass.

  13. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus.

    PubMed

    Wei, Yunxiao; Liu, Zhenfeng; Su, Yujing; Liu, Donghong; Ye, Xingqian

    2011-03-01

    The effects of salicylic acid (SA) on the quality and antioxidant activity of asparagus stored at 18 ± 2 °C were investigated by analyzing the color, chlorophyll, shear force, and the activity of antioxidant compounds such as ascorbic acid, phenolics, flavonoids, 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ferric reducing antioxidant power (FRAP), and polyamines (PAs). The results showed that SA improved the color and maintained the chlorophyll, phenolic, flavonoid, and ascorbic acid content of asparagus. High concentrations of SA caused a deterioration in asparagus would harm to color and had no effect on shear force within 6 d. SA induced the maximum concentration of phenolics in postharvest asparagus, promoted the increase in total flavonoids before 6 to 9 d, affected the antioxidant activity positively as indicated by the resultant increase in FRAP concentration; however, SA was only active with regard to DPPH scavenging activity within 6 d of treatment. Spermidine (Spd) is the most common form of PA in asparagus, and free putrescine (Put) contents increased over the first 3 d following harvest and then decreased. Spd and Spm concentrations evolved in a similar way and decreased during storage. Higher Spd and Spm contents in the SA pre-treatment Put was inhabited and its peaks appeared later.

  14. Polyamines in tea processing.

    PubMed

    Palavan-Unsal, Narcin; Arisan, Elif Damla; Terzioglu, Salih

    2007-06-01

    The distribution of dietary polyamines, putrescine, spermidine and spermine, was determined during processing of Camellia sinensis. Black tea manufacture is carried by a series of processes on fresh tea leaves involving withering, rolling, fermentation, drying and sieving. The aim of this research was to determine the effect of tea processing on the polyamine content in relation with antioxidant enzymes, superoxide dismutase, lipid peroxidase and glutathione peroxidase. Before processing, the spermine content was much higher than the putrescine and spermidine content in green tea leaves. Spermine was significantly decreased during processing while the putrescine and spermine contents increased during withered and rolling and decreased in the following stages. The superoxide dismutase activity increased at the withering stage and declined during processing. The transcript level of the polyamine biosynthesis-responsible enzyme ornithine decarboxylase was reduced during each processing step. This study reveals the importance of protection of nutritional compounds that are essential for health during the manufacturing process.

  15. Amine oxidase activity regulates the development of pulmonary fibrosis.

    PubMed

    Marttila-Ichihara, Fumiko; Elima, Kati; Auvinen, Kaisa; Veres, Tibor Z; Rantakari, Pia; Weston, Christopher; Miyasaka, Masayuki; Adams, David; Jalkanen, Sirpa; Salmi, Marko

    2017-03-01

    In pulmonary fibrosis, an inflammatory reaction and differentiation of myofibroblasts culminate in pathologic deposition of collagen. Amine oxidase copper containing-3 (AOC3) is a cell-surface expressed oxidase that regulates leukocyte extravasation. Here we analyzed the potential role of AOC3 using gene-modified and inhibitor-treated mice in a bleomycin-induced pulmonary fibrosis model. Inflammation and fibrosis of lungs were assessed by histologic, flow cytometric, and quantitative PCR analysis. AOC3-deficient mice showed a 30-50% reduction in fibrosis, collagen synthesis, numbers of myofibroblasts, and accumulation of CD4(+) lymphocytes, NK T cells, macrophages, and type 2 innate lymphoid cells compared with wild-type control mice. AOC3 knock-in mice, which express a catalytically inactive form of AOC3, were also protected from lung fibrosis. In wild-type mice, a small-molecule AOC3 inhibitor treatment reduced leukocyte infiltration, myofibroblast differentiation, and fibrotic injury both in prophylactic and early therapeutic settings by about 50% but was unable to reverse the established fibrosis. AOC3 was also induced in myofibroblasts in human idiopathic pulmonary fibrosis. Thus, the oxidase activity of AOC3 contributes to the development of lung fibrosis mainly by regulating the accumulation of pathogenic leukocyte subtypes, which drive the fibrotic response.-Marttila-Ichihara, F., Elima, K., Auvinen, K., Veres, T. Z., Rantakari, P., Weston, C., Miyasaka, M., Adams, D., Jalkanen, S., Salmi, M. Amine oxidase activity regulates the development of pulmonary fibrosis.

  16. Methods to evaluate alterations in polyamine metabolism caused by Helicobacter pylori infection

    PubMed Central

    Gobert, Alain P.; Chaturvedi, Rupesh; Wilson, Keith T.

    2011-01-01

    Helicobacter pylori is a Gram-negative bacteria that infects the human stomach of half of the world’s population. Colonization is followed by infiltration of the gastric mucosa by lymphocytes and myeloid cells. These cells are activated by various bacterial factors, causing them to release immune/inflammatory mediators, including reactive nitrogen species and polyamines that contribute to cellular damage and the pathogenesis of H. pylori-associated gastric cancer. In vitro experiments have revealed that H. pylori induces macrophage polyamine production by upregulation of the arginase 2/ornithine decarboxylase (ODC) metabolic pathway and enhances hydrogen peroxide synthesis through the activity of spermidine oxidase (SMO). In this chapter, we present a survey of the methods used to analyze the induction and the role of the enzymes related to polyamine metabolism, i.e. arginase, ODC, and SMO in H. pylori-infected macrophages. PMID:21318889

  17. Polyamine regulation of heat-shock-induced spermidine N1-acetyltransferase activity.

    PubMed Central

    Fuller, D J; Carper, S W; Clay, L; Chen, J R; Gerner, E W

    1990-01-01

    The enzyme spermidine/spermine N1-acetyltransferase (N1-SAT) is rapidly induced by heat shock in CHO and A549 cells, with activity declining by 24 h. Depletion of intracellular polyamines by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, blocks this induction. Re-addition of putrescine to these cultures restores the response to heat shock, with a concomitant increase in intracellular N1-acetylspermidine. Diaminopropane is more than twice as effective as the naturally occurring diamine putrescine, suggesting that the propylamine moiety of spermidine is involved in the regulation of N1-SAT induction. Inhibitor studies indicate transcriptional activation and that the enzyme has an apparent half-life of 30-60 min. A second heat shock rapidly inhibits induced N1-SAT activity, which decays with a half-life of 2-3 min. Despite its induction by heat, N1-SAT is not a stable enzyme, suggesting that the activity observed is not due to a modification of an existing peptide, but is due to a transcriptional event, which may justify the inclusion of this enzyme in the family of heat-shock proteins. Images Fig. 2. PMID:2111132

  18. Diamine Oxidase Activity in Different Physiological Stages of Helianthus tuberosus Tuber.

    PubMed

    Torrigiani, P; Serafini-Fracassini, D; Fara, A

    1989-01-01

    Diamine oxidase (DAO, EC 1.4.3.6) activity was examined in relation to polyamine content in Helianthus tuberosus L. during the first synchronous cell cycle induced in vitro by 2,4,-dichloro-phenoxyacetic acid in tuber slices and during the in vivo formation of the tuber. The optimal pH, buffer and dithiothreitol concentrations for the enzyme extraction and assay were determined. When added in the assay mixture, catalase enhanced DAO activity, while polyvinylpyrrolidone had no effect; both aminoguanidine and hydrazine inhibited enzyme activity. The time course of the reaction, based on the recovery of Delta(1)-pyrroline from labeled putrescine in lipophilic solvents, showed that it was linear up to 30 minutes; the K(m) of the enzyme for putrescine was of the order of 10(-4) molar. During the first cell cycle, DAO activity exhibited a peak at 15 hours of activation while putrescine content gave a peak at 12 hours. During tuber formation (from August till October) DAO activity was relatively high during the first phase of growth (cell division), decreased until flowering (end of September-early October), and then newly increased during the cell enlargement phase preceding the entry into dormancy (November). Maximum putrescine content was observed at the end of October. The increase in DAO activity paralleled the accumulation of putrescine. This indicates a direct correlation between the biosynthesis and oxidation of putrescine which, as already demonstrated in animal systems, occur simultaneously in physiological stages of intense metabolism such as cell division or organ formation.

  19. Diamine Oxidase Activity in Different Physiological Stages of Helianthus tuberosus Tuber 1

    PubMed Central

    Torrigiani, Patrizia; Serafini-Fracassini, Donatella; Fara, Angela

    1989-01-01

    Diamine oxidase (DAO, EC 1.4.3.6) activity was examined in relation to polyamine content in Helianthus tuberosus L. during the first synchronous cell cycle induced in vitro by 2,4,-dichloro-phenoxyacetic acid in tuber slices and during the in vivo formation of the tuber. The optimal pH, buffer and dithiothreitol concentrations for the enzyme extraction and assay were determined. When added in the assay mixture, catalase enhanced DAO activity, while polyvinylpyrrolidone had no effect; both aminoguanidine and hydrazine inhibited enzyme activity. The time course of the reaction, based on the recovery of Δ1-pyrroline from labeled putrescine in lipophilic solvents, showed that it was linear up to 30 minutes; the Km of the enzyme for putrescine was of the order of 10−4 molar. During the first cell cycle, DAO activity exhibited a peak at 15 hours of activation while putrescine content gave a peak at 12 hours. During tuber formation (from August till October) DAO activity was relatively high during the first phase of growth (cell division), decreased until flowering (end of September-early October), and then newly increased during the cell enlargement phase preceding the entry into dormancy (November). Maximum putrescine content was observed at the end of October. The increase in DAO activity paralleled the accumulation of putrescine. This indicates a direct correlation between the biosynthesis and oxidation of putrescine which, as already demonstrated in animal systems, occur simultaneously in physiological stages of intense metabolism such as cell division or organ formation. PMID:16666548

  20. Platelet monoamine oxidase activity and the classification of depression.

    PubMed

    Davidson, J R; McLeod, M N; Turnbull, C D; White, H L; Feuer, E J

    1980-07-01

    An attempt was made to compare platelet monoamine oxidase (MAO) activity in descriptively based types of nonbipolar depression. Platelet MAO activity was significantly higher in depression secondary to chronic anxiety, compared with primary unipolar depression and depression secondary to borderline personality, and in women compared with men. No significant differences were observed between endogenous-nonendogenous, delusional-nondelusional, psychomotor states, or different age groups.

  1. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  2. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae).

    PubMed

    Silva, E C C; Masui, D C; Furriel, R P M; Mantelatto, F L M; McNamara, J C; Barrabin, H; Leone, F A; Scofano, H M; Fontes, C F L

    2008-04-01

    Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine>spermidine>putrescine. Spermidine affected K(0.5) values for Na(+) with minor alterations in K(0.5) values for K(+) and NH(4)(+), causing a decrease in maximal velocities under saturating Na(+), K(+) and NH(4)(+) concentrations. Phosphorylation measurements in the presence of 20 microM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na(+), both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na(+), the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na(+) at the Na(+)-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.

  3. Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity

    NASA Astrophysics Data System (ADS)

    Guo, Leilei; Huang, Kaixun; Liu, Hongmei

    2016-03-01

    Selenium nanoparticles (SeNPs) are considered to be the new selenium supplement forms with high biological activity and low toxicity; however, the molecular mechanism by which SeNPs exert the biological function is unclear. Here, we reported that biocompatibility SeNPs possessed intrinsic oxidase-like activity. Using Na2SeO3 as a precursor and glutathione as a reductant, biocompatibility SeNPs were synthesized by the wet chemical reduction method in the presence of bovine serum albumin (BSA). The results of structure characterization revealed that synthesized SeNPs were amorphous red elementary selenium with spherical morphology, and ranged in size from 25 to 70 nm size with a narrow distribution (41.4 ± 6.7 nm). The oxidase-like activity of the as-synthesized SeNPs was tested with 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate. The results indicated that SeNPs could catalyze the oxidization of TMB by dissolved oxygen. These SeNPs showed an optimum catalytic activity at pH 4 and 30 °C, and the oxidase-like activity was higher as the concentration of SeNPs increased and the size of SeNPs decreased. The Michaelis constant ( K m) values and maximal reaction velocity ( V max) of the SeNPs for TMB oxidation were 0.0083 mol/L and 3.042 μmol/L min, respectively.

  4. Spectroscopic studies of the active site of galactose oxidase

    SciTech Connect

    Knowles, P.F.; Brown, R.D. III; Koenig, S.H.

    1995-07-19

    X-ray absorption and EPR spectroscopy have been used to probe the copper site structure in galactose oxidase at pH 4.5 and 7.0. the results suggest that there are no major differences in the structure of the tetragonal Cu(II) site at these pH values. Analysis of the extended X-ray absorption fine structure (EXAFS) indicates that four N,O scatterers are present at approximately 2 {Angstrom}; these are presumably the equatorial ligands. In addition, the EXAFS data establish that oxidative activation to produce the active-site tyrosine radical does not cause major changes in the copper coordination environment. Therefore results obtained on the one-electron reduced enzyme, containing Cu(II) but not the tyrosine radical, probably also apply to the catalytically active Cu(II)/tyrosine radical state. Solvent water exchange, inhibitor binding, and substrate binding have been probed via nuclear magnetic relaxation dispersion (NMRD) measurements. The NMRD profile of galactose oxidase is quantitatively consistent with the rapid exchange of a single, equatorial water ligand with a Cu(II)-O separation of about 2.4 {Angstrom}. Azide and cyanide displace this coordinated water. The binding of azide and the substrate dihydroxyacetone produce very similar effects on the NMRD profile of galactose oxidase, indicating that substrates also bind to the active site Cu(II) in an equatorial position.

  5. Biochemical effects and growth inhibition in MCF-7 cells caused by novel sulphonamido oxa-polyamine derivatives.

    PubMed

    Pavlov, V; Lin, P Kong Thoo; Rodilla, V

    2002-04-01

    The novel polyamine derivatives sulphonamido oxa-spermine (oxa-Spm) and sulphonamido oxa-spermidine (oxa-Spd) exhibited rapid cytotoxic action towards MCF-7 human breast cancer cells with IC50 values of 4.35 and 6.47 pM, respectively, after 24-h drug exposure. Neither compound is a substrate of serum amine oxidase. Both oxa-Spm and oxa-Spd caused cell shrinkage, as determined by phase-contrast microscopy. After incubation with 10 microM of either compound for 8 h, the cells underwent chromatin condensation and nuclear fragmentation. However, no clear DNA ladder was obtained by electrophoresis. The sulphonamido oxa-polyamine derivatives and especially oxa-Spd enhanced the activity of polyamine oxidase (PAO), an enzyme capable of oxidising N1-acetylated spermine and spermidine to spermidine and putrescine, respectively, generating cytotoxic H2O2 and 3-acetamidopropanal as by-products. The intracellular polyamine content was only marginally reduced in response to drug treatment. In conclusion, our data show that these novel sulphonamido oxa-polyamine derivatives possess high cytotoxic activity against MCF-7 cells and indicate that induction of PAO may mediate their cytotoxicity via apoptosis.

  6. Polyamine degradation in foetal and adult bovine serum.

    PubMed Central

    Gahl, W A; Pitot, H C

    1982-01-01

    1. Using protein-separative chromatographic procedures and assays specific for putrescine oxidase and spermidine oxidase, adult bovine serum was found to contain a single polyamine-degrading enzyme with substrate preferences for spermidine and spermine. Apparent Km values for these substrates were approx. 40 microM. The apparent Km for putrescine was 2 mM. With spermidine as substrate, the Ki values for aminoguanidine (AM) and methylglyoxal bis(guanylhydrazone) (MGBG) were 70 microM and 20 microM respectively. 2. Bovine serum spermidine oxidase degraded spermine to spermidine to putrescine and N8-acetylspermidine to N-acetylputrescine. Acrolein was produced in all these reactions and recovered in quantities equivalent to H2O2 recovery. 3. Spermidine oxidase activity was present in foetal bovine serum, but increased markedly after birth to levels in adult serum that were almost 100 times the activity in foetal bovine serum. 4. Putrescine oxidase, shown to be a separate enzyme from bovine serum spermidine oxidase, was present in foetal bovine serum but absent from bovine serum after birth. This enzyme displayed an apparent Km for putrescine of 2.6 microM. The enzyme was inhibited by AM and MGBG with Ki values of 20 nM. Putrescine, cadaverine and 1,3-diaminopropane proved excellent substrates for the enzyme compared with spermidine and spermine, and N-acetylputrescine was a superior substrate to N1- or N8-acetylspermidine. PMID:7092834

  7. Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea.

    PubMed

    Hatmi, Saloua; Gruau, Charlotte; Trotel-Aziz, Patricia; Villaume, Sandra; Rabenoelina, Fanja; Baillieul, Fabienne; Eullaffroy, Philippe; Clément, Christophe; Ferchichi, Ali; Aziz, Aziz

    2015-02-01

    Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  8. The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice

    PubMed Central

    Yamamoto, Tomomi; Hinoi, Eiichi; Fujita, Hiroyuki; Iezaki, Takashi; Takahata, Yoshifumi; Takamori, Misa; Yoneda, Yukio

    2012-01-01

    BACKGROUND AND PURPOSE Although naturally occurring polyamines are indispensable for a variety of cellular events in eukaryotic cells, little attention has been paid to their physiological and pathological significance in bone remodelling to date. In this study, we evaluated the pharmacological properties of several natural polyamines on the functionality and integrity of bone in both in vitro and in vivo experiments. EXPERIMENTAL APPROACH Mice were subjected to ovariectomy (OVX) and subsequent oral supplementation with either spermidine or spermine for determination of the bone volume together with different parameters regarding bone formation and resorption by histomorphometric analyses in vivo. Pre-osteoclasts were cultured with receptor activator of NF-κB ligand (RANKL), with or without spermidine and spermine to determine cellular maturation by tartrate-resistant acid phosphatase (TRAP) staining and cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide reduction in vitro. KEY RESULTS Spermidine or spermine, given in drinking water for 28 days, significantly prevented the increased osteoclast surface/bone surface ratio and the reduced bone volume following OVX in mice. Either spermidine or spermine significantly inhibited the increased number of multinucleated TRAP-positive cells in osteoclasts cultured with RANKL in a concentration-dependent manner without affecting cell survival. CONCLUSIONS AND IMPLICATIONS The natural polyamines spermidine and spermine prevented OVX-induced bone loss through the disruption of differentiation and maturation of osteoclasts, rather than affecting osteoblasts. The supplementation with these natural polyamines could be beneficial for the prophylaxis as well as therapy of metabolic bone diseases such as post-menopausal osteoporosis. PMID:22250848

  9. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  10. Polyamines and transglutaminase activity are involved in compatible and self-incompatible pollination of Citrus grandis.

    PubMed

    Gentile, Alessandra; Antognoni, Fabiana; Iorio, Rosa Anna; Distefano, Gaetano; Las Casas, Giuseppina; La Malfa, Stefano; Serafini-Fracassini, Donatella; Del Duca, Stefano

    2012-02-01

    Pollination of pummelo (Citrus grandis L. Osbeck) pistils has been studied in planta by adding compatible and self-incompatible (SI) pollen to the stigma surface. The pollen germination has been monitored inside the pistil by fluorescent microscopy showing SI altered morphologies with irregular depositions of callose in the tube walls, and heavy callose depositions in enlarged tips. The polyamine (PA) content as free, perchloric acid (PCA)-soluble and -insoluble fractions and transglutaminase (TGase) activity have been analyzed in order to deepen their possible involvement in the progamic phase of plant reproduction. The conjugated PAs in PCA-soluble fraction were definitely higher than the free and the PCA-insoluble forms, in both compatible and SI pollinated pistils. In pistils, pollination caused an early decrease of free PAs and increase of the bound forms. The SI pollination, showed highest values of PCA-soluble and -insoluble PAs with a maximum in concomitance with the pollen tube arrest. As TGase mediates some of the effects of PAs by covalently binding them to proteins, its activity, never checked before in Citrus, was examined with two different assays. In addition, the presence of glutamyl-PAs confirmed the enzyme assay data and excluded the possibility of a misinterpretation. The SI pollination caused an increase in TGase activity, whereas the compatible pollination caused its decrease. Similarly to bound PAs, the glutamyl-PAs and the enzyme activity peaked in the SI pollinated pistils in concomitance with the observed block of the pollen tube growth, suggesting an involvement of TGase in SI response.

  11. Overexpression of antizyme in the hearts of transgenic mice prevents the isoprenaline-induced increase in cardiac ornithine decarboxylase activity and polyamines, but does not prevent cardiac hypertrophy.

    PubMed Central

    Mackintosh, C A; Feith, D J; Shantz, L M; Pegg, A E

    2000-01-01

    Two lines of transgenic mice were produced with constitutive expression of antizyme-1 in the heart, driven from the cardiac alpha-myosin heavy chain promoter. The use of engineered antizyme cDNA in which nucleotide 205 had been deleted eliminated the need for polyamine-mediated frameshifting, normally necessary for translation of antizyme mRNA, and thus ensured the constitutive expression of antizyme. Antizyme-1 is thought to be a major factor in regulating cellular polyamine content, acting both to inhibit ornithine decarboxylase (ODC) activity and to target it for degradation, as well as preventing polyamine uptake. The two transgenic lines had substantial, but different, levels of antizyme in the heart, as detected by Western blotting and by the ability of heart extracts to inhibit exogenous purified ODC. Despite the high levels of antizyme, endogenous ODC activity was not completely abolished, with 10-39% remaining, depending on the transgenic line. Additionally, a relatively small decrease (30-32%) in cardiac spermidine content was observed, with levels of putrescine and spermine unaffected. Interestingly, although the two lines of transgenic mice had different antizyme expression levels, they had almost identical cardiac polyamine content. When treated with a single acute dose of isoprenaline (isoproterenol), cardiac ODC activity and putrescine content were substantially increased (by 14-fold and 4.7-fold respectively) in non-transgenic littermate mice, but these increases were completely prevented in the transgenic mice from both founder lines. Prolonged exposure to isoprenaline also caused increases in cardiac ODC activity and polyamine content, as well as an increase in cardiac growth, in non-transgenic mice. Although the increases in cardiac ODC activity and polyamine content were prevented in the transgenic mice from both founder lines, the increase in cardiac growth was unaffected. These transgenic mice thus provide a valuable model system in which to

  12. Wounding induces changes in tuber polyamine content, polyamine metabolic gene expression, and enzyme activity during closing layer formation and initiation of wound periderm formation

    USDA-ARS?s Scientific Manuscript database

    Tuber wound-healing processes are complex, and the associated regulation and modulation of these processes are poorly understood. Polyamines (PA) have been shown to be involved in modulating a variety of responses to biotic and abiotic plant stresses and have been suggested to be involved in tuber ...

  13. Decavanadate inhibits the cell-free activation of neutrophil NADPH oxidase without affecting tyrosine phosphorylation.

    PubMed

    Okamura, N; Sakai, T; Nishimura, Y; Sakai, M; Araki, S; Yamaguchi, M; Ishibashi, S

    1999-08-01

    NADPH oxidase was activated by arachidonate in a cell-free system consisting of membrane and cytosol fractions prepared from guinea pig neutrophils. Vanadate apparently inhibited the NADPH oxidase activity in the cell-free system (IC50=2 microM) without phosphotyrosine accumulation. The pH dependency and stability of the inhibitory effect observed for vanadate solution indicated that decavanadate, an isopolyanion of vanadate, was responsible for the inhibition. Pervanadate (vanadyl hydroperoxide) also inhibited the oxidase activity but at a higher concentration (IC50=0.2 mM). Decavanadate lowered the Vmax but did not affect the Km value of NADPH oxidase for NADPH. Decavanadate inhibited the activation process of NADPH oxidase but not the oxidase activity itself. Decavanadate-pretreatment of membrane and cytosol fractions irreversibly decreased the abilities of both fractions to activate NADPH oxidase in the cell-free system. Translocation of p47-phox, one of the cytosolic activation factors of NADPH oxidase, from cytosol to membrane, was little affected by decavanadate. These results suggest that decavanadate inhibits the activation of NADPH oxidase in the cell-free system without affecting the phosphotyrosine phosphatase, and that decavanadate can bind to both the membrane and cytosolic activation factors when they are in a dormant state, but not to the active oxidase complex.

  14. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine.

    PubMed

    Karatan, Ece; Duncan, Tammi R; Watnick, Paula I

    2005-11-01

    Vibrio cholerae is both an environmental bacterium and a human intestinal pathogen. The attachment of bacteria to surfaces in biofilms is thought to be an important feature of the survival of this bacterium both in the environment and within the human host. Biofilm formation occurs when cell-surface and cell-cell contacts are formed to make a three-dimensional structure characterized by pillars of bacteria interspersed with water channels. In monosaccharide-rich conditions, the formation of the V. cholerae biofilm requires synthesis of the VPS exopolysaccharide. MbaA (locus VC0703), an integral membrane protein containing a periplasmic domain as well as cytoplasmic GGDEF and EAL domains, has been previously identified as a repressor of V. cholerae biofilm formation. In this work, we have studied the role of the protein NspS (locus VC0704) in V. cholerae biofilm development. This protein is homologous to PotD, a periplasmic spermidine-binding protein of Escherichia coli. We show that the deletion of nspS decreases biofilm development and transcription of exopolysaccharide synthesis genes. Furthermore, we demonstrate that the polyamine norspermidine activates V. cholerae biofilm formation in an MbaA- and NspS-dependent manner. Based on these results, we propose that the interaction of the norspermidine-NspS complex with the periplasmic portion of MbaA diminishes the ability of MbaA to inhibit V. cholerae biofilm formation. Norspermidine has been detected in bacteria, archaea, plants, and bivalves. We suggest that norspermidine serves as an intercellular signaling molecule that mediates the attachment of V. cholerae to the biotic surfaces presented by one or more of these organisms.

  16. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues.

    PubMed

    Casero, Robert A; Frydman, Benjamin; Stewart, Tracy Murray; Woster, Patrick M

    2005-01-01

    The polyamines, putrescine, spermidine, and spermine, are naturally occurring polycationic alkylamines that are absolutely required for eukaryotic cell growth. Importantly, the polyamine metabolic pathway, as well as the requirement of polyamines for cell growth, is frequently dysregulated in cancer cells, thus providing a unique set of targets for therapeutic intervention. Ornithine decarboxylase (ODC), a rate-limiting enzyme in polyamine biosynthesis, is frequently up-regulated in preneoplastic cells, and has been implicated as an oncogene in multiple tumor types. Several model systems have demonstrated that inhibition of ODC's enzymatic activity and down-regulation of its expression are rational strategies for both chemotherapy and chemoprevention. Specific inhibitors of ODC, most notably 2-difluoromethylornithine (DFMO), have been used experimentally to validate polyamine metabolism as an antineoplastic strategy. However, multiple biochemical and clinical limitations to these ODC-targeting strategies minimize their value as therapeutic tools. Included among these limitations are poor bioavailability of the inhibitor, and the compensatory up-regulation of polyamine metabolism and transport that allow tumor cells to escape the growth inhibitory effects of blockers specifically targeting ODC. As a strategy to overcome the limitations of direct enzyme inhibition, several groups have pursued the design of polyamine analogues that specifically target the dysregulated polyamine metabolism found in tumors. These analogues have been developed specifically to target the specific polyamine transporter, thus competing with circulating natural polyamines. Additionally, most of the analogues examined thus far maintain the regulatory function of the natural polyamines, but are unable to functionally substitute for them in promoting growth. Specifically, individual analogues have demonstrated the ability to down-regulate each of the biosynthetic enzymes without causing

  17. Polyamines: essential factors for growth and survival.

    PubMed

    Kusano, T; Berberich, T; Tateda, C; Takahashi, Y

    2008-08-01

    Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems.

  18. Helix switching of a key active-site residue in the cytochrome cbb3 oxidases.

    PubMed

    Hemp, James; Christian, Caroline; Barquera, Blanca; Gennis, Robert B; Martínez, Todd J

    2005-08-16

    In the respiratory chains of mitochondria and many aerobic prokaryotes, heme-copper oxidases are the terminal enzymes that couple the reduction of molecular oxygen to proton pumping, contributing to the protonmotive force. The cbb(3) oxidases belong to the superfamily of enzymes that includes all of the heme-copper oxidases. Sequence analysis indicates that the cbb(3) oxidases are missing an active-site tyrosine residue that is absolutely conserved in all other known heme-copper oxidases. In the other heme-copper oxidases, this tyrosine is known to be subject to an unusual post-translational modification and to play a critical role in the catalytic mechanism. The absence of this tyrosine in the cbb(3) oxidases raises the possibility that the cbb(3) oxidases utilize a different catalytic mechanism from that of the other members of the superfamily. Using homology modeling, quantum chemistry, and molecular dynamics, a model of the structure of subunit I of a cbb(3) oxidase (Vibrio cholerae) was constructed. The model predicts that a tyrosine residue structurally analogous to the active-site tyrosine in other oxidases is present in the cbb(3) oxidases but that the tyrosine originates from a different transmembrane helix within the protein. The predicted active-site tyrosine is conserved in the sequences of all of the known cbb(3) oxidases. Mutagenesis of the tyrosine to phenylalanine in the V. cholerae oxidase resulted in a fully assembled enzyme with nativelike structure but lacking catalytic activity. These findings strongly suggest that all of the heme-copper oxidases utilize the same catalytic mechanism and provide an unusual example in which a critical active-site residue originates from different places within the primary sequence for different members of the same superfamily.

  19. Low platelet monoamine oxidase activity in sensation-seeking bullfighters.

    PubMed

    Carrasco, J L; Sáiz-Ruiz, J; Díaz-Marsá, M; César, J; López-Ibor, J J

    1999-12-01

    In this study, we attempt to demonstrate an association between low platelet monoamine oxidase (MAO) activity, as assessed by isotopic methods, and the stable behavioral pattern of sensation- and risk-seeking of professional bullfighters. Sixteen professional bullfighters were studied and compared with a control group of 46 healthy control subjects who did not engage in risky jobs or activities. The group of bullfighters had significantly reduced platelet MAO activity compared with the control group (P<0.05). Bullfighters were shown to be significantly more extroverted and sensation-seeking than controls on various temperament scales. A predisposition to engage in risky activities (eg, bullfighting) and sensation-seeking could be partly conditioned by the presence of biological components of personality manifested by a significantly decreased platelet MAO activity.

  20. Catalase-peroxidases (KatG) exhibit NADH oxidase activity.

    PubMed

    Singh, Rahul; Wiseman, Ben; Deemagarn, Taweewat; Donald, Lynda J; Duckworth, Harry W; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C

    2004-10-08

    Catalase-peroxidases (KatG) produced by Burkholderia pseudomallei, Escherichia coli, and Mycobacterium tuberculosis catalyze the oxidation of NADH to form NAD+ and either H2O2 or superoxide radical depending on pH. The NADH oxidase reaction requires molecular oxygen, does not require hydrogen peroxide, is not inhibited by superoxide dismutase or catalase, and has a pH optimum of 8.75, clearly differentiating it from the peroxidase and catalase reactions with pH optima of 5.5 and 6.5, respectively, and from the NADH peroxidase-oxidase reaction of horseradish peroxidase. B. pseudomallei KatG has a relatively high affinity for NADH (Km=12 microm), but the oxidase reaction is slow (kcat=0.54 min(-1)) compared with the peroxidase and catalase reactions. The catalase-peroxidases also catalyze the hydrazinolysis of isonicotinic acid hydrazide (INH) in an oxygen- and H2O2-independent reaction, and KatG-dependent radical generation from a mixture of NADH and INH is two to three times faster than the combined rates of separate reactions with NADH and INH alone. The major products from the coupled reaction, identified by high pressure liquid chromatography fractionation and mass spectrometry, are NAD+ and isonicotinoyl-NAD, the activated form of isoniazid that inhibits mycolic acid synthesis in M. tuberculosis. Isonicotinoyl-NAD synthesis from a mixture of NAD+ and INH is KatG-dependent and is activated by manganese ion. M. tuberculosis KatG catalyzes isonicotinoyl-NAD formation from NAD+ and INH more efficiently than B. pseudomallei KatG.

  1. Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies.

    PubMed

    Andjelković, Ana; Oliveira, Marcos T; Cannino, Giuseppe; Yalgin, Cagri; Dhandapani, Praveen K; Dufour, Eric; Rustin, Pierre; Szibor, Marten; Jacobs, Howard T

    2015-12-17

    The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.

  2. Inheritance of polyphenol oxidase activity in wheat breeding lines derived from matings of low polyphenol oxidase parents

    USDA-ARS?s Scientific Manuscript database

    Polyphenol oxidase (PPO) in grain plays a major role in time-dependent discoloration of wheat (Triticum aestivum L.) products, especially fresh noodles. Breeding wheat cultivars with low or nil PPO activity can reduce the undesirable product darkening. The low PPO line PI 117635 was crossed to two...

  3. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases

    PubMed Central

    Molitor, Christian; Mauracher, Stephan Gerhard

    2016-01-01

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze the o-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme’s interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate–enzyme complexes were performed, and a key residue was identified that influences the plant PPO’s acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their—so far unknown—natural substrates in vivo. PMID:26976571

  4. Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases.

    PubMed

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette

    2016-03-29

    Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.

  5. Diamine derivative anti-Trichomonas vaginalis and anti-Tritrichomonas foetus activities by effect on polyamine metabolism.

    PubMed

    Rigo, Graziela Vargas; Trein, Márcia Rodrigues; da Silva Trentin, Danielle; Macedo, Alexandre José; de Oliveira, Bruno Assis; de Almeida, Angelina Maria; Giordani, Raquel Brandt; de Almeida, Mauro Vieira; Tasca, Tiana

    2017-09-09

    Human and bovine trichomoniasis are sexually transmitted diseases (STD) caused by Trichomonas vaginalis and Tritrichomonas foetus, respectively. Human trichomoniasis is the most common non-viral STD in the world and bovine trichomoniasis causes significant economic losses to breeders. Considering the significant impact of the infections caused by these protozoa and the treatment failures, the search for new therapeutic alternatives becomes crucial. In this study the effect of diamines and amino alcohols in the in vitro viability of trichomonads was evaluated. Screening demonstrated the high activity of diamine 4 against these protozoa. Although cytotoxicity against HMVII cell line and slight hemolysis were observed in vitro, the compound showed no toxic effect on the Galleria mellonella in vivo model. Importantly, diamine 4 was active against both trichomonads species at 6h and 24h of incubation, and these effects was reverted by putrescine, a polyamine, suggesting competition for the same metabolic pathway. These findings indicate that the mechanism of action of diamine 4 is through the polyamine metabolism, a pathway distinct from that presented by metronidazole, the drug usually used to treat trichomoniasis and to which resistance is widely reported. These data demonstrate the importance of diamines as potential novel candidates as anti-T. vaginalis and anti-T. foetus agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Nitroxyl (HNO) suppresses vascular Nox2 oxidase activity.

    PubMed

    Miller, Alyson A; Maxwell, Kate F; Chrissobolis, Sophocles; Bullen, Michelle L; Ku, Jacqueline M; Michael De Silva, T; Selemidis, Stavros; Hooker, Elizabeth U; Drummond, Grant R; Sobey, Christopher G; Kemp-Harper, Barbara K

    2013-07-01

    Nox2 oxidase activity underlies the oxidative stress and vascular dysfunction associated with several vascular-related diseases. We have reported that nitric oxide (NO) decreases reactive oxygen species production by endothelial Nox2. This study tested the hypothesis that nitroxyl (HNO), the redox sibling of NO, also suppresses vascular Nox2 oxidase activity. Specifically, we examined the influence of two well-characterized HNO donors, Angeli's salt and isopropylamine NONOate (IPA/NO), on Nox2-dependent responses to angiotensin II (reactive oxygen species production and vasoconstriction) in mouse cerebral arteries. Angiotensin II (0.1μmol/L)-stimulated superoxide (measured by lucigenin-enhanced chemiluminescence) and hydrogen peroxide (Amplex red fluorescence) levels in cerebral arteries (pooled basilar and middle cerebral (MCA)) from wild-type (WT) mice were ~60% lower (P<0.05) in the presence of either Angeli's salt (1μmol/L) or IPA/NO (1μmol/L). Similarly, phorbyl 12,13-dibutyrate (10μmol/L; Nox2 activator)-stimulated hydrogen peroxide levels were ~40% lower in the presence of IPA/NO (1μmol/L; P<0.05). The ability of IPA/NO to decrease superoxide levels was reversible and abolished by the HNO scavenger l-cysteine (3mmol/L; P<0.05), but was unaffected by hydroxocobalamin (100μmol/L; NO scavenger), ODQ (10μmol/L; soluble guanylyl cyclase (sGC) inhibitor), or Rp-8-pCPT-cGMPS (10μmol/L; cyclic guanosine monophosphate (cGMP)-dependent protein kinase inhibitor). Angiotensin II-stimulated superoxide was substantially less in arteries from Nox2-deficient (Nox2(-/y)) versus WT mice (P<0.05). In contrast to WT, IPA/NO (1μmol/L) had no effect on superoxide levels in arteries from Nox2(-/y) mice. Finally, angiotensin II (1-1000μmol/L)-induced constriction of WT MCA was virtually abolished by IPA/NO (1μmol/L), whereas constrictor responses to either the thromboxane A2 mimetic U46619 (1-100 nmol/L) or high potassium (122.7mmol/L) were unaffected. In conclusion, HNO

  7. Xanthine oxidase inhibitory activity of Lychnophora species from Brazil ("Arnica").

    PubMed

    Filha, Z S Ferraz; Vitolo, I F; Fietto, L G; Lombardi, J A; Saúde-Guimarães, D A

    2006-08-11

    Twenty-two extracts from five Lychnophora species and one Lychnophoriopsis species, traditionally used in Brazil as analgesic, anti-inflammatory, and to treat bruise and rheumatism were examined for the inhibition of xanthine oxidase (XO), the enzyme that catalyses the metabolism of hypoxanthine and xanthine into uric acid. Sixteen extracts were tested. All of them were found to have excellent XO inhibitory activity, with inhibitions greater than 38% at 100 microg/mL in the assay mixture. The most active plants examined were Lychnophora trichocarpha, Lychnophora ericoides, Lychnophora staavioides and Lychnophoriopsis candelabrum, with inhibitions of 77%, 78%, 66% and 63% at 100 microg/mL, respectively, and IC(50) values of 6.16, 8.28, 33.97 and 37.70 microg/mL, respectively.

  8. Effect of processing on polyamine content and bioactive peptides released after in vitro gastrointestinal digestion of infant formulas.

    PubMed

    Gómez-Gallego, C; Recio, I; Gómez-Gómez, V; Ortuño, I; Bernal, M J; Ros, G; Periago, M J

    2016-02-01

    This study examined the influence of processing on polyamines and peptide release after the digestion of a commercial infant formula designed for children during the first months of life. Polyamine oxidase activity was not suppressed during the manufacturing process, which implicates that polyamine concentrations were reduced over time and during infant formula self-life. In gel electrophoresis, in vitro gastrointestinal digestion of samples with reduced amount of enzymes and time of digestion shows an increase in protein digestibility, reflected in the increase in nonprotein nitrogen after digestion and the disappearance of β-lactoglobulin and α-lactalbumin bands in gel electrophoresis. Depending on the sample, between 22 and 87 peptides were identified after gastrointestinal digestion. A peptide from β-casein f(98-105) with the sequence VKEAMAPK and antioxidant activity appeared in all of the samples. Other peptides with antioxidant, immunomodulatory, and antimicrobial activities were frequently found, which could have an effect on infant health. The present study confirms that the infant formula manufacturing process determines the polyamine content and peptidic profile after digestion of the infant formula. Because compositional dissimilarity between human milk and infant formula in polyamines and proteins could be responsible for some of the differences in health reported between breast-fed and formula-fed children, these changes must be taken into consideration because they may have a great effect on infant nutrition and development.

  9. p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils

    PubMed Central

    Martyn, Kendra D.; Kim, Moon-Ju; Quinn, Mark T.; Dinauer, Mary C.; Knaus, Ulla G.

    2005-01-01

    The phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase plays an instrumental role in host defense and contributes to microbicial killing by releasing highly reactive oxygen species. This multicomponent enzyme is composed of membrane and cytosolic components that assemble in the plasma membrane or phagolysosome. While the guanosine S′-triphosphatase (GTPase) Rac2 has been shown to be a critical regulator of NADPH oxidase activity and assembly, the role of its effector, p21-activated kinase (Pak), in oxidase function has not been well defined. Using HIV-1 Tat-mediated protein transduction of Pak inhibitory domain, we show here that Pak activity is indeed required for efficient superoxide generation in intact neutrophils. Furthermore, we show that Pak translocates to the plasma membrane upon N-formyl-methionyl-leucyl-phenylalanine (fMLF) stimulation and colocalizes with translocated p47phox and with p22phox, a subunit of flavocytochrome b558. Although activated Pak phosphorylated several essential serine residues in the C-terminus of p47phox, direct binding to p47phox was not observed. In contrast, active Pak bound directly to p22phox, suggesting flavocytochrome b was the oxidase-associated membrane target of this kinase and this association may facilitate further phosphorylation of p47phox in the assembling NADPH oxidase complex. PMID:16099876

  10. Properties of recombinant human N1-acetylpolyamine oxidase (hPAO): potential role in determining drug sensitivity.

    PubMed

    Wang, Yanlin; Hacker, Amy; Murray-Stewart, Tracy; Frydman, Benjamin; Valasinas, Aldonia; Fraser, Alison V; Woster, Patrick M; Casero, Robert A

    2005-07-01

    The recent cloning of the mammalian gene coding for N(1)-acetylpolyamine oxidase (PAO) provides the opportunity to directly examine the role of human PAO (hPAO) in polyamine homeostasis as well as its potential role in determining cellular response to antitumor polyamine analogues. To facilitate the study of this enzyme, the production, purification, and characterization of the recombinant hPAO is reported. hPAO oxidizes N(1)-acetylspermidine (K(m)=2.1 microM, K(cat)=15.0 s(-1)) and has very high affinity for N(1)-acetylspermine (K(m)=0.85 microM, K(cat)=31.7 s(-1)). The recombinant hPAO does not efficiently oxidize spermine, thereby demonstrating a significant difference in substrate specificity from the previously described human spermine oxidase PAOh1/SMO. Importantly, hPAO demonstrates the ability to oxidize a subset of antitumor polyamine analogues, suggesting that this oxidase activity could have a significant effect on determining tumor sensitivity to these or similar agents. Transfection of A549 human lung cancer cells with an hPAO-expressing plasmid leads to a profound decrease in sensitivity to those analogues which act as substrates, confirming its potential to alter drug response. One similarity that hPAO shares with human PAOh1/SMO, is that certain oligoamine analogues are potent inhibitors of its oxidase activity. The results of these studies demonstrate how changes in polyamine catabolism may affect drug response.

  11. A colorimetric method for lysyl oxidase activity in copper deficient rats fed a high fructose diet

    SciTech Connect

    Werman, M.J.; Bhathena, S.J. )

    1991-03-11

    Lysyl oxidase is involved in initiating cross link formation in collagen and elastin. The activity of lysyl oxidase is traditionally assessed by the tritium released assay. The authors describe a simplified and modified method for measuring lysyl oxidase activity in rats, based on measuring ammonia release according to the Bertholet colorimetric reaction. Lysyl oxidase activity was measured in copper deficient rats using this method. Sixteen weanling Sprague Dawley male rats were fed for four weeks either copper adequate or copper deficient diets containing 62% fructose. Copper deficiency was confirmed by significant low copper levels in heart, brain, liver and skin, and by nondetectable levels of ceruloplasmin. Lysyl oxidase activity was significantly lower in heart and skin of rats fed a copper deficient diet compared to those fed a copper adequate diet. No significant difference in activity was observed in brain tissue. A correlation was not observed between decreased tissue copper levels and decreased lysyl oxidase activity. Thus, the determination of ammonia liberated during lysyl oxidase activity may serve as an effective tool in assessing lysyl oxidase activity.

  12. Priming and activation of NADPH oxidases in plants and animals.

    PubMed

    Canton, Johnathan; Grinstein, Sergio

    2014-09-01

    In mammals, engagement of Toll-like receptors by microbe-associated molecular patterns enhances the responsiveness of NADPH oxidases. Two recent papers report a similar 'priming' mechanism for the plant oxidase RbohD. Despite lacking structural homology, the functional parallels between plants and animals reveal that a common regulatory logic arose by convergent evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Inhibition of apple polyphenol oxidase activity by sodium chlorite.

    PubMed

    Lu, Shengmin; Luo, Yaguang; Feng, Hao

    2006-05-17

    Sodium chlorite (SC) was shown to have strong efficacy both as a sanitizer to reduce microbial growth on produce and as a browning inhibitor on fresh-cut apples in previous experiments. This study was undertaken to investigate the inhibitory effect of SC on polyphenol oxidase (PPO) and the associated mechanisms. The experiment showed that SC had a strong inhibition of apple PPO. The extent of inhibition was influenced by SC concentration and pH. Inhibition was most prominent at pH 4.5, at which approximately 30% of enzyme activity was lost in the presence of 10 mM SC, followed closely by that at pH 4.0 with a 26% reduction in PPO activity. The inhibition mode was determined using Dixon and Lineweaver-Burk plots, which established SC to be a mixed inhibitor of apple PPO for the oxidation of catechol. Preincubation of PPO with 8 mM SC for 8 min caused a maximum of 46% activity reduction compared to noninhibited control. However, preincubation of SC with catechol for 8 min resulted in no additional loss of PPO activity. These findings provide further evidence that the inhibition of PPO activity by SC is due to the inhibition of the enzyme itself rather than removal of the substrate.

  14. Triethylenetetramine modulates polyamine and energy metabolism and inhibits cancer cell proliferation.

    PubMed

    Hyvönen, Mervi T; Ucal, Sebahat; Pasanen, Markku; Peräniemi, Sirpa; Weisell, Janne; Khomutov, Maxim; Khomutov, Alex R; Vepsäläinen, Jouko; Alhonen, Leena; Keinänen, Tuomo A

    2016-05-15

    Polyamine metabolism is an attractive anticancer drug target, since polyamines are absolutely required for cellular proliferation, and increased levels of polyamines and their biosynthetic enzyme ornithine decarboxylase (ODC) are associated with cancer. Triethylenetetramine (TETA) is a charge-deficient isosteric analogue of the polyamine spermidine (Spd) and a Cu(II)-chelating compound used for the treatment of Wilson's disease, and it has been implicated as a potential anticancer therapeutic drug. In the present study, we studied the effects of TETA in comparison with two other Cu(II)-chelators, D-penicillamine (PA) and tetrathiomolybdate (TTM), on polyamine metabolism in DU145 prostate carcinoma, MCF-7 breast carcinoma and JEG-3 choriocarcinoma cells. TETA induced antizyme, down-regulated ODC and inhibited [(14)C] Spd uptake. Moreover, it completely prevented α-difluoromethylornithine (DFMO)-induced increase in [(14)C] Spd uptake, and inhibited [(14)C] putrescine (Put) uptake and ODC activity in vivo Seven-day treatment of DU145 cells with TETA caused growth cessation by reducing intracellular polyamine levels and suppressing the formation of hypusinated eukaryotic translation initiation factor 5A (eIF5A). TETA or its N-acetylated metabolites also inhibited spermine (Spm), diamine and semicarbazide-sensitive amine oxidases and decreased the level of intracellular reactive oxygen species. Moreover, TETA inhibited the utilization of Put as energy source via the tricarboxylic acid (TCA) cycle, as indicated by decreased production of (14)CO2 from [(14)C] Put. These results indicate that TETA attacks multiple proven anticancer drug targets not attributed to copper chelation, which warrants further studies to reveal its potential in cancer chemoprevention and cure. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  15. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine.

    PubMed

    Toumi, Imene; Moschou, Panagiotis N; Paschalidis, Konstantinos A; Bouamama, Badra; Ben Salem-Fnayou, Asma; Ghorbel, Abdel Wahed; Mliki, Ahmed; Roubelakis-Angelakis, Kalliopi A

    2010-05-01

    Polyamines (PAs) have been suggested to be implicated in plant responses to abiotic and biotic stress. Grapevine is a model perennial plant species whose cultivars respond differently to osmotic stress. In this study, we used two cultivars, one sensitive (S) and one tolerant (T) to drought. In adult vines subjected to drought under greenhouse conditions, total PAs were significantly lower in the control T- and higher in the control S-genotype and significantly increased or decreased, respectively, post-treatment. Soluble Put and Spd exhibited the greatest increase on d 8 post-treatment in the T- but not in the S-genotype, which accumulated soluble Spm. Abscisic acid (ABA) was differentially accumulated in T- and S-genotypes under drought conditions, and activated the PA biosynthetic pathway, which in turn was correlated with the differential increases in PA titers. In parallel, polyamine oxidases (PAOs) increased primarily in the S-genotype. ABA at least partially induced PA accumulation and exodus into the apoplast, where they were oxidized by the apoplastic amine oxidases (AOs), producing H2O2, which signaled secondary stress responses. The results here show that the ABA signaling pathway integrates PAs and AOs to regulate the generation of H2O2, which signals further stress responses or the PCD syndrome.

  16. Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases

    PubMed Central

    Park, Myung Hee; Igarashi, Kazuei

    2013-01-01

    Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852

  17. Inhibition and oxygen activation in copper amine oxidases.

    PubMed

    Shepard, Eric M; Dooley, David M

    2015-05-19

    Copper-containing amine oxidases (CuAOs) use both copper and 2,4,5-trihydroxyphenylalanine quinone (TPQ) to catalyze the oxidative deamination of primary amines. The CuAO active site is highly conserved and comprised of TPQ and a mononuclear type II copper center that exhibits five-coordinate, distorted square pyramidal coordination geometry with histidine ligands and equatorially and axially bound water in the oxidized, resting state. The active site is buried within the protein, and CuAOs from various sources display remarkable diversity with respect to the composition of the active site channel and cofactor accessibility. Structural and mechanistic factors that influence substrate preference and inhibitor sensitivity and selectivity have been defined. This Account summarizes the strategies used to design selective CuAO inhibitors based on active site channel characteristics, leading to either enhanced steric fits or the trapping of reactive electrophilic products. These findings provide a framework to support the future development of candidate molecules aimed at minimizing the negative side effects associated with drugs containing amine functionalities. This is vital given the existence of human diamine oxidase and vascular adhesion protein-1, which have distinct amine substrate preferences and are associated with different metabolic processes. Inhibition of these enzymes by antifungal or antiprotozoal agents, as well as classic monoamine oxidase (MAO) inhibitors, may contribute to the adverse side effects associated with drug treatment. These observations provide a rationale for the limited clinical value associated with certain amine-containing pharmaceuticals and emphasize the need for more selective AO inhibitors. This Account also discusses the novel roles of copper and TPQ in the chemistry of O2 activation and substrate oxidation. Reduced CuAOs exist in a redox equilibrium between the Cu(II)-TPQAMQ (aminoquinol) and Cu(I)-TPQSQ (semiquinone). Elucidating

  18. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function

    PubMed Central

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1. PMID:23885334

  19. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function.

    PubMed

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

  20. Human monoamine oxidase A gene determines levels of enzyme activity.

    PubMed Central

    Hotamisligil, G S; Breakefield, X O

    1991-01-01

    Monoamine oxidase (MAO) is a critical enzyme in the degradative deamination of biogenic amines throughout the body. Two biochemically distinct forms of the enzyme, A and B, are encoded in separate genes on the human X chromosome. In these studies we investigated the role of the structural gene for MAO-A in determining levels of activity in humans, as measured in cultured skin fibroblasts. The coding sequence of the mRNA for MAO-A was determined by first-strand cDNA synthesis, PCR amplification, and direct dideoxy sequencing. Two single-basepair substitutions were observed in cDNAs from cells with a 30-fold difference in activity levels. These two substitutions were in the third base of a triplet codon and hence did not affect the deduced amino acid sequence but did affect the presence or absence of restriction-enzyme sites for EcoRV and Fnu4HI, which could be elucidated on PCR fragments derived from genomic DNA or cDNAs. A third polymorphism for MspI in the noncoding region of the MAOA gene was also evaluated by Southern blot analysis using genomic DNA. Statistically significant associations were observed between the alleles for MAOA and levels of MAO activity in human male fibroblast lines. This association indicates that the MAOA gene itself is a major determinant of activity levels, apparently, in part, through noncoding, regulatory elements. Images Figure 3 Figure 4 Figure 5 PMID:1678250

  1. Xanthine oxidase inhibitory activity of extracts prepared from Polygonaceae species.

    PubMed

    Orbán-Gyapai, Orsolya; Lajter, Ildikó; Hohmann, Judit; Jakab, Gusztáv; Vasas, Andrea

    2015-03-01

    The xanthine oxidase (XO) inhibitory activity of aqueous and organic extracts of 27 selected species belonging in five genera (Fallopia, Oxyria, Persicaria, Polygonum and Rumex) of the family Polygonaceae occurring in the Carpathian Basin were tested in vitro. From different plant parts (aerial parts, leaves, flowers, fruits and roots), a total of 196 extracts were prepared by subsequent extraction with methanol and hot H2O and solvent-solvent partition of the MeOH extract yielding n-hexane, chloroform and 50% MeOH subextracts. It was found that the chloroform subextracts and/or the remaining 50% MeOH extracts of Fallopia species (F. bohemica, F. japonica and F. sachalinensis), Rumex species (R. acetosa, R. acetosella, R. alpinus, R. conglomeratus, R. crispus, R. hydrolapathus, R. pulcher, R. stenophyllus, R. thyrsiflorus, R. obtusifolius subsp. subalpinus, R. patientia) and Polygonum bistorta, Polygonum hydropiper, Polygonum lapathifolium and Polygonum viviparum demonstrated the highest XO inhibitory activity (>85% inhibition) at 400 µg/mL. The IC50 values of the active extracts were also determined. On the basis of the results, these plants, and especially P. hydropiper and R. acetosella, are considered worthy of activity-guided phytochemical investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Characterization of polyphenol oxidase activity in Ataulfo mango.

    PubMed

    Cheema, Summervir; Sommerhalter, Monika

    2015-03-15

    Crude extracts of Ataulfo exhibited polyphenol oxidase (PPO) activity with pyrogallol, 3-methylcatechol, catechol, gallic acid, and protocatechuic acid. The substrate dependent pH optima ranged from pH 5.4 to 6.4 with Michaelis-Menten constants between 0.84 ± 0.09 and 4.6 ± 0.7 mM measured in MES or phosphate buffers. The use of acetate buffers resulted in larger Michaelis-Menten constants, up to 14.62 ± 2.03 mM. Sodium ascorbate, glutathione, and kojic acid are promising inhibitors to prevent enzymatic browning in Ataulfo. PPO activity increased with ripeness and was always higher in the skin compared to the pulp. Sodium dodecyl sulphate (SDS) enhanced PPO activity, with pulp showing a stronger increase than skin. SDS-PAGE gels stained for catecholase activity showed multiple bands, with the most prominent bands at apparent molecular weights of 53, 112, and 144 kDa.

  3. Say what? The activity of the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO) in chemoprevention is a result of reduced thymidine pools?

    PubMed Central

    Casero, Robert A.

    2013-01-01

    Summary In the current issue of Cancer Discovery, Witherspoon, Lipkin and colleagues use an unbiased metabolite profiling approach to study the effects of polyamine depletion by DFMO in colon cancer cells. Their surprising findings indicate that it is a decrease in thymidine pools resulting from altered tetrahydrofolate availability rather than decreases in polyamines that produce cytostasis. PMID:24019331

  4. Say what? The activity of the polyamine biosynthesis inhibitor difluoromethylornithine in chemoprevention is a result of reduced thymidine pools?

    PubMed

    Casero, Robert A

    2013-09-01

    In this issue of Cancer Discovery, Witherspoon and colleagues use an unbiased metabolite profiling approach to study the effects of polyamine depletion by 2-difluoromethylornithine in colon cancer cells. Their surprising findings indicate that it is a decrease in thymidine pools resulting from altered tetrahydrofolate availability rather than decreases in polyamines that produces cytostasis.

  5. Hypoxia inhibits semicarbazide-sensitive amine oxidase activity in adipocytes.

    PubMed

    Repessé, Xavier; Moldes, Marthe; Muscat, Adeline; Vatier, Camille; Chetrite, Gérard; Gille, Thomas; Planes, Carole; Filip, Anna; Mercier, Nathalie; Duranteau, Jacques; Fève, Bruno

    2015-08-15

    Semicarbazide-sensitive amine oxidase (SSAO), an enzyme highly expressed on adipocyte plasma membranes, converts primary amines into aldehydes, ammonium and hydrogen peroxide, and is likely involved in endothelial damage during the course of diabetes and obesity. We investigated whether in vitro, adipocyte SSAO was modulated under hypoxic conditions that is present in adipose tissue from obese or intensive care unit. Physical or pharmacological hypoxia decreased SSAO activity in murine adipocytes and human adipose tissue explants, while enzyme expression was preserved. This effect was time-, dose-dependent and reversible. This down-regulation was confirmed in vivo in subcutaneous adipose tissue from a rat model of hypoxia. Hypoxia-induced suppression in SSAO activity was independent of the HIF-1-α pathway or of oxidative stress, but was partially antagonized by medium acidification. Hypoxia-induced down-regulation of SSAO activity could represent an adaptive mechanism to lower toxic molecules production, and may thus protect from tissue injury during these harmful conditions.

  6. Alzheimer disease β-amyloid activity mimics cholesterol oxidase

    PubMed Central

    Puglielli, Luigi; Friedlich, Avi L.; Setchell, Kenneth D.R.; Nagano, Seiichi; Opazo, Carlos; Cherny, Robert A.; Barnham, Kevin J.; Wade, John D.; Melov, Simon; Kovacs, Dora M.; Bush, Ashley I.

    2005-01-01

    The abnormal accumulation of amyloid β-peptide (Aβ) in the form of senile (or amyloid) plaques is one of the main characteristics of Alzheimer disease (AD). Both cholesterol and Cu2+ have been implicated in AD pathogenesis and plaque formation. Aβ binds Cu2+ with very high affinity, forming a redox-active complex that catalyzes H2O2 production from O2 and cholesterol. Here we show that Aβ:Cu2+ complexes oxidize cholesterol selectively at the C-3 hydroxyl group, catalytically producing 4-cholesten-3-one and therefore mimicking the activity of cholesterol oxidase, which is implicated in cardiovascular disease. Aβ toxicity in neuronal cultures correlated with this activity, which was inhibited by Cu2+ chelators including clioquinol. Cell death induced by staurosporine or H2O2 did not elevate 4-cholesten-3-one levels. Brain tissue from AD subjects had 98% more 4-cholesten-3-one than tissue from age-matched control subjects. We observed a similar increase in the brains of Tg2576 transgenic mice compared with nontransgenic littermates; the increase was inhibited by in vivo treatment with clioquinol, which suggests that brain Aβ accumulation elevates 4-cholesten-3-one levels in AD. Cu2+-mediated oxidation of cholesterol may be a pathogenic mechanism common to atherosclerosis and AD. PMID:16127459

  7. Polyamine analogues bind human serum albumin.

    PubMed

    Beauchemin, R; N'soukpoé-Kossi, C N; Thomas, T J; Thomas, T; Carpentier, R; Tajmir-Riahi, H A

    2007-10-01

    Polyamine analogues show antitumor activity in experimental models, and their ability to alter activity of cytotoxic chemotherapeutic agents in breast cancer is well documented. Association of polyamines with nucleic acids and protein is included in their mechanism of action. The aim of this study was to examine the interaction of human serum albumin (HSA) with several polyamine analogues, such as 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333), in aqueous solution at physiological conditions using a constant protein concentration and various polyamine contents (microM to mM). FTIR, UV-visible, and CD spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind nonspecifically (H-bonding) via polypeptide polar groups with binding constants of K333 = 9.30 x 10(3) M(-1), KBE-333 = 5.63 x 10(2) M(-1), and KBE-3333 = 3.66 x 10(2) M(-1). The protein secondary structure showed major alterations with a reduction of alpha-helix from 55% (free protein) to 43-50% and an increase of beta-sheet from 17% (free protein) to 29-36% in the 333, BE-333, and BE-3333 complexes, indicating partial protein unfolding upon polyamine interaction. HSA structure was less perturbed by polyamine analogues compared to those of the biogenic polyamines.

  8. Changes in polyamines, auxins and peroxidase activity during in vitro rooting of Fraxinus angustifolia shoots: an auxin-independent rooting model.

    PubMed

    Tonon, G; Kevers, C; Gaspar, T

    2001-07-01

    Among shoots of Fraxinus angustifolia Vahl raised in vitro, 76% rooted after culture on root induction medium for 5 days in darkness followed by culture on root expression medium for 15 days in light. The addition of 20.7 microM indole-butyric acid (IBA) to the root induction medium did not significantly increase the rooting percentage (88%). Putrescine, spermidine, cyclohexylamine (CHA) and aminoguanidine (AG) enhanced rooting up to 100% (98.66% for AG), when applied during root induction in the absence of IBA, otherwise these compounds inhibited rooting, as did spermine and difluoromethylornithine (DFMO) + difluoromethylarginine (DFMA). The root induction phase was characterized by a temporary increase in endogenous free indole-acetic acid (IAA) and putrescine concentrations during root induction, whereas the root expression phase was characterized by increased peroxidase activity and low concentrations of polyamines. These changes were specifically associated with the rooting process and did not depend on the presence of exogenous IBA, because application of exogenous IBA enhanced the amount of IAA in the cuttings but did not affect rooting or the pattern of changes in polyamines and peroxidase. The effects of CHA, AG and DFMO + DFMA on endogenous concentrations of auxins and polyamines highlight the close relationship between the effects of IAA and putrescine in root induction and suggest that polyamine catabolism has an important role in root formation and elongation.

  9. Ethanol Augments PDGF-Induced NADPH Oxidase Activity and Proliferation in Rat Pancreatic Stellate Cells

    PubMed Central

    Hu, Richard; Wang, Yan-Ling; Edderkaoui, Mouad; Lugea, Aurelia; Apte, Minoti V.; Pandol, Stephen J.

    2007-01-01

    Background/Aims Activated stellate cells are considered the principal mediators of chronic alcoholic pancreatitis/fibrosis. However the mechanisms of alcohol action on pancreatic stellate cells (PaSCs) are poorly understood. The aims of this study were to determine the presence and role of the NADPH oxidase system in mediating alcohol effects on PaSCs with specific emphasis on proliferation. Methods PaSC NADPH oxidase components mRNA and protein were determined by RT-PCR and Western blot. The NADPH oxidase activity was measured by detecting the production of reactive oxygen species using lucigenin-derived chemiluminescence assay. PaSC DNA synthesis, a measure of proliferation, was performed by determining the [3H] thymidine incorporation into DNA. Results mRNA for NADPH oxidase components Nox1, gp91phox, Nox4, p22phox, p47phox and p67phox and protein for NADPH oxidase subunits gp91phox, p22phox, p47phox and p67phox are present in PaSCs. Treatment with platelet-derived growth factor (PDGF) significantly increased the NADPH oxidase activity and DNA synthesis in cultured PaSCs. Alcohol treatment markedly augmented both the NADPH oxidase activity and the DNA synthesis caused by PDGF, which was prevented by antioxidant N-acetyl-L-cysteine, ROS scavenger tiron, and the NADPH oxidase inhibitor diphenylene iodium. The effects of PDGF on NADPH oxidase activity and DNA synthesis were prevented in PaSCs isolated from the pancreas of mice with a genetic deficiency of p47phox. Conclusions Ethanol causes proliferation of stellate cells by augmenting the activation of the cell's NADPH oxidase system stimulated by PDGF. These results provide new insights into the mechanisms of alcohol-induced fibrosing disorders. PMID:17627098

  10. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis.

    PubMed

    Bavaria, Mitul N; Jin, Shi; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of PP2Ac formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells.

  11. Brain Monoamine Oxidase-A Activity Predicts Trait Aggression

    PubMed Central

    Alia-Klein, Nelly; Goldstein, Rita Z.; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W.; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D.; Fowler, Joanna S.

    2008-01-01

    The genetic deletion of monoamine oxidase A (MAO A, an enzyme which breaks down the monoamine neurotransmitters norepinephrine, serotonin and dopamine) produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, MIM 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in-vivo in healthy non-smoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the Multidimensional Personality Questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than a third of the variability. Since trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  12. Polyamines and hair: a couple in search of perfection.

    PubMed

    Ramot, Yuval; Pietilä, Marko; Giuliani, Giammaria; Rinaldi, Fabio; Alhonen, Leena; Paus, Ralf

    2010-09-01

    Polyamines (spermidine, putrescine and spermine) are multifunctional cationic amines that are indispensable for cellular proliferation; of key significance in the growth of rapidly regenerating tissues and tumors. Given that the hair follicle (HF) is one of the most highly proliferative organs in mammalian biology, it is not surprising that polyamines are crucial to HF growth. Indeed, growing (anagen) HFs show the highest activity of ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, while inhibition of ODC, using eflornithine, results in a decreased rate of excessive facial hair growth in vivo and inhibits human scalp hair growth in organ culture. In sheep, manipulation of dietary intake of polyamines also results in altered wool growth. Polyamine-containing nutraceuticals have therefore been proposed as promoters of human hair growth. Recent progress in polyamine research, coupled with renewed interest in the role of polyamines in skin biology, encourages one to revisit their potential roles in HF biology and highlights the need for a systematic evaluation of their mechanisms of action and clinical applications in the treatment of hair disorders. The present viewpoint essay outlines the key frontiers in polyamine-related hair research and defines the major open questions. Moreover, it argues that a renaissance in polyamine research in hair biology, well beyond the inhibition of ODC activity in hirsutism therapy, is important for the development of novel therapeutic strategies for the manipulation of human hair growth. Such targets could include the manipulation of polyamine biosynthesis and the topical administration of selected polyamines, such as spermidine.

  13. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers.

    PubMed

    Fisar, Zdenek; Hroudová, Jana; Raboch, Jirí

    2010-01-01

    Monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters, has an important role in the brain development and function, and MAO inhibitors have a range of potential therapeutic uses. We investigated systematically in vitro effects of pharmacologically different antidepressants and mood stabilizers on MAO activity. Effects of drugs on the activity of MAO were measured in crude mitochondrial fraction isolated from cortex of pig brain, when radiolabeled serotonin (for MAO-A) or phenylethylamine (for MAO-B) was used as substrate. The several antidepressants and mood stabilizers were compared with effects of well known MAO inhibitors such as moclobemide, iproniazid, pargyline, and clorgyline. In general, the effect of tested drugs was found to be inhibitory. The half maximal inhibitory concentration, parameters of enzyme kinetic, and mechanism of inhibition were determined. MAO-A was inhibited by the following drugs: pargyline > clorgyline > iproniazid > fluoxetine > desipramine > amitriptyline > imipramine > citalopram > venlafaxine > reboxetine > olanzapine > mirtazapine > tianeptine > moclobemide, cocaine > lithium, valproate. MAO-B was inhibited by the following drugs: pargyline > clorgyline > iproniazid > fluoxetine > venlafaxine > amitriptyline > olanzapine > citalopram > desipramine > reboxetine > imipramine > tianeptine > mirtazapine, cocaine > moclobemide, lithium, valproate. The mechanism of inhibition of MAOs by several antidepressants was found various. It was concluded that MAO activity is acutely affected by pharmacologically different antidepressants at relatively high drug concentrations; this effect is inhibitory. There are differences both in inhibitory potency and in mechanism of inhibition between both several drugs and the two MAO isoforms. While MAO inhibition is not primary biochemical effect related to their therapeutic action, it can be supposed that decrease of MAO activity may be concerned in some effects of

  14. Inhibition of polyphenol oxidases activity by various dipeptides.

    PubMed

    Girelli, Anna M; Mattei, Enrico; Messina, Antonella; Tarola, Anna M

    2004-05-19

    In an effort to develop natural and nontoxic inhibitors on the activity of mushroom polyphenol oxidase (PPO) the effect of various glycyl-dipeptides (GlyAsp, GlyGly, GlyHis, GlyLeu, GlyLys, GlyPhe, GlyPro, GlyTyr) was investigated. The inhibition study with dihydroxyphenylalanine (DOPA) as substrate is based on separation of the enzymatic reaction components by reversed phase HPLC and the UV detection of the dopachrome formed. The results have evidenced that several of tested dipeptides inhibited PPO activity in the range of 20-40% while GlyPro and GlyLeu had no effect. The study has also permitted the characterization of the following kinetic pattern: a linear-mixed-type mechanism for GlyAsp, GlyGly, GlyLys, and GlyPhe and a hyperbolic-mixed-type for GlyTyr. It was not possible to identify the inhibition mechanism for GlyHis, although it affects PPO activity. In addition the effects of GlyAsp, GlyLys and GlyHis were evaluated for lessening the browning of fresh Golden Delicious apple and Irish White Skinned potato. The effectiveness of such inhibitors was determined by the difference between the colors observed in the dipeptide-treated sample and the controls using the color space CIE-Lab system. The % browning inhibition on potato (20-50%) was greater than of apple (20-30%) by the all tested dipeptides. Only GlyLys presented the significant value of 50%.

  15. Predicting Monoamine Oxidase Inhibitory Activity through Ligand-Based Models

    PubMed Central

    Vilar, Santiago; Ferino, Giulio; Quezada, Elias; Santana, Lourdes; Friedman, Carol

    2013-01-01

    The evolution of bio- and cheminformatics associated with the development of specialized software and increasing computer power has produced a great interest in theoretical in silico methods applied in drug rational design. These techniques apply the concept that “similar molecules have similar biological properties” that has been exploited in Medicinal Chemistry for years to design new molecules with desirable pharmacological profiles. Ligand-based methods are not dependent on receptor structural data and take into account two and three-dimensional molecular properties to assess similarity of new compounds in regards to the set of molecules with the biological property under study. Depending on the complexity of the calculation, there are different types of ligand-based methods, such as QSAR (Quantitative Structure-Activity Relationship) with 2D and 3D descriptors, CoMFA (Comparative Molecular Field Analysis) or pharmacophoric approaches. This work provides a description of a series of ligand-based models applied in the prediction of the inhibitory activity of monoamine oxidase (MAO) enzymes. The controlled regulation of the enzymes’ function through the use of MAO inhibitors is used as a treatment in many psychiatric and neurological disorders, such as depression, anxiety, Alzheimer’s and Parkinson’s disease. For this reason, multiple scaffolds, such as substituted coumarins, indolylmethylamine or pyridazine derivatives were synthesized and assayed toward MAO-A and MAO-B inhibition. Our intention is to focus on the description of ligand-based models to provide new insights in the relationship between the MAO inhibitory activity and the molecular structure of the different inhibitors, and further study enzyme selectivity and possible mechanisms of action. PMID:23231398

  16. Characterization of aldehyde oxidase enzyme activity in cryopreserved human hepatocytes.

    PubMed

    Hutzler, J Matthew; Yang, Young-Sun; Albaugh, Daniel; Fullenwider, Cody L; Schmenk, Jennifer; Fisher, Michael B

    2012-02-01

    Substrates of aldehyde oxidase (AO), for which human clinical pharmacokinetics are reported, were selected and evaluated in pooled mixed-gender cryopreserved human hepatocytes in an effort to quantitatively characterize AO activity. Estimated hepatic clearance (Cl(h)) for BIBX1382, carbazeran, O⁶-benzylguanine, zaleplon, and XK-469 using cryopreserved hepatocytes was 18, 17, 12, <4.3, and <4.3 ml · min⁻¹ · kg⁻¹, respectively. The observed metabolic clearance in cryopreserved hepatocytes was confirmed to be a result of AO-mediated metabolism via two approaches. Metabolite identification after incubations in the presence of H₂¹⁸O confirmed that the predominant oxidative metabolite was generated by AO, as expected isotope patterns in mass spectra were observed after analysis by high-resolution mass spectrometry. Second, clearance values were efficiently attenuated upon coincubation with hydralazine, an inhibitor of AO. The low exposure after oral doses of BIBX1382 and carbazeran (∼5% F) would have been fairly well predicted using simple hepatic extraction (f(h)) values derived from cryopreserved hepatocytes. In addition, the estimated hepatic clearance value for O⁶-benzylguanine was within ∼80% of the observed total clearance in humans after intravenous administration (15 ml · min⁻¹ · kg⁻¹), indicating a reasonable level of quantitative activity from this in vitro system. However, a 3.5-fold underprediction of total clearance was observed for zaleplon, despite the 5-oxo metabolite being clearly observed. These data taken together suggest that the use of cryopreserved hepatocytes may be a practical approach for assessing AO-mediated metabolism in discovery and potentially useful for predicting hepatic clearance of AO substrates.

  17. Regulation of Cytokinin Oxidase Activity in Callus Tissues of Phaseolus vulgaris L. cv Great Northern 1

    PubMed Central

    Chatfield, J. Mark; Armstrong, Donald J.

    1986-01-01

    The regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv Great Northern has been examined using an assay based on the oxidation of N6-(Δ2-isopentenyl)adenine-8-14C (i6 Ade-8-14C) to adenine. Solutions of exogenous cytokinins applied directly to the surface of the callus tissues induced relatively rapid increases in cytokinin oxidase activity. The increase in activity was detectable after 1 hour and continued for about 8 hours, reaching values two- to three-fold higher than the controls. The cytokinin-induced increase in cytokinin oxidase activity was inhibited in tissues pretreated with cordycepin or cycloheximide, suggesting that RNA and protein synthesis may be required for the response. Rifampicin and chloramphenicol, at concentrations that inhibited the growth of Great Northern callus tissues, were ineffective in inhibiting the increase in activity. All cytokinin-active compounds tested, including both substrates and nonsubstrates of cytokinin oxidase, were effective in inducing elevated levels of the enzyme in Great Northern callus tissue. The cytokinin-active urea derivative, Thidiazuron, was as effective as any adenine derivative in inducing this response. The addition of Thidiazuron to the reaction volumes used to assay cytokinin oxidase activity resulted in a marked inhibition of the degradation of the labeled i6 Ade-8-14C substrate. On the basis of this result, it is possible that Thidiazuron may serve as a substrate for cytokinin oxidase, but other mechanisms of inhibition have not yet been excluded. PMID:16664650

  18. The mechanisms by which polyamines accelerate tumor spread

    PubMed Central

    2011-01-01

    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions. PMID:21988863

  19. The mechanisms by which polyamines accelerate tumor spread.

    PubMed

    Soda, Kuniyasu

    2011-10-11

    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions.

  20. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    PubMed

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  1. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling.

    PubMed

    Chen, Tingting; Xu, Yunji; Wang, Jingchao; Wang, Zhiqin; Yang, Jianchang; Zhang, Jianhua

    2013-05-01

    This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.

  2. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention

    PubMed Central

    Battaglia, Valentina; Shields, Christina DeStefano; Murray-Stewart, Tracy; Casero, Robert A.

    2013-01-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges requires a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N1-acetylpolyamine oxidase (APAO). Both catabolic pathways produce hydrogen peroxide (H2O2) and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy. PMID:23771789

  3. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention.

    PubMed

    Battaglia, Valentina; DeStefano Shields, Christina; Murray-Stewart, Tracy; Casero, Robert A

    2014-03-01

    Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N (1)-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N (1)-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.

  4. Correlation between endogenous polyamines in human cardiac tissues and clinical parameters in patients with heart failure.

    PubMed

    Meana, Clara; Rubín, José Manuel; Bordallo, Carmen; Suárez, Lorena; Bordallo, Javier; Sánchez, Manuel

    2016-02-01

    Polyamines contribute to several physiological and pathological processes, including cardiac hypertrophy in experimental animals. This involves an increase in ornithine decarboxylase (ODC) activity and intracellular polyamines associated with cyclic adenosine monophosphate (cAMP) increases. The aim of the study was to establish the role of these in the human heart in living patients. For this, polyamines (by high performance liquid chromatography) and the activity of ODC and N(1)-acetylpolyamine oxidases (APAO) were determined in the right atrial appendage of 17 patients undergoing extracorporeal circulation to correlate with clinical parameters. There existed enzymatic activity associated with the homeostasis of polyamines. Left atria size was positively associated with ODC (r = 0.661, P = 0.027) and negatively with APAO-N(1) -acetylspermine (r = -0.769, P = 0.026), suggesting that increased levels of polyamines are associated with left atrial hemodynamic overload. Left ventricular ejection fraction (LVEF) and heart rate were positively associated with spermidine (r = 0.690, P = 0.003; r = 0.590, P = 0.021) and negatively with N(1)-acetylspermidine (r = -0.554, P = 0.032; r = -0.644, P = 0.018). LVEF was negatively correlated with cAMP levels (r = -0.835, P = 0.001) and with cAMP/ODC (r = -0.794, P = 0.011), cAMP/spermidine (r = -0.813, P = 0.001) and cAMP/spermine (r = -0.747, P = 0.003) ratios. Abnormal LVEF patients showed decreased ODC activity and spermidine, and increased N(1) -acetylspermidine, and cAMP. Spermine decreased in congestive heart failure patients. The trace amine isoamylamine negatively correlated with septal wall thickness (r = -0.634, P = 0.008) and was increased in cardiac heart failure. The results indicated that modifications in polyamine homeostasis might be associated with cardiac function and remodelling. Increased cAMP might have a deleterious effect on function. Further studies should confirm these findings and the involvement of

  5. Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens).

    PubMed

    Serapiglia, Michelle J; Minocha, Rakesh; Minocha, Subhash C

    2008-12-01

    We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount of N in the culture medium was reduced. When total N in the medium was increased, cell mass increased without significant changes in glutamine synthetase activity or polyamine concentration. Reductions in the amount of nitrate or total N in the culture medium resulted in increased accumulations of Ca, Mn and Zn in the cells, and K accumulation decreased in response to decreasing nitrate:ammonium ratios. The data indicate that changes in total N availability as well as the forms of N play important roles in the physiological responses of in-vitro-grown red spruce cells that mimic the observed responses of forest trees to soil N deficiency and N fertilization.

  6. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase

    PubMed Central

    Hoyal, Carolyn R.; Gutierrez, Abel; Young, Brandon M.; Catz, Sergio D.; Lin, Jun-Hsiang; Tsichlis, Philip N.; Babior, Bernard M.

    2003-01-01

    The leukocyte NADPH oxidase catalyzes the reduction of oxygen to O\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} at the expense of NADPH. Extensive phosphorylation of the oxidase subunit p47PHOX occurs during the activation of the enzyme in intact cells. p47PHOX carrying certain serine-to-alanine mutations fails to support NADPH oxidase activity in intact cells, suggesting that the phosphorylation of specific serines on p47PHOX is required for the activation of the oxidase. Earlier studies with both intact cells and a kinase-dependent, cell-free system have suggested that protein kinase C can phosphorylate those serines of p47PHOX whose phosphorylation is necessary for its activity. Work with inhibitors suggested that a phosphatidylinositol 3-kinase-dependent pathway also can activate the oxidase. Phosphorylation of p47PHOX by Akt (protein kinase B), whose activation depends on phosphatidylinositol 3-kinase, could be the final step in such a pathway. We now find that Akt activates the oxidase in vitro by phosphorylating serines S304 and S328 of p47PHOX. These results suggest that Akt could participate in the activation of the leukocyte NADPH oxidase. PMID:12704229

  7. Polyamine conjugates of stigmasterol.

    PubMed

    Vida, Norbert; Svobodová, Hana; Rárová, Lucie; Drašar, Pavel; Saman, David; Cvačka, Josef; Wimmer, Zdeněk

    2012-10-01

    Three new polyamine conjugates with stigmasterol [(3β,22E)-stigmasta-5,22-dien-3-ol] were synthesized and subjected to basic antimicrobial and cytotoxic tests. The conjugate derived from spermine, (3β,22E)-stigmasta-5,22-dien-3-yl 4(12-amino-4,9-diaza-dodecylamino)-4-oxobutanoate (5c), displayed considerable antimicrobial activity on Staphylococcus aureus at low concentration (50 μg mL(-1)). The cytotoxic activity was tested on cells of human T-lymfoblastic leukemia (IC(50)=35.8 ± 10.3 μM (5c) and IC(50)=35.9 ± 5.7 μM (5b)) and normal human fibroblasts (IC(50)=38.0 ± 2.8 μM (5c) and IC(50)=45.5 ± 1.9 μM (5b)). Conjugate 5a displayed no activity in both tests.

  8. Polyamine and intestinal properties in adult rats.

    PubMed

    Deloyer, P; Dandrifosse, G; Bartholomeus, C; Romain, N; Klimek, M; Salmon, J; Gérard, P; Goessens, G

    1996-10-01

    We questioned whether polyamines coming from the diet or produced by intestinal microflora or by intracellular metabolism influence intestinal functions. Therefore, we compared pathogen-free rats and germ-free rats receiving a diet with low polyamine content and either treated or not treated with difluoromethylornithine (DFMO) and/or methylglyoxal bis (guanylhydrazone) (MGBG). Wet weight, protein content, DNA content, sucrase (EC 3.2.1.48), maltase (EC 3.2.1.20) and lactase (EC 3.2.1.23) specific activities, amounts of putrescine, spermidine and spermine were measured in the mucosa of the proximal and distal intestine. Body weight was also determined. Rats without microflora had a higher specific activity of maltase and higher amounts of spermidine and spermine but lower lactase specific activity than pathogen-free animals; the low-polyamine diet given to germ-free rats had little effect on the functional variables measured (decrease of maltase and lactase specific activities) and did not modify the amounts of polyamines. DFMO and/or MGBG administered to germ-free rats receiving a low-polyamine diet induced modifications of most of the variables studied. Body weight and wet weight of proximal and distal intestine decreased, disaccharidase specific activities decreased, and amounts of polyamines changed according to the inhibitor used. Thus, our results showed that the deprivation of polyamine supply from microflora or from the diet failed, under our experimental conditions, to affect the intestinal properties analysed but exogenous and endogenous polyamine restriction altered general properties of the organism as well as intestinal functions.

  9. Inhibition of apple polyphenol oxidase activity by procyanidins and polyphenol oxidation products.

    PubMed

    Le Bourvellec, Carine; Le Quéré, Jean-Michel; Sanoner, Philippe; Drilleau, Jean-François; Guyot, Sylvain

    2004-01-14

    The rate of consumption of dissolved oxygen by apple polyphenol oxidase in cider apple juices did not correlate with polyphenol oxidase activity in the fruits and decreased faster than could be explained by the decrease of its polyphenolic substrates. The kinetics parameters of a crude polyphenol oxidase extract, prepared from apple (Braeburn cultivar), were determined using caffeoylquinic acid as a substrate. Three apple procyanidin fractions of n 80, 10.5, and 4 were purified from the parenchyma of cider apples of various cultivars. Procyanidins, caffeoylquinic acid, (-)-epicatechin, and a mixture of caffeoylquinic acid and (-)-epicatechin were oxidized by reaction with caffeoylquinic acid o-quinone in order to form oxidation products. All the fractions were evaluated for their inhibitory effect on PPO activity. Native procyanidins inhibited polyphenol oxidase activity, the inhibition intensity increasing with n. The polyphenol oxidase activity decreased by 50% for 0.026 g/L of the fraction of n 80, 0.17 g/L of the fraction of n 10.5, and 1 g/L of the fraction of n 4. The inhibitory effect of oxidized procyanidins was twice that of native procyanidins. Oxidation products of caffeoylquinic acid and (-)-epicatechin also inhibited polyphenol oxidase.

  10. Lectin-induced activation of plasma membrane NADPH oxidase in cholesterol-depleted human neutrophils.

    PubMed

    Gorudko, Irina V; Mukhortava, Ann V; Caraher, Brendan; Ren, Melody; Cherenkevich, Sergey N; Kelly, Gregory M; Timoshenko, Alexander V

    2011-12-15

    The gp91phox subunit of flavocytochrome b(558) is the catalytic core of the phagocyte plasma membrane NADPH oxidase. Its activation occurs within lipid rafts and requires translocation of four subunits to flavocytochrome b(558). gp91phox is the only glycosylated subunit of NADPH oxidase and no data exist about the structure or function of its glycans. Glycans, however, bind to lectins and this can stimulate NADPH oxidase activity. Given this information, we hypothesized that lectin-gp91phox interactions would facilitate the assembly of a functionally active NADPH oxidase in the absence of lipid rafts. To test this, we used lectins with different carbohydrate-binding specificity to examine the effects on H(2)O(2) generation by human neutrophils treated with the lipid raft disrupting agent methyl-β-cyclodextrin (MβCD). MβCD treatment removed membrane cholesterol, caused changes in cell morphology, inhibited lectin-induced cell aggregation, and delayed lectin-induced assembly of the NADPH oxidase complex. More importantly, MβCD treatment either stimulated or inhibited H(2)O(2) production in a lectin-dependent manner. Together, these results show selectivity in lectin binding to gp91phox, and provide evidence for the biochemical structures of the gp91phox glycans. Furthermore, the data also indicate that in the absence of lipid rafts, neutrophil NADPH oxidase activity can be altered by these select lectins. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Cholesterol oxidase with high catalytic activity from Pseudomonas aeruginosa: Screening, molecular genetic analysis, expression and characterization.

    PubMed

    Doukyu, Noriyuki; Nihei, Shyou

    2015-07-01

    An extracellular cholesterol oxidase producer, Pseudomonas aeruginosa strain PA157, was isolated by a screening method to detect 6β-hydroperoxycholest-4-en-3-one-forming cholesterol oxidase. On the basis of a putative cholesterol oxidase gene sequence in the genome sequence data of P. aeruginosa strain PAO1, the cholesterol oxidase gene from strain PA157 was cloned. The mature form of the enzyme was overexpressed in Escherichia coli cells. The overexpressed enzyme formed inclusion bodies in recombinant E. coli cells grown at 20 °C and 30 °C. A soluble and active PA157 enzyme was obtained when the recombinant cells were grown at 10 °C. The purified enzyme was stable at pH 5.5 to 10 and was most active at pH 7.5-8.0, showing optimal activity at pH 7.0 and 70 °C. The enzyme retained about 90% of its activity after incubation for 30 min at 70 °C. The enzyme oxidized 3β-hydroxysteroids such as cholesterol, β-cholestanol, and β-sitosterol at high rates. The Km value and Vmax value for the cholesterol were 92.6 μM and 15.9 μmol/min/mg of protein, respectively. The Vmax value of the enzyme was higher than those of commercially available cholesterol oxidases. This is the first report to characterize a cholesterol oxidase from P. aeruginosa.

  12. Polyamines function in stress tolerance: from synthesis to regulation

    PubMed Central

    Liu, Ji-Hong; Wang, Wei; Wu, Hao; Gong, Xiaoqing; Moriguchi, Takaya

    2015-01-01

    Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity, and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine, spermidine, and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS) due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested. PMID:26528300

  13. Age dependency of the metabolic conversion of polyamines into amino acids in IMR-90 human embryonic lung diploid fibroblasts

    SciTech Connect

    Chen, K.Y.; Chang, Z.

    1986-07-01

    When radioactive polyamines (putrescine or spermidine) were incubated with mammalian cells in tissue culture, the radioactivity was incorporated into cellular proteins via two different metabolic pathways; one is metabolic labeling of an 18,000-dalton protein via hypusine formation, and the other is general protein synthesis employing radioactive amino acids derived from biodegradation of polyamines via GABA shunt and Krebs cycle. Aminoguanidine, a potent inhibitor of diamine oxidase, blocked the metabolic conversion of polyamines to amino acids but had no effect on the metabolic labeling of the 18,000-dalton protein. The authors have investigated these two polyamine-associated biochemical events in IMR-90 human diploid fibroblasts as a function of their population doubling level (PDL). They found that (1) the metabolic labeling of the 18,000-dalton protein was about two-fold greater in young cells (PDL = 22) than that in old cells (PDL = 48), and (2) the metabolic labeling of other cellular proteins, employing amino acids derived from putrescine via polyamine catabolic pathway, was more than six-fold greater in the old cells (PDL = 48) than in the young cells (PDL = 22). Since the rate of protein synthesis was about 1.4-fold higher in the young cells as compared to the old cells, their data indicated that the activity of catabolic conversion of putrescine (or spermidine) to amino acids in old IMR-90 cells was about eight-fold greater than that in young cells. This remarkable increase of polyamine catabolism and the slight decrease of metabolic labeling of the 18,000-dalton protein were also observed in cell strains derived from patients with premature aging disease.

  14. Catalase activity of cytochrome C oxidase assayed with hydrogen peroxide-sensitive electrode microsensor.

    PubMed

    Bolshakov, I A; Vygodina, T V; Gennis, R; Karyakin, A A; Konstantinov, A A

    2010-11-01

    An iron-hexacyanide-covered microelectrode sensor has been used to continuously monitor the kinetics of hydrogen peroxide decomposition catalyzed by oxidized cytochrome oxidase. At cytochrome oxidase concentration ~1 µM, the catalase activity behaves as a first order process with respect to peroxide at concentrations up to ~300-400 µM and is fully blocked by heat inactivation of the enzyme. The catalase (or, rather, pseudocatalase) activity of bovine cytochrome oxidase is characterized by a second order rate constant of ~2·10(2) M(-1)·sec(-1) at pH 7.0 and room temperature, which, when divided by the number of H2O2 molecules disappearing in one catalytic turnover (between 2 and 3), agrees reasonably well with the second order rate constant for H2O2-dependent conversion of the oxidase intermediate F(I)-607 to F(II)-580. Accordingly, the catalase activity of bovine oxidase may be explained by H2O2 procession in the oxygen-reducing center of the enzyme yielding superoxide radicals. Much higher specific rates of H2O2 decomposition are observed with preparations of the bacterial cytochrome c oxidase from Rhodobacter sphaeroides. The observed second order rate constants (up to ~3000 M(-1)·sec(-1)) exceed the rate constant of peroxide binding with the oxygen-reducing center of the oxidized enzyme (~500 M(-1)·sec(-1)) several-fold and therefore cannot be explained by catalytic reaction in the a(3)/Cu(B) site of the enzyme. It is proposed that in the bacterial oxidase, H2O2 can be decomposed by reacting with the adventitious transition metal ions bound by the polyhistidine-tag present in the enzyme, or by virtue of reaction with the tightly-bound Mn2+, which in the bacterial enzyme substitutes for Mg2+ present in the mitochondrial oxidase.

  15. Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords.

    PubMed

    Kuo, Huai-Sheng; Tsai, May-Jywan; Huang, Ming-Chao; Chiu, Chuan-Wen; Tsai, Ching-Yi; Lee, Meng-Jen; Huang, Wen-Cheng; Lin, Yi-Lo; Kuo, Wen-Chun; Cheng, Henrich

    2011-03-16

    Spinal cord injury elicits an inflammatory response that recruits macrophages to the injured spinal cord. Quantitative real-time PCR results have shown that a repair strategy combining peripheral nerve grafts with acidic fibroblast growth factor (aFGF) induced higher interleukin-4 (IL-4), IL-10, and IL-13 levels in the graft areas of rat spinal cords compared with transected spinal cords at 10 and 14 d. This led to higher arginase I-positive alternatively activated macrophage (M2 macrophage) responses. The gene expression of several enzymes involved in polyamine biosynthesis pathways was also upregulated in the graft areas of repaired spinal cords. The treatment induced a twofold upregulation of polyamine levels at 14 d, as confirmed by HPLC. Polyamines are important for the repair process, as demonstrated by the observation that treatment with inhibitors of arginase I and ornithine decarboxylase attenuates the functional recoveries of repaired rats. After 14 d, the treatment also induced the expression of neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), as well as M2 macrophages within grafted nerves expressing BDNF. IL-4 was upregulated in the injury sites of transected rats that received aFGF alone compared with those that received nerve grafts alone at 10 d. Conversely, nerve graft treatment induced NGF and BDNF expression at 14 d. Macrophages expressing polyamines and BDNF may benefit axonal regeneration at 14 d. These results indicate that aFGF and nerve grafts regulate different macrophage responses, and M2 macrophages may play an important role in axonal regeneration after spinal cord injury in rats.

  16. F14512, a polyamine-vectorized inhibitor of topoisomerase II, exhibits a marked anti-tumor activity in ovarian cancer.

    PubMed

    Thibault, Benoît; Clement, Emily; Zorza, Grégoire; Meignan, Samuel; Delord, Jean-Pierre; Couderc, Bettina; Bailly, Christian; Narducci, Fabrice; Vandenberghe, Isabelle; Kruczynski, Anna; Guilbaud, Nicolas; Ferré, Pierre; Annereau, Jean-Philippe

    2016-01-01

    Epithelial ovarian cancer is the fourth cause of death among cancer-bearing women and frequently associated with carboplatin resistance, underlining the need for more efficient and targeted therapies. F14512 is an epipodophylotoxin-core linked to a spermine chain which enters cells via the polyamine transport system (PTS). Here, we investigate this novel concept of vectorization in ovarian cancer. We compared the effects of etoposide and F14512 on a panel of five carboplatin-sensitive or resistant ovarian cancer models. We assessed the incorporation of F17073, a spermine-linked fluorescent probe, in these cells and in 18 clinical samples. We then showed that F14512 exhibits a high anti-proliferative and pro-apoptotic activity, particularly in cells with high levels of F17073 incorporation. Consistently, F14512 significantly inhibited tumor growth compared to etoposide, in a cisplatin-resistant A2780R subcutaneous model, at a dose of 1.25 mg/kg. In addition, ex vivo analysis indicated that 15 out of 18 patients presented a higher F17073 incorporation into tumor cells compared to normal cells. Overall, our data suggest that F14512, a targeted drug with a potent anti-tumor efficacy, constitutes a potential new therapy for highly PTS-positive and platinum-resistant ovarian cancer-bearing patients.

  17. Ornithine and arginine decarboxylase activities and effect of some polyamine biosynthesis inhibitors on Gigaspora rosea germinating spores.

    PubMed

    Sannazzaro, Analía I; Alvarez, Cora L; Menéndez, Ana B; Pieckenstain, Fernando L; Albertó, Edgardo O; Ruiz, Oscar A

    2004-01-15

    The pathways for putrescine biosynthesis and the effects of polyamine biosynthesis inhibitors on the germination and hyphal development of Gigaspora rosea spores were investigated. Incubation of spores with different radioactive substrates demonstrated that both arginine and ornithine decarboxylase pathways participate in putrescine biosynthesis in G. rosea. Spermidine and spermine were the most abundant polyamines in this fungus. The putrescine biosynthesis inhibitors alpha-difluoromethylarginine and alpha-difluoromethylornithine, as well as the spermidine synthase inhibitor cyclohexylamine, slightly decreased polyamine levels. However, only the latter interfered with spore germination. The consequences of the use of putrescine biosynthesis inhibitors for the control of plant pathogenic fungi on the viability of G. rosea spores in soil are discussed.

  18. Spinach Thylakoid Polyphenol Oxidase : ISOLATION, ACTIVATION, AND PROPERTIES OF THE NATIVE CHLOROPLAST ENZYME.

    PubMed

    Golbeck, J H; Cammarata, K V

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14.18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. The higher molecular weight enzyme is the predominant form in freshly isolated preparations but on aging or further purification, the amount of lower molecular weight enzyme increases at the expense of the higher.Sonication releases polyphenol oxidase from the membrane largely in the latent state. C(18) fatty acids, especially linolenic acid, are potent activators of the enzymic activity. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time.Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. The K(m) values for 3,4-dihydroxyphenylalanine and O(2) are 6.5 and 0.065 millimolar, respectively. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K(m) A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  19. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis

    PubMed Central

    Bavaria, Mitul N.; Jin, Shi; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of protein phosphatase 2A (PP2Ac) formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells. PMID:24253595

  20. CsPAO4 of Citrus sinensis functions in polyamine terminal catabolism and inhibits plant growth under salt stress

    PubMed Central

    Wang, Wei; Liu, Ji-Hong

    2016-01-01

    Polyamine oxidase (PAO) is a key enzyme catalyzing polyamine catabolism leading to H2O2 production. We previously demonstrated that Citrus sinensis contains six putative PAO genes, but their functions are not well understood. In this work, we reported functional elucidation of CsPAO4 in polyamine catabolism and salt stress response. CsPAO4 was localized to the apoplast and used both spermidine (Spd) and spermine (Spm) as substrates for terminal catabolism. Transgenic plants overexpressing CsPAO4 displayed prominent increase in PAO activity, concurrent with marked decrease of Spm and Spd and elevation of H2O2. Seeds of transgenic lines displayed better germination when compared with wild type (WT) under salt stress. However, both vegetative growth and root elongation of the transgenic lines were prominently inhibited under salt stress, accompanied by higher level of H2O2 and more conspicuous programmed cell death (PCD). Exogenous supply of catalase (CAT), a H2O2 scavenger, partially recovered the vegetative growth and root elongation. In addition, spermine inhibited root growth of transgenic plants. Taken together, these data demonstrated that CsPAO4 accounts for production of H2O2 causing oxidative damages under salt stress and that down-regulation of a PAO gene involved in polyamine terminal catabolism may be an alternative approach for improving salt stress tolerance. PMID:27535697

  1. Excess boron reduces polyphenol oxidase activities in embryo and endosperm of maize seed during germination.

    PubMed

    Olçer, Hillya; Kocaçaliskan, Ismail

    2007-01-01

    The effects of increasing concentrations of boron (0, 0.1, 1, 10 and 20 mM) as boric acid on the rate of germination and polyphenol oxidase activities in embryo and endosperm tissues of maize seeds (Zea mays L. cv. Arifiye) were studied. The germination percentage of maize seeds was not affected by boron concentrations up to 10 mM, and decreased by 20 mM. Distilled water and lower boron concentrations (0.1 and 1 mM) increased polyphenol oxidase activities at the beginning of germination up to 12 h whereas its excess levels (10 and 20 mM) decreased polyphenol oxidase activities in embryos and endosperm during germination. Polyphenol oxidase activities with o-diphenolic substrates (caffeic acid, catechol and dopa) were found to be higher than with a monophenolic substrat (tyrosine) in both embryos and endosperms. Further, caffeic acid oxidizing polyphenol oxidase was found to show more activity in embryos of the seeds germinating in distilled water when compared to other substrates.

  2. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device.

  3. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.

    PubMed

    Gowda, Lalitha R; Paul, Beena

    2002-03-13

    This paper reports a study on the hydroxylation of ferulic acid and tyrosine by field bean (Dolichos lablab) polyphenol oxidase, a reaction that does not take place without the addition of catechol. A lag period similar to the characteristic lag of tyrosinase activity was observed, the length of which decreased with increasing catechol concentration and increased with increasing ferulic acid concentration. The activation constant K(a) of catechol for ferulic acid hydroxylation reaction was 5 mM. The kinetic parameters of field bean polyphenol oxidase toward ferulic acid and tyrosine were evaluated in the presence of catechol. 4-Methyl catechol, L-dihydroxyphenylalanine, pyrogallol, and 2,3,4-trihydroxybenzoic acid, substrates with high binding affinity to field bean polyphenol oxidase, could stimulate this hydroxylation reaction. In contrast, diphenols such as protocatechuic acid, gallic acid, chlorogenic acid, and caffeic acid, which were not substrates for the oxidation reaction, were unable to bring about this activation. It is most likely that only o-diphenols that are substrates for the diphenolase serve as cosubstrates by donating electrons at the active site for the monophenolase activity. The reaction mechanism for this activation is consistent with that proposed for tyrosinase (Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Biochim. Biophys. Acta 1995, 1247, 1-11). The presence of o-diphenols, viz. catechol, L-dihydroxyphenylalanine, and 4-methyl catechol, is also necessary for the oxidation of the diphenols, caffeic acid, and catechin to their quinones by the field bean polyphenol oxidase. This oxidation reaction occurs immediately with no lag period and does not occur without the addition of diphenol. The kinetic parameters for caffeic acid (K(m) = 0.08 mM, V(max) = 32440 u/mg) in the presence of catechol and the activation constant K(a) of catechol (4.6 mM) for this reaction were enumerated. The absence of a lag

  4. NADPH oxidase plays a crucial role in the activation of pancreatic stellate cells.

    PubMed

    Masamune, Atsushi; Watanabe, Takashi; Kikuta, Kazuhiro; Satoh, Kennichi; Shimosegawa, Tooru

    2008-01-01

    Activated pancreatic stellate cells (PSCs) play an important role in pancreatic fibrosis and inflammation, where oxidative stress is implicated in the pathogenesis. NADPH oxidase might be a source of reactive oxygen species (ROS) in the injured pancreas. This study aimed to clarify the expression and regulation of cell functions by NADPH oxidase in PSCs. PSCs were isolated from rat and human pancreas tissues. Expression of NADPH oxidase was assessed by reverse transcription-PCR and immunostaining. Intracellular ROS production was assessed using 2',7'-dichlorofluorescin diacetate. The effects of diphenylene iodonium (DPI) and apocynin, inhibitors of NADPH oxidase, on key parameters of PSC activation were evaluated in vitro. In vivo, DPI (at 1 mg.kg body wt(-1).day(-1)) was administered in drinking water to 10-wk-old male Wistar Bonn/Kobori rats for 10 wk and to rats with chronic pancreatitis induced by dibutyltin dichloride (DBTC). PSCs expressed key components of NADPH oxidase (p22(phox), p47(phox), NOX1, gp91(phox)/NOX2, NOX4, and NOX activator 1). PDGF-BB, IL-1beta, and angiotensin II induced ROS production, which was abolished by DPI and apocynin. DPI inhibited PDGF-induced proliferation, IL-1beta-induced chemokine production, and expression of alpha-smooth muscle actin and collagen. DPI inhibited transformation of freshly isolated cells to a myofibroblast-like phenotype. In addition, DPI inhibited the development of pancreatic fibrosis in Wistar Bonn/Kobori rats and in rats with DBTC-induced chronic pancreatitis. In conclusion, PSCs express NADPH oxidase to generate ROS, which mediates key cell functions and activation of PSCs. NADPH oxidase might be a potential target for the treatment of pancreatic fibrosis.

  5. Mammalian Polyamine Metabolism and Function

    PubMed Central

    Pegg, Anthony E.

    2009-01-01

    Summary Polyamines are ubiquitous small basic molecules that play multiple essential roles in mammalian physiology. Their cellular content is highly regulated and there is convincing evidence that altered metabolism is involvement in many disease states. Drugs altering polyamine levels may therefore have a variety of important targets. This review will summarize the current state of understanding of polyamine metabolism and function, the regulation of polyamine content, and heritable pathological conditions that may be derived from altered polyamine metabolism. PMID:19603518

  6. 1-Aminocyclopropane-1-Carboxylate Oxidase Activity Limits Ethylene Biosynthesis in Rumex palustris during Submergence

    PubMed Central

    Vriezen, Wim H.; Hulzink, Raymond; Mariani, Celestina; Voesenek, Laurentius A.C.J.

    1999-01-01

    Submergence strongly stimulates petiole elongation in Rumex palustris, and ethylene accumulation initiates and maintains this response in submerged tissues. cDNAs from R. palustris corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene (RP-ACO1) were isolated from elongating petioles and used to study the expression of the corresponding gene. An increase in RP-ACO1 messenger was observed in the petioles and lamina of elongating leaves 2 h after the start of submergence. ACC oxidase enzyme activity was measured in homogenates of R. palustris shoots, and a relevant increase was observed within 12 h under water with a maximum after 24 h. We have shown previously that the ethylene production rate of submerged shoots does not increase significantly during the first 24 h of submergence (L.A.C.J. Voesenek, M. Banga, R.H. Thier, C.M. Mudde, F.M. Harren, G.W.M. Barendse, C.W.P.M. Blom [1993] Plant Physiol 103: 783–791), suggesting that under these conditions ACC oxidase activity is inhibited in vivo. We found evidence that this inhibition is caused by a reduction of oxygen levels. We hypothesize that an increased ACC oxidase enzyme concentration counterbalances the reduced enzyme activity caused by low oxygen concentration during submergence, thus sustaining ethylene production under these conditions. Therefore, ethylene biosynthesis seems to be limited at the level of ACC oxidase activity rather than by ACC synthase in R. palustris during submergence. PMID:10482674

  7. Spinach thylakoid polyphenol oxidase isolation, activation, and properties of the native chloroplast enzyme

    SciTech Connect

    Golbeck, J.H.; Cammarata, K.V.

    1981-05-01

    Polyphenol oxidase activity (E.C. 1.14,18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. Sonication releases polyphenol oxidase from the membrane largely in the latent state. In the absence of added fatty acids, the isolated enzyme spontaneously, but slowly, activates with time. Purified polyphenol oxidase utilizes o-diphenols as substrates and shows no detectable levels of monophenol or p-diphenol oxidase activities. Suitable substrates include chlorogenic acid, catechol, caffeic acid, pyrogallol, and dopamine; however, the enzyme is substrate-inhibited by the last four at concentrations near their K/sub m/. A large seasonal variation in polyphenol oxidase activity may result from a decrease in enzyme content rather than inhibition of the enzyme present.

  8. Hyper-responsive Toll-like receptor 7 and 9 activation in NADPH oxidase-deficient B lymphoblasts.

    PubMed

    McLetchie, Shawna; Volpp, Bryan D; Dinauer, Mary C; Blum, Janice S

    2015-12-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency linked with mutations in the multi-subunit leucocyte NADPH oxidase. Myeloid-derived phagocytic cells deficient in NADPH oxidase fail to produce sufficient levels of reactive oxygen species to clear engulfed pathogens. In this study we show that oxidase also influences B-cell functions, including responses to single-stranded RNA or unmethylated DNA by endosomal Toll-like receptors (TLRs) 7 and 9. In response to TLR7/9 ligands, B-cell lines derived from patients with CGD with mutations in either the NADPH oxidase p40(phox) or p47(phox) subunits produced only low levels of reactive oxygen species. Remarkably, cytokine secretion and p38 mitogen-activated protein kinase activation by these oxidase-deficient B cells was significantly increased upon TLR7/9 activation when compared with oxidase-sufficient B cells. Increased TLR responsiveness was also detected in B cells from oxidase-deficient mice. NADPH oxidase-deficient patient-derived B cells also expressed enhanced levels of TLR7 and TLR9 mRNA and protein compared with the same cells reconstituted to restore oxidase activity. These data demonstrate that the loss of oxidase function associated with CGD can significantly impact B-cell TLR signalling in response to nucleic acids with potential repercussions for auto-reactivity in patients.

  9. Polyamines and polyamine biosynthesis in cells exposed to hyperthermia

    SciTech Connect

    Gerner, E.W.; Stickney, D.G.; Herman, T.S.; Fuller, D.J.

    1983-02-01

    The issue of how polyamines act to sensitize cultured cells to the lethal effects of hyperthermia was investigated using Chinese hamster cells which were induced to express thermotolerance. Intracellular levels of these naturally occurring polycations were manipulated in certain situations by treating whole cells with methylglyoxal bis-(guanylhydrazone), an inhibitor of the S-adenosyl-L-methionine decarboxylases. Exogenous spermine as low as 100 ..mu..M in the culture media dramatically sensitized cells expressing thermotolerance to the lethal effects of subsequent 42/sup 0/C exposures. When thermotolerance was differentially induced in cultures exposed to 42.4/sup 0/C by varying the rate of heating from 37 to 42.4/sup 0/C, the most resistant cells and the highest levels of intracellular spermidine and spermine. This finding was explainable in part by the observation that the putrescine-dependent S-adenosyl-L-methionine decarboxylase activity was minimally affected in cells expressng the greatest degree of thermotolerance. When this enzyme activity was inhibited by drug, lowered intracellular polyamine levels did not correspond with subsequent survival responses to heat. Interestingly, cultures treated with methylglyoxal bis-(guanylhydrazone) 24 hr previous to heat exposure showed a reduced capacity to express rate of heating-induced thermotolerance. Together, these results demonstrate that the polyamines, especially spermidine and spermine, enhance hyperthermia-induced cell killing by some mechanism involving the plasma membrane. Further, our data suggest that methylglyoxal bis-(guanylhydrazone) can act to affect thermal responses by a mechanism(s) other than modification of intracellular polyamine levels.

  10. Nuclear localization of human spermine oxidase isoforms – possible implications in drug response and disease etiology

    PubMed Central

    Murray-Stewart, Tracy; Wang, Yanlin; Goodwin, Andrew; Hacker, Amy; Meeker, Alan; Casero, Robert A.

    2013-01-01

    The recent discovery of the direct oxidation of spermine via spermine oxidase (SMO) as a mechanism through which specific antitumor polyamine analogues exert their cytotoxic effects has fueled interest in the study of the polyamine catabolic pathway. A major byproduct of spermine oxidation is H2O2, a source of toxic reactive oxygen species. Recent targeted small interfering RNA studies have confirmed that SMO-produced reactive oxygen species are directly responsible for oxidative stress capable of inducing apoptosis and potentially mutagenic DNA damage. In the present study, we describe a second catalytically active splice variant protein of the human spermine oxidase gene, designated SMO5, which exhibits substrate specificities and affinities comparable to those of the originally identified human spermine oxidase-1, SMO/PAOh1, and, as such, is an additional source of H2O2. Importantly, overexpression of either of these SMO isoforms in NCI-H157 human non-small cell lung carcinoma cells resulted in significant localization of SMO protein in the nucleus, as determined by confocal microscopy. Furthermore, cell lines overexpressing either SMO/PAOh1 or SMO5 demonstrated increased spermine oxidation in the nucleus, with accompanying alterations in individual nuclear polyamine concentrations. This increased oxidation of spermine in the nucleus therefore increases the production of highly reactive H2O2 in close proximity to DNA, as well as decreases nuclear spermine levels, thus altering the protective roles of spermine in free radical scavenging and DNA shielding, and resulting in an overall increased potential for oxidative DNA damage in these cells. The results of these studies therefore have considerable significance both with respect to targeting polyamine oxidation as an antineoplastic strategy, and in regard to the potential role of spermine oxidase in inflammation-induced carcinogenesis. PMID:18422650

  11. Nuclear localization of human spermine oxidase isoforms - possible implications in drug response and disease etiology.

    PubMed

    Murray-Stewart, Tracy; Wang, Yanlin; Goodwin, Andrew; Hacker, Amy; Meeker, Alan; Casero, Robert A

    2008-06-01

    The recent discovery of the direct oxidation of spermine via spermine oxidase (SMO) as a mechanism through which specific antitumor polyamine analogues exert their cytotoxic effects has fueled interest in the study of the polyamine catabolic pathway. A major byproduct of spermine oxidation is H2O2, a source of toxic reactive oxygen species. Recent targeted small interfering RNA studies have confirmed that SMO-produced reactive oxygen species are directly responsible for oxidative stress capable of inducing apoptosis and potentially mutagenic DNA damage. In the present study, we describe a second catalytically active splice variant protein of the human spermine oxidase gene, designated SMO5, which exhibits substrate specificities and affinities comparable to those of the originally identified human spermine oxidase-1, SMO/PAOh1, and, as such, is an additional source of H2O2. Importantly, overexpression of either of these SMO isoforms in NCI-H157 human non-small cell lung carcinoma cells resulted in significant localization of SMO protein in the nucleus, as determined by confocal microscopy. Furthermore, cell lines overexpressing either SMO/PAOh1 or SMO5 demonstrated increased spermine oxidation in the nucleus, with accompanying alterations in individual nuclear polyamine concentrations. This increased oxidation of spermine in the nucleus therefore increases the production of highly reactive H2O2 in close proximity to DNA, as well as decreases nuclear spermine levels, thus altering the protective roles of spermine in free radical scavenging and DNA shielding, and resulting in an overall increased potential for oxidative DNA damage in these cells. The results of these studies therefore have considerable significance both with respect to targeting polyamine oxidation as an antineoplastic strategy, and in regard to the potential role of spermine oxidase in inflammation-induced carcinogenesis.

  12. Biogenic and synthetic polyamines bind bovine serum albumin.

    PubMed

    Dubeau, S; Bourassa, P; Thomas, T J; Tajmir-Riahi, H A

    2010-06-14

    Biogenic polyamines are found to modulate protein synthesis at different levels, while polyamine analogues have shown major antitumor activity in multiple experimental models, including breast cancer. The aim of this study was to examine the interaction of bovine serum albumin (BSA) with biogenic polyamines, spermine and spermidine, and polyamine analogues 3,7,11,15-tetrazaheptadecane x 4 HCl (BE-333) and 3,7,11,15,19-pentazahenicosane x 5 HCl (BE-3333) in aqueous solution at physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind BSA via both hydrophilic and hydrophobic interactions. Stronger polyamine-protein complexes formed with biogenic than synthetic polyamines with overall binding constants of K(spm) = 3.56 (+/-0.5) x 10(5) M(-1), K(spmd) = 1.77 (+/-0.4) x 10(5) M(-1), K(BE-333) = 1.11 (+/-0.3) x 10(4) M(-1) and K(BE-3333) = 3.90 (+/-0.7) x 10(4) M(-1) that correlate with their positively charged amino group contents. Major alterations of protein conformation were observed with reduction of alpha-helix from 63% (free protein) to 55-33% and increase of turn 12% (free protein) to 28-16% and random coil from 6% (free protein) to 24-17% in the polyamine-BSA complexes, indicating a partial protein unfolding. These data suggest that serum albumins might act as polyamine carrier proteins in delivering polyamine analogues to target tissues.

  13. Metformin induces suppression of NAD(P)H oxidase activity in podocytes.

    PubMed

    Piwkowska, Agnieszka; Rogacka, Dorota; Jankowski, Maciej; Dominiczak, Marek Henryk; Stepiński, Jan Kazimierz; Angielski, Stefan

    2010-03-05

    Hyperglycemia increases the production of reactive oxygen species (ROS). NAD(P)H oxidase, producing superoxide anion, is the main source of ROS in diabetic podocytes and their production contributes to the development of diabetic nephropathy. We have investigated the effect of an antidiabetic drug, metformin on the production of superoxide anion in cultured podocytes and attempted to elucidate underlying mechanisms. The experiments were performed in normal (NG, 5.6mM) and high (HG, 30mM) glucose concentration. Overall ROS production was measured by fluorescence of a DCF probe. Activity of NAD(P)H oxidase was measured by chemiluminescence method. The AMP-dependent kinase (AMPK) activity was determined by immunobloting, measuring the ratio of phosphorylated AMPK to total AMPK. Glucose accumulation was measured using 2-deoxy-[1,2-(3)H]-glucose. ROS production increased by about 27% (187+/-8 vs. 238+/-9 arbitrary units AU, P<0.01) in HG. Metformin (2mM, 2h) markedly reduced ROS production by 45% in NG and 60% in HG. Metformin decreased NAD(P)H oxidase activity in NG (36%) and HG (86%). AMPK activity was increased by metformin in NG and HG (from 0.58+/-0.07 to. 0.99+/-0.06, and from 0.53+/-0.03 to 0.64+/-0.03; P<0.05). The effects of metformin on the activities of NAD(P)H oxidase and AMPK were abolished in the presence of AMPK inhibitor, compound C. We have shown that metformin decreases production of ROS through reduction of NAD(P)H oxidase activity. We also have demonstrated relationship between activity of NAD(P)H oxidase and AMPK. 2010 Elsevier Inc. All rights reserved.

  14. Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase.

    PubMed Central

    Vik, S B; Georgevich, G; Capaldi, R A

    1981-01-01

    Isolated beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) contains four or five molecules of tightly bound diphosphatidylglycerol per monomer (2-heme complex). This lipid could be removed in part, or wholly, by mixing the enzyme with high concentrations of Triton X-100 and then centrifuging the mixture through a glycerol gradient equilibrated in the same detergent. Cytochrome c oxidase retaining three or more diphosphatidylglycerol molecules per monomer was fully active when assayed in 1-oleoyl lysophosphatidylcholine. Upon removal of one or more of these diphosphatidylglycerols, enzymic activity was lost. Full activation could be obtained by adding diphosphatidylglycerol to the assay mixture along with lysophosphatidylcholine but not by adding phosphatidylcholine or phosphatidylethanolamine. Direct binding experiments, kinetic studies, and previous work using arylazidocytochrome c derivatives [Bisson, R., Jacobs, B. & Capaldi, R. A. (1980) Biochemistry 10, 4173-4178], indicate that diphosphatidylglycerol is involved in binding of substrate cytochrome c to cytochrome c oxidase. PMID:6262802

  15. [Hydrazine derivative modification of the activity of brain mitochondrial monoamine oxidases].

    PubMed

    Kalninia, I E; Baumanas, E A; Kaĭrane, Ch B; Gorkin, V Z

    1981-01-01

    Treatment of bovine brain stem mitochondria with hydrazine derivatives, which inhibited the monoamine oxidase activity (substrate: 5-hydroxytryptamine), was accompanied by appearance of the properties to deaminate histamine and cadaverine at a high rate. The same phenomenon was observed in vivo after treatment of mice with the hydrazine derivatives. The dramatic increase in histamine deaminating activity in brain was accompanied by a decrease in the tissue concentration of histamine. The hydrazine derivatives are considered as prooxidants stimulating via a free-radical mechanism lipid peroxidation in methyloleate solutions and in biomembranes (ref. 5) and causing qualitative alteration (transformation) in catalytic properties of monoamine oxidases of the tyre A, which acquire the histamine deaminating activity. A certain correlation was noted between the prooxidant effect of the hydrazine derivatives and the modification of catalytic properties of the membrane bound monoamine oxidases of brain mitochondria in vitro and in vivo.

  16. The effects of genetic manipulation of putrescine biosynthesis on transcription and activities of the other polyamine biosynthetic enzymes

    Treesearch

    Andrew F. Page; Sridev Mohapatra; Rakesh Minocha; Subhash C. Minocha

    2007-01-01

    We have studied the effects of overproduction of putrescine (Put) via transgenic expression of a mouse ornithine decarboxylase (ODC) gene on the expression of native genes for four enzymes involved in polyamine biosynthesis in hybrid poplar (Populus nigra x maximowiczii) cells. An examination of the transcript levels of arginine...

  17. Structure-Based Alteration of Substrate Specificity and Catalytic Activity of Sulfite Oxidase from Sulfite Oxidation to Nitrate Reduction

    SciTech Connect

    Qiu, James A.; Wilson, Heather L.; Rajagopalan, K.V.

    2012-04-18

    Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 {angstrom} resolution, respectively.

  18. Topography of cytochrome oxidase activity in owl monkey cortex.

    PubMed

    Tootell, R B; Hamilton, S L; Silverman, M S

    1985-10-01

    In primate cortical tissue which has been stained for the mitochondrial enzyme cytochrome oxidase, a topographical pattern of regularly spaced blobs has been demonstrated in primary visual cortex (Hendrickson, A. E., S. P. Hunt, and J. -Y. Wu (1981) Nature 292: 605-607; Horton, J. C., and D. H. Hubel (1981) Nature 292: 762-764), and a pattern of stripes has been shown in secondary visual cortex (V2) as well (Livingstone, M. S., and D. H. Hubel (1982) Proc. Natl. Acad. Sci. U. S. A. 79: 6098-6101; Tootell, R. B. H., M. S. Silverman, E. Switkes, and R. L. De Valois (1982) Soc. Neurosci. Abstr. 8: 707). These regular cytoarchitectonic landmarks have proven extremely useful in parsing the functional and anatomical architecture of these two cortical areas. In order to look for similar landmarks in other cortical areas of a primate, we completely unfolded the cortical gray matter in the owl monkey (Aotus trivirgatus), sectioned it parallel with the flattened cortical surface, and stained the tissue for cytochrome oxidase. Distinctive cytochrome oxidase topographies were found in about seven different cortical areas. As in other primates, area V1 is characterized by blobs and area V2 is characterized by strips. In the owl monkey, area MT is characterized by an elaborate topography of dark staining in layers 1 to 4, interspersed with light blob-shaped regions, and partially surrounded by a dark ring. Many of these topographic inhomogeneities are also reflected in the lower layer myelination topography in MT. Visual area(s) VP/VA is characterized by an irregular or strip-like topography. In some animals, a distinctive topography can be seen in area DX, which is presumably equivalent to either area DM or DI. Primary auditory cortex stains very darkly, but the overall shape of area A is quite variable and the borders are indistinct. Somatosensory area 3B stains quite darkly with sharp borders, but again the overall shape of area 3B is different from that previously described.

  19. Human platelet monoamine oxidase activity in health and disease: a review.

    PubMed Central

    Sandler, M; Reveley, M A; Glover, V

    1981-01-01

    The most readily available source of monoamine oxidase in man is the platelet, although only the B form of the enzyme is represented in this site. Platelet activity is higher in women than in men. The enzyme activity is generally stable and is partly under genetic control. There is some evidence that individuals with low activity have a higher psychiatric morbidity than those with high activity. Despite some negative studies, the consensus of publication dealing with schizophrenia, migraine, and alcoholism find that mean platelet monoamine oxidase activity in the patient group is lower than in the controls. Values are raised in unipolar depression. Technical differences, or patient or control group heterogeneity, might well account for the absence of unanimity in the literature. A considerable degree of overlap between patient and control values, whatever the clinical diagnosis, appears to be the standard finding. Apart from these neuropsychiatric disturbances, platelet monoamine oxidase activity is raised in megaloblastic anaemia and reduced in iron deficiency anaemia. Although altered enzyme activity values may be linked to abnormal platelet populations in some of the haematological disorders discussed, in general the causes of abnormal platelet monoamine oxidase activity are unknown. PMID:6453137

  20. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds

    USDA-ARS?s Scientific Manuscript database

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS marker...

  1. Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils?

    Treesearch

    Magdalena M. Wiedermann; Evan S. Kane; Timothy J. Veverica; Erik A. Lilleskov

    2017-01-01

    The activity of extracellular phenol oxidases is believed to play a critical role in decomposition processes in peatlands. The water logged, acidic conditions, and recalcitrant litter from the peatland vegetation, lead to exceptionally high phenolics in the peat. In order to quantify the activity of oxidative enzymes involved in the modification and break down of...

  2. The phagocyte chemiluminescence paradox: luminol can act as an inhibitor of neutrophil NADPH-oxidase activity.

    PubMed

    Fäldt, J; Ridell, M; Karlsson, A; Dahlgren, C

    1999-01-01

    The chemiluminescence system amplified by luminol or isoluminol is a sensitive and widely used method for determination of respiratory burst products generated by the NADPH-oxidase in phagocytes. The present study shows that luminol, but not isoluminol, can inhibit the release of oxygen metabolites generated by human neutrophil NADPH-oxidase. The difference in structure between luminol and isoluminol (rendering luminol more lipophilic than isoluminol, and thereby membrane-permeable), is suggested to determine indirectly whether or not the molecule is inhibitory. Luminol was shown to have an increased inhibitory effect after preincubation of neutrophils on a surface of aggregated IgG, suggesting that the cells can be transferred from a 'luminol-insensitive' to a 'luminol-sensitive' state. Since luminol had no inhibitory effect in a cell-free NADPH-oxidase system, it is likely that it interferes with the signal transduction pathway, leading to assembly and/or activation of the oxidase. As a consequence of the present results, showing that luminol but not isoluminol can inhibit NADPH-oxidase activity, we suggest that isoluminol is used in future studies of superoxide anion release from phagocytes. Copyright 1999 John Wiley & Sons, Ltd.

  3. Rapid deactivation of NADPH oxidase in neutrophils: continuous replacement by newly activated enzyme sustains the respiratory burst.

    PubMed

    Akard, L P; English, D; Gabig, T G

    1988-07-01

    The cell-free system for activation of the neutrophil NADPH oxidase allowed us to examine activation of the oxidase in the absence of its NADPH-dependent turnover. The covalent sulfhydryl-modifying reagent N-ethylmaleimide completely inhibited the activation step (Ki = 40 mumol/L) in the cell-free system but had no effect on turnover of the preactivated particulate NADPH oxidase (up to 1 mmol/L). When N-ethylmaleimide was added to intact neutrophils during the period of maximal O2 generation in response to stimuli that activate the respiratory burst (phorbol myristate acetate, f-Met-Leu-Phe, opsonized zymosan, arachidonic acid), O2- generation ceased within seconds. Study of components of the cell-free activation system indicated that the cytosolic cofactor was irreversibly inhibited by N-ethylmaleimide whereas the N-ethylmaleimide-treated, membrane-associated oxidase could be activated by arachidonate and control cytosolic cofactor. Likewise, the cell-free system prepared from intact neutrophils that had been briefly exposed to N-ethylmaleimide and then washed reflected the effects of N-ethylmaleimide on the isolated cell-free components: cytosolic cofactor activity was absent, but the membrane oxidase remained fully activatable. Thus inhibition of oxidase activation by N-ethylamaleimide unmasked a rapid deactivation step that was operative in intact neutrophils but not in isolated particulate NADPH oxidase preparations. The demonstrated specificity of N-ethylmaleimide for oxidase activation and lack of effect on turnover of the NADPH oxidase suggested that sustained O2- generation by intact neutrophils was a result of continued replenishment of a small pool of active oxidase. The existence of an inactive pool of NADPH oxidase molecules in particulate preparations from stimulated neutrophils was supported more directly by activating these preparations again in the cell-free system.

  4. Cytochrome C oxidase activity in germinating Phaseolus vulgaris l. seeds: Effects of carbon monoxide

    SciTech Connect

    Caughey, W.S. ); Sowa, S.; Roos, E.E.

    1989-04-01

    Cytochrome c oxidase is a key bioenergetic enzyme required for seed germination. The enzyme was isolated from 2-day germinating beans and biochemically compared to its bovine heart counterpart. Carbon monoxide, which binds to the heme a{sub 3} site of cytochrome c oxidase, we used to probe O{sub 2} utilization activity in isolated enzyme, mitochondrial particles, and whole seeds. Bean seeds under 80% CO/20% O{sub 2} exhibited 46% growth inhibition as determined by root length. Reversible, dose-dependent partial inhibition of bean seed mitochondrial respiration was observed in the presence of CO; heart mitochondria had a more sensitive, less reversible response. Effects of CO on bean and bovine heart enzyme were similar. The close correlation of CO effects observed on seedling growth, mitochondrial respiration and cytochrome oxidase activity indicate an important role for this enzyme during the early stages of seed germination.

  5. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation.

    PubMed

    Yang, Chul-Su; Lee, Jong-Soo; Rodgers, Mary; Min, Chan-Ki; Lee, June-Yong; Kim, Hee Jin; Lee, Kwang-Hoon; Kim, Chul-Joong; Oh, Byungha; Zandi, Ebrahim; Yue, Zhenyu; Kramnik, Igor; Liang, Chengyu; Jung, Jae U

    2012-03-15

    Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.

  6. Hypouricemic action of scopoletin arising from xanthine oxidase inhibition and uricosuric activity.

    PubMed

    Ding, Zuoqi; Dai, Yue; Wang, Zhengtao

    2005-02-01

    Scopoletin exhibited an immediate and dose-dependent hypouricemic effect after intraperitoneal administration (50, 100, 200 mg/kg) in hyperuricemic mice induced by potassium oxonate; however, it did not affect the serum uric acid level in normal mice at the tested doses. For exploring the involved mechanisms of action of scopoletin, potential inhibitory effects on xanthine oxidase and possible uricosuric effects were investigated. Scopoletin (50, 100, 200 mg/kg) significantly inhibited the activity of xanthine oxidase in liver homogenates of hyperuricemic mice although it only showed a relatively weak, albeit competitive-type, inhibition of xanthine oxidase in a commercial assay. Furthermore, a potent uricosuric effect of scopoletin (100, 200 mg/kg) was ascertained. These results demonstrated for the first time that scopoletin exhibits, hypouricemic activities through decreasing uric acid production and as well as a uricosuric mechanism.

  7. Mutational and crystallographic analysis of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities.

    PubMed

    Matsui, Daisuke; Im, Do-Hyun; Sugawara, Asami; Fukuta, Yasuhisa; Fushinobu, Shinya; Isobe, Kimiyasu; Asano, Yasuhisa

    2014-01-01

    In this study, it was shown for the first time that l-amino acid oxidase of Pseudomonas sp. AIU813, renamed as l-amino acid oxidase/monooxygenase (l-AAO/MOG), exhibits l-lysine 2-monooxygenase as well as oxidase activity. l-Lysine oxidase activity of l-AAO/MOG was increased in a p-chloromercuribenzoate (p-CMB) concentration-dependent manner to a final level that was five fold higher than that of the non-treated enzyme. In order to explain the effects of modification by the sulfhydryl reagent, saturation mutagenesis studies were carried out on five cysteine residues, and we succeeded in identifying l-AAO/MOG C254I mutant enzyme, which showed five-times higher specific activity of oxidase activity than that of wild type. The monooxygenase activity shown by the C254I variant was decreased significantly. Moreover, we also determined a high-resolution three-dimensional structure of l-AAO/MOG to provide a structural basis for its biochemical characteristics. The key residue for the activity conversion of l-AAO/MOG, Cys-254, is located near the aromatic cage (Trp-418, Phe-473, and Trp-516). Although the location of Cys-254 indicates that it is not directly involved in the substrate binding, the chemical modification by p-CMB or C254I mutation would have a significant impact on the substrate binding via the side chain of Trp-516. It is suggested that a slight difference of the binding position of a substrate can dictate the activity of this type of enzyme as oxidase or monooxygenase.

  8. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira.

    PubMed

    Agudelo-Romero, Patricia; Ali, Kashif; Choi, Young H; Sousa, Lisete; Verpoorte, Rob; Tiburcio, Antonio F; Fortes, Ana M

    2014-01-01

    Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. In vitro anti-inflammatory and xanthine oxidase inhibitory activity of Tephrosia purpurea shoot extract.

    PubMed

    Nile, Shivraj H; Khobragade, Chandrahasy N

    2011-10-01

    The methanolic extract of Tephrosia purpurea (Leguminosae) shoots was evaluated in-vitro for its anti-inflammatory and xanthine oxidase inhibitory activity. Anti-inflammatory activity was measured by the Diene-conjugate, HET-CAM and beta-glucuronidase methods. The enzyme inhibitory activity was tested against isolated cow milk xanthine oxidase. The average anti-inflammatory activity of T. purpurea shoot extract in the concentration range of 1-2 microg/mL in the reacting system revealed significant anti-inflammatory activities, which, as recorded by the Diene-conjugate, HET-CAM and beta-glucuronidase assay methods, were 45.4, 10.5, and 70.5%, respectively. Screening of the xanthine oxidase inhibitory activity of the extract in terms of kinetic parameters revealed a mixed type of inhibition, wherein the Km and Vmax values in the presence of 25 to 100 microg/mL shoot extract was 0.20 mM/mL and 0.035, 0.026, 0.023 and 0.020 microg/min, while, for the positive control, the Km and Vmax values were 0.21 mM/mL and 0.043 microg/min, respectively. These findings suggest that T. purpurea shoot extract may possess constituents with good medicinal properties that could be exploited to treat the diseases associated with oxidative stress, xanthine oxidase enzyme activity and inflammation.

  10. Role of polyamines in peach fruit development and storage.

    PubMed

    Liu, Jihong; Nada, Kazuyoshi; Pang, Xiaoming; Honda, Chikako; Kitashiba, Hiroyasu; Moriguchi, Takaya

    2006-06-01

    To investigate the role of polyamines in pre- and post-harvest fruit development of 'Akatsuki' peach (Prunus persica (L.) Batsch.) we measured polyamine concentrations, activities of polyamine biosynthetic enzymes and expression of genes encoding these enzymes. Concentrations of the free polyamines, putrescine (Put), spermidine (Spd) and spermine (Spm) in pre-harvest fruit peaked 16 days after full bloom (DAF) and then progressively decreased until harvest with the exception of Put, which showed a second peak at 94 DAF, just before the onset of ethylene production. In post-harvest fruit, minor changes in concentrations of Spd and Spm were observed, whereas Put concentration peaked on the harvest day, followed by an abrupt decrease and a subsequent 2-fold increase, which was opposite to the fluctuating pattern of ethylene production. Activities of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) peaked during the first stage of fruit development and then decreased until 80 DAF, after which the activities were below detection limits, suggesting that Put is synthesized during the early stage of fruit development. Activity of S-adenosylmethionine decarboxylase (SAMDC) decreased progressively until the end of S2. Expression levels of five putative polyamine biosynthetic genes, ADC, ODC, SAMDC, spermidine synthase (SPDS) and spermine synthase (SPMS), in pre-harvest and post-harvest fruit did not coincide precisely with the observed changes in enzymatic activities and polyamine concentrations. The possible role of polyamines during peach fruit development and the relationship between polyamines and ethylene biosynthesis are discussed.

  11. Inhibition of NADPH oxidase activation in oligodendrocytes reduces cytotoxicity following trauma.

    PubMed

    Johnstone, Joshua T; Morton, Paul D; Jayakumar, Arumugam R; Johnstone, Andrea L; Gao, Han; Bracchi-Ricard, Valerie; Pearse, Damien D; Norenberg, Michael D; Bethea, John R

    2013-01-01

    Spinal cord injury is a debilitating neurological disorder that initiates a cascade of cellular events that result in a period of secondary damage that can last for months after the initial trauma. The ensuing outcome of these prolonged cellular perturbations is the induction of neuronal and glial cell death through excitotoxic mechanisms and subsequent free radical production. We have previously shown that astrocytes can directly induce oligodendrocyte death following trauma, but the mechanisms regulating this process within the oligodendrocyte remain unclear. Here we provide evidence demonstrating that astrocytes directly regulate oligodendrocyte death after trauma by inducing activation of NADPH oxidase within oligodendrocytes. Spinal cord injury resulted in a significant increase in oxidative damage which correlated with elevated expression of the gp91 phox subunit of the NADPH oxidase enzyme. Immunohistochemical analysis confirmed the presence of gp91 phox in oligodendrocytes in vitro and at 1 week following spinal cord injury. Exposure of oligodendrocytes to media from injured astrocytes resulted in an increase in oligodendrocyte NADPH oxidase activity. Inhibition of NADPH oxidase activation was sufficient to attenuate oligodendrocyte death in vitro and at 1 week following spinal cord injury, suggesting that excitotoxicity of oligodendrocytes after trauma is dependent on the intrinsic activation of the NADPH oxidase enzyme. Acute administration of the NADPH oxidase inhibitor apocynin and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate channel blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione significantly improved locomotor behavior and preserved descending axon fibers following spinal cord injury. These studies lead to a better understanding of oligodendrocyte death after trauma and identify potential therapeutic targets in disorders involving demyelination and oligodendrocyte death.

  12. Thioredoxin-1/peroxiredoxin-1 as sensors of oxidative stress mediated by NADPH oxidase activity in atherosclerosis.

    PubMed

    Madrigal-Matute, Julio; Fernandez-Garcia, Carlos-Ernesto; Blanco-Colio, Luis Miguel; Burillo, Elena; Fortuño, Ana; Martinez-Pinna, Roxana; Llamas-Granda, Patricia; Beloqui, Oscar; Egido, Jesus; Zalba, Guillermo; Martin-Ventura, José Luis

    2015-09-01

    To assess the potential association between TRX-1/PRX-1 and NADPH oxidase (Nox) activity in vivo and in vitro, TRX-1/PRX-1 levels were assessed by ELISA in 84 asymptomatic subjects with known phagocytic NADPH oxidase activity and carotid intima-media thickness (IMT). We found a positive correlation between TRX-1/PRX-1 and NADPH oxidase-dependent superoxide production (r=0.48 and 0.47; p<0.001 for both) and IMT (r=0.31 and 0.36; p<0.01 for both) adjusted by age and sex. Moreover, asymptomatic subjects with plaques have higher PRX-1 and TRX plasma levels (p<0.01 for both). These data were confirmed in a second study in which patients with carotid atherosclerosis showed higher PRX-1 and TRX plasma levels than healthy subjects (p<0.001 for both). In human atherosclerotic plaques, the NADPH oxidase subunit p22phox colocalized with TRX-1/PRX-1 in macrophages (immunohistochemistry). In monocytes and macrophages, phorbol 12-myristate 13-acetate (PMA) induced NADPH activation and TRX-1/PRX-1 release to the extracellular medium, with a concomitant decrease in their intracellular levels, which was reversed by the NADPH inhibitor apocynin (Western blot). In loss-of-function experiments, genetic silencing of the NADPH oxidase subunit Nox2 blocked PMA-induced intracellular TRX-1/PRX-1 downregulation in macrophages. Furthermore, the PMA-induced release of TRX-1/PRX-1 involves the modulation of their redox status and exosome-like vesicles. TRX-1/PRX-1 levels are associated with NADPH oxidase-activity in vivo and in vitro. These data could suggest a coordinated antioxidant response to oxidative stress in atherothrombosis.

  13. Hypouricaemic action of mangiferin results from metabolite norathyriol via inhibiting xanthine oxidase activity.

    PubMed

    Niu, Yanfen; Liu, Jia; Liu, Hai-Yang; Gao, Li-Hui; Feng, Guo-Hua; Liu, Xu; Li, Ling

    2016-09-01

    Context Mangiferin has been reported to possess a potential hypouricaemic effect. However, the pharmacokinetic studies in rats showed that its oral bioavailability was only 1.2%, suggesting that mangiferin metabolites might exert the action. Objective The hypouricaemic effect and the xanthine oxidase inhibition of mangiferin and norathyriol, a mangiferin metabolite, were investigated. Inhibition of norathyriol analogues (compounds 3-9) toward xanthine oxidase was also evaluated. Materials and methods For a dose-dependent study, mangiferin (1.5-6.0 mg/kg) and norathyriol (0.92-3.7 mg/kg) were administered intragastrically to mice twice daily for five times. For a time-course study, mice received mangiferin and norathyriol both at a single dose of 7.1 μmol/kg. In vitro, inhibition of test compounds (2.4-2.4 mM) against xanthine oxidase activity was evaluated by the spectrophotometrical method. The inhibition type was identified from Lineweaver-Burk plots. Results Norathyriol (0.92, 1.85 and 3.7 mg/kg) dose dependently decreased the serum urate levels by 27.0, 33.6 and 37.4%, respectively. The action was more potent than that of mangiferin at the low dose, but was equivalent at the higher doses. Additionally, the hypouricaemic action of them exhibited a time dependence. In vitro, norathyriol markedly inhibited the xanthine oxidase activities, with the IC50 value of 44.6 μM, but mangiferin did not. The kinetic studies showed that norathyriol was an uncompetitive inhibitor by Lineweaver-Burk plots. The structure-activity relationships exhibited that three hydroxyl groups in norathyriol at the C-1, C-3 and C-6 positions were essential for maintaining xanthine oxidase inhibition. Discussion and conclusion Norathyriol was responsible for the hypouricaemic effect of mangiferin via inhibiting xanthine oxidase activity.

  14. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress

    PubMed Central

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd. PMID:27582752

  15. Biogenic and Synthetic Polyamines Bind Cationic Dendrimers

    PubMed Central

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of Kspm-mPEG-G3 = 7.6×104 M−1, Kspm-mPEG-PAMAM-G4 = 4.6×104 M−1, Kspm-PAMAM-G4 = 6.6×104 M−1, Kspmd-mPEG-G3 = 1.0×105 M−1, Kspmd-mPEG-PAMAM-G4 = 5.5×104 M−1, Kspmd-PAMAM-G4 = 9.2×104 M−1, KBE-333-mPEG-G3 = 4.2×104 M−1, KBe-333-mPEG-PAMAM-G4 = 3.2×104 M−1, KBE-333-PAMAM-G4 = 3.6×104 M−1, KBE-3333-mPEG-G3 = 2.2×104 M−1, KBe-3333-mPEG-PAMAM-G4 = 2.4×104 M−1, KBE-3333-PAMAM-G4 = 2.3×104 M−1. Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: −3.2 (spermine), −3.5 (spermidine) and −3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues. PMID:22558341

  16. Biogenic and synthetic polyamines bind cationic dendrimers.

    PubMed

    Mandeville, Jean-Sebastian; Bourassa, Phillipe; Thomas, Thekkumkattil John; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.

  17. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-08

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  18. Residual NADPH Oxidase Activity and Isolated Lung Involvement in X-Linked Chronic Granulomatous Disease

    PubMed Central

    Gutierrez, Maria J.; McSherry, George D.; Ishmael, Faoud T.; Horwitz, Alexandra A.; Nino, Gustavo

    2012-01-01

    Chronic granulomatous disease (CGD) is characterized by inherited immune defects resulting from mutations in the NADPH oxidase complex genes. The X-linked type of CGD is caused by defects in the CYBB gene that encodes gp91-phox, a fundamental component of the NADPH oxidase complex. This mutation originates the most common and severe form of CGD, which typically has absence of NADPH oxidase function and aggressive multisystemic infections. We present the case of a 9-year-old child with a rare CYBB mutation that preserves some NADPH oxidase activity, resulting in an atypical mild form of X-linked CGD with isolated lung involvement. Although the clinical picture and partially preserved oxidase function suggested an autosomal recessive form of CGD, genetic testing demonstrated a mutation in the exon 3 of CYBB gene (c.252 G>A, p.Ala84Ala), an uncommon X-linked CGD variant that affects splicing. Atypical presentation and diagnostic difficulties are discussed. This case highlights that the diagnosis of mild forms of X-linked CGD caused by rare CYBB mutations and partially preserved NADPH function should be considered early in the evaluation of atypical and recurrent lung infections. PMID:23193493

  19. Reduced lysyl oxidase activity in skin fibroblasts from patients with Menkes' syndrome.

    PubMed Central

    Royce, P M; Camakaris, J; Danks, D M

    1980-01-01

    Lysyl oxidase activity against both collagen and elastin substrates has been examined in the culture medium of skin fibroblasts derived from unrelated patients with Menkes' syndrome and from control subjects. The medium of three Menkes' fibroblast lines showed 3--30% of the activity present in the medium of control fibroblasts, against a purified collagen substrate. Lysyl oxidase activity in the culture medium of two of the Menkes' fibroblast lines was also examined by using a crude aortic-elastin substrate and was similarly decreased in comparison with that in the medium of control fibroblasts. Lysyl oxidase activity in the medium of a fourth fibroblast line, derived from a foetus with Menkes' syndrome, was 42% of that in the medium of control fibroblasts derived from a 1-day-old baby against a collagen substrate, and 26% of that in control fibroblast medium against an elastin substrate. The copper content of the cell layers of the Menkes' fibroblast cultures was elevated in comparison with normal fibroblast cultures, as has previously been reported to be characteristic of such cells. It is suggested that the decrease in lysyl oxidase activity would help to explain the connective tissue defects observed in Menkes' syndrome, and that this reduction, in conjunction with the elevated concentrations of cellular copper, would support the hypothesis that a functional intracellular copper deficiency exists in Menkes' syndrome. PMID:6112984

  20. Differential effects of ornithine enantiomers on the activity of anti-oxidant enzymes, polyamines content, and growth of tobacco cells under osmotic stresses.

    PubMed

    Gholami, Morteza; Ghanati, Faezeh; Fakhari, Ali Reza; Yousefzadeh Borojeni, Laleh; Safari, Masoumeh

    2013-10-01

    Ornithine (Orn) plays an essential role in the metabolism of plant cells through incorporation in polyamines biosynthesis, the urea cycle and nitrogen metabolism. Herein, we show that Orn enantiomers have different effects on anti-oxidant enzymes activities, polyamines and proline biosynthesis and also an alleviation effect of osmotic stresses on tobacco cells. The type of stress has a significant impact on the function of L- and D-Orn for improvement of the stress effect on the cells. Under saline conditions, both enantiomers restored cell growth, though D-Orn was more beneficial to some extent. This was accompanied with a higher biosynthesis of putrescine, proline, and up-regulated activity of certain anti-oxidant enzymes by D-Orn. Under drought stress conditions, a distinct differential behavior emerged and only L-Orn showed an alleviative effect on the cell growth. Regulation of hydrogen peroxide content via the activity of catalase/peroxidase and production of osmolytes, e.g., proline and fructans, was dependent on the type of enantiomers. Activity of anti-oxidant enzymes and production of malondialdehyde from cell membranes were differently regulated following treatment with either Orn enantiomer. The results suggest that management of H2 O2 content is a determining feature of the function of Orn enantiomers in tobacco cells under salinity and drought stress conditions. © 2013 Wiley Periodicals, Inc.

  1. Listeriolysin O suppresses Phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection

    PubMed Central

    Lam, Grace Y.; Fattouh, Ramzi; Muise, Aleixo M.; Grinstein, Sergio; Higgins, Darren E.; Brumell, John H.

    2012-01-01

    Summary The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allows L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. PMID:22177565

  2. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    SciTech Connect

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  3. Protein kinase C-beta contributes to NADPH oxidase activation in neutrophils.

    PubMed Central

    Dekker, L V; Leitges, M; Altschuler, G; Mistry, N; McDermott, A; Roes, J; Segal, A W

    2000-01-01

    We have analysed the involvement of the beta isotype of the protein kinase C (PKC) family in the activation of NADPH oxidase in primary neutrophils. Using immunofluorescence and cell fractionation, PKC-beta is shown to be recruited to the plasma membrane upon stimulation with phorbol ester and to the phagosomal membrane upon phagocytosis of IgG-coated particles (Fcgamma-receptor stimulus). The time course of recruitment is similar to that of NADPH oxidase activation by these stimuli. The PKC-beta specific inhibitor 379196 inhibits the response to PMA as well as to IgG-coated bacteria. Partial inhibition occurs between 10 and 100 nM of inhibitor, the concentration at which PKC-beta, but not other PKC isotypes, is targeted. Neutrophils isolated from a mouse that lacks PKC-beta also showed an inhibition of NADPH oxidase activation by PMA and IgG-coated particles. The level of inhibition is comparable to that achieved with 379196 in human neutrophils. Thus the PKC-beta isotype mediates activation of NADPH oxidase by PMA and by stimulation of Fcgamma receptors in neutrophils. PMID:10727429

  4. The active site of cytochrome P-450 nifedipine oxidase: a model-building study.

    PubMed

    Ferenczy, G G; Morris, G M

    1989-12-01

    A model of the active site of cytochrome P-450 nifedipine oxidase is built on the basis of sequence homology with cytochrome P-450CAM. Substrates are docked into the binding pocket, and molecular mechanical energy minimization is performed to analyze the forces between the substrates and the enzyme.

  5. Season-controlled changes in biochemical constituents and oxidase enzyme activities in tomato (Lycopersicon esculentum Mill.).

    PubMed

    Sen, Supatra; Mukherji, S

    2009-07-01

    Season-controlled changes in biochemical constituents viz. carotenoids (carotene and xanthophyll) and pectic substances along with IAA-oxidase and polyphenol oxidase (PPO) enzyme activities were estimated/assayed in leaves of Lycopersicon esculentum Mill. (tomato) in two developmental stages--pre-flowering (35 days after sowing) and post-flowering (75 days after sowing) in three different seasons--summer rainy and winter Carotenoid content along with pectic substances were highest in winter and declined significantly in summer followed by rainy i.e. winter > summer > rainy. Carotenoid content was significantly higher in the pre-flowering as compared to post-flowering in all three seasons while pectic substances increased in the post-flowering as compared to pre-flowering throughout the annual cycle. IAA oxidase and PPO enzyme activities were enhanced in rainy and decreased sharply in summer and winter i.e. rainy > summer > winter. Both the enzymes exhibited higher activity in the post-flowering stage as compared to pre-flowering in all three seasons. These results indicate winter to be the most favourable season for tomato plants while rainy season environmental conditions prove to be unfavourable (stressful) with diminished content of carotenoid and pectic substances and low activities of IAA oxidase and PPO, ultimately leading to poor growth and productivity.

  6. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock

    NASA Technical Reports Server (NTRS)

    Flores, H. E.; Galston, A. W.

    1982-01-01

    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  7. The role of amine oxidases in xenobiotic metabolism.

    PubMed

    Gong, Bin; Boor, Paul J

    2006-08-01

    The amine oxidases of mammalian tissues are a heterogeneous family of enzymes that metabolise various monoamines, diamines and polyamines produced endogenously, or being absorbed as dietary or xenobiotic substances. The heterogeneous class of amine oxidases can be divided on an arbitrary basis of the chemical nature of their cofactors into two types. Monoamine oxidase (MAO) and an intracellular form of polyamine oxidase (PAO) contain flavin adenine dinucleotide (FAD) as their cofactor, whereas a second group of amine oxidases without FAD contain a cofactor possessing one or more carbonyl groups, making them sensitive to inhibition by carbonyl reagents such as semicarbazide; this group includes semicarbazide-sensitive amine oxidase (SSAO) and the connective tissue enzyme, lysyl oxidase. This article focuses on the general aspects of MAO's contribution to the metabolism of foreign toxic substances including toxins and illegal drugs. Another main objective of this review is to discuss the properties of PAO and SSAO and their involvement in the metabolism of xenobiotics.

  8. [Effect of aminoguanidine sulfate on the hepatic level of polyamines after partial hepatectomy in rats].

    PubMed

    Moulinoux, J P; Quemener, V; Chambon, Y

    1981-01-01

    The injection of amino-guanidine sulfate, which is a diamine-oxydase inhibitor to Wistar rats partially hepatectomized modifies the putrescine, spermidine and spermine liver concentrations, estimated by thin layer chromatography after dansylation. The three polyamines reach a peak three hours after the beginning of the treatment, then decrease six hours later, especially for putrescine and spermine. Forty eight hours later, the spermidine rate increase again to reach a level superior to that of animals which were only hepatectomized, whereas putrescine and spermine levels remain until about the fourth day inferior to those of control animals. Contrary to shamoperated rats, those injected with amino-guanidine sulfate show higher polyamine concentrations. These observations probably show a reduction of the activity of the diamine oxidase under the influence of amino-guanidine sulfate. According to those results, the action of amino-guanidine sulfate previously observed on the hyperplasic component of liver regeneration, doesn't seem to have an effect upon diamine oxidase.

  9. Formate simultaneously reduces oxidase activity and enhances respiration in Campylobacter jejuni

    PubMed Central

    Kassem, Issmat I.; Candelero-Rueda, Rosario A.; Esseili, Kawthar A.; Rajashekara, Gireesh

    2017-01-01

    The foodborne microaerophilic pathogen, Campylobacter jejuni, possesses a periplasmic formate dehydrogenase and two terminal oxidases, which serve to metabolize formate and facilitate the use of oxygen as a terminal electron acceptor, respectively. Formate, a primary energy source for C. jejuni, inhibits oxidase activity in other bacteria. Here, we hypothesized that formate might affect both energy metabolism and microaerobic survival in C. jejuni. Subsequently, we showed that C. jejuni 81–176 (wildtype) exhibited enhanced chemoattraction to and respiration of formate in comparison to other organic acids. Formate also significantly increased C. jejuni’s growth, motility, and biofilm formation under microaerobic (5% O2) conditions. However, formate reduced oxidase activity under microaerobic conditions as well as aerotolerance and biofilm formation under ambient oxygen conditions. The expression of genes encoding the ribonucleotide reductase (RNR) and proteins that facilitate the use of alternative electron acceptors generally increased in the presence of formate. Taken together, formate might play a role in optimizing C. jejuni’s adaptation to the oxygen-limited gastrointestinal tract of the host. By affecting oxidase activity, formate possibly facilitates shuttling electrons to alternative acceptors, while likely conserving limited oxygen concentrations for other essential functions such as DNA synthesis via RNR which is required for C. jejuni’s growth. PMID:28091524

  10. Artificial Warming and Rain Addition Increase Phenol Oxidase Activity in Arctic Soils

    NASA Astrophysics Data System (ADS)

    Kang, H.; Seo, J.; Jang, I.; Lee, Y. K.

    2014-12-01

    Artic tundra is one of the largest carbon stocks, of which amount is estimated up to 1,600 Pg. Global climate change models predict surface temperature rise and higher precipitation during summer in Arctic regions, raising concerns about faster decomposition of organic carbon and consequent releases of CO2, CH4 and DOC. Microorganisms are directly involved in decomposition process by releasing various extracellular enzymes. In particular, phenol oxidase was noted to play a key role because it is related to dynamics of highly recalcitrant carbon, which often represents a rate-limiting step of overall decomposition. In this study, we monitored phenol oxidase activity, hydrolases (β-glucosidase, cellobiohydrolase, N-acetylglucosaminidase and aminopeptidase), microbial abundance (qPCR) and chemical properties (δ13C and δ15N signatures) of tundra soils exposed to artificial warming and rain addition, by employing a passive chamber method in Cambridge Bay, Canada. Warming and rain addition combinedly increased phenol oxidase activity while no such changes were discernible for other hydrolases. Stable isotope signature indicates that warming induced water stress to the ecosystem and that nitrogen availability may be enhanced, which is partially responsible for the changes in enzyme activities. A short-term warming (2 years) may not accelerate mineralization of easily decomposable carbon, but may affect phenol oxidase which has the longer-term influence on recalcitrant carbon.

  11. Coordination chemistry controls the thiol oxidase activity of the B12-trafficking protein CblC.

    PubMed

    Li, Zhu; Shanmuganathan, Aranganathan; Ruetz, Markus; Yamada, Kazuhiro; Lesniak, Nicholas A; Kräutler, Bernhard; Brunold, Thomas C; Koutmos, Markos; Banerjee, Ruma

    2017-06-09

    The cobalamin or B12 cofactor supports sulfur and one-carbon metabolism and the catabolism of odd-chain fatty acids, branched-chain amino acids, and cholesterol. CblC is a B12-processing enzyme involved in an early cytoplasmic step in the cofactor-trafficking pathway. It catalyzes the glutathione (GSH)-dependent dealkylation of alkylcobalamins and the reductive decyanation of cyanocobalamin. CblC from Caenorhabditis elegans (ceCblC) also exhibits a robust thiol oxidase activity, converting reduced GSH to oxidized GSSG with concomitant scrubbing of ambient dissolved O2 The mechanism of thiol oxidation catalyzed by ceCblC is not known. In this study, we demonstrate that novel coordination chemistry accessible to ceCblC-bound cobalamin supports its thiol oxidase activity via a glutathionyl-cobalamin intermediate. Deglutathionylation of glutathionyl-cobalamin by a second molecule of GSH yields GSSG. The crystal structure of ceCblC provides insights into how architectural differences at the α- and β-faces of cobalamin promote the thiol oxidase activity of ceCblC but mute it in wild-type human CblC. The R161G and R161Q mutations in human CblC unmask its latent thiol oxidase activity and are correlated with increased cellular oxidative stress disease. In summary, we have uncovered key architectural features in the cobalamin-binding pocket that support unusual cob(II)alamin coordination chemistry and enable the thiol oxidase activity of ceCblC. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Exogenous polyamines promote osteogenic differentiation by reciprocally regulating osteogenic and adipogenic gene expression.

    PubMed

    Lee, Mon-Juan; Chen, Yuhsin; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chiang, Lan-Hsin; Chen, Tzu-Yu; Wang, Gwo-Jaw

    2013-12-01

    Polyamines are naturally occurring organic polycations that are ubiquitous in all organisms, and are essential for cell proliferation and differentiation. Although polyamines are involved in various cellular processes, their roles in stem cell differentiation are relatively unexplored. In this study, we found that exogenous polyamines, putrescine, spermidine, and spermine, promoted osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) without inducing cell death or apoptosis. Alkaline phosphatase (ALP) activity and the mRNA level of osteogenic genes, including Runx2, ALP, osteopontin, and osteocalcin, were up-regulated by exogenous polyamines. When hBMSCs were cultured at high cell density favoring adipocyte formation, exogenous polyamines resulted in down-regulation of adipogenic genes such as PPARγ, aP2, and adipsin. Extracellular matrix mineralization, a marker for osteoblast maturation, was enhanced in the presence of exogenous polyamines, while lipid accumulation, an indication of adipogenic differentiation, was attenuated. Exogenous polyamines increased the mRNA expression of polyamine-modulated factor 1 (PMF-1) and its downstream effector, spermidine/spermine N(1)-acetyltransferase (SSAT), while that of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, was suppressed. These results lead to possible connections between polyamine metabolism and osteogenic differentiation pathways. To summarize, this study provides evidence for the involvement of polyamines in osteogenic differentiation of hBMSCs, and is the first to demonstrate that osteogenic and adipogenic differentiation are reciprocally regulated by exogenous polyamines.

  13. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase.

    PubMed

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-05-01

    Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100μg/cm(2) induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10μg/cm(2)) and rotenone (2nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91(phox), p47(phox) and p40(phox)); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47(phox) and p67(phox) translocation assembling active NADPH oxidase. ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our findings delineated the potential role of

  14. Induction of reactive oxygen species and the potential role of NADPH oxidase in hyperhydricity of garlic plantlets in vitro.

    PubMed

    Tian, Jie; Cheng, Yaqi; Kong, Xiangyu; Liu, Min; Jiang, Fangling; Wu, Zhen

    2017-01-01

    Hyperhydricity is a physiological disorder associated with oxidative stress. Reactive oxygen species (ROS) generation in plants is initiated by various enzymatic sources, including plasma membrane-localized nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, cell wall-bound peroxidase (POD), and apoplastic polyamine oxidase (PAO). The origin of the oxidative burst associated with hyperhydricity remains unknown. To investigate the role of NADPH oxidases, POD, and PAO in ROS production and hyperhydricity, exogenous hydrogen peroxide (H2O2) and inhibitors of each ROS-producing enzyme were applied to explore the mechanism of oxidative stress induction in garlic plantlets in vitro. A concentration of 1.5 mM H2O2 increased endogenous ROS production and hyperhydricity occurrence and enhanced the activities of NADPH oxidases, POD, and PAO. During the entire treatment period, NADPH oxidase activity increased continuously, whereas POD and PAO activities exhibited a transient increase and subsequently declined. Histochemical and cytochemical visualization demonstrated that specific inhibitors of each enzyme effectively suppressed ROS accumulation. Moreover, superoxide anion generation, H2O2 content, and hyperhydric shoot frequency in H2O2-stressed plantlets decreased significantly. The NADPH oxidase inhibitor was the most effective at suppressing superoxide anion production. The results suggested that NADPH oxidases, POD, and PAO were responsible for endogenous ROS induction. NADPH oxidase activation might play a pivotal role in the oxidative burst in garlic plantlets in vitro during hyperhydricity.

  15. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  16. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  17. Long-term oral polyamine intake increases blood polyamine concentrations.

    PubMed

    Soda, Kuniyasu; Kano, Yoshihiko; Sakuragi, Masako; Takao, Koichi; Lefor, Alan; Konishi, Fumio

    2009-08-01

    Although the intracellular de novo synthesis of the polyamines decreases with age, there is no similar trend in blood polyamine levels, but rather there is wide individual variability. We hypothesized that dietary polyamines attenuate a decrease in blood polyamine levels with age and augment the previously observed individual variability. The effect of a polyamine rich diet, in both mice and humans, on blood polyamine concentrations was examined in this study. Jc1:ICR male mice were fed test diets containing 3 different polyamine concentrations. Healthy human male volunteers added 50 to 100 g of the polyamine-rich fermented soybean product, natto, to their daily intake. After 26 wk, the mean blood spermine concentration in mice receiving the test diet with high polyamine concentrations was 10.1+/-2.4 micromol/L, while the mean concentrations found in mice fed with a diet with normal or low polyamine concentrations were 5.2+/-0.9 and 4.7+/-0.5 micromol/L, respectively (p<0.05). A mean daily intake of 66.4+/-3.7 g (range=46.4-89.3 g) of natto for 2 mo by human volunteers increased the mean blood spermine concentration by a factor of 1.39 (n=10) (p<0.01), while in control volunteers (n=7), asked to exclude polyamine-rich foods from their diet, blood spermine concentration remained unchanged. The individual variability of blood polyamine levels was enhanced after polyamine intake in mice and, to a lesser extent, in humans. The long-term oral intake of enhanced polyamine diets increases blood polyamine levels in both mice and humans.

  18. In vitro xanthine oxidase inhibitory and in vivo hypouricemic activity of herbal coded formulation (Gouticin).

    PubMed

    Akram, Muhammad; Usmanghani, Khan; Ahmed, Iqbal; Azhar, Iqbal; Hamid, Abdul

    2014-05-01

    Currently, natural products have been used in treating gouty arthritis and are recognized as xanthine oxidase inhibitors. Current study was designed to evaluate in vitro xanthine oxidase inhibitory potential of Gouticin and its ingredients extracts and in vivo hypouricemic activity of gouticin tablet 500 mg twice daily. Ethanol extracts of Gouticin and its ingredients were evaluated in vitro, at 200, 100, 50, 25 μ g/ml concentrations for xanthine oxidase inhibitory activity. IC(50) values of Gouticin and its ingredients were estimated. Further, in vivo therapeutic effect of Gouticin was investigated in comparison with allopathic medicine (Allopurinol) to treat gout. Total patients were 200 that were divided into test and control group. Herbal coded medicine (Gouticin) was given to test group and allopathic medicine allopurinol was administered to control group. In vitro, Gouticin has the highest percent inhibition at 96% followed by Allopurinol with 93% inhibition. In vivo study, mean serum uric acid level of patients was 4.62 mg/dl and 5.21mg/dl by use of Gouticin and Allopurinol at end of therapy. The study showed that herbal coded formulation gouticin and its ingredients are potential sources of natural xanthine oxidase inhibitors. Gouticin 500 mg twice daily is more effective than the allopurinol 300mg once daily in the management of gout.

  19. Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility

    PubMed Central

    Smith, Madison A.; Gonzalez, Jesica; Hussain, Anjum; Oldfield, Rachel N.; Johnston, Kathryn A.; Lopez, Karlo M.

    2016-01-01

    Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM−1 cm−1. No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture. PMID:26942005

  20. [Activity of nonspecific hepatic oxidases and the biological effects of the antineoplastic antibiotic adriamycin].

    PubMed

    Bogush, T A; Syrkin, A B; Donenko, F V

    1981-10-01

    It was shown in male CBA mice that toxic doses (15 and 20 mg/kg) of adriamycin (AD) inhibited the activity of nonspecific liver oxidases and noticeably increased the duration of the animals' sleep after injection of hexenal which is a substrate of this enzymatic system. The inhibitory effect of AD remained unchanged in the course of 9 days of the experiment. The nontoxic dose of AD (5 mg/kg) inhibited the activity of the enzymatic system on the 2nd--3rd days after the injection of the drug. Meanwhile the activity of the enzymatic system returned to the level seen in intact animals by days 5--6. The toxic action of AD declined on activation of nonspecific liver oxidases with phenobarbital and rose as a result of administering the inhibitor SKF 525-A. The authors discuss whether it is possible to use the data obtained for clinical application of AD.

  1. Involvement of calcium in ACC-oxidase activity from Cicer arietinum seed embryonic axes.

    PubMed

    Gallardo, M; Gómez-Jiménez, M C; Matilla, A

    1999-02-01

    Both in vivo and in vitro ACC-oxidase activities as well as ethylene production from embryonic axes of chickpea seeds were strongly inhibited by EGTA, a selective extracellular Ca2+ ion chelator, indicating that the influx of Ca2+ is important for enzymatic activity. EGTA inhibition was restored by exogenous Ca2+. Treatments of embryonic axes with either Verapamil and LaCl3 (both Ca2+ channel blockers) or TMB-8 (an intracellular Ca2+ antagonist) provoked an inhibition of both ACC-oxidase activity and ethylene production. These results suggest an involvement of calcium fluxes and intracellular calcium levels in the activity of the last step of the ethylene biosynthetic pathway, which is, in turn, intimately correlated with germination of Cicer arietinum seeds.

  2. Immunohistochemical Expression of Ornithine Decarboxylase, Diamine Oxidase, Putrescine, and Spermine in Normal Canine Enterocolic Mucosa, in Chronic Colitis, and in Colorectal Cancer

    PubMed Central

    Rossi, Giacomo; Cerquetella, Matteo; Pengo, Graziano; Mari, Subeide; Balint, Emilia; Bassotti, Gabrio; Manolescu, Nicolae

    2015-01-01

    We compared the immunohistochemical expression of putrescine (PUT), spermine (SPM), ornithine decarboxylase (ODC), and diamine oxidase (DAO) in bioptic samples of canine colonic mucosa with chronic inflammation (i.e., granulomatous colitis and lymphoplasmacytic colitis) or neoplasia. Single and total polyamines levels were significantly higher in neoplastic tissue than in normal samples. Samples with different degrees of inflammation showed a general decrease expression of ODC if compared to controls; SPM was practically not expressed in control samples and very low in samples with chronic-granulomatous inflammation. In carcinomatous samples, the ODC activity was higher with respect to controls and samples with inflammation. This is the first description of polyamines expression in dog colonic mucosa in normal and in different pathological conditions, suggesting that the balance between polyamine degradation and biosynthesis is evidently disengaged during neoplasia. PMID:26550563

  3. Immunohistochemical expression of ornithine decarboxylase, diamine oxidase, putrescine, and spermine in normal canine enterocolic mucosa, in chronic colitis, and in colorectal cancer.

    PubMed

    Rossi, Giacomo; Cerquetella, Matteo; Pengo, Graziano; Mari, Subeide; Balint, Emilia; Bassotti, Gabrio; Manolescu, Nicolae

    2015-01-01

    We compared the immunohistochemical expression of putrescine (PUT), spermine (SPM), ornithine decarboxylase (ODC), and diamine oxidase (DAO) in bioptic samples of canine colonic mucosa with chronic inflammation (i.e., granulomatous colitis and lymphoplasmacytic colitis) or neoplasia. Single and total polyamines levels were significantly higher in neoplastic tissue than in normal samples. Samples with different degrees of inflammation showed a general decrease expression of ODC if compared to controls; SPM was practically not expressed in control samples and very low in samples with chronic-granulomatous inflammation. In carcinomatous samples, the ODC activity was higher with respect to controls and samples with inflammation. This is the first description of polyamines expression in dog colonic mucosa in normal and in different pathological conditions, suggesting that the balance between polyamine degradation and biosynthesis is evidently disengaged during neoplasia.

  4. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  5. Isolation, amino acid sequence and biological activities of novel long-chain polyamine-associated peptide toxins from the sponge Axinyssa aculeata.

    PubMed

    Matsunaga, Satoko; Jimbo, Mitsuru; Gill, Martin B; Wyhe, L Leanne Lash-Van; Murata, Michio; Nonomura, Ken'ichi; Swanson, Geoffrey T; Sakai, Ryuichi

    2011-09-19

    A novel family of functionalized peptide toxins, aculeines (ACUs), was isolated from the marine sponge Axinyssa aculeate. ACUs are polypeptides with N-terminal residues that are modified by the addition of long-chain polyamines (LCPA). Aculeines were present in the sponge extract as a complex mixture with differing polyamine chain lengths and peptide structures. ACU-A and B, which were purified in this study, share a common polypeptide chain but differ in their N-terminal residue modifications. The amino acid sequence of the polypeptide portion of ACU-A and B was deduced from 3' and 5' RACE, and supported by Edman degradation and mass spectral analysis of peptide fragments. ACU induced convulsions upon intracerebroventricular (i.c.v.) injection in mice, and disrupted neuronal membrane integrity in electrophysiological assays. ACU also lysed erythrocytes with a potency that differed between animal species. Here we describe the isolation, amino acid sequence, and biological activity of this new group of cytotoxic sponge peptides. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Isolation, Amino Acid Sequence and Biological Activities of Novel Long-Chain Polyamine-Associated Peptide Toxins from the Sponge Axinyssa aculeata

    PubMed Central

    Matsunaga, Satoko; Jimbo, Mitsuru; Gill, Martin B.; Lash-Van Wyhe, L. Leanne; Murata, Michio; Nonomura, Ken’ichi; Swanson, Geoffrey T.

    2012-01-01

    A novel family of functionalized peptide toxins, aculeines (ACUs), was isolated from the marine sponge Axinyssa aculeate. ACUs are polypeptides with N-terminal residues that are modified by the addition of long-chain polyamines (LCPA). Aculeines were present in the sponge extract as a complex mixture with differing polyamine chain lengths and peptide structures. ACU-A and B, which were purified in this study, share a common polypeptide chain but differ in their N-terminal residue modifications. The amino acid sequence of the polypeptide portion of ACU-A and B was deduced from 3′ and 5′ RACE, and supported by Edman degradation and mass spectral analysis of peptide fragments. ACU induced convulsions upon intracerebroventricular (i.c.v.) injection in mice, and disrupted neuronal membrane integrity in electrophysiological assays. ACU also lysed erythrocytes with a potency that differed between animal species. Here we describe the isolation, amino acid sequence, and biological activity of this new group of cytotoxic sponge peptides. PMID:21830292

  7. NADPH Oxidase Activation in Pancreatic Cancer Cells Is Mediated through Akt-dependent Up-regulation of p22phox*

    PubMed Central

    Edderkaoui, Mouad; Nitsche, Claudia; Zheng, Ling; Pandol, Stephen J.; Gukovsky, Ilya; Gukovskaya, Anna S.

    2011-01-01

    We recently showed that Nox4 NADPH oxidase is highly expressed in pancreatic ductal adenocarcinoma and that it is activated by growth factors and plays a pro-survival, anti-apoptotic role. Here we investigate the mechanisms through which insulin-like growth factor I and serum (FBS) activate NADPH oxidase in pancreatic cancer (PaCa) cells. We show that in PaCa cells, NADPH oxidase is composed of Nox4 and p22phox catalytic subunits, which are both required for NADPH oxidase activity. Insulin-like growth factor I and FBS activate NADPH oxidase through transcriptional up-regulation of p22phox. This involves activation of the transcription factor NF-κB mediated by Akt kinase. Up-regulation of p22phox by the growth factors results in increased Nox4-p22phox complex formation and activation of NADPH oxidase. This mechanism is different from that for receptor-induced activation of phagocytic NADPH oxidase, which is mediated by phosphorylation of its regulatory subunits. Up-regulation of p22phox represents a novel pro-survival mechanism through which growth factors and Akt inhibit apoptosis in PaCa cells. PMID:21118808

  8. Low Extracellular Zinc Increases Neuronal Oxidant Production Through NADPH Oxidase and Nitric Oxide Synthase Activation

    PubMed Central

    Aimo, Lucila; Cherr, Gary N.; Oteiza, Patricia I.

    2012-01-01

    A decrease in zinc (Zn) levels increases the production of cell oxidants, affects the oxidant defense system and triggers oxidant sensitive signals in neuronal cells. However, the underlying mechanisms are still unclear. This work tested the hypothesis that the increase in neuronal oxidants that occurs when cellular Zn decreases is mediated by the activation of the NMDA receptor. Differentiated PC12 cells were cultured in control, Zn-deficient or Zn-repleted media. The incubation in Zn deficient media led to a rapid increase in cellular calcium levels, which was prevented by a NMDA receptor antagonist (MK-801). Cellular calcium accumulation was associated with NADPH oxidase and nitric oxide synthase (NOS) activation, an increase in cell oxidant levels, and an associated activation of a redox-sensitive signal (AP-1). In cells incubated in the Zn deficient medium, NADPH oxidase activation was prevented by MK-801 and by a protein kinase C inhibitor. The rise in cell oxidants was prevented by inhibitors of NADPH oxidase, of the NOS and by MK-801. A similar pattern of inhibitor action was observed for zinc deficiency-induced AP-1 activation. Results demonstrate that a decrease in extracellular Zn leads to an increase in neuronal oxidants through the activation of the NMDAR that leads to calcium influx and to a calcium-mediated activation of protein kinase C/NADPH oxidase and NOS. Changes in extracellular Zn concentrations can be sensed by neurons, which using reactive oxygen and nitrogen species as second messengers, can regulate signaling involved in neuronal development and function. PMID:20211250

  9. Activity of carbohydrate oxidases as influenced by wheat flour dough components.

    PubMed

    Degrand, L; Rakotozafy, L; Nicolas, J

    2015-08-15

    The carbohydrate oxidase (COXMn) from Microdochium nivale may well have desired functionalities as a dough and bread improver, similarly to Aspergillus niger glucose oxidase (GOX). COXMn catalyses the oxidation of various monosaccharides as well as maltooligosaccharides for which the best activity is obtained towards the maltooligosaccharides of polymerisation degrees 3 and 4. For the same activity towards glucose under air saturation, we show that COXMn exhibits a similar efficiency towards maltose as GOX towards glucose whatever the oxygen supply. Assays with COXMn show that no competition exists between carbohydrates naturally present in the wheat flour. We show that reaction products (d-glucono-δ-lactone and hydrogen peroxide) and the wheat flour dough component, ferulic acid, have no noticeable specific effect on the COXMn activity. The demonstrated differences in kinetics between COXMn and GOX allow predicting of differences in the functional behaviours of those enzymes during wheat flour dough formation.

  10. NADPH oxidase activity in allergenic pollen grains of different plant species.

    PubMed

    Wang, Xiao-Ling; Takai, Toshiro; Kamijo, Seiji; Gunawan, Hendra; Ogawa, Hideoki; Okumura, Ko

    2009-09-25

    Pollen is an important trigger of allergic diseases. Recent studies have shown that ragweed pollen NAD(P)H oxidase generates reactive oxygen species (ROS) and plays a prominent role in the pathogenesis of allergies in mouse models. Here, we demonstrated that allergenic pollen grains showed NAD(P)H oxidase activity that differed in intensity and localization according to the plant families. The activity occurred at the surface or in the cytoplasm in pollen of grasses, birch, and ragweed; in subpollen particles released from ragweed pollen; and at the inner surface or in the cytoplasm but not on the outer wall, which was sloughed off after the rupture, of pollen of Japanese cedar and Japanese cypress. The activity was mostly concentrated within insoluble fractions, suggesting that it facilitates the exposure of tissues to ROS generated by this enzyme. The extent of exposure to pollen-generated ROS could differ among the plant families.

  11. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection.

    PubMed

    Snezhkina, Anastasiya V; Krasnov, George S; Lipatova, Anastasiya V; Sadritdinova, Asiya F; Kardymon, Olga L; Fedorova, Maria S; Melnikova, Nataliya V; Stepanov, Oleg A; Zaretsky, Andrew R; Kaprin, Andrey D; Alekseev, Boris Y; Dmitriev, Alexey A; Kudryavtseva, Anna V

    2016-01-01

    Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC). Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF). Bacterial enterotoxin activates spermine oxidase (SMO), which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP), and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT) as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.

  12. Cinnamic acid-inhibited ribulose-1,5-bisphosphate carboxylase activity is mediated through decreased spermine and changes in the ratio of polyamines in cowpea.

    PubMed

    Huang, Xingxue; Bie, Zhilong

    2010-01-01

    This study investigated the effects of cinnamic acid (CA) on ribulose-1,5-bisphosphate carboxylase (RuBPC) activity and the endogenous polyamine levels of cowpea leaves. The results show that 0.1 mM CA treatment decreased photosynthetic rate (P(n)) and RuBPC activity, but it did not affect the maximal photochemical efficiency of PSII (F(v)/F(m)), the actual photochemical efficiency of PSII (PhiPSII), intercellular CO(2) concentration (C(i)), and relative chlorophyll content. These suggest that the decrease in P(n) is at least partially attributed to a lowered RuBPC activity. In addition, 0.1 mM CA treatment increased the putrescine (Put) level, but decreased spermidine (Spd) and spermine (Spm) levels, thereby reducing the (Spd+Spm)/Put (PAs) ratio in the leaves. The exogenous application of 1 mM Spd markedly reversed these CA-induced effects for polyamine and partially restored the PAs ratio and RuBPC activity in leaves. Methylglyoxal-bis (guanylhydrazone) (MGBG), which is an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), results in the inability of activated cells to synthesize Spd and exacerbates the negative effects induced by CA. The exogenous application of 1 mM D-arginine (D-Arg), which is an inhibitor of Put biosynthesis, decreased the levels of Put, but increased the PAs ratio and RuBPC activity in leaves. These results suggest that 0.1 mM CA inhibits RuBPC activity by decreasing the levels of endogenous free and perchloric acid soluble (PS) conjugated Spm, as well as the PAs ratio.

  13. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    PubMed Central

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  14. [Statement on polyamines].

    PubMed

    Dandrifosse, G; Deloyer, P; Grandfils, C; Loret, S; Peulen, O; Dandrifosse, A C

    1999-03-01

    Polyamines are ubiquitous substances. Their intracellular concentration is controlled quickly and rigorously by extremely sophisticated systems. It depends on metabolism and cellular permeability. Polyamines act as structural and functional elements in the cell (nucleic acid conformation, cytoskeleton, radioprotection, apoptosis, proliferation and differentiation of cells...). They also play a role in various diseases (origin of food allergy, cancers...). They present a great therapeutic interest (oncology, molecular transfer to cell nucleus, transfer across the blood-brain barrier, parasitosis, effects on NMDA and GABA receptors in the central nervous system...).

  15. Stability of spermine oxidase to thermal and chemical denaturation: comparison with bovine serum amine oxidase.

    PubMed

    Cervelli, Manuela; Leonetti, Alessia; Cervoni, Laura; Ohkubo, Shinji; Xhani, Marla; Stano, Pasquale; Federico, Rodolfo; Polticelli, Fabio; Mariottini, Paolo; Agostinelli, Enzo

    2016-10-01

    Spermine oxidase (SMOX) is a flavin-containing enzyme that specifically oxidizes spermine to produce spermidine, 3-aminopropanaldehyde and hydrogen peroxide. While no crystal structure is available for any mammalian SMOX, X-ray crystallography showed that the yeast Fms1 polyamine oxidase has a dimeric structure. Based on this scenario, we have investigated the quaternary structure of the SMOX protein by native gel electrophoresis, which revealed a composite gel band pattern, suggesting the formation of protein complexes. All high-order protein complexes are sensitive to reducing conditions, showing that disulfide bonds were responsible for protein complexes formation. The major gel band other than the SMOX monomer is the covalent SMOX homodimer, which was disassembled by increasing the reducing conditions, while being resistant to other denaturing conditions. Homodimeric and monomeric SMOXs are catalytically active, as revealed after gel staining for enzymatic activity. An engineered SMOX mutant deprived of all but two cysteine residues was prepared and characterized experimentally, resulting in a monomeric species. High-sensitivity differential scanning calorimetry of SMOX was compared with that of bovine serum amine oxidase, to analyse their thermal stability. Furthermore, enzymatic activity assays and fluorescence spectroscopy were used to gain insight into the unfolding process.

  16. Polyamines in aging and disease

    PubMed Central

    Minois, Nadège; Carmona-Gutierrez, Didac; Madeo, Frank

    2011-01-01

    Polyamines are polycations that interact with negatively charged molecules such as DNA, RNA and proteins. They play multiple roles in cell growth, survival and proliferation. Changes in polyamine levels have been associated with aging and diseases. Their levels decline continuously with age and polyamine (spermidine or high-polyamine diet) supplementation increases life span in model organisms. Polyamines have also been involved in stress resistance. On the other hand, polyamines are increased in cancer cells and are a target for potential chemotherapeutic agents. In this review, we bring together these various results and draw a picture of the state of our knowledge on the roles of polyamines in aging, stress and diseases. PMID:21869457

  17. Wound healing response and xylem differentiation in tobacco plants over-expressing a fungal endopolygalacturonase is mediated by copper amine oxidase activity.

    PubMed

    Cona, Alessandra; Tisi, Alessandra; Ghuge, Sandip Annasaheb; Franchi, Stefano; De Lorenzo, Giulia; Angelini, Riccardo

    2014-09-01

    In this work, we have investigated the involvement of copper amine oxidase (CuAO; EC 1.4.3.21) in wound healing and xylem differentiation of Nicotiana tabacum plants over-expressing a fungal endopolygalacturonase (PG plants), which show constitutively activated defence responses. In petioles and stems of PG plants, we found higher CuAO activity and lower polyamine (PA) levels, particularly putrescine (Put), with respect to wild-type (WT) plants. Upon wounding, a more intense autofluorescence of cell wall phenolics was observed in correspondence of wound surface, extending to epidermis and cortical parenchima only in PG plants. This response was mostly dependent on CuAO activity, as suggested by the reversion of autofluorescence upon supply of 2-bromoethylamine (2-BrEt), a CuAO specific inhibitor. Moreover, in unwounded plants, histochemical analysis revealed a tissue-specific expression of the enzyme in the vascular cambium and neighboring derivative cells of both petioles and stems of PG plants, whereas the corresponding WT tissues appeared unstained or faintly stained. A higher histochemical CuAO activity was also observed in xylem cells of PG plants as compared to WT xylem tissues suggesting a peculiar role of CuAO activity in xylem differentiation in PG plants. Indeed, roots of PG plants exhibited early xylem differentiation, a phenotype consistent with both the higher CuAO and the lower Put levels observed and supported by the 2-BrEt-mediated reversion of early root xylem differentiation and H2O2 accumulation. These results strongly support the relevance of PA-catabolism derived H2O2 in defence responses, such as those signaled by a compromised status of cell wall pectin integrity.

  18. Three polyphenol oxidases from red clover (Trifolium pratense) differ in enzymatic activities and activation properties.

    PubMed

    Schmitz, George E; Sullivan, Michael L; Hatfield, Ronald D

    2008-01-09

    Polyphenol oxidases (PPOs) oxidize o-diphenols to o-quinones, which cause browning reactions in many wounded fruits, vegetables, and plants including the forage crop red clover (Trifolium pratense L.). Production of o-quinones in red clover inhibits postharvest proteolysis during the ensiling process. The cDNAs encoding three red clover PPOs were expressed individually in alfalfa (Medicago sativa L.), which lacks detectable endogenous foliar PPO activity and o-diphenols. Several physical and biochemical characteristics of the red clover PPOs in alfalfa extracts were determined. In transgenic alfalfa extracts, red clover PPOs exist in a latent state and are activated (10-40-fold increase in activity) by long incubations (>2 days) at ambient temperature or short incubations (<10 min) at > or =65 degrees C. PPO1 appears to be more stable at high temperatures than PPO2 or PPO3. During incubation at ambient temperature, the molecular masses of the PPO enzymes were reduced by approximately 20 kDa. The apparent pH optima of latent PPO1, PPO2, and PPO3 are 5.5, 6.9, and 5.1, respectively, and latent PPO1 is slightly activated (~5-fold) by low pH. Activation of the PPOs shifts the pH optima to approximately 7, and the activated PPOs retain substantial levels of activity as the pH increases above their optima. The latent and activated PPOs were surveyed for ability to oxidize various o-diphenols, and activation of the PPOs had little effect on substrate specificity. Activation increases the V max but not the affinity of the PPO enzymes for caffeic acid. Results indicate red clover PPOs undergo structural and kinetic changes during activation and provide new insights to their effects in postharvest physiology.

  19. Xanthine oxidase inhibitory activity of some Panamanian plants from Celastraceae and Lamiaceae.

    PubMed

    González, A G; Bazzocchi, I L; Moujir, L; Ravelo, A G; Correa, M D; Gupta, M P

    1995-04-01

    Thirty four crude extracts of Panamanian plants, from nine species of Celastraceae and Lamiaceae, were assayed for xanthine oxidase (XO) inhibitory activity. The enzymatic activity was estimated by measuring the increase in absorbance at 290 nm due to uric acid formation. Eighty five percent of the crude extracts were found to possess XO inhibitory activity at 50 micrograms/ml and all the extracts of the species from Lamiaceae were active even at 1 micrograms/ml. The ethanol extracts of Hyptis obtusiflora Presl ex Benth. (Lamiaceae) and H. lantanaefolia Poit. (Lamiaceae) exhibited the highest activity with an inhibition of approximately 40% at 1 micrograms/ml.

  20. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress.

    PubMed

    Hu, Xiaohui; Xu, Zhiran; Xu, Weinan; Li, Jianming; Zhao, Ning; Zhou, Yue

    2015-07-01

    The effects of exogenous γ-aminobutyric acid (GABA) application on growth, polyamine and endogenous GABA metabolism in muskmelon leaves and roots were measured. Plants were treated under control or 80 mM Ca(NO3)2 stress conditions with or without foliar spraying 50 mM GABA. Ca(NO3)2 stress significantly suppressed seedling growth and GABA transaminase activity, and enhanced glutamate decarboxylase (GAD) activity and endogenous GABA levels. Polyamine (PA) biosynthesis and degradation capacity increased in parallel with increasing GAD activity. Exogenous GABA application effectively alleviated the growth inhibition caused by Ca(NO3)2 stress, and significantly enhanced the activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), polyamine oxidase (PAO), and diamine oxidase (DAO). Exogenous GABA also significantly reduced the accumulation of free putrescine (Put) and increased the levels of free spermidine (Spd) and spermine (Spm) in leaves, which improved the capacity for polyamine biosynthesis. Application of exogenous GABA under Ca(NO3)2 stress enables the plants to maintain a higher ratio of free Spd and free Spm with respect to free Put. Our data suggest that exogenous GABA has an important role in improving muskmelon seedling tolerance to Ca(NO3)2 stress by improving biosynthesis of PAs and GABA, and by preventing PA degradation. There is a potential positive feedback mechanism that results from higher endogenous GABA content and the combined effects of Ca(NO3)2 stress and exogenous GABA, which coordinately alleviate Ca(NO3)2 stress injury by enhancing PA biosynthesis and converting free Put to an insoluble bound PA form, and reduce PA degradation in muskmelon seedlings. Copyright © 2015. Published by Elsevier Masson SAS.

  1. Decreased platelet monoamine oxidase activity in female anorexia nervosa.

    PubMed

    Díaz-Marsá, M; Carrasco, J L; Hollander, E; César, J; Saiz-Ruiz, J

    2000-03-01

    To study if platelet MAO activity, previously described as a serotonergic index, is modified in a sample of pure restrictive anorectic patients. Twenty-five female patients with DSM-IV anorexia nervosa restricting type were studied and compared with 30 healthy female controls. Platelet MAO activity was measured by isotopic methods using C-14 benzylamine. Impulsive personality features were measured with specific rating scales and temperament studied with Cloninger's TCI. Platelet MAO activity was significantly lower (4.3+2.7 nmol/h/ 108 platelets) in the anorectic patients than in the control group (6.7+2.8) (P<0.01). Platelet MAO was inversely correlated with scores on impulsivity scales and positively correlated with the dimension 'persistence' of Cloninger's TCI. Platelet MAO activity is lowered in a group of patients with anorexia nervosa and might involve some dysfunction in the regulation of impulse control.

  2. Diacylglycerol kinases activate tobacco NADPH oxidase-dependent oxidative burst in response to cryptogein.

    PubMed

    Cacas, Jean-Luc; Gerbeau-Pissot, Patricia; Fromentin, Jérôme; Cantrel, Catherine; Thomas, Dominique; Jeannette, Emmanuelle; Kalachova, Tetiana; Mongrand, Sébastien; Simon-Plas, Françoise; Ruelland, Eric

    2017-04-01

    Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [(33) P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.

  3. o-Diphenol oxidase activity of molluscan hemocyanins.

    PubMed

    Hristova, Rumyana; Dolashki, Alexandar; Voelter, Wolfgang; Stevanovic, Stefan; Dolashka-Angelova, Pavlina

    2008-03-01

    Diphenoloxidase activities of two molluscan hemocyanins, isolated from the marine snails Rapana venosa and garden snails Helix vulgaris were studied using o-diphenol and L-Dopa as substrates. The dimers of H. vulgaris Hc show both, diphenol (K(m)=2.86 mM and K(cat)=4.48) and L-Dopa activity due to a more open active sites of the enzyme and better access of the substrates. The K(m) value of molluscan H. vulgaris Hc is very close to those of Helix pomatia and Sepia officinalis Hcs, but several times higher compared to those of Rapana and Octopus Hcs. Also HvH has a very high enzyme activity compared with other molluscan Hcs. Kinetic measurements with native RvH and both structural subunits, RvH1 and RvH2, show that RvH and only one structural subunit, RvH2, exhibited only o-diphenol activity, but no L-Dopa oxidizing activity.

  4. A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase.

    PubMed

    Espín, J C; Morales, M; Varón, R; Tudela, J; García-Cánovas, F

    1995-10-10

    A continuous spectrophotometric method for the determination of the monophenolase and diphenolase activities of apple polyphenol oxidase is described. The method is based on the coupling reaction between 3-methyl-2-benzothiazolinone hydrazone (MBTH) and the quinone product of the oxidation of p-hydroxyphenyl propionic acid and 3,4-dihydroxyphenyl propionic acid in the presence of polyphenol oxidase. The lambda(max) and molar absorptivity (epsilon) for the MBTH-quinone adduct have been calculated. The presence of MBTH in the reaction medium decreases the lag period during the expression of monophenolase activity. The high value of V(mas) suggests the existence of a high catalytic constant. This, together with the value of epsilon for the MBTH-quinone adduct, makes this method more sensitive than other continuous methods.

  5. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1μM fMLF and 1μM WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells.

  6. 4-Hydroxyanisole: the most suitable monophenolic substrate for determining spectrophotometrically the monophenolase activity of polyphenol oxidase from fruits and vegetables.

    PubMed

    Espín, J C; Tudela, J; García-Cánovas, F

    1998-05-15

    A continuous spectrophotometric method for determining the monophenolase activity of polyphenol oxidase from several plant sources is described. This assay method is based on the coupling reaction between 3-methyl-2-benzothiazolinone hydrazone and the quinone product of the oxidation of 4-hydroxyanisole in the presence of polyphenol oxidase. 4-Hydroxyanisole proved to be the best monophenol assayed to measure the monophenolase activity of polyphenol oxidase from apple, artichoke, avocado, medlar, pear, and strawberry. Kinetic constants of 4-hydroxyanisole were compared to those of p-hydroxyphenyl propionic acid, a very sensitive monophenol previously reported to assay the monophenolase activity of polyphenol oxidase from apple, pear, and mushroom. The high values of the maximum steady state rate obtained for 4-hydroxyanisole suggest the existence of high catalytic constant toward this monophenol. These kinetic values were supported by nuclear magnetic resonance assays which predicted the highest reactivity of 4-hydroxyanisole. Therefore nuclear magnetic resonance assays proved to be a valuable and useful tool to predict the best monophenolic substrate for plant polyphenol oxidases. The 3-methyl-2-benzothiazlolinone-adduct for 4-hydroxyanisole was stable, with high molar absorptivity at the optimum pHs of the polyphenol oxidases assayed. All this together makes the use of 4-hydroxyanisol as monophenolic substrate and 3-methyl-2-benzothiazolinone as coupling reagent the most sensitive and precise assay method up to date reported in the literature to determine the monophenolas activity of polyphenol oxidase from fruits and vegetables.

  7. Decreased platelet monoamine oxidase activity in female bulimia nervosa.

    PubMed

    Carrasco, J L; Díaz-Marsá, M; Hollander, E; César, J; Saiz-Ruiz, J

    2000-03-01

    The involvement of brain serotonin systems in the pathophysiology of eating disorders has been repeatedly demonstrated in recent studies. Platelet MAO activity is an index of brain serotonin activity and lowered platelet MAO levels have been found in association with impulsive behaviors. In addition, some preliminary reports indicate that platelet MAO could be lowered in eating disorder patients. 47 patients with DSM-IV eating disorders were studied, including 30 with bulimia nervosa and 17 with anorexia nervosa binge eating-purging type. Platelet MAO activity was measured by isotopic methods using C-14 benzylamine and compared with a control group of 30 healthy subjects. Impulsive personality features were studied with specific rating scales. Platelet MAO activity was significantly lower (4.4+/-2.4 nmol/h/10(8) platelets) in the bulimic patients than in the control group (6.9+/-2.5) (p<0.001). No significant differences were found between pure bulimics and binge eating-purging anorectics. Platelet MAO was inversely and significantly correlated with scores on impulsivity scales and with borderline personality disorder characteristics. Platelet MAO activity is lowered in patients with bulimia, which may reflect dysfunction in impulse control mechanisms. Since platelet MAO has a predominant genetic component, there is need for studies on the association of low platelet MAO and higher risk for developing eating disorders.

  8. In vitro leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of Leishmania infantum and Leishmania braziliensis species.

    PubMed

    Navarro, P; Sánchez-Moreno, M; Marín, C; García-España, E; Ramírez-Macías, I; Olmo, F; Rosales, M J; Gómez-Contreras, F; Yunta, M J R; Gutierrez-Sánchez, R

    2014-07-01

    The in vitro leishmanicidal activity and cytotoxicity of pyrazole-containing macrocyclic polyamines 1-4 was assayed on Leishmania infantum and Leishmania braziliensis species. Compounds 1-4 were more active and less toxic than glucantime and both infection rates and ultrastructural alterations confirmed that 1 and 2 were highly leishmanicidal and induced extensive parasite cell damage. Modifications in the excretion products of parasites treated with 1-3 were also consistent with substantial cytoplasm alterations. Compound 2 was highlighted as a potent inhibitor of Fe-SOD in both species, whereas its effect on human CuZn-SOD was poor. Molecular modelling suggested that 2 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the enzyme`s antioxidant features.

  9. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress.

    PubMed

    Hu, Xiaohui; Zhang, Yi; Shi, Yu; Zhang, Zhi; Zou, Zhirong; Zhang, Hao; Zhao, Jiuzhou

    2012-08-01

    We investigated the effects of seeds pretreatment with exogenous spermidine (Spd) on the polyamine content and metabolism in the roots of two cultivars of tomato (Solanum lycopersicum), Jinpengchaoguan and Zhongza No. 9 grown under conditions of mixed salinity-alkalinity stress. These cultivars differ in their tolerance to salinity stress, with the former more tolerant than the latter. PA content, whether in its free forms, soluble conjugated forms, or insoluble bound forms, increased significantly during salinity-alkalinity stress. The activities of S-adenosylmethionine decarboxylase (SAMDC) and diamine oxidase (DAO), concentrations of free Spd, soluble conjugated forms of Spd and spermine (Spm), and insoluble bound form of Spd in the roots were enhanced to a greater extent in cv. Jinpengchaoguan roots than in cv. Zhongza No.9 in response to salinity-alkalinity stress. Interestingly, Spd application to seeds markedly suppressed the accumulation of free Put, but promoted an increase in free Spd and Spm concentrations, as well as soluble conjugated forms of Spd and insoluble bound forms of Put in both cultivars. From these data, we deduced that exogenous Spd promotes the conversion of free Put into free Spd and Spm, and soluble conjugated forms and insoluble bound forms of PAs under salinity-alkalinity stress. Furthermore, under salinity-alkalinity stress conditions, exogenous Spd enhanced the activities of ODC, SAMDC and DAO, and reduced the activities of ADC and polyamine oxidase (PAO) in cv. Zhongza No.9 roots. In addition, exogenous Spd reduced the activities of ADC and ODC, and increased the activities of DAO and SAMDC in cv. Jinpengchaoguan roots under salinity-alkalinity stress conditions. These results suggest that exogenous Spd treatment can regulate the metabolic status of polyamines caused by salinity-alkalinity stress, and eventually enhance tolerance of tomato plants to salinity-alkalinity stress. Additionally, Spd treatments have varying effects on

  10. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats.

    PubMed

    Suzuki, H; DeLano, F A; Parks, D A; Jamshidi, N; Granger, D N; Ishii, H; Suematsu, M; Zweifach, B W; Schmid-Schönbein, G W

    1998-04-14

    Recent evidence in vivo indicates that spontaneously hypertensive rats (SHR) exhibit an increase in oxyradical production in and around microvascular endothelium. This study is aimed to examine whether xanthine oxidase plays a role in overproduction of oxidants and thereby may contribute to hypertensive states as a consequence of the increasing microvascular tone. The xanthine oxidase activity in SHR was inhibited by dietary supplement of tungsten (0.7 g/kg) that depletes molybdenum as a cofactor for the enzyme activity as well as by administration of (-)BOF4272 [(-)-8-(3-methoxy-4-phenylsulfinylphenyl)pyrazolo(1,5-alpha)-1,3, 5-triazine-4-monohydrate], a synthetic inhibitor of the enzyme. The characteristic elevation of mean arterial pressure in SHR was normalized by the tungsten diet, whereas Wistar Koto (WKY) rats displayed no significant alteration in the pressure. Multifunctional intravital videomicroscopy in mesentery microvessels with hydroethidine, an oxidant-sensitive fluoroprobe, showed that SHR endothelium exhibited overproduction of oxyradicals that coincided with the elevated arteriolar tone as compared with WKY rats. The tungsten diet significantly repressed these changes toward the levels observed in WKY rats. The activity of oxyradical-producing form of xanthine oxidase in the mesenteric tissue of SHR was approximately 3-fold greater than that of WKY rats, and pretreatment with the tungsten diet eliminated detectable levels of the enzyme activity. The inhibitory effects of the tungsten diet on the increasing blood pressure and arteriolar tone in SHR were also reproducible by administration of (-)BOF4272. These results suggest that xanthine oxidase accounts for a putative source of oxyradical generation that is associated with an increasing arteriolar tone in this form of hypertension.

  11. A simple bioluminescent method for measuring D-amino acid oxidase activity.

    PubMed

    Bailey, T Spencer; Donor, Micah T; Naughton, Sean P; Pluth, Michael D

    2015-03-28

    D-Amino acid oxidase (DAO) plays important roles in regulating D-amino acid neurotransmitters and was recently identified as a key enzyme integral to hydrogen sulfide production from D-Cys. We report here the development of a simple biocompatible, bioluminescent method for measuring DAO activity based on the highly selective condensation of D-Cys with 6-hydroxy-2-cyanobenzothiazole (CBT-OH) to form D-luciferin.

  12. Elucidation of the factors affecting the oxidative activity of Acremonium sp. HI-25 ascorbate oxidase by an electrochemical approach

    SciTech Connect

    Murata, Kenichi; Nakamura, Nobuhumi Ohno, Hiroyuki

    2008-03-07

    Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.

  13. Elucidation of the factors affecting the oxidative activity of Acremonium sp. HI-25 ascorbate oxidase by an electrochemical approach.

    PubMed

    Murata, Kenichi; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2008-03-07

    Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase's type 1 copper site and substrate.

  14. Aryl hydrocarbon receptor modulates NADPH oxidase activity via direct transcriptional regulation of p40phox expression.

    PubMed

    Wada, Taira; Sunaga, Hiroshi; Ohkawara, Reiko; Shimba, Shigeki

    2013-05-01

    A member of the NADPH oxidase subunits, p40(phox) plays an important role in the regulation of NADPH oxidase activity and the subsequent production of reactive oxygen species (ROS). In this study, we show that mouse p40(phox) is a novel transcriptional target of the aryl hydrocarbon receptor (AhR), known as a dioxin receptor or xenobiotic receptor, in the liver. Treatment of mice with 3-methylcholanthrene (3MC) increased p40(phox) gene expression in the liver, but this induction of p40(phox) gene expression was diminished by the deletion of the AhR gene in the liver. Consistent with the in vivo results, the expression of the p40(phox) gene was increased in 3MC-treated Hepa1c1c7 cells in an AhR-dependent manner. In addition, promoter analysis established p40(phox) as a transcriptional target of AhR. Studies using the RNA-interference technique revealed that p40(phox) is involved in the increase of NADPH oxidase activity and the subsequent ROS production in AhR-activated Hepa1c1c7 cells. Consequently, the results obtained here may provide a novel molecular mechanism for ROS production after exposure to dioxins.

  15. Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation

    PubMed Central

    Xing, Dandan; Su, Guangjie; Li, Shun; Luo, Chenfang; Irwin, Michael G.; Hei, Ziqing

    2015-01-01

    Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47phox and gp91phox protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation. PMID:26246867

  16. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases

    NASA Astrophysics Data System (ADS)

    Bhagi-Damodaran, Ambika; Michael, Matthew A.; Zhu, Qianhong; Reed, Julian; Sandoval, Braddock A.; Mirts, Evan N.; Chakraborty, Saumen; Moënne-Loccoz, Pierre; Zhang, Yong; Lu, Yi

    2017-03-01

    Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.

  17. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases

    NASA Astrophysics Data System (ADS)

    Bhagi-Damodaran, Ambika; Michael, Matthew A.; Zhu, Qianhong; Reed, Julian; Sandoval, Braddock A.; Mirts, Evan N.; Chakraborty, Saumen; Moënne-Loccoz, Pierre; Zhang, Yong; Lu, Yi

    2016-11-01

    Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.

  18. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases.

    PubMed

    Bhagi-Damodaran, Ambika; Michael, Matthew A; Zhu, Qianhong; Reed, Julian; Sandoval, Braddock A; Mirts, Evan N; Chakraborty, Saumen; Moënne-Loccoz, Pierre; Zhang, Yong; Lu, Yi

    2017-03-01

    Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.

  19. Assessing Gibberellins Oxidase Activity by Anion Exchange/Hydrophobic Polymer Monolithic Capillary Liquid Chromatography-Mass Spectrometry

    PubMed Central

    Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography – mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62–0.90 fmol. We determined the kinetic parameters (Km) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology. PMID:23922762

  20. Assessing gibberellins oxidase activity by anion exchange/hydrophobic polymer monolithic capillary liquid chromatography-mass spectrometry.

    PubMed

    Chen, Ming-Luan; Su, Xin; Xiong, Wei; Liu, Jiu-Feng; Wu, Yan; Feng, Yu-Qi; Yuan, Bi-Feng

    2013-01-01

    Bioactive gibberellins (GAs) play a key regulatory role in plant growth and development. In the biosynthesis of GAs, GA3-oxidase catalyzes the final step to produce bioactive GAs. Thus, the evaluation of GA3-oxidase activity is critical for elucidating the regulation mechanism of plant growth controlled by GAs. However, assessing catalytic activity of endogenous GA3-oxidase remains challenging. In the current study, we developed a capillary liquid chromatography--mass spectrometry (cLC-MS) method for the sensitive assay of in-vitro recombinant or endogenous GA3-oxidase by analyzing the catalytic substrates and products of GA3-oxidase (GA1, GA4, GA9, GA20). An anion exchange/hydrophobic poly([2-(methacryloyloxy)ethyl]trimethylammonium-co-divinylbenzene-co-ethylene glycol dimethacrylate)(META-co-DVB-co-EDMA) monolithic column was successfully prepared for the separation of all target GAs. The limits of detection (LODs, Signal/Noise = 3) of GAs were in the range of 0.62-0.90 fmol. We determined the kinetic parameters (K m) of recombinant GA3-oxidase in Escherichia coli (E. coli) cell lysates, which is consistent with previous reports. Furthermore, by using isotope labeled substrates, we successfully evaluated the activity of endogenous GA3-oxidase that converts GA9 to GA4 in four types of plant samples, which is, to the best of our knowledge, the first report for the quantification of the activity of endogenous GA3-oxidase in plant. Taken together, the method developed here provides a good solution for the evaluation of endogenous GA3-oxidase activity in plant, which may promote the in-depth study of the growth regulation mechanism governed by GAs in plant physiology.

  1. Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols.

    PubMed

    Johnson, David K; Schillinger, Kurt J; Kwait, David M; Hughes, Chambers V; McNamara, Erin J; Ishmael, Fauod; O'Donnell, Robert W; Chang, Ming-Mei; Hogg, Michael G; Dordick, Jonathan S; Santhanam, Lakshmi; Ziegler, Linda M; Holland, James A

    2002-01-01

    NADPH oxidase is a major enzymatic source of oxygen free radicals in stimulated endothelial cells (ECs). The ortho-methoxy-substituted catechol, apocynin (4-hydroxy-3-methoxyacetophenone), isolated from the traditional medicinal plant Picrorhiza kurroa, inhibits the release of superoxide anion (O2*-) by this enzyme. The compound acts by blocking the assembly of a functional NADPH oxidase complex. The underlying chemistry of this inhibitory activity, and its physiological significance to EC proliferation, have been investigated. A critical event is the reaction of ortho-methoxy-substituted catechols with reactive oxygen species (ROS) and peroxidase. Analysis of this reaction reveals that apocynin is converted to a symmetrical dimer through the formation of a 5,5' carbon-carbon bond. Both reduced glutathione and L-cysteine inhibit this dimerization process. Catechols without the ortho-methoxy-substituted group do not undergo this chemical reaction. Superoxide production by an endothelial cell-free system incubated with apocynin was nearly completely inhibited after a lagtime for inhibition of ca. 2 min. Conversely, O2*- production was nearly completely inhibited, without a lagtime, by incubation with the dimeric form of apocynin. The apocynin dimer undergoes a two-electron transfer reaction with standard redox potentials of -0.75 and -1.34 V as determined by cyclic voltammetry. Inhibition of endothelial NADPH oxidase by apocynin caused a dose-dependent inhibition of cell proliferation. These findings identify a metabolite of an ortho-methoxy-substituted catechol, which may be the active compound formed within stimulated ECs that prevents NADPH oxidase complex assembly and activation.

  2. 20-HETE increases Superoxide production and activates NADPH Oxidase in Pulmonary Artery Endothelial Cells

    PubMed Central

    Medhora, Meetha; Chen, Yuenmu; Gruenloh, Stephanie; Harland, Daniel; Bodiga, Sreedhar; Zielonka, Jacek; Gebremedhin, Debebe; Gao, Ying; Falck, John R.; Anjaiah, Siddam; Jacobs, Elizabeth R.

    2008-01-01

    Reactive oxygen species (ROS) signal vital physiological processes including cell growth, angiogenesis, contraction, and relaxation of vascular smooth muscle. Because cytochrome P-450 family 4 (CYP4)/20-hydroxyeicosatetraenoic acid (20-HETE) has been reported to enhance angiogenesis, pulmonary vascular tone, and endothelial nitric oxide synthase function, we explored the potential of this system to stimulate bovine pulmonary artery endothelial cell (BPAEC) ROS production. Our data are the first to demonstrate that 20-HETE increases ROS in BPAECs in a time- and concentration-dependent manner as detected by enhanced fluorescence of oxidation products of dihydroethidium (DHE) and dichlorofluorescein diacetate. An analog of 20-HETE elicits no increase in ROS and blocks 20-HETE-evoked increments in DHE fluorescence, supporting its function as an antagonist. Endothelial cells derived from bovine aortas exhibit enhanced ROS production to 20-HETE quantitatively similar to that of BPAECs. 20-HETE-induced ROS production in BPAECs is blunted by pretreatment with polyethylene-glycolated SOD, apocynin, inhibition of Rac1, and a peptide-based inhibitor of NADPH oxidase subunit p47phox association with gp91. These data support 20-HETE-stimulated, NADPH oxidase-derived, and Rac1/2-dependent ROS production in BPAECs. 20-HETE promotes translocation of p47phox and tyrosine phosphorylation of p47phox in a time-dependent manner as well as increased activated Rac1/2, providing at least three mechanisms through which 20-HETE activates NADPH oxidase. These observations suggest that 20-HETE stimulates ROS production in BPAECs at least in part through activation of NADPH oxidase within minutes of application of the lipid. PMID:18296498

  3. Exogenous polyamines elicit herbivore-induced volatiles in lima bean leaves: involvement of calcium, H2O2 and Jasmonic acid.

    PubMed

    Ozawa, Rika; Bertea, Cinzia M; Foti, Maria; Narayana, Ravishankar; Arimura, Gen-Ichiro; Muroi, Atsushi; Horiuchi, Jun-Ichiro; Nishioka, Takaaki; Maffei, Massimo E; Takabayashi, Junji

    2009-12-01

    We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.

  4. Cell-free activation of phagocyte NADPH-oxidase: tissue and differentiation-specific expression of cytosolic cofactor activity.

    PubMed

    Parkinson, J F; Akard, L P; Schell, M J; Gabig, T G

    1987-06-30

    We examined a variety of tissues for the presence of cytosolic cofactor activity that would support arachidonate-dependent cell-free activation of NADPH-oxidase in isolated human neutrophil membranes. Cofactor activity was not found in cytosol isolated from erythrocytes, lymphocytes, placenta, brain, liver, or the human promyelocytic leukemic cell line HL-60. Induction of differentiation in HL-60 cells led to expression of cytosolic cofactor activity. In dimethylsulphoxide-induced HL-60 cells the level of cytosolic cofactor activity was closely correlated with phorbol myristate acetate-stimulated whole cell superoxide production. These results strongly suggest that the cytosolic cofactor is a phagocyte-specific regulatory protein of physiologic importance in NADPH-oxidase activation.

  5. [Liver monoamine oxidase activity of the lamprey Lampetra fluviatilis. the substrate-inhibitory specificity].

    PubMed

    Iagodina, O V; Basova, I N

    2013-01-01

    Based on data of substrate-inhibitory analysis with use of specific inhibitors--deprenyl, chlorgi-lin--and specific substrates--serotonin, noradrenalin, benzylamine, beta-phenylethylamine, and N-methylhistamine--a suggestion is put forward about the possible existence of one molecular form of monoamine oxidase (MAO) in liver of mature individuals of the European lamprey Lampetra fluviatilis. There are determined kinetic parameters of monoamine oxidase deamination of eight substrates, which indicates the large spectrum of substrate specificity of the lamprey liver MAO. The studied enzyme does not deaminate histamine and putrescine and is not sensitive to 10(-2) M semicarbaside. Results of study of the substrate-inhibitor specificity allow us to suggest some resemblance of catalytic properties of the lamprey liver MAO and the mammalian form A MAO. The revealed low activity of the enzyme at deamination of all used substrates seems to be connected with low detoxational functional of the lamprey liver.

  6. Coproporphyrinogen oxidase activity and porphyrin concentrations in peripheral red blood cells in hereditary sideroblastic anaemia.

    PubMed

    Pasanen, A V; Eklöf, M; Tenhunen, R

    1985-03-01

    The activity of coproporphyrinogen oxidase and the concentrations of coproporphyrin and protoporphyrin (measured by HPLC) in peripheral red blood cells were established in 2 families with different types of hereditary sideroblastic anaemia. 2 males and 4 females were members of a family with an X-chromosome-linked and pyridoxine-responsive HSA, and 3 females were members of another family where the mode of inheritance is not clear and where pyridoxine did not produce a haematological response. Coproporphyrinogen oxidase activity was normal in 8 of 9 patients and slightly decreased only in 1 patient. All patients had normal red cell coproporphyrin concentrations, but red cell protoporphyrin concentration was decreased in 4 patients. These findings indicate that in vivo haem synthesis was not impaired at the step of coproporphyrinogen oxidase, hence enzymatic defects in earlier steps of haem synthesis are more evident. Earlier suggestions of impaired haem synthesis at this level, based on observed increased concentrations of coproporphyrin in peripheral red blood cells might be explained by the use of unspecific methods.

  7. Synthetic models of the active site of catechol oxidase: mechanistic studies.

    PubMed

    Koval, Iryna A; Gamez, Patrick; Belle, Catherine; Selmeczi, Katalin; Reedijk, Jan

    2006-09-01

    The ability of copper proteins to process dioxygen at ambient conditions has inspired numerous research groups to study their structural, spectroscopic and catalytic properties. Catechol oxidase is a type-3 copper enzyme usually encountered in plant tissues and in some insects and crustaceans. It catalyzes the conversion of a large number of catechols into the respective o-benzoquinones, which subsequently auto-polymerize, resulting in the formation of melanin, a dark pigment thought to protect a damaged tissue from pathogens. After the report of the X-ray crystal structure of catechol oxidase a few years earlier, a large number of publications devoted to the biomimetic modeling of its active site appeared in the literature. This critical review (citing 114 references) extensively discusses the synthetic models of this enzyme, with a particular emphasis on the different approaches used in the literature to study the mechanism of the catalytic oxidation of the substrate (catechol) by these compounds. These are the studies on the substrate binding to the model complexes, the structure-activity relationship, the kinetic studies of the catalytic oxidation of the substrate and finally the substrate interaction with (per)oxo-dicopper adducts. The general overview of the recognized types of copper proteins and the detailed description of the crystal structure of catechol oxidase, as well as the proposed mechanisms of the enzymatic cycle are also presented.

  8. Halides inhibition of multicopper oxidases studied by FTIR spectroelectrochemistry using azide as an active infrared probe.

    PubMed

    Di Bari, Chiara; Mano, Nicolas; Shleev, Sergey; Pita, Marcos; L De Lacey, Antonio

    2017-10-03

    An infrared spectroelectrochemical study of Trametes hirsuta laccase and Magnaporthe oryzae bilirubin oxidase has been performed using azide, an inhibitor of multicopper oxidases, as an active infrared probe incorporated into the T2/T3 copper cluster of the enzymes. The redox potential-controlled measurements indicate that N3(-) stretching IR bands of azide ion bound to the T2/T3 cluster are only detected for the oxidized enzymes, confirming that azide only binds to Cu(2+). Moreover, the process of binding/dissociation of azide ion is shown to be reversible. The interaction of halide anions, which also inhibit multicopper oxidases, with the active site of the enzymes was studied by measuring the changes in the azide FTIR bands. Enzymes inhibited by azide respond differently upon addition of fluoride or chloride ions to the sample solution inhibited by azide. Fluoride ions compete with azide for binding at one of the T2/T3 Cu ions, whereas competition from chloride ions is much less evident.

  9. Synthesis and DNA cleavage activities of mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes which linked with uracil.

    PubMed

    Wang, Xiao-Yan; Zhang, Ji; Li, Kun; Jiang, Ning; Chen, Shan-Yong; Lin, Hong-Hui; Huang, Yu; Ma, Li-Jian; Yu, Xiao-Qi

    2006-10-01

    Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.

  10. Polyamine metabolism in flax in response to treatment with pathogenic and non–pathogenic Fusarium strains

    PubMed Central

    Wojtasik, Wioleta; Kulma, Anna; Namysł, Katarzyna; Preisner, Marta; Szopa, Jan

    2015-01-01

    Flax crop yield is limited by various environmental stress factors, but the largest crop losses worldwide are caused by Fusarium infection. Polyamines are one of the many plant metabolites possibly involved in the plant response to infection. However, in flax plants the polyamine composition, genes involved in polyamine synthesis, and in particular their regulation, were previously unknown. The aim of this study was to investigate the polyamine synthesis pathway in flax and its involvement in response to pathogen infection. It is well established that polyamines are essential for the growth and development of both plants and fungi, but their role in pathogen infection still remains unknown. In our study we correlated the expression of genes involved in polyamine metabolism with the polyamine levels in plant tissues and compared the results for flax seedlings treated with two pathogenic and one non-pathogenic strains of Fusarium. We observed an increase in the expression of genes participating in polyamine synthesis after fungal infection, and it was reflected in an increase of polyamine content in the plant tissues. The highest level of mRNA was characteristic for ornithine decarboxylase during infection with all tested, pathogenic and non-pathogenic, Fusarium strains and the arginine decarboxylase gene during infection with the pathogenic strain of Fusarium culmorum. The main polyamine identified in the flax seedlings was putrescine, and its level changed the most during infection. Moreover, the considerable increase in the contents of cell wall-bound polyamines compared to the levels of free and conjugated polyamines may indicate that their main role during pathogen infection lies in strengthening of the cell wall. In vitro experiments showed that the polyamines inhibit Fusarium growth, which suggests that they play an important role in plant defense mechanisms. Furthermore, changes in metabolism and content of polyamines indicate different defense mechanisms

  11. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors.

    PubMed

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G; Barslund, Anne F; Bach, Tinna B; Kristensen, Anders S; Strømgaard, Kristian

    2012-11-26

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotropic glutamate receptor subtypes reveals that two of these, Nephila polyamine toxins 1 (NPTX-1) and 8 (NPTX-8), comprise intriguing pharmacological activities by having subnanomolar IC(50) values at kainate receptors.

  12. Enhanced hydrolysis of soluble cellulosic substrates by a metallocellulase with veratryl alcohol-oxidase activity

    SciTech Connect

    Evans, B.R.; Margalt, R.; Woodward, J.

    1995-12-31

    A cellulose enzyme fraction was separated from Trichoderma reesei Pulpzyme HA{trademark}, and its characteristics suggested that it was mainly composed of cellobiohydrolase II (CBH II). The covalent attachment of pentaammineruthenium (III) to this enzyme resulted in threefold and fourfold enhancements of its hydrolytic activity on carboxymethyl cellulose (CMC) and barley {beta}-glucan, respectively, as well as endowing it with veratryl alcohol-oxidase activity. Enhancement of hydrolysis was not affected by addition of tartrate or hydrogen peroxide to the reaction mixture. Both native and pentaammineruthenium modified enzymes had negligible activity on cellobiose and p-nitrophenyl {beta}-cellobioside (PNPC).

  13. Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level.

    PubMed

    Uemura, Takeshi; Tanaka, Yuka; Higashi, Kyohei; Miyamori, Daisuke; Takasaka, Tomokazu; Nagano, Tatsuo; Toida, Toshihiko; Yoshimoto, Kanji; Igarashi, Kazuei; Ikegaya, Hiroshi

    2013-08-09

    Ethanol consumption causes serious liver injury including cirrhosis and hepatocellular carcinoma. Ethanol is metabolized mainly in the liver to acetic acid through acetaldehyde. We investigated the effect of ethanol and acetaldehyde on polyamine metabolism since polyamines are essential factors for normal cellular functions. We found that acetaldehyde induced spermine oxidase (SMO) at the transcriptional level in HepG2 cells. The levels and activities of ornithine decarboxylase (ODC) and spermidine/spermine acetyltransferase (SSAT) were not affected by acetaldehyde. Spermidine content was increased and spermine content was decreased by acetaldehyde treatment. Knockdown of SMO expression using siRNA reduced acetaldehyde toxicity. Acetaldehyde exposure increased free acrolein levels. An increase of acrolein by acetaldehyde was SMO dependent. Our results indicate that cytotoxicity of acetaldehyde involves, at least in part, oxidation of spermine to spermidine by SMO, which is induced by acetaldehyde.

  14. NADPH oxidase activation played a critical role in the oxidative stress process in stable coronary artery disease

    PubMed Central

    Zhang, Jiefang; Wang, Meihui; Li, Zhengwei; Bi, Xukun; Song, Jiale; Weng, Shaoxiang; Fu, Guosheng

    2016-01-01

    Objectives: The study was designed to investigate the oxidative stress levels of endothelial progenitor cells (EPCs) in stable coronary artery disease (CAD) and to explore the underlying mechanisms of NADPH oxidase activation and subsequent EPCs dysfunction. Methods: EPCs were isolated from patients with stable CAD (n=50) and matched healthy volunteers (n=50). NADPH oxidase activation was detected by measuring the expression of each subunit using western blotting and qPCR analyses and the membrane translocation of p47phox using immunofluorescence. The in vivo angiogenesis capacity was evaluated using immunofluorescence by transplanting EPCs into a rat hind limb ischemia model. The PKC inhibitor GÖ-6983 was used to determine the role of PKC in NADPH oxidase activation. Results: Oxidative stress level was increased and the in vivo angiogenesis capacity was impaired in EPCs obtained from CAD subjects with the activation of NADPH oxidase. P47phox membrane translocation increased in CAD group vs controls. These effects were resolved by NADPH oxidase inhibition. Up-regulation of PKCα/β2 was found in EPCs from CAD subjects, PKC inhibition GÖ-6983 could reduce the expression and activity of NADPH oxidation. Conclusions: NADPH oxidase activation via p47phox membrane translocation played a critical role in the initiation and progression of CAD, and the PKCα/β2 signaling pathway might be involved. PMID:28077995

  15. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates.

    PubMed

    Ciaurriz, Paula; Bravo, Ernesto; Hamad-Schifferli, Kimberly

    2014-01-15

    We investigate the activity of glucose oxidase (GOx) together with horseradish peroxidase (HRP) on carbon nanoparticles (CNPs). Because GOx activity relies on HRP, we probe how the arrangement of the enzymes on the CNPs affects enzymatic behavior. Colorimetric assays to probe activity found that the coupling strategy affects activity of the bienzyme-nanoparticle complex. GOx is more prone than HRP to denaturation on the CNP surface, where its activity is compromised, while HRP activity is enhanced when interfaced to the CNP. Thus, arrangements where HRP is directly on the surface of the CNP and GOx is not are more favorable for overall activity. Coverage also influenced activity of the bienzyme complex, but performing the conjugation in the presence of glucose did not improve GOx activity. These results show that the architecture of the assembly is an important factor in optimization of nanoparticle-protein interfaces.

  16. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization

    PubMed Central

    Wang, Haibo; Jiang, Yanchao; Shi, Dallas; Quilliam, Lawrence A.; Chrzanowska-Wodnicka, Magdalena; Wittchen, Erika S.; Li, Dean Y.; Hartnett, M. Elizabeth

    2014-01-01

    Activation of Rap1 GTPase can improve the integrity of the barrier of the retina pigment epithelium (RPE) and reduce choroidal neovascularization (CNV). Inhibition of NADPH oxidase activation also reduces CNV. We hypothesize that Rap1 inhibits NADPH oxidase-generated ROS and thereby reduces CNV formation. Using a murine model of laser-induced CNV, we determined that reduced Rap1 activity in RPE/choroid occurred with CNV formation and that activation of Rap1 by 2′-O-Me-cAMP (8CPT)-reduced laser-induced CNV via inhibiting NADPH oxidase-generated ROS. In RPE, inhibition of Rap1 by Rap1 GTPase-activating protein (Rap1GAP) increased ROS generation, whereas activation of Rap1 by 8CPT reduced ROS by interfering with the assembly of NADPH oxidase membrane subunit p22phox with NOX4 or cytoplasmic subunit p47phox. Activation of NADPH oxidase with Rap1GAP reduced RPE barrier integrity via cadherin phosphorylation and facilitated choroidal EC migration across the RPE monolayer. Rap1GAP-induced ROS generation was inhibited by active Rap1a, but not Rap1b, and activation of Rap1a by 8CPT in Rap1b−/− mice reduced laser-induced CNV, in correlation with decreased ROS generation in RPE/choroid. These findings provide evidence that active Rap1 reduces CNV by interfering with the assembly of NADPH oxidase subunits and increasing the integrity of the RPE barrier.—Wang, H., Jiang, Y., Shi, D., Quilliam, L. A., Chrzanowska-Wodnicka, M., Wittchen, E. S., Li, D. Y., Hartnett, M. E. Activation of Rap1 inhibits NADPH oxidase-dependent ROS generation in retinal pigment epithelium and reduces choroidal neovascularization. PMID:24043260

  17. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    PubMed

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H2O2, substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H2O2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H2O2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research.

  18. Caffeine restores myocardial cytochrome oxidase activity and improves cardiac function during sepsis.

    PubMed

    Verma, Richa; Huang, Zhishan; Deutschman, Clifford S; Levy, Richard J

    2009-04-01

    Impaired mitochondrial function is a potential cause of sepsis-associated myocardial depression. Cytochrome oxidase (CcOX), the terminal oxidase of the electron transport chain, is inhibited in the septic heart. Caffeine increases CcOX activity by increasing cyclic adenosine monophosphate and protein kinase A activity. We hypothesized that caffeine will restore myocardial CcOX activity, increase cardiac function, and improve survival during sepsis. Prospective randomized controlled study. University hospital-based laboratory. One hundred twenty Sprague-Dawley male rats. Sprague-Dawley male rats underwent cecal ligation and puncture (CLP) or sham operation. At 24 and 48 hours, rats underwent intraperitoneal injection of either caffeine (7.5 mg/kg, the equivalent of 1-1.5 cups of coffee) or equal volume of saline. One hour following the 48-hour injection, steady-state CcOX kinetic activity was measured in isolated mitochondria and normalized to citrate synthase activity. Cardiac function was assessed using an isolated rat heart preparation and survival was tracked to 96 hours. CLP significantly decreased myocardial CcOX activity, oxygen consumption, left ventricular pressure, and pressure developed during isovolumic contraction (+dP/dt) and relaxation (-dP/dt). Caffeine restored CcOX activity and increased left ventricular pressure and +/-dP/dt toward sham values following CLP. Survival significantly improved following CLP in caffeine-injected animals compared with saline injection. Caffeine may be a novel therapy to treat sepsis-associated myocardial depression.

  19. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase.

    PubMed

    Collman, James P; Decréau, Richard A

    2008-11-07

    A functional analog of the active site in the respiratory enzyme, cytochrome c oxidase (CcO) reproduces every feature in CcO's active site: a myoglobin-like heme (heme a3), a distal tridentate imidazole copper complex (Cu(B)), a phenol (Tyr244), and a proximal imidazole. When covalently attached to a liquid-crystalline SAM film on an Au electrode, this functional model continuously catalyzes the selective four-electron reduction of dioxygen at physiological potential and pH, under rate-limiting electron flux (as occurs in CcO).

  20. Ascorbyl palmitate-loaded chitosan nanoparticles: characteristic and polyphenol oxidase inhibitory activity.

    PubMed

    Kim, Mi Kyung; Lee, Ji-Soo; Kim, Kwang Yup; Lee, Hyeon Gyu

    2013-03-01

    The aim of this study was to produce ascorbyl palmitate (AP)-loaded nanoparticles in order to inhibit polyphenol oxidase (PPO) in bananas. AP-loaded chitosan nanoparticles were prepared using acetic acid and citric acid (denoted as CS/AA and CS/CA nanoparticles, respectively). As the initial AP concentration increases, the particle size significantly decreases, and the zeta potential, entrapment and loading efficiency significantly increases. The PPO inhibitory activity of AP was effectively improved when AP was nano-encapsulated by chitosan compared to no encapsulation. These results suggest that chitosan nano-encapsulation can be used to enhance the PPO inhibitory activity of AP.

  1. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD(50) yields insight into the efficacy of prophylactics.

    PubMed

    Marziaz, Mandy L; Frazier, Kathryn; Guidry, Paul B; Ruiz, Robyn A; Petrikovics, Ilona; Haines, Donovan C

    2013-01-01

    Cyanide inhibits cytochrome c oxidase, the terminal oxidase of the mitochondrial respiratory pathway, therefore inhibiting the cell oxygen utilization and resulting in the condition of histotoxic anoxia. The enzyme rhodanese detoxifies cyanide by utilizing sulfur donors to convert cyanide to thiocyanate, and new and improved sulfur donors are actively sought as researchers seek to improve cyanide prophylactics. We have determined brain cytochrome c oxidase activity as a marker for cyanide exposure for mice pre-treated with various cyanide poisoning prophylactics, including sulfur donors thiosulfate (TS) and thiotaurine (TT3). Brain mitochondria were isolated by differential centrifugation, the outer mitochondrial membrane was disrupted by a maltoside detergent, and the decrease in absorbance at 550 nm as horse heart ferrocytochrome c (generated by the dithiothreitol reduction of ferricytochrome c) was oxidized was monitored. Overall, the TS control prophylactic treatment provided significant protection of the cytochrome c oxidase activity. The TT3-treated mice showed reduced cytochrome c oxidase activity even in the absence of cyanide. In both treatment series, addition of exogenous Rh did not significantly enhance the prevention of cytochrome c oxidase inhibition, but the addition of sodium nitrite did. These findings can lead to a better understanding of the protection mechanism by various cyanide antidotal systems.

  2. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries

    PubMed Central

    Simplicio, Janaina A.; Hipólito, Ulisses Vilela; do Vale, Gabriel Tavares; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R.

    2016-01-01

    Background The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. Objective To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Methods Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Results Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Conclusion Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. PMID:27812679

  3. Pentamines as substrate for human spermine oxidase

    PubMed Central

    Takao, Koichi; Shirahata, Akira; Samejima, Keijiro; Casero, Robert A.; Igarashi, Kazuei; Sugita, Yoshiaki

    2013-01-01

    Substrate activities of various linear polyamines to human spermine oxidase (hSMO) were investigated. The activities were evaluated by monitoring the amount of H2O2 released from sample polyamines by hSMO. H2O2 was measured by a HPLC method that analyzed fluorescent dimers derived from the oxidation of homovanillic acid in the presence of horseradish peroxidase. Six triamines were tested and were found not to be hSMO substrates. Of sixteen tetramines tested, spermine (Spm) was the most active substrate, followed by homospermine and N-butylated Spm. Pentamines showed a characteristic pattern of substrate activity. Of thirteen pentamines tested, 3343 showed higher substrate activity than Spm, and 4343 showed similar activity to Spm. The activities of the other pentamines were as follows: 3443, 4443, 4344, 3344, 4334, 4444, and 3334 (in decreasing order). Product amines released from these pentamines by hSMO were then analyzed by HPLC. Triamine was the only observed product, and the amount of triamine was nearly equivalent to that of released H2O2. A marked difference in the pH dependency curves between tetramines and pentamines suggested that hSMO favored reactions with a non-protonated secondary nitrogen at the cleavage site. The Km and Vmax values for Spm and 3343 at pH 7.0 and 9.0 were consistent with the higher substrate activity of 3343 compared to Spm, as well as with the concept of a non-protonated secondary nitrogen at the cleavage site being preferred, and 3343 was well degraded at a physiological pH by hSMO. PMID:23449327

  4. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds.

    PubMed

    Diatchuk, V; Lotan, O; Koshkin, V; Wikstroem, P; Pick, E

    1997-05-16

    The elicitation of an oxidative burst in phagocytes rests on the assembly of a multicomponental complex (NADPH oxidase) consisting of a membrane-associated flavocytochrome (cytochrome b559), representing the redox element responsible for the NADPH-dependent reduction of oxygen to superoxide (O-2), two cytosolic components (p47(phox), p67(phox)), and the small GTPase Rac (1 or 2). We found that 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), an irreversible serine protease inhibitor, prevented the elicitation of O-2 production in intact macrophages and the amphiphile-dependent activation of NADPH oxidase in a cell-free system, consisting of solubilized membrane or purified cytochrome b559 combined with total cytosol or a mixture of recombinant p47(phox), p67(phox), and Rac1. AEBSF acted at the activation step and did not interfere with the ensuing electron flow. It did not scavenge oxygen radicals and did not affect assay reagents. Five other serine protease inhibitors (three irreversible and two reversible) were found to lack an inhibitory effect on cell-free activation of NADPH oxidase. A structure-function study of AEBSF analogues demonstrated that the presence of a sulfonyl fluoride group was essential for inhibitory activity and that compounds containing an aminoalkylbenzene moiety were more active than amidinobenzene derivatives. Exposure of the membrane fraction or of purified cytochrome b559, but not of cytosol or recombinant cytosolic components, to AEBSF, in the presence of a critical concentration of the activating amphiphile lithium dodecyl sulfate, resulted in a marked impairment of their ability to support cell-free NADPH oxidase activation upon complementation with untreated cytosol or cytosolic components. Kinetic analysis of the effect of varying the concentration of each of the three cytosolic components on the inhibitory potency of AEBSF indicated that this was inversely related to the concentrations of p47(phox) and, to a lesser degree, p67

  5. Molecular insights of p47phox phosphorylation dynamics in the regulation of NADPH oxidase activation and superoxide production.

    PubMed

    Meijles, Daniel N; Fan, Lampson M; Howlin, Brendan J; Li, Jian-Mei

    2014-08-15

    Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47(phox) is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47(phox) phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47(phox) protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47(phox) is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22(phox) binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47(phox-/-) coronary microvascular cells. Compared with wild-type p47(phox) cDNA transfected cells, the single mutation of S379A completely blocked p47(phox) membrane translocation, binding to p22(phox) and endothelial O2(·-) production in response to acute stimulation of PKC. p47(phox) C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47(phox) conformational changes and NADPH oxidase-dependent superoxide production by cells.

  6. Molecular Insights of p47phox Phosphorylation Dynamics in the Regulation of NADPH Oxidase Activation and Superoxide Production*

    PubMed Central

    Meijles, Daniel N.; Fan, Lampson M.; Howlin, Brendan J.; Li, Jian-Mei

    2014-01-01

    Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox−/− coronary microvascular cells. Compared with wild-type p47phox cDNA transfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2⨪ production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells. PMID:24970888

  7. Chloride channels activated by swell can regulate the NADPH oxidase generated membrane depolarisation in activated human neutrophils

    SciTech Connect

    Ahluwalia, Jatinder

    2008-01-11

    Chloride channels activated by swell have important functions in many physiological processes. The phagocyte NADPH oxidase is essential for host defence and it generates superoxide by transferring electrons from the donor NADPH to the acceptor O{sub 2}. This electron current, induces a depolarisation of the plasma membrane. In this study, I report that chloride channels activated by swell can counteract the depolarisation induced by the NADPH oxidase. When a chloride conductance was activated by swelling, its inhibition by either 50 {mu}M NPPB or removing external chloride, depolarised the plasma membrane potential to +26 mV {+-} 3.1 (n = 4) and +40 {+-} 1 mV (n = 4), respectively. These channels were partially inhibited by the NADPH oxidase inhibitor AEBSF (1 mM) and potently inhibited by ZnCl{sub 2} (3 mM). These currents were not activated by a phosphorylation step and elevations in intracellular calcium did not appear to activate chloride currents similar to those activated by swell.

  8. Absorption of enzymatically active sup 125 I-labeled bovine milk xanthine oxidase fed to rabbits

    SciTech Connect

    Rzucidlo, S.J. ); Zikakis, J.P. )

    1990-05-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding {sup 125}I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut.

  9. Catalase, carbonic anhydrase and xanthine oxidase activities in patients with mycosis fungoides.

    PubMed

    Cengiz, Fatma Pelin; Beyaztas, Serap; Gokce, Basak; Arslan, Oktay; Guler, Ozen Ozensoy

    2015-04-01

    Mycosis fungoides (MF) is the most common form of cutaneous T-cell lymphoma. In several studies the relationship between catalase (CAT), human cytosolic carbonic anhydrases (CA; hCA-I and hCA-II) and xanthine oxidase (XO) enzyme activities have been investigated in various types of cancers but carbonic anhydrase, catalase and xanthine oxidase activities in patients with MF have not been previously reported. Therefore, in this preliminary study we aim to investigate CAT, CA and XO activities in patients with MF. This study enrolled 32 patients with MF and 26 healthy controls. According to the results, CA and CAT activities were significantly lower in patients with mycosis fungoides than controls (p < 0.001) (p < 0.001). There was no significant difference in XO activity between patient and control group (p = 0.601). Within these findings, we believe these enzyme activity levels might be a potentially important finding as an additional diagnostic biochemical tool for MF.

  10. Why do most human liver cytosol preparations lack xanthine oxidase activity?

    PubMed

    Barr, John T; Choughule, Kanika V; Nepal, Sahadev; Wong, Timothy; Chaudhry, Amarjit S; Joswig-Jones, Carolyn A; Zientek, Michael; Strom, Stephen C; Schuetz, Erin G; Thummel, Kenneth E; Jones, Jeffrey P

    2014-04-01

    When investigating the potential for xanthine oxidase (XO)-mediated metabolism of a new chemical entity in vitro, selective chemical inhibition experiments are typically used. Most commonly, these inhibition experiments are performed using the inhibitor allopurinol (AP) and commercially prepared human liver cytosol (HLC) as the enzyme source. For reasons detailed herein, it is also a common practice to perfuse livers with solutions containing AP prior to liver harvest. The exposure to AP in HLC preparations could obviously pose a problem for measuring in vitro XO activity. To investigate this potential problem, an HPLC-MS/MS assay was developed to determine whether AP and its primary metabolite, oxypurinol, are retained within the cytosol for livers that were treated with AP during liver harvest. Differences in enzymatic activity for XO and aldehyde oxidase (AO) in human cytosol that can be ascribed to AP exposure were also evaluated. The results confirmed the presence of residual AP (some) and oxypurinol (all) human liver cytosol preparations that had been perfused with an AP-containing solution. In every case where oxypurinol was detected, XO activity was not observed. In contrast, the presence of AP and oxypurinol did not appear to have an impact on AO activity. Pooled HLC that was purchased from a commercial source also contained residual oxypurinol and did not show any XO activity. In the future, it is recommended that each HLC batch is screened for oxypurinol and/or XO activity prior to testing for XO-mediated metabolism of a new chemical entity.

  11. Polyamine synthesis and interconversion by the Microsporidian Encephalitozoon cuniculi.

    PubMed

    Bacchi, C J; Lane, S; Weiss, L M; Yarlett, N; Takvorian, P; Cali, A; Wittner, M

    2001-01-01

    Polyamines are small cationic molecules necessary for growth and differentiation in all cells. Although mammalian cells have been studied extensively, particularly as targets of polyamine antagonists, i.e. antitumor agents, polyamine metabolism has also been studied as a potential drug target in microorganisms. Since little is known concerning polyamine metabolism in the microsporidia, we investigated it in Encephalitozoon cuniculi, a microspordian associated with disseminated infections in humans. Organisms were grown in RK-13 cells and harvested using Percoll gradients. Electron microscopy indicated that the fractions banding at 1.051-1.059/g/ml in a microgradient procedure, and 1.102-1.119/g/ml in a scaled-up procedure were nearly homogenous, consisting of pre-emergent (immature) spores which showed large arrays of ribosomes near polar filament coils. Intact purified pre-emergent spores incubated with [1H] ornithine and methionine synthesized putrescine, spermidine, and spermine, while [14C]spermine was converted to spermidine and putrescine. Polyamine production from ornithine was inhibitable by DL-alpha-difluoromethylornithine (DFMO) but not by DL-alpha-difluoromethylarginine (DFMA). Cell-free extracts from mature spores released into the growth media had ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetdc), and spermidine/spermine N1-acetyltransferase (SSAT) activities. ODC activity was inhibited by DFMO, but not by DFMA. AdoMetdc was putrescine-stimulated and inhibited by methylglyoxal-bis(guanylhydrazone); arginine decarboxylase activity could not be detected. It is apparent from these studies that Encephalitozoon cuniculi pre-emergent spores have a eukaryotic-type polyamine biosynthetic pathway and can interconvert exogenous polyamines. Pre-emergent spores were metabolically active with respect to polyamine synthesis and interconversion, while intact mature spores harvested from culture supernatants had little metabolic activity.

  12. Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions.

    PubMed

    Ohke, Yoshie; Sakoda, Ayaka; Kato, Chiaki; Sambongi, Yoshihiro; Kawamoto, Jun; Kurihara, Tatsuo; Tamegai, Hideyuki

    2013-01-01

    The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments.

  13. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase

    SciTech Connect

    Mo Yiqun; Wan Rong; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2009-04-15

    Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O{sub 2}{sup {center_dot}}{sup -} generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67{sup phox} siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91{sup phox} knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47{sup phox}, p67{sup phox} and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67{sup phox} siRNA. Exposure of MPMVEC obtained from gp91{sup phox} knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly

  14. Thermostable Xanthine Oxidase Activity from Bacillus pumilus RL-2d Isolated from Manikaran Thermal Spring: Production and Characterization.

    PubMed

    Sharma, Nirmal Kant; Thakur, Shikha; Thakur, Neerja; Savitri; Bhalla, Tek Chand

    2016-03-01

    Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg(2+), Ag(+) and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.

  15. Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.

    PubMed

    Campello, S; Beltramini, M; Giordano, G; Di Muro, P; Marino, S M; Bubacco, L

    2008-03-15

    The functional differences between the oxygen transport protein Hemocyanin and the enzymes Tyrosinase and Catechol oxidase are believed to be governed, at least in part, by the tertiary structure, which differs in these molecules and controls the accessibility of their copper containing active site for substrate(s). Accordingly, Octopus vulgaris Hemocyanin catalyses the o-diphenol oxidation to o-quinone at a very low rate. The crystallographic structure of one of the functional units (called Odg) of O. dofleini Hemocyanin shows two domains, a mainly alpha-helical domain that directly binds the copper ions of the reaction center and a beta-strand domain that precludes access to the active site to ligands bigger than molecular oxygen. In this work, we have first cleaved the whole protein and then purified different oxygen binding functional units from O. vulgaris Hemocyanin. These functional units were used in activity assays with l-DOPA, the paradigmatic substrate for Catechol oxidase. All functional units show a negligible enzymatic activity. The procedure to generate the functional units induces in only one of them a proteolytic cleavage. Amino terminal sequencing and mass spectroscopy of the fragments allow to place the cleavage site between the alpha and beta domains of the functional unit homologous to Odd, in the O. dofleini sequence. An increase, up to three orders of magnitude, of Tyrosinase-like activity was observed when the cleaved Odd-like was incubated with the substrate in the presence of trifluoroethanol or hexafluoroisopropanol.

  16. [Changes of polyamines level in Glycine soja and Glycine max seedlings under NaCl stress].

    PubMed

    Yu, Bingjun; Ji, Xiaojia; Liu, Jun; Liu, Youliang

    2004-07-01

    With internationally common-used Glycine max (the salt-tolerant Lee68) and Glycine soja (the salt-sensitive N23232) as reference, this paper studied the polyamines (PAs) contents and polyamine oxidase (PAO) activities in the highly salt-tolerant BB52 (Glycine soja) seedlings, which showed that under 150mmol x L(-1) NaCl stress for 2d, the decrease of Put and Spd contents was more significant, but that of Spd content was less significant in roots of BB52 than in those of Lee68 and N23232. For leaves, the decrease of Put and increase of Spd contents were markedly observed in BB52. The ascent of (Spm + Spd)/Put ratios and descent of Put/PAs ratios showed a positive relation to their salt tolerance. The PAO activity in roots and leaves was all increased, and most obvious in N23232. The relationship between PAs levels in BB52 and its salt tolerance was also discussed.

  17. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    PubMed Central

    Nguyen, Giang T.; Green, Erin R.; Mecsas, Joan

    2017-01-01

    Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these

  18. Platelet monoamine oxidase and serum dopamine-beta-hydroxylase activity in chronic alcoholics.

    PubMed

    Sullivan, J L; Stanfield, C N; Schanberg, S; Cavenar, J

    1978-10-01

    Previous independent reports suggest that low platelet monoamine oxidase (MAO) activity and high serum dopamine-beta-hydroxylase (DBH) activity may be associated with alcoholism or vulnerability toward alcoholism. However, there are also contradictory reports in the literature with regard to each of these two enzymes. We measured both platelet MAO and serum DBH activity in alcoholics followed up at periodic intervals for 12 months after hospitalization for acute alcoholism. Platelet MAO activity in the alcoholics was significantly lower compared to that of nonpsychiatric controls throughout the 12-month period, whereas serum DBH activity in the alcoholics was essentially the same as control values. Thus, low platelet MAO activity, previously reported in a spectrum of clinical psychiatric disorders, appears to be a relatively stable phenomenon in chronic alcoholics irrespective of acute intoxication or pathophysiological factors associated with acute decompensation in individuals vulnerable to alcoholism.

  19. [The effect of electromagnetic radiation on the monoamine oxidase A activity in the rat brain].

    PubMed

    Dolgacheva, L P; Semenova, T P; Abzhalelov, B B; Akoev, I G

    2000-01-01

    The effect of the ultralow power pulse-modulated electromagnetic radiation (EMR, power density 10 microW/cm2; carrying frequency 915 MHz; modulating pulses with frequency 2, 4, 6, 8, 12, 16 and 20 Hz) on activity of monoamine oxidase (MAO-A), enzyme involved in the oxidative deamination of monoamines, was investigated. It was established that the increase of activity MAO in hypothalamus reached the maximal meaning at modulation frequency of 6 Hz that corresponded 160% (p < 0.01) of the control level; and at modulation frequency of 20 Hz the decrease of enzyme activity up to 74% (p < 0.01) was found. Mainly the action of ultralow power pulse-modulated EMR on activity of MAO in hippocamp was activating; and the maximal increase of enzyme activity up to 174% (p < 0.01) was registered at modulation frequency of 4 Hz.

  20. The effect of an NADH oxidase inhibitor (hydrocortisone) on polymorphonuclear leukocyte bactericidal activity

    PubMed Central

    Mandell, Gerald L.; Rubin, Walter; Hook, Edward W.

    1970-01-01

    Polymorphonuclear neutrophils (PMN) from patients with chronic granulomatous disease of childhood have impaired bactericidal activity and are deficient in diphosphopyridine nucleotide, reduced form of, (NADH) oxidase. Since hydrocortisone had been shown to inhibit NADH oxidation, experiments were undertaken to determine the effect of hydrocortisone on several parameters of human PMN function. The phagocytic and bactericidal capacity of PMN with or without hydrocortisone (2.1 mM) was determined by quantitation of cell-free, cell-associated, and total bacteria. Phagocytosis of Staphylococcus aureus and several gram-negative rods was unimpaired by the presence of hydrocortisone in the media. In contrast, killing of bacteria was markedly impaired by hydrocortisone. After 30 min of incubation, there were 20-400 times as many bacteria surviving in hydrocortisone-treated PMN as in simultaneously run controls without hydrocortisone. The defect of intracellular killing noted in the presence of hydrocortisone was not related to impaired degranulation. Quantitative kinetic studies of degranulation revealed no difference in the release of granule associated acid phosphatase in hydrocortisone-treated and control PMN after phagocytosis. Electron microscopy of PMN also indicated that the presence of hydrocortisone had no effect on the extent of degranulation after phagocytosis. These observations were confirmed by studies using histochemical techniques to detect lysosomal enzymes. After phagocytosis, hydrocortisone-treated PMN demonstrated less NADH oxidase activity, oxygen consumption, and hydrogen peroxide production than postphagocytic control PMN. In addition, Nitro blue tetrazolium dye reduction was diminished in hydrocortisone-treated PMN. Thus, impairment of NADH oxidase activity in normal human PMN by hydrocortisone results in reduced intracellular killing of bacteria, diminished postphagocytic oxygen consumption, decreased ability to reduce Nitro blue tetrazolium, and

  1. Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases

    PubMed Central

    McCarty, Mark F.; DiNicolantonio, James

    2016-01-01

    Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients. PMID:27571113

  2. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    SciTech Connect

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  3. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit.

    PubMed

    Garchery, Cécile; Gest, Noé; Do, Phuc T; Alhagdow, Moftah; Baldet, Pierre; Menard, Guillaume; Rothan, Christophe; Massot, Capucine; Gautier, Hélène; Aarrouf, Jawad; Fernie, Alisdair R; Stevens, Rebecca

    2013-01-01

    The regulation of carbon allocation between photosynthetic source leaves and sink tissues in response to stress is an important factor controlling plant yield. Ascorbate oxidase is an apoplastic enzyme, which controls the redox state of the apoplastic ascorbate pool. RNA interference was used to decrease ascorbate oxidase activity in tomato (Solanum lycopersicum L.). Fruit yield was increased in these lines under three conditions where assimilate became limiting for wild-type plants: when fruit trusses were left unpruned, when leaves were removed or when water supply was limited. Several alterations in the transgenic lines could contribute to the improved yield and favour transport of assimilate from leaves to fruits in the ascorbate oxidase lines. Ascorbate oxidase plants showed increases in stomatal conductance and leaf and fruit sugar content, as well as an altered apoplastic hexose:sucrose ratio. Modifications in gene expression, enzyme activity and the fruit metabolome were coherent with the notion of the ascorbate oxidase RNAi lines showing altered sink strength. Ascorbate oxidase may therefore be a target for strategies aimed at improving water productivity in crop species.

  4. Cocaine reduces cytochrome oxidase activity in the prefrontal cortex and modifies its functional connectivity with brainstem nuclei

    PubMed Central

    Vélez-Hernández, M.E.; Padilla, E.; Gonzalez-Lima, F.; Jiménez-Rivera, C.A.

    2014-01-01

    Cocaine-induced psychomotor stimulation may be mediated by metabolic hypofrontality and modification of brain functional connectivity. Functional connectivity refers to the pattern of relationships among brain regions, and one way to evaluate this pattern is using interactivity correlations of the metabolic marker cytochrome oxidase among different regions. This is the first study of how repeated cocaine modifies: (1) mean cytochrome oxidase activity in neural areas using quantitative enzyme histochemistry, and (2) functional connectivity among brain regions using inter-correlations of cytochrome oxidase activity. Rats were injected with 15 mg/kg i.p. cocaine or saline for 5 days, which lead to cocaine-enhanced total locomotion. Mean cytochrome oxidase activity was significantly decreased in cocaine-treated animals in the superficial dorsal and lateral frontal cortical association areas Fr2 and Fr3 when compared to saline-treated animals. Functional connectivity showed that the cytochrome oxidase activity of the noradrenergic locus coeruleus and the infralimbic cortex were positively inter-correlated in cocaine but not in control rats. Positive cytochrome oxidase activity inter-correlations were also observed between the dopaminergic substantia nigra compacta and Fr2 and Fr3 areas and the lateral orbital cortex in cocaine-treated animals. In contrast, cytochrome oxidase activity in the interpeduncular nucleus was negatively correlated with that of Fr2, anterior insular cortex, and lateral orbital cortex in saline but not in cocaine groups. After repeated cocaine specific prefrontal areas became hypometabolic and their functional connectivity changed in networks involving noradrenergic and dopaminergic brainstem nuclei. We suggest that this pattern of hypofrontality and altered functional connectivity may contribute to cocaine-induced psychomotor stimulation. PMID:24505625

  5. Cellular content and biosynthesis of polyamines during rooster spermatogenesis.

    PubMed Central

    Oliva, R; Vidal, S; Mezquita, C

    1982-01-01

    The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401

  6. Xanthine oxidase inhibitory activity of northeastern North American plant remedies used for gout.

    PubMed

    Owen, P L; Johns, T

    1999-02-01

    Xanthine oxidase (xanthine: oxygen oxidoreductase EC 1.2.3.2) inhibitory activity was assayed from 26 species belonging to 18 families traditionally used for the treatment of gout and related symptoms by Indigenous people of northeastern North America. The degree of inhibition was determined by measuring the increase in absorbance at 295 nm associated with uric acid formation. Eighty-eight percent of the plants were found to have inhibitory activity at 100 microg/ml, with 20% having greater than 50% inhibition. Larix laricina exhibited the highest activity with an inhibition of 86.33%. Of the species with the highest activity, Lineweaver-Burk plots showed that inhibition mode was of linear mixed-type. Inhibitory activity of the plants correlated positively with their phenolic content (r = 0.52 P < 0.01) and tannin content (r = 0.59 P < 0.001).

  7. Diagnosis of cyanide intoxication by measurement of cytochrome c oxidase activity.

    PubMed

    Ikegaya, H; Iwase, H; Hatanaka, K; Sakurada, K; Yoshida, K; Takatori, T

    2001-02-28

    Cytochrome c oxidase (CCO), a mitochondrial enzyme, is inactivated by cyanide or carbon monoxide (CO) intoxication. We measured CCO activity, in the major organs of the rat at various times after death caused by cyanide intoxication. Tissue samples were homogenized, and the CCO activity in the mitochondrial fraction was measured using ferrous cytochrome c as the substrate. The CCO activity inhibition was highest in the brain, although the cyanide concentration was lowest level. As a result of this and the clinical symptoms displayed, we consider the brain to be the primary organ of cyanide intoxication. As cyanide is highly toxic to humans, in small amounts and many patients and victims have already had some medical care, it is difficult to detect cyanide in criminal investigations. The CCO activities in various organs remained significantly low for 2 days after the cyanide intoxication, suggesting that the diagnosis may be possible by measuring not only the cyanide concentration but also the CCO activity.

  8. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions.

    PubMed

    Ghuge, Sandip A; Tisi, Alessandra; Carucci, Andrea; Rodrigues-Pousada, Renato A; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-07-14

    Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H₂O₂) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H₂O₂ biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H₂O₂ derived from PA oxidation in xylem tissue maturation under stress-simulated conditions.

  9. Cell Wall Amine Oxidases: New Players in Root Xylem Differentiation under Stress Conditions

    PubMed Central

    Ghuge, Sandip A.; Tisi, Alessandra; Carucci, Andrea; Rodrigues-Pousada, Renato A.; Franchi, Stefano; Tavladoraki, Paraskevi; Angelini, Riccardo; Cona, Alessandra

    2015-01-01

    Polyamines (PAs) are aliphatic polycations present in all living organisms. A growing body of evidence reveals their involvement as regulators in a variety of physiological and pathological events. They are oxidatively deaminated by amine oxidases (AOs), including copper amine oxidases (CuAOs) and flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). The biologically-active hydrogen peroxide (H2O2) is a shared compound in all of the AO-catalyzed reactions, and it has been reported to play important roles in PA-mediated developmental and stress-induced processes. In particular, the AO-driven H2O2 biosynthesis in the cell wall is well known to be involved in plant wound healing and pathogen attack responses by both triggering peroxidase-mediated wall-stiffening events and signaling modulation of defense gene expression. Extensive investigation by a variety of methodological approaches revealed high levels of expression of cell wall-localized AOs in root xylem tissues and vascular parenchyma of different plant species. Here, the recent progresses in understanding the role of cell wall-localized AOs as mediators of root xylem differentiation during development and/or under stress conditions are reviewed. A number of experimental pieces of evidence supports the involvement of apoplastic H2O2 derived from PA oxidation in xylem tissue maturation under stress-simulated conditions. PMID:27135338

  10. Effect of subunit III removal on control of cytochrome c oxidase activity by pH.

    PubMed

    Gregory, L C; Ferguson-Miller, S

    1988-08-23

    Studies were undertaken to assess the postulated involvement of subunit III in the proton-linked functions of cytochrome c oxidase. The effect of pH on the steady-state kinetic [corrected] parameters of subunit III containing and subunit III depleted cytochrome oxidase was determined by using beef heart and rat liver enzymes reconstituted into phospholipid vesicles. The TNmax and Km values for the III-containing enzyme increase with decreasing pH in a manner quantitatively similar to that reported by Thornstrom et al. [(1984) Chem. Scr. 24, 230-235], giving three apparent pKa values of less than 5.0, 6.2, and 7.8. The maximal activities of the subunit III depleted enzymes (beef heart and rat liver) show a similar dependence on pH, but the Km values are consistently higher than those of the III-containing enzyme, an effect that is accentuated at low pH. The pH dependence of TNmax/Km for both forms of the enzyme (+/- subunit III) indicates that protonation of a group with an apparent pKa of 5.7 lowers the affinity for substrate (cytochrome c) independently of a continued increase in maximal velocity. N,N'-Dicyclohexylcarbodiimide (DCCD) decreases the pH responsiveness of the electron-transfer activity to the same extent in both III-containing and III-depleted enzymes, indicating that this effect is mediated by a peptide other than subunit III. Control of intramolecular electron transfer by a transmembrane pH gradient (or alkaline intravesicular pH) is shown to occur in cytochrome oxidase vesicles with cytochrome c as the electron donor, in agreement with results of Moroney et al. [(1984) Biochemistry 23, 4991-4997] using hexaammineruthenium(II) as the reductant.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Phosphatidylinositol 3-Kinase Plays a Vital Role in Regulation of Rice Seed Vigor via Altering NADPH Oxidase Activity

    PubMed Central

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination. PMID:22448275

  12. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity.

    PubMed

    Liu, Jian; Zhou, Jun; Xing, Da

    2012-01-01

    Phosphatidylinositol 3-kinase (PI3K) has been reported to be important in normal plant growth and stress responses. In this study, it was verified that PI3K played a vital role in rice seed germination through regulating NADPH oxidase activity. Suppression of PI3K activity by inhibitors wortmannin or LY294002 could abate the reactive oxygen species (ROS) formation, which resulted in disturbance to the seed germination. And then, the signal cascades that PI3K promoted the ROS liberation was also evaluated. Diphenylene iodonium (DPI), an NADPH oxidase inhibitor, suppressed most of ROS generation in rice seed germination, which suggested that NADPH oxidase was the main source of ROS in this process. Pharmacological experiment and RT-PCR demonstrated that PI3K promoted the expression of Os rboh9. Moreover, functional analysis by native PAGE and the measurement of the 2, 3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazo-lium-5- carboxanilide (XTT) formazan concentration both showed that PI3K promoted the activity of NADPH oxidase. Furthermore, the western blot analysis of OsRac-1 demonstrated that the translocation of Rac-1 from cytoplasm to plasma membrane, which was known as a key factor in the assembly of NADPH oxidase, was suppressed by treatment with PI3K inhibitors, resulting in the decreased activity of NADPH oxidase. Taken together, these data favored the novel conclusion that PI3K regulated NADPH oxidase activity through modulating the recruitment of Rac-1 to plasma membrane and accelerated the process of rice seed germination.

  13. Characteristics of cytochrome oxidase activity in visual system neurons in kittens reared in conditions of flashing illumination.

    PubMed

    Merkul'eva, N S; Makarov, F N

    2005-10-01

    The studies reported here addressed the effects of flashing (15 Hz) lights on the metabolic activity of visual system neurons in animals reared in condition of crepuscular illumination. Activity of the respiratory enzyme cytochrome oxidase was detected in the cortex of visual areas 17 and 18 and in the lateral geniculate body in kittens. The results showed that kittens subjected to this stimulation, unlike intact kittens and kittens reared in conditions of crepuscular illumination, showed a change in the pattern of cytochrome oxidase distribution in cortical field 17 consisting of the appearance of alternating areas of increased and decreased enzyme activity in layers III and IV. In cortical field 18 and the lateral geniculate body, experimental kittens showed no changes in the cytochrome oxidase activity distribution pattern. It is suggested that flashing illumination leads to disturbance of the balance in activity in the Y and X conducting channels of the visual system.

  14. 4-Coumaroyl coenzyme A 3-hydroxylase activity from cell cultures of Lithospermum erythrorhizon and its relationship to polyphenol oxidase.

    PubMed

    Wang, Z X; Li, S M; Löscher, R; Heide, L

    1997-11-15

    A 4-coumaroyl-CoA 3-hydroxylase activity was purified 4600-fold from cell cultures of Lithospermum erythrorhizon. The enzyme showed a molecular mass of 42,400 +/- 1700 Da in gel chromatography and required ascorbate, NADH, or NADPH as cofactors. 4-Coumaroyl-CoA, 4-coumarate, p-cresol, and several other phenolic substances, but not tyrosine, were accepted as substrates for the hydroxylation. Besides hydroxylase activity, the enzyme showed diphenol oxidase activity. Both activities were inhibited by diethyldithiocarbamate or beta-mercaptoethanol, although at different concentrations. The enzyme showed striking similarity to a 4-coumaroyl-glucose 3-hydroxylase from sweet potato (Ipomoe batatas) roots, which has reportedly been purified to homogeneity and identified as a specific enzyme of chlorogenic acid biosynthesis. Close examination and comparison to a commercially available polyphenol oxidase, however, suggest that the enzyme activities purified from both Lithospermum and sweet potato are polyphenol oxidases rather than specific enzymes of secondary metabolism.

  15. Polyamines and Gut Mucosal Homeostasis

    PubMed Central

    Timmons, Jennifer; Chang, Elizabeth T.; Wang, Jian-Ying; Rao, Jaladanki N.

    2012-01-01

    The epithelium of gastrointestinal (GI) mucosa has the most rapid turnover rate of any tissue in the body and its integrity is preserved through the dynamic balance between cell migration, proliferation, growth arrest and apoptosis. To maintain tissue homeostasis of the GI mucosa, the rates of epithelial cell division and apoptosis must be highly regulated by various extracellular and intracellular factors including cellular polyamines. Natural polyamines spermidine, spermine and their precursor putrescine, are organic cations in eukaryotic cells and are implicated in the control of multiple signaling pathways and distinct cellular functions. Normal intestinal epithelial growth depends on the available supply of polyamines to the dividing cells in the crypts, and polyamines also regulate intestinal epithelial cell (IEC) apoptosis. Although the specific molecular processes controlled by polyamines remains to be fully defined, increasing evidence indicates that polyamines regulate intestinal epithelial integrity by modulating the expression of various growth-related genes. In this review, we will extrapolate the current state of scientific knowledge regarding the roles of polyamines in gut mucosal homeostasis and highlight progress in cellular and molecular mechanisms of polyamines and their potential clinical applications. PMID:25237589

  16. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella.

    PubMed

    Ramiro, Daniel Alves; Guerreiro-Filho, Oliveiro; Mazzafera, Paulo

    2006-09-01

    We examined the role of phenolic compounds, and the enzymes peroxidase and polyphenol oxidase, in the expression of resistance of coffee plants to Leucoptera coffeella (Lepidoptera: Lyonetiidae). The concentrations of total soluble phenols and chlorogenic acid (5-caffeoylquinic acid), and the activities of the oxidative enzymes peroxidase (POD) and polyphenol oxidase (PPO), were estimated in leaves of Coffea arabica, C. racemosa, and progenies of crosses between these species, which have different levels of resistance, before and after attack by this insect. The results indicate that phenols do not play a central role in resistance to the coffee leaf miner. Differences were detected between the parental species in terms of total soluble phenol concentrations and activities of the oxidative enzymes. However, resistant and susceptible hybrid plants did not differ in any of these characteristics. Significant induction of chlorogenic acid and PPO was only found in C. racemosa, the parental donator of the resistance genes against L. coffeella. High-performance liquid chromatography (HPLC) analysis also showed qualitative similarity between hybrids and the susceptible C. arabica. These results suggest that the phenolic content and activities of POD and PPO in response to the attack by the leaf miner may not be a strong evidence of their participation in direct defensive mechanisms.

  17. Structure, recombinant expression and mutagenesis studies of the catalase with oxidase activity from Scytalidium thermophilum.

    PubMed

    Yuzugullu, Yonca; Trinh, Chi H; Smith, Mark A; Pearson, Arwen R; Phillips, Simon E V; Sutay Kocabas, Didem; Bakir, Ufuk; Ogel, Zumrut B; McPherson, Michael J

    2013-03-01

    Scytalidium thermophilum produces a catalase with phenol oxidase activity (CATPO) that catalyses the decomposition of hydrogen peroxide into oxygen and water and also oxidizes various phenolic compounds. A codon-optimized catpo gene was cloned and expressed in Escherichia coli. The crystal structures of native and recombinant S. thermophilum CATPO and two variants, H82N and V123F, were determined at resolutions of 2.7, 1.4, 1.5 and 1.9 Å, respectively. The structure of CATPO reveals a homotetramer with 698 residues per subunit and with strong structural similarity to Penicillium vitale catalase. The haem component is cis-hydroxychlorin γ-spirolactone, which is rotated 180° with respect to small-subunit catalases. The haem-binding pocket contains two highly conserved water molecules on the distal side. The H82N mutation resulted in conversion of the native d-type haem to a b-type haem. Kinetic studies of the H82N and V123F mutants indicate that both activities are likely to be associated with the haem centre and suggest that the secondary oxidase activity may be a general feature of catalases in the absence of hydrogen peroxide.

  18. Dinuclear copper complexes with imidazole derivative ligands: a theoretical study related to catechol oxidase activity.

    PubMed

    Martínez, Ana; Membrillo, Ingrid; Ugalde-Saldívar, Victor M; Gasque, Laura

    2012-07-19

    Catechol oxidase is a very important and interesting metalloprotein. In spite of the efforts to understand the reaction mechanism of this protein, there are important questions that remain unanswered concerning the catalytic mechanism of this enzyme. In this article, dinuclear copper compounds are used as biomimetic models of catechol oxidase to study plausible reaction paths. These dinuclear copper(II) complexes have distant metal centers (of 7.5 Å approximately) and superior catalytic activity to that of many dicopper complexes with shorter Cu-Cu distances. One mononuclear copper(II) complex is also analyzed in this investigation in order to see the influence of the two metal centers in the catalytic activity. Density functional theory calculations were performed to obtain optimized structures, vertical ionization energies, vertical electron affinities, the electrodonating power (ω(-)), the electroaccepting power (ω(+)) and the energy difference of several reaction paths. The K(M) experimental results that were previously reported compare well with the electroaccepting power (ω(+)) of the copper compounds that are included in this article, indicating that this index is useful for the interpretation of the electron transfer capacity and therefore the catalytic activity. The catechol moiety coordinates to only one Cu ion, but two metal atoms are needed in order to have a good electron acceptor capacity of the biomimetic models.

  19. Activity-stability relationships revisited in blue oxidases catalyzing electron transfer at extreme temperatures.

    PubMed

    Roulling, Frédéric; Godin, Amandine; Cipolla, Alexandre; Collins, Tony; Miyazaki, Kentaro; Feller, Georges

    2016-09-01

    Cuproxidases are a subset of the blue multicopper oxidases that catalyze the oxidation of toxic Cu(I) ions into less harmful Cu(II) in the bacterial periplasm. Cuproxidases from psychrophilic, mesophilic, and thermophilic bacteria display the canonical features of temperature adaptation, such as increases in structural stability and apparent optimal temperature for activity with environmental temperature as well as increases in the binding affinity for catalytic and substrate copper ions. In contrast, the oxidative activities at 25 °C for both the psychrophilic and thermophilic enzymes are similar, suggesting that the nearly temperature-independent electron transfer rate does not require peculiar adjustments. Furthermore, the structural flexibilities of both the psychrophilic and thermophilic enzymes are also similar, indicating that the firm and precise bindings of the four catalytic copper ions are essential for the oxidase function. These results show that the requirements for enzymatic electron transfer, in the absence of the selective pressure of temperature on electron transfer rates, produce a specific adaptive pattern, which is distinct from that observed in enzymes possessing a well-defined active site and relying on conformational changes such as for the induced fit mechanism.

  20. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don.

    PubMed

    Lee, M H; Lin, R D; Shen, L Y; Yang, L L; Yen, K Y; Hou, W C

    2001-11-01

    Monoamine oxidase type B (MAO-B) activity and free radicals are elevated in certain neurological diseases. Four natural flavonoids, quercitrin, isoquercitrin, rutin, and quercetin, were isolated for the first time from the leaves of Melastoma candidum D. Don. They exhibited an inhibitory effect on MAO-B. These potent flavonoids were purified using bioassay-guided fractionation and were separated by Diaion, Sephadex LH-20, and MCI CHP20P columns. The IC(50) values of the four potent flavonoids, quercitrin, isoquercitrin, rutin, and quercetin on monoamine oxidase were 19.06, 11.64, 3.89, and 10.89 microM and enzyme kinetics analysis revealed apparent inhibition constants (K(i)) of 21.01, 2.72, 1.83, and 7.95 microM, respectively, on the substrate, benzylamine. The four potent compounds also exhibited hydroxyl radical scavenging activity as determined using a spin trapping electron spin resonance method. This suggests that the four flavonoids from M. candidum possess both MAO-B inhibitory and free radical scavenging activities. These important properties may be used for preventing some neurodegenerative diseases in the future.

  1. Inhibition of acetylcholinesterase and cytochrome oxidase activity in Fasciola gigantica cercaria by phytoconstituents.

    PubMed

    Sunita, Kumari; Habib, Maria; Kumar, P; Singh, Vinay Kumar; Husain, Syed Akhtar; Singh, D K

    2016-02-01

    Fasciolosis is an important cattle and human disease caused by Fasciola hepatica and Fasciola gigantica. One of the possible methods to control this problem is to interrupt the life cycle of Fasciola by killing its larva (redia and cercaria) in host snail. Molecular identification of cercaria larva of F. gigantica was done by comparing the nucleotide sequencing with adult F. gigantica. It was noted that nucleotide sequencing of cercaria larva and adult F. gigantica were 99% same. Every month during the year 2011-2012, in vivo treatment with 60% of 4 h LC50 of phyto cercaricides citral, ferulic acid, umbelliferone, azadirachtin and allicin caused significant inhibition of acetylcholinesterase (AChE) and cytochrome oxidase activity in the treated cercaria larva of F. gigantica. Whereas, activity of both enzymes were not significantly altered in the nervous tissues of vector snail Lymnaea acuminata exposed to same treatments. Maximum reduction in AChE (1.35% of control in month of June) and cytochrome oxidase (3.71% of control in the month of July) activity were noted in the cercaria exposed to 60% of 4 h LC50 of azadirachtin and allicin, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Legionella pneumophilaRequires Polyamines for Optimal Intracellular Growth ▿

    PubMed Central

    Nasrallah, Gheyath K.; Riveroll, Angela L.; Chong, Audrey; Murray, Lois E.; Lewis, P. Jeffrey; Garduño, Rafael A.

    2011-01-01

    The Gram-negative intracellular pathogen Legionella pneumophilareplicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV), into which it abundantly releases its chaperonin, HtpB. To determine whether HtpB remains within the LCV or reaches the host cell cytoplasm, we infected U937 human macrophages and CHO cells with L. pneumophilaexpressing a translocation reporter consisting of the Bordetella pertussisadenylate cyclase fused to HtpB. These infections led to increased cyclic AMP levels, suggesting that HtpB reaches the host cell cytoplasm. To identify potential functions of cytoplasmic HtpB, we expressed it in the yeast Saccharomyces cerevisiae, where HtpB induced pseudohyphal growth. A yeast-two-hybrid screen showed that HtpB interacted with S-adenosylmethionine decarboxylase (SAMDC), an essential yeast enzyme (encoded by SPE2) that is required for polyamine biosynthesis. Increasing the copy number of SPE2induced pseudohyphal growth in S. cerevisiae; thus, we speculated that (i) HtpB induces pseudohyphal growth by activating polyamine synthesis and (ii) L. pneumophilamay require exogenous polyamines for growth. A pharmacological inhibitor of SAMDC significantly reduced L. pneumophilareplication in L929 mouse cells and U937 macrophages, whereas exogenously added polyamines moderately favored intracellular growth, confirming that polyamines and host SAMDC activity promote L. pneumophilaproliferation. Bioinformatic analysis revealed that most known enzymes required for polyamine biosynthesis in bacteria (including SAMDC) are absent in L. pneumophila, further suggesting a need for exogenous polyamines. We hypothesize that HtpB may function to ensure a supply of polyamines in host cells, which are required for the optimal intracellular growth of L. pneumophila. PMID:21742865

  3. Mammalian Cu-containing amine oxidases (CAOs): new methods of analysis, structural relationships, and possible functions.

    PubMed

    Houen, G

    1999-01-01

    This thesis describes new and original experimental results on Cu-dependent amine oxidases (CAOs), which show that these enzymes can be conveniently and specifically detected in situ using a peroxidase-coupled activity staining method with 4-Cl-1-naphtole as hydrogen donor substrate. Even more sensitive in situ detection can be achieved using a chemiluminescence-based coupled peroxidase assay which was applied to show that human placenta CAO activity is confined to maternal vessels. A general purification scheme for CAOs is described, and applied to purification of different CAOs. Peptide maps and immunological crossreactivity studies with monoclonal antibodies raised against the purified enzymes showed that they were closely related. Amino acid sequence data for the bovine serum CAO showed that they form a separate group (E.C. 1.4.3.6) with no homology to other enzymes. A cDNA sequence was obtained on the basis of the amino acid sequence data, and this was found to encode a bovine lung CAO, related to bovine serum CAO. The genes for bovine lung and bovine serum CAO are characterized, and Southern blotting analysis of bovine chromosomal DNA shows the existence of a least one more bovine CAO. The purification of human neutrophil CAO is attempted, but it is described how lactoferrin, a protein with many properties in common with CAOs, and with a low degree of sequence identity can account for many observations on human neutrophil CAO. The products of bovine serum CAO oxidation of polyamines are characterised, and 3-aminopropanal is found to be the principal aminoaldehyde produced. Finally, a polyamine-stimulated binding of human placenta CAO to single-stranded DNA is described, and it is reported that the DNA-bound CAO is enzymically active and that the oxidation of DNA-bound polyamines leads to degradation of DNA. In addition to the experimental results, the properties of polyamines and Cu-dependent amine oxidases are reviewed. The polyamines spermidine and spermine

  4. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection.

    PubMed

    Lam, Grace Y; Fattouh, Ramzi; Muise, Aleixo M; Grinstein, Sergio; Higgins, Darren E; Brumell, John H

    2011-12-15

    The intracellular bacterial pathogen Listeria monocytogenes produces phospholipases C (PI-PLC and PC-PLC) and the pore-forming cytolysin listeriolysin O (LLO) to escape the phagosome and replicate within the host cytosol. We found that PLCs can also activate the phagocyte NADPH oxidase during L. monocytogenes infection, a response that would adversely affect pathogen survival. However, secretion of LLO inhibits the NADPH oxidase by preventing its localization to phagosomes. LLO-deficient bacteria can be complemented by perfringolysin O, a related cytolysin, suggesting that other pathogens may also use pore-forming cytolysins to inhibit the NADPH oxidase. Our studies demonstrate that while the PLCs induce antimicrobial NADPH oxidase activity, this effect is alleviated by the pore-forming activity of LLO. Therefore, the combined activities of PLCs and LLO on membrane lysis and the inhibitory effects of LLO on NADPH oxidase activity allow L. monocytogenes to efficiently escape the phagosome while avoiding the microbicidal respiratory burst. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes.

    PubMed

    Moschou, Panagiotis N; Sarris, Panagiotis F; Skandalis, Nicholas; Andriopoulou, Athina H; Paschalidis, Konstantinos A; Panopoulos, Nickolas J; Roubelakis-Angelakis, Kalliopi A

    2009-04-01

    Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum 'Xanthi') plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.

  6. p47phox Molecular Activation for Assembly of the Neutrophil NADPH Oxidase Complex*

    PubMed Central

    Marcoux, Julien; Man, Petr; Petit-Haertlein, Isabelle; Vivès, Corinne; Forest, Eric; Fieschi, Franck

    2010-01-01

    The p47phox cytosolic factor from neutrophilic NADPH oxidase has always been resistant to crystallogenesis trials due to its modular organization leading to relative flexibility. Hydrogen/deuterium exchange coupled to mass spectrometry was used to obtain structural information on the conformational mechanism that underlies p47phox activation. We confirmed a relative opening of the protein with exposure of the SH3 Src loops that are known to bind p22phox upon activation. A new surface was shown to be unmasked after activation, representing a potential autoinhibitory surface that may block the interaction of the PX domain with the membrane in the resting state. Within this surface, we identified 2 residues involved in the interaction with the PX domain. The double mutant R162A/D166A showed a higher affinity for specific phospholipids but none for the C-terminal part of p22phox, reflecting an intermediate conformation between the autoinhibited and activated forms. PMID:20592030

  7. Platelet monoamine oxidase activity levels in subgroups of alcoholics: diagnostic, temporal, and clinical correlates.

    PubMed

    Anthenelli, R M; Smith, T L; Craig, C E; Tabakoff, B; Schuckit, M A

    1995-09-15

    Platelet monoamine oxidase (MAO) activity levels were measured in 47 male inpatient alcoholics to determine whether this biological marker might be useful in differentiating subtypes of alcoholics. Of the subgrouping methods tested, only type 2 alcoholics defined by the criteria of Gilligan et al had significantly lower platelet MAO activity than type 1 alcoholics at intake, but this finding was not stable over time in a subset of subjects. Neither separating male veteran alcoholics into either of two other variations of the type 1/type 2 subtypes, nor classifying the sample into primary alcoholics versus primary ASPD with secondary alcoholism categories, yielded significant differences between subgroups. Generally, enzyme activity levels (Vmax) were higher about 10 days after stopping drinking compared to platelet MAO values determined in thrombocytes obtained after approximately 4 weeks abstinence; these levels remained relatively stable 3 months later in a cohort of subjects. Tobacco smoking was significantly negatively correlated to platelet MAO activity levels.

  8. Effects of special blue fluorescent light on hepatic mixed-function oxidase activity in the rat

    SciTech Connect

    Davis, D.R.; Yeary, R.A.; Randall, G.

    1981-01-01

    Phototherapy has been widely used in the treatment of neonatal hyperbilirubinemia. Recent reports, however, have indicated that fluorescent light may be toxic and mutagenic to mammalian cells. these findings suggest possible long-term side effects with the use of phototherapy. This study was undertaken to determine the effects of phototherapy on hepatic microsomal enzyme activity. The exposure of Sprague-Dawley and Gunn rats to special blue fluorescent light at an average irradiance of 1,200 microW/cm2 resulted in no significant changes in liver microsomal enzyme activity for aniline hydroxylase, p-nitroanisole-O-demethylase, ethylmorphine-N-demethylase, cytochrome c reductase or the quantity of cytochrome P-450. A significant decrease in aniline hydroxylase and p-nitroanisole-O-demethylase activity was observed when liver microsomes were exposed in vitro to special blue fluorescent light. Photoactivated bilirubin did not effect the activity of the mixed-function oxidase enzymes measured under the conditions of this study.

  9. Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots

    PubMed Central

    Pottosin, Igor; Velarde-Buendía, Ana-María; Zepeda-Jazo, Isaac; Dobrovinskaya, Oxana; Shabala, Sergey

    2012-01-01

    Stress conditions cause increases in ROS and polyamines levels, which are not merely collateral. There is increasing evidence for the ROS participation in signaling as well as for polyamine protective roles under stress. Polyamines and ROS, respectively, inhibit cation channels and induce novel cation conductance in the plasma membrane. Our new results indicate that polyamines and OH• also stimulate Ca2+ pumping across the root plasma membrane. Besides, polyamines potentiate the OH•-induced non-selective current and respective passive K+ and Ca2+ fluxes. In roots this synergism, however, is restricted to the mature zone, whereas in the distal elongation zone only the Ca2+ pump activation is observed. Remodeling the plasma membrane ion conductance by OH• and polyamines would impact K+ homeostasis and Ca2+ signaling under stress. PMID:22899073

  10. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Franklin, Bernardo S; Hoelscher, Marion; Schmitz, Theresa; Bedorf, Jörg; Nickenig, Georg; Werner, Nikos

    2013-04-01

    Diabetes is a major risk factor for cardiovascular diseases. Circulating endothelial microparticles (EMP) are increased in diabetic patients, but their potential contribution in atherogenesis is unclear. We sought to determine the role of EMP derived under high glucose conditions in the development of atherosclerosis. EMP were generated from human coronary endothelial cells (HCAEC) exposed to high glucose concentrations in order to mimic diabetic conditions. These EMP were defined as 'injured' EMP (iEMP) and their effects were compared with EMP generated from 'healthy' untreated HCAEC. iEMP injection significantly impaired endothelial function in ApoE(-/-) mice compared with EMP and vehicle treatment. Immunofluorescent experiments showed increased macrophage infiltration and adhesion protein expression in atherosclerotic lesions of iEMP-treated ApoE(-/-) mice compared with controls. To further investigate the underlying mechanism of iEMP-induced vascular inflammation, additional in vitro experiments were performed. iEMP, but not EMP, induced activation of HCAEC in a time- and dose-dependent manner and increased monocyte adhesion. Further experiments demonstrated that iEMP induced activation of HCAEC by phosphorylation of p38 into its biologically active form phospho-p38. Inhibition of p38 activation abrogated iEMP-dependent induction of adhesion proteins and monocyte adhesion on HCAEC. Moreover, we could demonstrate that iEMP show increased NADPH oxidase activity and contain significantly higher level of reactive oxygen species (ROS) than EMP. iEMP triggered ROS production in HCAEC and thereby activate p38 in an ROS-dependent manner. High glucose condition increases NADPH oxidase activity in endothelial microparticles that amplify endothelial inflammation and impair endothelial function by promoting activation of the endothelium. These findings provide new insights into the pathogenesis of diabetes-associated atherosclerosis.

  11. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils

    NASA Astrophysics Data System (ADS)

    Yakushev, A. V.; Kuznetsova, I. N.; Blagodatskaya, E. V.; Blagodatsky, S. A.

    2014-05-01

    Under conditions of the global climate warming, the changes in the reserves of soil humus depend on the temperature sensitivities of polyphenol peroxidases (PPPOs) and polyphenol oxidases (PPOs). They play an important role in lignin decomposition, mineralization, and humus formation. The temperature dependence of the potential enzyme activity in modern and buried soils has been studied during incubation at 10 or 20°C. The experimental results indicate that it depends on the availability of the substrate and the presence of oxygen. The activity of PPOs during incubation in the absence of oxygen for two months decreases by 2-2.5 times, which is balanced by an increase in the activity of PPPOs by 2-3 times. The increase in the incubation temperature to 20°C and the addition of glucose accelerates this transition due to the more abrupt decrease in the activity of PPOs. The preincubation of the soil with glucose doubles the activity of PPPOs but has no significant effect on the activity of PPOs. The different effects of temperature on two groups of the studied oxidases and the possibility of substituting enzymes by those of another type under changing aeration conditions should be taken into consideration in predicting the effect of the climate warming on the mineralization of the soil organic matter. The absence of statistically significant differences in the enzymatic activity between the buried and modern soil horizons indicates the retention by the buried soil of some of its properties (soil memory) and the rapid restoration of high enzymatic activity during the preincubation.

  12. Thiolactomycin inhibits D-aspartate oxidase: a novel approach to probing the active site environment.

    PubMed

    Katane, Masumi; Saitoh, Yasuaki; Hanai, Toshihiko; Sekine, Masae; Furuchi, Takemitsu; Koyama, Nobuhiro; Nakagome, Izumi; Tomoda, Hiroshi; Hirono, Shuichi; Homma, Hiroshi

    2010-10-01

    D-Aspartate oxidase (DDO) and D-amino acid oxidase (DAO) are flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the oxidative deamination of D-amino acids. While several functionally and structurally important amino acid residues have been identified in the DAO protein, little is known about the structure-function relationships of DDO. In the search for a potent DDO inhibitor as a novel tool for investigating its structure-function relationships, a large number of biologically active compounds of microbial origin were screened for their ability to inhibit the enzymatic activity of mouse DDO. We discovered several compounds that inhibited the activity of mouse DDO, and one of the compounds identified, thiolactomycin (TLM), was then characterized and evaluated as a novel DDO inhibitor. TLM reversibly inhibited the activity of mouse DDO with a mixed type of inhibition more efficiently than meso-tartrate and malonate, known competitive inhibitors of mammalian DDOs. The selectivity of TLM was investigated using various DDOs and DAOs, and it was found that TLM inhibits not only DDO, but also DAO. Further experiments with apoenzymes of DDO and DAO revealed that TLM is most likely to inhibit the activities of DDO and DAO by competition with both the substrate and the coenzyme, FAD. Structural models of mouse DDO/TLM complexes supported this finding. The binding mode of TLM to DDO was validated further by site-directed mutagenesis of an active site residue, Arg-237. Collectively, our findings show that TLM is a novel, active site-directed DDO inhibitor that will be useful for elucidating the molecular details of the active site environment of DDO. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  13. [Peculiarities of cytochrome oxidase activity in the visual cortex neurons of kittens reared under the conditions of flickering illumination].

    PubMed

    Merkul'eva, N S; Makarov, F N

    2004-01-01

    The objective of this study was to analyze the influence of the light flickering with the frequency of 15 Hz, on the neuronal metabolic activity in kittens reared under the conditions of mesopic illumination. The method for demonstration of a respiratory enzyme cytochrome oxidase was used to study the visual cortex areas 17 and 18 and the lateral geniculate nucleus. It was shown that in kittens that were subjected to this stimulation as opposed to intact animals and to kittens reared under the conditions of mesopic illumination, specific changes in pattern of cytochrome oxidase distribution in area 17 took place. This change was manifested by the appearance of alternating zones of increased and decreased enzyme activity in layers III and IV. Within the cortical area 18 and lateral geniculate nucleus, no changes in the pattern of cytochrome oxidase activity distribution were detected in experimental kittens. It is suggested that flickering illumination results in disequilibrium of Y- and X-visual pathway activity.

  14. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F(-) detection.

    PubMed

    Liu, Biwu; Huang, Zhicheng; Liu, Juewen

    2016-07-14

    Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ∼15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F(-) capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F(-) in water and in toothpastes, while no other tested anions can achieve the activity enhancement.

  15. Preparation of a one-subunit cytochrome oxidase from Paracoccus denitrificans: spectral analysis and enzymatic activity.

    PubMed

    Müller, M; Schlapfer, B; Azzi, A

    1988-09-20

    Cytochrome c oxidase was isolated from Paracoccus denitrificans as a two-subunit enzyme. Chymotrypsin-catalyzed proteolysis reduced the molecular weight of each subunit by about 8000. The spectral properties of this preparation, as well as its Km for cytochrome c(1.7 muM), remained unchanged with respect to the native enzyme. Vmax was reduced by about 55% when assayed in Triton X-100 or in Triton X-100 supplemented with asolectin. Following further proteolysis by Staphylococcus aureus V8 protease, subunit I remained unchanged as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas subunit II was split into small peptides. These were removed by ion-exchange high-performance liquid chromatography. The one-subunit enzyme had an apparent molecular weight of 43,000. The reduction of molecular weight was also confirmed by the diminution of the ultraviolet/Soret absorption ratio. This value was 1.8-2.1 for the native enzyme and 1.3-1.5 for the one-subunit enzyme. The spectral properties (including the spectrum CO reduced minus reduced) were not modified by the proteolytic treatment, indicating that cytochromes a and a3 were present in equal amounts. The lack of spectral alteration and the known close association of the copper B atom with cytochrome a3 suggest that copper B is also contained within the one-subunit enzyme. The Km of the one-subunit oxidase was similar to that of the two-subunit enzyme; Vmax was decreased by about 50%. The activity of the one-subunit oxidase had a salt-dependent maximum at 30 mM KCl, almost identical with that of the undigested enzyme, and was inhibited by micromolar concentrations of KCN.

  16. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity

    SciTech Connect

    Boxtel, Antonius L. van; Kamstra, Jorke H.; Fluitsma, Donna M.; Legler, Juliette

    2010-04-15

    Dithiocarbamates (DTCs) are a class of compounds that are extensively used in agriculture as pesticides. As such, humans and wildlife are undoubtedly exposed to these chemicals. Although DTCs are thought to be relatively safe due to their short half lives, it is well established that they are teratogenic to vertebrates, especially to fish. In zebrafish, these teratogenic effects are characterized by distorted notochord development and shortened anterior to posterior axis. DTCs are known copper (Cu) chelators but this does not fully explain the observed teratogenic effects. We show here that DTCs cause malformations in zebrafish that highly resemble teratogenic effects observed by direct inhibition of a group of cuproenzymes termed lysyl oxidases (LOX). Additionally, we demonstrate that partial knockdown of three LOX genes, lox, loxl1 and loxl5b, sensitizes the developing embryo to DTC exposure. Finally, we show that DTCs directly inhibit zebrafish LOX activity in an ex vivo amine oxidase assay. Taken together, these results provide the first evidence that DTC induced teratogenic effects are, at least in part, caused by direct inhibition of LOX activity.

  17. Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity.

    PubMed

    Avalbaev, Azamat; Yuldashev, Ruslan; Fedorova, Kristina; Somov, Kirill; Vysotskaya, Lidiya; Allagulova, Chulpan; Shakirova, Farida

    2016-02-01

    The treatment of 4-days-old wheat seedlings with methyl jasmonate (MeJA) in concentration optimal for their growth (0.1 μM) resulted in a rapid transient almost two-fold increase in the level of cytokinins (CKs). MeJA-induced accumulation of CKs was due to inhibition of both cytokinin oxidase (CKX) (cytokinin oxidase/dehydrogenase, EC 1.5.99.12) gene expression and activity of this enzyme. Pretreatment of wheat seedlings with MeJA decreased the growth-retarding effect of sodium chloride salinity and accelerated growth recovery after withdrawal of NaCl from the incubation medium. We speculate that this protective effect of the hormone might be due to MeJA's ability to prevent the salinity-induced decline in CK concentration that was caused by inhibition of gene expression and activity of CKX in wheat seedlings. The data might indicate an important role for endogenous cytokinins in the implementation of growth-promoting and protective effects of exogenous MeJA application on wheat plants.

  18. Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities.

    PubMed

    MacGregor, Barbara J; Biddle, Jennifer F; Siebert, Jason R; Staunton, Eric; Hegg, Eric L; Matthysse, Ann G; Teske, Andreas

    2013-02-01

    Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC-MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated.

  19. Why Orange Guaymas Basin Beggiatoa spp. Are Orange: Single-Filament-Genome-Enabled Identification of an Abundant Octaheme Cytochrome with Hydroxylamine Oxidase, Hydrazine Oxidase, and Nitrite Reductase Activities

    PubMed Central

    Biddle, Jennifer F.; Siebert, Jason R.; Staunton, Eric; Hegg, Eric L.; Matthysse, Ann G.; Teske, Andreas

    2013-01-01

    Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa (“Candidatus Maribeggiatoa”) filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC–MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated. PMID:23220958

  20. Effect of afforestation on urate oxidase activity in two kinds of soils

    NASA Astrophysics Data System (ADS)

    Meysner, Teresa; Wojciech Szajdak, Lech

    2010-05-01

    Researches were carried out in soils under a 125-m-long the afforestation located in the Kościan Plain in Turew, which is a part of West Poland Lowland. Soil samples were taken from four chosen sites marked as Nos. 1, 2, 3 and 4 near wells. One part of this afforestation was allocated on mineral, whereas the second part was on mineral-organic soil. Times of sampling were from March to November in 2009 from the layer at 0-20 cm depth after removing leaf litter. Urate oxidase activity in soils was determined colorimetrically by measuring the absorbance at λ=293 nm. Urate oxidase is a homotetrameric enzyme containing four identical active sites situated at the interfaces between its four subunits. This enzyme catalyzes the oxidation of uric acid, a final product of purine catabolism to 5-hydroxyisourate, which is non-enzymatically transformed into allantoin, carbon dioxide and hydrogen peroxide. Uricase is also an essential enzyme in the ureide pathway, where nitrogen fixation occurs in the root nodules of legumes. Nitrogen heterocyclic compounds such as allantoin may serve as nitrogen sources or nitrogen transport compounds in plants that are not able to fix nitrogen. It has been estimated that heterocyclic nitrogen compounds represent about 30% of the reduced nitrogen in soils. These studies indicated that the flow of ground water was accompanied by an increase of uricase activity from 16 to 71% (from point 1 to point 2) in all periods of sampling in mineral soils. Similar trend was shown in mineral-organic soils. There was an increase of uricase activity from the point 3 to 4 and ranged from 13 to 37% similar to the direction of the flow of ground water. However, no significant differences of urate oxidase activity between two kinds of soils were observed. This study showed that the uricase activity ranged from 1.99 to 7.16 μmol×h-1×g-1 in the mineral soils and from 1.79 to 8.36 μmol×h-1×g-1. The study indicated an impact of the afforestation located on

  1. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: rivaling protein enzymes and ultrasensitive F- detection

    NASA Astrophysics Data System (ADS)

    Liu, Biwu; Huang, Zhicheng; Liu, Juewen

    2016-07-01

    Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ~15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F- capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F- in water and in toothpastes, while no other tested anions can achieve the activity enhancement.Nanomaterial-based enzyme mimics (nanozymes) are currently a new forefront of chemical research. However, the application of nanozymes is limited by their low catalytic activity and low turnover numbers. Cerium dioxide nanoparticles (nanoceria) are among the few with oxidase activity. Herein, we report an interesting finding addressing their limitations. The oxidase activity of nanoceria is improved by over 100-fold by fluoride capping, making it more close to real oxidases. The turnover number reached 700 in 15 min, drastically improved from ~15 turnovers for the naked particles. The mechanism is attributed to surface charge modulation and facilitated electron transfer by F- capping based on ζ-potential and free radical measurements. Ultrasensitive sensing of fluoride was achieved with a detection limit of 0.64 μM F- in water and in toothpastes, while no other tested anions can achieve the activity enhancement. Electronic supplementary information (ESI) available: Methods, TMB oxidation kinetics and control experiments. See DOI: 10.1039/c6nr02730j

  2. Studies on polyphenol content, activities and isozymes of polyphenol oxidase and peroxidase during air-curing in three tobacco types.

    PubMed

    Sheen, S J; Calvert, J

    1969-02-01

    The change in polyphenol content in the primed leaves of burley, flue-cured, and Turkish tobaccos during air-curing was related to the activities and isozymes of polyphenol oxidase and peroxidase. The quantity of chlorogenic acid was rapidly reduced during the first week of curing. The decrease in rutin content during curing was less significant, especially when the concentration of chlorogenic acid was high in leaf tissues. This result was further confirmed by in vitro assays with partially purified tobacco polyphenol oxidase.The polyphenol oxidase activity did not differ at any stage of curing in the 3 tobaccos. When the activity was measured by the oxidation of 3,4-dihydroxyphenylalanine it rose rapidly during the first day of curing and then decreased sharply so that in the fully cured leaf only 15% activity remained. The increase in activity was not observed when chlorogenic acid was used as the substrate. A similar level of peroxidase activity was found in the 3 tobaccos before curing. Peroxidase activities increased rapidly during the first 24 hr of curing, declined thereafter, and remained highest in the flue-cured tobacco, less in the Turkish line, and least in the burley at the end of curing process.By polyacrylamide gel block electrophoresis, 10 peroxidase isozyme bands, 2 cationic and 8 anionic, appeared identical in all 3 tobaccos. When catechol replaced benzidine-2 HCl as the electron donor, 1 cationic and 2 anionic peroxidase isozymes did not form. Of interest is that the same 10 peroxidase isozyme bands also exhibited polyphenol oxidase activities when treated with 3,4-dihydroxyphenylalanine or chlorogenic acid. Results suggest that in the crude tobacco leaf extract the peroxidase and polyphenol oxidase may associate as protein complexes, and peroxidase isozymes may differ in electron-donor requirements. Isozyme patterns for both oxidases at various curing intervals differed only quantitatively.

  3. Structural basis of antizyme-mediated regulation of polyamine homeostasis

    PubMed Central

    Wu, Hsiang-Yi; Chen, Shin-Fu; Hsieh, Ju-Yi; Chou, Fang; Wang, Yu-Hsuan; Lin, Wan-Ting; Lee, Pei-Ying; Yu, Yu-Jen; Lin, Li-Ying; Lin, Te-Sheng; Lin, Chieh-Liang; Liu, Guang-Yaw; Tzeng, Shiou-Ru; Hung, Hui-Chih; Chan, Nei-Li

    2015-01-01

    Polyamines are organic polycations essential for cell growth and differentiation; their aberrant accumulation is often associated with diseases, including many types of cancer. To maintain polyamine homeostasis, the catalytic activity and protein abundance of ornithine decarboxylase (ODC), the committed enzyme for polyamine biosynthesis, are reciprocally controlled by the regulatory proteins antizyme isoform 1 (Az1) and antizyme inhibitor (AzIN). Az1 suppresses polyamine production by inhibiting the assembly of the functional ODC homodimer and, most uniquely, by targeting ODC for ubiquitin-independent proteolytic destruction by the 26S proteasome. In contrast, AzIN positively regulates polyamine levels by competing with ODC for Az1 binding. The structural basis of the Az1-mediated regulation of polyamine homeostasis has remained elusive. Here we report crystal structures of human Az1 complexed with either ODC or AzIN. Structural analysis revealed that Az1 sterically blocks ODC homodimerization. Moreover, Az1 binding triggers ODC degradation by inducing the exposure of a cryptic proteasome-interacting surface of ODC, which illustrates how a substrate protein may be primed upon association with Az1 for ubiquitin-independent proteasome recognition. Dynamic and functional analyses further indicated that the Az1-induced binding and degradation of ODC by proteasome can be decoupled, with the intrinsically disordered C-terminal tail fragment of ODC being required only for degradation but not binding. Finally, the AzIN–Az1 structure suggests how AzIN may effectively compete with ODC for Az1 to restore polyamine production. Taken together, our findings offer structural insights into the Az-mediated regulation of polyamine homeostasis and proteasomal degradation. PMID:26305948

  4. Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Arge mone mexicana and Berberis wilsoniae in insect cells.

    PubMed

    Gesell, Andreas; Chávez, Maria Luisa Díaz; Kramell, Robert; Piotrowski, Markus; Macheroux, Peter; Kutchan, Toni M

    2011-06-01

    Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC 1.3.3.8), was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.

  5. Kinetic and phylogenetic analysis of plant polyamine uptake transporters.

    PubMed

    Mulangi, Vaishali; Chibucos, Marcus C; Phuntumart, Vipaporn; Morris, Paul F

    2012-10-01

    The rice gene Polyamine Uptake Transporter1 (PUT1) was originally identified based on its homology to the polyamine uptake transporters LmPOT1 and TcPAT12 in Leishmania major and Trypanosoma cruzi, respectively. Here we show that five additional transporters from rice and Arabidopsis that cluster in the same clade as PUT1 all function as high affinity spermidine uptake transporters. Yeast expression assays of these genes confirmed that uptake of spermidine was minimally affected by 166 fold or greater concentrations of amino acids. Characterized polyamine transporters from both Arabidopsis thaliana and Oryza sativa along with the two polyamine transporters from L. major and T. cruzi were aligned and used to generate a hidden Markov model. This model was used to identify significant matches to proteins in other angiosperms, bryophytes, chlorophyta, discicristates, excavates, stramenopiles and amoebozoa. No significant matches were identified in fungal or metazoan genomes. Phylogenic analysis showed that some sequences from the haptophyte, Emiliania huxleyi, as well as sequences from oomycetes and diatoms clustered closer to sequences from plant genomes than from a homologous sequence in the red algal genome Galdieria sulphuraria, consistent with the hypothesis that these polyamine transporters were acquired by horizontal transfer from green algae. Leishmania and Trypansosoma formed a separate cluster with genes from other Discicristates and two Entamoeba species. We surmise that the genes in Entamoeba species were acquired by phagotrophy of Discicristates. In summary, phylogenetic and functional analysis has identified two clades of genes that are predictive of polyamine transport activity.

  6. Higher platelet cytochrome oxidase specific activity in surviving than in non-surviving septic patients

    PubMed Central

    2014-01-01

    Introduction In a previous study with 96 septic patients, we found that circulating platelets in 6-months surviving septic patients showed higher activity and quantity of cytochrome c oxidase (COX) normalized by citrate synthase (CS) activity at moment of severe sepsis diagnosis than non-surviving septic patients. The objective of this study was to estimate whether COX specific activity during the first week predicts 1-month sepsis survival in a larger cohort of patients. Methods Using a prospective, multicenter, observational study carried out in six Spanish intensive care units with 198 severe septic patients, we determined COX activity per proteins (COXact/Prot) in circulating platelets at day 1, 4 and 8 of the severe sepsis diagnosis. Endpoints were 1-month and 6-months mortality. Results Survivor patients (n = 130) showed higher COXact/Prot (P < 0.001) than non-survivors (n = 68) at day 1, 4 and 8 of severe sepsis diagnosis. More than a half of the 6-months survivor patients showed an increase in their COXact/Prot from day 1 to 8. However, most of the 1-month non-survivors exhibited a decrease in their COXact/Prot from day 1 to 8. Multiple logistic regression analyses showed that of platelet COXact/Prot > 0.30 mOD/min/mg at day 1 (P = 0.002), 4 (P = 0.006) and 8 (P = 0.02) was associated independently with 1-month mortality. Area under the curve of COXact/Prot at day 1, 4 and 8 to predict 30-day survival were 0.70 (95% CI = 0.63-0.76; P < 0.001), 0.71 (95% CI = 0.64-0.77; P < 0.001) and 0.71 (95% CI = 0.64-0.78; P < 0.001), respectively. Conclusions The new findings of our study, to our knowledge the largest series reporting data about mitochondrial function during follow-up in septic patients, were that septic patients that survive 1-month have a higher platelet cytochrome oxidase activity at moment of sepsis diagnosis and during the first week than non-survivors, and that platelet cytochrome oxidase

  7. The insert region of the Rac GTPases is dispensable for activation of superoxide-producing NADPH oxidases.

    PubMed

    Miyano, Kei; Koga, Hirofumi; Minakami, Reiko; Sumimoto, Hideki

    2009-08-13

    Rac1 and Rac2, which belong to the Rho subfamily of Ras-related GTPases, play an essential role in activation of gp91phox/Nox2 (cytochrome b-245, beta polypeptide; also known as Cybb), the catalytic core of the superoxide-producing NADPH oxidase in phagocytes. Rac1 also contributes to activation of the non-phagocytic oxidases Nox1 (NADPH oxidase 1) and Nox3 (NADPH oxidase 3), each related closely to gp91phox/Nox2. It has remained controversial whether the insert region of Rac (amino acids 123-135), unique to the Rho subfamily proteins, is involved in gp91phox/Nox2 activation. In the present study we show that removal of the insert region from Rac1 neither affects activation of gp91phox/Nox2, which is reconstituted under cell-free and whole-cell conditions, nor blocks its localization to phagosomes during ingestion of IgG-coated beads by macrophage-like RAW264.7 cells. The insert region of Rac2 is also dispensable for gp91phox/Nox2 activation at the cellular level. Although Rac2, as well as Rac1, is capable of enhancing superoxide production by Nox1 and Nox3, the enhancements by the two GTPases are both independent of the insert region. We also demonstrate that Rac3, a third member of the Rac family in mammals, has an ability to activate the three oxidases and that the activation does not require the insert region. Thus the insert region of the Rac GTPases does not participate in regulation of the Nox family NADPH oxidases.

  8. Calcium disodium edetate enhances type A monoamine oxidase activity in monkey brain.

    PubMed

    Egashira, Toru; Sakai, Kumiko; Sakurai, Mami; Takayama, Fusako

    2003-09-01

    The effects of metal chelators on monoamine oxidase (MAO) isozymes, MAO-A and MAO-B, in monkey brain mitochondria were investigated in vitro. MAO-A activity increased to about 40% with 0.1 microM calcium disodium edetate (CaNa2EDTA) using serotonin as a substrate, and this activation was proportional to the concentration of CaNa2EDTA. On the other hand, MAO-A activities were decreased gradually with an increasing concentration of o-phenanthroline and diethyldithiocarbamic acid, but these metal chelators had no effect on MAO-B activity in monkey brain. The activation of MAO-A activity by CaNa2EDTA was reversible. CaNa2EDTA did not activate both MAO-A and MAO-B activities in rat brain mitochondria. Zn and Fe ions were found in the mitochondria of monkey brain. Zn ions potently inhibited MAO-A activity, but Fe ions did not inhibit either MAO-A or MAO-B activity in monkey brain mitochondria. These results indicate that the activating action of CaNa2EDTA on MAO-A was the result of the chelating of Zn ions contained in mitochondria by CaNa2EDTA. These results also indicate the possibility that Zn ions may regulate physiologically the level of serotonin and norepinephrine content in brain by inhibiting a MAO-A activity.

  9. Inhibitory effects of DA-9601 on ethanol-induced gastrohemorrhagic lesions and gastric xanthine oxidase activity in rats.

    PubMed

    Huh, Keun; Kwon, Tae Hyup; Shin, Uk Sup; Kim, Won Bae; Ahn, Byoung Ok; Oh, Tae Young; Kim, Jung-Ae

    2003-10-01

    The exposure of gastric mucosa to ethanol produces pathological changes such as inflammatory process, hemorrhagic erosions, even acute ulcers. The gastric mucosal lesions accompanied by a significant decrease of gastric blood flow and increase of reactive oxygen species (ROS) implicate a role of xanthine oxidase in ethanol-induced gastric hemorrhagic erosions. DA-9601, a novel antipeptic formulation of extracts of Artemisia asiatica Nakai, was studied for its inhibitory effect on gastric xanthine oxidase activity and type conversion of the enzyme that has a profound role in free radical generation. Intubation of absolute ethanol (4 g/kg) significantly induced gastrohemorrhagic lesions and lipid peroxidation in the rat stomach. Oral administration of DA-9601 at 40 mg/kg body weight significantly reduced ethanol-induced gastric mucosal hemorrhagic lesions and lipid peroxidation, which was proportional to the inhibitory effect of DA-9601 on alcohol-induced xanthine oxidase-type conversion and enzyme activity. The results suggest that alcohol-induced gastric mucosal damage may be, in part, due to the increased activity of xanthine oxidase and type conversion rate of the enzyme and that the preventive effect of DA-9601 on gastrohemorrhagic lesions would result from its inhibitory action against xanthine oxidase and oxidative stress in alcohol-treated rats.

  10. Low platelet monoamine oxidase activity in headache: no correlation with phenolsulphotransferase, succinate dehydrogenase, platelet preparation method or smoking.

    PubMed Central

    Littlewood, J; Glover, V; Sandler, M; Peatfield, R; Petty, R; Clifford Rose, F

    1984-01-01

    Platelet monoamine oxidase activity in male migrainous and cluster headache patients was significantly lower than in male controls, confirming our previous study. The activity range showed a normal distribution and low mean values could not be attributed to a subgroup with particularly low activity. When Corash 's platelet preparation method was used, with its high platelet yield, specific enzyme activities of a similar order were obtained. Thus, the low values encountered were not due to abnormal recovery within the platelet population. Two other enzyme activities, phenolsulphotransferase M and succinate dehydrogenase, were also measured in the same platelet samples. Although low succinate dehydrogenase activity was identified in the headache groups, it appeared to represent a separate phenomenon and there was no significant correlation between activity of either enzyme and that of monoamine oxidase. This shows that the low activity of platelet monoamine oxidase in headache is not related to a generalised platelet enzyme deficit. It was also shown that the low monoamine oxidase activity in the headache patients could not be attributed to smoking. PMID:6587008

  11. (/sup 11/C)clorgyline and (/sup 11/C)-L-deprenyl and their use in measuring functional monoamine oxidase activity in the brain using positron emission tomography

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1986-04-17

    This invention involves a new strategy for imaging the activity of the enzyme monoamine oxidase in the living body by using /sup 11/C-labeled enzyme inhibitors which bind irreversibly to an enzyme as a result of catalysis. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  12. Studies of Mitochondrial and Nonmitochondrial Sources Implicate Nicotinamide Adenine Dinucleotide Phosphate Oxidase(s) in the Increased Skeletal Muscle Superoxide Generation That Occurs During Contractile Activity

    PubMed Central

    Sakellariou, Giorgos Konstantinos; Vasilaki, Aphrodite; Palomero, Jesus; Kayani, Anna; Zibrik, Lea; McArdle, Anne

    2013-01-01

    Abstract Aims The sources of cytosolic superoxide in skeletal muscle have not been defined. This study examined the subcellular sites that contribute to cytosolic superoxide in mature single muscle fibers at rest and during contractile activity. Results: Isolated fibers from mouse flexor digitorum brevis loaded with superoxide and nitric-oxide-sensitive fluorescent probes, specific pathway inhibitors and immunolocalization techniques were used to identify subcellular sites contributing to cytosolic superoxide. Treatment with the electron transport chain complex III inhibitor, antimycin A, but not the complex I inhibitor, rotenone, caused increased cytosolic superoxide through release from the mitochondrial intermembrane space via voltage-dependent anion or Bax channels, but inhibition of these channels did not affect contraction-induced increases in cytosolic superoxide. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors decreased cytosolic superoxide at rest and following contractions. Protein and mRNA expression of NADPH oxidase subunits was demonstrated in single fibers. NOX2, NOX4, and p22phox subunits localized to the sarcolemma and transverse tubules; NOX4 was additionally expressed in mitochondria. Regulatory p40phox and p67phox proteins were found in the cytoplasm of resting fibers, but following contractions, p40phox appeared to translocate to the sarcolemma. Innovation: Superoxide and other reactive oxygen species generated by skeletal muscle are important regulators of muscle force production and adaptations to contractions. This study has defined the relative contribution of mitochondrial and cytosolic sources of superoxide within the cytosol of single muscle fibers at rest and during contractions. Conclusion: Muscle mitochondria do not modulate cytosolic superoxide in skeletal muscle but NADPH oxidase is a major contributor both at rest and during contractions. Antioxid. Redox Signal. 18, 603–621. PMID:23050834

  13. Ovarian dual oxidase (Duox) activity is essential for insect eggshell hardening and waterproofing.

    PubMed

    Dias, Felipe A; Gandara, Ana Caroline P; Queiroz-Barros, Fernanda G; Oliveira, Raquel L L; Sorgine, Marcos H F; Braz, Glória R C; Oliveira, Pedro L

    2013-12-06

    In insects, eggshell hardening involves cross-linking of chorion proteins via their tyrosine residues. This process is catalyzed by peroxidases at the expense of H2O2 and confers physical and biological protection to the developing embryo. Here, working with Rhodnius prolixus, the insect vector of Chagas disease, we show that an ovary dual oxidase (Duox), a NADPH oxidase, is the source of the H2O2 that supports dityrosine-mediated protein cross-linking and eggshell hardening. RNAi silencing of Duox activity decreased H2O2 generation followed by a failure in embryo development caused by a reduced resistance to water loss, which, in turn, caused embryos to dry out following oviposition. Phenotypes of Duox-silenced eggs were reversed by incubation in a water-saturated atmosphere, simultaneous silencing of the Duox and catalase genes, or H2O2 injection into the female hemocoel. Taken together, our results show that Duox-generated H2O2 fuels egg chorion hardening and that this process plays an essential role during eggshell waterproofing.

  14. Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays.

    PubMed

    Hayat, Akhtar; Cunningham, Jessica; Bulbul, Gonca; Andreescu, Silvana

    2015-07-23

    Nanomaterial-based enzyme mimics have attracted considerable interest in chemical analysis as alternative catalysts to natural enzymes. However, the conditions in which such particles can replace biological catalysts and their selectivity and reactivity profiles are not well defined. This work explored the oxidase like properties of nanoceria particles in the development of colorimetric assays for the detection of dopamine and catechol. Selectivity of the system with respect to several phenolic compounds, the effect of interferences and real sample analysis are discussed. The conditions of use such as buffer composition, selectivity, pH, reaction time and particle type are defined. Detection limits of 1.5 and 0.2μM were obtained with nanoceria for dopamine and catechol. The same assay could be used as a general sensing platform for the detection of other phenolics. However, the sensitivity of the method varies significantly with the particle type, buffer composition, pH and with the structure of the phenolic compound. The results demonstrate that nanoceria particles can be used for the development of cost effective and sensitive methods for the detection of these compounds. However, the selection of the particle system and experimental conditions is critical for achieving high sensitivity. Recommendations are provided on the selection of the particle system and reaction conditions to maximize the oxidase like activity of nanoceria.

  15. Genomic organisation, activity and distribution analysis of the microbial putrescine oxidase degradation pathway.

    PubMed

    Foster, Alexander; Barnes, Nicole; Speight, Robert; Keane, Mark A

    2013-10-01

    The catalytic action of putrescine specific amine oxidases acting in tandem with 4-aminobutyraldehyde dehydrogenase is explored as a degradative pathway in Rhodococcus opacus. By limiting the nitrogen source, increased catalytic activity was induced leading to a coordinated response in the oxidative deamination of putrescine to 4-aminobutyraldehyde and subsequent dehydrogenation to 4-aminobutyrate. Isolating the dehydrogenase by ion exchange chromatography and gel filtration revealed that the enzyme acts principally on linear aliphatic aldehydes possessing an amino moiety. Michaelis-Menten kinetic analysis delivered a Michaelis constant (K(M)=0.014 mM) and maximum rate (Vmax=11.2 μmol/min/mg) for the conversion of 4-aminobutyraldehyde to 4-aminobutyrate. The dehydrogenase identified by MALDI-TOF mass spectrometric analysis (E value=0.031, 23% coverage) belongs to a functionally related genomic cluster that includes the amine oxidase, suggesting their association in a directed cell response. Key regulatory, stress and transport encoding genes have been identified, along with candidate dehydrogenases and transaminases for the further conversion of 4-aminobutyrate to succinate. Genomic analysis has revealed highly similar metabolic gene clustering among members of Actinobacteria, providing insight into putrescine degradation notably among Micrococcaceae, Rhodococci and Corynebacterium by a pathway that was previously uncharacterised in bacteria.

  16. Crystallization and preliminary analysis of active nitroalkane oxidase in three crystal forms

    PubMed Central

    Nagpal, Akanksha; Valley, Michael P.; Fitzpatrick, Paul F.; Orville, Allen M.

    2006-01-01

    Nitroalkane oxidase (NAO), a flavoprotein cloned and purified from Fusarium oxysporum, catalyzes the oxidation of neutral nitroalkanes to the corresponding aldehydes or ketones, with the production of H2O2 and nitrite. In this paper, the crystallization and preliminary X-ray data analysis of three crystal forms of active nitroalkane oxidase are described. The first crystal form belongs to a trigonal space group (either P3121 or P3221, with unit-cell parameters a = b = 103.8, c = 487.0 Å) and diffracts to at least 1.6 Å resolution. Several data sets were collected using 2θ and κ geometry in order to obtain a complete data set to 2.07 Å resolution. Solvent-content and Matthews coefficient analysis suggests that crystal form 1 contains two homotetramers per asymmetric unit. Crystal form 2 (P212121; a = 147.3, b = 153.5, c = 169.5 Å) and crystal form 3 (P31 or P32; a = b = 108.9, c = 342.5 Å) are obtained from slightly different conditions and also contain two homotetramers per asymmetric unit, but have different solvent contents. A three-wavelength MAD data set was collected from selenomethionine-enriched NAO (SeMet-NAO) in crystal form 3 and will be used for phasing. PMID:15272176

  17. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  18. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury.

    PubMed

    Fischer, Marie T; Sharma, Rakhi; Lim, Jamie L; Haider, Lukas; Frischer, Josa M; Drexhage, Joost; Mahad, Don; Bradl, Monika; van Horssen, Jack; Lassmann, Hans

    2012-03-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and

  19. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury

    PubMed Central

    Fischer, Marie T.; Sharma, Rakhi; Lim, Jamie L.; Haider, Lukas; Frischer, Josa M.; Drexhage, Joost; Mahad, Don; Bradl, Monika; van Horssen, Jack

    2012-01-01

    Multiple sclerosis is a chronic inflammatory disease of the central nervous system, associated with demyelination and neurodegeneration. The mechanisms of tissue injury are poorly understood, but recent data suggest that mitochondrial injury may play an important role in this process. Mitochondrial injury can be triggered by reactive oxygen and nitric oxide species, and we recently provided evidence for oxidative damage of oligodendrocytes and dystrophic axons in early stages of active multiple sclerosis lesions. In this study, we identified potential sources of reactive oxygen and nitrogen species through gene expression in carefully staged and dissected lesion areas and by immunohistochemical analysis of protein expression. Genome-wide microarrays confirmed mitochondrial injury in active multiple sclerosis lesions, which may serve as an important source of reactive oxygen species. In addition, we found differences in the gene expression levels of various nicotinamide adenine dinucleotide phosphate oxidase subunits between initial multiple sclerosis lesions and control white matter. These results were confirmed at the protein level by means of immunohistochemistry, showing upregulation of the subunits gp91phox, p22phox, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 in activated microglia in classical active as well as slowly expanding lesions. The subunits gp91phox and p22phox were constitutively expressed in microglia and were upregulated in the initial lesion. In contrast, p47phox, nicotinamide adenine dinucleotide phosphate oxidase 1 and nicotinamide adenine dinucleotide phosphate oxidase organizer 1 expression were more restricted to the zone of initial damage or to lesions from patients with acute or early relapsing/remitting multiple sclerosis. Double labelling showed co-expression of the nicotinamide adenine dinucleotide phosphate oxidase subunits in activated microglia and

  20. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    PubMed

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  1. NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation.

    PubMed

    Qian, Li; Gao, Xi; Pei, Zhong; Wu, Xuefei; Block, Michelle; Wilson, Belinda; Hong, Jau-Shyong; Flood, Patrick M

    2007-01-01

    In this paper we report that diphenyliodonium (DPI), a NADPH oxidase inhibitor, shows potent anti-inflammatory and neuroprotective effects at femtomolar concentrations (10(-13) to 10(-14) M) in primary midbrain cultures. Mechanistic studies revealed that DPI-elicited effects were mediated by the inhibition of LPS-induced microglial ROS production and the subsequent release of pro-inflammatory cytokine TNFa, and the production of nitric oxide. Further studies showed that 10(-14) M DPI significantly reduced LPS-induced ERK phosphorylation. Taken together, our results demonstrate that femtomolar concentrations of DPI exert potent anti-inflammatory and neuroprotective effects by inhibiting microglial activation through the inhibition of ERK-regulated PHOX activity.

  2. Platelet monoamine oxidase activity in relatives of alcoholics. Preliminary study with matched control subjects.

    PubMed

    Schuckit, M A; Shaskan, E; Duby, J; Vega, R; Moss, M

    1982-02-01

    Platelet monoamine oxidase (MAO) activity levels were determined before and 180 minutes after ingestion of ethyl alcohol in 30 healthy men aged 21 to 25 years. The subjects included 15 men with alcoholic first-degree relatives who were matched by demography, height-weight ratio, and drinking history with 15 control subjects who had no family history of alcoholism. There was a nonsignificant trend toward lower platelet MAO activities at baseline and after ethyl alcohol ingestion in the group with alcoholic relatives when compared with the control subjects who had no family history of alcoholism. With an arbitrary MAO cutoff of 5.24 nmole/mg of protein per hour, eight of the 15 subjects with alcoholic relatives and 12 of the 15 without alcoholic relatives were correctly identified. However, because of the number of false-positive and false-negative findings, the results have limited clinical usefulness.

  3. Proximity does not contribute to activity enhancement in the glucose oxidase-horseradish peroxidase cascade

    NASA Astrophysics Data System (ADS)

    Zhang, Yifei; Tsitkov, Stanislav; Hess, Henry

    2016-12-01

    A proximity effect has been invoked to explain the enhanced activity of enzyme cascades on DNA scaffolds. Using the cascade reaction carried out by glucose oxidase and horseradish peroxidase as a model system, here we study the kinetics of the cascade reaction when the enzymes are free in solution, when they are conjugated to each other and when a competing enzyme is present. No proximity effect is found, which is in agreement with models predicting that the rapidly diffusing hydrogen peroxide intermediate is well mixed. We suggest that the reason for the activity enhancement of enzymes localized by DNA scaffolds is that the pH near the surface of the negatively charged DNA nanostructures is lower than that in the bulk solution, creating a more optimal pH environment for the anchored enzymes. Our findings challenge the notion of a proximity effect and provide new insights into the role of DNA scaffolds.

  4. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology.

    PubMed

    Sang, Mangmang; Du, Guangyan; Hao, Jia; Wang, Linlin; Liu, Erwei; Zhang, Yi; Wang, Tao; Gao, Xiumei; Han, Lifeng

    2017-05-30

    Xanthine oxidase (XOD), which could oxidize hypoxanthine to xanthine and then to uric acid, is a key enzyme in the pathogenesis of hyperuricemia and also a well-known target for the drug development to treat gout. In our study, the total alkaloids of Nelumbinis folium markedly inhibited XOD activity, with IC50 value being 3.313μg/mL. UHPLC-Q-TOF-MS and 3D docking analysis indicated that roemerine was a potential active ingredient. A response surface methodology combined with central composite design experiment was further developed and validated for the optimization of the reaction conditions between the total alkaloids of Nelumbinis folium and XOD, which could be considered as a meaningful research for the development of XOD inhibitor rapidly and sensitively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 5-hydroxytryptamine actions in adipocytes: involvement of monoamine oxidase-dependent oxidation and subsequent PPARγ activation.

    PubMed

    Grès, Sandra; Gomez-Zorita, Saioa; Gomez-Ruiz, Ana; Carpéné, Christian

    2013-06-01

    Serotonin (5-HT) is a brain neurotransmitter instrumental for the antidepressant action of selective inhibitors of serotonin reuptake (SSRIs) while it also plays important roles in peripheral organs. Recently, the 5-HT oxidation products, 5-hydroxyindoleacetate and 5-methoxy-indoleacetate, have been shown to bind to peroxisome proliferator-activated receptor γ (PPARγ) and to enhance lipid accumulation in preadipocytes. Since we already reported that adipocytes exhibit elevated monoamine oxidase (MAO) and primary amine oxidase activities, we verified how adipocytes readily oxidize 5-HT, with the objective to determine whether such oxidation promotes PPARγ activation and lipid storage. To this aim, serotonin was tested on cultured 3T3 F442A preadipocytes and on human adipocytes. Results showed that 5-HT was oxidized by MAO in both models. Daily treatment of 3T3 F442A preadipocytes for 8 days with 100-500 μM 5-HT promoted triglyceride accumulation and emergence of adipogenesis markers. At 250 μM, 5-HT alone reproduced half of 50 nM insulin-induced adipogenesis, and exhibited an additive differentiating effect when combined with insulin. Moreover, the 5-HT-induced expression of PPARγ-responsive genes (PEPCK, aP2/FABP4) was blocked by GW 9662, a PPARγ-inhibitor, or by pargyline, a MAO-inhibitor. In human fat cells, 6-h exposure to 100 μM 5-HT increased PEPCK expression as did the PPARγ-agonist rosiglitazone. Since hydrogen peroxide, another amine oxidation product, did not reproduce such enhancement, we propose that serotonin can promote PPARγ activation in fat cells, via the indoleacetate produced during MAO-dependent oxidation. Such pathway could be involved in the adverse effects of several antidepressant SSRIs on body weight gain.

  6. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate.

    PubMed

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C; Mathews, F Scott; Jorns, Marilyn Schuman

    2011-06-21

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  7. Probing Oxygen Activation Sites in Two Flavoprotein Oxidases Using Chloride as an Oxygen Surrogate

    SciTech Connect

    Kommoju, Phaneeswara-Rao; Chen, Zhi-wei; Bruckner, Robert C.; Mathews, F. Scott; Jorns, Marilyn Schuman

    2011-08-16

    A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX-chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX-chloride complex and a ternary MSOX-chloride-MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.

  8. NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes.

    PubMed

    Sun, Bingbing; Wang, Xiang; Ji, Zhaoxia; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Li, Ruibin; Zhang, Haiyuan; Nel, André E; Xia, Tian

    2015-05-06

    The purpose of this paper is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species, including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, single-walled carbon nanotubes, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22(phox) -deficient cells. The NADPH oxidase is directly involved in lysosomal damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22(phox) -deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47(phox) -deficient mice. Moreover, p47(phox) -deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine in wild-type animals exposed to MWCNTs.

  9. Activities of dl-α-Difluoromethylarginine and Polyamine Analogues against Cryptosporidium parvum Infection in a T-Cell Receptor Alpha-Deficient Mouse Model▿

    PubMed Central

    Yarlett, Nigel; Waters, W. Ray; Harp, James A.; Wannemuehler, Michael J.; Morada, Mary; Bellcastro, Josephine; Upton, Steve J.; Marton, Laurence J.; Frydman, Benjamin J.

    2007-01-01

    The in vivo effectiveness of a series of conformationally restricted polyamine analogues alone and selected members in combination with dl-α-difluoromethylarginine against Cryptosporidium parvum infection in a T-cell receptor alpha-deficient mouse model was tested. Polyamine analogues were selected from the extended bis(ethyl)-sym-homospermidine or bis(ethyl)-spermine backbone having cis or trans double bonds at the center of the molecule. The cis isomers were found to have significantly greater efficacy in both preventing and curing infection in a mouse model than the trans polyamine analogues when tested in a T-cell receptor alpha-deficient mouse model. When tested in combination with dl-α-difluoromethylarginine, the cis-restricted analogues were found to be more effective in preventing oocyst shedding. This study demonstrates the potential of polyamine analogues as anticryptosporidial agents and highlights the presence of multiple points in polyamine synthesis by this parasite that are susceptible to inhibition resulting in growth inhibition. PMID:17242149

  10. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by l-lysine oxidase activity.

    PubMed

    Chen, Wen Ming; Lin, Chang Yi; Sheu, Shih Yi

    2010-05-05

    A greenish yellow pigmented bacterial strain, designated GR5, was recently isolated from a freshwater culture pond for a soft-shell turtle. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain GR5 belongs to the genus Rheinheimera and its only closest neighbor is the type strain of Rheinheimera texasensis (98.2%). Based on the antibiogram assay, strain GR5 possesses a broad spectrum of antimicrobial activity including Gram-positive and Gram-negative bacteria, yeast, algae, and strain GR5 itself. Strain GR5 can synthesize a macromolecule with antimicrobial activity due to the generation of hydrogen peroxide and this antimicrobial effect can be inhibited by catalase. This antimicrobial activity is active only in complex culture media or chemically defined culture media containing l-lysine. This antimicrobial macromolecule in strain GR5 is shown to be a monomeric protein with a molecular mass of 71kDa and isoelectric point of approximately 3.68. Liquid chromatography-tandem mass spectrometry analyses reveal close similarity of a 19-amino acid fragment derived from this protein to the antibacterial protein, AlpP from the marine bacterium Pseudoalteromonas tunicata D2, and to the antibacterial protein, marinocine, from the marine bacterium Marinomonas mediterranea. This study explores the nature of antimicrobial macromolecule such as l-lysine oxidase. This is the first report on a freshwater bacterium producing antimicrobial activity by generating hydrogen peroxide through its enzymatic activity of l-lysine oxidase.

  11. 1-Aminocyclopropane-1-carboxylic acid oxidase reaction mechanism and putative post-translational activities of the ACCO protein

    PubMed Central

    Dilley, David R.; Wang, Zhenyong; Kadirjan-Kalbach, Deena K.; Ververidis, Fillipos; Beaudry, Randolph; Padmanabhan, Kallaithe

    2013-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A ‘nest’ comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein–protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner. PMID:24244837

  12. Platelet monamine oxidase in chronic schizophrenia. Some enzyme characteristics relevant to reduced activity.

    PubMed

    Murphy, D L; Donnelly, C H; Miller, L; Wyatt, R J

    1976-11-01

    To evaluate further the basis for the reduced activity of platelet monoamine oxidase (MAO) found in chronic schizophrenic patients, a number of characteristics of the enzyme were compared between patients and controls. Equivalent and statistically significant reductions in activity of the enzyme were found in the patients when tyramine and benzylamine were used as the substrates in comparison to previously reported reductions with tryptamine as the substrate. Michaelis constants for platelet MAO from chronic schizophrenic patients with reduced enzyme activity were not different from controls. Dialysis of the enzyme from patients and controls yielded no changes in activity. Studies of other platelet enzymes, including succinate dehydrogenase, cytochrome C reductase, and lactate dehydrogenase in patients, normal controls, and a subgroup of normal controls with reduced MAO activity, showed no parallel reductions in activity in patients or controls with low MAO activity. These findings suggest that the reduced MAO activity found in chronic schizophrenic patients is apparently not accounted for by nonspecific changes in platelets or platelet mitochondria.

  13. Potato tuber cytokinin oxidase/dehydrogenase genes: biochemical properties, activity, and expression during tuber dormancy progression.

    PubMed

    Suttle, Jeffrey C; Huckle, Linda L; Lu, Shunwen; Knauber, Donna C

    2014-03-15

    The enzymatic and biochemical properties of the proteins encoded by five potato cytokinin oxidase/dehydrogenase (CKX)-like genes functionally expressed in yeast and the effects of tuber dormancy progression on StCKX expression and cytokinin metabolism were examined in lateral buds isolated from field-grown tubers. All five putative StCKX genes encoded proteins with in vitro CKX activity. All five enzymes were maximally active at neutral to slightly alkaline pH with 2,6-dichloro-indophenol as the electron acceptor. In silico analyses indicated that four proteins were likely secreted. Substrate dependence of two of the most active enzymes varied; one exhibiting greater activity with isopentenyl-type cytokinins while the other was maximally active with cis-zeatin as a substrate. [(3)H]-isopentenyl-adenosine was readily metabolized by excised tuber buds to adenine/adenosine demonstrating that CKX was active in planta. There was no change in apparent in planta CKX activity during either natural or chemically forced dormancy progression. Similarly although expression of individual StCKX genes varied modestly during tuber dormancy, there was no clear correlation between StCKX gene expression and tuber dormancy status. Thus although CKX gene expression and enzyme activity are present in potato tuber buds throughout dormancy, they do not appear to play a significant role in the regulation of cytokinin content during tuber dormancy progression.

  14. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects.

    PubMed

    Zhao, Mouming; Zhu, Dashuai; Sun-Waterhouse, Dongxiao; Su, Guowan; Lin, Lianzhu; Wang, Xiao; Dong, Yi

    2014-08-06

    This study aimed to explore the potential of polished adlay, brown adlay, adlay bran, and adlay hull to prevent and treat hyperuricemia. Brown adlay extract effectively decreased the serum uric acid levels of oxonate-induced hyperuricemic rats. Free and bound phenolic extracts from these materials contained significant amounts of phenolics, with free phenolics dominated by chlorogenic acid and p-coumaric acid while bound phenolics dominated by p-coumaric acid and ferulic acid. Free and bound phenolics of adlay bran exhibited significant xanthine oxidase inhibition activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical absorbance capacities, and superoxide radical scavenging activities. Adlay bran phenolics could be effective xanthine oxidase inhibitors and radical scavengers. p-Coumaric acid is a xanthine oxidase inhibitor with strong superoxide radical scavenging activity. However, ferulic acid is a xanthine oxidase inhibitor with weak superoxide radical scavenging activity. Chlorogenic acid is a superoxide radical scavenger with weak xanthine oxidase inhibitory activity.

  15. Decreased platelet monoamine oxidase activity in chronic schizophrenia, shown with novel substrates.

    PubMed

    Berrettini, W H; Prozialeck, W; Vogel, W H

    1978-05-01

    Platelet monoamine oxidase (MAO) was kinetically evaluated in chronic schizophrenics and matched controls, using substrates of major physiologic importance and substrates of particular interest in the study of schizophrenia, such as serotonin (5-ht), N,N-dimethyltryptamine (DMT), 5-methoxytryptamine (5-MT), and dopamine (DA). Substrates were measured at six concentrations; values for maximal velocity (Vmax) and Michaelis constant (Km) were obtained by using Lineweaver-Burk plots. The Vmax was decreased for all substrates in chronic schizophrenia and the Km was decreased for DA, 5-HT, and DMT, but remained unchanged for 5-MT. The value of Km/Vmax was similar for schizophrencis and normal persons when DA, 5-HT, and DMT were used as substrates, which may indicate that "uncompetitive" inhibition is responsible for the observed decrease in activity among chronic schizophrenics. The finding of a decreased Vmax but unchanged Km with 5-MT would be consistent with noncompetitive inhibition.

  16. Brief maternal deprivation of rats reduces hepatic mixed function oxidase activities

    SciTech Connect

    Vesell, E.S. ); Heubel, F.; Netter, K.J. )

    1989-01-01

    Deprivation of pups from mother and sibs for 3 min daily from day 5 today 41 of life reduced activities of 4 hepatic mixed function oxidases (MFO) expressed per mg protein in male rats compared to unhandled control rats. These decreases, though generally small, 22.4% and under, reached statistical significance for the substrates aminopyrine, benzphetamine and ethoxycoumarin. This handling procedure did not consistently affect the inductive response to phenobarbital. Previously ignored as a source of variability in response to xenobiotics, handling appears from these results to merit further investigation as such a factor in uninduced rats. Differences among rats in handling could contribute to large day-to-day variations in their metabolism of xenobiotics.

  17. The microsomal mixed function oxidase system of amphibians and reptiles: components, activities and induction.

    PubMed

    Ertl, R P; Winston, G W

    1998-11-01

    This article reviews current research in amphibian and reptilian cytochromes P450, important to the overall understanding of xenobiotic metabolism in the ecosystem and the evolution of P450s. Amphibians and reptilians contain the normal mixed function oxidase system (MFO). In general the MFO content and activities are less than those found in mammals, but only a few of the known activities have been examined in these vertebrate classes. Research to date has focused on two families of cytochromes P450, CYP1 and 2. The isoforms examined catalyze the classic activities but there have been notable absences. The total number of isoforms present and the breadth of substrates metabolized are yet unknown. Induction by foreign compounds (xenobiotics) is lengthier and yields lower levels of induced activity than is typically found in mammals. When these animals are pretreated with 3-methylcholanthrene (3MC) and beta-naphthaflavone (BNF), which are known to induce the same isoform in mammals, multiple isoforms are induced with different activities. Phenobarbital-pretreatment in turtles and alligators induces cytochromes P450 and suggestive data indicates induction in the lizard Agama lizard and the newt Pleurodeles waltl. In amphibians and reptiles a CYP2B protein does appear to be present along with constitutive activities associated with the 2 family of cytochromes P450. The markedly different response to classic inducers combined with lower or absent activities alters the view of how amphibians and reptilians respond to xenobiotic challenges.

  18. Polyphenols decreased liver NADPH oxidase activity, increased muscle mitochondrial biogenesis and decreased gastrocnemius age-dependent autophagy in aged rats.

    PubMed

    Laurent, Caroline; Chabi, Beatrice; Fouret, Gilles; Py, Guillaume; Sairafi, Badie; Elong, Cecile; Gaillet, Sylvie; Cristol, Jean Paul; Coudray, Charles; Feillet-Coudray, Christine

    2012-09-01

    This study explored major systems of reactive oxygen species (ROS) production and their consequences on oxidative stress, mitochondriogenesis and muscle metabolism in aged rats, and evaluated the efficiency of 30-day oral supplementation with a moderate dose of a red grape polyphenol extract (RGPE) on these parameters. In the liver of aged rats, NADPH oxidase activity was increased and mitochondrial respiratory chain complex activities were altered, while xanthine oxidase activity remained unchanged. In muscles, only mitochondrial activity was modified with aging. The oral intake of RGPE decreased liver NADPH oxidase activity in the aged rats without affecting global oxidative stress, suggesting that NADPH oxidase was probably not the dominant detrimental source of production of O(2)·(-) in the liver. Interestingly, RGPE supplementation increased mitochondrial biogenesis and improved antioxidant status in the gastrocnemius of aged rats, while it had no significant effect in soleus. RGPE supplementation also decreased age-dependent autophagy in gastrocnemius of aged rats. These results extended existing findings on the beneficial effects of RGPE on mitochondriogenesis and muscle metabolism in aged rats.

  19. Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase

    PubMed Central

    Proshlyakov, Denis A.; Pressler, Michelle A.; Babcock, Gerald T.

    1998-01-01

    Elucidating the structures of intermediates in the reduction of O2 to water by cytochrome c oxidase is crucial to understanding both oxygen activation and proton pumping by the enzyme. In the work here, the reaction of O2 with the mixed-valence enzyme, in which only heme a3 and CuB in the binuclear center are reduced, has been followed by time-resolved resonance Raman spectroscopy. The results show that O=O bond cleavage occurs within the first 200 μs after reaction initiation; the presence of a uniquely stable Fe—O—O(H) peroxy species is not detected. The product of this rapid reaction is a heme a3 oxoferryl (FeIV=O) species, which requires that an electron donor in addition to heme a3 and CuB must be involved. The available evidence suggests that the additional donor is an amino acid side chain. Recent crystallographic data [Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., et al. Science, in press; Ostermeier, C., Harrenga, A., Ermler, U. & Michel, H. (1997) Proc. Natl. Acad. Sci. USA 94, 10547–10553] show that one of the CuB ligands, His240, is cross-linked to Tyr244 and that this cross-linked tyrosyl is ideally positioned to participate in dioxygen activation. We propose a mechanism for O—O bond cleavage that proceeds by concerted hydrogen atom transfer from the cross-linked His—Tyr species to produce the product oxoferryl species, CuB2+—OH−, and the tyrosyl radical. This mechanism provides molecular structures for two key intermediates that drive the proton pump in oxidase; moreover, it has clear analogies to the proposed O—O bond forming chemistry that occurs during O2 evolution in photosynthesis. PMID:9653133

  20. Acquisition of polyamines by the obligate intracytoplasmic bacterium Rickettsia prowazekii.

    PubMed Central

    Speed, R R; Winkler, H H

    1990-01-01

    Both the polyamine content and the route of acquisition of polyamines by Rickettsia prowazekii, an obligate intracellular parasitic bacterium, were determined. The rickettsiae grew normally in an ornithine decarboxylase mutant of the Chinese hamster ovary (C55.7) cell line whether or not putrescine, which this host cell required in order to grow, was present. The rickettsiae contained approximately 6 mM putrescine, 5 mM spermidine, and 3 mM spermine when cultured in the presence or absence of putrescine. Neither the transport of putrescine and spermidine by the rickettsiae nor a measurable rickettsial ornithine decarboxylase activity could be demonstrated. However, we demonstrated the de novo synthesis of polyamines from arginine by the rickettsiae. Arginine decarboxylase activity (29 pmol of 14CO2 released per h per 10(8) rickettsiae) was measured in the rickettsiae growing within their host cell. A markedly lower level of this enzymatic activity was observed in cell extracts of R. prowazekii and could be completely inhibited with 1 mM difluoromethylarginine, an irreversible inhibitor of the enzyme. R. prowazekii failed to grow in C55.7 cells that had been cultured in the presence of 1 mM difluoromethylarginine. After rickettsiae were grown in C55.7 in the presence of labeled arginine, the specific activities of arginine in the host cell cytoplasm and polyamines in the rickettsiae were measured; these measurements indicated that 100% of the total polyamine content of R. prowazekii was derived from arginine. PMID:2120188

  1. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    PubMed Central

    Quinet, Muriel; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C.; Lutts, Stanley

    2010-01-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice. PMID:20472577

  2. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance.

    PubMed

    Quinet, Muriel; Ndayiragije, Alexis; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C; Lutts, Stanley

    2010-06-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice.

  3. Characterization of antilipolytic action of polyamines in isolated rat adipocytes.

    PubMed Central

    Richelsen, B; Pedersen, S B; Hougaard, D M

    1989-01-01

    The interactions of polyamines with the lipolytic system were studied in isolated rat adipocytes. Spermine, spermidine and putrescine significantly inhibited adenosine deaminase-stimulated lipolysis. An antilipolytic effect of spermine was detectable at a concentration of 0.25 mM (P less than 0.05). At a concentration of 10 mM all three polyamines inhibited the stimulated lipolysis by 50-60% (P less than 0.001). In addition, spermine enhanced the antilipolytic sensitivity of insulin. Spermine (1 mM) decreased the half-maximal inhibitory concentration of insulin from 320 +/- 70 pM to 56 +/- 20 pM (P less than 0.01). The antilipolytic effects and the cyclic-AMP-lowering effects of the polyamines were almost completely prevented in the presence of different phosphodiesterase (PDE) inhibitors (3-isobutyl-1-methylxanthine and RO 20-1724) and, in addition, polyamines had no effect on lipolysis stimulated by dibutyryl cyclic AMP, indicating that polyamines may inhibit lipolysis by activating the PDE enzyme. This latter suggestion was confirmed by demonstrating that spermine (5 mM) significantly enhanced the low-Km PDE enzyme activity (P less than 0.01). Finally, the amounts of polyamines present in isolated adipocytes were measured, and the estimated cytoplasmic concentrations were 0.02 mM (putrescine), 0.86 mM (spermidine), and 1.0 mM (spermine). It is concluded that polyamines may possibly be involved in the physiological regulation of triacylglycerol mobilization in adipocytes. PMID:2476118

  4. Role of polyamines and phospholipase D in maize (Zea mays L.) response to drought stress

    USDA-ARS?s Scientific Manuscript database

    Hydroponic experiment was conducted to elucidate the role of polyamines and phospholipase D (PLD) in regulating response of maize plants to drought stress (DS). During the early stage of DS, an increase in PLD activity, independent of polyamines contents, was mainly responsible for stomatal closure...

  5. Regulation of DNA synthesis and cell division by polyamines in Catharanthus roseus suspension cultures

    Treesearch

    R. Minocha; S.C. Minocha; A. Komamine; W.C. Shortle

    1991-01-01

    Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL α-difluoromethylarginine inhibited ADC activity, cellular...

  6. Blueberry polyphenol oxidase: Characterization and the kinetics of thermal and high pressure activation and inactivation.

    PubMed

    Terefe, Netsanet Shiferaw; Delon, Antoine; Buckow, Roman; Versteeg, Cornelis

    2015-12-01

    Partially purified blueberry polyphenol oxidase (PPO) in Mcllvaine buffer (pH=3.6, typical pH of blueberry juice) was subjected to processing at isothermal-isobaric conditions at temperatures from 30 to 80 °C and pressure from 0.1 to 700 MPa. High pressure processing at 30-50 °C at all pressures studied caused irreversible PPO activity increase with a maximum of 6.1 fold increase at 500 MPa and 30 °C. Treatments at mild pressure-mild temperature conditions (0.1-400 MPa, 60 °C) also caused up to 3 fold PPO activity increase. Initial activity increase followed by a decrease occurred at relatively high pressure-mild temperature (400-600 MPa, 60 °C) and mild pressure-high temperature (0.1-400 MPa, 70-80 °C) combinations. At temperatures higher than 76 °C, monotonic decrease in PPO activity occurred at 0.1 MPa and pressures higher than 500 MPa. The activation/inactivation kinetics of the enzyme was successfully modelled assuming consecutive reactions in series with activation followed by inactivation.

  7. Measurement of polyphenol oxidase activity using optical waveguide lightmode spectroscopy-based immunosensor.

    PubMed

    Kim, Namsoo; Kim, Woo-Yeon

    2015-02-15

    Polyphenol oxidase (PPO) is an important quality index during food processing involving heat-treatment and sensitive determination of PPO activity has been a critical concern in the food industry. In this study, a new measurement of PPO activity exploiting an optical waveguide lightmode spectroscopy-based immunosensor is presented using a polyclonal anti-PPO antibody that was immobilized in situ to the surface of a 3-aminopropyltriethoxysilane-treated optical grating coupler activated with glutaraldehyde. When analysed with a purified PPO fraction from potato tubers, a linear relationship was found between PPO activities of 0.0005607-560.7U/mL and the sensor responses obtained. The sensor was applicable to measurement of PPO activity in real samples that were prepared from potato tubers, grapes and Kimchi cabbage, and the analytical results were compared with those obtained by a conventional colorimetric assay measuring PPO activity. When tested for long-term stability, the sensor was reusable up to 10th day after preparation.

  8. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds.

    PubMed

    Nilthong, Somrudee; Graybosch, R A; Baenziger, P S

    2012-12-01

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS markers, PPO18, PPO29 and STS01, were used to identify lines with putative alleles at the Ppo-A1 and Ppo-D1 loci conditioning low or high PPO activity. ANOVA showed significant genotypic effects on PPO activity (P < 0.0001) in all populations. The generations and generation × genotype effects were not significant in any population. A putative third (null) genotype at Ppo-A1 (no PCR fragments for PPO18) was discovered in NW07OR1066 and NW07OR1070 derived populations, and these had the lowest mean PPO activities. Results demonstrated that both Ppo-A1 and Ppo-D1 loci affect the kernel PPO activity, but the Ppo-A1 has the major effect. In three populations, contrary results were observed to those predicted from previous work with Ppo-D1 alleles, suggesting the markers for Ppo-D1 allele might give erroneous results in some genetic backgrounds or lineages. Results suggest that selection for low or null alleles only at Ppo-A1 might allow development of low PPO wheat cultivars.

  9. Platelet monoamine oxidase activity in underweight and weight-recovered females with anorexia nervosa.

    PubMed

    Ehrlich, S; Franke, L; Schott, R; Salbach-Andrae, H; Pfeiffer, E; Lehmkuhl, U; Uebelhack, R

    2008-11-01

    Central serotonergic pathways may play an important role in the etiology of anorexia nervosa (AN). Although platelet monoamine oxidase activity (MAO-B) has been proposed as an index of cerebral serotonin activity, studies in patients with AN are scarce. Platelet MAO-B activity was determined in 59 acutely underweight AN patients (acAN, aged 14-29 years, BMI=15.2+/-1.4), 35 weight-recovered AN patients (recAN, aged 15-29, BMI=20.8+/-2.2) and 59 healthy control women (HCW, aged 14-26, BMI=21.6+/-2.1). Plasma leptin served as an indicator of malnutrition. Results were compared by ANCOVA controlling for confounding variables. Platelet MAO-B activity in acAN patients (5.2+/-1.4 nmol/10 (9)pltx15 min) was similar to HCW (5.5+/-1.9) but significantly lower in recAN patients (4.4+/-1.5). BMI and leptin showed a significant negative correlation with MAO-B activity in AN patients, but not in HCW. Our results highlight the importance of malnutrition for the interpretation of abnormalities in neurotransmitter systems in AN. Whether low MAO-B activity in weight-recovered AN patients indicates a premorbid trait or a secondary change due to recovery remains to be elucidated.

  10. Platelet monoamine oxidase activity is related to MAOB intron 13 genotype.

    PubMed

    Garpenstrand, H; Ekblom, J; Forslund, K; Rylander, G; Oreland, L

    2000-01-01

    Monoamine oxidases (MAO) play a critical role in the degradation of endogenous and exogenous amines throughout the body. There are two distinct MAO isoforms, MAO-A and MAO-B, which both are encoded in genes on the X chromosome. Alterations in MAO-B activity have previously been connected with several neurological disorders. Platelet MAO (trbc-MAO) is exclusively of the B-type and the catalytic activity of this enzyme is under strong, yet unknown, genetic control. Specific trbc-MAO activity has been reported to be increased in certain neurodegenerative diseases and to correlate with personality traits such as sensation seeking and impulsiveness. In the present study, we investigated if trbc-MAO activity is associated with genotype at a variable region (A/G dimorphism) in intron 13 of the human gene encoding MAO-B. The MAOB intron 13 allele status and levels of trbc-MAO were determined for 55 Caucasian non-smoking males. Individuals with the "A-allele" displayed significantly lower enzyme activity than individuals with the "G-allele", i.e. 11.4 +/- 0.6 nmol/10(10) platelets/min compared with 13.5 +/- 0.6 (mean +/- SEM, p = 0.019). The present results suggest that the MAOB genotype may be involved in determining trbc-MAO activity.

  11. Polyamine Metabolism Changes in Psoriasis

    PubMed Central

    Broshtilova, Valentina; Lozanov, Valentina; Miteva, Ljubka

    2013-01-01

    Introduction: Polyamines – putrescine, spermidine and spermine are polycationic compounds ubiquitous for all living organisms. They are essential for the cell growth and differentiation, the control of cell cycle progress, apoptosis, and cancerogenesis. Accumulated scientific evidence suggests the central role of polyamines in the process of keratinocytic proliferation, differentiation, and regulation. Objective: To elucidate the polyamine metabolic changes that occur in benign keratinocytic proliferation. Fifty eight patients were enrolled in the study, 31 with plaque-form of psoriasis vulgaris, which had been referred to as a model of benign keratinocytic proliferation, and 27-healthy controls. Materials and Methods: An original, innovative chromatographic method was used to detect the levels of putrescine, spermidine, and spermine in all skin samples. Results: Were significantly proven (P < 0.05). No difference was found between the polyamines levels of non-lesional psoriatic skin and healthy controls. Psoriatic lesions showed a two-time higher concentration of all polyamines in lesional, compared to non-lesional skin. Spermine had the highest concentration and highest proliferation trend, which demonstrated the importance of propylamine synthesis in the pathogenesis of psoriasis. Spermine highest concentrations suggested the leading role of adenosine methionine decarboxylase (AMDC) in the pathogenesis of benign keratinocytic proliferations. Conclusions: Non-lesional skin in psoriatic patients did not show latent changes in polyamine metabolism. Psoriatic lesions demontrated two-time higher levels of the most essential biogenic polyamines compared to healthy controls. The highest level of spermine proved the crucial role of AMDC in the polyamine metabolism changes in psoriasis. Future therapeutic approaches should be focused on reduction of exogenic spermine intake, utilizing new spermine blockers, and synthesis of AMDC inhibitors. PMID:23919004

  12. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    PubMed

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  13. Activation of Polyphenol Oxidase in Dormant Wild Oat Caryopses by a Seed-Decay Isolate of Fusarium avenaceum

    USDA-ARS?s Scientific Manuscript database

    Incubation of dormant wild oat (Avena fatua L., isoline M73) caryopses for 1 to 3 days with Fusarium avenaceum seed-decay isolate F.a.1 induced activity of the plant defense enzyme polyphenol oxidase (PPO). Both extracts and leachates obtained from F.a.1-treated caryopses had decreased abundance of ...

  14. Platelet monoamine oxidase activity predicts alcohol sensitivity and voluntary alcohol intake in rhesus monkeys.

    PubMed

    Wargelius, Hanna-Linn; Fahlke, Claudia; Suomi, Stephen J; Oreland, Lars; Higley, James Dee

    2010-02-01

    Platelet monoamine oxidase B (MAO-B) has been proposed to be a biological marker for the properties of monoamine systems, with low activity being associated with vulnerability for high scores on personality traits such as sensation seeking, monotony avoidance, and impulsiveness, as well as for vulnerability for alcoholism. In the present study, platelet MAO-B activity was analysed in 78 rhesus macaques, and its relation to voluntary alcohol intake and behaviours after intravenous alcohol administration was observed. Monkeys with low platelet MAO-B activity had low levels of 5-hydroxyindole acetic acid in cerebrospinal fluid and showed excessive aggression after alcohol administration. A novel finding was that animals with low platelet MAO-B activity showed less intoxication following alcohol administration. As we have shown previously, they also voluntarily consumed more alcohol. We here replicate results from studies on both humans and non-human primates, showing the utility of platelet MAO as a marker for risk behaviours and alcohol abuse. Furthermore, we link platelet MAO activity to alcohol sensitivity.

  15. Conformational plasticity surrounding the active site of NADH oxidase from Thermus thermophilus

    PubMed Central

    Miletti, Teresa; Di Trani, Justin; Jr Levros, Louis-Charles; Mittermaier, Anthony

    2015-01-01

    Biotechnological applications of enzymes can involve the use of these molecules under nonphysiological conditions. Thus, it is of interest to understand how environmental variables affect protein structure and dynamics and how this ultimately modulates enzyme function. NADH oxidase (NOX) from Thermus thermophilus exemplifies how enzyme activity can be tuned by reaction conditions, such as temperature, cofactor substitution, and the addition of cosolutes. This enzyme catalyzes the oxidation of reduced NAD(P)H to NAD(P)+ with the concurrent reduction of O2 to H2O2, with relevance to biosensing applications. It is thermophilic, with an optimum temperature of approximately 65°C and sevenfold lower activity at 25°C. Moderate concentrations (≈1M) of urea and other chaotropes increase NOX activity by up to a factor of 2.5 at room temperature. Furthermore, it is a flavoprotein that accepts either FMN or the much larger FAD as cofactor. We have used nuclear magnetic resonance (NMR) titration and 15N spin relaxation experiments together with isothermal titration calorimetry to study how NOX structure and dynamics are affected by changes in temperature, the addition of urea and the substitution of the FMN cofactor with FAD. The majority of signals from NOX are quite insensitive to changes in temperature, cosolute addition, and cofactor substitution. However, a small cluster of residues surrounding the active site shows significant changes. These residues are implicated in coupling changes in the solution conditions of the enzyme to changes in catalytic activity. PMID:25970557

  16. Reduced Mitochondria Cytochrome Oxidase Activity in Adult Children of Mothers with Alzheimer's Disease

    PubMed Central

    Mosconi, Lisa; de Leon, Mony; Murray, John; Lezi, E; Lu, Jianghua; Javier, Elizabeth; McHugh, Pauline; Swerdlow, Russell H.

    2012-01-01

    Biomarker studies demonstrate inheritance of glucose hypometabolism and increased amyloid-β deposition in adult offspring of mothers, but not fathers, affected by late-onset Alzheimer's disease (LOAD). The underlying genetic mechanisms are unknown. We investigated whether cognitively normal (NL) individuals with a maternal history of LOAD (MH) have reduced platelet mitochondrial cytochrome oxidase activity (COX, electron transport chain complex IV) compared to those with paternal (PH) or negative family history (NH). Thirty-six consecutive NL individuals (age 55 15 y, range 27–71 y, 56% female, CDR = 0, MMSE ≥28, 28% APOE-4 carriers), including 12 NH, 12 PH, and 12 MH, received ± a blood draw to measure platelet mitochondrial COX activity. Citrate synthase activity (CS) was measured as a reference. Groups were comparable for clinical and neuropsychological measures. We found that after correcting for CS, COX activity was reduced by 29% in MH compared to NH, and by 30% in MH compared to PH (p ≤ 0.006). Results remained significant controlling for age, gender, education, and APOE. No differences were found between PH and NH. COX measures discriminated MH from the other groups with accuracy ≥75%, and relative risk ≥3 (p ≤ 0.005). Among NL with LOAD-parents, only those with MH showed reduced COX activity in platelet mitochondria compared to PH and NH. The association between maternal history of LOAD and systemic COX reductions suggests transmission via mitochondrial DNA, which is exclusively maternally inherited in humans. PMID:21841246

  17. Developmental onset of mixed-function oxidase activity in preimplantation mouse embryos

    SciTech Connect

    Filler, R.; Lew, K.J.

    1981-11-01

    Two-cell embryos, obtained from the C57BL/6N and DBA/2N strains, were cultured in media that supported in vitro differentiation and that contained (/sup 3/H)benzo(a)pyrene. High-pressure liquid chromatography of the activated intermediates formed during in vitro early embryonic development indicated that the onset of polynuclear aromatic hydrocarbon activation coincided with blastocyst formation. Comparison of individual oxygenated intermediates metabolically formed from embryos genetically ''responsive'' or ''nonresponsive'' to aromatic hydrocarbons revealed significant quantitative differences in the production of dihydrodiol, quinone, and phenolic derivatives. In addition to exhibiting basal mixed-function oxidase activity, blastocysts were also responsive to enzymatic induction when exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. The presence of operative metabolite-detoxifying pathways was also assayed. Enzymatic treatment of water-soluble metabolites with ..beta..-glucuronidase or arylsulfatase revealed that neither glucuronic acid conjugates nor sulfate ester derivatives were present. These data, therefore, provide direct evidence that late preimplanation mouse embryos (day 3 1/2 of gestation) are similar to later developmental stages in having the enzymatic capability for xenobiotic activation and enzyme induction but are dissimilar with respect to their detoxification mechanisms(s). Moreover, the ability of preimplantation embryos to activate directly polynuclear aromatic hydrocarbon to bioreactive intermediates may be of importance in assessing the ontological susceptibility of the developing embryo to carcinogenic or teratogenic chemicals.

  18. Potato and mushroom polyphenol oxidase activities are differently modulated by natural plant extracts.

    PubMed

    Kuijpers, Tomas F M; van Herk, Teunie; Vincken, Jean-Paul; Janssen, Renske H; Narh, Deborah L; van Berkel, Willem J H; Gruppen, Harry

    2014-01-08

    Enzymatic browning is a major quality issue in fruit and vegetable processing and can be counteracted by different natural inhibitors. Often, model systems containing a single polyphenol oxidase (PPO) are used to screen for new inhibitors. To investigate the impact of the source of PPO on the outcome of such screening, this study compared the effect of 60 plant extracts on the activity of PPO from mushroom ( Agaricus bisporus , AbPPO) and PPO from potato ( Solanum tuberosum , StPPO). Some plant extracts had different effects on the two PPOs: an extract that inhibited one PPO could be an activator for the other. As an example of this, the mate ( Ilex paraguariensis ) extract was investigated in more detail. In the presence of mate extract, oxygen consumption by AbPPO was found to be reduced >5-fold compared to a control reaction