Science.gov

Sample records for polycomb group genes

  1. Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis.

    PubMed

    Jullien, Pauline E; Katz, Aviva; Oliva, Moran; Ohad, Nir; Berger, Frédéric

    2006-03-07

    Fertilization in flowering plants initiates the development of the embryo and endosperm, which nurtures the embryo. A few genes subjected to imprinting are expressed in endosperm from their maternal allele, while their paternal allele remains silenced. Imprinting of the FWA gene involves DNA methylation. Mechanisms controlling imprinting of the Polycomb group (Pc-G) gene MEDEA (MEA) are not yet fully understood. Here we report that MEA imprinting is regulated by histone methylation. This epigenetic chromatin modification is mediated by several Pc-G activities during the entire plant life cycle. We show that Pc-G complexes maintain MEA transcription silenced throughout vegetative life and male gametogenesis. In endosperm, the maternal allele of MEA encodes an essential component of a Pc-G complex, which maintains silencing of the paternal MEA allele. Hence, we conclude that a feedback loop controls MEA imprinting. This feedback loop ensures a complete maternal control of MEA expression from both parental alleles and might have provided a template for evolution of imprinting in plants.

  2. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    PubMed

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  3. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2009-09-01

    0605 TITLE : The Role of Polycomb Group Gene Bmi-1 in the Development of Prostate Cancer PRINCIPAL INVESTIGATOR : Mohammad...NUMBER Prostate Cancer 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mohammad Saleem Bhat 5d. PROJECT NUMBER 5e. TASK...investigate the role of Bmi-1 (a member of polycomb gene family) in human prostate cancer (CaP) development. Here, we present the work accomplished

  4. A Role of Polycomb Group Genes in the Regulation of Gap Gene Expression in Drosophila

    PubMed Central

    Pelegri, F.; Lehmann, R.

    1994-01-01

    Anteroposterior polarity of the Drosophila embryo is initiated by the localized activities of the maternal genes, bicoid and nanos, which establish a gradient of the hunchback (hb) morphogen. nanos determines the distribution of the maternal Hb protein by regulating its translation. To identify further components of this pathway we isolated suppressors of nanos. In the absence of nanos high levels of Hb protein repress the abdomen-specific genes knirps and giant. In suppressor-of-nanos mutants, knirps and giant are expressed in spite of high Hb levels. The suppressors are alleles of Enhancer of zeste (E(z)) a member of the Polycomb group (Pc-G) of genes. We show that E(z), and likely other Pc-G genes, are required for maintaining the expression domains of knirps and giant initiated by the maternal Hb protein gradient. We have identified a small region of the knirps promoter that mediates the regulation by E(z) and hb. Because Pc-G genes are thought to control gene expression by regulating chromatin, we propose that imprinting at the chromatin level underlies the determination of anteroposterior polarity in the early embryo. PMID:8013911

  5. A role for mel-18, a Polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton.

    PubMed

    Akasaka, T; Kanno, M; Balling, R; Mieza, M A; Taniguchi, M; Koseki, H

    1996-05-01

    Segment identity in both invertebrates and vertebrates is conferred by spatially restricted distribution of homeotic gene products. In Drosophila, the expression of Homeobox genes during embryogenesis is initially induced by segmentation gene products and then maintained by Polycomb group and Trithorax group gene products. Polycomb group gene homologs are conserved in vertebrates. Murine mel-18 and closely related bmi-1 are homologous to posterior sex combs and suppressor two of zeste. Mel-18 protein mediates a transcriptional repression via direct binding to specific DNA sequences. To gain further insight into the function of Mel-18, we have inactivated the mel-18 locus by homologous recombination. Mice lacking mel-18 survive to birth and die around 4 weeks after birth after exhibiting strong growth retardation. Similar to the Drosophila posterior sex combs mutant, posterior transformations of the axial skeleton were reproducibly observed in mel-18 mutants. The homeotic transformations were correlated with ectopic expression of Homeobox cluster genes along the anteroposterior axis in the developing paraxial mesoderm. Surprisingly, mel-18-deficient phenotypes are reminiscent of bmi-1 mutants. These results indicate that the vertebrate Polycomb group genes mel-18 and bmi-1, like Drosophila Polycomb group gene products, might play a crucial role in maintaining the silent state of Homeobox gene expression during paraxial mesoderm development.

  6. Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis.

    PubMed

    Erilova, Aleksandra; Brownfield, Lynette; Exner, Vivien; Rosa, Marisa; Twell, David; Mittelsten Scheid, Ortrun; Hennig, Lars; Köhler, Claudia

    2009-09-01

    Balanced maternal and paternal genome contributions are a requirement for successful seed development. Unbalanced contributions often cause seed abortion, a phenomenon that has been termed "triploid block." Misregulation of imprinted regulatory genes has been proposed to be the underlying cause for abnormalities in growth and structure of the endosperm in seeds with deviating parental contributions. We identified a mutant forming unreduced pollen that enabled us to investigate direct effects of unbalanced parental genome contributions on seed development and to reveal the underlying molecular mechanism of dosage sensitivity. We provide evidence that parent-of-origin-specific expression of the Polycomb group (PcG) gene MEDEA is causally responsible for seed developmental aberrations in Arabidopsis seeds with increased paternal genome contributions. We propose that imprinted expression of PcG genes is an evolutionary conserved mechanism to balance parental genome contributions in embryo nourishing tissues.

  7. dBRWD3 Regulates Tissue Overgrowth and Ectopic Gene Expression Caused by Polycomb Group Mutations

    PubMed Central

    Shih, Hsueh-Tzu; Chen, Wei-Yu; Liu, Kwei-Yan; Shih, Zong-Siou; Chen, Yi-Jyun; Hsieh, Paul-Chen; Kuo, Kuan-Lin; Huang, Kuo-How; Hsu, Pang-Hung; Liu, Ya-Wen; Tsai, Yu-Chen; Wu, June-Tai

    2016-01-01

    To maintain a particular cell fate, a unique set of genes should be expressed while another set is repressed. One way to repress gene expression is through Polycomb group (PcG) proteins that compact chromatin into a silent configuration. In addition to cell fate maintenance, PcG proteins also maintain normal cell physiology, for example cell cycle. In the absence of PcG, ectopic activation of the PcG-repressed genes leads to developmental defects and malignant tumors. Little is known about the molecular nature of ectopic gene expression; especially what differentiates expression of a given gene in the orthotopic tissue (orthotopic expression) and the ectopic expression of the same gene due to PcG mutations. Here we present that ectopic gene expression in PcG mutant cells specifically requires dBRWD3, a negative regulator of HIRA/Yemanuclein (YEM)-mediated histone variant H3.3 deposition. dBRWD3 mutations suppress both the ectopic gene expression and aberrant tissue overgrowth in PcG mutants through a YEM-dependent mechanism. Our findings identified dBRWD3 as a critical regulator that is uniquely required for ectopic gene expression and aberrant tissue overgrowth caused by PcG mutations. PMID:27588417

  8. Identification of polycomb and trithorax group responsive elements in the regulatory region of the Drosophila homeotic gene Sex combs reduced

    SciTech Connect

    Gindhart, J.G. Jr.; Kaufman, T.C.

    1995-02-01

    The Drosophilia homeotic gene Sex combs reduced (Scr) is necessary for the establishment and maintenance of the morphological identity of the labial and prothoracic segments. In the early embryo, its expression pattern is established through the activity of several gap and segmentation gene products, as well as other transcription factors. Once established, the Polycomb group (Pc-G) and trithorax group (trx-G) gene products maintain the spatial pattern of Scr expression for the remainder of development. We report the identification of DNA fragments in the Scr regulatory region that may be important for its regulation by Polycomb and trithorax group gene products. When DNA fragments containing these regulatory sequences are subcloned into P-element vectors containing a white minigene, transformants containing these constructs exhibit mosaic patterns of pigmentation in the adult eye, indicating that white minigene expression is repressed in a clonally heritable manner. The size of pigmented and nonpigmented clones in the adult eye suggests that the event determining whether a cell in the eye anlagen will express white occurs at least as early as the first larval instar. The amount of white minigene repression is reduced in some Polycomb group mutants, whereas repression is enhanced in flies mutant for a subset of trithorax group loci. The repressor activity of one fragment, normally located in Scr Intron 2, is increased when it is able to homologously pair, a property consistent with genetic data suggesting that Scr exhibits transvection. Another Scr regulatory fragment, normally located 40 kb upstream of the Scr promoter, silences ectopic expression of an Scr-lacZ fusion gene in the embryo and does so in a Polycomb-dependent manner. We propose that the regulatory sequences located within these DNA fragments may normally mediate the regulation of Scr by proteins encoded by members of Polycomb and trithorax group loci. 98 refs., 6 figs., 4 tabs.

  9. Identification and characterization of Polycomb group genes in the silkworm, Bombyx mori.

    PubMed

    Li, Zhiqing; Tatsuke, Tsuneyuki; Sakashita, Kosuke; Zhu, Li; Xu, Jian; Mon, Hiroaki; Lee, Jae Man; Kusakabe, Takahiro

    2012-05-01

    Polycomb group (PcG) proteins are involved in chromatin modifications for maintaining gene repression that play important roles in the regulation of gene expression, tumorigenesis, chromosome X-inactivation, and genomic imprinting in Drosophila melanogaster, mammals, and even plants. To characterize the orthologs of PcG genes in the silkworm, Bombyx mori, 13 candidates were identified from the updated silkworm genome sequence by using the fruit fly PcG genes as queries. Comparison of the silkworm PcG proteins with those from other insect species revealed that the insect PcG proteins shared high sequence similarity. High-level expressions of all the silkworm PcG genes were maintained through day 2 to day 7 of embryogenesis, and tissue microarray data on day 3 of the fifth instar larvae showed that their expression levels were relatively low in somatic tissues, except for Enhancer of zeste (E(Z)). In addition, knockdown of each PRC2 component, such as E(Z), Extra sex combs (ESC), and Suppressor of zeste 12 (SU(Z)12), considerably decreased the global levels of H3K27me3 but not of H3K27me2. Taken together, these results suggest that insect PcG proteins are highly conserved during evolution and might play similar roles in embryogenesis.

  10. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer.

    PubMed

    Gieni, Randall S; Hendzel, Michael J

    2009-10-01

    Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.

  11. Polycomb group gene function in sexual and asexual seed development in angiosperms.

    PubMed

    Rodrigues, Julio C M; Luo, Ming; Berger, Frédéric; Koltunow, Anna M G

    2010-06-01

    In sexually reproducing angiosperms, double fertilization initiates seed development, giving rise to two fertilization products, the embryo and the endosperm. In the endosperm, a terminal nutritive tissue that supports embryo growth, certain genes are expressed differentially depending on their parental origin, and this genomic imbalance is required for proper seed formation. This parent-of-origin effect on gene expression, called genomic imprinting, is controlled epigenetically through histone modifications and DNA methylation. In the sexual model plant Arabidopsis, the Polycomb group (PcG) genes of the plant Fertilization Independent Seed (FIS)-class control genomic imprinting by specifically silencing maternal or paternal target alleles through histone modifications. Mutations in FIS genes can lead to a bypass in the requirement of fertilization for the initiation of endosperm development and seed abortion. In this review, we discuss the role of the FIS complex in establishing and maintaining genomic imprinting, focusing on recent advances in elucidating the expression and function of FIS-related genes in maize, rice, and Hieracium, and particularly including apomictic Hieracium species that do not require paternal contribution and thus form seeds asexually. Surprisingly, not all FIS-mediated functions described in Arabidopsis are conserved. However, the function of some PcG components are required for viable seed formation in seeds formed via sexual and asexual processes (apomixis) in Hieracium, suggesting a conservation of the seed viability function in some eudicots.

  12. Deregulated Expression of the Polycomb-Group Protein SUZ12 Target Genes Characterizes Mantle Cell Lymphoma

    PubMed Central

    Martín-Pérez, Daniel; Sánchez, Esther; Maestre, Lorena; Suela, Javier; Vargiu, Pierfrancesco; Di Lisio, Lorena; Martínez, Nerea; Alves, Javier; Piris, Miguel A.; Sánchez-Beato, Margarita

    2010-01-01

    Polycomb proteins are known to be of great importance in human cancer pathogenesis. SUZ12 is a component of the Polycomb PRC2 complex that, along with EZH2, is involved in embryonic stem cell differentiation. EZH2 plays an essential role in many cancer types, but an equivalent involvement of SUZ12 has not been as thoroughly demonstrated. Here we show that SUZ12 is anomalously expressed in human primary tumors, especially in mantle cell lymphoma (MCL), pulmonary carcinomas and melanoma, and is associated with gene locus amplification in some cases. Using MCL as a model, functional and genomic studies demonstrate that SUZ12 loss compromises cell viability, increases apoptosis, and targets genes involved in central oncogenic pathways associated with MCL pathogenesis. Our results support the hypothesis that the abnormal expression of SUZ12 accounts for some of the unexplained features of MCL, such as abnormal DNA repair and increased resistance to apoptosis. PMID:20558579

  13. The murine Polycomb-group gene eed and its human orthologue: functional implications of evolutionary conservation.

    PubMed

    Schumacher, A; Lichtarge, O; Schwartz, S; Magnuson, T

    1998-11-15

    Similar to Drosophila, murine Polycomb-group (PcG) genes regulate anterior-posterior patterning of segmented axial structures by transcriptional repression of homeotic gene expression. The murine PcG gene eed (embryonic ectoderm development) encodes a 441-amino-acid protein with five WD motifs which, except for the amino terminus, is highly homologous to Drosophila ESC (Extra Sex Combs). Here, sequence and expression analysis as well as chromosomal mapping of the human orthologue of eed is described. Absolute conservation of the human eed protein along with significant divergence at the nucleotide level reveals functional constraints operating on all residues. The human orthologue appears to be ubiquitously expressed and maps to chromsome 11q14.2-q22.3. Using the first WD motif of the beta-subunit of the bovine G protein as a structural reference, the predicted locations of two previously identified eed point mutations (A. Schumacher et al., 1996, Nature 383: 250-253) are also reported herein. The proline substitution (L196P) in the second WD motif of the l7Rn5(3354SB) null allele maps to the internal core of the inner end of the beta-propeller blade and is likely to disrupt protein folding. In contrast, the asparagine substitution (I193N) in the second WD motif of the hypomorphic l7Rn5(1989SB) allele maps onto the surface of the beta-propeller blade near the central cavity and may affect surface interactions without compromising propeller packing. These results illustrate the critical importance of all residues for eed function in mammals and support a model whereby the amino terminus might implement function(s) related to embryonic development in higher organisms. Copyright 1998 Academic Press.

  14. Psip1/Ledgf p75 restrains Hox gene expression by recruiting both trithorax and polycomb group proteins

    PubMed Central

    Pradeepa, Madapura M.; Grimes, Graeme R.; Taylor, Gillian C.A.; Sutherland, Heidi G.; Bickmore, Wendy A.

    2014-01-01

    Trithorax and polycomb group proteins are generally thought to antagonize one another. The trithorax family member MLL (myeloid/lymphoid or mixed-lineage leukemia) is presumed to activate Hox expression, counteracting polycomb-mediated repression. PC4 and SF2 interacting protein 1 (PSIP1)/p75, also known as LEDGF, whose PWWP domain binds to H3K36me3, interacts with MLL and tethers MLL fusion proteins to HOXA9 in leukaemias. Here we show, unexpectedly, that Psip1/p75 regulates homeotic genes by recruiting not only MLL complexes, but also the polycomb group protein Bmi1. In Psip1−/− cells binding of Mll1/2, Bmi1 and the co-repressor Ctbp1 at Hox loci are all abrogated and Hoxa and Hoxd mRNA expression increased. Our data not only reveal a potential mechanism of action for Psip1 in the regulation of Hox genes but also suggest an unexpected interplay between proteins usually considered as transcriptional activators and repressors. PMID:25056311

  15. [Maintenance of the patterns of expression of homeotic genes in the development of Drosophila melanogaster by proteins of the polycomb, trithorax, and ETP groups].

    PubMed

    Fedorova, E V; Pindiurin, A V; Baricheva, E M

    2009-10-01

    Proteins encoded by genes of the groups Polycomb (PcG), trithorax (trxG), and the Enhancer of Trithorax and Polycomb Group (ETP) are important regulators of expression of most developmental genes. Data concerning all currently described genes assigned to these groups are summarized in the review. Genetic interactions of these genes and phenotypical manifestation of their mutations are described. Data on the PcG, trxG, and ETP proteins are systemized. Questions are considered concerning the formation of multimeric complexes containing proteins of these groups, recruitment of these complexes to regulatory elements of target genes, and the mechanisms of activation/repression of gene expression.

  16. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis.

    PubMed

    Baroux, Célia; Gagliardini, Valeria; Page, Damian R; Grossniklaus, Ueli

    2006-05-01

    The imprinted Arabidopsis Polycomb group (PcG) gene MEDEA (MEA), which is homologous to Enhancer of Zeste [E(Z)], is maternally required for normal seed development. Here we show that, unlike known mammalian imprinted genes, MEA regulates its own imprinted expression: It down-regulates the maternal allele around fertilization and maintains the paternal allele silent later during seed development. Autorepression of the maternal MEA allele is direct and independent of the MEA-FIE (FERTILIZATION-INDEPENDENT ENDOSPERM) PcG complex, which is similar to the E(Z)-ESC (Extra sex combs) complex of animals, suggesting a novel mechanism. A complex network of cross-regulatory interactions among the other known members of the MEA-FIE PcG complex implies distinct functions that are dynamically regulated during reproduction.

  17. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis

    PubMed Central

    Baroux, Célia; Gagliardini, Valeria; Page, Damian R.; Grossniklaus, Ueli

    2006-01-01

    The imprinted Arabidopsis Polycomb group (PcG) gene MEDEA (MEA), which is homologous to Enhancer of Zeste [E(Z)], is maternally required for normal seed development. Here we show that, unlike known mammalian imprinted genes, MEA regulates its own imprinted expression: It down-regulates the maternal allele around fertilization and maintains the paternal allele silent later during seed development. Autorepression of the maternal MEA allele is direct and independent of the MEA–FIE (FERTILIZATION-INDEPENDENT ENDOSPERM) PcG complex, which is similar to the E(Z)–ESC (Extra sex combs) complex of animals, suggesting a novel mechanism. A complex network of cross-regulatory interactions among the other known members of the MEA–FIE PcG complex implies distinct functions that are dynamically regulated during reproduction. PMID:16651654

  18. A mosaic genetic screen reveals distinct roles for trithorax and polycomb group genes in Drosophila eye development.

    PubMed Central

    Janody, Florence; Lee, Jeffrey D; Jahren, Neal; Hazelett, Dennis J; Benlali, Aude; Miura, Grant I; Draskovic, Irena; Treisman, Jessica E

    2004-01-01

    The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors. PMID:15020417

  19. Segregating Variation in the Polycomb Group Gene cramped Alters the Effect of Temperature on Multiple Traits

    PubMed Central

    Gibert, Jean-Michel; Karch, François; Schlötterer, Christian

    2011-01-01

    The phenotype produced by a given genotype can be strongly modulated by environmental conditions. Therefore, natural populations continuously adapt to environment heterogeneity to maintain optimal phenotypes. It generates a high genetic variation in environment-sensitive gene networks, which is thought to facilitate evolution. Here we analyze the chromatin regulator crm, identified as a candidate for adaptation of Drosophila melanogaster to northern latitudes. We show that crm contributes to environmental canalization. In particular, crm modulates the effect of temperature on a genomic region encoding Hedgehog and Wingless signaling effectors. crm affects this region through both constitutive heterochromatin and Polycomb silencing. Furthermore, we show that crm European and African natural variants shift the reaction norms of plastic traits. Interestingly, traits modulated by crm natural variants can differ markedly between Drosophila species, suggesting that temperature adaptation facilitates their evolution. PMID:21283785

  20. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis.

    PubMed

    Spaapen, Frank; van den Akker, Guus G H; Caron, Marjolein M J; Prickaerts, Peggy; Rofel, Celine; Dahlmans, Vivian E H; Surtel, Don A M; Paulis, Yvette; Schweizer, Finja; Welting, Tim J M; Eijssen, Lars M; Voncken, Jan Willem

    2013-01-01

    Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3) blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.

  1. Polycomb group protein bodybuilding: working out the routines.

    PubMed

    Sievers, Cem; Paro, Renato

    2013-09-30

    Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Transcriptional Response of Polycomb Group Genes to Status Epilepticus in Mice is Modified by Prior Exposure to Epileptic Preconditioning.

    PubMed

    Reynolds, James P; Miller-Delaney, Suzanne F C; Jimenez-Mateos, Eva M; Sano, Takanori; McKiernan, Ross C; Simon, Roger P; Henshall, David C

    2015-01-01

    Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms that temporarily generate a damage-refractory state. This process, termed epileptic tolerance, is associated with large-scale down-regulation of gene expression. Polycomb group (PcG) proteins are master controllers of gene silencing during development that are re-activated by injury to the brain. Here, we explored the transcriptional response of genes associated with polycomb repressive complex (PRC) 1 (Ring1A, Ring1B, and Bmi1) and PRC2 (Ezh1, Ezh2, and Suz12), as well as additional transcriptional regulators Sirt1, Yy1, and Yy2, in a mouse model of status epilepticus (SE). Findings were contrasted to changes after SE in mice previously given brief seizures to evoke tolerance. Real-time quantitative PCR showed SE prompted an early (1 h) increase in expression of several genes in PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same genes at later times points (4, 8, and 24 h). Spatio-temporal differences were found among PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12, and Yy2 relative to the normal injury response to SE. In contrast, PRC1 complex genes including Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present study characterizes PcG gene expression following SE and shows prior seizure exposure produces select changes to PRC1 and PRC2 composition that may influence differential gene expression in epileptic tolerance.

  3. Polycomb Group Genes Psc and Su(z)2 Maintain Somatic Stem Cell Identity and Activity in Drosophila

    PubMed Central

    Morillo Prado, Jose Rafael; Chen, Xin; Fuller, Margaret T.

    2012-01-01

    Adult stem cells are essential for the proper function of many tissues, yet the mechanisms that maintain the proper identity and regulate proliferative capacity in stem cell lineages are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that have recently emerged as important regulators of stem cell maintenance and differentiation. Here we describe the role of Polycomb Repressive Complex 1 (PRC1) genes Posterior sex combs (Psc) and Suppressor of zeste two (Su(z)2) in restricting the proliferation and maintaining the identity of the Cyst Stem Cell (CySC) lineage in the Drosophila testis. In contrast, Psc and Su(z)2 seem to be dispensable for both germline stem cell (GSC) maintenance and germ cell development. We show that loss of Psc and Su(z)2 function in the CySC lineage results in the formation of aggregates of mutant cells that proliferate abnormally, and display abnormal somatic identity correlated with derepression of the Hox gene Abdominal-B. Furthermore, we show that tumorigenesis in the CySC lineage interferes non-cell autonomously with maintenance of GSCs most likely by displacing them from their niche. PMID:23285219

  4. Biology of polycomb and trithorax group proteins.

    PubMed

    Breiling, Achim; Sessa, Luca; Orlando, Valerio

    2007-01-01

    Cellular phenotypes can be ascribed to different patterns of gene expression. Epigenetic mechanisms control the generation of different phenotypes from the same genotype. Thus differentiation is basically a process driven by changes in gene activity during development, often in response to transient factors or environmental stimuli. To keep the specific characteristics of cell types, tissue-specific gene expression patterns must be transmitted stably from one cell to the daughter cells, also in the absence of the early-acting determination factors. This heritability of patterns of active and inactive genes is enabled by epigenetic mechanisms that create a layer of information on top of the DNA sequence that ensures mitotic and sometimes also meiotic transmission of expression patterns. The proteins of the Polycomb and Trithorax group comprise such a cellular memory mechanism that preserves gene expression patterns through many rounds of cell division. This review provides an overview of the genetics and molecular biology of these maintenance proteins, concentrating mainly on mechanisms of Polycomb group-mediated repression.

  5. batman Interacts with Polycomb and trithorax Group Genes and Encodes a BTB/POZ Protein That Is Included in a Complex Containing GAGA Factor

    PubMed Central

    Faucheux, M.; Roignant, J.-Y.; Netter, S.; Charollais, J.; Antoniewski, C.; Théodore, L.

    2003-01-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes. PMID:12556479

  6. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    PubMed

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  7. Complementary Activities of TELOMERE REPEAT BINDING Proteins and Polycomb Group Complexes in Transcriptional Regulation of Target Genes[OPEN

    PubMed Central

    Hartwig, Benjamin; James, Geo Velikkakam

    2016-01-01

    In multicellular organisms, Polycomb Repressive Complex 1 (PRC1) and PRC2 repress target genes through histone modification and chromatin compaction. Arabidopsis thaliana mutants strongly compromised in the pathway cannot develop differentiated organs. LIKE HETEROCHROMATIN PROTEIN1 (LHP1) is so far the only known plant PRC1 component that directly binds to H3K27me3, the histone modification set by PRC2, and also associates genome-wide with trimethylation of lysine 27 of histone H3 (H3K27me3). Surprisingly, lhp1 mutants show relatively mild phenotypic alterations. To explain this paradox, we screened for genetic enhancers of lhp1 mutants to identify novel components repressing target genes together with, or in parallel to, LHP1. Two enhancing mutations were mapped to TELOMERE REPEAT BINDING PROTEIN1 (TRB1) and its paralog TRB3. We show that TRB1 binds to thousands of genomic sites containing telobox or related cis-elements with a significant increase of sites and strength of binding in the lhp1 background. Furthermore, in combination with lhp1, but not alone, trb1 mutants show increased transcription of LHP1 targets, such as floral meristem identity genes, which are more likely to be bound by TRB1 in the lhp1 background. By contrast, expression of a subset of LHP1-independent TRB1 target genes, many involved in primary metabolism, is decreased in the absence of TRB1 alone. Thus, TRB1 is a bivalent transcriptional modulator that maintains downregulation of Polycomb Group (PcG) target genes in lhp1 mutants, while it sustains high expression of targets that are regulated independently of PcG. PMID:26721861

  8. Transcriptional Silencing by Polycomb-Group Proteins

    PubMed Central

    Grossniklaus, Ueli; Paro, Renato

    2014-01-01

    Polycomb-group (PcG) genes encode chromatin proteins involved in stable and heritable transcriptional silencing. PcG proteins participate in distinct multimeric complexes that deposit, or bind to, specific histone modifications (e.g., H3K27me3 and H2AK119ub1) to prevent gene activation and maintain repressed chromatin domains. PcG proteins are evolutionary conserved and play a role in processes ranging from vernalization and seed development in plants, over X-chromosome inactivation in mammals, to the maintenance of stem cell identity. PcG silencing is medically relevant as it is often observed in human disorders, including cancer, and tissue regeneration, which involve the reprogramming of PcG-controlled target genes. PMID:25367972

  9. Polycomb group gene BMI1 controls invasion of medulloblastoma cells and inhibits BMP-regulated cell adhesion.

    PubMed

    Merve, Ashirwad; Dubuc, Adrian M; Zhang, Xinyu; Remke, Marc; Baxter, Patricia A; Li, Xiao-Nan; Taylor, Michael D; Marino, Silvia

    2014-01-24

    Medulloblastoma is the most common intracranial childhood malignancy and a genetically heterogeneous disease. Despite recent advances, current therapeutic approaches are still associated with high morbidity and mortality. Recent molecular profiling has suggested the stratification of medulloblastoma from one single disease into four distinct subgroups namely: WNT Group (best prognosis), SHH Group (intermediate prognosis), Group 3 (worst prognosis) and Group 4 (intermediate prognosis). BMI1 is a Polycomb group repressor complex gene overexpressed across medulloblastoma subgroups but most significantly in Group 4 tumours. Bone morphogenetic proteins are morphogens belonging to TGF-β superfamily of growth factors, known to inhibit medulloblastoma cell proliferation and induce apoptosis. Here we demonstrate that human medulloblastoma of Group 4 characterised by the greatest overexpression of BMI1, also display deregulation of cell adhesion molecules. We show that BMI1 controls intraparenchymal invasion in a novel xenograft model of human MB of Group 4, while in vitro assays highlight that cell adhesion and motility are controlled by BMI1 in a BMP dependent manner. BMI1 controls MB cell migration and invasion through repression of the BMP pathway, raising the possibility that BMI1 could be used as a biomarker to identify groups of patients who may benefit from a treatment with BMP agonists.

  10. SUMO modification is required for in vivo Hox gene regulation by the Caenorhabditis elegans Polycomb group protein SOP-2.

    PubMed

    Zhang, Hong; Smolen, Gromoslaw A; Palmer, Rachel; Christoforou, Andrea; van den Heuvel, Sander; Haber, Daniel A

    2004-05-01

    Post-translational modification of proteins by the ubiquitin-like molecule SUMO (sumoylation) regulates their subcellular localization and affects their functional properties in vitro, but the physiological function of sumoylation in multicellular organisms is largely unknown. Here, we show that the C. elegans Polycomb group (PcG) protein SOP-2 interacts with the SUMO-conjugating enzyme UBC-9 through its evolutionarily conserved SAM domain. Sumoylation of SOP-2 is required for its localization to nuclear bodies in vivo and for its physiological repression of Hox genes. Global disruption of sumoylation phenocopies a sop-2 mutation by causing ectopic Hox gene expression and homeotic transformations. Chimeric constructs in which the SOP-2 SAM domain is replaced with that derived from fruit fly or mammalian PcG proteins, but not those in which the SOP-2 SAM domain is replaced with the SAM domains of non-PcG proteins, confer appropriate in vivo nuclear localization and Hox gene repression. These observations indicate that sumoylation of PcG proteins, modulated by their evolutionarily conserved SAM domain, is essential to their physiological repression of Hox genes.

  11. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1.

    PubMed

    Köhler, Claudia; Hennig, Lars; Spillane, Charles; Pien, Stephane; Gruissem, Wilhelm; Grossniklaus, Ueli

    2003-06-15

    The Polycomb-group (PcG) proteins MEDEA, FERTILIZATION INDEPENDENT ENDOSPERM, and FERTILIZATION INDEPENDENT SEED2 regulate seed development in Arabidopsis by controlling embryo and endosperm proliferation. All three of these FIS-class proteins are likely subunits of a multiprotein PcG complex, which epigenetically regulates downstream target genes that were previously unknown. Here we show that the MADS-box gene PHERES1 (PHE1) is commonly deregulated in the fis-class mutants. PHE1 belongs to the evolutionarily ancient type I class of MADS-box proteins that have not yet been assigned any function in plants. Both MEDEA and FIE directly associate with the promoter region of PHE1, suggesting that PHE1 expression is epigenetically regulated by PcG proteins. PHE1 is expressed transiently after fertilization in both the embryo and the endosperm; however, it remains up-regulated in the fis mutants, consistent with the proposed function of the FIS genes as transcriptional repressors. Reduced expression levels of PHE1 in medea mutant seeds can suppress medea seed abortion, indicating a key role of PHE1 repression in seed development. PHE1 expression in a hypomethylated medea mutant background resembles the wild-type expression pattern and is associated with rescue of the medea seed-abortion phenotype. In summary, our results demonstrate that seed abortion in the medea mutant is largely mediated by deregulated expression of the type I MADS-box gene PHE1.

  12. Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes

    PubMed Central

    Matsuoka, Yuji; Bando, Tetsuya; Watanabe, Takahito; Ishimaru, Yoshiyasu; Noji, Sumihare; Popadić, Aleksandar; Mito, Taro

    2015-01-01

    In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes. PMID:25948756

  13. Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes.

    PubMed

    Matsuoka, Yuji; Bando, Tetsuya; Watanabe, Takahito; Ishimaru, Yoshiyasu; Noji, Sumihare; Popadić, Aleksandar; Mito, Taro

    2015-05-06

    In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes.

  14. Genetic interaction of an origin recognition complex subunit and the Polycomb group gene MEDEA during seed development.

    PubMed

    Collinge, Margaret A; Spillane, Charles; Köhler, Claudia; Gheyselinck, Jacqueline; Grossniklaus, Ueli

    2004-04-01

    The eukaryotic origin recognition complex (ORC) is made up of six subunits and functions in nuclear DNA replication, chromatin structure, and gene silencing in both fungi and metazoans. We demonstrate that disruption of a plant ORC subunit homolog, AtORC2 of Arabidopsis (Arabidopsis thaliana), causes a zygotic lethal mutant phenotype (orc2). Seeds of orc2 abort early, typically producing embryos with up to eight cells. Nuclear division in the endosperm is arrested at an earlier developmental stage: only approximately four nuclei are detected in orc2 endosperm. The endosperm nuclei in orc2 are dramatically enlarged, a phenotype that is most similar to class B titan mutants, which include mutants in structural maintenance of chromosomes (SMC) cohesins. The highest levels of ORC2 gene expression were found in preglobular embryos, coinciding with the stage at which homozygous orc2 mutant seeds arrest. The homologs of the other five Arabidopsis ORC subunits are also expressed at this developmental stage. The orc2 mutant phenotype is partly suppressed by a mutation in the Polycomb group gene MEDEA. In double mutants between orc2 and medea (mea), orc2 homozygotes arrest later with a phenotype intermediate between those of mea and orc2 single mutants. Either alterations in chromatin structure or the release of cell cycle checkpoints by the mea mutation may allow more cell and nuclear divisions to occur in orc2 homozygous seeds.

  15. The Polycomb group gene Bmi1 regulates antioxidant defenses in neurons by repressing p53 pro-oxidant activity

    PubMed Central

    Chatoo, Wassim; Abdouh, Mohamed; David, Jocelyn; Champagne, Marie-Pier; Ferreira, José; Rodier, Francis; Bernier, Gilbert

    2009-01-01

    Aging may be determined by a genetic program and/or by the accumulation rate of molecular damages. Reactive oxygen species (ROS) generated by the mitochondrial metabolism have been postulated to be the central source of molecular damages and imbalance between levels of intracellular ROS and antioxidant defenses is a characteristic of the aging brain. How aging modifies free radicals concentrations and increases the risk to develop most neurodegenerative diseases is poorly understood, however. Here we show that the Polycomb group and oncogene Bmi1 is required in neurons to suppress apoptosis and the induction of a premature aging-like program characterized by reduced antioxidant defenses. Before weaning, Bmi1−/− mice display a progeroid-like ocular and brain phenotype while Bmi1+/− mice, although apparently normal, have reduced lifespan. Bmi1 deficiency in neurons results in increased p19Arf/p53 levels, abnormally high ROS concentrations and hypersensitivity to neurotoxic agents. Most Bmi1 functions on neurons oxidative metabolism are genetically linked to repression of p53 pro-oxidant activity, which also operates in physiological conditions. In Bmi1−/− neurons, p53 and co-repressors accumulate at antioxidant gene promoters, correlating with a repressed chromatin state and antioxidant genes downregulation. These findings provide a molecular mechanism explaining how Bmi1 regulates free radical concentrations and reveal the biological impact of Bmi1 deficiency on neuronal survival and aging. PMID:19144853

  16. Evidence of neofunctionalization after the duplication of the highly conserved Polycomb group gene Caf1-55 in the obscura group of Drosophila

    PubMed Central

    Calvo-Martín, Juan M.; Papaceit, Montserrat; Segarra, Carmen

    2017-01-01

    Drosophila CAF1-55 protein is a subunit of the Polycomb repressive complex PRC2 and other protein complexes. It is a multifunctional and evolutionarily conserved protein that participates in nucleosome assembly and remodelling, as well as in the epigenetic regulation of a large set of target genes. Here, we describe and analyze the duplication of Caf1-55 in the obscura group of Drosophila. Paralogs exhibited a strong asymmetry in evolutionary rates, which suggests that they have evolved according to a neofunctionalization process. During this process, the ancestral copy has been kept under steady purifying selection to retain the ancestral function and the derived copy (Caf1-55dup) that originated via a DNA-mediated duplication event ~18 Mya, has been under clear episodic selection. Different maximum likelihood approaches confirmed the action of positive selection, in contrast to relaxed selection, on Caf1-55dup after the duplication. This adaptive process has also taken place more recently during the divergence of D. subobscura and D. guanche. The possible association of this duplication with a previously detected acceleration in the evolutionary rate of three CAF1-55 partners in PRC2 complexes is discussed. Finally, the timing and functional consequences of the Caf1-55 duplication is compared to other duplications of Polycomb genes. PMID:28094282

  17. Evidence of neofunctionalization after the duplication of the highly conserved Polycomb group gene Caf1-55 in the obscura group of Drosophila.

    PubMed

    Calvo-Martín, Juan M; Papaceit, Montserrat; Segarra, Carmen

    2017-01-17

    Drosophila CAF1-55 protein is a subunit of the Polycomb repressive complex PRC2 and other protein complexes. It is a multifunctional and evolutionarily conserved protein that participates in nucleosome assembly and remodelling, as well as in the epigenetic regulation of a large set of target genes. Here, we describe and analyze the duplication of Caf1-55 in the obscura group of Drosophila. Paralogs exhibited a strong asymmetry in evolutionary rates, which suggests that they have evolved according to a neofunctionalization process. During this process, the ancestral copy has been kept under steady purifying selection to retain the ancestral function and the derived copy (Caf1-55dup) that originated via a DNA-mediated duplication event ~18 Mya, has been under clear episodic selection. Different maximum likelihood approaches confirmed the action of positive selection, in contrast to relaxed selection, on Caf1-55dup after the duplication. This adaptive process has also taken place more recently during the divergence of D. subobscura and D. guanche. The possible association of this duplication with a previously detected acceleration in the evolutionary rate of three CAF1-55 partners in PRC2 complexes is discussed. Finally, the timing and functional consequences of the Caf1-55 duplication is compared to other duplications of Polycomb genes.

  18. Sequence Relationships, Conserved Domains, and Expression Patterns for Maize Homologs of the Polycomb Group Genes E(z), esc, and E(Pc)1

    PubMed Central

    Springer, Nathan M.; Danilevskaya, Olga N.; Hermon, Pedro; Helentjaris, Tim G.; Phillips, Ronald L.; Kaeppler, Heidi F.; Kaeppler, Shawn M.

    2002-01-01

    Polycomb group (PcG) proteins play an important role in developmental and epigenetic regulation of gene expression in fruit fly (Drosophila melanogaster) and mammals. Recent evidence has shown that Arabidopsis homologs of PcG proteins are also important for the regulation of plant development. The objective of this study was to characterize the PcG homologs in maize (Zea mays). The 11 cloned PcG proteins from fruit fly and the Enhancer of zeste [E(z)], extra sex combs (esc), and Enhancer of Polycomb [E(Pc)] homologs from Arabidopsis were used as queries to perform TBLASTN searches against the public maize expressed sequence tag database and the Pioneer Hi-Bred database. Maize homologs were found for E(z), esc, and E(Pc), but not for Polycomb, pleiohomeotic, Posterior sex combs, Polycomblike, Additional sex combs, Sex combs on midleg, polyhometoic, or multi sex combs. Transcripts of the three maize Enhancer of zeste-like genes, Mez1, Mez2, and Mez3, were detected in all tissues tested, and the Mez2 transcript is alternatively spliced in a tissue-dependent pattern. Zea mays fertilization independent endosperm1 (ZmFie1) expression was limited to developing embryos and endosperms, whereas ZmFie2 expression was found throughout plant development. The conservation of E(z) and esc homologs across kingdoms indicates that these genes likely play a conserved role in repressing gene expression. PMID:11950982

  19. Polycomb-Mediated Gene Silencing in Arabidopsis thaliana

    PubMed Central

    Kim, Dong-Hwan; Sung, Sibum

    2014-01-01

    Polycomb group (PcG) proteins are conserved chromatin regulators involved in the control of key developmental programs in eukaryotes. They collectively provide the transcriptional memory unique to each cell identity by maintaining transcriptional states of developmental genes. PcG proteins form multi-protein complexes, known as Polycomb repressive complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2). PRC1 and PRC2 contribute to the stable gene silencing in part through catalyzing covalent histone modifications. Components of PRC1 and PRC2 are well conserved from plants to animals. PcG-mediated gene silencing has been extensively investigated in efforts to understand molecular mechanisms underlying developmental programs in eukaryotes. Here, we describe our current knowledge on PcG-mediated gene repression which dictates developmental programs by dynamic layers of regulatory activities, with an emphasis given to the model plant Arabidopsis thaliana. PMID:25410906

  20. Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other polycomb group repressors at a Drosophila Hox gene.

    PubMed

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L; Ketel, Carrie S; Mallin, Daniel R; Simon, Jeffrey A

    2010-06-01

    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets.

  1. Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres.

    PubMed Central

    Laible, G; Wolf, A; Dorn, R; Reuter, G; Nislow, C; Lebersorger, A; Popkin, D; Pillus, L; Jenuwein, T

    1997-01-01

    Gene silencing is required to stably maintain distinct patterns of gene expression during eukaryotic development and has been correlated with the induction of chromatin domains that restrict gene activity. We describe the isolation of human (EZH2) and mouse (Ezh1) homologues of the Drosophila Polycomb-group (Pc-G) gene Enhancer of zeste [E(z)], a crucial regulator of homeotic gene expression implicated in the assembly of repressive protein complexes in chromatin. Mammalian homologues of E(z) are encoded by two distinct loci in mouse and man, and the two murine Ezh genes display complementary expression profiles during mouse development. The E(z) gene family reveals a striking functional conservation in mediating gene repression in eukaryotic chromatin: extra gene copies of human EZH2 or Drosophila E(z) in transgenic flies enhance position effect variegation of the heterochromatin-associated white gene, and expression of either human EZH2 or murine Ezh1 restores gene repression in Saccharomyces cerevisiae mutants that are impaired in telomeric silencing. Together, these data provide a functional link between Pc-G-dependent gene repression and inactive chromatin domains, and indicate that silencing mechanism(s) may be broadly conserved in eukaryotes. PMID:9214638

  2. The Role of Polycomb Group Gene BMI1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    comprises 10 exons and 9 introns. The gene encodes a cDNA of approximately 3.4 kb length and a 36.8 kDa protein consisting of 326 amino acids , whereas...mouse Bmi1 gene encodes a protein of 45–47 kDa [2, 5]. With respect to amino acid sequence, a high degree of homol- ogy is found between human BMI1...Cells were then washed twice with cold PBS and then were incubated with trichloroacetic acid solution on ice for 30 min. Next, acid -insoluble

  3. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2013-07-01

    of approximately 3.4 kb length and a 36.8 kDa protein consisting of 326 amino acids , whereas mouse Bmi1 gene encodes a protein of 45–47 kDa [2, 5...With respect to amino acid sequence, a high degree of homol- ogy is found between human BMI1 and murine Bmi1 that was the first member of the PcG gene...overexpression of BMI1 rescues tumor cells from the apo- ptosis induced by Okadaic acid and Epigallocatechin-3-gallate, well-known apoptotic agents [11

  4. The Role of Polycomb Group Gene BMI1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2014-03-01

    Twin Cities, MINNEAPOLIS, MN 55455-2070 REPORT DATE: March 2014 TYPE OF REPORT: Final PREPARED FOR...Department of Laboratory Medicine and Pathology, University of Minnesota- Twin Cities Campus, Minneapolis, Minnesota, USA. Telephone: 507-437-9662; Fax: 507...remodeling of extracellular ma- trix components, gain of mesenchymal phenotypes along with genetic /epigenetic modifications of different genes, and

  5. Adhesive pad differentiation in Drosophila melanogaster depends on the Polycomb group gene Su(z)2.

    PubMed

    Hüsken, Mirko; Hufnagel, Kim; Mende, Katharina; Appel, Esther; Meyer, Heiko; Peisker, Henrik; Tögel, Markus; Wang, Shuoshuo; Wolff, Jonas; Gorb, Stanislav N; Paululat, Achim

    2015-04-15

    The ability of many insects to walk on vertical smooth surfaces such as glass or even on the ceiling has fascinated biologists for a long time, and has led to the discovery of highly specialized adhesive organs located at the distal end of the animals' legs. So far, research has primarily focused on structural and ultrastructural investigations leading to a deeper understanding of adhesive organ functionality and to the development of new bioinspired materials. Genetic approaches, e.g. the analysis of mutants, to achieve a better understanding of adhesive organ differentiation have not been used so far. Here, we describe the first Drosophila melanogaster mutant that develops malformed adhesive organs, resulting in a complete loss of climbing ability on vertical smooth surfaces. Interestingly, these mutants fail to make close contact between the setal tips and the smooth surface, a crucial condition for wet adhesion mediated by capillary forces. Instead, these flies walk solely on their claws. Moreover, we were able to show that the mutation is caused by a P-element insertion into the Su(z)2 gene locus. Remobilization of the P-element restores climbing ability. Furthermore, we provide evidence that the P-element insertion results in an artificial Su(z)2 transcript, which most likely causes a gain-of-function mutation. We presume that this transcript causes deregulation of yet unknown target genes involved in pulvilli differentiation. Our results nicely demonstrate that the genetically treatable model organism Drosophila is highly suitable for future investigations on adhesive organ differentiation.

  6. The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice.

    PubMed

    Conrad, Liza J; Khanday, Imtiyaz; Johnson, Cameron; Guiderdoni, Emmanuel; An, Gynheung; Vijayraghavan, Usha; Sundaresan, Venkatesan

    2014-12-01

    Polycomb Repressive Complex 2 (PRC2) represses the transcriptional activity of target genes through trimethylation of lysine 27 of histone H3. The functions of plant PRC2 have been chiefly described in Arabidopsis, but specific functions in other plant species, especially cereals, are still largely unknown. Here we characterize mutants in the rice EMF2B gene, an ortholog of the Arabidopsis EMBRYONIC FLOWER2 (EMF2) gene. Loss of EMF2B in rice results in complete sterility, and mutant flowers have severe floral organ defects and indeterminacy that resemble loss-of-function mutants in E-function floral organ specification genes. Transcriptome analysis identified the E-function genes OsMADS1, OsMADS6 and OsMADS34 as differentially expressed in the emf2b mutant compared with wild type. OsMADS1 and OsMADS6, known to be required for meristem determinacy in rice, have reduced expression in the emf2b mutant, whereas OsMADS34 which interacts genetically with OsMADS1 was ectopically expressed. Chromatin immunoprecipitation for H3K27me3 followed by quantitative (q)RT-PCR showed that all three genes are presumptive targets of PRC2 in the meristem. Therefore, in rice, and possibly other cereals, PRC2 appears to play a major role in floral meristem determinacy through modulation of the expression of E-function genes. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting.

    PubMed

    Köhler, Claudia; Page, Damian R; Gagliardini, Valeria; Grossniklaus, Ueli

    2005-01-01

    The maternally expressed Arabidopsis thaliana Polycomb group protein MEDEA (MEA) controls expression of the MADS-box gene PHERES1 (PHE1). Here, we show that PHE1 is mainly paternally expressed but maternally repressed and that this maternal repression of PHE1 breaks down in seeds lacking maternal MEA activity. Because Polycomb group proteins control parental imprinting in mammals as well, the independent recruitment of similar protein machineries for the imprinting of genes is a notable example of convergent evolution.

  8. Combgap contributes to recruitment of Polycomb group proteins in Drosophila

    PubMed Central

    Ray, Payal; De, Sandip; Mitra, Apratim; Bezstarosti, Karel; Demmers, Jeroen A. A.; Pfeifer, Karl; Kassis, Judith A.

    2016-01-01

    Polycomb group (PcG) proteins are responsible for maintaining the silenced transcriptional state of many developmentally regulated genes. PcG proteins are organized into multiprotein complexes that are recruited to DNA via cis-acting elements known as “Polycomb response elements” (PREs). In Drosophila, PREs consist of binding sites for many different DNA-binding proteins, some known and others unknown. Identification of these DNA-binding proteins is crucial to understanding the mechanism of PcG recruitment to PREs. We report here the identification of Combgap (Cg), a sequence-specific DNA-binding protein that is involved in recruitment of PcG proteins. Cg can bind directly to PREs via GTGT motifs and colocalizes with the PcG proteins Pleiohomeotic (Pho) and Polyhomeotic (Ph) at the majority of PREs in the genome. In addition, Cg colocalizes with Ph at a number of targets independent of Pho. Loss of Cg leads to decreased recruitment of Ph at only a subset of sites; some of these sites are binding sites for other Polycomb repressive complex 1 (PRC1) components, others are not. Our data suggest that Cg can recruit Ph in the absence of PRC1 and illustrate the diversity and redundancy of PcG protein recruitment mechanisms. PMID:27001825

  9. Identification of Polycomb Group Protein EZH2-Mediated DNA Mismatch Repair Gene MSH2 in Human Uterine Fibroids.

    PubMed

    Yang, Qiwei; Laknaur, Archana; Elam, Lelyand; Ismail, Nahed; Gavrilova-Jordan, Larisa; Lue, John; Diamond, Michael P; Al-Hendy, Ayman

    2016-10-01

    Uterine fibroids (UFs) are benign smooth muscle neoplasms affecting up to 70% of reproductive age women. Treatment of symptomatic UFs places a significant economic burden on the US health-care system. Several specific genetic abnormalities have been described as etiologic factors of UFs, suggesting that a low DNA damage repair capacity may be involved in the formation of UF. In this study, we used human fibroid and adjacent myometrial tissues, as well as an in vitro cell culture model, to evaluate the expression of MutS homolog 2 (MSH2), which encodes a protein belongs to the mismatch repair system. In addition, we deciphered the mechanism by which polycomb repressive complex 2 protein, EZH2, deregulates MSH2 in UFs. The RNA expression analysis demonstrated the deregulation of MSH2 expression in UF tissues in comparison to its adjacent myometrium. Notably, protein levels of MSH2 were upregulated in 90% of fibroid tissues (9 of 10) as compared to matched adjacent myometrial tissues. Human fibroid primary cells treated with 3-deazaneplanocin A (DZNep), chemical inhibitor of EZH2, exhibited a significant increase in MSH2 expression (P < .05). Overexpression of EZH2 using an adenoviral vector approach significantly downregulated the expression of MSH2 (P < .05). Chromatin immunoprecipitation assay demonstrated that enrichment of H3K27me3 in promoter regions of MSH2 was significantly decreased in DZNep-treated fibroid cells as compared to vehicle control. These data suggest that EZH2-H3K27me3 regulatory mechanism dynamically changes the expression levels of DNA mismatch repair gene MSH2, through epigenetic mark H3K27me3. MSH2 may be considered as a marker for early detection of UFs. © The Author(s) 2016.

  10. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis.

    PubMed

    Chanvivattana, Yindee; Bishopp, Anthony; Schubert, Daniel; Stock, Christine; Moon, Yong-Hwan; Sung, Z Renee; Goodrich, Justin

    2004-11-01

    In Arabidopsis, the EMBYRONIC FLOWER2 (EMF2), VERNALISATION2 (VRN2) and FERTILISATION INDEPENDENT ENDOSPERM2 (FIS2) genes encode related Polycomb-group (Pc-G) proteins. Their homologues in animals act together with other Pc-G proteins as part of a multimeric complex, Polycomb Repressive Complex 2 (PRC2), which functions as a histone methyltransferase. Despite similarities between the fis2 mutant phenotype and those of some other plant Pc-G members, it has remained unclear how the FIS2/EMF2/VRN2 class Pc-G genes interact with the others. We have identified a weak emf2 allele that reveals a novel phenotype with striking similarity to that of severe mutations in another Pc-G gene, CURLY LEAF (CLF), suggesting that the two genes may act in a common pathway. Consistent with this, we demonstrate that EMF2 and CLF interact genetically and that this reflects interaction of their protein products through two conserved motifs, the VEFS domain and the C5 domain. We show that the full function of CLF is masked by partial redundancy with a closely related gene, SWINGER (SWN), so that null clf mutants have a much less severe phenotype than emf2 mutants. Analysis in yeast further indicates a potential for the CLF and SWN proteins to interact with the other VEFS domain proteins VRN2 and FIS2. The functions of individual Pc-G members may therefore be broader than single mutant phenotypes reveal. We suggest that plants have Pc-G protein complexes similar to the Polycomb Repressive Complex2 (PRC2) of animals, but the duplication and subsequent diversification of components has given rise to different complexes with partially discrete functions.

  11. Intergenic transcription through a polycomb group response element counteracts silencing.

    PubMed

    Schmitt, Sabine; Prestel, Matthias; Paro, Renato

    2005-03-15

    Polycomb group response elements (PREs) mediate the mitotic inheritance of gene expression programs and thus maintain determined cell fates. By default, PREs silence associated genes via the targeting of Polycomb group (PcG) complexes. Upon an activating signal, however, PREs recruit counteracting trithorax group (trxG) proteins, which in turn maintain target genes in a transcriptionally active state. Using a transgenic reporter system, we show that the switch from the silenced to the activated state of a PRE requires noncoding transcription. Continuous transcription through the PRE induced by an actin promoter prevents the establishment of PcG-mediated silencing. The maintenance of epigenetic activation requires transcription through the PRE to proceed at least until embryogenesis is completed. At the homeotic bithorax complex of Drosophila, intergenic PRE transcripts can be detected not only during embryogenesis, but also at late larval stages, suggesting that transcription through endogenous PREs is required continuously as an anti-silencing mechanism to prevent the access of repressive PcG complexes to the chromatin. Furthermore, all other PREs outside the homeotic complex we tested were found to be transcribed in the same tissue as the mRNA of the corresponding target gene, suggesting that anti-silencing by transcription is a fundamental aspect of the cellular memory system.

  12. Dynamic regulation of Polycomb group activity during plant development.

    PubMed

    Bemer, Marian; Grossniklaus, Ueli

    2012-11-01

    Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.

  13. white+ transgene insertions presenting a dorsal/ventral pattern define a single cluster of homeobox genes that is silenced by the polycomb-group proteins in Drosophila melanogaster.

    PubMed Central

    Netter, S; Fauvarque, M O; Diez del Corral, R; Dura, J M; Coen, D

    1998-01-01

    We used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1-3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb-group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc-G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products. PMID:9584101

  14. Polycomb Group Gene OsFIE2 Regulates Rice (Oryza sativa) Seed Development and Grain Filling via a Mechanism Distinct from Arabidopsis

    PubMed Central

    Nallamilli, Babi Ramesh Reddy; Zhang, Jian; Mujahid, Hana; Malone, Brandon M.; Bridges, Susan M.; Peng, Zhaohua

    2013-01-01

    Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP–Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis. PMID:23505380

  15. Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis.

    PubMed

    Nallamilli, Babi Ramesh Reddy; Zhang, Jian; Mujahid, Hana; Malone, Brandon M; Bridges, Susan M; Peng, Zhaohua

    2013-01-01

    Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP-Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis.

  16. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato

    PubMed Central

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life. PMID:27558543

  17. The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens.

    PubMed

    Pereman, Idan; Mosquna, Assaf; Katz, Aviva; Wiedemann, Gertrud; Lang, Daniel; Decker, Eva L; Tamada, Yosuke; Ishikawa, Takaaki; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Reski, Ralf; Ohad, Nir

    2016-07-01

    Packaging of eukaryotic DNA largely depends on histone modifications that affect the accessibility of DNA to transcriptional regulators, thus controlling gene expression. The Polycomb group (PcG) chromatin remodeling complex deposits a methyl group on lysine 27 of histone 3 leading to repressed gene expression. Plants encode homologs of the Enhancer of zeste (E(z)), a component of the PcG complex from Drosophila, one of which is a SET domain protein designated CURLY LEAF (CLF). Although this SET domain protein exhibits a strong correlation with the presence of the H3K27me3 mark in plants, the methyl-transferase activity and specificity of its SET domain have not been directly tested in-vivo. Using the evolutionary early-diverged land plant model species Physcomitrella patens we show that abolishment of a single copy gene PpCLF, as well as an additional member of the PcG complex, FERTILIZATION-INDEPENDENT ENDOSPERM (PpFIE), results in a specific loss of tri-methylation of H3K27. Using site-directed mutagenesis of key residues, we revealed that H3K27 tri-methylation is mediated by the SET domain of the CLF protein. Moreover, the abolishment of H3K27me3 led to enhanced expression of transcription factor genes. This in turn led to the development of fertilization-independent sporophyte-like structures, as observed in PpCLF and PpFIE null mutants. Overall, our results demonstrate the role of PpCLF as a SET protein in tri-methylation of H3K27 in-vivo and the importance of this modification in regulating the expression of transcription factor genes involved in developmental programs of P. patens.

  18. Mechanisms guiding Polycomb activities during gene silencing in Arabidopsis thaliana

    PubMed Central

    He, Chongsheng; Huang, Hai; Xu, Lin

    2013-01-01

    Polycomb group (PcG) proteins act in an evolutionarily conserved epigenetic pathway that regulates chromatin structures in plants and animals, repressing many developmentally important genes by modifying histones. PcG proteins can form at least two multiprotein complexes: Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2, respectively). The functions of Arabidopsis thaliana PRCs have been characterized in multiple stages of development and have diverse roles in response to environmental stimuli. Recently, the mechanism that precisely regulates Arabidopsis PcG activity was extensively studied. In this review, we summarize recent discoveries in the regulations of PcG at the three different layers: the recruitment of PRCs to specific target loci, the polyubiquitination and degradation of PRC2, and the antagonism of PRC2 activity by the Trithorax group proteins. Current knowledge indicates that the powerful activity of the PcG pathway is strictly controlled for specific silencing of target genes during plant development and in response to environmental stimuli. PMID:24312106

  19. Epigenetic balance of gene expression by Polycomb and COMPASS families.

    PubMed

    Piunti, Andrea; Shilatifard, Ali

    2016-06-03

    Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.

  20. Regulation by Polycomb and Trithorax Group Proteins in Arabidopsis

    PubMed Central

    Alvarez-Venegas, Raúl

    2010-01-01

    Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of homeotic genes and have crucial roles in cell proliferation, growth and development. PcG and trxG proteins form higher order protein complexes that contain SET domain proteins, with a histone methyltransferase (HMTase) activity, responsible for the different types of lysine methylation at the N-terminal tails of the core histone proteins. In recent years, genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to begin to understand how PcG and trxG proteins are recruited to chromatin and how they regulate their target genes and to elucidate their functions. This review focuses on the advances in our understanding of the biological roles of PcG and trxG proteins, their molecular mechanisms of action and further examines the role of histone marks in PcG and trxG regulation in Arabidopsis. PMID:22303254

  1. The Polycomb Group Protein EZH2 Impairs DNA Damage Repair Gene Expression in Human Uterine Fibroids1

    PubMed Central

    Yang, Qiwei; Nair, Sangeeta; Laknaur, Archana; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman

    2016-01-01

    Uterine fibroids are benign, smooth muscle tumors that occur in approximately 70%–80% of women by age 50 yr. The cellular and molecular mechanism(s) by which uterine fibroids (UFs) develop are not fully understood. Accumulating evidence demonstrates that several genetic abnormalities, including deletions, rearrangements, translocations, as well as mutations, have been found in UFs. These genetic anomalies suggest that low DNA damage repair capacity may be involved in UF formation. The objective of this study was to determine whether expression levels of DNA damage repair-related genes were altered, and how they were regulated in the pathogenesis of UFs. Expression levels of DNA repair-related genes RAD51 and BRCA1 were deregulated in fibroid tissues as compared to adjacent myometrial tissues. Expression levels of chromatin protein enhancer of zeste homolog 2 (EZH2) were higher in a subset of fibroids as compared to adjacent myometrial tissues by both immunohistochemistry and Western blot analysis. Treatment with an inhibitor of EZH2 markedly increased expression levels of RAD51 and BRCA1 in fibroid cells and inhibited cell proliferation paired with cell cycle arrest. Restoring the expression of RAD51 and BRCA1 by treatment with EZH2 inhibitor was dependent on reducing the enrichment of trimethylation of histone 3 lysine 27 epigenetic mark in their promoter regions. This study reveals the important role of EZH2-regulated DNA damage-repair genes via histone methylation in fibroid biology, and may provide novel therapeutic targets for the medical treatment of women with symptomatic UFs. PMID:26888970

  2. miR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1

    SciTech Connect

    Chang, Xiao; Sun, Yong; Han, Siqi; Zhu, Wei; Zhang, Haiping; Lian, Shi

    2015-01-02

    Highlights: • First reported deregulation of miR-203 and up-regulation of BMI1 in metastatic melanoma. • miR-203 decreased BMI1 expression by directly binding to 3′UTR. • Further found miR-203 overexpression suppressed cell invasion and stemness. • Re-expression of BMI1 rescued miR-203-mediated suppression. • miR-203-BMI1 axis may be potential therapeutic targets of melanoma metastasis. - Abstract: Metastasis is the major problem in malignant melanoma, posing a therapeutic challenge to clinicians. The investigation of the underlying mechanism driving this progress remains a large unmet need. In this study, we revealed a miR-203-BMI1 axis that regulated melanoma metastasis. We found significantly deregulation of miR-203 and up-regulation of BMI1 in melanoma, particularly in metastatic melanoma. An inverse correlation between the levels of miR-203 and BMI1 was further observed in melanoma tissues and cell lines. We also identified BMI1 as a downstream target gene of miR-203, which bound to the 3′UTR of BMI1. Overexpression of miR-203 was associated with decreased BMI1 expression and impaired cell invasion and tumor sphere formation activities. Re-expression of BMI1 markedly rescued miR-203-mediated suppression of these events. Taken together, our results demonstrated that miR-203 regulated melanoma invasive and proliferative abilities in part by targeting BMI1, providing new insights into potential mechanisms of melanoma metastasis.

  3. Chromatin topology is coupled to Polycomb group protein subnuclear organization

    PubMed Central

    Wani, Ajazul H.; Boettiger, Alistair N.; Schorderet, Patrick; Ergun, Ayla; Münger, Christine; Sadreyev, Ruslan I.; Zhuang, Xiaowei; Kingston, Robert E.; Francis, Nicole J.

    2016-01-01

    The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions. PMID:26759081

  4. Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners

    PubMed Central

    Strübbe, Gero; Popp, Christian; Schmidt, Alexander; Pauli, Andrea; Ringrose, Leonie; Beisel, Christian; Paro, Renato

    2011-01-01

    The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function. PMID:21415365

  5. Molecular population genetics of the Polycomb genes in Drosophila subobscura

    PubMed Central

    Calvo-Martín, Juan M.; Papaceit, Montserrat

    2017-01-01

    Polycomb group (PcG) proteins are important regulatory factors that modulate the chromatin state. They form protein complexes that repress gene expression by the introduction of posttranslational histone modifications. The study of PcG proteins divergence in Drosophila revealed signals of coevolution among them and an acceleration of the nonsynonymous evolutionary rate in the lineage ancestral to the obscura group species, mainly in subunits of the Pcl-PRC2 complex. Herein, we have studied the nucleotide polymorphism of PcG genes in a natural population of D. subobscura to detect whether natural selection has also modulated the evolution of these important regulatory genes in a more recent time scale. Results show that most genes are under the action of purifying selection and present a level and pattern of polymorphism consistent with predictions of the neutral model, the exceptions being Su(z)12 and Pho. MK tests indicate an accumulation of adaptive changes in the SU(Z)12 protein during the divergence of D. subobscura and D. guanche. In contrast, the HKA test shows a deficit of polymorphism at Pho. The most likely explanation for this reduced variation is the location of this gene in the dot-like chromosome and would indicate that this chromosome also has null or very low recombination in D. subobscura, as reported in D. melanogaster. PMID:28910411

  6. Molecular population genetics of the Polycomb genes in Drosophila subobscura.

    PubMed

    Calvo-Martín, Juan M; Papaceit, Montserrat; Segarra, Carmen

    2017-01-01

    Polycomb group (PcG) proteins are important regulatory factors that modulate the chromatin state. They form protein complexes that repress gene expression by the introduction of posttranslational histone modifications. The study of PcG proteins divergence in Drosophila revealed signals of coevolution among them and an acceleration of the nonsynonymous evolutionary rate in the lineage ancestral to the obscura group species, mainly in subunits of the Pcl-PRC2 complex. Herein, we have studied the nucleotide polymorphism of PcG genes in a natural population of D. subobscura to detect whether natural selection has also modulated the evolution of these important regulatory genes in a more recent time scale. Results show that most genes are under the action of purifying selection and present a level and pattern of polymorphism consistent with predictions of the neutral model, the exceptions being Su(z)12 and Pho. MK tests indicate an accumulation of adaptive changes in the SU(Z)12 protein during the divergence of D. subobscura and D. guanche. In contrast, the HKA test shows a deficit of polymorphism at Pho. The most likely explanation for this reduced variation is the location of this gene in the dot-like chromosome and would indicate that this chromosome also has null or very low recombination in D. subobscura, as reported in D. melanogaster.

  7. Transcription profiling during the cell cycle shows that a subset of Polycomb-targeted genes is upregulated during DNA replication

    PubMed Central

    Peña-Diaz, Javier; Hegre, Siv A.; Anderssen, Endre; Aas, Per A.; Mjelle, Robin; Gilfillan, Gregor D.; Lyle, Robert; Drabløs, Finn; Krokan, Hans E.; Sætrom, Pål

    2013-01-01

    Genome-wide gene expression analyses of the human somatic cell cycle have indicated that the set of cycling genes differ between primary and cancer cells. By identifying genes that have cell cycle dependent expression in HaCaT human keratinocytes and comparing these with previously identified cell cycle genes, we have identified three distinct groups of cell cycle genes. First, housekeeping genes enriched for known cell cycle functions; second, cell type-specific genes enriched for HaCaT-specific functions; and third, Polycomb-regulated genes. These Polycomb-regulated genes are specifically upregulated during DNA replication, and consistent with being epigenetically silenced in other cell cycle phases, these genes have lower expression than other cell cycle genes. We also find similar patterns in foreskin fibroblasts, indicating that replication-dependent expression of Polycomb-silenced genes is a prevalent but unrecognized regulatory mechanism. PMID:23325852

  8. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  9. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes.

    PubMed

    Simon, Jeffrey A; Tamkun, John W

    2002-04-01

    Polycomb and trithorax group proteins are evolutionarily conserved chromatin components that maintain stable states of gene expression. Recent studies have identified and characterized several multiprotein complexes containing these transcriptional regulators. Advances in understanding molecular activities of these complexes in vitro, and functional domains present in their subunits, suggest that they control transcription through multistep mechanisms that involve nucleosome modification, chromatin remodeling, and interaction with general transcription factors.

  10. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements

    PubMed Central

    Liu, Jian; Zhang, Lei; He, Chongsheng; Shen, Wen-Hui; Jin, Hong; Xu, Lin; Zhang, Yijing

    2016-01-01

    Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs. PMID:26760036

  11. Arabidopsis Flower and Embryo Developmental Genes are Repressed in Seedlings by Different Combinations of Polycomb Group Proteins in Association with Distinct Sets of Cis-regulatory Elements.

    PubMed

    Wang, Hua; Liu, Chunmei; Cheng, Jingfei; Liu, Jian; Zhang, Lei; He, Chongsheng; Shen, Wen-Hui; Jin, Hong; Xu, Lin; Zhang, Yijing

    2016-01-01

    Polycomb repressive complexes (PRCs) play crucial roles in transcriptional repression and developmental regulation in both plants and animals. In plants, depletion of different members of PRCs causes both overlapping and unique phenotypic defects. However, the underlying molecular mechanism determining the target specificity and functional diversity is not sufficiently characterized. Here, we quantitatively compared changes of tri-methylation at H3K27 in Arabidopsis mutants deprived of various key PRC components. We show that CURLY LEAF (CLF), a major catalytic subunit of PRC2, coordinates with different members of PRC1 in suppression of distinct plant developmental programs. We found that expression of flower development genes is repressed in seedlings preferentially via non-redundant role of CLF, which specifically associated with LIKE HETEROCHROMATIN PROTEIN1 (LHP1). In contrast, expression of embryo development genes is repressed by PRC1-catalytic core subunits AtBMI1 and AtRING1 in common with PRC2-catalytic enzymes CLF or SWINGER (SWN). This context-dependent role of CLF corresponds well with the change in H3K27me3 profiles, and is remarkably associated with differential co-occupancy of binding motifs of transcription factors (TFs), including MADS box and ABA-related factors. We propose that different combinations of PRC members distinctively regulate different developmental programs, and their target specificity is modulated by specific TFs.

  12. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation.

    PubMed

    Gehring, Mary; Huh, Jin Hoe; Hsieh, Tzung-Fu; Penterman, Jon; Choi, Yeonhee; Harada, John J; Goldberg, Robert B; Fischer, Robert L

    2006-02-10

    MEDEA (MEA) is an Arabidopsis Polycomb group gene that is imprinted in the endosperm. The maternal allele is expressed and the paternal allele is silent. MEA is controlled by DEMETER (DME), a DNA glycosylase required to activate MEA expression, and METHYLTRANSFERASE I (MET1), which maintains CG methylation at the MEA locus. Here we show that DME is responsible for endosperm maternal-allele-specific hypomethylation at the MEA gene. DME can excise 5-methylcytosine in vitro and when expressed in E. coli. Abasic sites opposite 5-methylcytosine inhibit DME activity and might prevent DME from generating double-stranded DNA breaks. Unexpectedly, paternal-allele silencing is not controlled by DNA methylation. Rather, Polycomb group proteins that are expressed from the maternal genome, including MEA, control paternal MEA silencing. Thus, DME establishes MEA imprinting by removing 5-methylcytosine to activate the maternal allele. MEA imprinting is subsequently maintained in the endosperm by maternal MEA silencing the paternal allele.

  13. Stuxnet Recruits the Proteasome to Take Down Polycomb.

    PubMed

    Karch, François

    2016-06-20

    In this issue of Developmental Cell, Du et al. (2016) describe a gene named stuxnet that regulates Polycomb protein stability, thereby influencing the activity of the Polycomb-group repressive chromatin complexes.

  14. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins.

    PubMed

    Ringrose, Leonie; Paro, Renato

    2004-01-01

    During the development of multicellular organisms, cells become different from one another by changing their genetic program in response to transient stimuli. Long after the stimulus is gone, "cellular memory" mechanisms enable cells to remember their chosen fate over many cell divisions. The Polycomb and Trithorax groups of proteins, respectively, work to maintain repressed or active transcription states of developmentally important genes through many rounds of cell division. Here we review current ideas on the protein and DNA components of this transcriptional memory system and how they interact dynamically with each other to orchestrate cellular memory for several hundred genes.

  15. Polycomb silencing of the Drosophila 4E-BP gene regulates imaginal disc cell growth

    PubMed Central

    Mason-Suares, Heather; Tie, Feng; Yan, Christopher; Harte, Peter J.

    2015-01-01

    Polycomb group (PcG) proteins are best known for their role in maintaining stable, mitotically heritable silencing of the homeotic (HOX) genes during development. In addition to loss of homeotic gene silencing, some PcG mutants also have small imaginal discs. These include mutations in E(z), Su(z)12, esc and escl, which encode Polycomb Repressive Complex 2 (PRC2) subunits. The cause of this phenotype is not known, but the human homologs of PRC2 subunits have been shown to play a role in cell proliferation, are over-expressed in many tumors, and appear to be required for tumor proliferation. Here we show that the small imaginal disc phenotype arises, at least in part, from a cell growth defect. In homozygous E(z) mutants, imaginal disc cells are smaller than cells in normally proliferating discs. We show that the Thor gene, which encodes eIF4E-Binding Protein (4E-BP), the evolutionarily conserved inhibitor of cap-dependent translation and potent inhibitor of cell growth, is involved in the development of this phenotype. The Thor promoter region contains DNA binding motifs for transcription factors found in well-characterized Polycomb Response Elements (PREs), including PHO/PHOL, GAGA Factor, and others, suggesting that Thor may be a direct target of Polycomb silencing. We present chromatin immunoprecipitation evidence that PcG proteins are bound to the Thor 5’ region in vivo. The Thor gene is normally repressed in imaginal discs, but Thor mRNA and 4E-BP protein levels are elevated in imaginal discs of PRC2 subunit mutant larvae. Deletion of the Thor gene in E(z) mutants partially restores imaginal disc size toward wild-type and results in an increase in the fraction of larvae that pupariate. These results thus suggest that PcG proteins can directly modulate cell growth in Drosophila, in part by regulating Thor expression. PMID:23523430

  16. Checks and balances between cohesin and polycomb in gene silencing and transcription.

    PubMed

    Dorsett, Dale; Kassis, Judith A

    2014-06-02

    The cohesin protein complex was discovered for its roles in sister chromatid cohesion and segregation, and the Polycomb group (PcG) proteins for their roles in epigenetic gene silencing during development. Cohesin also controls gene transcription via multiple mechanisms. Genetic and molecular evidence from Drosophila argue that cohesin and the PRC1 PcG complex interact to control transcription of many active genes that are critical for development, and that via these interactions cohesin also controls the availability of PRC1 for gene silencing.

  17. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    PubMed

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Genome-wide identification of polycomb target genes reveals a functional association of Pho with Scm in Bombyx mori.

    PubMed

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Tatsuke, Tsuneyuki; Zhu, Li; Xu, Jian; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2012-01-01

    Polycomb group (PcG) proteins are evolutionarily conserved chromatin modifiers and act together in three multimeric complexes, Polycomb repressive complex 1 (PRC1), Polycomb repressive complex 2 (PRC2), and Pleiohomeotic repressive complex (PhoRC), to repress transcription of the target genes. Here, we identified Polycomb target genes in Bombyx mori with holocentric centromere using genome-wide expression screening based on the knockdown of BmSCE, BmESC, BmPHO, or BmSCM gene, which represent the distinct complexes. As a result, the expressions of 29 genes were up-regulated after knocking down 4 PcG genes. Particularly, there is a significant overlap between targets of BmPho (331 out of 524) and BmScm (331 out of 532), and among these, 190 genes function as regulator factors playing important roles in development. We also found that BmPho, as well as BmScm, can interact with other Polycomb components examined in this study. Further detailed analysis revealed that the C-terminus of BmPho containing zinc finger domain is involved in the interaction between BmPho and BmScm. Moreover, the zinc finger domain in BmPho contributes to its inhibitory function and ectopic overexpression of BmScm is able to promote transcriptional repression by Gal4-Pho fusions including BmScm-interacting domain. Loss of BmPho expression causes relocalization of BmScm into the cytoplasm. Collectively, we provide evidence of a functional link between BmPho and BmScm, and propose two Polycomb-related repression mechanisms requiring only BmPho associated with BmScm or a whole set of PcG complexes.

  19. Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes.

    PubMed

    Li, Xiangzhi; Isono, Kyo-Ichi; Yamada, Daisuke; Endo, Takaho A; Endoh, Mitsuhiro; Shinga, Jun; Mizutani-Koseki, Yoko; Otte, Arie P; Casanova, Miguel; Kitamura, Hiroshi; Kamijo, Takehiko; Sharif, Jafar; Ohara, Osamu; Toyada, Tetsuro; Bernstein, Bradley E; Brockdorff, Neil; Koseki, Haruhiko

    2011-01-01

    The Polycomb group of proteins forms at least two distinct complexes designated the Polycomb repressive complex-1 (PRC1) and PRC2. These complexes cooperate to mediate transcriptional repression of their target genes, including the Hox gene cluster and the Cdkn2a genes. Mammalian Polycomb-like gene Pcl2/Mtf2 is expressed as four different isoforms, and the longest one contains a Tudor domain and two plant homeodomain (PHD) fingers. Pcl2 forms a complex with PRC2 and binds to Hox genes in a PRC2-dependent manner. We show that Pcl2 is a functional component of PRC2 and is required for PRC2-mediated Hox repression. Pcl2, however, exhibits a profound synergistic effect on PRC1-mediated Hox repression, which is not accompanied by major alterations in the local trimethylation of histone H3 at lysine 27 (H3K27me3) or PRC1 deposition. Pcl2 therefore functions in collaboration with both PRC2 and PRC1 to repress Hox gene expression during axial development. Paradoxically, in embryonic fibroblasts, Pcl2 is shown to activate the expression of Cdkn2a and promote cellular senescence, presumably by suppressing the catalytic activity of PRC2 locally. Taken together, we show that Pcl2 differentially regulates Polycomb-mediated repression of Hox and Cdkn2a genes. We therefore propose a novel role for Pcl2 to modify functional engagement of PRC2 and PRC1, which could be modulated by sensing cellular circumstances.

  20. Alternative epigenetic chromatin states of polycomb target genes.

    PubMed

    Schwartz, Yuri B; Kahn, Tatyana G; Stenberg, Per; Ohno, Katsuhito; Bourgon, Richard; Pirrotta, Vincenzo

    2010-01-01

    Polycomb (PcG) regulation has been thought to produce stable long-term gene silencing. Genomic analyses in Drosophila and mammals, however, have shown that it targets many genes, which can switch state during development. Genetic evidence indicates that critical for the active state of PcG target genes are the histone methyltransferases Trithorax (TRX) and ASH1. Here we analyze the repertoire of alternative states in which PcG target genes are found in different Drosophila cell lines and the role of PcG proteins TRX and ASH1 in controlling these states. Using extensive genome-wide chromatin immunoprecipitation analysis, RNAi knockdowns, and quantitative RT-PCR, we show that, in addition to the known repressed state, PcG targets can reside in a transcriptionally active state characterized by formation of an extended domain enriched in ASH1, the N-terminal, but not C-terminal moiety of TRX and H3K27ac. ASH1/TRX N-ter domains and transcription are not incompatible with repressive marks, sometimes resulting in a "balanced" state modulated by both repressors and activators. Often however, loss of PcG repression results instead in a "void" state, lacking transcription, H3K27ac, or binding of TRX or ASH1. We conclude that PcG repression is dynamic, not static, and that the propensity of a target gene to switch states depends on relative levels of PcG, TRX, and activators. N-ter TRX plays a remarkable role that antagonizes PcG repression and preempts H3K27 methylation by acetylation. This role is distinct from that usually attributed to TRX/MLL proteins at the promoter. These results have important implications for Polycomb gene regulation, the "bivalent" chromatin state of embryonic stem cells, and gene expression in development.

  1. Trithorax and Polycomb group-dependent regulation: a tale of opposing activities.

    PubMed

    Geisler, Sarah J; Paro, Renato

    2015-09-01

    Intricate layers of regulation determine the unique gene expression profiles of a given cell and, therefore, underlie the immense phenotypic diversity observed among cell types. Understanding the mechanisms that govern which genes are expressed and which genes are silenced is a fundamental focus in biology. The Polycomb and Trithorax group chromatin proteins play important roles promoting the stable and heritable repression and activation of gene expression, respectively. These proteins, which are conserved across metazoans, modulate post-translational modifications on histone tails and regulate nucleosomal structures. Here, we review recent advances that have shed light on the mechanisms by which these two classes of proteins act to maintain epigenetic memory and allow dynamic switches in gene expression during development.

  2. Architectural and Functional Diversity of Polycomb Group Response Elements in Drosophila

    PubMed Central

    Brown, J. Lesley; Kassis, Judith A.

    2013-01-01

    Polycomb group response elements (PREs) play an essential role in gene regulation by the Polycomb group (PcG) repressor proteins in Drosophila. PREs are required for the recruitment and maintenance of repression by the PcG proteins. PREs are made up of binding sites for multiple DNA-binding proteins, but it is still unclear what combination(s) of binding sites is required for PRE activity. Here we compare the binding sites and activities of two closely linked yet separable PREs of the Drosophila engrailed (en) gene, PRE1 and PRE2. Both PRE1 and PRE2 contain binding sites for multiple PRE–DNA-binding proteins, but the number, arrangement, and spacing of the sites differs between the two PREs. These differences have functional consequences. Both PRE1 and PRE2 mediate pairing-sensitive silencing of mini-white, a functional assay for PcG repression; however, PRE1 requires two binding sites for Pleiohomeotic (Pho), whereas PRE2 requires only one Pho-binding site for this activity. Furthermore, for full pairing-sensitive silencing activity, PRE1 requires an AT-rich region not found in PRE2. These two PREs behave differently in a PRE embryonic and larval reporter construct inserted at an identical location in the genome. Our data illustrate the diversity of architecture and function of PREs. PMID:23934890

  3. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    PubMed Central

    Bracken, Adrian P.; Dietrich, Nikolaj; Pasini, Diego; Hansen, Klaus H.; Helin, Kristian

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Polycomb-Repressive Complex 1 (PRC1), PRC2, and tri-methylated histone H3K27 co-occupy >1000 silenced genes with a strong functional bias for embryonic development and cell fate decisions. We functionally identify 40 genes derepressed in human embryonic fibroblasts depleted of the PRC2 components (EZH2, EED, SUZ12) and the PRC1 component, BMI-1. Interestingly, several markers of osteogenesis, adipogenesis, and chrondrogenesis are among these genes, consistent with the mesenchymal origin of fibroblasts. Using a neuronal model of differentiation, we delineate two different mechanisms for regulating PcG target genes. For genes activated during differentiation, PcGs are displaced. However, for genes repressed during differentiation, we paradoxically find that they are already bound by the PcGs in nondifferentiated cells despite being actively transcribed. Our results are consistent with the hypothesis that PcGs are part of a preprogrammed memory system established during embryogenesis marking certain key genes for repressive signals during subsequent developmental and differentiation processes. PMID:16618801

  4. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites

    PubMed Central

    Parrish, Jay Z.; Emoto, Kazuo; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da) neurons. In esc, Su(z)12, or Pc mutants, dendritic fields are established normally, but class IV neurons display a gradual loss of dendritic coverage, while axons remain normal in appearance, demonstrating that PcG genes are specifically required for dendrite maintenance. Both multiprotein Polycomb repressor complexes (PRCs) involved in transcriptional silencing are implicated in regulation of dendrite arborization in class IV da neurons, likely through regulation of homeobox (Hox) transcription factors. We further show genetic interactions and association between PcG proteins and the tumor suppressor kinase Warts (Wts), providing evidence for their cooperation in multiple developmental processes including dendrite maintenance. PMID:17437999

  5. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    PubMed

    Peterson, Aidan J; Mallin, Daniel R; Francis, Nicole J; Ketel, Carrie S; Stamm, Joyce; Voeller, Rochus K; Kingston, Robert E; Simon, Jeffrey A

    2004-07-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.

  6. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    PubMed Central

    Peterson, Aidan J; Mallin, Daniel R; Francis, Nicole J; Ketel, Carrie S; Stamm, Joyce; Voeller, Rochus K; Kingston, Robert E; Simon, Jeffrey A

    2004-01-01

    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing. PMID:15280237

  7. The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila

    PubMed Central

    Dorighi, Kristel M.; Tamkun, John W.

    2013-01-01

    Members of the Polycomb group of repressors and trithorax group of activators maintain heritable states of transcription by modifying nucleosomal histones or remodeling chromatin. Although tremendous progress has been made toward defining the biochemical activities of Polycomb and trithorax group proteins, much remains to be learned about how they interact with each other and the general transcription machinery to maintain on or off states of gene expression. The trithorax group protein Kismet (KIS) is related to the SWI/SNF and CHD families of chromatin remodeling factors. KIS promotes transcription elongation, facilitates the binding of the trithorax group histone methyltransferases ASH1 and TRX to active genes, and counteracts repressive methylation of histone H3 on lysine 27 (H3K27) by Polycomb group proteins. Here, we sought to clarify the mechanism of action of KIS and how it interacts with ASH1 to antagonize H3K27 methylation in Drosophila. We present evidence that KIS promotes transcription elongation and counteracts Polycomb group repression via distinct mechanisms. A chemical inhibitor of transcription elongation, DRB, had no effect on ASH1 recruitment or H3K27 methylation. Conversely, loss of ASH1 function had no effect on transcription elongation. Mutations in kis cause a global reduction in the di- and tri-methylation of histone H3 on lysine 36 (H3K36) - modifications that antagonize H3K27 methylation in vitro. Furthermore, loss of ASH1 significantly decreases H3K36 dimethylation, providing further evidence that ASH1 is an H3K36 dimethylase in vivo. These and other findings suggest that KIS antagonizes Polycomb group repression by facilitating ASH1-dependent H3K36 dimethylation. PMID:24004944

  8. Polycomb Group Proteins as Epigenetic Mediators of Neuroprotection in Ischemic Tolerance

    PubMed Central

    Stapels, Martha; Piper, Chelsea; Yang, Tao; Li, Minghua; Stowell, Cheri; Xiong, Zhi-gang; Saugstad, Julie; Simon, Roger P.; Geromanos, Scott; Langridge, James; Lan, Jing-quan; Zhou, An

    2010-01-01

    Exposing the brain to sublethal ischemia affects the response to a subsequent, otherwise injurious ischemia, resulting in transcriptional suppression and neuroprotection, a response called ischemic tolerance. Here, we show that the proteomic signature of the ischemic-tolerant brain is characterized by increased abundance of transcriptional repressors, particularly polycomb group (PcG) proteins. Knocking down PcG proteins precluded the induction of ischemic tolerance, whereas in an in vitro model, overexpressing the PcG proteins SCMH1 or BMI1 induced tolerance to ischemia without preconditioning. We found that PcG proteins are associated with the promoter regions of genes encoding two potassium channel proteins that show decreased abundance in ischemic-tolerant brains. Furthermore, PcG proteins decreased potassium currents in cultured neuronal cells and knocking down potassium channels elicited tolerance without preconditioning. These findings reveal a previously unknown mechanism of neuroprotection that involves gene repressors of the PcG family. PMID:20197544

  9. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance.

    PubMed

    Stapels, Martha; Piper, Chelsea; Yang, Tao; Li, Minghua; Stowell, Cheri; Xiong, Zhi-gang; Saugstad, Julie; Simon, Roger P; Geromanos, Scott; Langridge, James; Lan, Jing-quan; Zhou, An

    2010-03-02

    Exposing the brain to sublethal ischemia affects the response to a subsequent, otherwise injurious ischemia, resulting in transcriptional suppression and neuroprotection, a response called ischemic tolerance. Here, we show that the proteomic signature of the ischemic-tolerant brain is characterized by increased abundance of transcriptional repressors, particularly polycomb group (PcG) proteins. Knocking down PcG proteins precluded the induction of ischemic tolerance, whereas in an in vitro model, overexpressing the PcG proteins SCMH1 or BMI1 induced tolerance to ischemia without preconditioning. We found that PcG proteins are associated with the promoter regions of genes encoding two potassium channel proteins that show decreased abundance in ischemic-tolerant brains. Furthermore, PcG proteins decreased potassium currents in cultured neuronal cells, and knocking down potassium channels elicited tolerance without preconditioning. These findings reveal a previously unknown mechanism of neuroprotection that involves gene repressors of the PcG family.

  10. Polycomb Group Protein Ezh2 Regulates Hepatic Progenitor Cell Proliferation and Differentiation in Murine Embryonic Liver

    PubMed Central

    Ueno, Yasuharu; Nakata, Susumu; Obana, Yuta; Sekine, Keisuke; Zheng, Yun-Wen; Takebe, Takanori; Isono, Kyoichi; Koseki, Haruhiko; Taniguchi, Hideki

    2014-01-01

    In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development. Enhancer of zeste homolog 2 (Ezh2), a key component of polycomb group proteins, catalyzes tri-methylation of lysine 27 of histone H3 (H3K27me3), which trigger the gene suppression. In the present study, we investigated a role of Ezh2 in the regulation of the expanding hepatic progenitor population in vivo. We found that Ezh2 is highly expressed in the actively proliferating cells at the early developmental stage. Using a conditional knockout mouse model, we show that the deletion of the SET domain of Ezh2, which is responsible for catalytic induction of H3K27me3, results in significant reduction of the total liver size, absolute number of liver parenchymal cells, and hepatic progenitor cell population in size. A clonal colony assay in the hepatic progenitor cells directly isolated from in vivo fetal livers revealed that the bi-potent clonogenicity was significantly attenuated by the Ezh2 loss of function. Moreover, a marker expression based analysis and a global gene expression analysis showed that the knockout of Ezh2 inhibited differentiation to hepatocyte with reduced expression of a number of liver-function related genes. Taken together, our results indicate that Ezh2 is required for the hepatic progenitor expansion in vivo, which is essential for the functional maturation of embryonic liver, through its activity for catalyzing H3K27me3. PMID:25153170

  11. Biochemical and Functional Interactions of Human Papillomavirus Proteins with Polycomb Group Proteins

    PubMed Central

    McLaughlin-Drubin, Margaret E.; Munger, Karl

    2013-01-01

    The role of enzymes involved in polycomb repression of gene transcription has been studied extensively in human cancer. Polycomb repressive complexes mediate oncogene-induced senescence, a principal innate cell-intrinsic tumor suppressor pathway that thwarts expansion of cells that have suffered oncogenic hits. Infections with human cancer viruses including human papillomaviruses (HPVs) and Epstein-Barr virus can trigger oncogene-induced senescence, and the viruses have evolved strategies to abrogate this response in order to establish an infection and reprogram their host cells to establish a long-term persistent infection. As a consequence of inhibiting polycomb repression and evading oncogene induced-senescence, HPV infected cells have an altered epigenetic program as evidenced by aberrant homeobox gene expression. Similar alterations are frequently observed in non-virus associated human cancers and may be harnessed for diagnosis and therapy. PMID:23673719

  12. Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2

    PubMed Central

    Perera, Pumi; Mora-García, Santiago; de Leau, Erica; Thornton, Harry; de Alves, Flavia Lima; Rapsilber, Juri; Yang, Suxin; James, Geo Velikkakam; Schneeberger, Korbinian; Finnegan, E. Jean; Turck, Franziska; Goodrich, Justin

    2015-01-01

    The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits Pc

  13. Kicking against the PRCs - A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2.

    PubMed

    Liang, Shih Chieh; Hartwig, Ben; Perera, Pumi; Mora-García, Santiago; de Leau, Erica; Thornton, Harry; de Lima Alves, Flavia; de Alves, Flavia Lima; Rappsilber, Juri; Rapsilber, Juri; Yang, Suxin; James, Geo Velikkakam; Schneeberger, Korbinian; Finnegan, E Jean; Turck, Franziska; Goodrich, Justin

    2015-12-01

    The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits Pc

  14. Polycomb recruitment at the Class II transactivator gene.

    PubMed

    Boyd, Nathaniel H; Morgan, Julie E; Greer, Susanna F

    2015-10-01

    The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.

  15. Association of Rex-1 to target genes supports its interaction with Polycomb function.

    PubMed

    Garcia-Tuñon, I; Guallar, D; Alonso-Martin, S; Benito, A A; Benítez-Lázaro, A; Pérez-Palacios, R; Muniesa, P; Climent, M; Sánchez, M; Vidal, M; Schoorlemmer, J

    2011-07-01

    Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis.

    PubMed

    Aichinger, Ernst; Villar, Corina B R; Farrona, Sara; Reyes, José C; Hennig, Lars; Köhler, Claudia

    2009-08-01

    Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA-binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell

  17. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm.

    PubMed

    Kinoshita, T; Yadegari, R; Harada, J J; Goldberg, R B; Fischer, R L

    1999-10-01

    In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, which is a tissue that supports embryo development. MEDEA (MEA) encodes an Arabidopsis SET domain Polycomb protein. Inheritance of a maternal loss-of-function mea allele results in embryo abortion and prolonged endosperm production, irrespective of the genotype of the paternal allele. Thus, only the maternal wild-type MEA allele is required for proper embryo and endosperm development. To understand the molecular mechanism responsible for the parent-of-origin effects of mea mutations on seed development, we compared the expression of maternal and paternal MEA alleles in the progeny of crosses between two Arabidopsis ecotypes. Only the maternal MEA mRNA was detected in the endosperm from seeds at the torpedo stage and later. By contrast, expression of both maternal and paternal MEA alleles was observed in the embryo from seeds at the torpedo stage and later, in seedling, leaf, stem, and root. Thus, MEA is an imprinted gene that displays parent-of-origin-dependent monoallelic expression specifically in the endosperm. These results suggest that the embryo abortion observed in mutant mea seeds is due, at least in part, to a defect in endosperm function. Silencing of the paternal MEA allele in the endosperm and the phenotype of mutant mea seeds supports the parental conflict theory for the evolution of imprinting in plants and mammals.

  18. Pluripotency Factors and Polycomb Group Proteins Repress Aryl Hydrocarbon Receptor Expression in Murine Embryonic Stem Cells

    PubMed Central

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development. PMID:24316986

  19. A Polycomb Group Protein Is Retained at Specific Sites on Chromatin in Mitosis

    PubMed Central

    Follmer, Nicole E.; Wani, Ajazul H.; Francis, Nicole J.

    2012-01-01

    Epigenetic regulation of gene expression, including by Polycomb Group (PcG) proteins, may depend on heritable chromatin states, but how these states can be propagated through mitosis is unclear. Using immunofluorescence and biochemical fractionation, we find PcG proteins associated with mitotic chromosomes in Drosophila S2 cells. Genome-wide sequencing of chromatin immunoprecipitations (ChIP–SEQ) from mitotic cells indicates that Posterior Sex Combs (PSC) is not present at well-characterized PcG targets including Hox genes in mitosis, but does remain at a subset of interphase sites. Many of these persistent sites overlap with chromatin domain borders described by Sexton et al. (2012), which are genomic regions characterized by low levels of long range contacts. Persistent PSC binding sites flank both Hox gene clusters. We hypothesize that disruption of long-range chromatin contacts in mitosis contributes to PcG protein release from most sites, while persistent binding at sites with minimal long-range contacts may nucleate re-establishment of PcG binding and chromosome organization after mitosis. PMID:23284300

  20. Polycomb-group histone methyltransferase CLF is required for proper somatic recombination in Arabidopsis.

    PubMed

    Chen, Na; Zhou, Wang-Bin; Wang, Ying-Xiang; Dong, Ai-Wu; Yu, Yu

    2014-06-01

    Homologous recombination (HR) is a key process during meiosis in reproductive cells and the DNA damage repair process in somatic cells. Although chromatin structure is thought to be crucial for HR, only a small number of chromatin modifiers have been studied in HR regulation so far. Here, we investigated the function of CURLY LEAF (CLF), a Polycomb-group (PcG) gene responsible for histone3 lysine 27 trimethylation (H3K27me3), in somatic and meiotic HR in Arabidopsis thaliana. Although fluorescent protein reporter assays in pollen and seeds showed that the frequency of meiotic cross-over in the loss-of-function mutant clf-29 was not significantly different from that in wild type, there was a lower frequency of HR in clf-29 than in wild type under normal conditions and under bleomycin treatment. The DNA damage levels were comparable between clf-29 and wild type, even though several DNA damage repair genes (e.g. ATM, BRCA2a, RAD50, RAD51, RAD54, and PARP2) were expressed at lower levels in clf-29. Under bleomycin treatment, the expression levels of DNA repair genes were similar in clf-29 and wild type, thus CLF may also regulate HR via other mechanisms. These findings expand the current knowledge of PcG function and contribute to general interests of epigenetic regulation in genome stability regulation.

  1. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA.

    PubMed Central

    Zink, D; Paro, R

    1995-01-01

    The genes of the Polycomb-group (Pc-G) are responsible for maintaining the inactive expression state of homeotic genes. They act through specific cis-regulatory DNA elements termed PREs (Pc-G Response Elements). Multimeric complexes containing the Pc-G proteins are thought to induce heterochromatin-like structures, which stably and heritably inactivate transcription. We have tested the functional role of the FAB fragment, a PRE of the bithorax complex. We find that this element behaves as an orientation dependent silencer, capable of inducing mosaic gene expression on neighboring genes. Transgenic fly lines were constructed containing a PRE adjacent to a reporter gene inducible by the yeast GAL4 trans-activator. The competition between the activator and Pc-G-containing chromatin was visualized on polytene chromosomes using immunocytochemistry. The Pc-G protein Polycomb and GAL4 have mutually exclusive binding patterns, supporting the notion that Pc-G-induced chromatin structures can prevent activators from binding to their target sequences. However, this antagonistic function can be overcome by high doses of GAL4, even in the absence of DNA replication. Images PMID:8521823

  2. Polycomb group proteins: Novel molecules associated with ultraviolet A-induced photoaging of human skin

    PubMed Central

    Wu, Zhuoxia; Zhang, Lianbo

    2017-01-01

    Epigenetic repressor polycomb group (PcG) proteins are thought to serve a role in a number of cellular processes, including carcinogenesis, senescence, apoptosis and DNA repair. In the present study, long-wave ultraviolet A (UVA) was used to irradiate human skin fibroblasts (HSFs) and embryonic skin fibroblasts (ESFs) in order to simulate photoaging of the skin. The results of cell proliferation, apoptosis, hyaluronic acid (HA) content and reverse transcription-quantitative polymerase chain reaction assays revealed that the expression levels of genes encoding key PcG proteins (BMI-1 and EZH2) were altered. In addition, the expression levels of these genes were associated with the expression of enzymes that regulate HA synthesis. Furthermore, the expression levels of PcG proteins differed between HSFs and ESFs, suggesting that PcG proteins serve a role in altering HA synthesis during the UVA-induced fibroblast aging process. This signaling pathway may represent a novel molecular mechanism regulating the photoaging of the skin. The findings of the present study provide important insights into the underlying mechanisms of photoaging of the human skin. Further studies are required to clarify the molecular mechanisms underling skin aging and to identify targets for the clinical treatment of photoaging.

  3. Interaction of the Arabidopsis polycomb group proteins FIE and MEA mediates their common phenotypes.

    PubMed

    Spillane, C; MacDougall, C; Stock, C; Köhler, C; Vielle-Calzada, J P; Nunes, S M; Grossniklaus, U; Goodrich, J

    2000-11-30

    Genes of the FERTILISATION INDEPENDENT SEED (FIS) class regulate cell proliferation during reproductive development in Arabidopsis [1-5]. The FIS genes FERTILISATION INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA) encode homologs of animal Polycomb group (Pc-G) proteins, transcriptional regulators that modify chromatin structure and are thought to form multimeric complexes [3-11]. To test whether similarities in fis mutant phenotypes reflect interactions between their protein products, we characterised FIE RNA and protein localisation in vivo, and FIE protein interactions in yeast and in vitro. Expression of FIE mRNA overlaps with that of MEA during embryo sac and seed development and is unaffected in mea mutants. Results from the yeast two-hybrid system and an in vitro pull-down assay indicate that MEA and FIE proteins interact. The relevance of this interaction in vivo is supported by the finding that FIE and MEA co-localise in the nucleus in transfected plant cells. Interaction of MEA and FIE is mediated by the amino-terminal region of MEA. Despite sequence divergence in this domain, MEA can interact with its corresponding animal partner Extrasexcombs (ESC) in the yeast two-hybrid system. We conclude that FIE and MEA act together as part of a multimeric complex and that this accounts for the similarities in mutant phenotypes. We propose that an ancient mechanism for chromatin modification has been independently recruited to different developmental processes in the two kingdoms.

  4. Polycomb group proteins are required to couple seed coat initiation to fertilization

    PubMed Central

    Roszak, Pawel; Köhler, Claudia

    2011-01-01

    Seed development in flowering plants is initiated after a double fertilization event leading to the formation of zygotic embryo and endosperm tissues surrounded by the maternally derived seed coat. Although the seed coat does not take part in the fertilization process it develops immediately after fertilization, implicating a signaling mechanism from zygotic tissues to the surrounding maternal tissues. We addressed the question of the underlying mechanisms repressing seed coat development before fertilization and initiating seed coat development after fertilization by analyzing combinations of mutants that initiate seed development in the absence of fertilization. We discovered that seed coat development is actively repressed before fertilization by dosage-sensitive Polycomb group proteins acting in maternal tissues surrounding the female gametophyte. This repression is relieved after fertilization by a signal that is formed by the sexual endosperm. Fertilization is required for signal formation, as asexually formed endosperm fails to effectively initiate seed coat development in mutants with uncompromised maternal Polycomb group function. Mutants for the MADS-box transcription factor AGL62 initiate embryo and endosperm formation but fail to develop a seed coat, implicating AGL62 expression in the endosperm as a requirement for signal initiation. Together, our results provide evidence that fertilization of the central cell generates a signal that relieves Polycomb group-mediated repression in the surrounding maternal tissues to initiate seed coat formation. PMID:22143805

  5. The Polycomb Group Protein Pcgf1 Is Dispensable in Zebrafish but Involved in Early Growth and Aging

    PubMed Central

    Le Bourhis, Xuefen; Angrand, Pierre-Olivier

    2016-01-01

    Polycomb Repressive Complex (PRC) 1 regulates the control of gene expression programs via chromatin structure reorganization. Through mutual exclusion, different PCGF members generate a variety of PRC1 complexes with potentially distinct cellular functions. In this context, the molecular function of each of the PCGF family members remains elusive. The study of PCGF family member expression in zebrafish development and during caudal fin regeneration reveals that the zebrafish pcgf genes are subjected to different regulations and that all PRC1 complexes in terms of Pcgf subunit composition are not always present in the same tissues. To unveil the function of Pcgf1 in zebrafish, a mutant line was generated using the TALEN technology. Mutant pcgf1-/- fish are viable and fertile, but the growth rate at early developmental stages is reduced in absence of pcgf1 gene function and a significant number of pcgf1-/- fish show signs of premature aging. This first vertebrate model lacking Pcgf1 function shows that this Polycomb Group protein is involved in cell proliferation during early embryogenesis and establishes a link between epigenetics and aging. PMID:27442247

  6. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    SciTech Connect

    Li,Z.; Cao, R.; Wang, M.; Myers, M.; Zhang, Y.; Xu, R.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contacts and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.

  7. A domain shared by the Polycomb group proteins Scm and ph mediates heterotypic and homotypic interactions.

    PubMed

    Peterson, A J; Kyba, M; Bornemann, D; Morgan, K; Brock, H W; Simon, J

    1997-11-01

    The Sex comb on midleg (Scm) and polyhomeotic (ph) proteins are members of the Polycomb group (PcG) of transcriptional repressors. PcG proteins maintain differential patterns of homeotic gene expression during development in Drosophila flies. The Scm and ph proteins share a homology domain with 38% identity over a length of 65 amino acids, termed the SPM domain, that is located at their respective C termini. Using the yeast two-hybrid system and in vitro protein-binding assays, we show that the SPM domain mediates direct interaction between Scm and ph. Binding studies with isolated SPM domains from Scm and ph show that the domain is sufficient for these protein interactions. These studies also show that the Scm-ph and Scm-Scm domain interactions are much stronger than the ph-ph domain interaction, indicating that the isolated domain has intrinsic binding specificity determinants. Analysis of site-directed point mutations identifies residues that are important for SPM domain function. These binding properties, predicted alpha-helical secondary structure, and conservation of hydrophobic residues prompt comparisons of the SPM domain to the helix-loop-helix and leucine zipper domains used for homotypic and heterotypic protein interactions in other transcriptional regulators. In addition to in vitro studies, we show colocalization of the Scm and ph proteins at polytene chromosome sites in vivo. We discuss the possible roles of the SPM domain in the assembly or function of molecular complexes of PcG proteins.

  8. A new transgenic mouse model for conditional overexpression of the Polycomb Group protein EZH2.

    PubMed

    Koppens, Martijn A J; Tanger, Ellen; Nacerddine, Karim; Westerman, Bart; Song, Ji-Ying; van Lohuizen, Maarten

    2017-04-01

    The Polycomb Group protein EZH2 is upregulated in most prostate cancers, and its overexpression is associated with poor prognosis. Most insights into the functional role of EZH2 in prostate cancer have been gained using cell lines and EZH2 inactivation studies. However, the question remains whether overexpression of EZH2 can initiate prostate tumourigenesis or drive tumour progression. Appropriate transgenic mouse models that are required to answer such questions are lacking. We developed one such transgenic mouse model for conditional overexpression of Ezh2. In this transgene, Ezh2 and Luciferase are transcribed from a single open reading frame. The latter gene enables intravital bioluminescent imaging of tissues expressing this transgene, allowing the detection of tumour outgrowth and potential metastatic progression over time. Prostate-specific Ezh2 overexpression by crossbreeding with Probasin-Cre mice led to neoplastic prostate lesions at low incidence and with a long latency. Compounding a previously described Bmi1-transgene and Pten-deficiency prostate cancer mouse model with the Ezh2 transgene did not enhance tumour progression or drive metastasis formation. In conclusion, we here report the generation of a wildtype Ezh2 overexpression mouse model that allows for intravital surveillance of tissues with activated transgene. This model will be an invaluable tool for further unravelling the role of EZH2 in cancer.

  9. Polycomb group protein expression during differentiation of human embryonic stem cells into pancreatic lineage in vitro.

    PubMed

    Pethe, Prasad; Nagvenkar, Punam; Bhartiya, Deepa

    2014-05-24

    Polycomb Group (PcG) proteins are chromatin modifiers involved in early embryonic development as well as in proliferation of adult stem cells and cancer cells. PcG proteins form large repressive complexes termed Polycomb Repressive Complexes (PRCs) of which PRC1 and PRC2 are well studied. Differentiation of human Embryonic Stem (hES) cells into insulin producing cells has been achieved to limited extent, but several aspects of differentiation remain unexplored. The PcG protein dynamics in human embryonic stem (hES) cells during differentiation into pancreatic lineage has not yet been reported. In the present study, the expression of RING1A, RING1B, BMI1, CBX2, SUZ12, EZH2, EED and JARID2 during differentiation of hES cells towards pancreatic lineage was examined. In-house derived hES cell line KIND1 was used to study expression of PcG protein upon spontaneous and directed differentiation towards pancreatic lineage. qRT-PCR analysis showed expression of gene transcripts for various lineages in spontaneously differentiated KIND1 cells, but no differentiation into pancreatic lineage was observed. Directed differentiation induced KIND1 cells grown under feeder-free conditions to transition from definitive endoderm (Day 4), primitive gut tube stage (Day 8) and pancreatic progenitors (Day 12-Day 16) as evident from expression of SOX17, PDX1 and SOX9 by qRT-PCR and Western blotting. In spontaneously differentiating KIND1 cells, RING1A and SUZ12 were upregulated at day 15, while other PcG transcripts were downregulated. qRT-PCR analysis showed transcripts of RING1B, BMI1, SUZ12, EZH2 and EED were upregulated, while RING1A and CBX2 expression remained low and JARID2 was downregulated during directed differentiation of KIND1 cells. Upregulation of BMI1, EZH2 and SUZ12 during differentiation into pancreatic lineage was also confirmed by Western blotting. Histone modifications such as H3K27 trimethylation and monoubiquitinylation of H2AK119 increased during differentiation

  10. Prenatal alcohol exposure and cellular differentiation: a role for Polycomb and Trithorax group proteins in FAS phenotypes?

    PubMed

    Veazey, Kylee J; Muller, Daria; Golding, Michael C

    2013-01-01

    Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell-cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell's identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes--the Polycomb and Trithorax proteins--are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder.

  11. Small Ubiquitin-like Modifier (SUMO) Conjugation Impedes Transcriptional Silencing by the Polycomb Group Repressor Sex Comb on Midleg*

    PubMed Central

    Smith, Matthew; Mallin, Daniel R.; Simon, Jeffrey A.; Courey, Albert J.

    2011-01-01

    The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-terminal sterile α motif (SAM) domain, is crucial for the efficient sumoylation of Scm. Scm is associated with the major Polycomb response element (PRE) of the homeotic gene Ultrabithorax (Ubx), and efficient PRE recruitment requires an intact Scm SAM domain. Global reduction of sumoylation augments binding of Scm to the PRE. This is likely to be a direct effect of Scm sumoylation because mutations in the SUMO acceptor sites in Scm enhance its recruitment to the PRE, whereas translational fusion of SUMO to the Scm N terminus interferes with this recruitment. In the metathorax, Ubx expression promotes haltere formation and suppresses wing development. When SUMO levels are reduced, we observe decreased expression of Ubx and partial haltere-to-wing transformation phenotypes. These observations suggest that SUMO negatively regulates Scm function by impeding its recruitment to the Ubx major PRE. PMID:21278366

  12. A Cbx8-Containing Polycomb Complex Facilitates the Transition to Gene Activation during ES Cell Differentiation

    PubMed Central

    Malinverni, Roberto; Valero, Vanesa; Buschbeck, Marcus

    2014-01-01

    Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq). Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs. PMID:25500566

  13. The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity.

    PubMed

    de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice

    2015-11-01

    Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions.

  14. The C. elegans Polycomb gene SOP-2 encodes an RNA binding protein.

    PubMed

    Zhang, Hong; Christoforou, Andrea; Aravind, L; Emmons, Scott W; van den Heuvel, Sander; Haber, Daniel A

    2004-06-18

    Epigenetic silencing of Hox cluster genes by Polycomb group (PcG) proteins is thought to involve the formation of a stably inherited repressive chromatin structure. Here we show that the C. elegans-specific PcG protein SOP-2 directly binds to RNA through three nonoverlapping regions, each of which is essential for its localization to characteristic nuclear bodies and for its in vivo function in the repression of Hox genes. Functional studies indicate that the RNA involved in SOP-2 binding is distinct from either siRNA or microRNA. Remarkably, the vertebrate PcG protein Rae28, which is functionally and structurally related to SOP-2, also binds to RNA through an FCS finger domain. Substitution of the Rae28 FCS finger for the essential RNA binding region of SOP-2 partially restores localization to nuclear bodies. These observations suggest that direct binding to RNA is an evolutionarily conserved and potentially important property of PcG proteins.

  15. Polycomb CBX7 Promotes Initiation of Heritable Repression of Genes Frequently Silenced with Cancer Specific DNA Hypermethylation

    PubMed Central

    Mohammad, Helai P.; Cai, Yi; McGarvey, Kelly M.; Easwaran, Hariharan; Van Neste, Leander; Ohm, Joyce E.; O’Hagan, Heather M.; Baylin, Stephen B.

    2009-01-01

    Epigenetic silencing of genes in association with aberrant promoter DNA hypermethylation has emerged as a significant mechanism in the development of human cancers. Such genes are also often targets of the Polycomb group repressive complexes in embryonic cells. The Polycomb repressive complex (PRC) 2 has been best studied in this regard. We now examine a link between PRC1 and cancer specific gene silencing. Here we show a novel and direct association between a constituent of the PRC1 complex, CBX7, with gene repression and promoter DNA hypermethylation of genes frequently silenced in cancer. CBX7 is able to complex with DNA methyltransferase enzymes leading us to explore a role for CBX7 in maintenance and initiation of gene silencing. Knockdown of CBX7 was unable to relieve suppression of deeply silenced genes in cancer cells, however, in embryonal carcinoma (EC) cells, CBX7 can initiate stable repression of genes that are frequently silenced in adult cancers. Furthermore, we are able to observe assembly of DNA methyltransferases at CBX7 target gene promoters. Sustained expression of CBX7 in EC cells confers a growth advantage and resistance to retinoic acid induced differentiation. In this setting, especially, there is increased promoter DNA hypermethylation for many genes by analysis of specific genes as well as through epigenomic studies. Our results allow us to propose a potential mechanism, through assembly of novel repressive complexes, by which the Pc component of PRC1 can promote the initiation of epigenetic changes involving abnormal DNA hypermethylation of genes frequently silenced in adult cancers. PMID:19602592

  16. Combined modulation of polycomb and trithorax genes rejuvenates β cell replication

    PubMed Central

    Zhou, Josie X.; Dhawan, Sangeeta; Fu, Hualin; Snyder, Emily; Bottino, Rita; Kundu, Sharmistha; Kim, Seung K.; Bhushan, Anil

    2013-01-01

    Inadequate functional β cell mass underlies both type 1 and type 2 diabetes. β Cell growth and regeneration also decrease with age through mechanisms that are not fully understood. Age-dependent loss of enhancer of zeste homolog 2 (EZH2) prevents adult β cell replication through derepression of the gene encoding cyclin-dependent kinase inhibitor 2a (INK4a). We investigated whether replenishing EZH2 could reverse the age-dependent increase of Ink4a transcription. We generated an inducible pancreatic β cell–specific Ezh2 transgenic mouse model and showed that transgene expression of Ezh2 was sufficient to increase β cell replication and regeneration in young adult mice. In mice older than 8 months, induction of Ezh2 was unable to repress Ink4a. Older mice had an enrichment of a trithorax group (TrxG) protein complex at the Ink4a locus. Knockdown of TrxG complex components, in conjunction with expression of Ezh2, resulted in Ink4a repression and increased replication of β cells in aged mice. These results indicate that combined modulation of polycomb group proteins, such as EZH2, along with TrxG proteins to repress Ink4a can rejuvenate the replication capacity of aged β cells. This study provides potential therapeutic targets for expansion of adult β cell mass. PMID:24216481

  17. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis.

    PubMed

    Kiyosue, T; Ohad, N; Yadegari, R; Hannon, M; Dinneny, J; Wells, D; Katz, A; Margossian, L; Harada, J J; Goldberg, R B; Fischer, R L

    1999-03-30

    Higher plant reproduction is unique because two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus that replicates to generate the endosperm, a tissue that supports embryo development. To understand mechanisms that initiate reproduction, we isolated a mutation in Arabidopsis, f644, that allows for replication of the central cell and subsequent endosperm development without fertilization. When mutant f644 egg and central cells are fertilized by wild-type sperm, embryo development is inhibited, and endosperm is overproduced. By using a map-based strategy, we cloned and sequenced the F644 gene and showed that it encodes a SET-domain polycomb protein. Subsequently, we found that F644 is identical to MEDEA (MEA), a gene whose maternal-derived allele is required for embryogenesis [Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A. & Gagliano, W. B. (1998) Science 280, 446-450]. Together, these results reveal functions for plant polycomb proteins in the suppression of central cell proliferation and endosperm development. We discuss models to explain how polycomb proteins function to suppress endosperm and promote embryo development.

  18. Partially redundant functions of two SET-domain polycomb-group proteins in controlling initiation of seed development in Arabidopsis.

    PubMed

    Wang, Dongfang; Tyson, Mark D; Jackson, Shawn S; Yadegari, Ramin

    2006-08-29

    In Arabidopsis, a complex of Polycomb-group (PcG) proteins functions in the female gametophyte to control the initiation of seed development. Mutations in the PcG genes, including MEDEA (MEA) and FERTILIZATION-INDEPENDENT SEED 2 (FIS2), produce autonomous seeds where endosperm proliferation occurs in the absence of fertilization. By using a yeast two-hybrid screen, we identified MEA and a related protein, SWINGER (SWN), as SET-domain partners of FIS2. Localization data indicated that all three proteins are present in the female gametophyte. Although single-mutant swn plants did not show any defects, swn mutations enhanced the mea mutant phenotype in producing autonomous seeds. Thus, MEA and SWN perform partially redundant functions in controlling the initiation of endosperm development before fertilization in Arabidopsis.

  19. Comparative Analysis of Chromatin Binding by Sex Comb on Midleg (SCM) and Other Polycomb Group Repressors at a Drosophila Hox Gene▿

    PubMed Central

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L.; Ketel, Carrie S.; Mallin, Daniel R.; Simon, Jeffrey A.

    2010-01-01

    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets. PMID:20351181

  20. Polycomb Group Targeting through Different Binding Partners of RING1B C-Terminal Domain

    PubMed Central

    Wang, Renjing; Taylor, Alexander B.; Leal, Belinda Z.; Chadwell, Linda V.; Ilangovan, Udayar; Robinson, Angela K.; Schirf, Virgil; Hart, P. John; Lafer, Eileen M.; Demeler, Borries; Hinck, Andrew P.; McEwen, Donald G.; Kim, Chongwoo A.

    2015-01-01

    SUMMARY RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure. PMID:20696397

  1. Selective Interactions between Vertebrate Polycomb Homologs and the SUV39H1 Histone Lysine Methyltransferase Suggest that Histone H3-K9 Methylation Contributes to Chromosomal Targeting of Polycomb Group Proteins

    PubMed Central

    Sewalt, Richard G. A. B.; Lachner, Monika; Vargas, Mark; Hamer, Karien M.; den Blaauwen, Jan L.; Hendrix, Thijs; Melcher, Martin; Schweizer, Dieter; Jenuwein, Thomas; Otte, Arie P.

    2002-01-01

    Polycomb group (PcG) proteins form multimeric chromatin-associated protein complexes that are involved in heritable repression of gene activity. Two distinct human PcG complexes have been characterized. The EED/EZH2 PcG complex utilizes histone deacetylation to repress gene activity. The HPC/HPH PcG complex contains the HPH, RING1, BMI1, and HPC proteins. Here we show that vertebrate Polycomb homologs HPC2 and XPc2, but not M33/MPc1, interact with the histone lysine methyltransferase (HMTase) SUV39H1 both in vitro and in vivo. We further find that overexpression of SUV39H1 induces selective nuclear relocalization of HPC/HPH PcG proteins but not of the EED/EZH2 PcG proteins. This SUV39H1-dependent relocalization concentrates the HPC/HPH PcG proteins to the large pericentromeric heterochromatin domains (1q12) on human chromosome 1. Within these PcG domains we observe increased H3-K9 methylation. Finally, we show that H3-K9 HMTase activity is associated with endogenous HPC2. Our findings suggest a role for the SUV39H1 HMTase and histone H3-K9 methylation in the targeting of human HPC/HPH PcG proteins to modified chromatin structures. PMID:12101246

  2. Selective interactions between vertebrate polycomb homologs and the SUV39H1 histone lysine methyltransferase suggest that histone H3-K9 methylation contributes to chromosomal targeting of Polycomb group proteins.

    PubMed

    Sewalt, Richard G A B; Lachner, Monika; Vargas, Mark; Hamer, Karien M; den Blaauwen, Jan L; Hendrix, Thijs; Melcher, Martin; Schweizer, Dieter; Jenuwein, Thomas; Otte, Arie P

    2002-08-01

    Polycomb group (PcG) proteins form multimeric chromatin-associated protein complexes that are involved in heritable repression of gene activity. Two distinct human PcG complexes have been characterized. The EED/EZH2 PcG complex utilizes histone deacetylation to repress gene activity. The HPC/HPH PcG complex contains the HPH, RING1, BMI1, and HPC proteins. Here we show that vertebrate Polycomb homologs HPC2 and XPc2, but not M33/MPc1, interact with the histone lysine methyltransferase (HMTase) SUV39H1 both in vitro and in vivo. We further find that overexpression of SUV39H1 induces selective nuclear relocalization of HPC/HPH PcG proteins but not of the EED/EZH2 PcG proteins. This SUV39H1-dependent relocalization concentrates the HPC/HPH PcG proteins to the large pericentromeric heterochromatin domains (1q12) on human chromosome 1. Within these PcG domains we observe increased H3-K9 methylation. Finally, we show that H3-K9 HMTase activity is associated with endogenous HPC2. Our findings suggest a role for the SUV39H1 HMTase and histone H3-K9 methylation in the targeting of human HPC/HPH PcG proteins to modified chromatin structures.

  3. Polycomb group complexes are recruited to reactivated FMR1 alleles in Fragile X syndrome in response to FMR1 transcription.

    PubMed

    Kumari, Daman; Usdin, Karen

    2014-12-15

    The FMR1 gene is subject to repeat mediated-gene silencing when the CGG-repeat tract in the 5' UTR exceeds 200 repeat units. This results in Fragile X syndrome, the most common heritable cause of intellectual disability and a major cause of autism spectrum disorders. The mechanism of gene silencing is not fully understood, and efforts to reverse this gene silencing have had limited success. Here, we show that the level of trimethylation of histone H3 on lysine 27, a hallmark of the activity of EZH2, a component of repressive Polycomb Group (PcG) complexes like PRC2, is increased on reactivation of the silenced allele by either the DNA demethylating agent 5-azadeoxycytidine or the SIRT1 inhibitor splitomicin. The level of H3K27me3 increases and decreases in parallel with the FMR1 mRNA level. Furthermore, reducing the levels of the FMR1 mRNA reduces the accumulation of H3K27me3. This suggests a model for FMR1 gene silencing in which the FMR1 mRNA generated from the reactivated allele acts in cis to repress its own transcription via the recruitment of PcG complexes to the FMR1 locus.

  4. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene.

    PubMed

    Laursen, Kristian B; Mongan, Nigel P; Zhuang, Yong; Ng, Mary M; Benoit, Yannick D; Gudas, Lorraine J

    2013-07-01

    Polycomb proteins play key roles in mediating epigenetic modifications that occur during cell differentiation. The Polycomb repressive complex 2 (PRC2) mediates the tri-methylation of histone H3 lysine 27 (H3K27me3). In this study, we identify a distinguishing feature of two classes of PRC2 target genes, represented by the Nr2F1 (Coup-TF1) and the Hoxa5 gene, respectively. Both genes are transcriptionally activated by all-trans retinoic acid (RA) and display increased levels of the permissive H3K9/K14ac and tri-methylated histone H3 lysine 4 epigenetic marks in response to RA. However, while in response to RA the PRC2 and H3K27me3 marks are greatly decreased at the Hoxa5 promoter, these marks are initially increased at the Nr2F1 promoter. Functional depletion of the essential PRC2 protein Suz12 by short hairpin RNA (shRNA) technology enhanced the RA-associated transcription of Nr2F1, Nr2F2, Meis1, Sox9 and BMP2, but had no effect on the Hoxa5, Hoxa1, Cyp26a1, Cyp26b1 and RARβ2 transcript levels in wild-type embryonic stem cells. We propose that PRC2 recruitment attenuates the RA-associated transcriptional activation of a subset of genes. Such a mechanism would permit the fine-tuning of transcriptional networks during differentiation.

  5. Polycomb group protein ezh2 controls actin polymerization and cell signaling.

    PubMed

    Su, I-hsin; Dobenecker, Marc-Werner; Dickinson, Ephraim; Oser, Matthew; Basavaraj, Ashwin; Marqueron, Raphael; Viale, Agnes; Reinberg, Danny; Wülfing, Christoph; Tarakhovsky, Alexander

    2005-05-06

    Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the essential role of cytosolic Ezh2 in actin polymerization-dependent processes such as antigen receptor signaling in T cells and PDGF-induced dorsal circular ruffle formation in fibroblasts. Revealed function of Ezh2 points to a broader usage of lysine methylation in regulation of both nuclear and extra-nuclear signaling processes.

  6. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  7. Polycomb Group Proteins Bind an engrailed PRE in Both the “ON” and “OFF” Transcriptional States of engrailed

    PubMed Central

    Langlais, Kristofor K.; Brown, J. Lesley; Kassis, Judith A.

    2012-01-01

    Polycomb group (PcG) and trithorax Group (trxG) proteins maintain the “OFF” and “ON” transcriptional states of HOX genes and other targets by modulation of chromatin structure. In Drosophila, PcG proteins are bound to DNA fragments called Polycomb group response elements (PREs). The prevalent model holds that PcG proteins bind PREs only in cells where the target gene is “OFF”. Another model posits that transcription through PREs disrupts associated PcG complexes, contributing to the establishment of the “ON” transcriptional state. We tested these two models at the PcG target gene engrailed. engrailed exists in a gene complex with invected, which together have 4 well-characterized PREs. Our data show that these PREs are not transcribed in embryos or larvae. We also examined whether PcG proteins are bound to an engrailed PRE in cells where engrailed is transcribed. By FLAG-tagging PcG proteins and expressing them specifically where engrailed is “ON” or “OFF”, we determined that components of three major PcG protein complexes are present at an engrailed PRE in both the “ON” and “OFF” transcriptional states in larval tissues. These results show that PcG binding per se does not determine the transcriptional state of engrailed. PMID:23139817

  8. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells

    PubMed Central

    Yan, Yun; Zhao, Wukui; Huang, Yikai; Tong, Huan; Xia, Yin; Jiang, Qing; Qin, Jinzhong

    2017-01-01

    The Polycomb repressive complex 1 (PRC1) is essential for fate decisions of embryonic stem (ES) cells. Emerging evidence suggests that six major variants of PRC1 complex, defined by the mutually exclusive presence of Pcgf subunit, regulate distinct biological processes, yet very little is known about the mechanism by which each version of PRC1 instructs and maintains cell fate. Here, we disrupted the Pcgf1, also known as Nspc1 and one of six Pcgf paralogs, in mouse ES cells by the CRISPR/Cas9 technology. We showed that although these mutant cells were viable and retained normal self-renewal, they displayed severe defects in differentiation in vitro. To gain a better understanding of the role of Pcgf1 in transcriptional control of differentiation, we analysed mRNA profiles from Pcgf1 deficient cells using RNA-seq. Interestingly, we found that Pcgf1 positively regulated expression of essential transcription factors involved in ectoderm and mesoderm differentiation, revealing an unexpected function of Pcgf1 in gene activation during ES cell lineage specification. Chromatin immunoprecipitation experiments demonstrated that Pcgf1 deletion caused a decrease in Ring1B and its associated H2AK119ub1 mark binding to target genes. Altogether, our results suggested an unexpected function of Pcgf1 in gene activation during ES cell maintenance. PMID:28393894

  9. AGAMOUS Terminates Floral Stem Cell Maintenance in Arabidopsis by Directly Repressing WUSCHEL through Recruitment of Polycomb Group Proteins[W

    PubMed Central

    Liu, Xigang; Kim, Yun Ju; Müller, Ralf; Yumul, Rae Eden; Liu, Chunyan; Pan, Yanyun; Cao, Xiaofeng; Goodrich, Justin; Chen, Xuemei

    2011-01-01

    Floral stem cells produce a defined number of floral organs before ceasing to be maintained as stem cells. Therefore, floral stem cells offer an ideal model to study the temporal control of stem cell maintenance within a developmental context. AGAMOUS (AG), a MADS domain transcription factor essential for the termination of floral stem cell fate, has long been thought to repress the stem cell maintenance gene WUSCHEL (WUS) indirectly. Here, we uncover a role of Polycomb Group (PcG) genes in the temporally precise repression of WUS expression and termination of floral stem cell fate. We show that AG directly represses WUS expression by binding to the WUS locus and recruiting, directly or indirectly, PcG that methylates histone H3 Lys-27 at WUS. We also show that PcG acts downstream of AG and probably in parallel with the known AG target KNUCKLES to terminate floral stem cell fate. Our studies identify core components of the network governing the temporal program of floral stem cells. PMID:22028461

  10. Molecular architecture of polycomb repressive complexes

    PubMed Central

    Chittock, Emily C.; Latwiel, Sebastian; Miller, Thomas C.R.

    2017-01-01

    The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin. PMID:28202673

  11. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2

    PubMed Central

    Oravecz, Attila; Apostolov, Apostol; Polak, Katarzyna; Jost, Bernard; Le Gras, Stéphanie; Chan, Susan; Kastner, Philippe

    2015-01-01

    T-cell development is accompanied by epigenetic changes that ensure the silencing of stem cell-related genes and the activation of lymphocyte-specific programmes. How transcription factors influence these changes remains unclear. We show that the Ikaros transcription factor forms a complex with Polycomb repressive complex 2 (PRC2) in CD4−CD8− thymocytes and allows its binding to more than 500 developmentally regulated loci, including those normally activated in haematopoietic stem cells and others induced by the Notch pathway. Loss of Ikaros in CD4−CD8− cells leads to reduced histone H3 lysine 27 trimethylation and ectopic gene expression. Furthermore, Ikaros binding triggers PRC2 recruitment and Ikaros interacts with PRC2 independently of the nucleosome remodelling and deacetylation complex. Our results identify Ikaros as a fundamental regulator of PRC2 function in developing T cells. PMID:26549758

  12. Chronic Myelogenous Leukemia- Initiating Cells Require Polycomb Group Protein EZH2.

    PubMed

    Xie, Huafeng; Peng, Cong; Huang, Jialiang; Li, Bin E; Kim, Woojin; Smith, Elenoe C; Fujiwara, Yuko; Qi, Jun; Cheloni, Giulia; Das, Partha P; Nguyen, Minh; Li, Shaoguang; Bradner, James E; Orkin, Stuart H

    2016-11-01

    Tyrosine kinase inhibitors (TKI) have revolutionized chronic myelogenous leukemia (CML) management. Disease eradication, however, is hampered by innate resistance of leukemia-initiating cells (LIC) to TKI-induced killing, which also provides the basis for subsequent emergence of TKI-resistant mutants. We report that EZH2, the catalytic subunit of Polycomb Repressive Complex 2 (PRC2), is overexpressed in CML LICs and required for colony formation and survival and cell-cycle progression of CML cell lines. A critical role for EZH2 is supported by genetic studies in a mouse CML model. Inactivation of Ezh2 in conventional conditional mice and through CRISPR/Cas9-mediated gene editing prevents initiation and maintenance of disease and survival of LICs, irrespective of BCR-ABL1 mutational status, and extends survival. Expression of the EZH2 homolog EZH1 is reduced in EZH2-deficient CML LICs, creating a scenario resembling complete loss of PRC2. EZH2 dependence of CML LICs raises prospects for improved therapy of TKI-resistant CML and/or eradication of disease by addition of EZH2 inhibitors.

  13. Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana[C][W][OPEN

    PubMed Central

    Müller-Xing, Ralf; Clarenz, Oliver; Pokorny, Lena; Goodrich, Justin; Schubert, Daniel

    2014-01-01

    The switch from vegetative to reproductive growth is extremely stable even if plants are only transiently exposed to environmental stimuli that trigger flowering. In the photoperiodic pathway, a mobile signal, florigen, encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana, induces flowering. Because FT activity in leaves is not maintained after transient photoperiodic induction, the molecular basis for stable floral commitment is unclear. Here, we show that Polycomb-group (Pc-G) proteins, which mediate epigenetic gene regulation, maintain the identity of inflorescence and floral meristems after floral induction. Thus, plants with reduced Pc-G activity show a remarkable increase of cauline leaves under noninductive conditions and floral reversion when shifted from inductive to noninductive conditions. These phenotypes are almost completely suppressed by loss of FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE, which both delay flowering and promote vegetative shoot identity. Upregulation of FLC in Pc-G mutants leads to a strong decrease of FT expression in inflorescences. We find that this activity of FT is needed to prevent floral reversion. Collectively, our results reveal that floral meristem identity is at least partially maintained by a daylength-independent role of FT whose expression is indirectly sustained by Pc-G activity. PMID:24920331

  14. Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of Polycomb group proteins.

    PubMed

    Peng, Jamy C; Valouev, Anton; Liu, Na; Lin, Haifan

    2016-03-01

    The Drosophila melanogaster Piwi protein regulates both niche and intrinsic mechanisms to maintain germline stem cells, but its underlying mechanism remains unclear. Here we report that Piwi interacts with Polycomb group complexes PRC1 and PRC2 in niche and germline cells to regulate ovarian germline stem cells and oogenesis. Piwi physically interacts with the PRC2 subunits Su(z)12 and Esc in the ovary and in vitro. Chromatin coimmunoprecipitation of Piwi, the PRC2 enzymatic subunit E(z), histone H3 trimethylated at lysine 27 (H3K27me3) and RNA polymerase II in wild-type and piwi mutant ovaries demonstrates that Piwi binds a conserved DNA motif at ∼ 72 genomic sites and inhibits PRC2 binding to many non-Piwi-binding genomic targets and H3K27 trimethylation. Moreover, Piwi influences RNA polymerase II activities in Drosophila ovaries, likely via inhibiting PRC2. We hypothesize that Piwi negatively regulates PRC2 binding by sequestering PRC2 in the nucleoplasm, thus reducing PRC2 binding to many targets and influencing transcription during oogenesis.

  15. A bridging model for persistence of a polycomb group protein complex through DNA replication in vitro.

    PubMed

    Lo, Stanley M; Follmer, Nicole E; Lengsfeld, Bettina M; Madamba, Egbert V; Seong, Samuel; Grau, Daniel J; Francis, Nicole J

    2012-06-29

    Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.

  16. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs.

    PubMed

    Junco, Sarah E; Wang, Renjing; Gaipa, John C; Taylor, Alexander B; Schirf, Virgil; Gearhart, Micah D; Bardwell, Vivian J; Demeler, Borries; Hart, P John; Kim, Chongwoo A

    2013-04-02

    Polycomb-group RING finger homologs (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, and PCGF6) are critical components in the assembly of distinct Polycomb repression complex 1 (PRC1)-related complexes. Here, we identify a protein interaction domain in BCL6 corepressor, BCOR, which binds the RING finger- and WD40-associated ubiquitin-like (RAWUL) domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals that (1) PUFD binds to the same surfaces as observed for a different Polycomb group RAWUL domain and (2) the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly.

  17. Arabidopsis RETINOBLASTOMA-RELATED and Polycomb group proteins: cooperation during plant cell differentiation and development.

    PubMed

    Kuwabara, Asuka; Gruissem, Wilhelm

    2014-06-01

    RETINOBLASTOMA (RB) is a tumour suppressor gene originally discovered in patients that develop eye tumours. The pRb protein is now well established as a key cell-cycle regulator which suppresses G1-S transition via interaction with E2F-DP complexes. pRb function is also required for a wide range of biological processes, including the regulation of stem-cell maintenance, cell differentiation, permanent cell-cycle exit, DNA repair, and genome stability. Such multifunctionality of pRb is thought to be facilitated through interactions with various binding partners in a context-dependent manner. Although the molecular network in which RB controls various biological processes is not fully understood, it has been found that pRb interacts with transcription factors and chromatin modifiers to either suppress or promote the expression of key genes during the switch from cell proliferation to differentiation. RETINOBLASTOMA-RELATED (RBR) is the plant orthologue of RB and is also known to negatively control the G1-S transition. Similar to its animal counterpart, plant RBR has various roles throughout plant development; however, much of its molecular functions outside of the G1-S transition are still unknown. One of the better-characterized molecular mechanisms is the cooperation of RBR with the Polycomb repressive complex 2 (PRC2) during plant-specific developmental events. This review summarizes the current understanding of this cooperation and focuses on the processes in Arabidopsis in which the RBR-PRC2 cooperation facilitates cell differentiation and developmental transitions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2

    PubMed Central

    Ma, Ki H.; Hung, Holly A.; Srinivasan, Rajini; Xie, Huafeng; Orkin, Stuart H.

    2015-01-01

    Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury. PMID:26041929

  19. Copy number alterations of the polycomb gene BMI1 in gliomas.

    PubMed

    Häyry, Valtteri; Tanner, Minna; Blom, Tea; Tynninen, Olli; Roselli, Annariikka; Ollikainen, Miina; Sariola, Hannu; Wartiovaara, Kirmo; Nupponen, Nina N

    2008-07-01

    Gliomas are heterogeneous tumours that grow in an uninhibited fashion, and these brain tumour cells share numerous characteristics with neural stem cells. The BMI1 gene encodes a component of the polycomb protein complex regulating epigenetically gene activity via histone modification. It functions for instance during the development of the central nervous system and maturation of neural cells. BMI-1 protein expression is deregulated in several forms of cancer and gene amplification has been identified in mantle cell lymphomas. Since BMI1 is located at chromosome 10p, a region implicated frequently in brain tumourigenesis, we investigated the genetic status and the corresponding expression patterns of BMI1 in a series of 100 low- and high-grade primary and recurrent gliomas. Chromogenic in situ hybridisation (CISH) with probes directed against BMI1 at 10p13 and the centromere of chromosome 10 was used in the analyses. Of all gliomas, 59% demonstrated aberrant copy numbers of BMI1. Deletions of the BMI1 locus were found in most types of tumours, and in a univariate survival analysis these cases had poor prognosis. Increased copy numbers of the BMI1 locus (3-5 copies) were found in all histological types, especially in high-grade astrocytomas. No difference in prognosis between cases with normal copy numbers and cases with increased copy numbers could be observed. This data suggests that BMI1 gene is aberrant at the chromosomal level in a subset of gliomas, and possibly contributes to brain tumour pathogenesis.

  20. The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2

    PubMed Central

    Lodha, Mukesh; Marco, Cristina F.; Timmermans, Marja C.P.

    2013-01-01

    Polycomb-repressive complexes (PRCs) ensure the correct spatiotemporal expression of numerous key developmental regulators. Despite their pivotal role, how PRCs are recruited to specific targets remains largely unsolved, particularly in plants. Here we show that the Arabidopsis ASYMMETRIC LEAVES complex physically interacts with PRC2 and recruits this complex to the homeobox genes BREVIPEDICELLUS and KNAT2 to stably silence these stem cell regulators in differentiating leaves. The recruitment mechanism resembles the Polycomb response element-based recruitment of PRC2 originally defined in flies and provides the first such example in plants. Combined with recent studies in mammals, our findings reveal a conserved paradigm to epigenetically regulate homeobox gene expression during development. PMID:23468429

  1. Chromatin-Bound IκBα Regulates a Subset of Polycomb Target Genes in Differentiation and Cancer

    PubMed Central

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Albà, M. Mar; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M.; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2014-01-01

    Summary IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation. PMID:23850221

  2. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer.

    PubMed

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Mar Albà, M; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2013-08-12

    IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation.

  3. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression.

    PubMed

    Zardo, Giuseppe; Ciolfi, Alberto; Vian, Laura; Starnes, Linda M; Billi, Monia; Racanicchi, Serena; Maresca, Carmen; Fazi, Francesco; Travaglini, Lorena; Noguera, Nelida; Mancini, Marco; Nanni, Mauro; Cimino, Giuseppe; Lo-Coco, Francesco; Grignani, Francesco; Nervi, Clara

    2012-04-26

    Epigenetic modifications regulate developmental genes involved in stem cell identity and lineage choice. NFI-A is a posttranscriptional microRNA-223 (miR-223) target directing human hematopoietic progenitor lineage decision: NFI-A induction or silencing boosts erythropoiesis or granulopoiesis, respectively. Here we show that NFI-A promoter silencing, which allows granulopoiesis, is guaranteed by epigenetic events, including the resolution of opposing chromatin "bivalent domains," hypermethylation, recruitment of polycomb (PcG)-RNAi complexes, and miR-223 promoter targeting activity. During granulopoiesis, miR-223 localizes inside the nucleus and targets the NFI-A promoter region containing PcGs binding sites and miR-223 complementary DNA sequences, evolutionarily conserved in mammalians. Remarkably, both the integrity of the PcGs-RNAi complex and DNA sequences matching the seed region of miR-223 are required to induce NFI-A transcriptional silencing. Moreover, ectopic miR-223 expression in human myeloid progenitors causes heterochromatic repression of NFI-A gene and channels granulopoiesis, whereas its stable knockdown produces the opposite effects. Our findings indicate that, besides the regulation of translation of mRNA targets, endogenous miRs can affect gene expression at the transcriptional level, functioning in a critical interface between chromatin remodeling complexes and the genome to direct fate lineage determination of hematopoietic progenitors.

  4. Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity.

    PubMed

    Ohtsubo, Motoaki; Yasunaga, Shin'ichiro; Ohno, Yoshinori; Tsumura, Miyuki; Okada, Satoshi; Ishikawa, Nobutsune; Shirao, Kenichiro; Kikuchi, Akira; Nishitani, Hideo; Kobayashi, Masao; Takihara, Yoshihiro

    2008-07-29

    Polycomb-group (PcG) genes encode multimeric nuclear protein complexes, PcG complex 1 and 2. PcG complex 2 was proved to induce transcription repression and to further methylate histone H3 at lysine-27 (H3K27). Subsequently PcG complex 1 is recruited through recognition of methylated H3K27 and maintains the transcription silencing by mediating monoubiquitination of histone H2A at lysine-119. Genetic evidence demonstrated a crucial role for PcG complex 1 in stem cells, and Bmi1, a member of PcG complex 1, was shown to sustain adult stem cells through direct repression of the INK4a locus encoding cyclin-dependent kinase inhibitor, p16CKI, and p19ARF. The molecular functions of PcG complex 1, however, remain insufficiently understood. In our study, deficiency of Rae28, a member of PcG complex 1, was found to impair ubiquitin-proteasome-mediated degradation of Geminin, an inhibitor of DNA replication licensing factor Cdt1, and to increase protein stability. The resultant accumulation of Geminin, based on evidence from retroviral transduction experiments, presumably eliminated hematopoietic stem cell activity in Rae28-deficient mice. Rae28 mediates recruiting Scmh1, which provides PcG complex 1 an interaction domain for Geminin. Moreover, PcG complex 1 acts as the E3 ubiquitin ligase for Geminin, as we demonstrated in vivo as well as in vitro by using purified recombinant PcG complex 1 reconstituted in insect cells. Our findings suggest that PcG complex 1 supports the activity of hematopoietic stem cells, in which high-level Geminin expression induces quiescence securing genome stability, by enhancing cycling capability and hematopoietic activity through direct regulation of Geminin.

  5. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes

    PubMed Central

    Dozmorov, Mikhail G

    2015-01-01

    Although age-associated gene expression and methylation changes have been reported throughout the literature, the unifying epigenomic principles of aging remain poorly understood. Recent explosion in availability and resolution of functional/regulatory genome annotation data (epigenomic data), such as that provided by the ENCODE and Roadmap Epigenomics projects, provides an opportunity for the identification of epigenomic mechanisms potentially altered by age-associated differentially methylated regions (aDMRs) and regulatory signatures in the promoters of age-associated genes (aGENs). In this study we found that aDMRs and aGENs identified in multiple independent studies share a common Polycomb Repressive Complex 2 signature marked by EZH2, SUZ12, CTCF binding sites, repressive H3K27me3, and activating H3K4me1 histone modification marks, and a “poised promoter” chromatin state. This signature is depleted in RNA Polymerase II-associated transcription factor binding sites, activating H3K79me2, H3K36me3, H3K27ac marks, and an “active promoter” chromatin state. The PRC2 signature was shown to be generally stable across cell types. When considering the directionality of methylation changes, we found the PRC2 signature to be associated with aDMRs hypermethylated with age, while hypomethylated aDMRs were associated with enhancers. In contrast, aGENs were associated with the PRC2 signature independently of the directionality of gene expression changes. In this study we demonstrate that the PRC2 signature is the common epigenomic context of genomic regions associated with hypermethylation and gene expression changes in aging. PMID:25880792

  6. The Drosophila eve insulator Homie promotes eve expression and protects the adjacent gene from repression by polycomb spreading.

    PubMed

    Fujioka, Miki; Sun, Guizhi; Jaynes, James B

    2013-10-01

    Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is "replaced" by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin.

  7. The Drosophila eve Insulator Homie Promotes eve Expression and Protects the Adjacent Gene from Repression by Polycomb Spreading

    PubMed Central

    Fujioka, Miki; Sun, Guizhi; Jaynes, James B.

    2013-01-01

    Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is “replaced” by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin. PMID:24204298

  8. Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors.

    PubMed

    Hahn, Maria A; Li, Arthur X; Wu, Xiwei; Yang, Richard; Drew, David A; Rosenberg, Daniel W; Pfeifer, Gerd P

    2014-07-01

    In colon tumors, the transcription of many genes becomes deregulated by poorly defined epigenetic mechanisms that have been studied mainly in established cell lines. In this study, we used frozen human colon tissues to analyze patterns of histone modification and DNA cytosine methylation in cancer and matched normal mucosa specimens. DNA methylation is strongly targeted to bivalent H3K4me3- and H3K27me3-associated promoters, which lose both histone marks and acquire DNA methylation. However, we found that loss of the Polycomb mark H3K27me3 from bivalent promoters was accompanied often by activation of genes associated with cancer progression, including numerous stem cell regulators, oncogenes, and proliferation-associated genes. Indeed, we found many of these same genes were also activated in patients with ulcerative colitis where chronic inflammation predisposes them to colon cancer. Based on our findings, we propose that a loss of Polycomb repression at bivalent genes combined with an ensuing selection for tumor-driving events plays a major role in cancer progression.

  9. The polycomb group protein EED varies in its ability to access the nucleus in porcine oocytes and cleavage stage embryos.

    PubMed

    Foust, Kallie B; Li, Yanfang; Park, Kieun; Wang, Xin; Liu, Shihong; Cabot, Ryan A

    2012-08-01

    Chromatin-modifying complexes serve essential functions during mammalian embryonic development. Polycomb group proteins EED, SUZ12, and EZH2 have been shown to mediate methylation of the lysine 27 residue of histone protein H3 (H3K27), an epigenetic mark that is linked with transcriptional repression. H3K27 trimethylation has been shown to be present on chromatin in mature porcine oocytes, pronuclear and 2-cell stage embryos, with H3K27 trimethylation decreasing at the 4-cell stage and not detectable in blastocyst stage embryos. The goals of this study were to determine the intracellular localization of the polycomb group protein EED in porcine oocytes and cleavage stage porcine embryos produced by in vitro fertilization and to determine the binding abilities of karyopherin α subtypes toward EED. Our results revealed that EED had a strong nuclear localization in 4-cell and blastocyst stage embryos and a strong perinuclear staining in GV-stage oocytes; EED was not detectable in the nuclei of pronuclear or 2-cell stage embryos. An in vitro binding assay was performed to assess the ability of EED to interact with a series of karyopherin α subtypes; results from this experiment revealed that EED can interact with several karyopherin α subtypes, but with varying degrees of affinity. Together these data indicate that EED displays a dynamic change in intracellular localization in progression from immature oocyte to cleavage stage embryo and that EED possess differing in vitro binding affinities toward individual karyopherin α subtypes, which may in part regulate the nuclear access of EED during this window of development. Copyright © 2012. Published by Elsevier B.V.

  10. The Growth-Suppressive Function of the Polycomb Group Protein Polyhomeotic Is Mediated by Polymerization of Its Sterile Alpha Motif (SAM) Domain*

    PubMed Central

    Robinson, Angela K.; Leal, Belinda Z.; Chadwell, Linda V.; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E.; Schirf, Virgil; Osmulski, Pawel A.; Gaczynska, Maria; Hinck, Andrew P.; Demeler, Borries; McEwen, Donald G.; Kim, Chongwoo A.

    2012-01-01

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371

  11. The growth-suppressive function of the polycomb group protein polyhomeotic is mediated by polymerization of its sterile alpha motif (SAM) domain.

    PubMed

    Robinson, Angela K; Leal, Belinda Z; Chadwell, Linda V; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E; Schirf, Virgil; Osmulski, Pawel A; Gaczynska, Maria; Hinck, Andrew P; Demeler, Borries; McEwen, Donald G; Kim, Chongwoo A

    2012-03-16

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions.

  12. Unique Polycomb Gene Expression Pattern in Hodgkin’s Lymphoma and Hodgkin’s Lymphoma-Derived Cell Lines

    PubMed Central

    Dukers, Danny F.; van Galen, Joost C.; Giroth, Cindy; Jansen, Patty; Sewalt, Richard G.A.B.; Otte, Arie P.; Kluin-Nelemans, Hanneke C.; Meijer, Chris J.L.M.; Raaphorst, Frank M.

    2004-01-01

    Human Polycomb-group (PcG) genes play a crucial role in the regulation of embryonic development and regulation of the cell cycle and hematopoiesis. PcG genes encode proteins that form two distinct PcG complexes, involved in maintenance of cell identity and gene silencing patterns. We recently showed that expression of the BMI-1 and EZH2 PcG genes is separated during normal B-cell development in germinal centers, whereas Hodgkin/Reed-Sternberg (H/RS) cells co-express BMI-1 and EZH2. In the current study, we used immunohistochemistry and immunofluorescence to determine whether the binding partners of these PcG proteins are also present in H/RS cells and H/RS-derived cell lines. PcG expression profiles were analyzed in combination with expression of the cell cycle inhibitor p16INK4a, because experimental model systems indicate that p16 is a downstream target of Bmi-1. We found that H/RS cells and HL-derived cell lines co-express all core proteins of the two known PcG complexes, including BMI-1, MEL-18, RING1, HPH1, HPC1, and -2, EED, EZH2, YY1, and the HPC2 binding partner, CtBP. Expression of HPC1 has not been found in normal mature B cells and other malignant lymphomas of B-cell origin, suggesting that the PcG expression profile of H/RS is unique. In contrast to Bmi-1 transgenic mice where p16INK4a is down-regulated, 27 of 52 BMI-1POS cases of HL revealed strong nuclear expression of p16INK4a. We propose that abnormal expression of BMI-1 and its binding partners in H/RS cells contributes to development of HL. However, abnormal expression of BMI-1 in HL is not necessarily associated with down-regulation of p16INK4a. PMID:14982841

  13. DNA Topoisomerase I Affects Polycomb Group Protein-Mediated Epigenetic Regulation and Plant Development by Altering Nucleosome Distribution in Arabidopsis[W

    PubMed Central

    Liu, Xigang; Gao, Lei; Dinh, Thanh Theresa; Shi, Ting; Li, Dongming; Wang, Ruozhong; Guo, Lin; Xiao, Langtao; Chen, Xuemei

    2014-01-01

    It has been perplexing that DNA topoisomerases, enzymes that release DNA supercoils, play specific roles in development. In this study, using a floral stem cell model in Arabidopsis thaliana, we uncovered a role for TOPOISOMERASE1α (TOP1α) in Polycomb Group (PcG) protein-mediated histone 3 lysine 27 trimethylation (H3K27me3) at, and transcriptional repression of, the stem cell maintenance gene WUSCHEL (WUS). We demonstrated that H3K27me3 deposition at other PcG targets also requires TOP1α. Intriguingly, the repression of some, as well as the expression of many, PcG target genes requires TOP1α. The mechanism that unifies the opposing effects of TOP1α appears to lie in its role in decreasing nucleosome density, which probably allows the binding of factors that either recruit PcG, as we demonstrated for AGAMOUS at the WUS locus, or counteract PcG-mediated regulation. Although TOP1α reduces nucleosome density at all genes, the lack of a 5′ nucleosome-free region is a feature that distinguishes PcG targets from nontargets and may condition the requirement for TOP1α for their expression. This study uncovers a connection between TOP1α and PcG, which explains the specific developmental functions of TOP1α. PMID:25070639

  14. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  15. The Polycomb group (PcG) protein EZH2 supports the survival of PAX3-FOXO1 alveolar rhabdomyosarcoma by repressing FBXO32 (Atrogin1/MAFbx).

    PubMed

    Ciarapica, R; De Salvo, M; Carcarino, E; Bracaglia, G; Adesso, L; Leoncini, P P; Dall'Agnese, A; Walters, Z S; Verginelli, F; De Sio, L; Boldrini, R; Inserra, A; Bisogno, G; Rosolen, A; Alaggio, R; Ferrari, A; Collini, P; Locatelli, M; Stifani, S; Screpanti, I; Rutella, S; Yu, Q; Marquez, V E; Shipley, J; Valente, S; Mai, A; Miele, L; Puri, P L; Locatelli, F; Palacios, D; Rota, R

    2014-08-07

    The Polycomb group (PcG) proteins regulate stem cell differentiation via the repression of gene transcription, and their deregulation has been widely implicated in cancer development. The PcG protein Enhancer of Zeste Homolog 2 (EZH2) works as a catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) by methylating lysine 27 on histone H3 (H3K27me3), a hallmark of PRC2-mediated gene repression. In skeletal muscle progenitors, EZH2 prevents an unscheduled differentiation by repressing muscle-specific gene expression and is downregulated during the course of differentiation. In rhabdomyosarcoma (RMS), a pediatric soft-tissue sarcoma thought to arise from myogenic precursors, EZH2 is abnormally expressed and its downregulation in vitro leads to muscle-like differentiation of RMS cells of the embryonal variant. However, the role of EZH2 in the clinically aggressive subgroup of alveolar RMS, characterized by the expression of PAX3-FOXO1 oncoprotein, remains unknown. We show here that EZH2 depletion in these cells leads to programmed cell death. Transcriptional derepression of F-box protein 32 (FBXO32) (Atrogin1/MAFbx), a gene associated with muscle homeostasis, was evidenced in PAX3-FOXO1 RMS cells silenced for EZH2. This phenomenon was associated with reduced EZH2 occupancy and H3K27me3 levels at the FBXO32 promoter. Simultaneous knockdown of FBXO32 and EZH2 in PAX3-FOXO1 RMS cells impaired the pro-apoptotic response, whereas the overexpression of FBXO32 facilitated programmed cell death in EZH2-depleted cells. Pharmacological inhibition of EZH2 by either 3-Deazaneplanocin A or a catalytic EZH2 inhibitor mirrored the phenotypic and molecular effects of EZH2 knockdown in vitro and prevented tumor growth in vivo. Collectively, these results indicate that EZH2 is a key factor in the proliferation and survival of PAX3-FOXO1 alveolar RMS cells working, at least in part, by repressing FBXO32. They also suggest that the reducing activity of EZH2 could represent a novel

  16. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro

    PubMed Central

    Francis, Nicole J.; Follmer, Nicole E.; Simon, Matthew D.; Aghia, George; Butler, Jeffrey D.

    2009-01-01

    Summary The transcriptional status of a gene can be maintained through multiple rounds of cell division during development. This epigenetic effect is believed to reflect heritable changes in chromatin folding and histone modifications or variants at target genes, but little is known about how these chromatin features are inherited through cell division. A particular challenge for maintaining transcription states is DNA replication, which disrupts or dilutes chromatin associated proteins and histone modifications. PRC1-class Polycomb Group protein complexes are essential for development, and are thought to heritably silence transcription by altering chromatin folding and histone modifications. It is not known whether these complexes and their effects are maintained during DNA replication or subsequently re-established. We find that when PRC1-class Polycomb complex-bound chromatin or DNA is replicated in vitro, Polycomb complexes remain bound to replicated templates. Retention of Polycomb proteins through DNA replication may contribute to maintenance of transcriptional silencing through cell division. PMID:19303136

  17. Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase.

    PubMed

    Xiao, Wenyan; Gehring, Mary; Choi, Yeonhee; Margossian, Linda; Pu, Hong; Harada, John J; Goldberg, Robert B; Pennell, Roger I; Fischer, Robert L

    2003-12-01

    The MEA Polycomb gene is imprinted in the Arabidopsis endosperm. DME DNA glycosylase activates maternal MEA allele expression in the central cell of the female gametophyte, the progenitor of the endosperm. Maternal mutant dme or mea alleles result in seed abortion. We identified mutations that suppress dme seed abortion and found that they reside in the MET1 methyltransferase gene, which maintains cytosine methylation. Seeds with maternal dme and met1 alleles survive, indicating that suppression occurs in the female gametophyte. Suppression requires a maternal wild-type MEA allele, suggesting that MET1 functions upstream of, or at, MEA. DME activates whereas MET1 suppresses maternal MEA::GFP allele expression in the central cell. MET1 is required for DNA methylation of three regions in the MEA promoter in seeds. Our data suggest that imprinting is controlled in the female gametophyte by antagonism between the two DNA-modifying enzymes, MET1 methyltransferase and DME DNA glycosylase.

  18. Polycomb Group-Dependent, Heterochromatin Protein 1-Independent, Chromatin Structures Silence Retrotransposons in Somatic Tissues Outside Ovaries

    PubMed Central

    Dufourt, J.; Brasset, E.; Desset, S.; Pouchin, P.; Vaury, C.

    2011-01-01

    Somatic cells are equipped with different silencing mechanisms that protect the genome against retrotransposons. In Drosophila melanogaster, a silencing pathway implicating the argonaute protein PIWI represses retrotransposons in cells surrounding the oocyte, whereas a PIWI-independent pathway is involved in other somatic tissues. Here, we show that these two silencing mechanisms result in distinct chromatin structures. Using sensor transgenes, we found that, in somatic tissues outside of the ovaries, these transgenes adopt a heterochromatic configuration implicating hypermethylation of H3K9 and K27. We identified the Polycomb repressive complexes (PRC1 and 2), but not heterochromatin protein 1 to be necessary factors for silencing. Once established, the compact structure is stably maintained through cell divisions. By contrast, in cells where the silencing is PIWI-dependent, the transgenes display an open and labile chromatin structure. Our data suggest that a post-transcriptional gene silencing (PTGS) mechanism is responsible for the repression in the ovarian somatic cells, whereas a mechanism that couples PTGS to transcriptional gene silencing operates to silence retrotransposons in the other somatic tissues. PMID:21908513

  19. The Lineage-Specific Transcription Factor PU.1 Prevents Polycomb-Mediated Heterochromatin Formation at Macrophage-Specific Genes

    PubMed Central

    Tagore, Mohita; McAndrew, Michael J.; Gjidoda, Alison

    2015-01-01

    Lineage-specific transcription factors (TFs) are important determinants of cellular identity, but their exact mode of action has remained unclear. Here we show using a macrophage differentiation system that the lineage-specific TF PU.1 keeps macrophage-specific genes accessible during differentiation by preventing Polycomb repressive complex 2 (PRC2) binding to transcriptional regulatory elements. We demonstrate that the distal enhancer of a gene becomes bound by PRC2 as cells differentiate in the absence of PU.1 binding and that the gene is wrapped into heterochromatin, which is characterized by increased nucleosome occupancy and H3K27 trimethylation. This renders the gene inaccessible to the transcriptional machinery and prevents induction of the gene in response to an external signal in mature cells. In contrast, if PU.1 is bound at the transcriptional regulatory region of a gene during differentiation, PRC2 is not recruited, nucleosome occupancy is kept low, and the gene can be induced in mature macrophages. Similar results were obtained at the enhancers of other macrophage-specific genes that fail to bind PU.1 as an estrogen receptor fusion (PUER) in this system. These results show that one role of PU.1 is to exclude PRC2 and to prevent heterochromatin formation at macrophage-specific genes. PMID:26012552

  20. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells.

    PubMed

    Gaydos, Laura J; Rechtsteiner, Andreas; Egelhofer, Thea A; Carroll, Coleen R; Strome, Susan

    2012-11-29

    The Caenorhabditis elegans MES proteins are key chromatin regulators of the germline. MES-2, MES-3, and MES-6 form the C. elegans Polycomb repressive complex 2 and generate repressive H3K27me3. MES-4 generates H3K36me3 on germline-expressed genes. Transcript profiling of dissected mutant germlines revealed that MES-2/3/6 and MES-4 cooperate to promote the expression of germline genes and repress the X chromosomes and somatic genes. Results from genome-wide chromatin immunoprecipitation showed that H3K27me3 and H3K36me3 occupy mutually exclusive domains on the autosomes and that H3K27me3 is enriched on the X. Loss of MES-4 from germline genes causes H3K27me3 to spread to germline genes, resulting in reduced H3K27me3 elsewhere on the autosomes and especially on the X. Our findings support a model in which H3K36me3 repels H3K27me3 from germline genes and concentrates it on other regions of the genome. This antagonism ensures proper patterns of gene expression for germ cells, which includes repression of somatic genes and the X chromosomes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Antagonism between MES-4 and Polycomb Repressive Complex 2 Promotes Appropriate Gene Expression in C. elegans Germ Cells

    PubMed Central

    Gaydos, Laura; Rechtsteiner, Andreas; Egelhofer, Thea; Carroll, Coleen; Strome, Susan

    2012-01-01

    SUMMARY The C. elegans MES proteins are key chromatin regulators of the germline. MES-2, MES-3, and MES-6 form the C. elegans Polycomb Repressive Complex 2 and generate repressive H3K27me3. MES-4 generates H3K36me3 on germline-expressed genes. Transcript profiling of dissected mutant germlines revealed that MES-2/3/6 and MES-4 cooperate to promote expression of germline genes and silence the X chromosomes and somatic genes. Based on genome-wide chromatin immunoprecipitation, H3K27me3 and H3K36me3 occupy mutually exclusive domains on the autosomes and H3K27me3 is enriched on the X. Loss of MES-4 from germline genes causes H3K27me3 to spread to germline genes, resulting in reduced H3K27me3 elsewhere on the autosomes and especially on the X. Our findings support a model in which H3K36me3 repels H3K27me3 from germline genes and concentrates it on other regions of the genome. This antagonism ensures proper patterns of gene expression for germ cells, which includes silencing somatic genes and the X chromosomes. PMID:23103171

  2. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis.

    PubMed

    Schmidt, Anja; Wöhrmann, Heike J P; Raissig, Michael T; Arand, Julia; Gheyselinck, Jacqueline; Gagliardini, Valeria; Heichinger, Christian; Walter, Joern; Grossniklaus, Ueli

    2013-03-01

    In flowering plants, double fertilization of the female gametes, the egg and the central cell, initiates seed development to give rise to a diploid embryo and the triploid endosperm. In the absence of fertilization, the FERTILIZATION-INDEPENDENT SEED Polycomb Repressive Complex 2 (FIS-PRC2) represses this developmental process by histone methylation of certain target genes. The FERTILIZATION-INDEPENDENT SEED (FIS) class genes MEDEA (MEA) and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) encode two of the core components of this complex. In addition, DNA methylation establishes and maintains the repression of gene activity, for instance via DNA METHYLTRANSFERASE1 (MET1), which maintains methylation of symmetric CpG residues. Here, we demonstrate that Arabidopsis MET1 interacts with MEA in vitro and in a yeast two-hybrid assay, similar to the previously identified interaction of the mammalian homologues DNMT1 and EZH2. MET1 and MEA share overlapping expression patterns in reproductive tissues before and after fertilization, a prerequisite for an interaction in vivo. Importantly, a much higher percentage of central cells initiate endosperm development in the absence of fertilization in mea-1/MEA; met1-3/MET1 as compared to mea-1/MEA mutant plants. In addition, DNA methylation at the PHERES1 and MEA loci, imprinted target genes of the FIS-PRC2, was affected in the mea-1 mutant compared with wild-type embryos. In conclusion, our data suggest a mechanistic link between two major epigenetic pathways involved in histone and DNA methylation in plants by physical interaction of MET1 with the FIS-PRC2 core component MEA. This concerted action is relevant for the repression of seed development in the absence of fertilization. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  3. Binding of the RING polycomb proteins to specific target genes in complex with the grainyhead-like family of developmental transcription factors.

    PubMed

    Tuckfield, Annabel; Clouston, David R; Wilanowski, Tomasz M; Zhao, Lin-Lin; Cunningham, John M; Jane, Stephen M

    2002-03-01

    The Polycomb group (PcG) of proteins represses homeotic gene expression through the assembly of multiprotein complexes on key regulatory elements. The mechanisms mediating complex assembly have remained enigmatic since most PcG proteins fail to bind DNA. We now demonstrate that the human PcG protein dinG interacts with CP2, a mammalian member of the grainyhead-like family of transcription factors, in vitro and in vivo. The functional consequence of this interaction is repression of CP2-dependent transcription. The CP2-dinG interaction is conserved in evolution with the Drosophila factor grainyhead binding to dring, the fly homologue of dinG. Electrophoretic mobility shift assays demonstrate that the grh-dring complex forms on regulatory elements of genes whose expression is repressed by grh but not on elements where grh plays an activator role. These observations reveal a novel mechanism by which PcG proteins may be anchored to specific regulatory elements in developmental genes.

  4. Mutations in the FIE and MEA genes that encode interacting polycomb proteins cause parent-of-origin effects on seed development by distinct mechanisms.

    PubMed

    Yadegari, R; Kinoshita, T; Lotan, O; Cohen, G; Katz, A; Choi, Y; Katz, A; Nakashima, K; Harada, J J; Goldberg, R B; Fischer, R L; Ohad, N

    2000-12-01

    In flowering plants, two cells are fertilized in the haploid female gametophyte. Egg and sperm nuclei fuse to form the embryo. A second sperm nucleus fuses with the central cell nucleus, which replicates to generate the endosperm, a tissue that supports embryo development. The FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) and MEDEA (MEA) genes encode WD and SET domain polycomb proteins, respectively. In the absence of fertilization, a female gametophyte with a loss-of-function fie or mea allele initiates endosperm development without fertilization. fie and mea mutations also cause parent-of-origin effects, in which the wild-type maternal allele is essential and the paternal allele is dispensable for seed viability. Here, we show that FIE and MEA polycomb proteins interact physically, suggesting that the molecular partnership of WD and SET domain polycomb proteins has been conserved during the evolution of flowering plants. The overlapping expression patterns of FIE and MEA are consistent with their suppression of gene transcription and endosperm development in the central cell as well as their control of seed development after fertilization. Although FIE and MEA interact, differences in maternal versus paternal patterns of expression, as well as the effect of a recessive mutation in the DECREASE IN DNA METHYLATION1 (DDM1) gene on mutant allele transmission, indicate that fie and mea mutations cause parent-of-origin effects on seed development by distinct mechanisms.

  5. BMI1 Polycomb Group Protein Acts as a Master Switch for Growth and Death of Tumor Cells: Regulates TCF4-Transcriptional Factor-Induced BCL2 Signaling

    PubMed Central

    Siddique, Hifzur Rahman; Parray, Aijaz; Tarapore, Rohinton S.; Wang, Lei; Mukhtar, Hasan; Karnes, R. Jeffery; Deng, Yibin; Konety, Badrinath R.; Saleem, Mohammad

    2013-01-01

    For advanced prostate cancer (CaP), the progression of tumors to the state of chemoresistance and paucity of knowledge about the mechanism of chemoresistance are major stumbling blocks in the management of this disease. Here, we provide compelling evidence that BMI1 polycomb group protein and a stem cell factor plays a crucial role in determining the fate of tumors vis-à-vis chemotherapy. We show that progressive increase in the levels of BMI1 occurs during the progression of CaP disease in humans. We show that BMI1-rich tumor cells are non-responsive to chemotherapy whereas BMI1-silenced tumor cells are responsive to therapy. By employing microarray, ChIP, immunoblot and Luciferase reporter assays, we identified a unique mechanism through which BMI1 rescues tumor cells from chemotherapy. We found that BMI1 regulates (i) activity of TCF4 transcriptional factor and (ii) binding of TCF4 to the promoter region of anti-apoptotic BCL2 gene. Notably, an increased TCF4 occupancy on BCL2 gene was observed in prostatic tissues exhibiting high BMI1 levels. Using tumor cells other than CaP, we also showed that regulation of TCF4-mediated BCL2 by BMI1 is universal. It is noteworthy that forced expression of BMI1 was observed to drive normal cells to hyperproliferative mode. We show that targeting BMI1 improves the outcome of docetaxel therapy in animal models bearing chemoresistant prostatic tumors. We suggest that BMI1 could be exploited as a potential molecular target for therapeutics to treat chemoresistant tumors. PMID:23671559

  6. BMI1 polycomb group protein acts as a master switch for growth and death of tumor cells: regulates TCF4-transcriptional factor-induced BCL2 signaling.

    PubMed

    Siddique, Hifzur Rahman; Parray, Aijaz; Tarapore, Rohinton S; Wang, Lei; Mukhtar, Hasan; Karnes, R Jeffery; Deng, Yibin; Konety, Badrinath R; Saleem, Mohammad

    2013-01-01

    For advanced prostate cancer (CaP), the progression of tumors to the state of chemoresistance and paucity of knowledge about the mechanism of chemoresistance are major stumbling blocks in the management of this disease. Here, we provide compelling evidence that BMI1 polycomb group protein and a stem cell factor plays a crucial role in determining the fate of tumors vis-à-vis chemotherapy. We show that progressive increase in the levels of BMI1 occurs during the progression of CaP disease in humans. We show that BMI1-rich tumor cells are non-responsive to chemotherapy whereas BMI1-silenced tumor cells are responsive to therapy. By employing microarray, ChIP, immunoblot and Luciferase reporter assays, we identified a unique mechanism through which BMI1 rescues tumor cells from chemotherapy. We found that BMI1 regulates (i) activity of TCF4 transcriptional factor and (ii) binding of TCF4 to the promoter region of anti-apoptotic BCL2 gene. Notably, an increased TCF4 occupancy on BCL2 gene was observed in prostatic tissues exhibiting high BMI1 levels. Using tumor cells other than CaP, we also showed that regulation of TCF4-mediated BCL2 by BMI1 is universal. It is noteworthy that forced expression of BMI1 was observed to drive normal cells to hyperproliferative mode. We show that targeting BMI1 improves the outcome of docetaxel therapy in animal models bearing chemoresistant prostatic tumors. We suggest that BMI1 could be exploited as a potential molecular target for therapeutics to treat chemoresistant tumors.

  7. Long-range repression by multiple polycomb group (PcG) proteins targeted by fusion to a defined DNA-binding domain in Drosophila.

    PubMed Central

    Roseman, R R; Morgan, K; Mallin, D R; Roberson, R; Parnell, T J; Bornemann, D J; Simon, J A; Geyer, P K

    2001-01-01

    A tethering assay was developed to study the effects of Polycomb group (PcG) proteins on gene expression in vivo. This system employed the Su(Hw) DNA-binding domain (ZnF) to direct PcG proteins to transposons that carried the white and yellow reporter genes. These reporters constituted naive sensors of PcG effects, as bona fide PcG response elements (PREs) were absent from the constructs. To assess the effects of different genomic environments, reporter transposons integrated at nearly 40 chromosomal sites were analyzed. Three PcG fusion proteins, ZnF-PC, ZnF-SCM, and ZnF-ESC, were studied, since biochemical analyses place these PcG proteins in distinct complexes. Tethered ZnF-PcG proteins repressed white and yellow expression at the majority of sites tested, with each fusion protein displaying a characteristic degree of silencing. Repression by ZnF-PC was stronger than ZnF-SCM, which was stronger than ZnF-ESC, as judged by the percentage of insertion lines affected and the magnitude of the conferred repression. ZnF-PcG repression was more effective at centric and telomeric reporter insertion sites, as compared to euchromatic sites. ZnF-PcG proteins tethered as far as 3.0 kb away from the target promoter produced silencing, indicating that these effects were long range. Repression by ZnF-SCM required a protein interaction domain, the SPM domain, which suggests that this domain is not primarily used to direct SCM to chromosomal loci. This targeting system is useful for studying protein domains and mechanisms involved in PcG repression in vivo. PMID:11333237

  8. Ectopic expression of DREF induces DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with Polycomb and trithorax group proteins.

    PubMed

    Hirose, F; Ohshima, N; Shiraki, M; Inoue, Y H; Taguchi, O; Nishi, Y; Matsukage, A; Yamaguchi, M

    2001-11-01

    The promoters of Drosophila genes encoding DNA replication-related proteins contain transcription regulatory element DRE (5'-TATCGATA) in addition to E2F recognition sites. A specific DRE-binding factor, DREF, positively regulates DRE-containing genes. In addition, it has been reported that DREF can bind to a sequence in the hsp70 scs' chromatin boundary element that is also recognized by boundary element-associated factor, and thus DREF may participate in regulating insulator activity. To examine DREF function in vivo, we established transgenic flies in which ectopic expression of DREF was targeted to the eye imaginal discs. Adult flies expressing DREF exhibited a severe rough eye phenotype. Expression of DREF induced ectopic DNA synthesis in the cells behind the morphogenetic furrow, which are normally postmitotic, and abolished photoreceptor specifications of R1, R6, and R7. Furthermore, DREF expression caused apoptosis in the imaginal disc cells in the region where commitment to R1/R6 cells takes place, suggesting that failure of differentiation of R1/R6 photoreceptor cells might cause apoptosis. The DREF-induced rough eye phenotype was suppressed by a half-dose reduction of the E2F gene, one of the genes regulated by DREF, indicating that the DREF overexpression phenotype is useful to screen for modifiers of DREF activity. Among Polycomb/trithorax group genes, we found that a half-dose reduction of some of the trithorax group genes involved in determining chromatin structure or chromatin remodeling (brahma, moira, and osa) significantly suppressed and that reduction of Distal-less enhanced the DREF-induced rough eye phenotype. The results suggest a possibility that DREF activity might be regulated by protein complexes that play a role in modulating chromatin structure. Genetic crosses of transgenic flies expressing DREF to a collection of Drosophila deficiency stocks allowed us to identify several genomic regions, deletions of which caused enhancement or

  9. Genome-wide analysis of Polycomb targets in Drosophila

    SciTech Connect

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.; Li,Xiao-Yong; Bourgon, Richard; Biggin, Mark; Pirrotta, Vincenzo

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.

  10. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development1[OPEN

    PubMed Central

    Zhou, Yue

    2017-01-01

    Polycomb Group regulation in Arabidopsis (Arabidopsis thaliana) is required to maintain cell differentiation and allow developmental phase transitions. This is achieved by the activity of three PcG repressive complex 2s (PRC2s) and the participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 components perform discrete roles during plant development, suggesting the existence of PRC1 variants; however, it is not clear in how many processes these components participate. We show that AtBMI1 proteins are required to promote all developmental phase transitions and to control cell proliferation during organ growth and development, expanding their proposed range of action. While AtBMI1 function during germination is closely linked to B3 domain transcription factors VAL1/2 possibly in combination with GT-box binding factors, other AtBMI1 regulatory networks require participation of different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 positive genes up-regulated in atbmi1a/b/c mutants; however, loss of their function affects expression of a different subset, suggesting that even if EMF1, LHP1, and AtBMI1 exist in a common PRC1 variant, their role in repression depends on the functional context. PMID:27837089

  11. The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP

    PubMed Central

    Li, Chenlong; Chen, Chen; Gao, Lei; Yang, Songguang; Nguyen, Vi; Shi, Xuejiang; Siminovitch, Katherine; Kohalmi, Susanne E.; Huang, Shangzhi; Wu, Keqiang; Chen, Xuemei; Cui, Yuhai

    2015-01-01

    The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development. PMID:25615622

  12. The Arabidopsis SWI2/SNF2 chromatin Remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene SVP.

    PubMed

    Li, Chenlong; Chen, Chen; Gao, Lei; Yang, Songguang; Nguyen, Vi; Shi, Xuejiang; Siminovitch, Katherine; Kohalmi, Susanne E; Huang, Shangzhi; Wu, Keqiang; Chen, Xuemei; Cui, Yuhai

    2015-01-01

    The chromatin remodeler BRAHMA (BRM) is a Trithorax Group (TrxG) protein that antagonizes the functions of Polycomb Group (PcG) proteins in fly and mammals. Recent studies also implicate such a role for Arabidopsis (Arabidopsis thaliana) BRM but the molecular mechanisms underlying the antagonism are unclear. To understand the interplay between BRM and PcG during plant development, we performed a genome-wide analysis of trimethylated histone H3 lysine 27 (H3K27me3) in brm mutant seedlings by chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Increased H3K27me3 deposition at several hundred genes was observed in brm mutants and this increase was partially supressed by removal of the H3K27 methyltransferase CURLY LEAF (CLF) or SWINGER (SWN). ChIP experiments demonstrated that BRM directly binds to a subset of the genes and prevents the inappropriate association and/or activity of PcG proteins at these loci. Together, these results indicate a crucial role of BRM in restricting the inappropriate activity of PcG during plant development. The key flowering repressor gene SHORT VEGETATIVE PHASE (SVP) is such a BRM target. In brm mutants, elevated PcG occupancy at SVP accompanies a dramatic increase in H3K27me3 levels at this locus and a concomitant reduction of SVP expression. Further, our gain- and loss-of-function genetic evidence establishes that BRM controls flowering time by directly activating SVP expression. This work reveals a genome-wide functional interplay between BRM and PcG and provides new insights into the impacts of these proteins in plant growth and development.

  13. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites.

    PubMed

    Czermin, Birgit; Melfi, Raffaella; McCabe, Donna; Seitz, Volker; Imhof, Axel; Pirrotta, Vincenzo

    2002-10-18

    Enhancer of Zeste is a Polycomb Group protein essential for the establishment and maintenance of repression of homeotic and other genes. In the early embryo it is found in a complex that includes ESC and is recruited to Polycomb Response Elements. We show that this complex contains a methyltransferase activity that methylates lysine 9 and lysine 27 of histone H3, but the activity is lost when the E(Z) SET domain is mutated. The lysine 9 position is trimethylated and this mark is closely associated with Polycomb binding sites on polytene chromosomes but is also found in centric heterochromatin, chromosome 4, and telomeric sites. Histone H3 methylated in vitro by the E(Z)/ESC complex binds specifically to Polycomb protein.

  14. Persistent replicative stress alters Polycomb phenotypes and tissue homeostasis in Drosophila melanogaster

    PubMed Central

    Landais, Severine; D'Alterio, Cecilia; Jones, D. Leanne

    2014-01-01

    Polycomb group (PcG) proteins establish and maintain genetic programs that regulate cell fate decisions. Drosophila multi sex combs (mxc) was categorized as a PcG gene based on a classical Polycomb phenotype and genetic interactions; however, a mechanistic connection between Polycomb and Mxc has not been elucidated. Hypomorphic alleles of mxc are characterized by male and female sterility and ectopic sex combs. Mxc is an important regulator of histone synthesis, and we find that increased levels of the core histone H3 in mxc mutants result in replicative stress and a persistent DNA damage response (DDR). Germline loss, ectopic sex combs and the DDR are suppressed by reducing H3 in mxc mutants. Conversely, mxc phenotypes are enhanced when the DDR is abrogated. Importantly, replicative stress induced by hydroxyurea treatment recapitulated mxc germline phenotypes. These data reveal how persistent replicative stress affects gene expression, tissue homeostasis, and maintenance of cellular identity in vivo. PMID:24746823

  15. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program

    PubMed Central

    van Arensbergen, Joris; García-Hurtado, Javier; Moran, Ignasi; Maestro, Miguel Angel; Xu, Xiaobo; Van de Casteele, Mark; Skoudy, Anouchka L.; Palassini, Matteo; Heimberg, Harry; Ferrer, Jorge

    2010-01-01

    The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells. PMID:20395405

  16. Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements

    PubMed Central

    De, Sandip; Mitra, Apratim; Cheng, Yuzhong; Pfeifer, Karl; Kassis, Judith A.

    2016-01-01

    Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain. PMID:27466807

  17. Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration

    PubMed Central

    von Schimmelmann, Melanie; Feinberg, Philip A.; Sullivan, Josefa M.; Ku, Stacy M.; Badimon, Ana; Duff, Mary Kaye; Wang, Zichen; Lachmann, Alexander; Dewell, Scott; Ma'ayan, Avi; Han, Ming-Hu; Tarakhovsky, Alexander; Schaefer, Anne

    2016-01-01

    Normal brain function depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. Neuronal specification is driven by transcriptional programs that are established during early neuronal development and remain in place in the adult brain. The fidelity of neuronal specification depends on the robustness of the transcriptional program that supports the neuron type-specific gene expression patterns. Here we show that PRC2, which supports neuron specification during differentiation, contributes to the suppression of a transcriptional program that is detrimental for adult neuron function and survival. We show that PRC2 deficiency in striatal neurons leads to the de-repression of selected, predominantly bivalent PRC2 target genes that are dominated by self-regulating transcription factors normally suppressed in these neurons. The transcriptional changes in PRC2-deficient neurons lead to progressive and fatal neurodegeneration in mice. Our results point to a key role of PRC2 in protecting neurons against degeneration. PMID:27526204

  18. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing.

    PubMed

    Del Olmo, Iván; López, Juan A; Vázquez, Jesús; Raynaud, Cécile; Piñeiro, Manuel; Jarillo, José A

    2016-07-08

    Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1 We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing

    PubMed Central

    del Olmo, Iván; López, Juan A.; Vázquez, Jesús; Raynaud, Cécile; Piñeiro, Manuel; Jarillo, José A.

    2016-01-01

    Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1. We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells. PMID:26980282

  20. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  1. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment.

    PubMed

    Le, Huy Quang; Ghatak, Sushmita; Yeung, Ching-Yan Chloé; Tellkamp, Frederik; Günschmann, Christian; Dieterich, Christoph; Yeroslaviz, Assa; Habermann, Bianca; Pombo, Ana; Niessen, Carien M; Wickström, Sara A

    2016-08-01

    Tissue mechanics drive morphogenesis, but how forces are sensed and transmitted to control stem cell fate and self-organization remains unclear. We show that a mechanosensory complex of emerin (Emd), non-muscle myosin IIA (NMIIA) and actin controls gene silencing and chromatin compaction, thereby regulating lineage commitment. Force-driven enrichment of Emd at the outer nuclear membrane of epidermal stem cells leads to defective heterochromatin anchoring to the nuclear lamina and a switch from H3K9me2,3 to H3K27me3 occupancy at constitutive heterochromatin. Emd enrichment is accompanied by the recruitment of NMIIA to promote local actin polymerization that reduces nuclear actin levels, resulting in attenuation of transcription and subsequent accumulation of H3K27me3 at facultative heterochromatin. Perturbing this mechanosensory pathway by deleting NMIIA in mouse epidermis leads to attenuated H3K27me3-mediated silencing and precocious lineage commitment, abrogating morphogenesis. Our results reveal how mechanics integrate nuclear architecture and chromatin organization to control lineage commitment and tissue morphogenesis.

  2. The Polycomb Group Protein L3mbtl2 Assembles an Atypical PRC1-Family Complex that Is Essential in Pluripotent Stem Cells and Early Development

    PubMed Central

    Qin, Jinzhong; Whyte, Warren A.; Anderssen, Endre; Apostolou, Effie; Chen, Hsu-Hsin; Akbarian, Schahram; Bronson, Roderick T.; Hochedlinger, Konrad; Ramaswamy, Sridhar; Young, Richard A.; Hock, Hanno

    2013-01-01

    SUMMARY L3mbtl2 has been implicated in transcriptional repression and chromatin compaction but its biological function has not been defined. Here we show that disruption of L3mbtl2 results in embryonic lethality with failure of gastrulation. This correlates with compromised proliferation and abnormal differentiation of L3mbtl2−/− embryonic stem (ES) cells. L3mbtl2 regulates genes by recruiting a Polycomb Repressive Complex1 (PRC1)-related complex, resembling the previously described E2F6-complex, and including G9A, Hdac1, and Ring1b. Presence of L3mbtl2 at target genes is associated with H3K9-dimethylation, low histone-acetylation, and H2AK119-ubiquitination, but the latter is neither dependent on L3mbtl2 nor sufficient for repression. Genome wide studies revealed that the L3mbtl2-dependent complex predominantly regulates genes not bound by canonical PRC1 and PRC2. However, some developmental regulators are repressed by the combined activity of all three complexes. Together, we have uncovered a highly selective, essential role for an atypical PRC1-family complex in ES cells and early development. PMID:22770845

  3. A functionally conserved Polycomb response element from mouse HoxD complex responds to heterochromatin factors

    NASA Astrophysics Data System (ADS)

    Vasanthi, Dasari; Nagabhushan, A.; Matharu, Navneet Kaur; Mishra, Rakesh K.

    2013-10-01

    Anterior-posterior body axis in all bilaterians is determined by the Hox gene clusters that are activated in a spatio-temporal order. This expression pattern of Hox genes is established and maintained by regulatory mechanisms that involve higher order chromatin structure and Polycomb group (PcG) and trithorax group (trxG) proteins. We identified earlier a Polycomb response element (PRE) in the mouse HoxD complex that is functionally conserved in flies. We analyzed the molecular and genetic interactions of mouse PRE using Drosophila melanogaster and vertebrate cell culture as the model systems. We demonstrate that the repressive activity of this PRE depends on PcG/trxG genes as well as the heterochromatin components. Our findings indicate that a wide range of factors interact with the HoxD PRE that can contribute to establishing the expression pattern of homeotic genes in the complex early during development and maintain that pattern at subsequent stages.

  4. Stability and dynamics of polycomb target sites in Drosophila development.

    PubMed

    Kwong, Camilla; Adryan, Boris; Bell, Ian; Meadows, Lisa; Russell, Steven; Manak, J Robert; White, Robert

    2008-09-05

    Polycomb-group (PcG) and Trithorax-group proteins together form a maintenance machinery that is responsible for stable heritable states of gene activity. While the best-studied target genes are the Hox genes of the Antennapedia and Bithorax complexes, a large number of key developmental genes are also Polycomb (Pc) targets, indicating a widespread role for this maintenance machinery in cell fate determination. We have studied the linkage between the binding of PcG proteins and the developmental regulation of gene expression using whole-genome mapping to identify sites bound by the PcG proteins, Pc and Pleiohomeotic (Pho), in the Drosophila embryo and in a more restricted tissue, the imaginal discs of the third thoracic segment. Our data provide support for the idea that Pho is a general component of the maintenance machinery, since the majority of Pc targets are also associated with Pho binding. We find, in general, considerable developmental stability of Pc and Pho binding at target genes and observe that Pc/Pho binding can be associated with both expressed and inactive genes. In particular, at the Hox complexes, both active and inactive genes have significant Pc and Pho binding. However, in comparison to inactive genes, the active Hox genes show reduced and altered binding profiles. During development, Pc target genes are not simply constantly associated with Pc/Pho binding, and we identify sets of genes with clear differential binding between embryo and imaginal disc. Using existing datasets, we show that for specific fate-determining genes of the haemocyte lineage, the active state is characterised by lack of Pc binding. Overall, our analysis suggests a dynamic relationship between Pc/Pho binding and gene transcription. Pc/Pho binding does not preclude transcription, but levels of Pc/Pho binding change during development, and loss of Pc/Pho binding can be associated with both stable gene activity and inactivity.

  5. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells.

    PubMed

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F; Mayol, Xavier; Cano, Amparo; Hernández-Muñoz, Inmaculada

    2014-04-30

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy.

  6. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells

    PubMed Central

    Bosch, Almudena; Panoutsopoulou, Konstantina; Corominas, Josep Maria; Gimeno, Ramón; Moreno-Bueno, Gema; Martín-Caballero, Juan; Morales, Saleta; Lobato, Tania; Martínez-Romero, Carles; Farias, Eduardo F.; Mayol, Xavier; Cano, Amparo; Hernández-Muáoz, Inmaculada

    2014-01-01

    In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy. PMID:24742605

  7. Zeste maintains repression of Ubx transgenes: Support for a new model of polycomb repression

    SciTech Connect

    Hur, Man-Wook; Laney, Jeffrey D.; Jeon, Sang-Hack; Ali, Janann; Biggin, Mark D.

    2001-09-01

    During late embryogenesis, the expression domains of homeotic genes are maintained by two groups of ubiquitously expressed regulators: the Polycomb repressors and the Trithorax activators. It is not known how the activities of the two maintenance systems are initially targeted to the correct genes. Zeste and GAGA are sequence specific DNA binding proteins previously shown to be Trithorax group activators of the homeotic gene Ultrabithorax (Ubx). Here we demonstrate that Zeste and GAGA DNA binding sites at the proximal promoter are also required to maintain, but not to initiate, repression of Ubx. Further, the repression mediated by Zeste DNA binding site is abolished in zeste null embryos. These data imply that Zeste and probably GAGA mediate Polycomb repression. We present a model in which the dual transcriptional activities of Zeste and GAGA are an essential component of the mechanism that chooses which maintenance system is to be targeted to a given promoter.

  8. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements

    PubMed Central

    Misulovin, Ziva; Gause, Maria; Rickels, Ryan A; Shilatifard, Ali

    2016-01-01

    The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs). RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers. PMID:27662615

  9. Polycomb silencing mediated by specific DNA-binding recruiters.

    PubMed

    March, Eduardo; Farrona, Sara

    2017-09-27

    Regulation of epigenetic factors through their recruitment to specific genomic regions is still poorly understood. A recent study demonstrates a global mechanism of tethering Polycomb group (PcG) proteins through sequence-specific DNA-binding factors.

  10. Specific combinations of boundary element and Polycomb response element are required for the regulation of the Hox genes in Drosophila melanogaster.

    PubMed

    Singh, Narendra Pratap; Mishra, Rakesh Kumar

    2015-11-01

    In the bithorax complex of Drosophila melanogaster, the chromatin boundary elements (BE) demarcate cis-regulatory domains that regulate Hox genes along the anteroposterior body axis. These elements are closely associated with the Polycomb Response Elements (PREs) and restrict the ectopic activation of cis-regulatory domains during development. The relevance of such specific genomic arrangements of regulatory elements remains unclear. Deletions of individual BE-PRE combination result in distinct homeotic phenotypes. In this study, we show that deletion of two such BE-PRE combinations in cis leads to new genetic interactions, which manifests as dorsal closure defect phenotype in adult abdominal epithelia. We further demonstrate that dorsal closure phenotype results from enhanced and ectopic expression of Hox gene Abd-B in the larval epithelial cells. This suggests a specific role of multiple BE-PRE combinations in the larval epithelial cells for regulation of Abd-B. Using chromosome conformation capture experiments, we show that genetic interactions correlate with direct physical interactions among the BE-PRE combinations. Our results demonstrate the functional relevance of the closely associated BE and PRE combinations in regulation of Hox genes.

  11. MtVRN2 is a Polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula.

    PubMed

    Jaudal, Mauren; Zhang, Lulu; Che, Chong; Hurley, Daniel G; Thomson, Geoffrey; Wen, Jiangqi; Mysore, Kirankumar S; Putterill, Joanna

    2016-04-01

    Optimising the timing of flowering contributes to successful sexual reproduction and yield in agricultural plants. FLOWERING LOCUS T (FT) genes, first identified in Arabidopsis thaliana (Arabidopsis), promote flowering universally, but the upstream flowering regulatory pathways can differ markedly among plants. Flowering in the model legume, Medicago truncatula (Medicago) is accelerated by winter cold (vernalisation) followed by long day (LD) photoperiods leading to elevated expression of the floral activator, FT-like gene FTa1. However, Medicago, like some other plants, lacks the activator CONSTANS (CO) and the repressor FLOWERING LOCUS C (FLC) genes which directly regulate FT and are key to LD and vernalisation responses in Arabidopsis. Conversely, Medicago has a VERNALISATION2-LIKE VEFS-box gene (MtVRN2). In Arabidopsis AtVRN2 is a key member of a Polycomb complex involved in stable repression of Arabidopsis FLC after vernalisation. VRN2-like genes have been identified in other eudicot plants, but their function has never been reported. We show that Mtvrn2 mutants bypass the need for vernalisation for early flowering in LD conditions in Medicago. Investigation of the underlying mechanism by transcriptome analysis reveals that Mtvrn2 mutants precociously express FTa1 and other suites of genes including floral homeotic genes. Double-mutant analysis indicates that early flowering is dependent on functional FTa1. The broad significance of our study is that we have demonstrated a function for a VRN2-like VEFS gene beyond the Brassicaceae. In particular, MtVRN2 represses the transition to flowering in Medicago by regulating the onset of expression of the potent floral activator, FTa1.

  12. New partners in regulation of gene expression: the enhancer of Trithorax and Polycomb Corto interacts with methylated ribosomal protein l12 via its chromodomain.

    PubMed

    Coléno-Costes, Anne; Jang, Suk Min; de Vanssay, Augustin; Rougeot, Julien; Bouceba, Tahar; Randsholt, Neel B; Gibert, Jean-Michel; Le Crom, Stéphane; Mouchel-Vielh, Emmanuèle; Bloyer, Sébastien; Peronnet, Frédérique

    2012-01-01

    Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA-seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators.

  13. New Partners in Regulation of Gene Expression: The Enhancer of Trithorax and Polycomb Corto Interacts with Methylated Ribosomal Protein L12 Via Its Chromodomain

    PubMed Central

    Coléno-Costes, Anne; Jang, Suk Min; de Vanssay, Augustin; Rougeot, Julien; Bouceba, Tahar; Randsholt, Neel B.; Gibert, Jean-Michel; Le Crom, Stéphane; Mouchel-Vielh, Emmanuèle

    2012-01-01

    Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA–seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators. PMID:23071455

  14. Dual functionality of cis-regulatory elements as developmental enhancers and Polycomb response elements.

    PubMed

    Erceg, Jelena; Pakozdi, Tibor; Marco-Ferreres, Raquel; Ghavi-Helm, Yad; Girardot, Charles; Bracken, Adrian P; Furlong, Eileen E M

    2017-03-15

    Developmental gene expression is tightly regulated through enhancer elements, which initiate dynamic spatio-temporal expression, and Polycomb response elements (PREs), which maintain stable gene silencing. These two cis-regulatory functions are thought to operate through distinct dedicated elements. By examining the occupancy of the Drosophila pleiohomeotic repressive complex (PhoRC) during embryogenesis, we revealed extensive co-occupancy at developmental enhancers. Using an established in vivo assay for PRE activity, we demonstrated that a subset of characterized developmental enhancers can function as PREs, silencing transcription in a Polycomb-dependent manner. Conversely, some classic Drosophila PREs can function as developmental enhancers in vivo, activating spatio-temporal expression. This study therefore uncovers elements with dual function: activating transcription in some cells (enhancers) while stably maintaining transcriptional silencing in others (PREs). Given that enhancers initiate spatio-temporal gene expression, reuse of the same elements by the Polycomb group (PcG) system may help fine-tune gene expression and ensure the timely maintenance of cell identities. © 2017 Erceg et al.; Published by Cold Spring Harbor Laboratory Press.

  15. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve polycomb-mediated repression.

    PubMed

    Escobar, Thelma M; Kanellopoulou, Chrysi; Kugler, David G; Kilaru, Gokhul; Nguyen, Cuong K; Nagarajan, Vijayaraj; Bhairavabhotla, Ravikiran K; Northrup, Daniel; Zahr, Rami; Burr, Patrick; Liu, Xiuhuai; Zhao, Keji; Sher, Alan; Jankovic, Dragana; Zhu, Jinfang; Muljo, Stefan A

    2014-06-19

    Specification of the T helper 17 (Th17) cell lineage requires a well-defined set of transcription factors, but how these integrate with posttranscriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient Th17 and T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9, and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2.

  16. miR-155 activates cytokine gene expression in Th17 cells by regulating the DNA-binding protein Jarid2 to relieve Polycomb-mediated repression

    PubMed Central

    Escobar, Thelma M.; Kanellopoulou, Chrysi; Kugler, David G.; Kilaru, Gokhul; Nguyen, Cuong K.; Nagarajan, Vijayaraj; Bhairavabhotla, Ravikiran K.; Northrup, Daniel; Zahr, Rami; Burr, Patrick; Liu, Xiuhuai; Zhao, Keji; Sher, Alan; Jankovic, Dragana; Zhu, Jinfang; Muljo, Stefan A.

    2014-01-01

    Specification of the T helper 17 (Th17) cell lineage requires a well defined set of transcription factors, but how these integrate with post-transcriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation. miR-155-deficient-Th17 and -T regulatory (Treg) cells expressed increased amounts of Jarid2, a DNA-binding protein that recruits the Polycomb Repressive Complex 2 (PRC2) to chromatin. PRC2 binding to chromatin and H3K27 histone methylation was increased in miR-155-deficient cells, coinciding with failure to express Il22, Il10, Il9 and Atf3. Defects in Th17 cell cytokine expression and Treg cell homeostasis in the absence of Mir155 could be partially suppressed by Jarid2 deletion. Thus, miR-155 contributes to Th17 cell function by suppressing the inhibitory effects of Jarid2. PMID:24856900

  17. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2010-09-01

    cells were obtained from ATCC 8 (Manassas, VA). Cells were cultured in appropriate media and were kept in a humidified atmosphere of 95% air and 5...Rodriguez- Puebla ML, Robles AI, Conti CJ. ras activity and cyclin D1 expression: an essential mechanism of mouse skin tumor development. Mol

  18. The Role of Polycomb Group Gene Bmi-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2011-09-01

    cultured in appropriate media and were kept in a humidified atmosphere of 95% air and 5% CO2 in an incubator at 37 oC. Plasmids and siRNA: The pbabe-Bmi-1...15;62(16):4736-45. 25. Rodriguez- Puebla ML, Robles AI, Conti CJ. ras activity and cyclin D1 expression: an essential mechanism of mouse skin

  19. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila.

    PubMed

    Schuettengruber, Bernd; Oded Elkayam, Noa; Sexton, Tom; Entrevan, Marianne; Stern, Shani; Thomas, Aubin; Yaffe, Eitan; Parrinello, Hugues; Tanay, Amos; Cavalli, Giacomo

    2014-10-09

    Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila.

  20. Polycomb-mediated disruption of an androgen receptor feedback loop drives castration-resistant prostate cancer

    PubMed Central

    Fong, Ka-wing; Zhao, Jonathan C.; Kim, Jung; Li, Shangze; Yang, Yeqing Angela; Song, Bing; Rittie, Laure; Hu, Ming; Yang, Ximing; Perbal, Bernard; Yu, Jindan

    2016-01-01

    The lethal phenotype of castration-resistant prostate cancer (CRPC) is generally caused by augmented signaling from the androgen receptor (AR). Here we report that the AR-repressed gene CCN3/NOV inhibits AR signaling and acts in a negative feedback loop to block AR function. Mechanistically, a cytoplasmic form of CCN3 interacted with the AR N-terminal domain to sequester AR in the cytoplasm of prostate cancer cells, thereby reducing AR transcriptional activity and inhibiting cell growth. However, constitutive repression of CCN3 by the Polycomb Group Protein EZH2 disrupted this negative feedback loop in both CRPC and enzalutamide-resistant prostate cancer cells. Notably, restoring CCN3 was sufficient to effectively abolish CPRC cell growth in vitro and in vivo. Taken together, our findings establish CCN3 as a pivotal regulator of AR signaling and prostate cancer progression and they establish a functional intersection between Polycomb and AR signaling in CRPC. PMID:27815387

  1. Genome methylation patterns in male breast cancer - Identification of an epitype with hypermethylation of polycomb target genes.

    PubMed

    Johansson, Ida; Lauss, Martin; Holm, Karolina; Staaf, Johan; Nilsson, Cecilia; Fjällskog, Marie-Louise; Ringnér, Markus; Hedenfalk, Ingrid

    2015-10-01

    Male breast cancer (MBC) is a rare disease that shares both similarities and differences with female breast cancer (FBC). The aim of this study was to assess genome-wide DNA methylation profiles in MBC and compare them with the previously identified transcriptional subgroups of MBC, luminal M1 and M2, as well as the intrinsic subtypes of FBC. Illumina's 450K Infinium arrays were applied to 47 MBC and 188 FBC tumors. Unsupervised clustering of the most variable CpGs among MBC tumors revealed two stable epitypes, designated ME1 and ME2. The methylation patterns differed significantly between the groups and were closely associated with the transcriptional subgroups luminal M1 and M2. Tumors in the ME1 group were more proliferative and aggressive than ME2 tumors, and showed a tendency toward inferior survival. ME1 tumors also displayed hypermethylation of PRC2 target genes and high expression of EZH2, one of the core components of PRC2. Upon combined analysis of MBC and FBC tumors, ME1 MBCs clustered among luminal B FBC tumors and ME2 MBCs clustered within the predominantly luminal A FBC cluster. The majority of the MBC tumors remained grouped together within the clusters rather than being interspersed among the FBC tumors. Differences in the genomic location of methylated CpGs, as well as in the regulation of central canonical pathways may explain the separation between MBC and FBC tumors in the respective clusters. These findings further suggest that MBC is not readily defined using conventional criteria applied to FBC. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC

    PubMed Central

    Frey, Felice; Sheahan, Thomas; Finkl, Katja; Stoehr, Gabriele; Mann, Matthias; Benda, Christian; Müller, Jürg

    2016-01-01

    Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin. PMID:27151979

  3. Cell Reprogramming Requires Silencing of a Core Subset of Polycomb Targets

    PubMed Central

    Fragola, Giulia; Cuomo, Alessandro; Blasimme, Alessandro; Gross, Fridolin; Signaroldi, Elena; Bucci, Gabriele; Sommer, Cesar; Pruneri, Giancarlo; Mazzarol, Giovanni; Bonaldi, Tiziana; Mostoslavsky, Gustavo; Casola, Stefano; Testa, Giuseppe

    2013-01-01

    Transcription factor (TF)–induced reprogramming of somatic cells into induced pluripotent stem cells (iPSC) is associated with genome-wide changes in chromatin modifications. Polycomb-mediated histone H3 lysine-27 trimethylation (H3K27me3) has been proposed as a defining mark that distinguishes the somatic from the iPSC epigenome. Here, we dissected the functional role of H3K27me3 in TF–induced reprogramming through the inactivation of the H3K27 methylase EZH2 at the onset of reprogramming. Our results demonstrate that surprisingly the establishment of functional iPSC proceeds despite global loss of H3K27me3. iPSC lacking EZH2 efficiently silenced the somatic transcriptome and differentiated into tissues derived from the three germ layers. Remarkably, the genome-wide analysis of H3K27me3 in Ezh2 mutant iPSC cells revealed the retention of this mark on a highly selected group of Polycomb targets enriched for developmental regulators controlling the expression of lineage specific genes. Erasure of H3K27me3 from these targets led to a striking impairment in TF–induced reprogramming. These results indicate that PRC2-mediated H3K27 trimethylation is required on a highly selective core of Polycomb targets whose repression enables TF–dependent cell reprogramming. PMID:23468641

  4. Cloning and Expression Profiling of the Polycomb Gene, Retinoblastoma-related Protein from Tomato Solanum lycopersicum L.

    PubMed

    Almutairi, Zainab M; Sadder, Monther T

    2014-01-01

    Cell cycle regulation mechanisms appear to be conserved throughout eukaryotic evolution. One of the important proteins involved in the regulation of cell cycle processes is retinoblastoma-related protein (RBR), which is a negative regulator of cell cycle progression, controlling the G1/S transition in plants and animals. In this study, we present the cloning and genomic structure of a putative SlRBR gene in the tomato Solanum lycopersicum L. by isolating cDNA clones that correspond to the SlRBR gene from tomato using primers that were designed from available Solanaceae ESTs based on conserved sequences between the PcG genes in Arabidopsis thaliana and tomato. The SlRBR cDNAs were cloned into the pBS plasmid and sequenced. Both 5'- and 3'-RACE were generated and sequenced. FlcDNA of the SlRBR gene of 3,554 bp was composed of a 5'-UTR of 140 bp, an ORF of 3,054 bp, and a 3'-UTR of 360 bp. The translated ORF encodes a polypeptide of 1,018 amino acids. An alignment of the deduced amino acids indicates that there are highly conserved regions between the tomato SlRBR predicted protein and plant hypothetical RBR gene family members. Both of the unrooted phylogenetic trees, which were constructed using maximum parsimony and maximum likelihood methods, indicate a close relationship between the SlRBR predicted protein and the RBR protein of Nicotiana benthamiana. QRT-PCR indicates that SlRBR gene is expressed in closed floral bud tissues 1.7 times higher than in flower tissues, whereas the expression level in unripe fruit tissue is lower by about three times than in flower tissues.

  5. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer.

    PubMed

    Jin, Bilian; Yao, Bing; Li, Jian-Liang; Fields, C Robert; Delmas, Amber L; Liu, Chen; Robertson, Keith D

    2009-09-15

    DNA methylation patterns are established and maintained by three DNA methyltransferases (DNMT): DNMT1, DNMT3A, and DNMT3B. Although essential for development, methylation patterns are frequently disrupted in cancer and contribute directly to carcinogenesis. Recent studies linking polycomb group repression complexes (PRC1 and PRC2) to the DNMTs have begun to shed light on how methylation is targeted. We identified previously a panel of genes regulated by DNMT3B. Here, we compare these with known polycomb group targets to show that approximately 47% of DNMT3B regulated genes are also bound by PRC1 or PRC2. We chose 44 genes coregulated by DNMT3B and PRC1/PRC2 to test whether these criteria would accurately identify novel targets of epigenetic silencing in colon cancer. Using reverse transcription-PCR, bisulfite genomic sequencing, and pyrosequencing, we show that the majority of these genes are frequently silenced in colorectal cancer cell lines and primary tumors. Some of these, including HAND1, HMX2, and SIX3, repressed cell growth. Finally, we analyzed the histone code, DNMT1, DNMT3B, and PRC2 binding by chromatin immunoprecipitation at epigenetically silenced genes to reveal a novel link between DNMT3B and the mark mediated by PRC1. Taken together, these studies suggest that patterns of epigenetic modifiers and the histone code influence the propensity of a gene to become hypermethylated in cancer and that DNMT3B plays an important role in regulating PRC1 function.

  6. Polycomb/Trithorax response elements and epigenetic memory of cell identity.

    PubMed

    Ringrose, Leonie; Paro, Renato

    2007-01-01

    Polycomb/Trithorax group response elements (PRE/TREs) are fascinating chromosomal pieces. Just a few hundred base pairs long, these elements can remember and maintain the active or silent transcriptional state of their associated genes for many cell generations, long after the initial determining activators and repressors have disappeared. Recently, substantial progress has been made towards understanding the nuts and bolts of PRE/TRE function at the molecular level and in experimentally mapping PRE/TRE sites across whole genomes. Here we examine the insights, controversies and new questions that have been generated by this recent flood of data.

  7. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    PubMed Central

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V; Bickmore, Wendy A; Brickman, Joshua M

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver of these coordinated changes, known as lineage priming, in a process that exploits novel polycomb activities. We find that intragenic levels of the polycomb mark H3K27me3 anti-correlate with changes in transcription, irrespective of the gene’s developmental trajectory or identity as a polycomb target. In contrast, promoter proximal H3K27me3 is markedly higher for PrEn priming genes. Consequently, depletion of this modification stimulates the degree to which ESCs are primed towards PrEn when challenged to differentiate, but has little effect on gene expression in self-renewing ESC culture. These observations link polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision. DOI: http://dx.doi.org/10.7554/eLife.14926.001 PMID:27723457

  8. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put

    PubMed Central

    Simon, Jeffrey A.; Kingston, Robert E.

    2013-01-01

    Summary Polycomb repressive complexes are conserved chromatin regulators with key roles in multicellular development, stem cell biology, and cancer. New findings advance molecular understanding of how they target to sites of action, interact with and alter local chromatin to silence genes, and maintain silencing in successive generations of proliferating cells. Chromatin modification by Polycomb proteins provides an essential strategy for gene silencing in higher eukaryotes. Polycomb repressive complexes (PRCs) silence many key developmental regulators and are centrally integrated in the transcriptional circuitry of embryonic and adult stem cells. PRC2 trimethylates histone H3 on lysine-27 (H3-K27me3) and PRC1-type complexes ubiquitylate histone H2A and compact polynucleosomes. How PRCs and these signature activities are deployed to select and silence genomic targets is the subject of intense current investigation. We review recent advances on targeting, modulation, and functions of PRC1 and PRC2, and we consider progress on defining transcriptional steps impacted in Polycomb silencing. Key recent findings demonstrate PRC1 targeting independent of H3-K27me3 and emphasize nonenzymatic PRC1-mediated compaction. We also evaluate expanding connections between Polycomb machinery and non-coding RNAs. Exciting new studies supply the first systematic analyses of what happens to Polycomb complexes, and associated histone modifications, during the wholesale chromatin reorganizations that accompany DNA replication and mitosis. The stage is now set to reveal fundamental epigenetic mechanisms that determine how Polycomb target genes are silenced and how Polycomb silence is preserved through cell cycle progression. PMID:23473600

  9. Contribution of Polycomb Homologues Bmi-1 and Mel-18 to Medulloblastoma Pathogenesis▿ †

    PubMed Central

    Wiederschain, Dmitri; Chen, Lin; Johnson, Brett; Bettano, Kimberly; Jackson, Dowdy; Taraszka, John; Wang, Y. Karen; Jones, Michael D.; Morrissey, Michael; Deeds, James; Mosher, Rebecca; Fordjour, Paul; Lengauer, Christoph; Benson, John D.

    2007-01-01

    Bmi-1 and Mel-18 are structural homologues that belong to the Polycomb group of transcriptional regulators and are believed to stably maintain repression of gene expression by altering the state of chromatin at specific promoters. While a number of clinical and experimental observations have implicated Bmi-1 in human tumorigenesis, the role of Mel-18 in cancer cell growth has not been investigated. We report here that short hairpin RNA-mediated knockdown of either Bmi-1 or Mel-18 in human medulloblastoma DAOY cells results in the inhibition of proliferation, loss of clonogenic survival, anchorage-independent growth, and suppression of tumor formation in nude mice. Furthermore, overexpression of both Bmi-1 and Mel-18 significantly increases the clonogenic survival of Rat1 fibroblasts. In contrast, stable downregulation of Bmi-1 or Mel-18 alone does not affect the growth of normal human WI38 fibroblasts. Proteomics-based characterization of Bmi-1 and Mel-18 protein complexes isolated from cancer cells revealed substantial similarities in their respective compositions. Finally, gene expression analysis identified a number of cancer-relevant pathways that may be controlled by Bmi-1 and Mel-18 and also showed that these Polycomb proteins regulate a set of common gene targets. Taken together, these results suggest that Bmi-1 and Mel-18 may have overlapping functions in cancer cell growth. PMID:17452456

  10. Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis.

    PubMed

    Wiederschain, Dmitri; Chen, Lin; Johnson, Brett; Bettano, Kimberly; Jackson, Dowdy; Taraszka, John; Wang, Y Karen; Jones, Michael D; Morrissey, Michael; Deeds, James; Mosher, Rebecca; Fordjour, Paul; Lengauer, Christoph; Benson, John D

    2007-07-01

    Bmi-1 and Mel-18 are structural homologues that belong to the Polycomb group of transcriptional regulators and are believed to stably maintain repression of gene expression by altering the state of chromatin at specific promoters. While a number of clinical and experimental observations have implicated Bmi-1 in human tumorigenesis, the role of Mel-18 in cancer cell growth has not been investigated. We report here that short hairpin RNA-mediated knockdown of either Bmi-1 or Mel-18 in human medulloblastoma DAOY cells results in the inhibition of proliferation, loss of clonogenic survival, anchorage-independent growth, and suppression of tumor formation in nude mice. Furthermore, overexpression of both Bmi-1 and Mel-18 significantly increases the clonogenic survival of Rat1 fibroblasts. In contrast, stable downregulation of Bmi-1 or Mel-18 alone does not affect the growth of normal human WI38 fibroblasts. Proteomics-based characterization of Bmi-1 and Mel-18 protein complexes isolated from cancer cells revealed substantial similarities in their respective compositions. Finally, gene expression analysis identified a number of cancer-relevant pathways that may be controlled by Bmi-1 and Mel-18 and also showed that these Polycomb proteins regulate a set of common gene targets. Taken together, these results suggest that Bmi-1 and Mel-18 may have overlapping functions in cancer cell growth.

  11. Trithorax group proteins: switching genes on and keeping them active.

    PubMed

    Schuettengruber, Bernd; Martinez, Anne-Marie; Iovino, Nicola; Cavalli, Giacomo

    2011-11-23

    Cellular memory is provided by two counteracting groups of chromatin proteins termed Trithorax group (TrxG) and Polycomb group (PcG) proteins. TrxG proteins activate transcription and are perhaps best known because of the involvement of the TrxG protein MLL in leukaemia. However, in terms of molecular analysis, they have lived in the shadow of their more famous counterparts, the PcG proteins. Recent advances have improved our understanding of TrxG protein function and demonstrated that the heterogeneous group of TrxG proteins is of critical importance in the epigenetic regulation of the cell cycle, senescence, DNA damage and stem cell biology.

  12. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing.

    PubMed

    Tie, Feng; Banerjee, Rakhee; Saiakhova, Alina R; Howard, Benny; Monteith, Kelsey E; Scacheri, Peter C; Cosgrove, Michael S; Harte, Peter J

    2014-03-01

    Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a 'cellular memory' of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trx(Z11) missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trx(Z11) also suppresses the impaired silencing phenotypes of the Pc(3) mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory.

  13. Regulation of the Caenorhabditis elegans posterior Hox gene egl-5 by microRNA and the polycomb-like gene sop-2.

    PubMed

    Zhang, Hongjie; Emmons, Scott W

    2009-03-01

    In Caenorhabditis elegans, the domains of Hox gene expression are controlled by the novel global regulatory gene sop-2. We identified a region located 3' of the Hox gene egl-5 that promotes ectopic expression of an egl-5 reporter gene in a sop-2 mutant. SOP-2 could directly block positive regulatory factors acting in this region, or it could block their expression. We identified three possible miRNA binding sites within the egl-5 3' untranslated region (UTR). Cognate microRNAs are expressed in relevant tissues and can block egl-5 expression when expressed from a transgene. Mutation of the putative binding sites in the egl-5 3'UTR resulted in a modest degree of misexpression of a minimal egl-5 reporter gene, suggesting that microRNAs may contribute to the tight restriction of egl-5 expression to particular cell lineages.

  14. TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana.

    PubMed

    Aquea, Felipe; Johnston, Amal J; Cañon, Paola; Grossniklaus, Ueli; Arce-Johnson, Patricio

    2010-02-01

    Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis.

  15. TRAUCO, a Trithorax-group gene homologue, is required for early embryogenesis in Arabidopsis thaliana

    PubMed Central

    Aquea, Felipe; Johnston, Amal J.; Cañon, Paola; Grossniklaus, Ueli; Arce-Johnson, Patricio

    2010-01-01

    Embryogenesis is a critical stage during the plant life cycle in which a unicellular zygote develops into a multicellular organism. Co-ordinated gene expression is thus necessary for proper embryo development. Polycomb and Trithorax group genes are members of evolutionarily conserved machinery that maintains the correct expression patterns of key developmental regulators by repressing and activating gene transcription. TRAUCO (TRO), a gene homologous to the Trithorax group of genes that can functionally complement a BRE2P yeast mutant, has been identified in Arabidopsis thaliana. It is demonstrated that TRO is a nuclear gene product expressed during embryogenesis, and loss of TRO function leads to impaired early embryo development. Embryos that arrested at the globular stage in the tro-1 mutant allele were fully rescued by a TRO expression clone, a demonstration that the tro-1 mutation is a true loss-of-function in TRO. Our data have established that TRO is the first trithorax-group gene homologue in plants that is required for early embryogenesis. PMID:20118203

  16. New peptides of the polycomb group protein enhancer of zeste homolog 2 with the potential to induce cancer-reactive cytotoxic T lymphocytes in human leukocyte antigen-A2+ prostate cancer patients.

    PubMed

    Itoh, Yukoh; Komohara, Yoshihiro; Komatsu, Nobukazu; Minami, Takafumi; Saito, Koujiro; Noguchi, Masanori; Itoh, Kyogo; Harada, Mamoru

    2007-11-01

    The polycomb group protein enhancer of zeste homolog 2 (EZH2) is linked to aggressive prostate cancer and could be an appropriate target in specific immunotherapy. In this study, we attempted to identify EZH2-derived peptides that have the potential to generate cancer-reactive cytotoxic T lymphocytes (CTLs) in human leukocyte antigen (HLA)-A2+ prostate cancer patients. Twelve EZH2-derived peptides were prepared based on the HLA-A2 binding motif. These peptide candidates were screened first by their ability to be recognized by immunoglobulin G (IgG), and then by their ability to induce peptide-specific cytotoxic T lymphocytes (CTLs). As a result, five EZH2 peptides recognized by IgG (EZH2 120-128, EZH2 165-174, EZH2 569-577, EZH2 665-674, and EZH2 699-708) were frequently detected in the plasma of prostate cancer patients. Among them, the EZH2 120-128 and EZH2 165-174 peptides effectively induced HLA-A2-restricted and cancer-reactive CTLs from prostate cancer patients. The cytotoxicity was mainly dependent on EZH2 peptide-specific and HLA-A2-restricted CD8+ T cells. These results indicate that these EZH2 120-128 and EZH2 165-174 peptides could be promising candidates in peptide-based immunotherapy for HLA-A2+ prostate cancer patients.

  17. Stuxnet Facilitates the Degradation of Polycomb Protein during Development.

    PubMed

    Du, Juan; Zhang, Junzheng; He, Tao; Li, Yajuan; Su, Ying; Tie, Feng; Liu, Min; Harte, Peter J; Zhu, Alan Jian

    2016-06-20

    Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.

  18. Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target

    PubMed Central

    Párraga, Alba Atienza; Enroth, Stefan; Singh, Umashankar; Ungerstedt, Johanna; Österborg, Anders; Brown, Peter J.; Ma, Anqi; Jin, Jian; Nilsson, Kenneth; Öberg, Fredrik; Kalushkova, Antonia; Jernberg-Wiklund, Helena

    2016-01-01

    Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells. Using this epigenome profile, we found increased silencing of H3K27me3 targets in MM patients at advanced stages of the disease, and the expression pattern of H3K27me3-marked genes correlated with poor patient survival. We also demonstrated that pharmacological inhibition of EZH2 had anti-myeloma effects in both MM cell lines and CD138+ MM patient cells. In addition, EZH2 inhibition decreased the global H3K27 methylation and induced apoptosis. Taken together, these data suggest an important role for the Polycomb repressive complex 2 (PRC2) in MM, and highlights the PRC2 component EZH2 as a potential therapeutic target in MM. PMID:26755663

  19. A chromatin insulator driving three-dimensional Polycomb response element (PRE) contacts and Polycomb association with the chromatin fiber

    PubMed Central

    Comet, Itys; Schuettengruber, Bernd; Sexton, Tom; Cavalli, Giacomo

    2011-01-01

    Regulation of gene expression involves long-distance communication between regulatory elements and target promoters, but how this is achieved remains unknown. Insulator elements have been proposed to modulate the communication between regulatory elements and promoters due to their ability to insulate genes from regulatory elements or to take part in long-distance interactions. Using a high-resolution chromatin conformation capture (H3C) method, we show that the Drosophila gypsy insulator behaves as a conformational chromatin border that is able to prohibit contacts between a Polycomb response element (PRE) and a distal promoter. On the other hand, two spaced gypsy elements form a chromatin loop that is able to bring an upstream PRE in contact with a downstream gene to mediate its repression. Chromatin immunoprecipitation (ChIP) profiles of the Polycomb protein and its associated H3K27me3 histone mark reflect this insulator-dependent chromatin conformation, suggesting that Polycomb action at a distance can be organized by local chromatin topology. PMID:21262819

  20. Association of BMI1 with Polycomb Bodies Is Dynamic and Requires PRC2/EZH2 and the Maintenance DNA Methyltransferase DNMT1§

    PubMed Central

    Hernández-Muñoz, Inmaculada; Taghavi, Panthea; Kuijl, Coenraad; Neefjes, Jacques; van Lohuizen, Maarten

    2005-01-01

    Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in heritable gene repression. Two main PcG complexes have been characterized. Polycomb repressive complex 2 (PRC2) is thought to be involved in the initiation of gene silencing, whereas Polycomb repressive complex 1 (PRC1) is implicated in the stable maintenance of gene repression. Here, we investigate the kinetic properties of the binding of one of the PRC1 core components, BMI1, with PcG bodies. PcG bodies are unique nuclear structures located on regions of pericentric heterochromatin, found to be the site of accumulation of PcG complexes in different cell lines. We report the presence of at least two kinetically different pools of BMI1, a highly dynamic and a less dynamic fraction, which may reflect BMI1 pools with different binding capacities to these stable heterochromatin domains. Interestingly, PRC2 members EED and EZH2 appear to be essential for BMI1 recruitment to the PcG bodies. Furthermore, we demonstrate that the maintenance DNA methyltransferase DNMT1 is necessary for proper PcG body assembly independent of DNMT-associated histone deacetylase activity. Together, these results provide new insights in the mechanism for regulation of chromatin silencing by PcG proteins and suggest a highly regulated recruitment of PRC1 to chromatin. PMID:16314526

  1. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1.

    PubMed

    Hernández-Muñoz, Inmaculada; Taghavi, Panthea; Kuijl, Coenraad; Neefjes, Jacques; van Lohuizen, Maarten

    2005-12-01

    Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in heritable gene repression. Two main PcG complexes have been characterized. Polycomb repressive complex 2 (PRC2) is thought to be involved in the initiation of gene silencing, whereas Polycomb repressive complex 1 (PRC1) is implicated in the stable maintenance of gene repression. Here, we investigate the kinetic properties of the binding of one of the PRC1 core components, BMI1, with PcG bodies. PcG bodies are unique nuclear structures located on regions of pericentric heterochromatin, found to be the site of accumulation of PcG complexes in different cell lines. We report the presence of at least two kinetically different pools of BMI1, a highly dynamic and a less dynamic fraction, which may reflect BMI1 pools with different binding capacities to these stable heterochromatin domains. Interestingly, PRC2 members EED and EZH2 appear to be essential for BMI1 recruitment to the PcG bodies. Furthermore, we demonstrate that the maintenance DNA methyltransferase DNMT1 is necessary for proper PcG body assembly independent of DNMT-associated histone deacetylase activity. Together, these results provide new insights in the mechanism for regulation of chromatin silencing by PcG proteins and suggest a highly regulated recruitment of PRC1 to chromatin.

  2. Inheritance of Polycomb-dependent chromosomal interactions in Drosophila

    PubMed Central

    Bantignies, Frédéric; Grimaud, Charlotte; Lavrov, Sergey; Gabut, Mathieu; Cavalli, Giacomo

    2003-01-01

    Maintenance of cell identity is a complex task that involves multiple layers of regulation, acting at all levels of chromatin packaging, from nucleosomes to folding of chromosomal domains in the cell nucleus. Polycomb-group (PcG) and trithorax-group (trxG) proteins maintain memory of chromatin states through binding at cis-regulatory elements named PcG response elements or cellular memory modules. Fab-7 is a well-defined cellular memory module involved in regulation of the homeotic gene Abdominal-B (Abd-B). In addition to its action in cis, we show here by three-dimensional FISH that the Fab-7 element leads to association of transgenes with each other or with the endogenous Fab-7, even when inserted in different chromosomes. These long-distance interactions enhance PcG-mediated silencing. They depend on PcG proteins, on DNA sequence homology, and on developmental progression. Once long-distance pairing is abolished by removal of the endogenous Fab-7, the derepressed chromatin state induced at the transgene locus can be transmitted through meiosis into a large fraction of the progeny, even after reintroduction of the endogenous Fab-7. Strikingly, meiotic inheritance of the derepressed state involves loss of pairing between endogenous and transgenic Fab-7. This suggests that transmission of nuclear architecture through cell division might contribute to inheritance of chromatin states in eukaryotes. PMID:14522946

  3. A Long ncRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy

    PubMed Central

    Cabianca, Daphne S.; Casa, Valentina; Bodega, Beatrice; Xynos, Alexandros; Ginelli, Enrico; Tanaka, Yujiro; Gabellini, Davide

    2012-01-01

    Summary Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors targets D4Z4 in healthy subjects and that D4Z4 deletion is associated with reduced Polycomb silencing in FSHD patients. We identify DBE-T, a chromatin-associated noncoding RNA produced selectively in FSHD patients that coordinates de-repression of 4q35 genes. DBE-T recruits the Trithorax group protein Ash1L to the FSHD locus, driving histone H3 lysine 36 dimethylation, chromatin remodeling, and 4q35 gene transcription. This study provides insights into the biological function of repetitive sequences in regulating gene expression and shows how mutations of such elements can influence the progression of a human genetic disease. PMID:22541069

  4. Role of the polycomb protein EED in the propagation of repressive histone marks.

    PubMed

    Margueron, Raphael; Justin, Neil; Ohno, Katsuhito; Sharpe, Miriam L; Son, Jinsook; Drury, William J; Voigt, Philipp; Martin, Stephen R; Taylor, William R; De Marco, Valeria; Pirrotta, Vincenzo; Reinberg, Danny; Gamblin, Steven J

    2009-10-08

    Polycomb group proteins have an essential role in the epigenetic maintenance of repressive chromatin states. The gene-silencing activity of the Polycomb repressive complex 2 (PRC2) depends on its ability to trimethylate lysine 27 of histone H3 (H3K27) by the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: SUZ12 and EED. Here we show that the carboxy-terminal domain of EED specifically binds to histone tails carrying trimethyl-lysine residues associated with repressive chromatin marks, and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in EED that prevent it from recognizing repressive trimethyl-lysine marks abolish the activation of PRC2 in vitro and, in Drosophila, reduce global methylation and disrupt development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.

  5. Polycomb-Mediated Disruption of an Androgen Receptor Feedback Loop Drives Castration-Resistant Prostate Cancer.

    PubMed

    Fong, Ka-Wing; Zhao, Jonathan C; Kim, Jung; Li, Shangze; Yang, Yeqing A; Song, Bing; Rittie, Laure; Hu, Ming; Yang, Ximing; Perbal, Bernard; Yu, Jindan

    2017-01-15

    The lethal phenotype of castration-resistant prostate cancer (CRPC) is generally caused by augmented signaling from the androgen receptor (AR). Here, we report that the AR-repressed gene CCN3/NOV inhibits AR signaling and acts in a negative feedback loop to block AR function. Mechanistically, a cytoplasmic form of CCN3 interacted with the AR N-terminal domain to sequester AR in the cytoplasm of prostate cancer cells, thereby reducing AR transcriptional activity and inhibiting cell growth. However, constitutive repression of CCN3 by the Polycomb group protein EZH2 disrupted this negative feedback loop in both CRPC and enzalutamide-resistant prostate cancer cells. Notably, restoring CCN3 was sufficient to effectively reduce CPRC cell proliferation in vitro and to abolish xenograft tumor growth in vivo Taken together, our findings establish CCN3 as a pivotal regulator of AR signaling and prostate cancer progression and suggest a functional intersection between Polycomb and AR signaling in CRPC. Cancer Res; 77(2); 412-22. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis.

    PubMed

    Xiao, Jun; Jin, Run; Yu, Xiang; Shen, Max; Wagner, John D; Pai, Armaan; Song, Claire; Zhuang, Michael; Klasfeld, Samantha; He, Chongsheng; Santos, Alexandre M; Helliwell, Chris; Pruneda-Paz, Jose L; Kay, Steve A; Lin, Xiaowei; Cui, Sujuan; Garcia, Meilin Fernandez; Clarenz, Oliver; Goodrich, Justin; Zhang, Xiaoyu; Austin, Ryan S; Bonasio, Roberto; Wagner, Doris

    2017-08-21

    Disruption of gene silencing by Polycomb protein complexes leads to homeotic transformations and altered developmental-phase identity in plants. Here we define short genomic fragments, known as Polycomb response elements (PREs), that direct Polycomb repressive complex 2 (PRC2) placement at developmental genes regulated by silencing in Arabidopsis thaliana. We identify transcription factor families that bind to these PREs, colocalize with PRC2 on chromatin, physically interact with and recruit PRC2, and are required for PRC2-mediated gene silencing in vivo. Two of the cis sequence motifs enriched in the PREs are cognate binding sites for the identified transcription factors and are necessary and sufficient for PRE activity. Thus PRC2 recruitment in Arabidopsis relies in large part on binding of trans-acting factors to cis-localized DNA sequence motifs.

  7. Novel motifs distinguish multiple homologues of Polycomb in vertebrates: expansion and diversification of the epigenetic toolkit

    PubMed Central

    2009-01-01

    Background Polycomb group (PcG) proteins maintain expression pattern of genes set early during development. Although originally isolated as regulators of homeotic genes, PcG members play a key role in epigenetic mechanism that maintains the expression state of a large number of genes. Polycomb (PC) is conserved during evolution and while invertebrates have one PC gene, vertebrates have five or more homologues. It remains unclear if different vertebrate PC homologues have distinct or overlapping functions. We have identified and compared the sequence of PC homologues in various organisms to analyze similarities and differences that shaped the evolutionary history of this key regulatory protein. Results All PC homologues have an N-terminal chromodomain and a C-terminal Polycomb Repressor box. We searched the protein and genome sequence database of various organisms for these signatures and identified ~100 PC homologues. Comparative analysis of these sequences led to the identification of a novel insect specific motif and several novel and signature motifs in the vertebrate homologue: two in CBX2 (Cx2.1 and Cx2.2), four in CBX4 (Cx4.1, Cx4.2, Cx4.3 and Cx4.4), three in CBX6 (Cx6.1, Cx6.2 and Cx6.3) and one in CBX8 (Cx8.1). Additionally, adjacent to the chromodomain, all the vertebrate homologues have a DNA binding motif - AT-Hook in case of CBX2, which was known earlier, and 'AT-Hook Like' motif, from this study, in other PC homologues. Conclusion Our analysis shows that PC is an ancient gene dating back to pre bilaterian origin that has not only been conserved but has also expanded during the evolution of complexity. Unique motifs acquired by each homologue have been maintained for more than 500 millions years indicating their functional relevance in boosting the epigenetic 'tool kit'. We report the presence of a DNA interaction motif adjacent to chromodomain in all vertebrate PC homologues and suggest a three-way 'PC-histoneH3-DNA' interaction that can restrict

  8. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome.

    PubMed

    Schoenfelder, Stefan; Sugar, Robert; Dimond, Andrew; Javierre, Biola-Maria; Armstrong, Harry; Mifsud, Borbala; Dimitrova, Emilia; Matheson, Louise; Tavares-Cadete, Filipe; Furlan-Magaril, Mayra; Segonds-Pichon, Anne; Jurkowski, Wiktor; Wingett, Steven W; Tabbada, Kristina; Andrews, Simon; Herman, Bram; LeProust, Emily; Osborne, Cameron S; Koseki, Haruhiko; Fraser, Peter; Luscombe, Nicholas M; Elderkin, Sarah

    2015-10-01

    The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.

  9. Polycomb protein SCML2 regulates the cell cycle by binding and modulating CDK/CYCLIN/p21 complexes.

    PubMed

    Lecona, Emilio; Rojas, Luis Alejandro; Bonasio, Roberto; Johnston, Andrew; Fernández-Capetillo, Oscar; Reinberg, Danny

    2013-12-01

    Polycomb group (PcG) proteins are transcriptional repressors of genes involved in development and differentiation, and also maintain repression of key genes involved in the cell cycle, indirectly regulating cell proliferation. The human SCML2 gene, a mammalian homologue of the Drosophila PcG protein SCM, encodes two protein isoforms: SCML2A that is bound to chromatin and SCML2B that is predominantly nucleoplasmic. Here, we purified SCML2B and found that it forms a stable complex with CDK/CYCLIN/p21 and p27, enhancing the inhibitory effect of p21/p27. SCML2B participates in the G1/S checkpoint by stabilizing p21 and favoring its interaction with CDK2/CYCE, resulting in decreased kinase activity and inhibited progression through G1. In turn, CDK/CYCLIN complexes phosphorylate SCML2, and the interaction of SCML2B with CDK2 is regulated through the cell cycle. These findings highlight a direct crosstalk between the Polycomb system of cellular memory and the cell-cycle machinery in mammals.

  10. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element.

    PubMed

    van Arensbergen, Joris; Dussaud, Sebastien; Pardanaud-Glavieux, Corinne; García-Hurtado, Javier; Sauty, Claire; Guerci, Aline; Ferrer, Jorge; Ravassard, Philippe

    2017-01-01

    Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive.

  11. A distal intergenic region controls pancreatic endocrine differentiation by acting as a transcriptional enhancer and as a polycomb response element

    PubMed Central

    Pardanaud-Glavieux, Corinne; García-Hurtado, Javier; Sauty, Claire; Guerci, Aline; Ferrer, Jorge

    2017-01-01

    Lineage-selective expression of developmental genes is dependent on the interplay between activating and repressive mechanisms. Gene activation is dependent on cell-specific transcription factors that recognize transcriptional enhancer sequences. Gene repression often depends on the recruitment of Polycomb group (PcG) proteins, although the sequences that underlie the recruitment of PcG proteins, also known as Polycomb response elements (PREs), remain poorly understood in vertebrates. While distal PREs have been identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has not been described. Here we have used a highly efficient procedure based on lentiviral-mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spacio-temporal expression of Neurog3 and demonstrate that this same region serves as a PRE in alternative lineages where Neurog3 is inactive. PMID:28225770

  12. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells.

    PubMed

    Maethner, Emanuel; Garcia-Cuellar, Maria-Paz; Breitinger, Constanze; Takacova, Sylvia; Divoky, Vladimir; Hess, Jay L; Slany, Robert K

    2013-05-30

    Stimulation of transcriptional elongation is a key activity of leukemogenic MLL fusion proteins. Here, we provide evidence that MLL-ENL also inhibits Polycomb-mediated silencing as a prerequisite for efficient transformation. Biochemical studies identified ENL as a scaffold that contacted the elongation machinery as well as the Polycomb repressive complex 1 (PRC1) component CBX8. These interactions were mutually exclusive in vitro, corresponding to an antagonistic behavior of MLL-ENL and CBX8 in vivo. CBX8 inhibited elongation in a specific reporter assay, and this effect was neutralized by direct association with ENL. Correspondingly, CBX8-binding-defective MLL-ENL could not fully activate gene loci necessary for transformation. Finally, we demonstrate dimerization of MLL-ENL as a neomorphic activity that may augment Polycomb inhibition and transformation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells

    PubMed Central

    Maethner, Emanuel; Garcia-Cuellar, Maria-Paz; Breitinger, Constanze; Takacova, Sylvia; Divoky, Vladimir; Hess, Jay L.; Slany, Robert K.

    2014-01-01

    Summary Stimulation of transcriptional elongation is a key activity of leukemogenic MLL fusion proteins. Here we provide evidence that MLL-ENL also inhibits polycomb-mediated silencing as a prerequisite for efficient transformation. Biochemical studies identified ENL as scaffold that contacted the elongation machinery as well as the PRC1 (polycomb repressive complex 1) component CBX8. These interactions were mutually exclusive in vitro corresponding to an antagonistic behavior of MLL-ENL and CBX8 in vivo. CBX8 inhibited elongation in a specific reporter assay and this effect was neutralized by direct association with ENL. Correspondingly MLL-ENL defective in CBX8 binding could not fully activate gene loci necessary for transformation. Finally, we demonstrate dimerization of MLL-ENL as neomorphic activity that may augment polycomb inhibition and transformation. PMID:23623499

  14. CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing

    PubMed Central

    Tie, Feng; Banerjee, Rakhee; Stratton, Carl A.; Prasad-Sinha, Jayashree; Stepanik, Vincent; Zlobin, Andrei; Diaz, Manuel O.; Scacheri, Peter C.; Harte, Peter J.

    2009-01-01

    Summary Trimethylation of histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) is essential for transcriptional silencing of Polycomb target genes, whereas acetylation of H3K27 (H3K27ac) has recently been shown to be associated with many active mammalian genes. The Trithorax protein (TRX), which associates with the histone acetyltransferase CBP, is required for maintenance of transcriptionally active states and antagonizes Polycomb silencing, although the mechanism underlying this antagonism is unknown. Here we show that H3K27 is specifically acetylated by Drosophila CBP and its deacetylation involves RPD3. H3K27ac is present at high levels in early embryos and declines after 4 hours as H3K27me3 increases. Knockdown of E(Z) decreases H3K27me3 and increases H3K27ac in bulk histones and at the promoter of the repressed Polycomb target gene abd-A, suggesting that these indeed constitute alternative modifications at some H3K27 sites. Moderate overexpression of CBP in vivo causes a global increase in H3K27ac and a decrease in H3K27me3, and strongly enhances Polycomb mutant phenotypes. We also show that TRX is required for H3K27 acetylation. TRX overexpression also causes an increase in H3K27ac and a concomitant decrease in H3K27me3 and leads to defects in Polycomb silencing. Chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) analysis reveals that H3K27ac and H3K27me3 are mutually exclusive and that H3K27ac and H3K4me3 signals coincide at most sites. We propose that TRX-dependent acetylation of H3K27 by CBP prevents H3K27me3 at Polycomb target genes and constitutes a key part of the molecular mechanism by which TRX antagonizes or prevents Polycomb silencing. PMID:19700617

  15. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis.

    PubMed

    Picó, Sara; Ortiz-Marchena, M Isabel; Merini, Wiam; Calonje, Myriam

    2015-08-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome.

  16. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis1

    PubMed Central

    Picó, Sara; Merini, Wiam

    2015-01-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. PMID:25897002

  17. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells.

    PubMed

    Sun, Bo; Looi, Liang-Sheng; Guo, Siyi; He, Zemiao; Gan, Eng-Seng; Huang, Jiangbo; Xu, Yifeng; Wee, Wan-Yi; Ito, Toshiro

    2014-01-31

    Plant floral stem cells divide a limited number of times before they stop and terminally differentiate, but the mechanisms that control this timing remain unclear. The precise temporal induction of the Arabidopsis zinc finger repressor KNUCKLES (KNU) is essential for the coordinated growth and differentiation of floral stem cells. We identify an epigenetic mechanism in which the floral homeotic protein AGAMOUS (AG) induces KNU at ~2 days of delay. AG binding sites colocalize with a Polycomb response element in the KNU upstream region. AG binding to the KNU promoter causes the eviction of the Polycomb group proteins from the locus, leading to cell division-dependent induction. These analyses demonstrate that floral stem cells measure developmental timing by a division-dependent epigenetic timer triggered by Polycomb eviction.

  18. A positive role for polycomb in transcriptional regulation via H4K20me1.

    PubMed

    Lv, Xiangdong; Han, Zhijun; Chen, Hao; Yang, Bo; Yang, Xiaofeng; Xia, Yuanxin; Pan, Chenyu; Fu, Lin; Zhang, Shuo; Han, Hui; Wu, Min; Zhou, Zhaocai; Zhang, Lei; Li, Lin; Wei, Gang; Zhao, Yun

    2016-05-01

    The highly conserved polycomb group (PcG) proteins maintain heritable transcription repression of the genes essential for development from fly to mammals. However, sporadic reports imply a potential role of PcGs in positive regulation of gene transcription, although systematic investigation of such function and the underlying mechanism has rarely been reported. Here, we report a Pc-mediated, H3K27me3-dependent positive transcriptional regulation of Senseless (Sens), a key transcription factor required for development. Mechanistic studies show that Pc regulates Sens expression by promoting H4K20me1 at the Sens locus. Further bioinformatic analysis at genome-wide level indicates that the existence of H4K20me1 acts as a selective mark for positive transcriptional regulation by Pc/H3K27me3. Both the intensities and specific patterns of Pc and H3K27me3 are important for the fates of target gene transcription. Moreover, binding of transcription factor Broad (Br), which physically interacts with Pc and positively regulates the transcription of Sens, is observed in Pc(+)H3K27me3(+)H4K20me1(+) genes, but not in Pc(+)H3K27me3(+)H4K20me1(-) genes. Taken together, our study reveals that, coupling with the transcription factor Br, Pc positively regulates transcription of Pc(+)H3K27me3(+)H4K20me1(+) genes in developing Drosophila wing disc.

  19. Promiscuous RNA binding by Polycomb Repressive Complex 2

    PubMed Central

    Davidovich, Chen; Zheng, Leon; Goodrich, Karen J.; Cech, Thomas R.

    2013-01-01

    Polycomb repressive complex-2 (PRC2) is a histone methyltransferase required for epigenetic silencing during development and cancer. Long non-coding RNAs (lncRNAs) recruit PRC2 to chromatin, but the general role of RNA in maintaining repressed chromatin is unknown. Here we measure the binding constant of human PRC2 to various RNAs and find comparable affinity for human lncRNAs targeted by PRC2 and irrelevant transcripts from ciliates and bacteria. PRC2 binding is size-dependent, with lower affinity for shorter RNAs. In vivo, PRC2 predominantly occupies repressed genes; PRC2 is also associated with active genes, but most of these are not regulated by PRC2. These findings support a model in which promiscuous binding of PRC2 to RNA transcripts allows it to scan for target genes that have escaped repression, leading to maintenance of the repressed state. Such RNAs may also provide a decoy for PRC2. PMID:24077223

  20. The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants

    USDA-ARS?s Scientific Manuscript database

    During development, trithorax group (trxG) chromatin remodeling complexes counteract repression by Polycomb group (PcG) complexes to sustain active expression of key regulatory genes. Although PcG complexes are well characterized in plants, little is known about trxG activities. Here we demonstrate ...

  1. Polycomb function during oogenesis is required for mouse embryonic development

    PubMed Central

    Posfai, Eszter; Kunzmann, Rico; Brochard, Vincent; Salvaing, Juliette; Cabuy, Erik; Roloff, Tim C.; Liu, Zichuan; Tardat, Mathieu; van Lohuizen, Maarten; Vidal, Miguel; Beaujean, Nathalie; Peters, Antoine H.F.M.

    2012-01-01

    In mammals, totipotent embryos are formed by fusion of highly differentiated gametes. Acquisition of totipotency concurs with chromatin remodeling of parental genomes, changes in the maternal transcriptome and proteome, and zygotic genome activation (ZGA). The inefficiency of reprogramming somatic nuclei in reproductive cloning suggests that intergenerational inheritance of germline chromatin contributes to developmental proficiency after natural conception. Here we show that Ring1 and Rnf2, components of Polycomb-repressive complex 1 (PRC1), serve redundant transcriptional functions during oogenesis that are essential for proper ZGA, replication and cell cycle progression in early embryos, and development beyond the two-cell stage. Exchange of chromosomes between control and Ring1/Rnf2-deficient metaphase II oocytes reveal cytoplasmic and chromosome-based contributions by PRC1 to embryonic development. Our results strongly support a model in which Polycomb acts in the female germline to establish developmental competence for the following generation by silencing differentiation-inducing genes and defining appropriate chromatin states. PMID:22499591

  2. Genome-Wide Ultrabithorax Binding Analysis Reveals Highly Targeted Genomic Loci at Developmental Regulators and a Potential Connection to Polycomb-Mediated Regulation

    PubMed Central

    Meireles-Filho, Antonio C. A.; Pagani, Michaela; Stark, Alexander

    2016-01-01

    Hox homeodomain transcription factors are key regulators of animal development. They specify the identity of segments along the anterior-posterior body axis in metazoans by controlling the expression of diverse downstream targets, including transcription factors and signaling pathway components. The Drosophila melanogaster Hox factor Ultrabithorax (Ubx) directs the development of thoracic and abdominal segments and appendages, and loss of Ubx function can lead for example to the transformation of third thoracic segment appendages (e.g. halters) into second thoracic segment appendages (e.g. wings), resulting in a characteristic four-wing phenotype. Here we present a Drosophila melanogaster strain with a V5-epitope tagged Ubx allele, which we employed to obtain a high quality genome-wide map of Ubx binding sites using ChIP-seq. We confirm the sensitivity of the V5 ChIP-seq by recovering 7/8 of well-studied Ubx-dependent cis-regulatory regions. Moreover, we show that Ubx binding is predictive of enhancer activity as suggested by comparison with a genome-scale resource of in vivo tested enhancer candidates. We observed densely clustered Ubx binding sites at 12 extended genomic loci that included ANTP-C, BX-C, Polycomb complex genes, and other regulators and the clustered binding sites were frequently active enhancers. Furthermore, Ubx binding was detected at known Polycomb response elements (PREs) and was associated with significant enrichments of Pc and Pho ChIP signals in contrast to binding sites of other developmental TFs. Together, our results show that Ubx targets developmental regulators via strongly clustered binding sites and allow us to hypothesize that regulation by Ubx might involve Polycomb group proteins to maintain specific regulatory states in cooperative or mutually exclusive fashion, an attractive model that combines two groups of proteins with prominent gene regulatory roles during animal development. PMID:27575958

  3. Epigenetics of T cells regulated by Polycomb/Trithorax molecules.

    PubMed

    Onodera, Atsushi; Nakayama, Toshinori

    2015-05-01

    Epigenetics provides a bridge between genetic and environmental factors, and can change the transcriptional outcome of a gene without changing the genomic sequence. Allergies and autoimmune diseases are caused by both of these factors, and dynamic changes in epigenetic marks have been reported in T cells, which are key players in the pathogenesis of immune-mediated diseases. Advances in technology, including gene knockout systems and high-throughput sequencing, have significantly enhanced the understanding of the lifespan of T cells, including maturation, differentiation and memory formation. In this review, we focus on Polycomb and Trithorax proteins, well-characterized epigenetic modulators, and discuss their role in the epigenetic regulation of T cell differentiation and function.

  4. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome

    PubMed Central

    Mifsud, Borbala; Dimitrova, Emilia; Matheson, Louise; Tavares-Cadete, Filipe; Furlan-Magaril, Mayra; Segonds-Pichon, Anne; Jurkowski, Wiktor; Wingett, Steven W.; Tabbada, Kristina; Andrews, Simon; Herman, Bram; LeProust, Emily; Osborne, Cameron S.; Koseki, Haruhiko; Fraser, Peter; Luscombe, Nicholas M.; Elderkin, Sarah

    2016-01-01

    The Polycomb Repressive Complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes1. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organisation2–9. We show that PRC1 functions as a master regulator of ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox network. In contrast, promoter-enhancer contacts are maintained, accompanied by widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional up-regulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that selective release of genes from this spatial network underlies cell fate specification during early embryonic development. PMID:26323060

  5. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs1

    PubMed Central

    Hecker, Andreas; Brand, Luise H.; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Gaudin, Valérie

    2015-01-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein BASIC PENTACYSTEINE6 (BPC6) interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a PRC1 component, and associates with VERNALIZATION2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. PMID:26025051

  6. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs

    PubMed Central

    Tzatsos, Alexandros; Paskaleva, Polina; Ferrari, Francesco; Deshpande, Vikram; Stoykova, Svetlana; Contino, Gianmarco; Wong, Kwok-Kin; Lan, Fei; Trojer, Patrick; Park, Peter J.; Bardeesy, Nabeel

    2013-01-01

    Epigenetic mechanisms mediate heritable control of cell identity in normal cells and cancer. We sought to identify epigenetic regulators driving the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal human cancers. We found that KDM2B (also known as Ndy1, FBXL10, and JHDM1B), an H3K36 histone demethylase implicated in bypass of cellular senescence and somatic cell reprogramming, is markedly overexpressed in human PDAC, with levels increasing with disease grade and stage, and highest expression in metastases. KDM2B silencing abrogated tumorigenicity of PDAC cell lines exhibiting loss of epithelial differentiation, whereas KDM2B overexpression cooperated with KrasG12D to promote PDAC formation in mouse models. Gain- and loss-of-function experiments coupled to genome-wide gene expression and ChIP studies revealed that KDM2B drives tumorigenicity through 2 different transcriptional mechanisms. KDM2B repressed developmental genes through cobinding with Polycomb group (PcG) proteins at transcriptional start sites, whereas it activated a module of metabolic genes, including mediators of protein synthesis and mitochondrial function, cobound by the MYC oncogene and the histone demethylase KDM5A. These results defined epigenetic programs through which KDM2B subverts cellular differentiation and drives the pathogenesis of an aggressive subset of PDAC. PMID:23321669

  7. REST–Mediated Recruitment of Polycomb Repressor Complexes in Mammalian Cells

    PubMed Central

    Landt, Eskild; Agrawal-Singh, Shuchi; Bak, Mads; Tommerup, Niels; Rappsilber, Juri; Södersten, Erik; Hansen, Klaus

    2012-01-01

    Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest−/− and Eed−/− mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest−/− mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands. PMID:22396653

  8. Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs

    PubMed Central

    Grijzenhout, Anne; Godwin, Jonathan; Koseki, Haruhiko; Gdula, Michal Ryszard; Szumska, Dorota; McGouran, Joanna F.; Bhattacharya, Shoumo; Kessler, Benedikt M.; Brockdorff, Neil

    2016-01-01

    The Polycomb repressive complexes PRC1 and PRC2 are key mediators of heritable gene silencing in multicellular organisms. Here, we characterise AEBP2, a known PRC2 co-factor which, in vitro, has been shown to stimulate PRC2 activity. We show that AEBP2 localises specifically to PRC2 target loci, including the inactive X chromosome. Proteomic analysis confirms that AEBP2 associates exclusively with PRC2 complexes. However, analysis of embryos homozygous for a targeted mutation of Aebp2 unexpectedly revealed a Trithorax phenotype, normally linked to antagonism of Polycomb function. Consistent with this, we observe elevated levels of PRC2-mediated histone H3K27 methylation at target loci in Aebp2 mutant embryonic stem cells (ESCs). We further demonstrate that mutant ESCs assemble atypical hybrid PRC2 subcomplexes, potentially accounting for enhancement of Polycomb activity, and suggesting that AEBP2 normally plays a role in defining the mutually exclusive composition of PRC2 subcomplexes. PMID:27317809

  9. Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea ‘Origami’

    PubMed Central

    2013-01-01

    Background Epigenetic regulation is necessary for maintaining gene expression patterns in multicellular organisms. The Polycomb Group (PcG) proteins form several complexes with important and deeply conserved epigenetic functions in both the plant and animal kingdoms. One such complex, the Polycomb Repressive Complex 2 (PRC2), is critical to many developmental processes in plants including the regulation of major developmental transitions. In addition, PRC2 restricts the expression domain of various transcription factor families in Arabidopsis, including the class I KNOX genes and several of the ABCE class MADS box genes. While the functions of these transcription factors are known to be deeply conserved, whether or not their regulation by PRC2 is similarly conserved remains an open question. Results Here we use virus-induced gene silencing (VIGS) to characterize the function of the PRC2 complex in lateral organ development of Aquilegia x coerulea ‘Origami’, a member of the lower eudicot order Ranunculales. Leaves with PRC2 down-regulation displayed a range of phenotypes including ruffled or curled laminae, additional lobing, and an increased frequency of higher order branching. Sepals and petals were also affected, being narrowed, distorted, or, in the case of the sepals, exhibiting partial homeotic transformation. Many of the petal limbs also had a particularly intense yellow coloration due to an accumulation of carotenoid pigments. We show that the A. x coerulea floral MADS box genes AGAMOUS1 (AqAG1), APETALA3-3 (AqAP3-3) and SEPALLATA3 (AqSEP3) are up-regulated in many tissues, while expression of the class I KNOX genes and several candidate genes involved in carotenoid production or degradation are largely unaffected. Conclusions PRC2 targeting of several floral MADS box genes may be conserved in dicots, but other known targets do not appear to be. In the case of the type I KNOX genes, this may reflect a regulatory shift associated with the evolution of

  10. Corepressor protein CDYL functions as a molecular bridge between polycomb repressor complex 2 and repressive chromatin mark trimethylated histone lysine 27.

    PubMed

    Zhang, Yu; Yang, Xiaohan; Gui, Bin; Xie, Guojia; Zhang, Di; Shang, Yongfeng; Liang, Jing

    2011-12-09

    Polycomb group proteins play essential roles in transcriptional regulation of multiple gene families involved in various pathophysiological processes. It is believed that Polycomb Repressive Complex 2 (PRC2) is targeted to chromatin by the EED subunit to methylate histone H3 lysine 27 (H3K27), leading to a repressive chromatin state that inhibits gene expression. Here we report that the chromodomain-containing protein CDYL specifically recognizes di- and tri-methylated H3K27 (H3K27me2 and H3K27me3) and directly interacts with EZH2, the catalytic subunit of PRC2. We show that CDYL dramatically enhances the methyltransferase activity of PRC2 toward oligonucleosome substrates in vitro. Genome-wide analysis of CDYL targets by ChIP sequencing revealed that CDYL and PRC2 share a number of genomic targets. CDYL is required for chromatin targeting and maximal enzymatic activity of PRC2 at their common target sites. Our experiments indicate that CDYL functions as a molecular bridge between PRC2 and the repressive chromatin mark H3K27me3, forming a positive feedback loop to facilitate the establishment and propagation of H3K27me3 modifications along the chromatin.

  11. Corepressor Protein CDYL Functions as a Molecular Bridge between Polycomb Repressor Complex 2 and Repressive Chromatin Mark Trimethylated Histone Lysine 27*

    PubMed Central

    Zhang, Yu; Yang, Xiaohan; Gui, Bin; Xie, Guojia; Zhang, Di; Shang, Yongfeng; Liang, Jing

    2011-01-01

    Polycomb group proteins play essential roles in transcriptional regulation of multiple gene families involved in various pathophysiological processes. It is believed that Polycomb Repressive Complex 2 (PRC2) is targeted to chromatin by the EED subunit to methylate histone H3 lysine 27 (H3K27), leading to a repressive chromatin state that inhibits gene expression. Here we report that the chromodomain-containing protein CDYL specifically recognizes di- and tri-methylated H3K27 (H3K27me2 and H3K27me3) and directly interacts with EZH2, the catalytic subunit of PRC2. We show that CDYL dramatically enhances the methyltransferase activity of PRC2 toward oligonucleosome substrates in vitro. Genome-wide analysis of CDYL targets by ChIP sequencing revealed that CDYL and PRC2 share a number of genomic targets. CDYL is required for chromatin targeting and maximal enzymatic activity of PRC2 at their common target sites. Our experiments indicate that CDYL functions as a molecular bridge between PRC2 and the repressive chromatin mark H3K27me3, forming a positive feedback loop to facilitate the establishment and propagation of H3K27me3 modifications along the chromatin. PMID:22009739

  12. Mitogen-activated Protein Kinase Signaling Mediates Phosphorylation of Polycomb Ortholog Cbx7*

    PubMed Central

    Wu, Hsan-au; Balsbaugh, Jeremy L.; Chandler, Hollie; Georgilis, Athena; Zullow, Hayley; Shabanowitz, Jeffrey; Hunt, Donald F.; Gil, Jesus; Peters, Gordon; Bernstein, Emily

    2013-01-01

    Cbx7 is one of five mammalian orthologs of the Drosophila Polycomb. Cbx7 recognizes methylated lysine residues on the histone H3 tail and contributes to gene silencing in the context of the Polycomb repressive complex 1 (PRC1). However, our knowledge of Cbx7 post-translational modifications remains limited. Through combined biochemical and mass spectrometry approaches, we report a novel phosphorylation site on mouse Cbx7 at residue Thr-118 (Cbx7T118ph), near the highly conserved Polycomb box. The generation of a site-specific antibody to Cbx7T118ph demonstrates that Cbx7 is phosphorylated via MAPK signaling. Furthermore, we find Cbx7T118 phosphorylation in murine mammary carcinoma cells, which can be blocked by MEK inhibitors. Upon EGF stimulation, Cbx7 interacts robustly with other members of PRC1. To test the role of Cbx7T118 phosphorylation in gene silencing, we employed a RAS-induced senescence model system. We demonstrate that Cbx7T118 phosphorylation moderately enhances repression of its target gene p16. In summary, we have identified and characterized a novel MAPK-mediated phosphorylation site on Cbx7 and propose that mitogen signaling to the chromatin template regulates PRC1 function. PMID:24194518

  13. A Polycomb and Gaga Dependent Silencer Adjoins the Fab-7 Boundary in the Drosophila Bithorax Complex

    PubMed Central

    Hagstrom, K.; Muller, M.; Schedl, P.

    1997-01-01

    The homeotic genes of the Drosophila bithorax complex are controlled by a large cis-regulatory region that ensures their segmentally restricted pattern of expression. A deletion that removes the Frontabdominal-7 cis-regulatory region (Fab-7(1)) dominantly transforms parasegment 11 into parasegment 12. Previous studies suggested that removal of a domain boundary element on the proximal side of Fab-7(1) is responsible for this gain-of-function phenotype. In this article we demonstrate that the Fab-7(1) deletion also removes a silencer element, the iab-7 PRE, which maps to a different DNA segment and plays a different role in regulating parasegment-specific expression patterns of the Abd-B gene. The iab-7 PRE mediates pairing-sensitive silencing of mini-white, and can maintain the segmentally restricted expression pattern of a BXD, Ubx/lacZ reporter transgene. Both silencing activities depend upon Polycomb Group proteins. Pairing-sensitive silencing is relieved by removing the transvection protein Zeste, but is enhanced in a novel pairing-independent manner by the zeste(1) allele. The iab-7 PRE silencer is contained within a 0.8-kb fragment that spans a nuclease hypersensitive site, and silencing appears to depend on the chromatin remodeling protein, the GAGA factor. PMID:9258680

  14. Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain

    PubMed Central

    Tie, Feng; Banerjee, Rakhee; Fu, Chen; Stratton, Carl A.; Fang, Ming; Harte, Peter J.

    2016-01-01

    Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity. We identify a conserved PC motif adjacent to the chromodomain required for CBP binding and show that PC binding inhibits acetylation of histone H3. CBP autoacetylation impairs PC binding in vitro, and PC is preferentially associated with unacetylated CBP in vivo. PC knockdown elevates the acetylated H3K27 (H3K27ac) level globally and at promoter regions of some genes that are bound by both PC and CBP. Conversely, PC overexpression decreases the H3K27ac level in vivo and also suppresses CBP-dependent Polycomb phenotypes caused by overexpression of Trithorax, an antagonist of Polycomb silencing. We find that PC is physically associated with the initiating form of RNA polymerase II (Pol II) and that many promoters co-occupied by PC and CBP are associated with paused Pol II, suggesting that PC may play a role in Pol II pausing. These results suggest that PC/PRC1 inhibition of CBP HAT activity plays a role in regulating transcription of both repressed and active PC-regulated genes. PMID:26802126

  15. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia

    PubMed Central

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-01-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ∼1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10−11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10−4), excitability (P=9.0 × 10−4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10−3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

  16. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia.

    PubMed

    Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

    2012-10-01

    Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ~1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10(-4)), excitability (P=9.0 × 10(-4)) and cell adhesion and trans-synaptic signaling (P=2.4 × 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia.

  17. A positive role for polycomb in transcriptional regulation via H4K20me1

    PubMed Central

    Lv, Xiangdong; Han, Zhijun; Chen, Hao; Yang, Bo; Yang, Xiaofeng; Xia, Yuanxin; Pan, Chenyu; Fu, Lin; Zhang, Shuo; Han, Hui; Wu, Min; Zhou, Zhaocai; Zhang, Lei; Li, Lin; Wei, Gang; Zhao, Yun

    2016-01-01

    The highly conserved polycomb group (PcG) proteins maintain heritable transcription repression of the genes essential for development from fly to mammals. However, sporadic reports imply a potential role of PcGs in positive regulation of gene transcription, although systematic investigation of such function and the underlying mechanism has rarely been reported. Here, we report a Pc-mediated, H3K27me3-dependent positive transcriptional regulation of Senseless (Sens), a key transcription factor required for development. Mechanistic studies show that Pc regulates Sens expression by promoting H4K20me1 at the Sens locus. Further bioinformatic analysis at genome-wide level indicates that the existence of H4K20me1 acts as a selective mark for positive transcriptional regulation by Pc/H3K27me3. Both the intensities and specific patterns of Pc and H3K27me3 are important for the fates of target gene transcription. Moreover, binding of transcription factor Broad (Br), which physically interacts with Pc and positively regulates the transcription of Sens, is observed in Pc+H3K27me3+H4K20me1+ genes, but not in Pc+H3K27me3+H4K20me1− genes. Taken together, our study reveals that, coupling with the transcription factor Br, Pc positively regulates transcription of Pc+H3K27me3+H4K20me1+ genes in developing Drosophila wing disc. PMID:27002220

  18. Targeting of Polycomb Repressive Complex 2 to RNA by Short Repeats of Consecutive Guanines.

    PubMed

    Wang, Xueyin; Goodrich, Karen J; Gooding, Anne R; Naeem, Haroon; Archer, Stuart; Paucek, Richard D; Youmans, Daniel T; Cech, Thomas R; Davidovich, Chen

    2017-03-16

    Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that trimethylates H3K27, a mark of repressed chromatin. Mammalian PRC2 binds RNA promiscuously, with thousands of target transcripts in vivo. But what does PRC2 recognize in these RNAs? Here we show that purified human PRC2 recognizes G > C,U ≫ A in single-stranded RNA and has a high affinity for folded guanine quadruplex (G4) structures but little binding to duplex RNAs. Importantly, G-tract motifs are significantly enriched among PRC2-binding transcripts in vivo. DNA sequences coding for PRC2-binding RNA motifs are enriched at PRC2-binding sites on chromatin and H3K27me3-modified nucleosomes. Collectively, the abundance of PRC2-binding RNA motifs rationalizes the promiscuous RNA binding of PRC2, and their enrichment at Polycomb target genes provides a means for RNA-mediated regulation.

  19. Possible roles for polycomb repressive complex 2 in cereal endosperm

    PubMed Central

    Tonosaki, Kaoru; Kinoshita, Tetsu

    2015-01-01

    The polycomb repressive complex 2 (PRC2) is an evolutionarily conserved multimeric protein complex in both plants and animals. In contrast to animals, plants have evolved a range of different components of PRC2 and form diverse complexes that act in the control of key regulatory genes at many stages of development during the life cycle. A number of studies, particularly in the model species Arabidopsis thaliana, have highlighted the role of PRC2 and of epigenetic controls via parent-of-origin specific gene expression for endosperm development. However, recent research in cereal plants has revealed that although some components of PRC2 show evolutionary conservation with respect to parent-of-origin specific gene expression patterns, the identity of the imprinted genes encoding PRC2 components is not conserved. This disparity may reflect the facts that cereal plant genomes have undergone different patterns of duplication during evolution compared to A. thaliana and that the endosperm development program is not identical in monocots and eudicots. In this context, we focus this review on the expression of imprinted PRC2 genes and their roles in endosperm development in cereals. PMID:25814998

  20. Polycomb silencing: from linear chromatin domains to 3D chromosome folding.

    PubMed

    Cheutin, Thierry; Cavalli, Giacomo

    2014-04-01

    Polycomb group (PcG) proteins are conserved chromatin factors that regulate key developmental genes. Genome wide studies have shown that PcG proteins and their associated H3K27me3 histone mark cover long genomic domains. PcG proteins and H3K27me3 accumulate in Pc nuclear foci, which are the cellular counterparts of genomic domains silenced by PcG proteins. One explanation for how large genomic domains form nuclear foci may rely on loops occurring between specific elements located within domains. However, recent improvement of the chromosome conformation capture (3C) technology, which allowed monitoring genome wide contacts depicts a more complex picture in which chromosomes are composed of many topologically associating domains (TADs). Chromatin regions marked with H3K27me3 correspond to one class of TADs and PcG proteins participate in long-range interactions of H3K27me3 TADs, whereas insulator proteins seem to be important for separating TADs and may also participate in the regulation of intra TAD architecture. Recent data converge to suggest that this hierarchical organization of chromosome domains plays an important role in genome function during cell proliferation and differentiation.

  1. A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations

    PubMed Central

    Tiwari, Vijay K.; Cope, Leslie; McGarvey, Kelly M.; Ohm, Joyce E.; Baylin, Stephen B.

    2008-01-01

    We describe construction of a novel modification, “6C,” of chromatin looping assays that allows specific proteins that may mediate long-range chromatin interactions to be defined. This approach combines the standard looping approaches previously defined with an immunoprecipitation step to investigate involvement of the specific protein. The efficacy of this approach is demonstrated by using a Polycomb group (PcG) protein, Enhancer of Zeste (EZH2), as an example of how our assay might be used. EZH2, as a protein of the PcG complex, PRC2, has an important role in the propagation of epigenetic memory through deposition of the repressive mark, histone H3, lysine 27, tri-methylation (H3K27me3). Using our new 6C assay, we show how EZH2 is a direct mediator of long-range intra- and interchromosomal interactions that can regulate transcriptional down-regulation of multiple genes by facilitating physical proximities between distant chromatin regions, thus targeting sites within to PcG machinery. PMID:18502945

  2. Polycomb repression in the regulation of growth and development in Arabidopsis.

    PubMed

    Xiao, Jun; Wagner, Doris

    2015-02-01

    Chromatin state is critical for cell identity and development in multicellular eukaryotes. Among the regulators of chromatin state, Polycomb group (PcG) proteins stand out because of their role in both establishment and maintenance of cell identity. PcG proteins act in two major complexes in metazoans and plants. These complexes function to epigenetically-in a mitotically heritable manner-prevent expression of important developmental regulators at the wrong stage of development or in the wrong tissue. In Arabidopsis, PcG function is required throughout the life cycle from seed germination to embryo formation. Recent studies have expanded our knowledge regarding the biological roles and the regulation of the activity of PcG complexes. In this review, we discuss novel functions of Polycomb repression in plant development as well as advances in understanding PcG complex recruitment, activity regulation and removal in Arabidopsis and other plant species.

  3. A cellular chemical probe targeting the chromodomains of Polycomb Repressive Complex 1

    PubMed Central

    Stuckey, Jacob I; Dickson, Bradley M; Cheng, Nancy; Liu, Yanli; Norris, Jacqueline L; Cholensky, Stephanie H; Tempel, Wolfram; Qin, Su; Huber, Katherine G; Sagum, Cari; Black, Karynne; Li, Fengling; Huang, Xi-Ping; Roth, Bryan L; Baughman, Brandi M; Senisterra, Guillermo; Pattenden, Samantha G; Vedadi, Masoud; Brown, Peter J; Bedford, Mark T; Min, Jinrong; Arrowsmith, Cheryl H

    2015-01-01

    We report the design and characterization of UNC3866, a potent antagonist of the methyl-lysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb Repressive Complex 1 to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently with a Kd of ∼100 nM for each, and is 6- to 18-fold selective versus seven other CBX and CDY chromodomains while being highly selective versus >250 other protein targets. X-ray crystallography revealed that UNC3866 closely mimics the interactions of the methylated H3 tail with these chromodomains. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform-dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, a known CBX7 phenotype, while UNC4219, a methylated negative control compound, has negligible effects. PMID:26807715

  4. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma

    PubMed Central

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D.; Schlecht, Nicolas F.; Einstein, Mark H.; Greally, John M.

    2016-01-01

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors. PMID:27557505

  5. Polycomb- and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype

    PubMed Central

    McGann, James C; Oyer, Jon A; Garg, Saurabh; Yao, Huilan; Liu, Jun; Feng, Xin; Liao, Lujian; Yates, John R; Mandel, Gail

    2014-01-01

    The bivalent hypothesis posits that genes encoding developmental regulators required for early lineage decisions are poised in stem/progenitor cells by the balance between a repressor histone modification (H3K27me3), mediated by the Polycomb Repressor Complex 2 (PRC2), and an activator modification (H3K4me3). In this study, we test whether this mechanism applies equally to genes that are not required until terminal differentiation. We focus on the RE1 Silencing Transcription Factor (REST) because it is expressed highly in stem cells and is an established global repressor of terminal neuronal genes. Elucidation of the REST complex, and comparison of chromatin marks and gene expression levels in control and REST-deficient stem cells, shows that REST target genes are poised by a mechanism independent of Polycomb, even at promoters which bear the H3K27me3 mark. Specifically, genes under REST control are actively repressed in stem cells by a balance of the H3K4me3 mark and a repressor complex that relies on histone deacetylase activity. Thus, chromatin distinctions between pro-neural and terminal neuronal genes are established at the embryonic stem cell stage by two parallel, but distinct, repressor pathways. DOI: http://dx.doi.org/10.7554/eLife.04235.001 PMID:25250711

  6. Transcriptional Regulation by Trithorax-Group Proteins

    PubMed Central

    Kingston, Robert E.; Tamkun, John W.

    2014-01-01

    The trithorax group of genes (trxG) was identified in mutational screens that examined developmental phenotypes and suppression of Polycomb mutant phenotypes. The protein products of these genes are primarily involved in gene activation, although some can also have repressive effects. There is no central function for these proteins. Some move nucleosomes about on the genome in an ATP-dependent manner, some covalently modify histones such as methylating lysine 4 of histone H3, and some directly interact with the transcription machinery or are a part of that machinery. It is interesting to consider why these specific members of large families of functionally related proteins have strong developmental phenotypes. PMID:25274705

  7. Gene for ataxia-telangiectasia complementation group D (ATDC)

    DOEpatents

    Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.

  8. Gene for ataxia-telangiectasia complementation group D (ATDC)

    DOEpatents

    Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.

  9. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice

    PubMed Central

    Sheng, Zhonghua; Jiao, Guiai; Tang, Shaoqing; Luo, Ju; Hu, Peisong

    2016-01-01

    Polycomb group (PcG) proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2) protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice. PMID:27764161

  10. Human blood group genes 2004: chromosomal locations and cloning strategies.

    PubMed

    Lögdberg, Lennart; Reid, Marion E; Lamont, Ryan E; Zelinski, Teresa

    2005-01-01

    Of the 29 human blood group system genes, 27 have been localized to 14 autosomes and 2 have been assigned to the X chromosome. It is remarkable that 28 of the 29 system genes have now been localized to a single cytogenetic band on a specific chromosome. In this review, we summarize the chromosomal locations and cloning strategies used for those genes encoding blood group systems. We highlight such information about the 3 most recently defined blood group systems (I, GLOB, and GIL). In addition, we provide new information about 2 older blood group systems (SC and RAPH) whose polymorphisms have been defined in cloned genes.

  11. Physical Interaction between MYCN Oncogene and Polycomb Repressive Complex 2 (PRC2) in Neuroblastoma

    PubMed Central

    Corvetta, Daisy; Chayka, Olesya; Gherardi, Samuele; D'Acunto, Cosimo W.; Cantilena, Sandra; Valli, Emanuele; Piotrowska, Izabela; Perini, Giovanni; Sala, Arturo

    2013-01-01

    CLU (clusterin) is a tumor suppressor gene that we have previously shown to be negatively modulated by the MYCN proto-oncogene, but the mechanism of repression was unclear. Here, we show that MYCN inhibits the expression of CLU by direct interaction with the non-canonical E box sequence CACGCG in the 5′-flanking region. Binding of MYCN to the CLU gene induces bivalent epigenetic marks and recruitment of repressive proteins such as histone deacetylases and Polycomb members. MYCN physically binds in vitro and in vivo to EZH2, a component of the Polycomb repressive complex 2, required to repress CLU. Notably, EZH2 interacts with the Myc box domain 3, a segment of MYC known to be essential for its transforming effects. The expression of CLU can be restored in MYCN-amplified cells by epigenetic drugs with therapeutic results. Importantly, the anticancer effects of the drugs are ablated if CLU expression is blunted by RNA interference. Our study implies that MYC tumorigenesis can be effectively antagonized by epigenetic drugs that interfere with the recruitment of chromatin modifiers at repressive E boxes of tumor suppressor genes such as CLU. PMID:23362253

  12. Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells

    PubMed Central

    2011-01-01

    Background Polycomb group (PcG) genes code for chromatin multiprotein complexes that are responsible for maintaining gene silencing of transcriptional programs during differentiation and in adult tissues. Despite the large amount of information on PcG function during development and cell identity homeostasis, little is known regarding the dynamics of PcG complexes and their role during terminal differentiation. Results We show that two distinct polycomb repressive complex (PRC)2 complexes contribute to skeletal muscle cell differentiation: the PRC2-Ezh2 complex, which is bound to the myogenin (MyoG) promoter and muscle creatine kinase (mCK) enhancer in proliferating myoblasts, and the PRC2-Ezh1 complex, which replaces PRC2-Ezh2 on MyoG promoter in post-mitotic myotubes. Interestingly, the opposing dynamics of PRC2-Ezh2 and PRC2-Ezh1 at these muscle regulatory regions is differentially regulated at the chromatin level by Msk1 dependent methyl/phospho switch mechanism involving phosphorylation of serine 28 of the H3 histone (H3S28ph). While Msk1/H3S28ph is critical for the displacement of the PRC2-Ezh2 complex, this pathway does not influence the binding of PRC2-Ezh1 on the chromatin. Importantly, depletion of Ezh1 impairs muscle differentiation and the chromatin recruitment of MyoD to the MyoG promoter in differentiating myotubes. We propose that PRC2-Ezh1 is necessary for controlling the proper timing of MyoG transcriptional activation and thus, in contrast to PRC2-Ezh2, is required for myogenic differentiation. Conclusions Our data reveal another important layer of epigenetic control orchestrating skeletal muscle cell terminal differentiation, and introduce a novel function of the PRC2-Ezh1 complex in promoter setting. PMID:21892963

  13. Wilms Tumor Suppressor, WT1, Cooperates with MicroRNA-26a and MicroRNA-101 to Suppress Translation of the Polycomb Protein, EZH2, in Mesenchymal Stem Cells*

    PubMed Central

    Akpa, Murielle M.; Iglesias, Diana; Chu, LeeLee; Thiébaut, Antonin; Jentoft, Ida; Hammond, Leah; Torban, Elena; Goodyer, Paul R.

    2016-01-01

    Hereditary forms of Wilms arise from developmentally arrested clones of renal progenitor cells with biallelic mutations of WT1; recently, it has been found that Wilms tumors may also be associated with biallelic mutations in DICER1 or DROSHA, crucial for miRNA biogenesis. We have previously shown that a critical role for WT1 during normal nephrogenesis is to suppress transcription of the Polycomb group protein, EZH2, thereby de-repressing genes in the differentiation cascade. Here we show that WT1 also suppresses translation of EZH2. All major WT1 isoforms induce an array of miRNAs, which target the 3′ UTR of EZH2 and other Polycomb-associated transcripts. We show that the WT1(+KTS) isoform binds to the 5′ UTR of EZH2 and interacts directly with the miRNA-containing RISC to enhance post-transcriptional inhibition. These observations suggest a novel mechanism through which WT1 regulates the transition from resting stem cell to activated progenitor cell during nephrogenesis. Our findings also offer a plausible explanation for the fact that Wilms tumors can arise either from loss of WT1 or loss of miRNA processing enzymes. PMID:26655220

  14. The Oncogenic Polycomb Histone Methyltransferase EZH2 Methylates Lysine 120 on Histone H2B and Competes Ubiquitination12

    PubMed Central

    Kogure, Masaharu; Takawa, Masashi; Saloura, Vassiliki; Sone, Kenbun; Piao, Lianhua; Ueda, Koji; Ibrahim, Reem; Tsunoda, Tatsuhiko; Sugiyama, Masanori; Atomi, Yutaka; Nakamura, Yusuke; Hamamoto, Ryuji

    2013-01-01

    The histone methyltransferase enhancer of zeste 2 (EZH2) is known to be a polycomb protein homologous to Drosophila enhancer of zeste and catalyzes the addition of methyl groups to histone H3 at lysine 27 (H3K27). We previously reported that EZH2 was overexpressed in various types of cancer and plays a crucial role in the cell cycle regulation of cancer cells. In the present study, we demonstrated that EZH2 has the function to monomethylate lysine 120 on histone H2B (H2BK120). EZH2-dependent H2BK120 methylation in cancer cells was confirmed with an H2BK120 methylation-specific antibody. Overexpression of EZH2 significantly attenuated the ubiquitination of H2BK120, a key posttranslational modification of histones for transcriptional regulation. Concordantly, knockdown of EZH2 increased the ubiquitination level of H2BK120, suggesting that the methylation of H2BK120 by EZH2 may competitively inhibit the ubiquitination of H2BK120. Subsequent chromatin immunoprecipitation-Seq and microarray analyses identified downstream candidate genes regulated by EZH2 through the methylation of H2BK120. This is the first report to describe a novel substrate of EZH2, H2BK120, unveiling a new aspect of EZH2 functions in human carcinogenesis. PMID:24339737

  15. The Arabidopsis thaliana vernalization response requires a polycomb-like protein complex that also includes VERNALIZATION INSENSITIVE 3.

    PubMed

    Wood, Craig C; Robertson, Masumi; Tanner, Greg; Peacock, W James; Dennis, Elizabeth S; Helliwell, Chris A

    2006-09-26

    In Arabidopsis thaliana, the promotion of flowering by cold temperatures, vernalization, is regulated via a floral-repressive MADS box transcription factor, FLOWERING LOCUS C (FLC). Vernalization leads to the epigenetic repression of FLC expression, a process that requires the polycomb group (PcG) protein VERNALIZATION 2 (VRN2) and the plant homeodomain protein VERNALIZATION INSENSITIVE 3 (VIN3). We demonstrate that the repression of FLC by vernalization requires homologues of other Polycomb Repressive Complex 2 proteins and VRN2. We show in planta that VRN2 and VIN3 are part of a large protein complex that can include the PcG proteins FERTILIZATION INDEPENDENT ENDOSPERM, CURLY LEAF, and SWINGER. These findings suggest a single protein complex is responsible for histone deacetylation at FLC and histone methylation at FLC in vernalized plants. The abundance of the complex increases during vernalization and declines after plants are returned to higher temperatures, consistent with the complex having a role in establishing FLC repression.

  16. A hierarchical coherent-gene-group model for brain development.

    PubMed

    Tsigelny, I F; Kouznetsova, V L; Baitaluk, M; Changeux, J-P

    2013-03-01

    We have described a strategy to analyze the data available on brain genes expression, using the concept of coherent-gene groups controlled by transcription factors (TFs). A hierarchical model of gene-expression patterns during brain development was established that identified the genes assumed to behave as functionally coding. Analysis of the concerned signaling pathways and processes showed distinct temporal gene-expression patterns in relation with neurogenesis/synaptogenesis. We identified the hierarchical tree of TF networks that determined the patterns of genes expressed during brain development. Some 'master TFs' at the top level of the hierarchy regulated the expression of gene groups. Enhanced/decreased activity of a few master TFs may explain paradoxes raised by the genetic determination of autism-spectrum disorders and schizophrenia. Our analysis showed gene-TF networks, common or related, to these disorders that exhibited two maxima of expression, one in the prenatal and the other at early postnatal period of development, consistent with the view that these disorders originate in the prenatal period, develop in the postnatal period, and reach the ultimate neural and behavioral phenotype with different sets of genes regulating each of these periods. We proposed a strategy for drug design based upon the temporal patterns of expression of the concerned TFs. Ligands targeting specific TFs can be designed to specifically affect the pathological evolution of the mutated gene(s) in genetically predisposed patients when administered at relevant stages of brain development.

  17. Regulation of the Polycomb protein RING1B ubiquitination by USP7.

    PubMed

    de Bie, Prim; Zaaroor-Regev, Daphna; Ciechanover, Aaron

    2010-09-24

    The E3 ubiquitin ligase RING1B plays an important role in Polycomb-mediated gene silencing by monoubiquitinating histone H2A. Both the activity and stability of RING1B are controlled by ubiquitination in two distinct manners. Self ubiquitination of RING1B generates K6, K27 and K48-based mixed polyubiquitin chain, and is required for its activity as a ligase. On the other hand, its proteasomal degradation is mediated by another ligase; E6-AP catalyzes the formation of K48-based chains. Since these two modes of ubiquitination target the same lysine residues and are therefore mutually exclusive, an important mode of regulation of RING1B should be at the level of deubiquitination. Here we identify USP7 as a deubiquitinating enzyme that regulates the ubiquitination state of RING1B. RING1B interacts with USP7, which is mediated in part by its RING domain. In addition, USP7 was found in a complex with other Polycomb proteins, suggesting a broad role in regulating these complexes. Although, USP7 directly and specifically deubiquitinates RING1B in vitro and in vivo, it does not discriminate between the activating and proteolysis-targeting modes of ubiquitination, and therefore has a stabilizing effect on RING1B. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Multiple Arkadia/RNF111 Structures Coordinate Its Polycomb Body Association and Transcriptional Control

    PubMed Central

    Liu, Yijing

    2014-01-01

    The RING domain protein Arkadia/RNF111 is a ubiquitin ligase in the transforming growth factor β (TGFβ) pathway. We previously identified Arkadia as a small ubiquitin-like modifier (SUMO)-binding protein with clustered SUMO-interacting motifs (SIMs) that together form a SUMO-binding domain (SBD). However, precisely how SUMO interaction contributes to the function of Arkadia was not resolved. Through analytical molecular and cell biology, we found that the SIMs share redundant function with Arkadia's M domain, a region distinguishing Arkadia from its paralogs ARKL1/ARKL2 and the prototypical SUMO-targeted ubiquitin ligase (STUbL) RNF4. The SIMs and M domain together promote both Arkadia's colocalization with CBX4/Pc2, a component of Polycomb bodies, and the activation of a TGFβ pathway transcription reporter. Transcriptome profiling through RNA sequencing showed that Arkadia can both promote and inhibit gene expression, indicating that Arkadia's activity in transcriptional control may depend on the epigenetic context, defined by Polycomb repressive complexes and DNA methylation. PMID:24912682

  19. Robust multi-group gene set analysis with few replicates.

    PubMed

    Mishra, Pashupati P; Medlar, Alan; Holm, Liisa; Törönen, Petri

    2016-12-09

    Competitive gene set analysis is a standard exploratory tool for gene expression data. Permutation-based competitive gene set analysis methods are preferable to parametric ones because the latter make strong statistical assumptions which are not always met. For permutation-based methods, we permute samples, as opposed to genes, as doing so preserves the inter-gene correlation structure. Unfortunately, up until now, sample permutation-based methods have required a minimum of six replicates per sample group. We propose a new permutation-based competitive gene set analysis method for multi-group gene expression data with as few as three replicates per group. The method is based on advanced sample permutation technique that utilizes all groups within a data set for pairwise comparisons. We present a comprehensive evaluation of different permutation techniques, using multiple data sets and contrast the performance of our method, mGSZm, with other state of the art methods. We show that mGSZm is robust, and that, despite only using less than six replicates, we are able to consistently identify a high proportion of the top ranked gene sets from the analysis of a substantially larger data set. Further, we highlight other methods where performance is highly variable and appears dependent on the underlying data set being analyzed. Our results demonstrate that robust gene set analysis of multi-group gene expression data is permissible with as few as three replicates. In doing so, we have extended the applicability of such approaches to resource constrained experiments where additional data generation is prohibitively difficult or expensive. An R package implementing the proposed method and supplementary materials are available from the website http://ekhidna.biocenter.helsinki.fi/downloads/pashupati/mGSZm.html .

  20. Potential Cysteine Redox Regulation of the Polycomb Group

    DTIC Science & Technology

    2010-08-01

    study, Ph isolated from Drosophila embryos show little interaction with Scm. However, when recombinant proteins are co-expressed in Sf9 cells, Scm co...would be expected that they would have lower concentrations of reactive oxygen species9 compared to Sf9 cells which are derived from ovarian tissues of

  1. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.

    PubMed

    Sansom, Stephen N; Shikama-Dorn, Noriko; Zhanybekova, Saule; Nusspaumer, Gretel; Macaulay, Iain C; Deadman, Mary E; Heger, Andreas; Ponting, Chris P; Holländer, Georg A

    2014-12-01

    Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population. © 2014 Sansom et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia

    PubMed Central

    Shikama-Dorn, Noriko; Zhanybekova, Saule; Nusspaumer, Gretel; Macaulay, Iain C.; Deadman, Mary E.; Heger, Andreas; Ponting, Chris P.; Holländer, Georg A.

    2014-01-01

    Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population. PMID:25224068

  3. Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network.

    PubMed

    Signaroldi, Elena; Laise, Pasquale; Cristofanon, Silvia; Brancaccio, Arianna; Reisoli, Elisa; Atashpaz, Sina; Terreni, Maria Rosa; Doglioni, Claudio; Pruneri, Giancarlo; Malatesta, Paolo; Testa, Giuseppe

    2016-02-29

    Malignant gliomas constitute one of the most significant areas of unmet medical need, owing to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We find that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated with invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a critical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signalling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signalling.

  4. Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network

    PubMed Central

    Signaroldi, Elena; Laise, Pasquale; Cristofanon, Silvia; Brancaccio, Arianna; Reisoli, Elisa; Atashpaz, Sina; Terreni, Maria Rosa; Doglioni, Claudio; Pruneri, Giancarlo; Malatesta, Paolo; Testa, Giuseppe

    2016-01-01

    Malignant gliomas constitute one of the most significant areas of unmet medical need, owing to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We find that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated with invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a critical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signalling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signalling. PMID:26923714

  5. Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements

    PubMed Central

    Kahn, Tatyana G.; Dorafshan, Eshagh; Schultheis, Dorothea; Zare, Aman; Stenberg, Per; Reim, Ingolf; Pirrotta, Vincenzo; Schwartz, Yuri B.

    2016-01-01

    Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications. PMID:27557709

  6. Targeted gene disruption in Francisella tularensis by group II introns.

    PubMed

    Rodriguez, Stephen A; Davis, Greg; Klose, Karl E

    2009-11-01

    Francisella tularensis is a highly infectious Gram-negative bacterium that is the causative agent of tularemia. Very little is known about the molecular mechanisms responsible for F. tularensis virulence, in part due to the paucity of genetic tools available for the study of F. tularensis. We have developed a gene knockout system for F. tularensis that utilizes retargeted mobile group II introns, or "targetrons". These targetrons disrupt both single and duplicated target genes at high efficiency in three different F. tularensis subspecies. Here we describe in detail the targetron-based method for insertional mutagenesis of F. tularensis genes, which should facilitate a better understanding of F. tularensis pathogenesis. Group II introns can be adapted to inactivate genes in bacteria for which few genetic tools exist, thus providing a powerful tool to study the genetic basis of bacterial pathogenesis.

  7. Polycomb Repressive Complex 2-Dependent and -Independent Functions of Jarid2 in Transcriptional Regulation in Drosophila

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garrett, Alexander S.; Miller, Caitlynn; Casto, David; Zhang, Ying; Seidel, Christopher; Haug, Jeffrey S.; Florens, Laurence; Washburn, Michael P.; Yamaguchi, Masamitsu; Shiekhattar, Ramin

    2012-01-01

    Jarid2 was recently identified as an important component of the mammalian Polycomb repressive complex 2 (PRC2), where it has a major effect on PRC2 recruitment in mouse embryonic stem cells. Although Jarid2 is conserved in Drosophila, it has not previously been implicated in Polycomb (Pc) regulation. Therefore, we purified Drosophila Jarid2 and its associated proteins and found that Jarid2 associates with all of the known canonical PRC2 components, demonstrating a conserved physical interaction with PRC2 in flies and mammals. Furthermore, in vivo studies with Jarid2 mutants in flies demonstrate that among several histone modifications tested, only methylation of histone 3 at K27 (H3K27), the mark implemented by PRC2, was affected. Genome-wide profiling of Jarid2, Su(z)12 (Suppressor of zeste 12), and H3K27me3 occupancy by chromatin immunoprecipitation with sequencing (ChIP-seq) indicates that Jarid2 and Su(z)12 have very similar distribution patterns on chromatin. However, Jarid2 and Su(z)12 occupancy levels at some genes are significantly different, with Jarid2 being present at relatively low levels at many Pc response elements (PREs) of certain Homeobox (Hox) genes, providing a rationale for why Jarid2 was never identified in Pc screens. Gene expression analyses show that Jarid2 and E(z) (Enhancer of zeste, a canonical PRC2 component) are not only required for transcriptional repression but might also function in active transcription. Identification of Jarid2 as a conserved PRC2 interactor in flies provides an opportunity to begin to probe some of its novel functions in Drosophila development. PMID:22354997

  8. The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3-gallate-dependent suppression of skin cancer cell survival.

    PubMed

    Balasubramanian, Sivaprakasam; Adhikary, Gautam; Eckert, Richard L

    2010-03-01

    The polycomb group (PcG) proteins are epigenetic regulators of gene expression that enhance cell survival. This regulation is achieved via action of two multiprotein PcG complexes--PRC2 (EED) and PRC1 [B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1)]. These complexes modulate gene expression by increasing histone methylation and reducing acetylation--leading to a closed chromatin conformation. Activity of these proteins is associated with increased cell proliferation and survival. We show increased expression of key PcG proteins in immortalized keratinocytes and skin cancer cell lines. We examine the role of two key PcG proteins, Bmi-1 and enhancer of zeste homolog 2 (Ezh2), and the impact of the active agent in green tea, (-)-epigallocatechin-3-gallate (EGCG), on the function of these regulators. EGCG treatment of SCC-13 cells reduces Bmi-1 and Ezh2 level and this is associated with reduced cell survival. The reduction in survival is associated with a global reduction in histone H3 lysine 27 trimethylation, a hallmark of PRC2 complex action. This change in PcG protein expression is associated with reduced expression of key proteins that enhance progression through the cell cycle [cyclin-dependent kinase (cdk)1, cdk2, cdk4, cyclin D1, cyclin E, cyclin A and cyclin B1] and increased expression of proteins that inhibit cell cycle progression (p21 and p27). Apoptosis is also enhanced, as evidenced by increased caspase 9, 8 and 3 cleavage and increased poly(adenosine diphosphate ribose) polymerase cleavage. EGCG treatment also increases Bax and suppresses Bcl-xL expression. Vector-mediated enhanced Bmi-1 expression reverses these EGCG-dependent changes. These findings suggest that green tea polyphenols reduce skin tumor cell survival by influencing PcG-mediated epigenetic regulatory mechanisms.

  9. EZH2 Oncogenic Activity in Castration Resistant Prostate Cancer Cells is Polycomb-Independent

    PubMed Central

    Xu, Kexin; Wu, Zhenhua Jeremy; Groner, Anna C.; He, Housheng Hansen; Cai, Changmeng; Lis, Rosina T.; Wu, Xiaoqiu; Stack, Edward C.; Loda, Massimo; Liu, Tao; Xu, Han; Cato, Laura; Thornton, James E.; Gregory, Richard I.; Morrissey, Colm; Vessella, Robert L.; Montironi, Rodolfo; Magi-Galluzzi, Cristina; Kantoff, Philip W.; Balk, Steven P.; Liu, X. Shirley; Brown, Myles

    2013-01-01

    Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. Here we report that the oncogenic function of EZH2 in castration-resistant prostate cancer (CRPC) is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a co-activator for critical transcription factors including the androgen receptor (AR). This functional switch is dependent on phosphorylation of EZH2, and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have significant therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer. PMID:23239736

  10. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent.

    PubMed

    Xu, Kexin; Wu, Zhenhua Jeremy; Groner, Anna C; He, Housheng Hansen; Cai, Changmeng; Lis, Rosina T; Wu, Xiaoqiu; Stack, Edward C; Loda, Massimo; Liu, Tao; Xu, Han; Cato, Laura; Thornton, James E; Gregory, Richard I; Morrissey, Colm; Vessella, Robert L; Montironi, Rodolfo; Magi-Galluzzi, Cristina; Kantoff, Philip W; Balk, Steven P; Liu, X Shirley; Brown, Myles

    2012-12-14

    Epigenetic regulators represent a promising new class of therapeutic targets for cancer. Enhancer of zeste homolog 2 (EZH2), a subunit of Polycomb repressive complex 2 (PRC2), silences gene expression via its histone methyltransferase activity. We found that the oncogenic function of EZH2 in cells of castration-resistant prostate cancer is independent of its role as a transcriptional repressor. Instead, it involves the ability of EZH2 to act as a coactivator for critical transcription factors including the androgen receptor. This functional switch is dependent on phosphorylation of EZH2 and requires an intact methyltransferase domain. Hence, targeting the non-PRC2 function of EZH2 may have therapeutic efficacy for treating metastatic, hormone-refractory prostate cancer.

  11. Polycomb repressive complex 2 regulates skeletal growth by suppressing Wnt and TGF-β signalling

    PubMed Central

    Mirzamohammadi, Fatemeh; Papaioannou, Garyfallia; Inloes, Jennifer B.; Rankin, Erinn B.; Xie, Huafeng; Schipani, Ernestina; Orkin, Stuart H.; Kobayashi, Tatsuya

    2016-01-01

    Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of stem cells by suppressing genes that regulate cellular differentiation and tissue development. However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-β signalling is responsible for the reduced proliferation and growth defect. Thus, our study demonstrates that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing overactivation of multiple signalling pathways. PMID:27329220

  12. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain.

    PubMed

    Vieux-Rochas, Maxence; Fabre, Pierre J; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-04-14

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type-specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments.

  13. Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain

    PubMed Central

    Vieux-Rochas, Maxence; Fabre, Pierre J.; Leleu, Marion; Duboule, Denis; Noordermeer, Daan

    2015-01-01

    Embryogenesis requires the precise activation and repression of many transcriptional regulators. The Polycomb group proteins and the associated H3K27me3 histone mark are essential to maintain the inactive state of many of these genes. Mammalian Hox genes are targets of Polycomb proteins and form local 3D clusters centered on the H3K27me3 mark. More distal contacts have also been described, yet their selectivity, dynamics, and relation to other layers of chromatin organization remained elusive. We report that repressed Hox genes form mutual intra- and interchromosomal interactions with other genes located in strong domains labeled by H3K27me3. These interactions occur in a central and active nuclear environment that consists of the HiC compartment A, away from peripheral lamina-associated domains. Interactions are independent of nearby H3K27me3-marked loci and determined by chromosomal distance and cell-type–specific scaling factors, thus inducing a moderate reorganization during embryogenesis. These results provide a simplified view of nuclear organization whereby Polycomb proteins may have evolved to repress genes located in gene-dense regions whose position is restricted to central, active, nuclear environments. PMID:25825760

  14. Maintenance of leukemic cell identity by the activity of the Polycomb complex PRC1 in mice

    PubMed Central

    Rossi, Alessandra; Ferrari, Karin J.; Piunti, Andrea; Jammula, SriGanesh; Chiacchiera, Fulvio; Mazzarella, Luca; Scelfo, Andrea; Pelicci, Pier Giuseppe; Pasini, Diego

    2016-01-01

    Leukemia is a complex heterogeneous disease often driven by the expression of oncogenic fusion proteins with different molecular and biochemical properties. Whereas several fusion proteins induce leukemogenesis by activating Hox gene expression (Hox-activating fusions), others impinge on different pathways that do not involve the activation of Hox genes (non–Hox-activating fusions). It has been postulated that one of the main oncogenic properties of the HOXA9 transcription factor is its ability to control the expression of the p16/p19 tumor suppressor locus (Cdkn2a), thereby compensating Polycomb-mediated repression, which is dispensable for leukemias induced by Hox-activating fusions. We show, by genetically depleting the H2A ubiquitin ligase subunits of the Polycomb repressive complex 1 (PRC1), Ring1a and Ring1b, that Hoxa9 activation cannot repress Cdkn2a expression in the absence of PRC1 and its dependent deposition of H2AK119 monoubiquitination (H2AK119Ub). This demonstrates the essential role of PRC1 activity in supporting the oncogenic potential of Hox-activating fusion proteins. By combining genetic tools with genome-wide location and transcription analyses, we further show that PRC1 activity is required for the leukemogenic potential of both Hox-activating and non–Hox-activating fusions, thus preventing the differentiation of leukemic cells independently of the expression of the Cdkn2a locus. Overall, our results genetically demonstrate that PRC1 activity and the deposition of H2AK119Ub are critical factors that maintain the undifferentiated identity of cancer cells, positively sustaining the progression of different types of leukemia. PMID:27730210

  15. Identification of the Fanconi anemia complementation group I gene, FANCI.

    PubMed

    Dorsman, Josephine C; Levitus, Marieke; Rockx, Davy; Rooimans, Martin A; Oostra, Anneke B; Haitjema, Anneke; Bakker, Sietske T; Steltenpool, Jûrgen; Schuler, Dezsö; Mohan, Sheila; Schindler, Detlev; Arwert, Fré; Pals, Gerard; Mathew, Christopher G; Waisfisz, Quinten; de Winter, Johan P; Joenje, Hans

    2007-01-01

    To identify the gene underlying Fanconi anemia (FA) complementation group I we studied informative FA-I families by a genome-wide linkage analysis, which resulted in 4 candidate regions together encompassing 351 genes. Candidates were selected via bioinformatics and data mining on the basis of their resemblance to other FA genes/proteins acting in the FA pathway, such as: degree of evolutionary conservation, presence of nuclear localization signals and pattern of tissue-dependent expression. We found a candidate, KIAA1794 on chromosome 15q25-26, to be mutated in 8 affected individuals previously assigned to complementation group I. Western blots of endogenous FANCI indicated that functionally active KIAA1794 protein is lacking in FA-I individuals. Knock-down of KIAA1794 expression by siRNA in HeLa cells caused excessive chromosomal breakage induced by mitomycin C, a hallmark of FA cells. Furthermore, phenotypic reversion of a patient-derived cell line was associated with a secondary genetic alteration at the KIAA1794 locus. These data add up to two conclusions. First, KIAA1794 is a FA gene. Second, this gene is identical to FANCI, since the patient cell lines found mutated in this study included the reference cell line for group I, EUFA592.

  16. Grouping Gene Ontology terms to improve the assessment of gene set enrichment in microarray data.

    PubMed

    Lewin, Alex; Grieve, Ian C

    2006-10-03

    Gene Ontology (GO) terms are often used to assess the results of microarray experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms which are over-represented amongst the genes declared to be differentially expressed in the analysis of the microarray experiment. However, due to the high degree of dependence between GO terms, statistical testing is conservative, and interpretation is difficult. We propose testing groups of GO terms rather than individual terms, to increase statistical power, reduce dependence between tests and improve the interpretation of results. We use the publicly available package POSOC to group the terms. Our method finds groups of GO terms significantly over-represented amongst differentially expressed genes which are not found by Fisher's tests on individual GO terms. Grouping Gene Ontology terms improves the interpretation of gene set enrichment for microarray data.

  17. Sequential changes at differentiation gene promoters as they become active in a stem cell lineage

    PubMed Central

    Chen, Xin; Lu, Chenggang; Prado, Jose Rafael Morillo; Eun, Suk Ho; Fuller, Margaret T.

    2011-01-01

    Transcriptional silencing of terminal differentiation genes by the Polycomb group (PcG) machinery is emerging as a key feature of precursor cells in stem cell lineages. How, then, is this epigenetic silencing reversed for proper cellular differentiation? Here, we investigate how the developmental program reverses local PcG action to allow expression of terminal differentiation genes in the Drosophila male germline stem cell (GSC) lineage. We find that the silenced state, set up in precursor cells, is relieved through developmentally regulated sequential events at promoters once cells commit to spermatocyte differentiation. The programmed events include global downregulation of Polycomb repressive complex 2 (PRC2) components, recruitment of hypophosphorylated RNA polymerase II (Pol II) to promoters, as well as the expression and action of testis-specific homologs of TATA-binding protein-associated factors (tTAFs). In addition, action of the testis-specific meiotic arrest complex (tMAC), a tissue-specific version of the MIP/dREAM complex, is required both for recruitment of tTAFs to target differentiation genes and for proper cell type-specific localization of PRC1 components and tTAFs within the spermatocyte nucleolus. Together, the action of the tMAC and tTAF cell type-specific chromatin and transcription machinery leads to loss of Polycomb and release of stalled Pol II from the terminal differentiation gene promoters, allowing robust transcription. PMID:21610025

  18. The FBXL10/KDM2B Scaffolding Protein Associates with Novel Polycomb Repressive Complex-1 to Regulate Adipogenesis*

    PubMed Central

    Inagaki, Takeshi; Iwasaki, Satoshi; Matsumura, Yoshihiro; Kawamura, Takeshi; Tanaka, Toshiya; Abe, Yohei; Yamasaki, Ayumu; Tsurutani, Yuya; Yoshida, Ayano; Chikaoka, Yoko; Nakamura, Kanako; Magoori, Kenta; Nakaki, Ryo; Osborne, Timothy F.; Fukami, Kiyoko; Aburatani, Hiroyuki; Kodama, Tatsuhiko; Sakai, Juro

    2015-01-01

    Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage. PMID:25533466

  19. Neuronal activity controls Bdnf expression via Polycomb de-repression and CREB/CBP/JMJD3 activation in mature neurons

    PubMed Central

    Palomer, Ernest; Carretero, Javier; Benvegnù, Stefano; Dotti, Carlos G.; Martin, Mauricio G.

    2016-01-01

    It has been recently described that in embryonic stem cells, the expression of some important developmentally regulated genes is repressed, but poised for fast activation under the appropriate stimuli. In this work we show that Bdnf promoters are repressed by Polycomb Complex 2 in mature hippocampal neurons, and basal expression is guaranteed by the coexistence with activating histone marks. Neuronal stimulation triggered by N-methyl-D-aspartate application induces the transcription of these promoters by H3K27Me3 demethylation and H3K27Me3 phosphorylation at Serine 28 leading to displacement of EZH2, the catalytic subunit of Polycomb Repressor Complex 2. Our data show that the fast transient expression of Bdnf promoters II and VI after neuronal stimulation is dependent on acetylation of histone H3K27 by CREB-p/CBP. Thus, regulatory mechanisms established during development seem to remain after differentiation controlling genes induced by different stimuli, as would be the case of early memory genes in mature neurons. PMID:27010597

  20. [Polymorphism of LW blood group gene in Chinese population].

    PubMed

    Su, Yu-Qing; Yu, Qiong; Liu, Xu; Liang, Yan-Lian; Wei, Tian-Li

    2008-06-01

    In order to study the polymorphism of Landsteiner-Wiener (LW) blood group gene in Chinese population, peripheral blood samples anticoagulated with EDTA from 160 unrelated volunteer blood donors were randomly collected, and genomic DNA were extracted. 160 DNA samples were analyzed for exon 1 of LW gene by direct DNA sequencing, and detected for LWa/LWb allele by improved PCR-SSP genotyping. The results showed that all LW allele in 160 donors were LWa homozygous, and the LWa allele occurred commonly. In conclusion, LWa allele occurs with incidence of 100% of donors in this study, while LWb allele has not been found in Chinese population.

  1. Targeted inactivation of francisella tularensis genes by group II introns.

    PubMed

    Rodriguez, Stephen A; Yu, Jieh-Juen; Davis, Greg; Arulanandam, Bernard P; Klose, Karl E

    2008-05-01

    Studies of the molecular mechanisms of pathogenesis of Francisella tularensis, the causative agent of tularemia, have been hampered by a lack of genetic techniques for rapid targeted gene disruption in the most virulent subspecies. Here we describe efficient targeted gene disruption in F. tularensis utilizing mobile group II introns (targetrons) specifically optimized for F. tularensis. Utilizing a targetron targeted to blaB, which encodes ampicillin resistance, we showed that the system works at high efficiency in three different subspecies: F. tularensis subsp. tularensis, F. tularensis subsp. holarctica, and "F. tularensis subsp. novicida." A targetron was also utilized to inactivate F. tularensis subsp. holarctica iglC, a gene required for virulence. The iglC gene is located within the Francisella pathogenicity island (FPI), which has been duplicated in the most virulent subspecies. Importantly, the iglC targetron targeted both copies simultaneously, resulting in a strain mutated in both iglC genes in a single step. This system will help illuminate the contributions of specific genes, and especially those within the FPI, to the pathogenesis of this poorly studied organism.

  2. Mutation spectrum of Meckel syndrome genes: one group of syndromes or several distinct groups?

    PubMed

    Tallila, Jonna; Salonen, Riitta; Kohlschmidt, Nicolai; Peltonen, Leena; Kestilä, Marjo

    2009-08-01

    Meckel syndrome (MKS) is a lethal malformation syndrome that belongs to the group of disorders that are associated with primary cilia dysfunction. Total of five genes are known to be involved in the molecular background of MKS. Here we have systematically analyzed all these genes in a total of 29 MKS families. Seven of the families were Finnish and the rest originated from elsewhere in Europe. We found 12 novel mutations in 13 families. Mutations in the MKS genes are also found in other syndromes and it seems reasonable to assume that there is a correlation between the syndromes and the mutations. To obtain some supportive information, we collected all the previously published mutations in the genes to see whether the different syndromes are dictated by the nature of the mutations. Based on this study, mutations play a role in the clinical phenotype, given that the same allelic combination of mutations has never been reported in two clinically distinct syndromes.

  3. Mutation Spectrum of Meckel Syndrome Genes: One Group of Syndromes or Several Distinct Groups?

    PubMed Central

    Tallila, Jonna; Salonen, Riitta; Kohlschmidt, Nicolai; Peltonen, Leena; Kestilä, Marjo

    2009-01-01

    Meckel syndrome (MKS) is a lethal malformation syndrome that belongs to the group of disorders that are associated with primary cilia dysfunction. Total of five genes are known to be involved in the molecular background of MKS. Here we have systematically analyzed all these genes in a total of 29 MKS families. Seven of the families were Finnish and the rest originated from elsewhere in Europe. We found 12 novel mutations in 13 families. Mutations in the MKS genes are also found in other syndromes and it seems reasonable to assume that there is a correlation between the syndromes and the mutations. To obtain some supportive information, we collected all the previously published mutations in the genes to see whether the different syndromes are dictated by the nature of the mutations. Based on this study, mutations play a role in the clinical phenotype, given that the same allelic combination of mutations has never been reported in two clinically distinct syndromes. PMID:19466712

  4. Collaboration of MLLT1/ENL, Polycomb and ATM for transcription and genome integrity.

    PubMed

    Ui, Ayako; Yasui, Akira

    2016-04-25

    Polycomb group (PcG) repress, whereas Trithorax group (TrxG) activate transcription for tissue development and cellular proliferation, and misregulation of these factors is often associated with cancer. ENL (MLLT1) and AF9 (MLLT3) are fusion partners of Mixed Lineage Leukemia (MLL), TrxG proteins, and are factors in Super Elongation Complex (SEC). SEC controls transcriptional elongation to release RNA polymerase II, paused around transcription start site. In MLL rearranged leukemia, several components of SEC have been found as MLL-fusion partners and the control of transcriptional elongation is misregulated leading to tumorigenesis in MLL-SEC fused Leukemia. It has been suggested that unexpected collaboration of ENL/AF9-MLL and PcG are involved in tumorigenesis in leukemia. Recently, we found that the collaboration of ENL/AF9 and PcG led to a novel mechanism of transcriptional switch from elongation to repression under ATM-signaling for genome integrity. Activated ATM phosphorylates ENL/AF9 in SEC, and the phosphorylated ENL/AF9 binds BMI1 and RING1B, a heterodimeric E3-ubiquitin-ligase complex in Polycomb Repressive complex 1 (PRC1), and recruits PRC1 at transcriptional elongation sites to rapidly repress transcription. The ENL/AF9 in SEC- and PcG-mediated transcriptional repression promotes DSB repair near transcription sites. The implication of this is that the collaboration of ENL/AF9 in SEC and PcG ensures a rapid response of transcriptional switching from elongation to repression to neighboring genotoxic stresses for DSB repair. Therefore, these results suggested that the collaboration of ENL/AF9 and PcG in transcriptional control is required to maintain genome integrity and may be link to the MLL-ENL/AF9 leukemia.

  5. Collaboration of MLLT1/ENL, Polycomb and ATM for transcription and genome integrity

    PubMed Central

    Ui, Ayako; Yasui, Akira

    2016-01-01

    SUMMARY Polycomb group (PcG) repress, whereas Trithorax group (TrxG) activate transcription for tissue development and cellular proliferation, and misregulation of these factors is often associated with cancer. ENL (MLLT1) and AF9 (MLLT3) are fusion partners of Mixed Lineage Leukemia (MLL), TrxG proteins, and are factors in Super Elongation Complex (SEC). SEC controls transcriptional elongation to release RNA polymerase II, paused around transcription start site. In MLL rearranged leukemia, several components of SEC have been found as MLL-fusion partners and the control of transcriptional elongation is misregulated leading to tumorigenesis in MLL-SEC fused Leukemia. It has been suggested that unexpected collaboration of ENL/AF9-MLL and PcG are involved in tumorigenesis in leukemia. Recently, we found that the collaboration of ENL/AF9 and PcG led to a novel mechanism of transcriptional switch from elongation to repression under ATM-signaling for genome integrity. Activated ATM phosphorylates ENL/AF9 in SEC, and the phosphorylated ENL/AF9 binds BMI1 and RING1B, a heterodimeric E3-ubiquitin-ligase complex in Polycomb Repressive complex 1 (PRC1), and recruits PRC1 at transcriptional elongation sites to rapidly repress transcription. The ENL/AF9 in SEC- and PcG-mediated transcriptional repression promotes DSB repair near transcription sites. The implication of this is that the collaboration of ENL/AF9 in SEC and PcG ensures a rapid response of transcriptional switching from elongation to repression to neighboring genotoxic stresses for DSB repair. Therefore, these results suggested that the collaboration of ENL/AF9 and PcG in transcriptional control is required to maintain genome integrity and may be link to the MLL-ENL/AF9 leukemia. PMID:27310306

  6. Direct interaction of the Polycomb protein with Antennapedia regulatory sequences in polytene chromosomes of Drosophila melanogaster.

    PubMed Central

    Zink, B; Engström, Y; Gehring, W J; Paro, R

    1991-01-01

    The Polycomb (Pc) gene is responsible for the elaboration and maintenance of the expression pattern of the homeotic genes during development of Drosophila. In mutant Pc- embryos, homeotic transcripts are ectopically expressed, leading to abdominal transformations in all segments. From this it was suggested that PC+ acts as a repressor of homeotic gene transcription. We have mapped the cis-acting control sequences of the homeotic Antennapedia (Antp) gene regulated by Pc. Using Antp P1 and P2 promoter fragments linked to the E. coli lacZ reporter gene we show different expression patterns of beta-galactosidase (beta-gal) in transformed Pc+ and Pc- embryos. In addition we are able to visualize by immunocytochemical techniques on polytene chromosomes the direct binding of the Pc protein to the transposed cis-regulatory promoter fragments. However, short Antp P1 promoter constructs which are--due to position effects--ectopically activated in salivary glands, do not reveal a Pc binding signal. Images PMID:1671215

  7. ZRF1 Chromatin Regulators Have Polycomb Silencing and Independent Roles in Development1[OPEN

    PubMed Central

    Chen, Donghong; Berr, Alexandre

    2016-01-01

    Histone H2A monoubiquitination (H2Aub1), catalyzed by Polycomb-Repressive Complex1 (PRC1), is a key epigenetic mark in Polycomb silencing. However, little is known about how H2Aub1 is read to exert downstream physiological functions. The animal ZUOTIN-RELATED FACTOR1 (ZRF1) has been reported to bind H2Aub1 to promote or repress the expression of varied target genes. Here, we show that the Arabidopsis (Arabidopsis thaliana) ZRF1 homologs, AtZRF1a and AtZRF1b, are key regulators of multiple processes during plant growth and development. Loss of function of both AtZRF1a and AtZRF1b in atzrf1a atzrf1b mutants causes seed germination delay, small plant size, abnormal meristem activity, abnormal flower development, as well as gametophyte transmission and embryogenesis defects. Some of these defects overlap with those described previously in the PRC1-defective mutants atbmi1a atbmi1b and atring1a atring1b, but others are specific to atzrf1a atzrf1b. In line with this, 4,519 genes (representing more than 14% of all genes) within the Arabidopsis genome are found differentially expressed in atzrf1a atzrf1b seedlings, and among them, 114 genes are commonly up-regulated in atring1a atring1b and atbmi1a atbmi1b. Finally, we show that in both atzrf1a atzrf1b and atbmi1a atbmi1b seedlings, the seed developmental genes ABSCISIC ACID INSENSITIVE3, CRUCIFERIN3, and CHOTTO1 are derepressed, in association with the reduced levels of H2Aub1 and histone H3 lysine-27 trimethylation (H3K27me3). Collectively, our results indicate that AtZRF1a/b play both PRC1-related and PRC1-unrelated functions in regulating plant growth and development and that AtZRF1a/b promote H2Aub1 and H3K27me3 deposition in gene suppression. Our work provides novel insight into the mechanisms of function of this family of evolutionarily conserved chromatin regulators. PMID:27630184

  8. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression

    PubMed Central

    Pickl, Julia M.A.; Tichy, Diana; Kuryshev, Vladimir Y.; Tolstov, Yanis; Falkenstein, Michael; Schüler, Julia; Reidenbach, Daniel; Hotz-Wagenblatt, Agnes; Kristiansen, Glen; Roth, Wilfried; Hadaschik, Boris; Hohenfellner, Markus; Duensing, Stefan; Heckmann, Doreen; Sültmann, Holger

    2016-01-01

    Prostate cancer is a heterogeneous disease. MiR-375 is a marker for prostate cancer progression, but its cellular function is not characterized. Here, we provide the first comprehensive investigation of miR-375 in prostate cancer. We show that miR-375 is enriched in prostate cancer compared to normal cells. Furthermore, miR-375 enhanced proliferation, migration and invasion in vitro and induced tumor growth and reduced survival in vivo showing that miR-375 has oncogenic properties in prostate cancer. On the molecular level, we provide the targetome and genome-wide transcriptional changes of miR-375 expression by applying a generalized linear model for Ago-RIP-Seq and RNA-Seq, and show that miR-375 is involved in tumorigenic networks and Polycomb regulation. Integration of tissue and gene ontology data prioritized miR-375 targets and identified the tumor suppressor gene CBX7, a member of Polycomb repressive complex 1, as a major miR-375 target. MiR-375-mediated repression of CBX7 was accompanied by increased expression of its homolog CBX8 and activated transcriptional programs linked to malignant progression in prostate cancer cells. Tissue analysis showed association of CBX7 loss with advanced prostate cancer. Our study indicates that miR-375 exerts its tumor-promoting role in prostate cancer by influencing the epigenetic regulation of transcriptional programs through its ability to directly target the Polycomb complex member CBX7. PMID:27449098

  9. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2

    PubMed Central

    Cooper, Sarah; Grijzenhout, Anne; Underwood, Elizabeth; Ancelin, Katia; Zhang, Tianyi; Nesterova, Tatyana B.; Anil-Kirmizitas, Burcu; Bassett, Andrew; Kooistra, Susanne M.; Agger, Karl; Helin, Kristian; Heard, Edith; Brockdorff, Neil

    2016-01-01

    The Polycomb repressive complexes PRC1 and PRC2 play a central role in developmental gene regulation in multicellular organisms. PRC1 and PRC2 modify chromatin by catalysing histone H2A lysine 119 ubiquitylation (H2AK119u1), and H3 lysine 27 methylation (H3K27me3), respectively. Reciprocal crosstalk between these modifications is critical for the formation of stable Polycomb domains at target gene loci. While the molecular mechanism for recognition of H3K27me3 by PRC1 is well defined, the interaction of PRC2 with H2AK119u1 is poorly understood. Here we demonstrate a critical role for the PRC2 cofactor Jarid2 in mediating the interaction of PRC2 with H2AK119u1. We identify a ubiquitin interaction motif at the amino-terminus of Jarid2, and demonstrate that this domain facilitates PRC2 localization to H2AK119u1 both in vivo and in vitro. Our findings ascribe a critical function to Jarid2 and define a key mechanism that links PRC1 and PRC2 in the establishment of Polycomb domains. PMID:27892467

  10. Regulation of imprinted gene expression in Arabidopsis endosperm

    PubMed Central

    Hsieh, Tzung-Fu; Shin, Juhyun; Uzawa, Rie; Silva, Pedro; Cohen, Stephanie; Bauer, Matthew J.; Hashimoto, Meryl; Kirkbride, Ryan C.; Harada, John J.; Zilberman, Daniel; Fischer, Robert L.

    2011-01-01

    Imprinted genes are expressed primarily or exclusively from either the maternal or paternal allele, a phenomenon that occurs in flowering plants and mammals. Flowering plant imprinted gene expression has been described primarily in endosperm, a terminal nutritive tissue consumed by the embryo during seed development or after germination. Imprinted expression in Arabidopsis thaliana endosperm is orchestrated by differences in cytosine DNA methylation between the paternal and maternal genomes as well as by Polycomb group proteins. Currently, only 11 imprinted A. thaliana genes are known. Here, we use extensive sequencing of cDNA libraries to identify 9 paternally expressed and 34 maternally expressed imprinted genes in A. thaliana endosperm that are regulated by the DNA-demethylating glycosylase DEMETER, the DNA methyltransferase MET1, and/or the core Polycomb group protein FIE. These genes encode transcription factors, proteins involved in hormone signaling, components of the ubiquitin protein degradation pathway, regulators of histone and DNA methylation, and small RNA pathway proteins. We also identify maternally expressed genes that may be regulated by unknown mechanisms or deposited from maternal tissues. We did not detect any imprinted genes in the embryo. Our results show that imprinted gene expression is an extensive mechanistically complex phenomenon that likely affects multiple aspects of seed development. PMID:21257907

  11. Polycomb (PcG) Proteins, BMI1 and SUZ12, Regulate Arsenic-induced Cell Transformation*

    PubMed Central

    Kim, Hong-Gyum; Kim, Dong Joon; Li, Shengqing; Lee, Kun Yeong; Li, Xiang; Bode, Ann M.; Dong, Zigang

    2012-01-01

    Inorganic arsenic is a well-documented human carcinogen associated with cancers of the skin, lung, liver, and bladder. However, the underlying mechanisms explaining the tumorigenic role of arsenic are not well understood. The present study explored a potential mechanism of cell transformation induced by arsenic exposure. Exposure to a low dose (0.5 μm) of arsenic trioxide (As2O3) caused transformation of BALB/c 3T3 cells. In addition, in a xenograft mouse model, tumor growth of the arsenic-induced transformed cells was dramatically increased. In arsenic-induced transformed cells, polycomb group (PcG) proteins, including BMI1 and SUZ12, were activated resulting in enhanced histone H3K27 tri-methylation levels. On the other hand, tumor suppressor p16INK4a and p19ARF mRNA and protein expression were dramatically suppressed. Introduction of small hairpin (sh) RNA-BMI1 or -SUZ12 into BALB/c 3T3 cells resulted in suppression of arsenic-induced transformation. Histone H3K27 tri-methylation returned to normal in BMI1- or SUZ12-knockdown BALB/c 3T3 cells compared with BMI1- or SUZ12-wildtype cells after arsenic exposure. As a consequence, the expression of p16INK4a and p19ARF was recovered in arsenic-treated BMI1- or SUZ12-knockdown cells. Thus, arsenic-induced cell transformation was blocked by inhibition of PcG function. Taken together, these results strongly suggest that the polycomb proteins, BMI1 and SUZ12 are required for cell transformation induced by organic arsenic exposure. PMID:22843710

  12. Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis.

    PubMed

    Luo, Mengcheng; Zhou, Jian; Leu, N Adrian; Abreu, Carla M; Wang, Jianle; Anguera, Montserrat C; de Rooij, Dirk G; Jasin, Maria; Wang, P Jeremy

    2015-01-01

    Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically expressed in germ cells, including spermatogonia, spermatocytes, and round spermatids. SCML2 associates with phosphorylated H2AX and localizes to the XY body in spermatocytes. Loss of SCML2 in mice causes defective spermatogenesis, resulting in sharply reduced sperm production. SCML2 interacts with and recruits a deubiquitinase, USP7, to the XY body in spermatocytes. In the absence of SCML2, USP7 fails to accumulate on the XY body, whereas H2A monoubiquitination is dramatically augmented in the XY chromatin. Our results demonstrate that the SCML2/USP7 complex constitutes a novel molecular pathway in modulating the epigenetic state of sex chromosomes during male meiosis.

  13. The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis

    PubMed Central

    Oliviero, Giorgio; Munawar, Nayla; Watson, Ariane; Streubel, Gundula; Manning, Gwendolyn; Bardwell, Vivian; Bracken, Adrian P.; Cagney, Gerard

    2015-01-01

    PCGF1 encodes one of six human Polycomb RING finger homologs that are linked to transcriptional repression and developmental gene regulation. Individual PCGF proteins define discrete Polycomb Repressor Complex 1 (PRC1) multi-protein complexes with diverse subunit composition whose functions are incompletely understood. PCGF1 is a component of a variant PRC1 complex that also contains the BCL6 co-repressor BCOR and the histone demethylase KDM2B. To further investigate the role of PCGF1, we mapped the physical interactions of the protein under endogenous conditions in a cell model of neuronal differentiation. Using stringent statistical cut-offs, 83 highly enriched interacting proteins were identified, including all previously reported members of the variant PRC1 complex containing PCGF1, as well as proteins linked to diverse cellular pathways such as chromatin and cell cycle regulation. Notably, a sub-network of proteins associated with the establishment and maintenance of pluripotency (NANOG, OCT4, PATZ1, and the developmental regulator DPPA4) were found to independently interact with PCGF1 in a subsequent round of physical interaction mapping experiments. Furthermore, knockdown of PCGF1 results in reduced expression of DPPA4 and other subunits of the variant PRC1 complex at both mRNA and protein levels. Thus, PCGF1 represents a physical and functional link between Polycomb function and pluripotency. PMID:26687479

  14. The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3.

    PubMed

    García-Cuéllar, M P; Zilles, O; Schreiner, S A; Birke, M; Winkler, T H; Slany, R K

    2001-01-25

    The translocation t(11;19) is frequently found in acute leukemia in infants. This event truncates the proto-oncogene MLL and fuses the 5' end of MLL in frame with the ENL gene. ENL contributes a crucial protein-protein interaction domain to the resulting oncoprotein MLL-ENL. Here we show by yeast two-hybrid assays, GST-pull-down experiments and in a far western blot analysis that this domain is necessary and sufficient to recruit a novel member of the human Polycomb protein family (hPc3). hPc3 RNA was detected throughout the human hematopoietic system. Similar to other Polycomb proteins hPc3 acts as a transcriptional repressor. The ENL-hPc3 interaction was verified by mutual co-precipitation of the proteins from cell extracts. ENL and hPc3 tagged with fluorescent proteins co-localized in living cells in a nuclear dot pattern. An internal region of hPc3 was responsible for binding to ENL. Finally, hPc3 binds to the C-terminus of AF9, another common MLL fusion partner. The recruitment of a repressive function by ENL opens up a new insight into a possible mechanism of leukemogenesis by the fusion protein MLL-ENL.

  15. Additional duplicated Hox genes in the earthworm: Perionyx excavatus Hox genes consist of eleven paralog groups.

    PubMed

    Cho, Sung-Jin; Vallès, Yvonne; Kim, Kyong Min; Ji, Seong Chul; Han, Seock Jung; Park, Soon Cheol

    2012-02-10

    Annelida is a lophotrochozoan phylum whose members have a high degree of diversity in body plan morphology, reproductive strategies and ecological niches among others. Of the two traditional classes pertaining to the phylum Annelida (Polychaete and Clitellata), the structure and function of the Hox genes has not been clearly defined within the Oligochaeta class. Using a PCR-based survey, we were able to identify five new Hox genes from the earthworm Perionyx excavatus: a Hox3 gene (Pex-Hox3b), two Dfd genes (Pex-Lox6 and Pex-Lox18), and two posterior genes (Pex-post1 and -post2a). Our result suggests that the eleven earthworm Hox genes contain at least four paralog groups (PG) that have duplicated. We found the clitellates-diagnostic signature residues and annelid signature motif. Also, we show by semi-quantitative RT-PCR that duplicated Hox gene orthologs are differentially expressed in six different anterior-posterior body regions. These results provide essential data for comparative evolution of the Hox cluster within the Annelida.

  16. The iab-7 Polycomb Response Element Maps to a Nucleosome-Free Region of Chromatin and Requires Both GAGA and Pleiohomeotic for Silencing Activity

    PubMed Central

    Mishra, Rakesh K.; Mihaly, Jozsef; Barges, Stéphane; Spierer, Annick; Karch, François; Hagstrom, Kirsten; Schweinsberg, Susan E.; Schedl, Paul

    2001-01-01

    In the work reported here we have undertaken a functional dissection of a Polycomb response element (PRE) from the iab-7 cis-regulatory domain of the Drosophila melanogaster bithorax complex (BX-C). Previous studies mapped the iab-7 PRE to an 860-bp fragment located just distal to the Fab-7 boundary. Located within this fragment is an ∼230-bp chromatin-specific nuclease-hypersensitive region called HS3. We have shown that HS3 is capable of functioning as a Polycomb-dependent silencer in vivo, inducing pairing-dependent silencing of a mini-white reporter. The HS3 sequence contains consensus binding sites for the GAGA factor, a protein implicated in the formation of nucleosome-free regions of chromatin, and Pleiohomeotic (Pho), a Polycomb group protein that is related to the mammalian transcription factor YY1. We show that GAGA and Pho interact with these sequences in vitro and that the consensus binding sites for the two proteins are critical for the silencing activity of the iab-7 PRE in vivo. PMID:11158316

  17. Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer

    PubMed Central

    2011-01-01

    Background Polycomb repressive complex 2 (PRC2) mediates gene silencing through histone H3K27 methylation. PRC2 components are over-expressed in metastatic prostate cancer (PC), and are required for cancer stem cell (CSC) self-renewal. 3-Dezaneplanocin-A (DZNeP) is an inhibitor of PRC2 with broad anticancer activity. Method we investigated the effects of DZNeP on cell proliferation, tumorigenicity and invasive potential of PC cell lines (LNCaP and DU145). Results Exploring GEO and Oncomine databases, we found that specific PRC2 genes (EED, EZH2, SUZ12) predict poor prognosis in PC. Non-toxic DZNeP concentrations completely eradicated LNCaP and DU145 prostatosphere formation, and significantly reduced the expression of CSC markers. At comparable doses, other epigenetic drugs were not able to eradicate CSCs. DZNeP was also able to reduce PC cell invasion. Cells pre-treated with DZNeP were significantly less tumorigenic (LNCaP) and formed smaller tumors (DU145) in immunocompromised mice. Conclusion DZNeP is effective both in vitro and in vivo against PC cells. DZNeP antitumor activity is in part mediated by inhibition of CSC tumorigenic potential. PMID:21501485

  18. A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets.

    PubMed

    Wijetunga, N A; Pascual, M; Tozour, J; Delahaye, F; Alani, M; Adeyeye, M; Wolkoff, A W; Verma, A; Greally, J M

    2017-04-06

    The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These

  19. Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling.

    PubMed

    Sun, Danfeng; Lin, Yanwei; Hong, Jie; Chen, Haoyan; Nagarsheth, Nisha; Peng, Dongjun; Wei, Shuang; Huang, Emina; Fang, Jingyuan; Kryczek, Ilona; Zou, Weiping

    2016-08-01

    Th22 cells traffic to and retain in the colon cancer microenvironment, and target core stem cell genes and promote colon cancer stemness via STAT3 and H3K79me2 signaling pathway and contribute to colon carcinogenesis. However, whether Th22 cells affect colon cancer cell proliferation and apoptosis remains unknown. We studied the interaction between Th22 cells and colon cancer cells in the colon cancer microenvironment. Colon cancer proliferation was examined by flow cytometry analysis and H(3) thymidine incorporation. Cell cycle related genes were quantified by real-time PCR and Western blotting. We transfected colon cancer cells with lentiviral vector encoding specific gene shRNAs and used chromatin immunoprecipitation (ChIP) assay to determine the genetic signaling involved in interleukin (IL)-22-mediated colon cancer cell proliferation. We showed that Th22 cells released IL-22 and stimulated colon cancer proliferation. Mechanistically, IL-22 activated STAT3, and subsequently STAT3 bound to the promoter areas of the Polycomb Repression complex 2 (PRC2) components SUZ12 and EED, and stimulated the expression of PRC2. Consequently, the activated PRC2 catalyzed the promoters of the cell cycle check-point genes p16 and p21, and inhibited their expression through H3K27me3-mediated histone methylation, and ultimately caused colon cancer cell proliferation. Bioinformatics analysis revealed that the levels of IL-22 expression positively correlated with the levels of genes controlling cancer proliferation and cell cycling in colon cancer. In addition to controlling colon cancer stemness, Th22 cells support colon carcinogenesis via affecting colon cancer cell proliferation through a distinct histone modification.

  20. Th22 cells control colon tumorigenesis through STAT3 and Polycomb Repression complex 2 signaling

    PubMed Central

    Sun, Danfeng; Lin, Yanwei; Hong, Jie; Chen, Haoyan; Nagarsheth, Nisha; Peng, Dongjun; Wei, Shuang; Huang, Emina; Fang, Jingyuan; Kryczek, Ilona; Zou, Weiping

    2016-01-01

    ABSTRACT Th22 cells traffic to and retain in the colon cancer microenvironment, and target core stem cell genes and promote colon cancer stemness via STAT3 and H3K79me2 signaling pathway and contribute to colon carcinogenesis. However, whether Th22 cells affect colon cancer cell proliferation and apoptosis remains unknown. We studied the interaction between Th22 cells and colon cancer cells in the colon cancer microenvironment. Colon cancer proliferation was examined by flow cytometry analysis and H3 thymidine incorporation. Cell cycle related genes were quantified by real-time PCR and Western blotting. We transfected colon cancer cells with lentiviral vector encoding specific gene shRNAs and used chromatin immunoprecipitation (ChIP) assay to determine the genetic signaling involved in interleukin (IL)-22-mediated colon cancer cell proliferation. We showed that Th22 cells released IL-22 and stimulated colon cancer proliferation. Mechanistically, IL-22 activated STAT3, and subsequently STAT3 bound to the promoter areas of the Polycomb Repression complex 2 (PRC2) components SUZ12 and EED, and stimulated the expression of PRC2. Consequently, the activated PRC2 catalyzed the promoters of the cell cycle check-point genes p16 and p21, and inhibited their expression through H3K27me3-mediated histone methylation, and ultimately caused colon cancer cell proliferation. Bioinformatics analysis revealed that the levels of IL-22 expression positively correlated with the levels of genes controlling cancer proliferation and cell cycling in colon cancer. In addition to controlling colon cancer stemness, Th22 cells support colon carcinogenesis via affecting colon cancer cell proliferation through a distinct histone modification. PMID:27622053

  1. Inactivation of Intergenic Enhancers by EBNA3A Initiates and Maintains Polycomb Signatures across a Chromatin Domain Encoding CXCL10 and CXCL9

    PubMed Central

    Harth-Hertle, Marie L.; Scholz, Barbara A.; Erhard, Florian; Glaser, Laura V.; Dölken, Lars; Zimmer, Ralf; Kempkes, Bettina

    2013-01-01

    Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific transcription programs to control B cell activation and differentiation. Transcriptional reprogramming of EBV infected B cells is predominantly driven by the action of EBV nuclear antigens, among them the transcriptional repressor EBNA3A. By comparing gene expression profiles of wt and EBNA3A negative EBV infected B cells, we have previously identified a broad array of cellular genes controlled by EBNA3A. We now find that genes repressed by EBNA3A in these cells are significantly enriched for the repressive histone mark H3K27me3, which is installed by Polycomb group (PcG) proteins. This PcG-controlled subset of genes also carries H3K27me3 marks in a variety of other tissues, suggesting that the commitment to PcG silencing is an intrinsic feature of these gene loci that can be used by EBNA3A. In addition, EBNA3A targets frequently reside in co-regulated gene clusters. To study the mechanism of gene repression by EBNA3A and to evaluate the relative contribution of PcG proteins during this process, we have selected the genomic neighbors CXCL10 and CXCL9 as a model for co-repressed and PcG-controlled genes. We show that EBNA3A binds to CBF1 occupied intergenic enhancers located between CXCL10 and CXCL9 and displaces the transactivator EBNA2. This impairs enhancer activity, resulting in a rapid transcriptional shut-down of both genes in a CBF1-dependent manner and initiation of a delayed gain of H3K27me3 marks covering an extended chromatin domain. H3K27me3 marks increase gradually and are maintained by EBNA3A. Our study provides direct evidence that repression by EBNA3A requires CBF1 and that EBNA3A and EBNA2 compete for access to CBF1 at identical genomic sites. Most importantly, our results demonstrate that transcriptional silencing by EBNA3A precedes the appearance of repressive PcG marks and indicate that both events are triggered by loss of enhancer activity. PMID

  2. Significance analysis of groups of genes in expression profiling studies.

    PubMed

    Chen, James J; Lee, Taewon; Delongchamp, Robert R; Chen, Tao; Tsai, Chen-An

    2007-08-15

    Gene class testing (GCT) is a statistical approach to determine whether some functionally predefined classes of genes express differently under two experimental conditions. GCT computes the P-value of each gene class based on the null distribution and the gene classes are ranked for importance in accordance with their P-values. Currently, two null hypotheses have been considered: the Q1 hypothesis tests the relative strength of association with the phenotypes among the gene classes, and the Q2 hypothesis assesses the statistical significance. These two hypotheses are related but not equivalent. We investigate three one-sided and two two-sided test statistics under Q1 and Q2. The null distributions of gene classes under Q1 are generated by permuting gene labels and the null distributions under Q2 are generated by permuting samples. We applied the five statistics to a diabetes dataset with 143 gene classes and to a breast cancer dataset with 508 GO (Gene Ontology) terms. In each statistic, the null distributions of the gene classes under Q1 are different from those under Q2 in both datasets, and their rankings can be different too. We clarify the one-sided and two-sided hypotheses, and discuss some issues regarding the Q1 and Q2 hypotheses for gene class ranking in the GCT. Because Q1 does not deal with correlations among genes, we prefer test based on Q2. Supplementary data are available at Bioinformatics online.

  3. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor.

    PubMed

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M; Francí, Clara; Gutierrez, Arantxa; Dave, Natàlia; Escrivà, Maria; Hernandez-Muñoz, Inma; Di Croce, Luciano; Helin, Kristian; García de Herreros, Antonio; Peiró, Sandra

    2008-08-01

    The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2). Embryonic stem (ES) cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumor cells, interference of PRC2 activity prevents the ability of Snail1 to downregulate CDH1 and partially derepresses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to the CDH1 promoter and the trimethylation of lysine 27 in histone H3. Moreover, Snail1 interacts with Suz12 and Ezh2, as shown by coimmunoprecipitation experiments. In conclusion, these results demonstrate that Snail1 recruits PRC2 to the CDH1 promoter and requires the activity of this complex to repress E-cadherin expression.

  4. Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2

    PubMed Central

    Zhang, Haikuo; Fillmore Brainson, Christine; Koyama, Shohei; Redig, Amanda J.; Chen, Ting; Li, Shuai; Gupta, Manav; Garcia-de-Alba, Carolina; Paschini, Margherita; Herter-Sprie, Grit S.; Lu, Gang; Zhang, Xin; Marsh, Bryan P.; Tuminello, Stephanie J.; Xu, Chunxiao; Chen, Zhao; Wang, Xiaoen; Akbay, Esra A.; Zheng, Mei; Palakurthi, Sangeetha; Sholl, Lynette M.; Rustgi, Anil K.; Kwiatkowski, David J.; Diehl, J Alan; Bass, Adam J.; Sharpless, Norman E.; Dranoff, Glenn; Hammerman, Peter S.; Ji, Hongbin; Bardeesy, Nabeel; Saur, Dieter; Watanabe, Hideo; Kim, Carla F.; Wong, Kwok-Kin

    2017-01-01

    Adenosquamous lung tumours, which are extremely poor prognosis, may result from cellular plasticity. Here, we demonstrate lineage switching of KRAS+ lung adenocarcinomas (ADC) to squamous cell carcinoma (SCC) through deletion of Lkb1 (Stk11) in autochthonous and transplant models. Chromatin analysis reveals loss of H3K27me3 and gain of H3K27ac and H3K4me3 at squamous lineage genes, including Sox2, ΔNp63 and Ngfr. SCC lesions have higher levels of the H3K27 methyltransferase EZH2 than the ADC lesions, but there is a clear lack of the essential Polycomb Repressive Complex 2 (PRC2) subunit EED in the SCC lesions. The pattern of high EZH2, but low H3K27me3 mark, is also prevalent in human lung SCC and SCC regions within ADSCC tumours. Using FACS-isolated populations, we demonstrate that bronchioalveolar stem cells and club cells are the likely cells-of-origin for SCC transitioned tumours. These findings shed light on the epigenetics and cellular origins of lineage-specific lung tumours. PMID:28387316

  5. Polycomb repressive complex 2 structure with inhibitor reveals a mechanism of activation and drug resistance

    PubMed Central

    Brooun, Alexei; Gajiwala, Ketan S.; Deng, Ya-Li; Liu, Wei; Bolaños, Ben; Bingham, Patrick; He, You-Ai; Diehl, Wade; Grable, Nicole; Kung, Pei-Pei; Sutton, Scott; Maegley, Karen A.; Yu, Xiu; Stewart, Al E.

    2016-01-01

    Polycomb repressive complex 2 (PRC2) mediates gene silencing through chromatin reorganization by methylation of histone H3 lysine 27 (H3K27). Overexpression of the complex and point mutations in the individual subunits of PRC2 have been shown to contribute to tumorigenesis. Several inhibitors of the PRC2 activity have shown efficacy in EZH2-mutated lymphomas and are currently in clinical development, although the molecular basis of inhibitor recognition remains unknown. Here we report the crystal structures of the inhibitor-bound wild-type and Y641N PRC2. The structures illuminate an important role played by a stretch of 17 residues in the N-terminal region of EZH2, we call the activation loop, in the stimulation of the enzyme activity, inhibitor recognition and the potential development of the mutation-mediated drug resistance. The work presented here provides new avenues for the design and development of next-generation PRC2 inhibitors through establishment of a structure-based drug design platform. PMID:27122193

  6. LANA-Mediated Recruitment of Host Polycomb Repressive Complexes onto the KSHV Genome during De Novo Infection

    PubMed Central

    Toth, Zsolt; Papp, Bernadett; Brulois, Kevin; Choi, Youn Jung; Gao, Shou-Jiang; Jung, Jae U.

    2016-01-01

    One of the hallmarks of the latent phase of Kaposi’s sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection. PMID:27606464

  7. Molecular anatomy of tunicate senescence: reversible function of mitochondrial and nuclear genes associated with budding cycles.

    PubMed

    Kawamura, Kaz; Kitamura, Seigo; Sekida, Satoko; Tsuda, Masayuki; Sunanaga, Takeshi

    2012-11-01

    Zooids of the asexual strain of Polyandrocarpa misakiensis have a lifespan of 4-5 months; before dying, they produce many buds, enabling continuation of the strain. This study was designed to investigate the nature of gene inactivation and reactivation during this continuous process of senescence and budding. During senescence, the zooidal epidermis showed acid β-galactosidase activity, lost proliferating cell nuclear antigen immunoreactivity and became ultrastructurally worn, indicating that the epidermis is a major tissue affected by the ageing process. Semi-quantitative PCR analysis showed that the genes encoding mitochondrial respiratory chains (MRCs) engaged in decreased transcriptional activity in senescent adults compared with younger adults. The results of in situ hybridization showed that the epidermis dramatically attenuates MRC expression during ageing but restores gene activity when budding commences. During budding and ageing, the nuclear gene Eed (a polycomb group component) was activated and inactivated in a pattern similar to that observed in MRCs. In buds, RNA interference (RNAi) of Eed attenuated Eed transcripts but did not affect the gene expression of pre-activated MRCs. A tunicate humoral factor, TC14-3, could induce Eed, accompanying the reactivation of MRC in adult zooids. When RNAi of Eed and Eed induction were performed simultaneously, zooidal cells and tissues failed to engage in MRC reactivation, indicating the involvement of Eed in MRC activation. Results of this study provide evidence that the mitochondrial gene activities of Polyandrocarpa can be reversed during senescence and budding, suggesting that they are regulated by nuclear polycomb group genes.

  8. Altered DNA methylation landscapes of polycomb-repressed loci are associated with prostate cancer progression and ERG oncogene expression in prostate cancer.

    PubMed

    Kron, Ken; Trudel, Dominique; Pethe, Vaijayanti; Briollais, Laurent; Fleshner, Neil; van der Kwast, Theodorus; Bapat, Bharati

    2013-07-01

    To assess differentially methylated "landscapes" according to prostate cancer Gleason score (GS) and ERG oncogene expression status, and to determine the extent of polycomb group (PcG) target gene involvement, we sought to assess the genome-wide DNA methylation profile of prostate cancer according to Gleason score and ERG expression. Genomic DNA from 39 prostate cancer specimens was hybridized to CpG island microarrays through differential methylation hybridization. We compared methylation profiles between Gleason score and ERG expression status as well as Gleason score stratified by ERG expression status. In addition, we compared results from our dataset to publicly available datasets of histone modifications in benign prostate cells. We discovered hundreds of distinct differentially methylated regions (DMR) associated with increasing Gleason score and ERG. Furthermore, the number of DMRs associated with Gleason score was greatly expanded by stratifying samples into ERG-positive versus ERG-negative, with ERG-positive/GS-associated DMRs being primarily hypermethylated as opposed to hypomethylated. Finally, we found that there was a significant overlap between either Gleason score-related or ERG-hypermethylated DMRs and distinct regions in benign epithelial cells that have PcG signatures (H3K27me3, SUZ12) and lack active gene expression signatures (H3K4me3, RNA pol II). This work defines methylation landscapes of prostate cancer according to Gleason score, and suggests that initiating genetic events may influence the prostate cancer epigenome, which is further perturbed as prostate cancer progresses. Moreover, CpG islands with silent chromatin signatures in benign cells are particularly susceptible to prostate cancer-related hypermethylation. ©2013 AACR.

  9. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells

    PubMed Central

    Juan, Aster H.; Derfoul, Assia; Feng, Xuesong; Ryall, James G.; Dell'Orso, Stefania; Pasut, Alessandra; Zare, Hossein; Simone, James M.; Rudnicki, Michael A.; Sartorelli, Vittorio

    2011-01-01

    Satellite cells (SCs) sustain muscle growth and empower adult skeletal muscle with vigorous regenerative abilities. Here, we report that EZH2, the enzymatic subunit of the Polycomb-repressive complex 2 (PRC2), is expressed in both Pax7+/Myf5− stem cells and Pax7+/Myf5+ committed myogenic precursors and is required for homeostasis of the adult SC pool. Mice with conditional ablation of Ezh2 in SCs have fewer muscle postnatal Pax7+ cells and reduced muscle mass and fail to appropriately regenerate. These defects are associated with impaired SC proliferation and derepression of genes expressed in nonmuscle cell lineages. Thus, EZH2 controls self-renewal and proliferation, and maintains an appropriate transcriptional program in SCs. PMID:21498568

  10. Association of duffy blood group gene polymorphisms with IL8 gene in chronic periodontitis.

    PubMed

    Sippert, Emília Ângela; de Oliveira e Silva, Cléverson; Visentainer, Jeane Eliete Laguila; Sell, Ana Maria

    2013-01-01

    The antigens of the Duffy blood group system (DARC) act as a receptor for the interleukin IL-8. IL-8 plays an important role in the pathogenesis of chronic periodontitis due to its chemotactic properties on neutrophils. The aim of this study was to investigate a possible association of Duffy blood group gene polymorphisms with the -353T>A, -845T>C and -738T>A SNPs of the IL8 gene in chronic periodontitis. One hundred and twenty-four individuals with chronic periodontitis and 187 controls were enrolled. DNA was extracted using the salting-out method. The Duffy genotypes and IL8 gene promoter polymorphisms were investigated by PCR-RFLP. Statistical analyses were conducted using the Chi square test with Yates correction or Fisher's Exact Test, and the possibility of associations were evaluated by odds ratio with a 95% confidence interval. When analyzed separately, for the Duffy blood group system, differences in the genotype and allele frequencies were not observed between all the groups analyzed; and, in nonsmokers, the -845C allele (3.6% vs. 0.4%), -845TC genotype (7.3% vs. 0.7%) and the CTA haplotype (3.6% vs. 0.4%) were positively associated with chronic periodontitis. For the first time to our knowledge, the polymorphisms of erythroid DARC plus IL8 -353T>A SNPs were associated with chronic periodontitis in Brazilian individuals. In Afro-Brazilians patients, the FY*02N.01 with IL8 -353A SNP was associated with protection to chronic periodontitis.

  11. Transcriptional Regulation of Arabidopsis Polycomb Repressive Complex 2 Coordinates Cell-Type Proliferation and Differentiation[OPEN

    PubMed Central

    Pu, Li; Turco, Gina; Morao, Ana Karina; Kim, Dahae

    2016-01-01

    Spatiotemporal regulation of transcription is fine-tuned at multiple levels, including chromatin compaction. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of Histone 3 at lysine 27 (H3K27me3), which is the hallmark of a repressive chromatin state. Multiple PRC2 complexes have been reported in Arabidopsis thaliana to control the expression of genes involved in developmental transitions and maintenance of organ identity. Here, we show that PRC2 member genes display complex spatiotemporal gene expression patterns and function in root meristem and vascular cell proliferation and specification. Furthermore, PRC2 gene expression patterns correspond with vascular and nonvascular tissue-specific H3K27me3-marked genes. This tissue-specific repression via H3K27me3 regulates the balance between cell proliferation and differentiation. Using enhanced yeast one-hybrid analysis, upstream regulators of the PRC2 member genes are identified, and genetic analysis demonstrates that transcriptional regulation of some PRC2 genes plays an important role in determining PRC2 spatiotemporal activity within a developing organ. PMID:27650334

  12. Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia

    PubMed Central

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2016-01-01

    Recently, we identified deregulated expression of the B-cell specific transcription factor MEF2C in T-cell acute lymphoid leukemia (T-ALL). Here, we performed sequence analysis of a regulatory upstream section of MEF2C in T-ALL cell lines which, however, proved devoid of mutations. Unexpectedly, we found strong conservation between the regulatory upstream region of MEF2C (located at chromosomal band 5q14) and an intergenic stretch at 7q11 located between STAG3L4 and AUTS2, covering nearly 20 kb. While the non-coding gene STAG3L4 was inconspicuously expressed, AUTS2 was aberrantly upregulated in 6% of T-ALL patients (public dataset GSE42038) and in 3/24 T-ALL cell lines, two of which represented very immature differentiation stages. AUTS2 expression was higher in normal B-cells than in T-cells, indicating lineage-specific activity in lymphopoiesis. While excluding chromosomal aberrations, examinations of AUTS2 transcriptional regulation in T-ALL cells revealed activation by IL7-IL7R-STAT5-signalling and MEF2C. AUTS2 protein has been shown to interact with polycomb repressor complex 1 subtype 5 (PRC1.5), transforming this particular complex into an activator. Accordingly, expression profiling and functional analyses demonstrated that AUTS2 activated while PCGF5 repressed transcription of NKL homeobox gene MSX1 in T-ALL cells. Forced expression and pharmacological inhibition of EZH2 in addition to H3K27me3 analysis indicated that PRC2 repressed MSX1 as well. Taken together, we found that AUTS2 and MEF2C, despite lying on different chromosomes, share strikingly similar regulatory upstream regions and aberrant expression in T-ALL subsets. Our data implicate chromatin complexes PRC1/AUTS2 and PRC2 in a gene network in T-ALL regulating early lymphoid differentiation. PMID:27322685

  13. LATS2 Positively Regulates Polycomb Repressive Complex 2

    PubMed Central

    Torigata, Kosuke; Daisuke, Okuzaki; Mukai, Satomi; Hatanaka, Akira; Ohka, Fumiharu; Motooka, Daisuke; Nakamura, Shota; Ohkawa, Yasuyuki; Yabuta, Norikazu; Kondo, Yutaka; Nojima, Hiroshi

    2016-01-01

    LATS2, a pivotal Ser/Thr kinase of the Hippo pathway, plays important roles in many biological processes. LATS2 also function in Hippo-independent pathway, including mitosis, DNA damage response and epithelial to mesenchymal transition. However, the physiological relevance and molecular basis of these LATS2 functions remain obscure. To understand novel functions of LATS2, we constructed a LATS2 knockout HeLa-S3 cell line using TAL-effector nuclease (TALEN). Integrated omics profiling of this cell line revealed that LATS2 knockout caused genome-wide downregulation of Polycomb repressive complex 2 (PRC2) and H3K27me3. Cell-cycle analysis revealed that downregulation of PRC2 was not due to cell cycle aberrations caused by LATS2 knockout. Not LATS1, a homolog of LATS2, but LATS2 bound PRC2 on chromatin and phosphorylated it. LATS2 positively regulates histone methyltransferase activity of PRC2 and their expression at both the mRNA and protein levels. Our findings reveal a novel signal upstream of PRC2, and provide insight into the crucial role of LATS2 in coordinating the epigenome through regulation of PRC2. PMID:27434182

  14. Evolutionary history of the Rh blood group-related genes in vertebrates.

    PubMed

    Kitano, T; Saitou, N

    2000-08-01

    Rh and its homologous Rh50 gene products are considered to form heterotetramers on erythrocyte membranes. Rh protein has Rh blood group antigen sites, while Rh50 protein does not, and is more conserved than Rh protein. We previously determined both Rh and Rh50 gene cDNA coding regions from mouse and rat, and carried out phylogenetic analyses. In this study, we determined Rh50 gene cDNA coding regions from African clawed frog and Japanese medaka fish, and examined the long-term evolution of the Rh blood group and related genes. We constructed the phylogenetic tree from amino acid sequences. Rh50 genes of African clawed frog and Japanese medaka fish formed a cluster with mammalian Rh50 genes. The gene duplication time between Rh and Rh50 genes was estimated to be about 510 million years ago based on this tree. This period roughly corresponds to the Cambrian, before the divergence between jawless fish and jawed vertebrates. We also BLAST-searched an amino acid sequence database, and the Rh blood group and related genes were found to have homology with ammonium transporter genes of many organisms. Ammonium transporter genes can be classified into two major groups (amt alpha and amt beta). Both groups contain genes from three domains (bacteria, archaea, and eukaryota). The Rh blood group and related genes are separated from both amt alpha and beta groups.

  15. [Influence of spv plasmid genes group in Salmonella Enteritidis virulence for chickens. I. Occurrence of spv plasmid genes group in Salmonella Enteritidis large virulence plasmid].

    PubMed

    Madajczak, Grzegorz; Binek, Marian

    2005-01-01

    Many Salmonella Enteritidis virulence factors are encoded by genes localized on plasmids, especially large virulence plasmid, in highly conserved fragment, they create spv plasmid gene group. The aims of realized researches were spv genes occurrence evaluation and composition analysis among Salmonella Enteritidis strains caused infection in chickens. Researches were realized on 107 isolates, where in every cases large virulence plasmid 59 kbp size were detected. Specific nucleotides sequences of spv genes (spvRABCD) were detected in 47.7% of isolates. In the rest of examined bacteria spv genes occurred variably. Most often extreme genes of spv group, like spvR and spvD were absent, what could indicate that factors encoded by them are not most important for Salmonella Enteritidis live and their expressed virulence.

  16. Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    PubMed Central

    Bouyer, Daniel; Roudier, Francois; Heese, Maren; Andersen, Ellen D.; Gey, Delphine; Nowack, Moritz K.; Goodrich, Justin; Renou, Jean-Pierre; Grini, Paul E.; Colot, Vincent; Schnittger, Arp

    2011-01-01

    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage. PMID:21423668

  17. Novel gemini cationic lipids with carbamate groups for gene delivery.

    PubMed

    Zhao, Yi-Nan; Qureshi, Farooq; Zhang, Shu-Biao; Cui, Shao-Hui; Wang, Bing; Chen, Hui-Ying; Lv, Hong-Tao; Zhang, Shu-Fen; Huang, Leaf

    2014-05-21

    To obtain efficient non-viral vectors, a series of Gemini cationic lipids with carbamate linkers between headgroups and hydrophobic tails were synthesized. They have the hydrocarbon chains of 12, 14, 16 and 18 carbon atoms as tails, designated as G12, G14, G16 and G18, respectively. These Gemini cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. The DNA-bonding ability of these Gemini cationic liposomes was much better than their mono-head counterparts (designated as M12, M14, M16 and M18, respectively). In the same series of liposomes, bonding ability declined with an increase in tail length. They were tested for their gene-transferring capabilities in Hep-2 and A549 cells. They showed higher transfection efficiency than their mono-head counterparts and were comparable or superior in transfection efficiency and cytotoxicity to the commercial liposomes, DOTAP and Lipofectamine 2000. Our results convincingly demonstrate that the gene-transferring capabilities of these cationic lipids depended on hydrocarbon chain length. Gene transfection efficiency was maximal at a chain length of 14, as G14 can silence about 80 % of luciferase in A549 cells. Cell uptake results indicate that Gemini lipid delivery systems could be internalised by cells very efficiently. Thus, the Gemini cationic lipids could be used as synthetic non-viral gene delivery carriers for further study.

  18. Novel gemini cationic lipids with carbamate groups for gene delivery

    PubMed Central

    Zhao, Yi-Nan; Qureshi, Farooq; Zhang, Shu-Biao; Cui, Shao-Hui; Wang, Bing; Chen, Hui-Ying; Lv, Hong-Tao; Zhang, Shu-Fen; Huang, Leaf

    2014-01-01

    To obtain efficient non-viral vectors, a series of Gemini cationic lipids with carbamate linkers between headgroups and hydrophobic tails were synthesized. They have the hydrocarbon chains of 12, 14, 16 and 18 carbon atoms as tails, designated as G12, G14, G16 and G18, respectively. These Gemini cationic lipids were prepared into cationic liposomes for the study of the physicochemical properties and gene delivery. The DNA-bonding ability of these Gemini cationic liposomes was much better than their mono-head counterparts (designated as M12, M14, M16 and M18, respectively). In the same series of liposomes, bonding ability declined with an increase in tail length. They were tested for their gene-transferring capabilities in Hep-2 and A549 cells. They showed higher transfection efficiency than their mono-head counterparts and were comparable or superior in transfection efficiency and cytotoxicity to the commercial liposomes, DOTAP and Lipofectamine 2000. Our results convincingly demonstrate that the gene-transferring capabilities of these cationic lipids depended on hydrocarbon chain length. Gene transfection efficiency was maximal at a chain length of 14, as G14 can silence about 80 % of luciferase in A549 cells. Cell uptake results indicate that Gemini lipid delivery systems could be internalised by cells very efficiently. Thus, the Gemini cationic lipids could be used as synthetic non-viral gene delivery carriers for further study. PMID:25045521

  19. In vivo chromatin accessibility correlates with gene silencing in Drosophila.

    PubMed Central

    Boivin, A; Dura, J M

    1998-01-01

    Gene silencing by heterochromatin is a well-known phenomenon that, in Drosophila, is called position effect variegation (PEV). The long-held hypothesis that this gene silencing is associated with an altered chromatin structure received direct support only recently. Another gene-silencing phenomenon in Drosophila, although similar in its phenotype of variegation, has been shown to be associated with euchromatic sequences and is dependent on developmental regulators of the Polycomb group (Pc-G) of gene products. One model proposes that the Pc-G products may cause a local heterochromatinization that maintains a repressed state of transcription of their target genes. Here, we test these models by measuring the accessibility of white or miniwhite sequences, in different contexts, to the Escherichia coli dam DNA methyltransferase in vivo. We present evidence that PEV and Pc-G-mediated repression mechanisms, although based on different protein factors, may indeed involve similar higher-order chromatin structure. PMID:9832530

  20. The morphogen Decapentaplegic employs a two-tier mechanism to activate target retinal determining genes during ectopic eye formation in Drosophila

    PubMed Central

    Aggarwal, Poonam; Gera, Jayati; Mandal, Lolitika; Mandal, Sudip

    2016-01-01

    Understanding the role of morphogen in activating its target genes, otherwise epigenetically repressed, during change in cell fate specification is a very fascinating yet relatively unexplored domain. Our in vivo loss-of-function genetic analyses reveal that specifically during ectopic eye formation, the morphogen Decapentaplegic (Dpp), in conjunction with the canonical signaling responsible for transcriptional activation of retinal determining (RD) genes, triggers another signaling cascade. Involving dTak1 and JNK, this pathway down-regulates the expression of polycomb group of genes to do away with their repressive role on RD genes. Upon genetic inactivation of members of this newly identified pathway, the canonical Dpp signaling fails to trigger RD gene expression beyond a threshold, critical for ectopic photoreceptor differentiation. Moreover, the drop in ectopic RD gene expression and subsequent reduction in ectopic photoreceptor differentiation resulting from inactivation of dTak1 can be rescued by down-regulating the expression of polycomb group of genes. Our results unravel an otherwise unknown role of morphogen in coordinating simultaneous transcriptional activation and de-repression of target genes implicating its importance in cellular plasticity. PMID:27270790

  1. Mutations in the Drosophila melanogaster gene encoding S-adenosylmethionine suppress position-effect variegation

    SciTech Connect

    Larsson, J.; Rasmuson-Lestander, A.; Zhang, Jingpu

    1996-06-01

    In Drosophila melanogaster, the study of trans-acting modifier mutations of position-effect variegation and Polycomb group (Pc-G) genes have been useful tools to investigate genes involved in chromatin structure. We have cloned a modifier gene, Suppressor of zeste 5 (Su(z)5), which encodes S-adenosylmethionine synthetase, and we present here molecular results and data concerning its expression in mutants and genetic interactions. The mutant alleles Su(z)5, l(2)R23 and l(2)M6 show suppression of w{sup m4} and also of two white mutants induced by roo element insertions in the regulatory region i.e., w{sup is} (in combination with z{sup 1}) and w{sup sp1}. Two of the Su(z)5 alleles, as well as a deletion of the gene, also act as enhancers of Polycomb by increasing the size of sex combes on midleg. The results suggest that Su(z)5 is connected with regulation of chromatin structure. The enzyme S-adenosylmethionine synthetase is involved in the synthesis of S-adenosylmethionine, a methyl group donor and also, after decarboxylation, a propylamino group donor in the biosynthesis of polyamines. Our results from HPLC analysis show that in ovaries from heterozygous Su(z)5 mutants the content of spermine is significantly reduced. Results presented here suggest that polyamines are an important molecule class in the regulation of chromatin structure. 50 refs., 5 figs., 3 tabs.

  2. Association of gene polymorphisms in ABO blood group chromosomal regions and menstrual disorders.

    PubMed

    Su, Yong; Kong, Gui-Lian; Su, Ya-Li; Zhou, Yan; Lv, Li-Fang; Wang, Qiong; Huang, Bao-Ping; Zheng, Rui-Zhi; Li, Quan-Zhong; Yuan, Hui-Juan; Zhao, Zhi-Gang

    2015-06-01

    This study aimed to investigate whether single nucleotide polymorphisms (SNPs) located near the gene of the ABO blood group play an important role in the genetic aetiology of menstrual disorders (MDs). Polymerase chain reaction-ligase detection reaction technology was used to detect eight SNPs near the ABO gene location on the chromosomes in 250 cases of MD and 250 cases of normal menstruation. The differences in the distribution of each genotype, as well as the allele frequency in the normal and control groups, were analysed using Pearson's χ(2) test to search for disease-associated loci. SHEsis software was used to analyse the linkage disequilibrium and haplotype frequencies and to inspect the correlation between haplotypes and the disease. Compared with the control group, the experimental group exhibited statistically significant differences in the genotype distribution frequencies of the rs657152 locus of the ABO blood group gene and the rs17250673 locus of the tumour necrosis factor cofactor 2 (TRAF2) gene, which is located downstream of the ABO gene. The allele distribution frequencies of rs657152 and rs495828 loci in the ABO blood group gene exhibited significant differences between the groups. Dominant and recessive genetic model analysis of each locus revealed that the experimental group exhibited statistically significant differences from the control group in the genotype distribution frequencies of rs657152 and rs495828 loci, respectively. These results indicate that the ABO blood group gene and TRAF2 gene may be a cause of MDs.

  3. Polycomb Repressive Complex 2-Mediated Chromatin Repression Guides Effector CD8(+) T Cell Terminal Differentiation and Loss of Multipotency.

    PubMed

    Gray, Simon M; Amezquita, Robert A; Guan, Tianxia; Kleinstein, Steven H; Kaech, Susan M

    2017-04-04

    Understanding immunological memory formation depends on elucidating how multipotent memory precursor (MP) cells maintain developmental plasticity and longevity to provide long-term immunity while other effector cells develop into terminally differentiated effector (TE) cells with limited survival. Profiling active (H3K27ac) and repressed (H3K27me3) chromatin in naive, MP, and TE CD8(+) T cells during viral infection revealed increased H3K27me3 deposition at numerous pro-memory and pro-survival genes in TE relative to MP cells, indicative of fate restriction, but permissive chromatin at both pro-memory and pro-effector genes in MP cells, indicative of multipotency. Polycomb repressive complex 2 deficiency impaired clonal expansion and TE cell differentiation, but minimally impacted CD8(+) memory T cell maturation. Abundant H3K27me3 deposition at pro-memory genes occurred late during TE cell development, probably from diminished transcription factor FOXO1 expression. These results outline a temporal model for loss of memory cell potential through selective epigenetic silencing of pro-memory genes in effector T cells.

  4. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus.

    PubMed

    Abou El Hassan, Mohamed; Yu, Tao; Song, Lan; Bremner, Rod

    2015-05-15

    CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers.

  5. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas.

    PubMed

    Piunti, Andrea; Hashizume, Rintaro; Morgan, Marc A; Bartom, Elizabeth T; Horbinski, Craig M; Marshall, Stacy A; Rendleman, Emily J; Ma, Quanhong; Takahashi, Yoh-Hei; Woodfin, Ashley R; Misharin, Alexander V; Abshiru, Nebiyu A; Lulla, Rishi R; Saratsis, Amanda M; Kelleher, Neil L; James, C David; Shilatifard, Ali

    2017-02-27

    Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brainstem tumor characterized by rapid and uniform patient demise. A heterozygous point mutation of histone H3 occurs in more than 80% of these tumors and results in a lysine-to-methionine substitution (H3K27M). Expression of this histone mutant is accompanied by a reduction in the levels of polycomb repressive complex 2 (PRC2)-mediated H3K27 trimethylation (H3K27me3), and this is hypothesized to be a driving event of DIPG oncogenesis. Despite a major loss of H3K27me3, PRC2 activity is still detected in DIPG cells positive for H3K27M. To investigate the functional roles of H3K27M and PRC2 in DIPG pathogenesis, we profiled the epigenome of H3K27M-mutant DIPG cells and found that H3K27M associates with increased H3K27 acetylation (H3K27ac). In accordance with previous biochemical data, the majority of the heterotypic H3K27M-K27ac nucleosomes colocalize with bromodomain proteins at the loci of actively transcribed genes, whereas PRC2 is excluded from these regions; this suggests that H3K27M does not sequester PRC2 on chromatin. Residual PRC2 activity is required to maintain DIPG proliferative potential, by repressing neuronal differentiation and function. Finally, to examine the therapeutic potential of blocking the recruitment of bromodomain proteins by heterotypic H3K27M-K27ac nucleosomes in DIPG cells, we performed treatments in vivo with BET bromodomain inhibitors and demonstrate that they efficiently inhibit tumor progression, thus identifying this class of compounds as potential therapeutics in DIPG.

  6. Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells.

    PubMed

    van den Boom, Vincent; Rozenveld-Geugien, Marjan; Bonardi, Francesco; Malanga, Donatella; van Gosliga, Djoke; Heijink, Anne Margriet; Viglietto, Giuseppe; Morrone, Giovanni; Fusetti, Fabrizia; Vellenga, Edo; Schuringa, Jan Jacob

    2013-03-28

    The Polycomb group (PcG) protein BMI1 is a key factor in regulating hematopoietic stem cell (HSC) and leukemic stem cell self-renewal and functions in the context of the Polycomb repressive complex 1 (PRC1). In humans, each of the 5 subunits of PRC1 has paralog family members of which many reside in PRC1 complexes, likely in a mutually exclusive manner, pointing toward a previously unanticipated complexity of Polycomb-mediated silencing. We used an RNA interference screening approach to test the functionality of these paralogs in human hematopoiesis. Our data demonstrate a lack of redundancy between various paralog family members, suggestive of functional diversification between PcG proteins. By using an in vivo biotinylation tagging approach followed by liquid chromatography-tandem mass spectrometry to identify PcG interaction partners, we confirmed the existence of multiple specific PRC1 complexes. We find that CBX2 is a nonredundant CBX paralog vital for HSC and progenitor function that directly regulates the expression of the cyclin-dependent kinase inhibitor p21, independently of BMI1 that dominantly controls expression of the INK4A/ARF locus. Taken together, our data show that different PRC1 paralog family members have nonredundant and locus-specific gene regulatory activities that are essential for human hematopoiesis.

  7. Fc-receptor and M-protein genes of group A streptococci are products of gene duplication.

    PubMed Central

    Heath, D G; Cleary, P P

    1989-01-01

    The partial nucleotide sequence for an Fc-receptor gene from an M-type 76 group A streptococcus was determined. DNA sequence analysis revealed considerable sequence similarity between the Fc-receptor and M-protein genes in their proposed promoter regions, signal sequences, and 3' termini. Additional analysis indicated that the deduced Fc-receptor protein contains a proline-rich region and membrane anchor region highly similar to that of M protein. In view of these results, we postulated that Fc-receptor and M-protein genes of group A streptococci are the products of gene duplication from a common ancestral gene. It is proposed that DNA sequence similarity between these two genes may allow for extragenic homologous recombination as a means of generating antigenic diversity in these two surface proteins. PMID:2660147

  8. Misannotation Awareness: A Tale of Two Gene-Groups

    PubMed Central

    Nobre, Tania; Campos, M. Doroteia; Lucic-Mercy, Eva; Arnholdt-Schmitt, Birgit

    2016-01-01

    Incorrectly or simply not annotated data is largely increasing in most public databases, undoubtedly caused by the rise in sequence data and the more recent boom of genomic projects. Molecular biologists and bioinformaticists should join efforts to tackle this issue. Practical challenges have been experienced when studying the alternative oxidase (AOX) gene family, and hence the motivation for the present work. Commonly used databases were screened for their capacity to distinguish AOX from the plastid terminal oxidase (also called plastoquinol terminal oxidase; PTOX) and we put forward a simple approach, based on amino acids signatures, that unequivocally distinguishes these gene families. Further, available sequence data on the AOX family in plants was carefully revised to: (1) confirm the classification as AOX and (2) identify to which AOX family member they belong to. We bring forward the urgent need of misannotation awareness and re-annotation of public AOX sequences by highlighting different types of misclassifications and the large under-estimation of data availability. PMID:27379147

  9. Deletion of Polycomb Repressive Complex 2 From Mouse Intestine Causes Loss of Stem Cells.

    PubMed

    Koppens, Martijn A J; Bounova, Gergana; Gargiulo, Gaetano; Tanger, Ellen; Janssen, Hans; Cornelissen-Steijger, Paulien; Blom, Marleen; Song, Ji-Ying; Wessels, Lodewyk F A; van Lohuizen, Maarten

    2016-10-01

    The polycomb repressive complex 2 (PRC2) regulates differentiation by contributing to repression of gene expression and thereby stabilizing the fate of stem cells and their progeny. PRC2 helps to maintain adult stem cell populations, but little is known about its functions in intestinal stem cells. We studied phenotypes of mice with intestine-specific deletion of the PRC2 proteins embryonic ectoderm development (EED) (a subunit required for PRC2 function) and enhancer of zeste homolog 2 (EZH2) (a histone methyltransferase). We performed studies of AhCre;EedLoxP/LoxP (EED knockout) mice and AhCre;Ezh2LoxP/LoxP (EZH2 knockout) mice, which have intestine-specific disruption in EED and EZH2, respectively. Small intestinal crypts were isolated and subsequently cultured to grow organoids. Intestines and organoids were analyzed by immunohistochemical, in situ hybridization, RNA sequence, and chromatin immunoprecipitation methods. Intestines of EED knockout mice had massive crypt degeneration and lower numbers of proliferating cells compared with wild-type control mice. Cdkn2a became derepressed and we detected increased levels of P21. We did not observe any differences between EZH2 knockout and control mice. Intestinal crypts from EED knockout mice had signs of aberrant differentiation of uncommitted crypt cells-these differentiated toward the secretory cell lineage. Furthermore, crypts from EED-knockout mice had impaired Wnt signaling and concomitant loss of intestinal stem cells, this phenotype was not reversed upon ectopic stimulation of Wnt and Notch signaling in organoids. Analysis of gene expression patterns from intestinal tissues of EED knockout mice showed dysregulation of several genes involved in Wnt signaling. Wnt signaling was regulated directly by PRC2. In intestinal tissues of mice, PRC2 maintains small intestinal stem cells by promoting proliferation and preventing differentiation in the intestinal stem cell compartment. PRC2 controls gene expression in

  10. The Agaricus bisporus cox1 gene: the longest mitochondrial gene and the largest reservoir of mitochondrial group i introns.

    PubMed

    Férandon, Cyril; Moukha, Serge; Callac, Philippe; Benedetto, Jean-Pierre; Castroviejo, Michel; Barroso, Gérard

    2010-11-18

    In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a "Homing Endonuclease Gene" (heg) encoding a DNA endonuclease acting in transfer and site-specific integration ("homing") and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote.

  11. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2016-12-30

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation.

  12. Behavior predicts genes structure in a wild primate group.

    PubMed

    Altmann, J; Alberts, S C; Haines, S A; Dubach, J; Muruthi, P; Coote, T; Geffen, E; Cheesman, D J; Mututua, R S; Saiyalel, S N; Wayne, R K; Lacy, R C; Bruford, M W

    1996-06-11

    The predictability of genetic structure from social structure and differential mating success was tested in wild baboons. Baboon populations are subdivided into cohesive social groups that include multiple adults of both sexes. As in many mammals, males are the dispersing sex. Social structure and behavior successfully predicted molecular genetic measures of relatedness and variance in reproductive success. In the first quantitative test of the priority-of-access model among wild primates, the reproductive priority of dominant males was confirmed by molecular genetic analysis. However, the resultant high short-term variance in reproductive success did not translate into equally high long-term variance because male dominance status was unstable. An important consequence of high but unstable short-term variance is that age cohorts will tend to be paternal sibships and social groups will be genetically substructured by age.

  13. Expression of blood group genes by mesenchymal stem cells

    PubMed Central

    Schäfer, Richard; Schnaidt, Martina; Klaffschenkel, Roland A.; Siegel, Georg; Schüle, Michael; Rädlein, Maria Anna; Hermanutz-Klein, Ursula; Ayturan, Miriam; Buadze, Marine; Gassner, Christoph; Danielyan, Lusine; Kluba, Torsten; Northoff, Hinnak; Flegel, Willy A.

    2011-01-01

    Incompatible blood group antigens are highly immunogenic and can cause graft rejections. Focusing on distinct carbohydrate- and protein-based membrane structures, defined by blood group antigens, we investigated human bone marrow-derived mesenchymal stem cells (MSCs) cultured in human serum. The presence of H (CD173), ABO, RhD, RhCE, RhAG, Kell, urea transporter type B (SLC14A1, previously known as JK), and Duffy antigen receptor of chemokines (DARC) was evaluated at the levels of genome, transcriptome and antigen. Fucosyltransferase-1 (FUT1), RHCE, KEL, SLC14A1 (JK) and DARC mRNA were transcribed in MSCs. FUT1 mRNA transcription was lost during differentiation. The mRNA transcription of SLC14A1 (JK) decreased during chondrogenic differentiation, while that of DARC increased during adipogenic differentiation. All MSCs synthesized SLC14A1 (JK) but no DARC protein. However, none of the protein antigens tested occurred on the surface, indicating a lack of associated protein function in the membrane. As A and B antigens are neither expressed nor adsorbed, concerns of ABO compatibility with human serum supplements during culture are alleviated. The H antigen expression by GD2dim+ MSCs identified two distinct MSC subpopulations and enabled their isolation. We hypothesize that GD2dim+H+ MSCs retain a better “stemness”. Because immunogenic blood group antigens are lacking, they cannot affect MSC engraftment in vivo, which is promising for clinical applications. PMID:21418181

  14. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns

    PubMed Central

    Haugen, Peik; Bhattacharya, Debashish; Palmer, Jeffrey D; Turner, Seán; Lewis, Louise A; Pryer, Kathleen M

    2007-01-01

    Background Group I introns are one of the four major classes of introns as defined by their distinct splicing mechanisms. Because they catalyze their own removal from precursor transcripts, group I introns are referred to as autocatalytic introns. Group I introns are common in fungal and protist nuclear ribosomal RNA genes and in organellar genomes. In contrast, they are rare in all other organisms and genomes, including bacteria. Results Here we report five group I introns, each containing a LAGLIDADG homing endonuclease gene (HEG), in large subunit (LSU) rRNA genes of cyanobacteria. Three of the introns are located in the LSU gene of Synechococcus sp. C9, and the other two are in the LSU gene of Synechococcus lividus strain C1. Phylogenetic analyses show that these introns and their HEGs are closely related to introns and HEGs located at homologous insertion sites in organellar and bacterial rDNA genes. We also present a compilation of group I introns with homing endonuclease genes in bacteria. Conclusion We have discovered multiple HEG-containing group I introns in a single bacterial gene. To our knowledge, these are the first cases of multiple group I introns in the same bacterial gene (multiple group I introns have been reported in at least one phage gene and one prophage gene). The HEGs each contain one copy of the LAGLIDADG motif and presumably function as homodimers. Phylogenetic analysis, in conjunction with their patchy taxonomic distribution, suggests that these intron-HEG elements have been transferred horizontally among organelles and bacteria. However, the mode of transfer and the nature of the biological connections among the intron-containing organisms are unknown. PMID:17825109

  15. Mice Expressing RHAG and RHD Human Blood Group Genes

    PubMed Central

    Goossens, Dominique; da Silva, Nelly; Metral, Sylvain; Cortes, Ulrich; Callebaut, Isabelle; Picot, Julien; Mouro-Chanteloup, Isabelle; Cartron, Jean-Pierre

    2013-01-01

    Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously. PMID:24260394

  16. Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index

    PubMed Central

    Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R.; Chung, I-Fang

    2011-01-01

    Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing

  17. Identification of single- and multiple-class specific signature genes from gene expression profiles by group marker index.

    PubMed

    Tsai, Yu-Shuen; Aguan, Kripamoy; Pal, Nikhil R; Chung, I-Fang

    2011-01-01

    Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing

  18. The Agaricus bisporus cox1 Gene: The Longest Mitochondrial Gene and the Largest Reservoir of Mitochondrial Group I Introns

    PubMed Central

    Férandon, Cyril; Moukha, Serge; Callac, Philippe; Benedetto, Jean-Pierre; Castroviejo, Michel; Barroso, Gérard

    2010-01-01

    In eukaryotes, introns are located in nuclear and organelle genes from several kingdoms. Large introns (up to 5 kbp) are frequent in mitochondrial genomes of plant and fungi but scarce in Metazoa, even if these organisms are grouped with fungi among the Opisthokonts. Mitochondrial introns are classified in two groups (I and II) according to their RNA secondary structure involved in the intron self-splicing mechanism. Most of these mitochondrial group I introns carry a “Homing Endonuclease Gene” (heg) encoding a DNA endonuclease acting in transfer and site-specific integration (“homing”) and allowing intron spreading and gain after lateral transfer even between species from different kingdoms. Opposed to this gain mechanism, is another which implies that introns, which would have been abundant in the ancestral genes, would mainly evolve by loss. The importance of both mechanisms (loss and gain) is matter of debate. Here we report the sequence of the cox1 gene of the button mushroom Agaricus bisporus, the most widely cultivated mushroom in the world. This gene is both the longest mitochondrial gene (29,902 nt) and the largest group I intron reservoir reported to date with 18 group I and 1 group II. An exhaustive analysis of the group I introns available in cox1 genes shows that they are mobile genetic elements whose numerous events of loss and gain by lateral transfer combine to explain their wide and patchy distribution extending over several kingdoms. An overview of intron distribution, together with the high frequency of eroded heg, suggests that they are evolving towards loss. In this landscape of eroded and lost intron sequences, the A. bisporus cox1 gene exhibits a peculiar dynamics of intron keeping and catching, leading to the largest collection of mitochondrial group I introns reported to date in a Eukaryote. PMID:21124976

  19. No Distinction of Orthology/Paralogy between Human and Chimpanzee Rh Blood Group Genes

    PubMed Central

    Kitano, Takashi; Kim, Choong-Gon; Blancher, Antoine; Saitou, Naruya

    2016-01-01

    On human (Homo sapiens) chromosome 1, there is a tandem duplication encompassing Rh blood group genes (Hosa_RHD and Hosa_RHCE). This duplication occurred in the common ancestor of humans, chimpanzees (Pan troglodytes), and gorillas, after splitting from their common ancestor with orangutans. Although several studies have been conducted on ape Rh blood group genes, the clear genome structures of the gene clusters remain unknown. Here, we determined the genome structure of the gene cluster of chimpanzee Rh genes by sequencing five BAC (Bacterial Artificial Chromosome) clones derived from chimpanzees. We characterized three complete loci (Patr_RHα, Patr_RHβ, and Patr_RHγ). In the Patr_RHβ locus, a short version of the gene, which lacked the middle part containing exons 4–8, was observed. The Patr_RHα and Patr_RHβ genes were located on the locations corresponding to Hosa_RHD and Hosa_RHCE, respectively, and Patr_RHγ was in the immediate vicinity of Patr_RHβ. Sequence comparisons revealed high sequence similarity between Patr_RHβ and Hosa_RHCE, while the chimpanzee Rh gene closest to Hosa_RHD was not Patr_RHα but rather Patr_RHγ. The results suggest that rearrangements and gene conversions frequently occurred between these genes and that the classic orthology/paralogy dichotomy no longer holds between human and chimpanzee Rh blood group genes. PMID:26872772

  20. No Distinction of Orthology/Paralogy between Human and Chimpanzee Rh Blood Group Genes.

    PubMed

    Kitano, Takashi; Kim, Choong-Gon; Blancher, Antoine; Saitou, Naruya

    2016-02-12

    On human (Homo sapiens) chromosome 1, there is a tandem duplication encompassing Rh blood group genes (Hosa_RHD and Hosa_RHCE). This duplication occurred in the common ancestor of humans, chimpanzees (Pan troglodytes), and gorillas, after splitting from their common ancestor with orangutans. Although several studies have been conducted on ape Rh blood group genes, the clear genome structures of the gene clusters remain unknown. Here, we determined the genome structure of the gene cluster of chimpanzee Rh genes by sequencing five BAC (Bacterial Artificial Chromosome) clones derived from chimpanzees. We characterized three complete loci (Patr_RHα, Patr_RHβ, and Patr_RHγ). In the Patr_RHβ locus, a short version of the gene, which lacked the middle part containing exons 4-8, was observed. The Patr_RHα and Patr_RHβ genes were located on the locations corresponding to Hosa_RHD and Hosa_RHCE, respectively, and Patr_RHγ was in the immediate vicinity of Patr_RHβ. Sequence comparisons revealed high sequence similarity between Patr_RHβ and Hosa_RHCE, while the chimpanzee Rh gene closest to Hosa_RHD was not Patr_RHα but rather Patr_RHγ. The results suggest that rearrangements and gene conversions frequently occurred between these genes and that the classic orthology/paralogy dichotomy no longer holds between human and chimpanzee Rh blood group genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Role of Hepatic-Specific Transcription Factors and Polycomb Repressive Complex 2 during Induction of Fibroblasts to Hepatic Fate

    PubMed Central

    Wee, Ping; Yaqubi, Moein

    2016-01-01

    Direct reprogramming using defined sets of transcription factors (TFs) is a recent strategy for generating induced hepatocytes (iHeps) from fibroblasts for use in regenerative medicine and drug development. Comprehensive studies detailing the regulatory role of TFs during this reprogramming process could help increase its efficiency. This study aimed to find the TFs with the greatest influences on the generation of iHeps from fibroblasts, and to further understand their roles in the regulation of the gene expression program. Here, we used systems biology approaches to analyze high quality expression data sets in combination with TF-binding sites data and protein-protein interactions data during the direct reprogramming of fibroblasts to iHeps. Our results revealed two main patterns for differentially expressed genes (DEGs): up-regulated genes were categorized as hepatic-specific pattern, and down-regulated genes were categorized as mesoderm- and fibroblast-specific pattern. Interestingly, hepatic-specific genes co-expressed and were regulated by hepatic-specific TFs, specifically Hnf4a and Foxa2. Conversely, the mesoderm- and fibroblast-specific pattern was mainly silenced by polycomb repressive complex 2 (PRC2) members, including Suz12, Mtf2, Ezh2, and Jarid2. Independent analysis of both the gene and core regulatory network of DE-TFs showed significant roles for Hnf4a, Foxa2, and PRC2 members in the regulation of the gene expression program and in biological processes during the direct conversion process. Altogether, using systems biology approaches, we clarified the role of Hnf4a and Foxa2 as hepatic-specific TFs, and for the first time, introduced the PRC2 complex as the main regulator that favors the direct reprogramming process in cooperation with hepatic-specific factors. PMID:27902735

  2. Identification of Nicotiana tabacum Linkage Group Corresponding to the Q Chromosome Gene(s) Involved in Hybrid Lethality

    PubMed Central

    Tezuka, Takahiro; Matsuo, Chihiro; Iizuka, Takahiro; Oda, Masayuki; Marubashi, Wataru

    2012-01-01

    Background A linkage map consisting of 24 linkage groups has been constructed using simple sequence repeat (SSR) markers in Nicotiana tabacum. However, chromosomal assignments of all linkage groups have not yet been made. The Q chromosome in N. tabacum encodes a gene or genes triggering hybrid lethality, a phenomenon that causes death of hybrids derived from some crosses. Methodology/Principal Findings We identified a linkage group corresponding to the Q chromosome using an interspecific cross between an N. tabacum monosomic line lacking the Q chromosome and N. africana. N. ingulba yielded inviable hybrids after crossing with N. tabacum. SSR markers on the identified linkage group were used to analyze hybrid lethality in this cross. The results implied that one or more genes on the Q chromosome are responsible for hybrid lethality in this cross. Furthermore, the gene(s) responsible for hybrid lethality in the cross N. tabacum × N. africana appear to be on the region of the Q chromosome to which SSR markers PT30342 and PT30365 map. Conclusions/Significance Linkage group 11 corresponded to the Q chromosome. We propose a new method to correlate linkage groups with chromosomes in N. tabacum. PMID:22629459

  3. Identification of Nicotiana tabacum linkage group corresponding to the Q chromosome gene(s) involved in hybrid lethality.

    PubMed

    Tezuka, Takahiro; Matsuo, Chihiro; Iizuka, Takahiro; Oda, Masayuki; Marubashi, Wataru

    2012-01-01

    A linkage map consisting of 24 linkage groups has been constructed using simple sequence repeat (SSR) markers in Nicotiana tabacum. However, chromosomal assignments of all linkage groups have not yet been made. The Q chromosome in N. tabacum encodes a gene or genes triggering hybrid lethality, a phenomenon that causes death of hybrids derived from some crosses. We identified a linkage group corresponding to the Q chromosome using an interspecific cross between an N. tabacum monosomic line lacking the Q chromosome and N. africana. N. ingulba yielded inviable hybrids after crossing with N. tabacum. SSR markers on the identified linkage group were used to analyze hybrid lethality in this cross. The results implied that one or more genes on the Q chromosome are responsible for hybrid lethality in this cross. Furthermore, the gene(s) responsible for hybrid lethality in the cross N. tabacum × N. africana appear to be on the region of the Q chromosome to which SSR markers PT30342 and PT30365 map. Linkage group 11 corresponded to the Q chromosome. We propose a new method to correlate linkage groups with chromosomes in N. tabacum.

  4. Functional Gene Group Analysis Indicates No Role for Heterotrimeric G Proteins in Cognitive Ability

    PubMed Central

    Davies, Gail; Liewald, David Cherry McLachlan; Payton, Anthony; Craig, Leone C. A.; Whalley, Lawrence J.; Horan, Mike; Ollier, William; Starr, John M.; Pendleton, Neil; Posthuma, Danielle; Bates, Timothy C.; Deary, Ian J.

    2014-01-01

    Previous functional gene group analyses implicated common single nucleotide polymorphisms (SNPs) in heterotrimeric G protein coding genes as being associated with differences in human intelligence. Here, we sought to replicate this finding using five independent cohorts of older adults including current IQ and childhood IQ, and using both gene- and SNP-based analytic strategies. No significant associations were found between variation in heterotrimeric G protein genes and intelligence in any cohort at either of the two time points. These results indicate that, whereas G protein systems are important in cognition, common genetic variation in these genes is unlikely to be a substantial influence on human intelligence differences. PMID:24626473

  5. FlyBase: establishing a Gene Group resource for Drosophila melanogaster.

    PubMed

    Attrill, Helen; Falls, Kathleen; Goodman, Joshua L; Millburn, Gillian H; Antonazzo, Giulia; Rey, Alix J; Marygold, Steven J

    2016-01-04

    Many publications describe sets of genes or gene products that share a common biology. For example, genome-wide studies and phylogenetic analyses identify genes related in sequence; high-throughput genetic and molecular screens reveal functionally related gene products; and advanced proteomic methods can determine the subunit composition of multi-protein complexes. It is useful for such gene collections to be presented as discrete lists within the appropriate Model Organism Database (MOD) so that researchers can readily access these data alongside other relevant information. To this end, FlyBase (flybase.org), the MOD for Drosophila melanogaster, has established a 'Gene Group' resource: high-quality sets of genes derived from the published literature and organized into individual report pages. To facilitate further analyses, Gene Group Reports also include convenient download and analysis options, together with links to equivalent gene groups at other databases. This new resource will enable researchers with diverse backgrounds and interests to easily view and analyse acknowledged D. melanogaster gene sets and compare them with those of other species.

  6. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development

    PubMed Central

    Mu, Weipeng; Starmer, Joshua; Fedoriw, Andrew M.; Yee, Della; Magnuson, Terry

    2014-01-01

    Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis. PMID:25228648

  7. Genomic structure of the luciferase gene and phylogenetic analysis in the Hotaria-group fireflies.

    PubMed

    Choi, Yong Soo; Bae, Jin Sik; Lee, Kwang Sik; Kim, Seong Ryul; Kim, Iksoo; Kim, Jong Gill; Kim, Keun Young; Kim, Sam Eun; Suzuki, Hirobumi; Lee, Sang Mong; Sohn, Hung Dae; Jin, Byung Rae

    2003-02-01

    The luminescent fireflies have species specific flash patterns, being recognized as sexual communication. The luciferase gene is the sole enzyme responsible for bioluminescence. We describe here the complete nucleotide sequence and the exon-intron structure of the luciferase gene of the Hotaria-group fireflies, H. unmunsana, H. papariensis and H. tsushimana. The luciferase gene of the Hotaria-group firefly including the known H. parvula spans 1950 bp and consisted of six introns and seven exons coding for 548 amino acid residues, suggesting highly conserved structure among the Hotaria-group fireflies. Although only one luciferase gene was cloned from H. papariensis, each of the two sequences of the gene was found in H. unmunsana (U1 and Uc) and H. tsushimana (T1 and T2). The amino acid sequence divergence among H. unmunsana, H. papariensis, and H. tsushimana only ranged from zero to three amino acid residues, but H. parvula differed by 10-11 amino acid residues from the other Hotaria-group fireflies, suggesting a divergent relationship of this species. Phylogenetic analysis using the deduced amino acid sequences of the luciferase gene resulted in a monophyletic group in the Hotaria excluding H. parvula, suggesting a close relationship among H. unmunsana, H. papariensis and H. tsushimana. Additionally, we also analyzed the mitochondrial cytochrome oxidase I (COI) gene of the Hotaria-group fireflies. The deduced amino acid sequence of the COI gene of H. unmunsana was identical to that of H. papariensis and H. tsushimana, but different by three positions from H. parvula. In terms of nucleotide sequences of the COI gene, intraspecific sequence divergence was sometimes larger than interspecies level, and phylogenetic analysis placed the three species into monophyletic groups unresolved among them, but excluded H. parvula. In conclusion, our results suggest that H. unmunsana, H. papariensis and H. tsushimana are very closely related or might be an identical species, at

  8. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  9. A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds.

    PubMed

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-09-21

    The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (approximately 72%) compared with the chicken (approximately 66%) and the zebra finch (approximately 38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group alpha, theta and gamma genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called gamma-c clade). An analysis of the selective pressure on the paralogous genes of each gamma-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The gamma-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group gamma-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. We identified a surprisingly large number of potentially functional avian OR genes

  10. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  11. Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23

    SciTech Connect

    Spek, P.J. van der; Smit, E.M.E.; Beverloo, H.B.

    1994-10-01

    The nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The previously cloned XPC gene is involved in the common XP complementation group C, which is defective in excision repair of nontranscribed sequences in the genome. The XPC protein was found to be complexed with the product of HHR23B, one of the two human homologs of the Saccharomyes cerevisiae NER gene RAD23. Here we present the chromosomal localization by in situ hybridization using haptenized probes of all three genes. The HHR23A gene was assigned to chromosome 19p13.2. Interestingly, the HHR23B and XPC genes, the product of which forms a tight complex, were found to colocalize on band 3p25.1. Pulsed-field gel electrophoresis revealed that the HHR23B and XPC genes possibly share a MluI restriction fragment of about 625 kb. Potential involvement of the HHR23 genes in human genetic disorders is discussed. 53 refs., 4 figs., 2 tabs.

  12. Polycomb repressive complex 2 contributes to DNA double-strand break repair

    PubMed Central

    Campbell, Stuart; Ismail, Ismail Hassan; Young, Leah C; Poirier, Guy G; Hendzel, Michael J

    2013-01-01

    Polycomb protein histone methyltransferase, enhancer of Zeste homolog 2 (EZH2), is frequently overexpressed in human malignancy and is implicated in cancer cell proliferation and invasion. However, it is largely unknown whether EZH2 has a role in modulating the DNA damage response. Here, we show that polycomb repressive complex 2 (PRC2) is recruited to sites of DNA damage. This recruitment is independent of histone 2A variant X (H2AX) and the PI-3-related kinases ATM and DNA-PKcs. We establish that PARP activity is required for retaining PRC2 at sites of DNA damage. Furthermore, depletion of EZH2 in cells decreases the efficiency of DSB repair and increases sensitivity of cells to gamma-irradiation. These data unravel a crucial role of PRC2 in determining cancer cellular sensitivity following DNA damage and suggest that therapeutic targeting of EZH2 activity might serve as a strategy for improving conventional chemotherapy in a given malignancy. PMID:23907130

  13. Transcription Factors That Convert Adult Cell Identity Are Differentially Polycomb Repressed

    PubMed Central

    Davis, Fred P.; Eddy, Sean R.

    2013-01-01

    Transcription factors that can convert adult cells of one type to another are usually discovered empirically by testing factors with a known developmental role in the target cell. Here we show that standard genomic methods (RNA-seq and ChIP-seq) can help identify these factors, as most are more strongly Polycomb repressed in the source cell and more highly expressed in the target cell. This criterion is an effective genome-wide screen that significantly enriches for factors that can transdifferentiate several mammalian cell types including neural stem cells, neurons, pancreatic islets, and hepatocytes. These results suggest that barriers between adult cell types, as depicted in Waddington's “epigenetic landscape”, consist in part of differentially Polycomb-repressed transcription factors. This genomic model of cell identity helps rationalize a growing number of transdifferentiation protocols and may help facilitate the engineering of cell identity for regenerative medicine. PMID:23650565

  14. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  15. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization.

    PubMed

    De Lucia, Filomena; Crevillen, Pedro; Jones, Alexandra M E; Greb, Thomas; Dean, Caroline

    2008-11-04

    Vernalization, the acceleration of flowering by winter, involves cold-induced epigenetic silencing of Arabidopsis FLC. This process has been shown to require conserved Polycomb Repressive Complex 2 (PRC2) components including the Su(z)12 homologue, VRN2, and two plant homeodomain (PHD) finger proteins, VRN5 and VIN3. However, the sequence of events leading to FLC repression was unclear. Here we show that, contrary to expectations, VRN2 associates throughout the FLC locus independently of cold. The vernalization-induced silencing is triggered by the cold-dependent association of the PHD finger protein VRN5 to a specific domain in FLC intron 1, and this association is dependent on the cold-induced PHD protein VIN3. In plants returned to warm conditions, VRN5 distribution changes, and it associates more broadly over FLC, coincident with significant increases in H3K27me3. Biochemical purification of a VRN5 complex showed that during prolonged cold a PHD-PRC2 complex forms composed of core PRC2 components (VRN2, SWINGER [an E(Z) HMTase homologue], FIE [an ESC homologue], MSI1 [p55 homologue]), and three related PHD finger proteins, VRN5, VIN3, and VEL1. The PHD-PRC2 activity increases H3K27me3 throughout the locus to levels sufficient for stable silencing. Arabidopsis PHD-PRC2 thus seems to act similarly to Pcl-PRC2 of Drosophila and PHF1-PRC2 of mammals. These data show FLC silencing involves changed composition and dynamic redistribution of Polycomb complexes at different stages of the vernalization process, a mechanism with greater parallels to Polycomb silencing of certain mammalian loci than the classic Drosophila Polycomb targets.

  16. An integrative evolution theory of histo-blood group ABO and related genes.

    PubMed

    Yamamoto, Fumiichiro; Cid, Emili; Yamamoto, Miyako; Saitou, Naruya; Bertranpetit, Jaume; Blancher, Antoine

    2014-10-13

    The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.

  17. An integrative evolution theory of histo-blood group ABO and related genes

    PubMed Central

    Yamamoto, Fumiichiro; Cid, Emili; Yamamoto, Miyako; Saitou, Naruya; Bertranpetit, Jaume; Blancher, Antoine

    2014-01-01

    The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities. PMID:25307962

  18. Conservation of DNA photolyase genes in group II nucleopolyhedroviruses infecting plusiine insects.

    PubMed

    Xu, Fang; Vlak, Just M; van Oers, Monique M

    2008-09-01

    DNA photolyase genes (phr) encode photoreactive enzymes, which are involved in the repair of UV-damaged DNA. Cyclobutane pyrimidine dimer (CPD) specific photolyase genes are present in nucleopolyhedroviruses isolated from Chrysodeixis chalcites (ChchNPV) and Trichoplusia ni (TnSNPV), insects belonging to the Plusiinae (Noctuidae). To better understand the occurrence and evolution of these genes in baculoviruses, we investigated their possible conservation in other group II NPVs, which infect plusiine insects. A PCR based strategy using degenerate phr-specific primers was designed to detect and analyze possible photolyase genes. Six additional Plusiinae-infecting NPVs were analyzed and all, except Thysanoplusia oricalcea NPV A28-1, which is a group I NPV, contained one or more phr-like sequences. Phylogenetic analysis revealed that all photolyase genes of the tested Plusiinae-infecting baculoviruses group in a single clade, separated into three subgroups. The phylogeny of the polyhedrin sequences of these viruses confirmed that the analyzed viruses also formed a single clade in group II NPVs. We hypothesize that all plusiine group II NPVs contain one or more photolyase genes and that these have a common ancestor.

  19. Distinct parasegmental and imaginal enhancers and the establishment of the expression pattern of the Ubx gene

    SciTech Connect

    Pirrotta, V.; Chan, Chi Shing; McCabe, D.; Qian, Su

    1995-12-01

    The expression domain of the Ubx gene in Drosophila embryos is bounded by the product of the hb gene, acting as a repressor. We show that all Ubx fragments that bind Hb protein in vitro contain parasegmental enhancers active in the embryo in specific parasegmental patterns. We have found three new embryonic enhancer elements in the upstream region, in addition to the two previously identified. Each produces a pattern initially bounded at PS6 by Hb but sooner or later breaks down this boundary and begins to express in the anterior region. These enhancers do not respond to the long-term maintenance mediated by the Polycomb group of genes. They also cease functioning after germ band extension. Expression in imaginal tissues is due to a set of entirely separate and independent imaginal disc enhancers. These do not contain Hb binding sites and by themselves have no anterior/posterior positional information, although some distinguish between ventral and dorsal discs. A third kind of element, the Polycomb Response Element (PRE), has no enhancer activity but causes long-term maintenance of the expression domain of other enhancers present in the vicinity. The interaction of these elements results in the correct expression of Ubx in imaginal tissues. 40 refs., 7 figs.

  20. Functional characterization of an apple apomixis-related MhFIE gene in reproduction development.

    PubMed

    Liu, Dan-Dan; Dong, Qing-Long; Sun, Chao; Wang, Qing-Lian; You, Chun-Xiang; Yao, Yu-Xin; Hao, Yu-Jin

    2012-04-01

    The products of the FIS genes play important regulatory roles in diverse developmental processes, especially in seed formation after fertilization. In this study, a FIS-class gene MhFIE was isolated from apple. It encoded a predicted protein highly similar to polycomb group (PcG) protein FERTILIZATION-INDEPENDENT ENDOSPERM (FIE). MhFIE functioned as an Arabidopsis FIE homologue, as indicated by functional complementation experiment using Arabidopsis fie mutant. In addition, BiFC assay showed that MhFIE protein interacted with AtCLF. Furthermore, transgenic Arabidopsis ectopically expressing MhFIE produced less APETALA3 (AtAP3) and AGAMOUS (AtAG) transcripts than WT control, and therefore exhibited abnormal flower, seed development. These results suggested that polycomb complex including FIE and CLF proteins played an important role in reproductive development by regulating the expression of its downstream genes. In addition, it was found that MhFIE constitutively expressed in various tissues tested. Its expression levels were lower in apomictic apple species than the sexual reproductive species, suggested it was possibly involved into apomixis in apple. Furthermore, the hybrids of tea crabapple generated MhFIE transcripts at different levels. The parthenogenesis capacity was negatively correlated with MhFIE expression level in these hybrids. These results suggested that MhFIE was involved into the regulation of flower development and apomixis in apple.

  1. Polycomb Complex 2 Is Required for E-cadherin Repression by the Snail1 Transcription Factor▿ †

    PubMed Central

    Herranz, Nicolás; Pasini, Diego; Díaz, Víctor M.; Francí, Clara; Gutierrez, Arantxa; Dave, Natàlia; Escrivà, Maria; Hernandez-Muñoz, Inma; Di Croce, Luciano; Helin, Kristian; García de Herreros, Antonio; Peiró, Sandra

    2008-01-01

    The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2). Embryonic stem (ES) cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumor cells, interference of PRC2 activity prevents the ability of Snail1 to downregulate CDH1 and partially derepresses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to the CDH1 promoter and the trimethylation of lysine 27 in histone H3. Moreover, Snail1 interacts with Suz12 and Ezh2, as shown by coimmunoprecipitation experiments. In conclusion, these results demonstrate that Snail1 recruits PRC2 to the CDH1 promoter and requires the activity of this complex to repress E-cadherin expression. PMID:18519590

  2. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells.

    PubMed

    Abdouh, Mohamed; Hanna, Roy; El Hajjar, Jida; Flamier, Anthony; Bernier, Gilbert

    2016-01-01

    The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2A(ub)) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2A(ub) deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome.

  3. The Polycomb Repressive Complex 1 Protein BMI1 Is Required for Constitutive Heterochromatin Formation and Silencing in Mammalian Somatic Cells*

    PubMed Central

    Abdouh, Mohamed; Hanna, Roy; El Hajjar, Jida; Flamier, Anthony; Bernier, Gilbert

    2016-01-01

    The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2Aub) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2Aub deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome. PMID:26468281

  4. Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development

    PubMed Central

    Kradolfer, David; Hennig, Lars; Köhler, Claudia

    2013-01-01

    Seed development in flowering plants is initiated after a double fertilization event with two sperm cells fertilizing two female gametes, the egg cell and the central cell, leading to the formation of embryo and endosperm, respectively. In most species the endosperm is a polyploid tissue inheriting two maternal genomes and one paternal genome. As a consequence of this particular genomic configuration the endosperm is a dosage sensitive tissue, and changes in the ratio of maternal to paternal contributions strongly impact on endosperm development. The FERTILIZATION INDEPENDENT SEED (FIS) Polycomb Repressive Complex 2 (PRC2) is essential for endosperm development; however, the underlying forces that led to the evolution of the FIS-PRC2 remained unknown. Here, we show that the functional requirement of the FIS-PRC2 can be bypassed by increasing the ratio of maternal to paternal genomes in the endosperm, suggesting that the main functional requirement of the FIS-PRC2 is to balance parental genome contributions and to reduce genetic conflict. We furthermore reveal that the AGAMOUS LIKE (AGL) gene AGL62 acts as a dosage-sensitive seed size regulator and that reduced expression of AGL62 might be responsible for reduced size of seeds with increased maternal genome dosage. PMID:23326241

  5. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes

    PubMed Central

    Endoh, Mitsuhiro; Endo, Takaho A; Shinga, Jun; Hayashi, Katsuhiko; Farcas, Anca; Ma, Kit-Wan; Ito, Shinsuke; Sharif, Jafar; Endoh, Tamie; Onaga, Naoko; Nakayama, Manabu; Ishikura, Tomoyuki; Masui, Osamu; Kessler, Benedikt M; Suda, Toshio; Ohara, Osamu; Okuda, Akihiko; Klose, Robert; Koseki, Haruhiko

    2017-01-01

    The ring finger protein PCGF6 (polycomb group ring finger 6) interacts with RING1A/B and E2F6 associated factors to form a non-canonical PRC1 (polycomb repressive complex 1) known as PCGF6-PRC1. Here, we demonstrate that PCGF6-PRC1 plays a role in repressing a subset of PRC1 target genes by recruiting RING1B and mediating downstream mono-ubiquitination of histone H2A. PCGF6-PRC1 bound loci are highly enriched for promoters of germ cell-related genes in mouse embryonic stem cells (ESCs). Conditional ablation of Pcgf6 in ESCs leads to robust de-repression of such germ cell-related genes, in turn affecting cell growth and viability. We also find a role for PCGF6 in pre- and peri-implantation mouse embryonic development. We further show that a heterodimer of the transcription factors MAX and MGA recruits PCGF6 to target loci. PCGF6 thus links sequence specific target recognition by the MAX/MGA complex to PRC1-dependent transcriptional silencing of germ cell-specific genes in pluripotent stem cells. DOI: http://dx.doi.org/10.7554/eLife.21064.001 PMID:28304275

  6. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes.

    PubMed

    Endoh, Mitsuhiro; Endo, Takaho A; Shinga, Jun; Hayashi, Katsuhiko; Farcas, Anca; Ma, Kit-Wan; Ito, Shinsuke; Sharif, Jafar; Endoh, Tamie; Onaga, Naoko; Nakayama, Manabu; Ishikura, Tomoyuki; Masui, Osamu; Kessler, Benedikt M; Suda, Toshio; Ohara, Osamu; Okuda, Akihiko; Klose, Robert; Koseki, Haruhiko

    2017-03-17

    The ring finger protein PCGF6 (polycomb group ring finger 6) interacts with RING1A/B and E2F6 associated factors to form a non-canonical PRC1 (polycomb repressive complex 1) known as PCGF6-PRC1. Here, we demonstrate that PCGF6-PRC1 plays a role in repressing a subset of PRC1 target genes by recruiting RING1B and mediating downstream mono-ubiquitination of histone H2A. PCGF6-PRC1 bound loci are highly enriched for promoters of germ cell-related genes in mouse embryonic stem cells (ESCs). Conditional ablation of Pcgf6 in ESCs leads to robust de-repression of such germ cell-related genes, in turn affecting cell growth and viability. We also find a role for PCGF6 in pre- and peri-implantation mouse embryonic development. We further show that a heterodimer of the transcription factors MAX and MGA recruits PCGF6 to target loci. PCGF6 thus links sequence specific target recognition by the MAX/MGA complex to PRC1-dependent transcriptional silencing of germ cell-specific genes in pluripotent stem cells.

  7. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds.

    PubMed

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-10-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds.

  8. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    NASA Astrophysics Data System (ADS)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  9. Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis.

    PubMed

    Kitano, Takashi; Noda, Reiko; Takenaka, Osamu; Saitou, Naruya

    2009-06-01

    The primate ABO blood group gene encodes a glycosyl transferase (either A or B type), and is known to have large coalescence times among the allelic lineages in human. We determined nucleotide sequences of ca. 2.2kb of this gene for 23 individuals of three gibbon species (agile gibbon, white-handed gibbon, and siamang), and observed a total of 24 haplotypes. We found relics of five ancient intragenic recombinations, occurred during ca. 2-7 million years ago, through a phylogenetic network analysis. The coalescence time between A and B alleles estimate precede the divergence (ca. 8MYA) of siamang and common gibbon lineages. This establishes the coexistence of divergent allelic lineages of the ABO blood group gene for a long period in the ancestral gibbon species, and strengthens the non-neutral evolution for this gene.

  10. Integrative clustering by nonnegative matrix factorization can reveal coherent functional groups from gene profile data.

    PubMed

    Brdar, Sanja; Crnojević, Vladimir; Zupan, Blaz

    2015-03-01

    Recent developments in molecular biology and techniques for genome-wide data acquisition have resulted in abundance of data to profile genes and predict their function. These datasets may come from diverse sources and it is an open question how to commonly address them and fuse them into a joint prediction model. A prevailing technique to identify groups of related genes that exhibit similar profiles is profile-based clustering. Cluster inference may benefit from consensus across different clustering models. In this paper, we propose a technique that develops separate gene clusters from each of available data sources and then fuses them by means of nonnegative matrix factorization. We use gene profile data on the budding yeast S. cerevisiae to demonstrate that this approach can successfully integrate heterogeneous datasets and yield high-quality clusters that could otherwise not be inferred by simply merging the gene profiles prior to clustering.

  11. Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells

    PubMed Central

    Bardot, Evan S; Valdes, Victor J; Zhang, Jisheng; Perdigoto, Carolina N; Nicolis, Silvia; Hearn, Stephen A; Silva, Jose M; Ezhkova, Elena

    2013-01-01

    While the Polycomb complex is known to regulate cell identity in ES cells, its role in controlling tissue-specific stem cells is not well understood. Here we show that removal of Ezh1 and Ezh2, key Polycomb subunits, from mouse skin results in a marked change in fate determination in epidermal progenitor cells, leading to an increase in the number of lineage-committed Merkel cells, a specialized subtype of skin cells involved in mechanotransduction. By dissecting the genetic mechanism, we showed that the Polycomb complex restricts differentiation of epidermal progenitor cells by repressing the transcription factor Sox2. Ablation of Sox2 results in a dramatic loss of Merkel cells, indicating that Sox2 is a critical regulator of Merkel cell specification. We show that Sox2 directly activates Atoh1, the obligate regulator of Merkel cell differentiation. Concordantly, ablation of Sox2 attenuated the Ezh1/2-null phenotype, confirming the importance of Polycomb-mediated repression of Sox2 in maintaining the epidermal progenitor cell state. Together, these findings define a novel regulatory network by which the Polycomb complex maintains the progenitor cell state and governs differentiation in vivo. PMID:23673358

  12. Statistical methods in detecting differential expressed genes, analyzing insertion tolerance for genes and group selection for survival data

    NASA Astrophysics Data System (ADS)

    Liu, Fangfang

    The thesis is composed of three independent projects: (i) analyzing transposon-sequencing data to infer functions of genes on bacteria growth (chapter 2), (ii) developing semi-parametric Bayesian method for differential gene expression analysis with RNA-sequencing data (chapter 3), (iii) solving group selection problem for survival data (chapter 4). All projects are motivated by statistical challenges raised in biological research. The first project is motivated by the need to develop statistical models to accommodate the transposon insertion sequencing (Tn-Seq) data, Tn-Seq data consist of sequence reads around each transposon insertion site. The detection of transposon insertion at a given site indicates that the disruption of genomic sequence at this site does not cause essential function loss and the bacteria can still grow. Hence, such measurements have been used to infer the functions of each gene on bacteria growth. We propose a zero-inflated Poisson regression method for analyzing the Tn-Seq count data, and derive an Expectation-Maximization (EM) algorithm to obtain parameter estimates. We also propose a multiple testing procedure that categorizes genes into each of the three states, hypo-tolerant, tolerant, and hyper-tolerant, while controlling false discovery rate. Simulation studies show our method provides good estimation of model parameters and inference on gene functions. In the second project, we model the count data from RNA-sequencing experiment for each gene using a Poisson-Gamma hierarchical model, or equivalently, a negative binomial (NB) model. We derive a full semi-parametric Bayesian approach with Dirichlet process as the prior for the fold changes between two treatment means. An inference strategy using Gibbs algorithm is developed for differential expression analysis. We evaluate our method with several simulation studies, and the results demonstrate that our method outperforms other methods including the popularly applied ones such as edge

  13. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells

    PubMed Central

    Mantsoki, Anna; Devailly, Guillaume; Joshi, Anagha

    2015-01-01

    In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a ‘poised’ state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a ‘TCCCC’ sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development. PMID:26582124

  14. CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells.

    PubMed

    Mantsoki, Anna; Devailly, Guillaume; Joshi, Anagha

    2015-11-19

    In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a 'poised' state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a 'TCCCC' sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development.

  15. Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of developmental transcription programs.

    PubMed

    Svoboda, Laurie K; Harris, Ashley; Bailey, Natashay J; Schwentner, Raphaela; Tomazou, Eleni; von Levetzow, Cornelia; Magnuson, Brian; Ljungman, Mats; Kovar, Heinrich; Lawlor, Elizabeth R

    2014-12-01

    The polycomb proteins BMI-1 and EZH2 are highly overexpressed by Ewing sarcoma (ES), a tumor of stem cell origin that is driven by EWS-ETS fusion oncogenes, most commonly EWS-FLI1. In the current study we analyzed expression of transcription programs that are controlled by polycomb proteins during embryonic development to determine if they are abnormal in ES. Our results show that polycomb target gene expression in ES deviates from normal tissues and stem cells and that, as expected, most targets are relatively repressed. However, we also discovered a paradoxical up regulation of numerous polycomb targets and these were highly enriched for homeobox (HOX) genes. Comparison of HOX profiles between malignant and non-malignant tissues revealed a distinctive HOX profile in ES, which was characterized by overexpression of posterior HOXD genes. In addition, ectopic expression of EWS-FLI1 during stem cell differentiation led to aberrant up regulation of posterior HOXD genes. Mechanistically, this up regulation was associated with altered epigenetic regulation. Specifically, ES and EWS-FLI1+ stem cells displayed a relative loss of polycomb-dependent H3K27me3 and gain of trithorax-dependent H3K4me3 at the promoters of posterior HOXD genes and also at the HOXD11.12 polycomb response element. In addition, a striking correlation was evident between HOXD13 and other genes whose regulation is coordinately regulated during embryonic development by distal enhancer elements. Together, these studies demonstrate that epigenetic regulation of polycomb target genes, in particular HOXD genes, is altered in ES and that these changes are mediated downstream of EWS-FLI1.

  16. PCR detection of cytK gene in Bacillus cereus group strains isolated from food samples.

    PubMed

    Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    A method for detection of the cytotoxin K cytK structural gene and its active promoter preceded by the PlcR-binding box, controlling the expression level of this enterotoxin, was developed. The method was applied for the purpose of the analysis of 47 bacterial strains belonging to the Bacillus cereus group isolated from different food products. It was found that the majority of the analyzed strains carried the fully functional cytK gene with its PlcR regulated promoter. The cytK gene was not detected in four emetic strains of Bacillus cereus carrying the cesB gene and potentially producing an emetic toxin - cereulide. The cytotoxin K gene was detected in 4 isolates classified as Bacillus mycoides and one reference strain B. mycoides PCM 2024. The promoter region and the N-terminal part of the cytK gene from two strains of B. mycoides (5D and 19E) showed similarities to the corresponding sequences of Bacillus cereus W23 and Bacillus thuringiensis HD-789, respectively. It was shown for the first time that the cytK gene promoter region from strains 5D and 19E of Bacillus mycoides had a similar arrangement to the corresponding sequence of Bacillus cereus ATCC 14579. The presence of the cytK gene in Bacillus mycoides shows that this species, widely recognized as nonpathogenic, may pose potential biohazard to human beings. © 2013.

  17. [Observation on gene polymorphism of Rh blood group in Chinese Han nationality].

    PubMed

    Lan, Jiong-Cai; Wang, Cong-Rong; Wei, Ya-Ming; Zhou, Hua-You; Cao, Qiong; Zhang, Yin-Ze; Jiang, KuReXi; Wu, Da-Lin; Liu, Zhong

    2003-12-01

    To observe the gene polymorphism of Rh blood group in unrelated random individuals and families for Chinese Han nationality, polymerase chain reaction-sequence specific primer (PCR-SSP) was used to amplify the Rh C/E gene, RhD gene, exons, intron 2 and 10, insert and Rh Box in 160 blood samples of RhD positive unrelated individuals and 71 samples of RhD negative unrelated individuals and 7 samples of families whose probands were RhD-negative. The results showed that RhD genes of RhD-negative individuals with C antigens were polymorphism, three forms were found for D exon including intact, partial deletion and complete deletion exons. Insert fragments and Rh Box were found in most cases of families whose probands were RhD-negative and its inheritance accorded with the Mendel's Law, and it did not affect the expression of RhD gene. "Normal" RhD exon 4 amplifying product was not found in all of the samples. It was concluded that gene structure of the RhD-negative in Chinese was polymorphism, intact, partial deletion and complete deletion exons were found in the individuals with C antigen and probably existed specific D (nf) Ce haplotype. The function of insert was uncertain. The Rh gene sequences of Chinese Han nationality are different from those of Caucasian and the Rh gene library based on Han nationality should be established.

  18. Rough-fuzzy clustering for grouping functionally similar genes from microarray data.

    PubMed

    Maji, Pradipta; Paul, Sushmita

    2013-01-01

    Gene expression data clustering is one of the important tasks of functional genomics as it provides a powerful tool for studying functional relationships of genes in a biological process. Identifying coexpressed groups of genes represents the basic challenge in gene clustering problem. In this regard, a gene clustering algorithm, termed as robust rough-fuzzy c-means, is proposed judiciously integrating the merits of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in cluster definition, the integration of probabilistic and possibilistic memberships of fuzzy sets enables efficient handling of overlapping partitions in noisy environment. The concept of possibilistic lower bound and probabilistic boundary of a cluster, introduced in robust rough-fuzzy c-means, enables efficient selection of gene clusters. An efficient method is proposed to select initial prototypes of different gene clusters, which enables the proposed c-means algorithm to converge to an optimum or near optimum solutions and helps to discover coexpressed gene clusters. The effectiveness of the algorithm, along with a comparison with other algorithms, is demonstrated both qualitatively and quantitatively on 14 yeast microarray data sets.

  19. Toxigenic genes, spoilage potential, and antimicrobial resistance of Bacillus cereus group strains from ice cream.

    PubMed

    Arslan, Seza; Eyi, Ayla; Küçüksarı, Rümeysa

    2014-02-01

    Bacillus spp. can be recovered from almost every environment. It is also found readily in foods, where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature, and extracellular enzymes. In this study, 29 Bacillus cereus group strains from ice cream were examined for the presence of following virulence genes hblC, nheA, cytK and ces genes, and tested for a range of the extracellular enzymes, and antimicrobial susceptibility. The strains were found to produce extracellular enzymes: proteolytic and lipolytic activity, gelatin hydrolysis and lecithinase production (100%), DNase production (93.1%) and amylase activity (93.1%). Of 29 strains examined, 24 (82.8%) showed hemolytic activity on blood agar. Beta-lactamase enzyme was only produced by 20.7% of B. cereus group. Among 29 B. cereus group from ice cream, nheA was the most common virulence gene detected in 44.8% of the strains, followed by hblC gene with 17.2%. Four (13.8%) of the 29 strains were positive for both hblC gene and nheA gene. Contrarily, cytK and ces genes were not detected in any of the strains. Antimicrobial susceptibility of ice cream isolates was tested to 14 different antimicrobial agents using the disc diffusion method. We detected resistance to penicillin and ampicillin with the same rate of 89.7%. Thirty-one percent of the strains were multiresistant to three or more antibiotics. This study emphasizes that the presence of natural isolates of Bacillus spp. harboring one or more enterotoxin genes, producing extracellular enzymes which may cause spoilage and acquiring antibiotic resistance might hold crucial importance in the food safety and quality.

  20. Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles.

    PubMed

    Bhattacharya, Anindya; De, Rajat K

    2008-06-01

    Cluster analysis (of gene-expression data) is a useful tool for identifying biologically relevant groups of genes that show similar expression patterns under multiple experimental conditions. Various methods have been proposed for clustering gene-expression data. However most of these algorithms have several shortcomings for gene-expression data clustering. In the present article, we focus on several shortcomings of conventional clustering algorithms and propose a new one that is able to produce better clustering solution than that produced by some others. We present the Divisive Correlation Clustering Algorithm (DCCA) that is suitable for finding a group of genes having similar pattern of variation in their expression values. To detect clusters with high correlation and biological significance, we use the correlation clustering concept introduced by Bansal et al. Our proposed algorithm DCCA produces a clustering solution without taking number of clusters to be created as an input. DCCA uses the correlation matrix in such a way that all genes in a cluster have highest average correlation with genes in that cluster. To test the performance of the DCCA, we have applied DCCA and some well-known conventional methods to an artificial dataset, and nine gene-expression datasets, and compared the performance of the algorithms. The clustering results of the DCCA are found to be more significantly relevant to the biological annotations than those of the other methods. All these facts show the superiority of the DCCA over some others for the clustering of gene-expression data. The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to be consulted before installation and execution of the software.

  1. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  2. An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment

    PubMed Central

    Lynch, Magnus D; Smith, Andrew J H; De Gobbi, Marco; Flenley, Maria; Hughes, Jim R; Vernimmen, Douglas; Ayyub, Helena; Sharpe, Jacqueline A; Sloane-Stanley, Jacqueline A; Sutherland, Linda; Meek, Stephen; Burdon, Tom; Gibbons, Richard J; Garrick, David; Higgs, Douglas R

    2012-01-01

    The role of DNA sequence in determining chromatin state is incompletely understood. We have previously demonstrated that large chromosomal segments from human cells recapitulate their native chromatin state in mouse cells, but the relative contribution of local sequences versus their genomic context remains unknown. In this study, we compare orthologous chromosomal regions for which the human locus establishes prominent sites of Polycomb complex recruitment in pluripotent stem cells, whereas the corresponding mouse locus does not. Using recombination-mediated cassette exchange at the mouse locus, we establish the primacy of local sequences in the encoding of chromatin state. We show that the signal for chromatin bivalency is redundantly encoded across a bivalent domain and that this reflects competition between Polycomb complex recruitment and transcriptional activation. Furthermore, our results suggest that a high density of unmethylated CpG dinucleotides is sufficient for vertebrate Polycomb recruitment. This model is supported by analysis of DNA methyltransferase-deficient embryonic stem cells. PMID:22056776

  3. Comparative Genomic Analysis of the Streptococcus dysgalactiae Species Group: Gene Content, Molecular Adaptation, and Promoter Evolution

    PubMed Central

    Suzuki, Haruo; Lefébure, Tristan; Hubisz, Melissa Jane; Pavinski Bitar, Paulina; Lang, Ping; Siepel, Adam; Stanhope, Michael J.

    2011-01-01

    Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies: S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp. dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category, clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster. Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition of key virulence genes along with selection of orthologous protein-coding loci and operon promoters. PMID:21282711

  4. Quantitative analysis of polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment

    PubMed Central

    2011-01-01

    Background Polycomb/Trithorax response elements (PREs) are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. Results We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw) reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7) with a PRE from the vestigial (vg) gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT) that is essential for silencing. Conclusions This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design. PMID:21410956

  5. The putative tumor suppressor gene EphA7 is a novel BMI-1 target

    PubMed Central

    Jagemann, Lucas; Nolbrant, Sara; Leefa, Isabelle V.; Offen, Nils; Miharada, Kenichi; Lang, Stefan; Artner, Isabella; Nuber, Ulrike A.

    2016-01-01

    Bmi1 was originally identified as a gene that contributes to the development of mouse lymphoma by inhibiting MYC-induced apoptosis through repression of Ink4a and Arf. It codes for the Polycomb group protein BMI-1 and acts primarily as a transcriptional repressor via chromatin modifications. Although it binds to a large number of genomic regions, the direct BMI-1 target genes described so far do not explain the full spectrum of BMI-1-mediated effects. Here we identify the putative tumor suppressor gene EphA7 as a novel direct BMI-1 target in neural cells and lymphocytes. EphA7 silencing has been reported in several different human tumor types including lymphomas, and our data suggest BMI1 overexpression as a novel mechanism leading to EphA7 inactivation via H3K27 trimethylation and DNA methylation. PMID:27533460

  6. The polycomb complex protein mes-2/E(z) promotes the transition from developmental plasticity to differentiation in C. elegans embryos.

    PubMed

    Yuzyuk, T; Fakhouri, T H I; Kiefer, J; Mango, S E

    2009-05-01

    We have used expression profiling and in vivo imaging to characterize Caenorhabditis elegans embryos as they transit from a developmentally plastic state to the onset of differentiation. Normally, this transition is accompanied by activation of developmental regulators and differentiation genes, downregulation of early-expressed genes, and large-scale reorganization of chromatin. We find that loss of plasticity and differentiation onset depends on the Polycomb complex protein mes-2/E(Z). mes-2 mutants display prolonged developmental plasticity in response to heterologous developmental regulators. Early-expressed genes remain active, differentiation genes fail to reach wild-type levels, and chromatin retains a decompacted morphology in mes-2 mutants. By contrast, loss of the developmental regulators pha-4/FoxA or end-1/GATA does not prolong plasticity. This study establishes a model by which to analyze developmental plasticity within an intact embryo. mes-2 orchestrates large-scale changes in chromatin organization and gene expression to promote the timely loss of developmental plasticity. Our findings indicate that loss of plasticity can be uncoupled from cell fate specification.

  7. Implication of polycomb members Bmi-1, Mel-18, and Hpc-2 in the regulation of p16INK4a, p14ARF, h-TERT, and c-Myc expression in primary breast carcinomas.

    PubMed

    Silva, Javier; García, José M; Peña, Cristina; García, Vanesa; Domínguez, Gemma; Suárez, Dolores; Camacho, Francisca I; Espinosa, Ruth; Provencio, Mariano; España, Pilar; Bonilla, Félix

    2006-12-01

    Deregulation of mammalian Polycomb group (PcG) members may contribute to human carcinogenesis. p16INK4a and p14ARF tumor suppressors, human telomerase reverse transcriptase (h-TERT), and oncoprotein c-Myc have been implicated in the regulation of the cell cycle and proliferation mediated by PcG proteins, mainly Bmi-1, in mice and in cell culture experiments. Here, we examine whether these in vitro findings can be extrapolated to the in vivo situation. We measure the expression of PcG members Bmi-1, Mel-18, and Hpc-2 and their potential targets by reverse transcription-PCR, immunostaining, and Western blotting in a series of 134 breast carcinomas and correlate the data with several clinical-pathologic variables of the tumors. Expression of PcG genes was variably detected, but overexpression of Bmi-1 was the most frequent PcG alteration observed. In addition, statistical direct correlation in expression level of the three PcG members was detected. A correlation between c-Myc and Bmi-1 expression levels was observed; however, there was no correlation between expression of Bmi-1 and p16INK4a, p14ARF, or h-TERT. However, expression of the other PcG members Mel-18 and Hpc-2 correlated with the cell cycle regulators. Moreover, PcG mRNA-altered expression correlated significantly with certain clinical-pathologic variables associated with poor prognosis. Our data suggest that the oncogenic role of Bmi-1 in human primary breast carcinomas is not determined by its capacity to inhibit INK4a/ARF proteins or to induce telomerase activity.

  8. Phosphorylation Events in the Multiple Gene Regulator of Group A Streptococcus Significantly Influence Global Gene Expression and Virulence

    PubMed Central

    Sanson, Misu; Makthal, Nishanth; Gavagan, Maire; Cantu, Concepcion; Olsen, Randall J.; Musser, James M.

    2015-01-01

    Whole-genome sequencing analysis of ∼800 strains of group A Streptococcus (GAS) found that the gene encoding the multiple virulence gene regulator of GAS (mga) is highly polymorphic in serotype M59 strains but not in strains of other serotypes. To help understand the molecular mechanism of gene regulation by Mga and its contribution to GAS pathogenesis in serotype M59 GAS, we constructed an isogenic mga mutant strain. Transcriptome studies indicated a significant regulatory influence of Mga and altered metabolic capabilities conferred by Mga-regulated genes. We assessed the phosphorylation status of Mga in GAS cell lysates with Phos-tag gels. The results revealed that Mga is phosphorylated at histidines in vivo. Using phosphomimetic and nonphosphomimetic substitutions at conserved phosphoenolpyruvate:carbohydrate phosphotransferase regulation domain (PRD) histidines of Mga, we demonstrated that phosphorylation-mimicking aspartate replacements at H207 and H273 of PRD-1 and at H327 of PRD-2 are inhibitory to Mga-dependent gene expression. Conversely, non-phosphorylation-mimicking alanine substitutions at H273 and H327 relieved inhibition, and the mutant strains exhibited a wild-type phenotype. The opposing regulatory profiles observed for phosphorylation- and non-phosphorylation-mimicking substitutions at H273 extended to global gene regulation by Mga. Consistent with these observations, the H273D mutant strain attenuated GAS virulence, whereas the H273A strain exhibited a wild-type virulence phenotype in a mouse model of necrotizing fasciitis. Together, our results demonstrate phosphoregulation of Mga and its direct link to virulence in M59 GAS strains. These data also lay a foundation toward understanding how naturally occurring gain-of-function variations in mga, such as H201R, may confer an advantage to the pathogen and contribute to M59 GAS pathogenesis. PMID:25824840

  9. Hox genes and brain development in Drosophila.

    PubMed

    Reichert, Heinrich; Bello, Bruno

    2010-01-01

    Hox genes are prominently expressed in the developing brain and ventral ganglia of Drosophila. In the embryonic brain, the Hox genes labial and Deformed are essential for the establishment of regionalized neuronal identity; in their absence cells are generated in the brain but fail to acquire appropriate neuronal features. Genetic analyses reveal that Hox proteins are largely equivalent in their action in embryonic brain development and that their expression is under the control of cross-regulatory interactions among Hox genes that are similar to those found in embryogenesis of trunk segments. Hox genes have a different role in postembryonic brain development. During the larval phase of CNS development, reactivation of specific Hox genes terminates neural proliferation by induction of apoptotic cell death in neural stem cell-like progenitors called neuroblasts. This reactivation process is tightly controlled by epigenetic mechanisms requiring the Polycomb group of genes. Many features of Hox gene action in Drosophila brain development are evolutionarily conserved and are manifest in brain development of vertebrates.

  10. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    PubMed Central

    Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu; Liu, Guangxin; Li, Meiping; Shi, Jisen; Lu, Ye; Laux, Thomas; Chen, Jinhui

    2016-01-01

    The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group. PMID:27703459

  11. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    PubMed

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Singh, Yoginder Pal; Kaul, Nabodita; Behura, Anita; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K; Chainy, Gagan B N; Bhanwer, Amarjit S; Sharma, Swarkar; Bamezai, Rameshwar N K

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E-04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  12. Replication of Type 2 Diabetes Candidate Genes Variations in Three Geographically Unrelated Indian Population Groups

    PubMed Central

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K.; Chainy, Gagan B. N.; Bhanwer, Amarjit S.; Sharma, Swarkar; Bamezai, Rameshwar N. K.

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D. PMID:23527042

  13. Viridans Group Streptococci Are Donors in Horizontal Transfer of Topoisomerase IV Genes to Streptococcus pneumoniae

    PubMed Central

    Balsalobre, Luz; Ferrándiz, María José; Liñares, Josefina; Tubau, Fe; de la Campa, Adela G.

    2003-01-01

    A total of 46 ciprofloxacin-resistant (Cipr) Streptococcus pneumoniae strains were isolated from 1991 to 2001 at the Hospital of Bellvitge. Five of these strains showed unexpectedly high rates of nucleotide variations in the quinolone resistance-determining regions (QRDRs) of their parC, parE, and gyrA genes. The nucleotide sequence of the full-length parC, parE, and gyrA genes of one of these isolates revealed a mosaic structure compatible with an interspecific recombination origin. Southern blot analysis and nucleotide sequence determinations showed the presence of an ant-like gene in the intergenic parE-parC regions of the S. pneumoniae Cipr isolates with high rates of variations in their parE and parC QRDRs. The ant-like gene was absent from typical S. pneumoniae strains, whereas it was present in the intergenic parE-parC regions of the viridans group streptococci (Streptococcus mitis and Streptococcus oralis). These results suggest that the viridans group streptococci are acting as donors in the horizontal transfer of fluoroquinolone resistance genes to S. pneumoniae. PMID:12821449

  14. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae.

    PubMed

    Balsalobre, Luz; Ferrándiz, María José; Liñares, Josefina; Tubau, Fe; de la Campa, Adela G

    2003-07-01

    A total of 46 ciprofloxacin-resistant (Cip(r)) Streptococcus pneumoniae strains were isolated from 1991 to 2001 at the Hospital of Bellvitge. Five of these strains showed unexpectedly high rates of nucleotide variations in the quinolone resistance-determining regions (QRDRs) of their parC, parE, and gyrA genes. The nucleotide sequence of the full-length parC, parE, and gyrA genes of one of these isolates revealed a mosaic structure compatible with an interspecific recombination origin. Southern blot analysis and nucleotide sequence determinations showed the presence of an ant-like gene in the intergenic parE-parC regions of the S. pneumoniae Cip(r) isolates with high rates of variations in their parE and parC QRDRs. The ant-like gene was absent from typical S. pneumoniae strains, whereas it was present in the intergenic parE-parC regions of the viridans group streptococci (Streptococcus mitis and Streptococcus oralis). These results suggest that the viridans group streptococci are acting as donors in the horizontal transfer of fluoroquinolone resistance genes to S. pneumoniae.

  15. The spxB gene as a target to identify Lactobacillus casei group species in cheese.

    PubMed

    Savo Sardaro, Maria Luisa; Levante, Alessia; Bernini, Valentina; Gatti, Monica; Neviani, Erasmo; Lazzi, Camilla

    2016-10-01

    This study focused on the spxB gene, which encodes for pyruvate oxidase. The presence of spxB in the genome and its transcription could be a way to produce energy and allow bacterial growth during carbohydrate starvation. In addition, the activity of pyruvate oxidase, which produces hydrogen peroxide, could be a mechanism for interspecies competition. Because this gene seems to provide advantages for the encoding species for adaptation in complex ecosystems, we studied spxB in a large set of cheese isolates belonging to the Lactobacillus casei group. Through this study, we demonstrated that this gene is widely found in the genomes of members of the L. casei group and shows variability useful for taxonomic studies. In particular, the HRM analysis method allowed for a specific discrimination between Lactobacillus rhamnosus, Lactobacillus paracasei and L. casei. Regarding the coding region, the spxB functionality in cheese was shown for the first time by real-time PCR, and by exploiting the heterogeneity between the L. casei group species, we identified the bacterial communities encoding the spxB gene in this ecosystem. This study allowed for monitoring of the active bacterial community involved in different stages of ripening by following the POX pathway.

  16. Gene patenting and licensing: the role of academic researchers and advocacy groups.

    PubMed

    Ledbetter, David H

    2008-05-01

    The subject of human gene patenting has received a great deal of media attention, and many individuals and professional societies (including the American College of Medical Genetics) have voiced strong opinions against the patenting of human genes. A particular concern of the medical genetics community is the impact of gene patenting on accessibility to high-quality genetic testing. There has been significantly less media attention and public discussion of licensing practices (e.g., exclusive versus nonexclusive) and their role in promoting or limiting access to genetic testing. Current US government policy strongly encourages universities to commercialize inventions funded by federal grants (Bayh-Dole Act, 1980). Best Practice models for technology licensing have recently been developed by the National Institutes of Health and by the Association of University Technology Managers, and strongly encourage nonexclusive licensing strategies except in cases where this model will not lead to successful commercialization. In the case of genetic testing, nonexclusive licensing strategies (e.g., CF gene) have the significant advantages of encouraging multiple laboratories to make the test readily available, encouraging test improvement, and creating cost-competition. Individual investigators involved in gene discovery, and patient advocacy groups collaborating with academic investigators, have the opportunity to influence the accessibility of diagnostic testing by strongly encouraging their institutions to follow the National Institutes of Health and Association of University Technology Managers Best Practice models of nonexclusive licensing for diagnostic rights to human gene patents.

  17. Whole genome phylogeny of Prochlorococcus marinus group of cyanobacteria: genome alignment and overlapping gene approach.

    PubMed

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K; Rai, Anil

    2014-06-01

    Prochlorococcus is the smallest known oxygenic phototrophic marine cyanobacterium dominating the mid-latitude oceans. Physiologically and genetically distinct P. marinus isolates from many oceans in the world were assigned two different groups, a tightly clustered high-light (HL)-adapted and a divergent low-light (LL-) adapted clade. Phylogenetic analysis of this cyanobacterium on the basis of 16S rRNA and other conserved genes did not show consistency with its phenotypic behavior. We analyzed phylogeny of this genus on the basis of complete genome sequences through genome alignment, overlapping-gene content and gene-order approach. Phylogenetic tree of P. marinus obtained by comparing whole genome sequences in contrast to that based on 16S rRNA gene, corresponded well with the HL/LL ecotypic distinction of twelve strains and showed consistency with phenotypic classification of P. marinus. Evidence for the horizontal descent and acquisition of genes within and across the genus was observed. Many genes involved in metabolic functions were found to be conserved across these genomes and many were continuously gained by different strains as per their needs during the course of their evolution. Consistency in the physiological and genetic phylogeny based on whole genome sequence is established. These observations improve our understanding about the adaptation and diversification of these organisms under evolutionary pressure.

  18. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase.

    PubMed

    Hernández-Muñoz, Inmaculada; Lund, Anders H; van der Stoop, Petra; Boutsma, Erwin; Muijrers, Inhua; Verhoeven, Els; Nusinow, Dmitri A; Panning, Barbara; Marahrens, York; van Lohuizen, Maarten

    2005-05-24

    X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins. This recruitment results in an inactive state that is initially labile but is further locked in by epigenetic marks such as DNA methylation, histone hypoacetylation, and MACROH2A deposition. Here, we report that the E3 ubiquitin ligase consisting of SPOP and CULLIN3 is able to ubiquitinate the Polycomb group protein BMI1 and the variant histone MACROH2A. We find that in addition to MACROH2A, PRC1 is recruited to the inactivated X chromosome in somatic cells in a highly dynamic, cell cycle-regulated manner. Importantly, RNAi-mediated knock-down of CULLIN3 or SPOP results in loss of MACROH2A1 from the inactivated X chromosome (Xi), leading to reactivation of the Xi in the presence of inhibitors of DNA methylation and histone deacetylation. Likewise, Xi reactivation is also seen on MacroH2A1 RNAi under these conditions. Hence, we propose that the PRC1 complex is involved in the maintenance of X chromosome inactivation in somatic cells. We further demonstrate that MACROH2A1 deposition is regulated by the CULLIN3/SPOP ligase complex and is actively involved in stable X inactivation, likely through the formation of an additional layer of epigenetic silencing.

  19. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase

    PubMed Central

    Hernández-Muñoz, Inmaculada; Lund, Anders H.; van der Stoop, Petra; Boutsma, Erwin; Muijrers, Inhua; Verhoeven, Els; Nusinow, Dmitri A.; Panning, Barbara; Marahrens, York; van Lohuizen, Maarten

    2005-01-01

    X inactivation involves the stable silencing of one of the two X chromosomes in XX female mammals. Initiation of this process occurs during early development and involves Xist (X-inactive-specific transcript) RNA coating and the recruitment of Polycomb repressive complex (PRC) 2 and PRC1 proteins. This recruitment results in an inactive state that is initially labile but is further locked in by epigenetic marks such as DNA methylation, histone hypoacetylation, and MACROH2A deposition. Here, we report that the E3 ubiquitin ligase consisting of SPOP and CULLIN3 is able to ubiquitinate the Polycomb group protein BMI1 and the variant histone MACROH2A. We find that in addition to MACROH2A, PRC1 is recruited to the inactivated X chromosome in somatic cells in a highly dynamic, cell cycle-regulated manner. Importantly, RNAi-mediated knock-down of CULLIN3 or SPOP results in loss of MACROH2A1 from the inactivated X chromosome (Xi), leading to reactivation of the Xi in the presence of inhibitors of DNA methylation and histone deacetylation. Likewise, Xi reactivation is also seen on MacroH2A1 RNAi under these conditions. Hence, we propose that the PRC1 complex is involved in the maintenance of X chromosome inactivation in somatic cells. We further demonstrate that MACROH2A1 deposition is regulated by the CULLIN3/SPOP ligase complex and is actively involved in stable X inactivation, likely through the formation of an additional layer of epigenetic silencing. PMID:15897469

  20. Structure and E3-ligase activity of the Ring–Ring complex of Polycomb proteins Bmi1 and Ring1b

    PubMed Central

    Buchwald, Gretel; van der Stoop, Petra; Weichenrieder, Oliver; Perrakis, Anastassis; van Lohuizen, Maarten; Sixma, Titia K

    2006-01-01

    Polycomb group proteins Ring1b and Bmi1 (B-cell-specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3-ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro. The N-terminal Ring-domains are sufficient for this activity and Ring1a can replace Ring1b. E2 enzymes UbcH5a, b, c or UbcH6 support this activity with varying processivity and selectivity. All four E2s promote autoubiquitination of Ring1b without affecting E3-ligase activity. We solved the crystal structure of the Ring–Ring heterodimeric complex of Ring1b and Bmi1. In the structure the arrangement of the Ring-domains is similar to another H2A E3 ligase, the BRCA1/BARD1 complex, but complex formation depends on an N-terminal arm of Ring1b that embraces the Bmi1 Ring-domain. Mutation of a critical residue in the E2/E3 interface shows that catalytic activity resides in Ring1b and not in Bmi1. These data provide a foundation for understanding the critical enzymatic activity at the core of the PRC1 polycomb complex, which is implicated in stem cell maintenance and cancer. PMID:16710298

  1. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).

    PubMed

    Letsch, Molly R; Lewis, Louise A

    2012-09-01

    The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach.

    PubMed

    Zamani-Ahmadmahmudi, Mohamad

    2016-08-01

    Canine breast cancer was considered as an ideal model of comparative oncology for the human breast cancer, as there is significant overlap between biological and clinical characteristics of the human and canine breast cancer. We attempt to clarify expression profile of the embryonic stem cell (ES) gene signatures in canine breast cancer. Using microarray datasets (GSE22516 and GSE20718), expression of the three major ES gene signatures (modules or gene-sets), including Myc, ESC-like, and PRC modules, was primarily analyzed through Gene-Set Enrichment Analysis (GSEA) method in tumor and healthy datasets. For confirmation of the primary results, an additional 13 ES gene-sets which were categorized into four groups including ES expressed (ES exp1 and ES exp2), NOS targets (Nanog targets, Oct4 targets, Sox2 targets, NOS targets, and NOS TFs), Polycomb targets (Suz12 targets, Eed targets, H3K27 bound, and PRC2 targets), and Myc targets (Myc targets1, and Myc targets2) were tested in the tumor and healthy datasets. Our results revealed that there is a valuable overlap between canine and human breast cancer ES gene-sets expression profile, where Myc and ESC-like modules were up-regulated and PRC module was down-regulated in metastatic canine mammary gland tumors. Further analysis of the secondary gene-sets indicated overexpression of the ES expressed, NOS targets (Nanog targets, Oct4 targets, Sox2 targets, and NOS targets), and Myc targets and underexpression of the Polycomb targets in metastatic canine breast cancer.

  3. Expression Level of Genes Coding for Cell Adhesion Molecules of Cadherin Group in Colorectal Cancer Patients

    PubMed Central

    Lorenc, Zbigniew; Opiłka, Mieszko Norbert; Kruszniewska-Rajs, Celina; Rajs, Antoni; Waniczek, Dariusz; Starzewska, Małgorzata; Lorenc, Justyna; Mazurek, Urszula

    2015-01-01

    Background Colorectal Cancer (CRC) is one of the most frequently diagnosed neoplasms and also one of the main death causes. Cell adhesion molecules are taking part in specific junctions, contributing to tissue integrality. Lower expression of the cadherins may be correlated with poorer differentiation of the CRC, and its more aggressive phenotype. The aim of the study is to designate the cadherin genes potentially useful for the diagnostics, prognostics, and the treatment of CRC. Material/Method Specimens were collected from 28 persons (14 female and 14 male), who were operated for CRC. The molecular analysis was performed using oligonucleotide microarrays, mRNA used was collected from adenocarcinoma, and macroscopically healthy tissue. The results were validated using qRT-PCR technique. Results Agglomerative hierarchical clustering of normalized mRNA levels has shown 4 groups with statistically different gene expression. The control group was divided into 2 groups, the one was appropriate control (C1), the second (C2) had the genetic properties of the CRC, without pathological changes histologically and macroscopically. The other 2 groups were: LSC (Low stage cancer) and HSC (High stage cancer). Consolidated results of the fluorescency of all of the differential genes, designated two coding E-cadherin (CDH1) with the lower expression, and P-cadherin (CDH3) with higher expression in CRC tissue. Conclusions The levels of genes expression are different for several groups of cadherins, and are related with the stage of CRC, therefore could be potentially the useful marker of the stage of the disease, also applicable in treatment and diagnostics of CRC. PMID:26167814

  4. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    PubMed

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH4(+)-N and NO3(-)-N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  5. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    PubMed

    Perdigoto, Carolina N; Dauber, Katherine L; Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J; Cohen, Idan; Santoriello, Francis J; Zhao, Dejian; Zheng, Deyou; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-07-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  6. Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2 Inhibitors Recognition by EED

    PubMed Central

    Zhang, Man; Zhao, Mengxi; Feng, Lijian; Luo, Xiao; Gao, Zhenting; Huang, Ying; Ardayfio, Ophelia; Zhang, Ji-Hu; Lin, Ying; Fan, Hong; Mi, Yuan; Li, Guobin; Liu, Lei; Feng, Leying; Luo, Fangjun; Teng, Lin; Qi, Wei; Ottl, Johannes; Lingel, Andreas; Bussiere, Dirksen E.; Yu, Zhengtian; Atadja, Peter; Lu, Chris; Li, En; Gu, Justin; Zhao, Kehao

    2017-01-01

    Polycomb repressive complex 2 (PRC2), a histone H3 lysine 27 methyltransferase, plays a key role in gene regulation and is a known epigenetics drug target for cancer therapy. The WD40 domain-containing protein EED is the regulatory subunit of PRC2. It binds to the tri-methylated lysine 27 of the histone H3 (H3K27me3), and through which stimulates the activity of PRC2 allosterically. Recently, we disclosed a novel PRC2 inhibitor EED226 which binds to the K27me3-pocket on EED and showed strong antitumor activity in xenograft mice model. Here, we further report the identification and validation of four other EED binders along with EED162, the parental compound of EED226. The crystal structures for all these five compounds in complex with EED revealed a common deep pocket induced by the binding of this diverse set of compounds. This pocket was created after significant conformational rearrangement of the aromatic cage residues (Y365, Y148 and F97) in the H3K27me3 binding pocket of EED, the width of which was delineated by the side chains of these rearranged residues. In addition, all five compounds interact with the Arg367 at the bottom of the pocket. Each compound also displays unique features in its interaction with EED, suggesting the dynamics of the H3K27me3 pocket in accommodating the binding of different compounds. Our results provide structural insights for rational design of novel EED binder for the inhibition of PRC2 complex activity. PMID:28072869

  7. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  8. Assignment of xeroderma pigmentosum group C(XPC) gene to chromosome 3p25

    SciTech Connect

    Legerski, R.J.; Liu, P.; Li, L.; Peterson, C.A.; Zhao, Y.; Siciliano, M.J. ); Leach, R.J.; Naylor, S.L. )

    1994-05-01

    The human gene XPC (formerly designated XPCC), which corrects the repair deficiency of xeroderma pigmentosum (XP) group C cells, was mapped to 3p25. A cDNA probe for Southern blot hybridization and diagnostic PCR analyses of hybrid clone panels informative for human chromosomes in general and portions of chromosome 3 in particular produced the initial results. Fluorescence in situ hybridization utilizing both a yeast artificial chromosome DNA containing the gene and XPC cDNA as probes provided verification and specific regional assignment. A conflicting assignment of XPC to chromosome 5 is discussed in light of inadequacies in the exclusive use of microcell-mediated chromosome transfer for gene mapping. 12 refs., 3 figs.

  9. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s)

    PubMed Central

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V. Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-01-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. PMID:27060167

  10. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    PubMed

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. NAT2 gene polymorphisms in three indigenous groups in the Colombian Caribbean Coast region

    PubMed Central

    Arias, Isis; Lecompte, Nelly; Visbal, Lila; Curiel, Iliana; Hernández, Enio; Garavito, Pilar

    2014-01-01

    Objective: To study the NAT2 gene polymorphisms 481T, 590A and 857A in the Chimila, Wiwa and Wayuu indigenous groups of the Colombian Caribbean to determine the frequencies of the alleles NAT2*4, NAT2*5, NAT2*6, and NAT2*7 and to determine the types of acetylators present in these populations. Methods: A total of 202 subjects were studied: 47 Chimila, 55 Wiwa, and 100 Wayuu. The polymorphisms were identified using a real-time PCR method for allelic discrimination designed using Taqman of Applied Biosystems. Results: The following alleles were found at the highest frequency in the following groups: the NAT2*4 allele (wild type) in the Wayuu group (55.3%), the NAT2*5 allele in the Wiwa group (34.5%), and the NAT2*7 allele in the Chimila group (24.2%). A higher frequency of the rapid acetylator status was found in the Wayuu group (31.3%) and Chimila group (29.5%) compared with the Wiwa group (12.7%). The intermediate acetylator status distribution was very similar in all three groups, and the frequency of the slow acetylator status was higher in the Wiwa group (32.7%) compared with the Chimila and Wayuu groups (20.5% and 21.2%, respectively). Conclusion: The results demonstrated the allelic distribution and pharmacogenetic differences of the three groups studied and revealed the most frequent acetylator status and phenotype. Because of the high prevalence of slow acetylators, a greater incidence of tuberculosis (TB) drug-induced hepatotoxicity is predicted in these populations, with a higher frequency in the Wiwa group. PMID:25767302

  12. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.

    PubMed

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira

    2015-05-07

    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Prevalent emm types and superantigen gene patterns of group A Streptococcus in Thailand.

    PubMed

    Paveenkittiporn, W; Nozawa, T; Dejsirilert, S; Nakagawa, I; Hamada, S

    2016-03-01

    Group A Streptococcus (GAS) are globally distributed bacterial pathogens. We examined the emm genotypes, which are important indicators of virulence, of 349 clinical GAS isolates collected using two surveillance systems, i.e. Invasive Bacterial Infection Surveillance (IBIS) from 2010 to 2011 (234 isolates) and routine surveillance of clinically isolated bacteria from various hospitals during 1996-2011 (115 isolates) in Thailand. The major emm genotypes in IBIS samples were emm44 (12·0%), emm104 (6·8%), emm22 (5·6%), and emm81 (5·6%), whereas only one isolate (0·4%) had the emm1 genotype, which is significantly more common in invasive cases in the Western world. In samples collected during routine surveillance, emm238 (10·4%), emm44 (8·7%), and emm165 (7·0%) were dominant. The major superantigen gene profiles were similar between the groups, and 30·1% of isolates did not possess the phage-encoded superantigens (speA, speC, speH, speI, speK, speL, speM, ssa). Although most isolates exhibited limited gene profiles, emm44 isolates had highly variable gene profiles (15 patterns). We conclude that emm44 is the predominant GAS genotype in Thailand, and isolates varied in superantigen gene profiles.

  14. Invasion of protein coding genes by green algal ribosomal group I introns.

    PubMed

    McManus, Hilary A; Lewis, Louise A; Fučíková, Karolina; Haugen, Peik

    2012-01-01

    The spread of group I introns depends on their association with intron-encoded homing endonucleases. Introns that encode functional homing endonuclease genes (HEGs) are highly invasive, whereas introns that only encode the group I ribozyme responsible for self-splicing are generally stably inherited (i.e., vertical inheritance). A number of recent case studies have provided new knowledge on the evolution of group I introns, however, there are still large gaps in understanding of their distribution on the tree of life, and how they have spread into new hosts and genic sites. During a larger phylogenetic survey of chlorophyceaen green algae, we found that 23 isolates contain at least one group I intron in the rbcL chloroplast gene. Structural analyses show that the introns belong to one of two intron lineages, group IA2 intron-HEG (GIY-YIG family) elements inserted after position 462 in the rbcL gene, and group IA1 introns inserted after position 699. The latter intron type sometimes encodes HNH homing endonucleases. The distribution of introns was analyzed on an exon phylogeny and patterns were recovered that are consistent with vertical inheritance and possible horizontal transfer. The rbcL 462 introns are thus far reported only within the Volvocales, Hydrodictyaceae and Bracteacoccus, and closely related isolates of algae differ in the presence of rbcL introns. Phylogenetic analysis of the intron conserved regions indicates that the rbcL699 and rbcL462 introns have distinct evolutionary origins. The rbcL699 introns were likely derived from ribosomal RNA L2449 introns, whereas the rbcL462 introns form a close relationship with psbA introns.

  15. RuleGO: a logical rules-based tool for description of gene groups by means of Gene Ontology.

    PubMed

    Gruca, Aleksandra; Sikora, Marek; Polanski, Andrzej

    2011-07-01

    Genome-wide expression profiles obtained with the use of DNA microarray technology provide abundance of experimental data on biological and molecular processes. Such amount of data need to be further analyzed and interpreted in order to obtain biological conclusions on the basis of experimental results. The analysis requires a lot of experience and is usually time-consuming process. Thus, frequently various annotation databases are used to improve the whole process of analysis. Here, we present RuleGO--the web-based application that allows the user to describe gene groups on the basis of logical rules that include Gene Ontology (GO) terms in their premises. Presented application allows obtaining rules that reflect coappearance of GO-terms describing genes supported by the rules. The ontology level and number of coappearing GO-terms is adjusted in automatic manner. The user limits the space of possible solutions only. The RuleGO application is freely available at http://rulego.polsl.pl/.

  16. Polymorphisms of Cytochrome P450 Genes in Three Ethnic Groups from Russia

    PubMed Central

    Korytina, Gülnaz; Kochetova, Olga; Akhmadishina, Leysan; Viktorova, Elena; Victorova, Tatyana

    2012-01-01

    Objective: To determine the prevalence of the most common allelic variants of CYP1A1, CYP1A2, CYP1B1, CYP2C9, CYP2E1, CYP2F1, CYP2J2 and CYP2S1 in a representative sample of the three ethnic groups (Russians, Tatars and Bashkirs) from Republic of Bashkortostan (Russia), and compare the results with existing data published for other populations. Material and Methods: CYPs genotypes were determined in 742 DNA samples of healthy unrelated individuals representative of three ethnic groups. The CYPs gene polymorphisms were examined using the PCR-RLFP method. Results: Analysis of the CYP1A1 (rs1048943, rs4646903), CYP1A2 (rs762551), CYP2E1 (rs2031920) allele, genotype and haplotype frequencies revealed significant differences among healthy residents of the Republic of Bashkortostan of different ethnicities. Distribution of allele and genotype frequencies of CYP1A2 (rs35694136), CYP1B1 (rs1056836), CYP2C9 (rs1799853, rs1057910), CYP2F1 (rs11399890), CYP2J2 (rs890293), CYP2S1 (rs34971233, rs338583) genes were similar in Russians, Tatars, and Bashkirs. Analysis of the CYPs genes allele frequency distribution patterns among the ethnic groups from the Republic of Bashkortostan in comparison with the different populations worldwide was conducted. Conclusion: The peculiarities of the allele frequency distribution of CYPs genes in the ethnic groups of the Republic of Bashkortostan should be taken into consideration in association and pharmacogenetic studies. The results of the present investigation will be of great help in elucidating the genetic background of drug response, susceptibility to cancer and complex diseases, as well as in determining the toxic potentials of environmental pollutants in our region. PMID:25207010

  17. CAG repeat polymorphism in the androgen receptor (AR) gene of SBMA patients and a control group.

    PubMed

    Sułek, Anna; Hoffman-Zacharska, Dorota; Krysa, Wioletta; Szirkowiec, Walentyna; Fidziańska, Elzbieta; Zaremba, Jacek

    2005-01-01

    Spinobulbar muscular atrophy (SBMA) is an X-linked form of motor neuron disease characterized by progressive atrophy of the muscles, dysphagia, dysarthria and mild androgen insensitivity. SBMA is caused by CAG repeat expansion in the androgen receptor gene. CAG repeat polymorphism was analysed in a Polish control group (n = 150) and patients suspected of SBMA (n = 60). Normal and abnormal ranges of CAG repeats were established in the control group and in 21 patients whose clinical diagnosis of SBMA was molecularly confirmed. The ranges are similar to those reported for other populations.

  18. Widespread balancing selection and pathogen-driven selection at blood group antigen genes.

    PubMed

    Fumagalli, Matteo; Cagliani, Rachele; Pozzoli, Uberto; Riva, Stefania; Comi, Giacomo P; Menozzi, Giorgia; Bresolin, Nereo; Sironi, Manuela

    2009-02-01

    Historically, allelic variations in blood group antigen (BGA) genes have been regarded as possible susceptibility factors for infectious diseases. Since host-pathogen interactions are major determinants in evolution, BGAs can be thought of as selection targets. In order to verify this hypothesis, we obtained an estimate of pathogen richness for geographic locations corresponding to 52 populations distributed worldwide; after correction for multiple tests and for variables different from selective forces, significant correlations with pathogen richness were obtained for multiple variants at 11 BGA loci out of 26. In line with this finding, we demonstrate that three BGA genes, namely CD55, CD151, and SLC14A1, have been subjected to balancing selection, a process, rare outside MHC genes, which maintains variability at a locus. Moreover, we identified a gene region immediately upstream the transcription start site of FUT2 which has undergone non-neutral evolution independently from the coding region. Finally, in the case of BSG, we describe the presence of a highly divergent haplotype clade and the possible reasons for its maintenance, including frequency-dependent balancing selection, are discussed. These data indicate that BGAs have been playing a central role in the host-pathogen arms race during human evolutionary history and no other gene category shows similar levels of widespread selection, with the only exception of loci involved in antigen recognition.

  19. Grouping miRNAs of similar functions via weighted information content of gene ontology.

    PubMed

    Lan, Chaowang; Chen, Qingfeng; Li, Jinyan

    2016-12-22

    Regulation mechanisms between miRNAs and genes are complicated. To accomplish a biological function, a miRNA may regulate multiple target genes, and similarly a target gene may be regulated by multiple miRNAs. Wet-lab knowledge of co-regulating miRNAs is limited. This work introduces a computational method to group miRNAs of similar functions to identify co-regulating miRNAsfrom a similarity matrix of miRNAs. We define a novel information content of gene ontology (GO) to measure similarity between two sets of GO graphs corresponding to the two sets of target genes of two miRNAs. This between-graph similarity is then transferred as a functional similarity between the two miRNAs. Our definition of the information content is based on the size of a GO term's descendants, but adjusted by a weight derived from its depth level and the GO relationships at its path to the root node or to the most informative common ancestor (MICA). Further, a self-tuning technique and the eigenvalues of the normalized Laplacian matrix are applied to determine the optimal parameters for the spectral clustering of the similarity matrix of the miRNAs. Experimental results demonstrate that our method has better clustering performance than the existing edge-based, node-based or hybrid methods. Our method has also demonstrated a novel usefulness for the function annotation of new miRNAs, as reported in the detailed case studies.

  20. Widespread balancing selection and pathogen-driven selection at blood group antigen genes

    PubMed Central

    Fumagalli, Matteo; Cagliani, Rachele; Pozzoli, Uberto; Riva, Stefania; Comi, Giacomo P.; Menozzi, Giorgia; Bresolin, Nereo; Sironi, Manuela

    2009-01-01

    Historically, allelic variations in blood group antigen (BGA) genes have been regarded as possible susceptibility factors for infectious diseases. Since host–pathogen interactions are major determinants in evolution, BGAs can be thought of as selection targets. In order to verify this hypothesis, we obtained an estimate of pathogen richness for geographic locations corresponding to 52 populations distributed worldwide; after correction for multiple tests and for variables different from selective forces, significant correlations with pathogen richness were obtained for multiple variants at 11 BGA loci out of 26. In line with this finding, we demonstrate that three BGA genes, namely CD55, CD151, and SLC14A1, have been subjected to balancing selection, a process, rare outside MHC genes, which maintains variability at a locus. Moreover, we identified a gene region immediately upstream the transcription start site of FUT2 which has undergone non-neutral evolution independently from the coding region. Finally, in the case of BSG, we describe the presence of a highly divergent haplotype clade and the possible reasons for its maintenance, including frequency-dependent balancing selection, are discussed. These data indicate that BGAs have been playing a central role in the host–pathogen arms race during human evolutionary history and no other gene category shows similar levels of widespread selection, with the only exception of loci involved in antigen recognition. PMID:18997004

  1. Role of mga in growth phase regulation of virulence genes of the group A streptococcus.

    PubMed Central

    McIver, K S; Scott, J R

    1997-01-01

    To determine whether growth phase affects the expression of mga and other virulence-associated genes in the group A streptococcus (GAS), total RNA was isolated from the serotype M6 GAS strain JRS4 at different phases of growth and transcript levels were quantitated by hybridization with radiolabeled DNA probes. Expression of mga (which encodes a multiple gene regulator) and the Mga-regulated genes emm (which encodes M protein) and scpA (which encodes a complement C5a peptidase) was found to be maximal in exponential phase and shut off as the bacteria entered stationary phase, while the housekeeping genes recA and rpsL showed constant transcript levels over the same period of growth. Expression of mga from a foreign phage promoter in a mga-deleted GAS strain (JRS519) altered the wild-type growth phase-dependent transcription profile seen for emm and scpA, as well as for mga. Therefore, the temporal control of mga expression requires its upstream promoter region, and the subsequent growth phase regulation of emm and scpA is Mga dependent. A number of putative virulence genes in JRS4 were shown not to require Mga for their expression, although several exhibited growth phase-dependent regulation that was similar to mga, i.e., slo (which encodes streptolysin O) and plr (encoding the plasmin receptor/glyceraldehyde-3-phosphate dehydrogenase). Still others showed a markedly different pattern of expression (the genes for the superantigen toxins MF and SpeC). These results suggest the existence of complex levels of global regulation sensitive to growth phase that directly control the expression of virulence genes and mga in GAS. PMID:9260962

  2. Analysis of KIR gene frequencies and HLA class I genotypes in prostate cancer and control group.

    PubMed

    Portela, P; Jobim, L F; Salim, P H; Koff, W J; Wilson, T J; Jobim, M R; Schwartsmann, G; Roesler, R; Jobim, M

    2012-10-01

    Prostate cancer is the second most common cancer in men, with a significant increase in incidence and mortality in men over 50 years of age. Natural killer cells (NK) are part of the innate immune system recognizing class I HLA molecules on target cells through their membrane receptors, called killer cell immunoglobulin-like receptors (KIR). The aim of our study is to evaluate the association between the KIR genes and HLA alleles in patients with prostate cancer and healthy controls. Two hundred patients with prostate cancer and 185 healthy controls were typed for HLA class I and KIR genes by PCR-SSP. When both groups were compared, no significant differences were found for HLA-C group 1 and group 2, HLA-Bw4, HLA-A3 and A11. No difference was seen either in KIR frequency between patients with prostate cancer and controls. In conclusion, our data suggest no potential role for the KIR gene system in prostate cancer.

  3. Grouped False-Discovery Rate for Removing the Gene-Set-Level Bias of RNA-seq.

    PubMed

    Yang, Tae Young; Jeong, Seongmun

    2013-01-01

    In recent years, RNA-seq has become a very competitive alternative to microarrays. In RNA-seq experiments, the expected read count for a gene is proportional to its expression level multiplied by its transcript length. Even when two genes are expressed at the same level, differences in length will yield differing numbers of total reads. The characteristics of these RNA-seq experiments create a gene-level bias such that the proportion of significantly differentially expressed genes increases with the transcript length, whereas such bias is not present in microarray data. Gene-set analysis seeks to identify the gene sets that are enriched in the list of the identified significant genes. In the gene-set analysis of RNA-seq, the gene-level bias subsequently yields the gene-set-level bias that a gene set with genes of long length will be more likely to show up as enriched than will a gene set with genes of shorter length. Because gene expression is not related to its transcript length, any gene set containing long genes is not of biologically greater interest than gene sets with shorter genes. Accordingly the gene-set-level bias should be removed to accurately calculate the statistical significance of each gene-set enrichment in the RNA-seq. We present a new gene set analysis method of RNA-seq, called FDRseq, which can accurately calculate the statistical significance of a gene-set enrichment score by the grouped false-discovery rate. Numerical examples indicated that FDRseq is appropriate for controlling the transcript length bias in the gene-set analysis of RNA-seq data. To implement FDRseq, we developed the R program, which can be downloaded at no cost from http://home.mju.ac.kr/home/index.action?siteId=tyang.

  4. Influence of hydroxyl groups on the biological properties of cationic polymethacrylates as gene vectors.

    PubMed

    Ma, Ming; Li, Feng; Yuan, Zhe-fan; Zhuo, Ren-xi

    2010-07-01

    In this study poly(aminoethyl methacrylate) (PAEMA), poly(3-amino-2-hydroxypropyl methacrylate) (PAHPMA), poly(2-(2-aminoethylamino)ethyl methacrylate) (PAEAEMA) and poly(3-(2-aminoethylamino) 2-hydroxypropyl methacrylate) (PAEAHPMA) were synthesized using atom transfer radical polymerization to evaluate the effect of hydroxyl groups on the relative properties of cationic polymeric gene vectors. The results of heparin displacement assays showed that PAHPMA possessed a stronger binding capacity than PAEMA. PAHPMA/DNA complexes and PAEAHPMA/DNA complexes had lower zeta potentials than those of PAEMA and PAEAEMA. MTT assay results indicated that PAHPMA and PAEAHPMA exhibited obviously lower cytotoxicities than PAEMA and PAEAEMA. Subsequently, in vitro gene transfection studies in 293T cells without serum showed that PAHPMA exhibited a lower transfection efficiency than PAEMA and PAEAHPMA/DNA complexes possessed a similar transfection efficiency to PAEAEMA/DNA complexes. Moreover, PAHPMA and PAEAHPMA retained similar transfection efficiencies in DMEM with 10% serum, but PAEMA and PAEAEMA showed slightly lower transfection efficiencies than in the absence of serum. The reason for these phenomena might be attributed to the introduction of hydroxyl groups into PAHPMA and PAEAHPMA, i.e. the existence of hydroxyl groups might increase the binding capacity to DNA and at the same time decrease the surface charge of the polymer/DNA complexes due to the formation of hydrogen bonds between the polymers and DNA. Therefore, a lower zeta potential and stronger binding ability may result in a lower gene transfection efficiency. This effect of hydroxyl groups decreased with increasing amino group density on the polymer. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Structural analysis of the RH-like blood group gene products in nonhuman primates