Sample records for polycomb group repressor

  1. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor.

    PubMed

    Satijn, D P; Gunster, M J; van der Vlag, J; Hamer, K M; Schul, W; Alkema, M J; Saurin, A J; Freemont, P S; van Driel, R; Otte, A P

    1997-07-01

    The Polycomb (Pc) protein is a component of a multimeric, chromatin-associated Polycomb group (PcG) protein complex, which is involved in stable repression of gene activity. The identities of components of the PcG protein complex are largely unknown. In a two-hybrid screen with a vertebrate Pc homolog as a target, we identify the human RING1 protein as interacting with Pc. RING1 is a protein that contains the RING finger motif, a specific zinc-binding domain, which is found in many regulatory proteins. So far, the function of the RING1 protein has remained enigmatic. Here, we show that RING1 coimmunoprecipitates with a human Pc homolog, the vertebrate PcG protein BMI1, and HPH1, a human homolog of the PcG protein Polyhomeotic (Ph). Also, RING1 colocalizes with these vertebrate PcG proteins in nuclear domains of SW480 human colorectal adenocarcinoma and Saos-2 human osteosarcoma cells. Finally, we show that RING1, like Pc, is able to repress gene activity when targeted to a reporter gene. Our findings indicate that RING1 is associated with the human PcG protein complex and that RING1, like PcG proteins, can act as a transcriptional repressor.

  2. Structure of the Polycomb Group protein PCGF1 (NSPC1) in complex with BCOR reveals basis for binding selectivity of PCGF homologs

    PubMed Central

    Junco, Sarah E.; Wang, Renjing; Gaipa, John C.; Taylor, Alexander B.; Schirf, Virgil; Gearhart, Micah D.; Bardwell, Vivian J.; Demeler, Borries; Hart, P. John; Kim, Chongwoo A.

    2014-01-01

    Summary Polycomb Group RING finger homologs (PCGF1, 2, 3, 4, 5 and 6) are critical components in the assembly of distinct Polycomb Repression Complex 1 (PRC1) related complexes. Here we identify a protein interaction domain in BCL6 co-repressor, BCOR, which binds the ubiquitin-like RAWUL domain of PCGF1 (NSPC1) and PCGF3 but not of PCGF2 (MEL18) or PCGF4 (BMI1). Because of the selective binding, we have named this domain PCGF Ub-like fold Discriminator (PUFD). The structure of BCOR PUFD bound to PCGF1 reveals 1. that PUFD binds to the same surfaces as observed for a different Polycomb Group RAWUL domain and 2. the ability of PUFD to discriminate among RAWULs stems from the identity of specific residues within these interaction surfaces. These data are the first to show the molecular basis for determining the binding preference for a PCGF homolog, which ultimately helps determine the identity of the larger PRC1-like assembly. PMID:23523425

  3. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  4. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes

    PubMed Central

    Rose, Nathan R; King, Hamish W; Blackledge, Neil P; Fursova, Nadezda A; Ember, Katherine JI; Fischer, Roman; Kessler, Benedikt M; Klose, Robert J

    2016-01-01

    Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI: http://dx.doi.org/10.7554/eLife.18591.001 PMID:27705745

  5. Polycomb-like 2 Associates with PRC2 and Regulates Transcriptional Networks during Mouse Embryonic Stem Cell Self-Renewal and Differentiation

    PubMed Central

    Walker, Emily; Chang, Wing Y.; Hunkapiller, Julie; Cagney, Gerard; Garcha, Kamal; Torchia, Joseph; Krogan, Nevan J.; Reiter, Jeremy F.; Stanford, William L.

    2010-01-01

    Summary Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation. PMID:20144788

  6. Identification of polycomb and trithorax group responsive elements in the regulatory region of the Drosophila homeotic gene Sex combs reduced

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gindhart, J.G. Jr.; Kaufman, T.C.

    1995-02-01

    The Drosophilia homeotic gene Sex combs reduced (Scr) is necessary for the establishment and maintenance of the morphological identity of the labial and prothoracic segments. In the early embryo, its expression pattern is established through the activity of several gap and segmentation gene products, as well as other transcription factors. Once established, the Polycomb group (Pc-G) and trithorax group (trx-G) gene products maintain the spatial pattern of Scr expression for the remainder of development. We report the identification of DNA fragments in the Scr regulatory region that may be important for its regulation by Polycomb and trithorax group gene products.more » When DNA fragments containing these regulatory sequences are subcloned into P-element vectors containing a white minigene, transformants containing these constructs exhibit mosaic patterns of pigmentation in the adult eye, indicating that white minigene expression is repressed in a clonally heritable manner. The size of pigmented and nonpigmented clones in the adult eye suggests that the event determining whether a cell in the eye anlagen will express white occurs at least as early as the first larval instar. The amount of white minigene repression is reduced in some Polycomb group mutants, whereas repression is enhanced in flies mutant for a subset of trithorax group loci. The repressor activity of one fragment, normally located in Scr Intron 2, is increased when it is able to homologously pair, a property consistent with genetic data suggesting that Scr exhibits transvection. Another Scr regulatory fragment, normally located 40 kb upstream of the Scr promoter, silences ectopic expression of an Scr-lacZ fusion gene in the embryo and does so in a Polycomb-dependent manner. We propose that the regulatory sequences located within these DNA fragments may normally mediate the regulation of Scr by proteins encoded by members of Polycomb and trithorax group loci. 98 refs., 6 figs., 4 tabs.« less

  7. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53.

    PubMed

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice; Kramer, Daniela; Najafova, Zeynab; Weiss, Miriam; Karpiuk, Oleksandra; Kassem, Moustapha; Zhang, Yanping; Lozano, Guillermina; Johnsen, Steven A; Moll, Ute M; Zhang, Xin; Dobbelstein, Matthias

    2016-01-07

    The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Juxtaposed Polycomb complexes co-regulate vertebral identity.

    PubMed

    Kim, Se Young; Paylor, Suzanne W; Magnuson, Terry; Schumacher, Armin

    2006-12-01

    Best known as epigenetic repressors of developmental Hox gene transcription, Polycomb complexes alter chromatin structure by means of post-translational modification of histone tails. Depending on the cellular context, Polycomb complexes of diverse composition and function exhibit cooperative interaction or hierarchical interdependency at target loci. The present study interrogated the genetic, biochemical and molecular interaction of BMI1 and EED, pivotal constituents of heterologous Polycomb complexes, in the regulation of vertebral identity during mouse development. Despite a significant overlap in dosage-sensitive homeotic phenotypes and co-repression of a similar set of Hox genes, genetic analysis implicated eed and Bmi1 in parallel pathways, which converge at the level of Hox gene regulation. Whereas EED and BMI1 formed separate biochemical entities with EzH2 and Ring1B, respectively, in mid-gestation embryos, YY1 engaged in both Polycomb complexes. Strikingly, methylated lysine 27 of histone H3 (H3-K27), a mediator of Polycomb complex recruitment to target genes, stably associated with the EED complex during the maintenance phase of Hox gene repression. Juxtaposed EED and BMI1 complexes, along with YY1 and methylated H3-K27, were detected in upstream regulatory regions of Hoxc8 and Hoxa5. The combined data suggest a model wherein epigenetic and genetic elements cooperatively recruit and retain juxtaposed Polycomb complexes in mammalian Hox gene clusters toward co-regulation of vertebral identity.

  9. The Long Non-coding RNA HOTTIP Enhances Pancreatic Cancer Cell Proliferation, Survival and Migration

    EPA Science Inventory

    ABSTRACTHOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expres...

  10. Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements.

    PubMed

    Kahn, Tatyana G; Dorafshan, Eshagh; Schultheis, Dorothea; Zare, Aman; Stenberg, Per; Reim, Ingolf; Pirrotta, Vincenzo; Schwartz, Yuri B

    2016-12-01

    Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly

    PubMed Central

    Zapata, Juan C.; Campilongo, Federica; Barclay, Robert A.; DeMarino, Catherine; Iglesias-Ussel, Maria D.; Kashanchi, Fatah; Romerio, Fabio

    2017-01-01

    Various epigenetic marks at the HIV-1 5′LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3′LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5′LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5′LTR and proviral latency through the PRC2 pathway. PMID:28340355

  12. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly.

    PubMed

    Zapata, Juan C; Campilongo, Federica; Barclay, Robert A; DeMarino, Catherine; Iglesias-Ussel, Maria D; Kashanchi, Fatah; Romerio, Fabio

    2017-06-01

    Various epigenetic marks at the HIV-1 5'LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3'LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5'LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5'LTR and proviral latency through the PRC2 pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. REST–Mediated Recruitment of Polycomb Repressor Complexes in Mammalian Cells

    PubMed Central

    Landt, Eskild; Agrawal-Singh, Shuchi; Bak, Mads; Tommerup, Niels; Rappsilber, Juri; Södersten, Erik; Hansen, Klaus

    2012-01-01

    Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest−/− and Eed−/− mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest−/− mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands. PMID:22396653

  14. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications.

    PubMed

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2015-11-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. © 2015 Wiley Periodicals, Inc.

  15. BMI-1, a promising therapeutic target for human cancer

    PubMed Central

    WANG, MIN-CONG; LI, CHUN-LI; CUI, JIE; JIAO, MIN; WU, TAO; JING, LI; NAN, KE-JUN

    2015-01-01

    BMI-1 oncogene is a member of the polycomb-group gene family and a transcriptional repressor. Overexpression of BMI-1 has been identified in various human cancer tissues and is known to be involved in cancer cell proliferation, cell invasion, distant metastasis, chemosensitivity and patient survival. Accumulating evidence has revealed that BMI-1 is also involved in the regulation of self-renewal, differentiation and tumor initiation of cancer stem cells (CSCs). However, the molecular mechanisms underlying these biological processes remain unclear. The present review summarized the function of BMI-1 in different human cancer types and CSCs, and discussed the signaling pathways in which BMI-1 is potentially involved. In conclusion, BMI-1 may represent a promising target for the prevention and therapy of various cancer types. PMID:26622537

  16. Paradoxical Role of DNA Methylation in Activation of FoxA2 Gene Expression during Endoderm Development*

    PubMed Central

    Bahar Halpern, Keren; Vana, Tal; Walker, Michael D.

    2014-01-01

    The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2′-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation. PMID:25016019

  17. Kicking against the PRCs – A Domesticated Transposase Antagonises Silencing Mediated by Polycomb Group Proteins and Is an Accessory Component of Polycomb Repressive Complex 2

    PubMed Central

    Perera, Pumi; Mora-García, Santiago; de Leau, Erica; Thornton, Harry; de Alves, Flavia Lima; Rapsilber, Juri; Yang, Suxin; James, Geo Velikkakam; Schneeberger, Korbinian; Finnegan, E. Jean; Turck, Franziska; Goodrich, Justin

    2015-01-01

    The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity. PMID:26642436

  18. Polycomb group protein bodybuilding: working out the routines.

    PubMed

    Sievers, Cem; Paro, Renato

    2013-09-30

    Polycomb group (PcG) proteins regulate gene expression by modifying chemical and structural properties of chromatin. Isono et al. (2013) now report in Developmental Cell a polymerization-dependent mechanism used by PcG proteins to form higher-order chromatin structures, referred to as Polycomb bodies, and demonstrate its necessity for gene silencing. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Stuxnet Recruits the Proteasome to Take Down Polycomb.

    PubMed

    Karch, François

    2016-06-20

    In this issue of Developmental Cell, Du et al. (2016) describe a gene named stuxnet that regulates Polycomb protein stability, thereby influencing the activity of the Polycomb-group repressive chromatin complexes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Molecular architecture of polycomb repressive complexes

    PubMed Central

    Chittock, Emily C.; Latwiel, Sebastian; Miller, Thomas C.R.

    2017-01-01

    The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin. PMID:28202673

  1. Polycomb Group Repression Reduces DNA Accessibility

    PubMed Central

    Fitzgerald, Daniel P.; Bender, Welcome

    2001-01-01

    The Polycomb group proteins are responsible for long-term repression of a number of genes in Drosophila melanogaster, including the homeotic genes of the bithorax complex. The Polycomb protein is thought to alter the chromatin structure of its target genes, but there has been little direct evidence for this model. In this study, the chromatin structure of the bithorax complex was probed with three separate assays for DNA accessibility: (i) activation of polymerase II (Pol II) transcription by Gal4, (ii) transcription by the bacteriophage T7 RNA polymerase (T7RNAP), and (iii) FLP-mediated site-specific recombination. All three processes are restricted or blocked in Polycomb-repressed segments. In contrast, control test sites outside of the bithorax complex permitted Gal4, T7RNAP, and FLP activities throughout the embryo. Several P insertions in the bithorax complex were tested, providing evidence that the Polycomb-induced effect is widespread over target genes. This accessibility effect is similar to that seen for SIR silencing in Saccharomyces cerevisiae. In contrast to SIR silencing, however, episomes excised from Polycomb-repressed chromosomal sites do not show an altered superhelix density. PMID:11533246

  2. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    PubMed

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  3. batman Interacts with Polycomb and trithorax Group Genes and Encodes a BTB/POZ Protein That Is Included in a Complex Containing GAGA Factor

    PubMed Central

    Faucheux, M.; Roignant, J.-Y.; Netter, S.; Charollais, J.; Antoniewski, C.; Théodore, L.

    2003-01-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes. PMID:12556479

  4. Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia.

    PubMed

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F

    2016-07-19

    Recently, we identified deregulated expression of the B-cell specific transcription factor MEF2C in T-cell acute lymphoid leukemia (T-ALL). Here, we performed sequence analysis of a regulatory upstream section of MEF2C in T-ALL cell lines which, however, proved devoid of mutations. Unexpectedly, we found strong conservation between the regulatory upstream region of MEF2C (located at chromosomal band 5q14) and an intergenic stretch at 7q11 located between STAG3L4 and AUTS2, covering nearly 20 kb. While the non-coding gene STAG3L4 was inconspicuously expressed, AUTS2 was aberrantly upregulated in 6% of T-ALL patients (public dataset GSE42038) and in 3/24 T-ALL cell lines, two of which represented very immature differentiation stages. AUTS2 expression was higher in normal B-cells than in T-cells, indicating lineage-specific activity in lymphopoiesis. While excluding chromosomal aberrations, examinations of AUTS2 transcriptional regulation in T-ALL cells revealed activation by IL7-IL7R-STAT5-signalling and MEF2C. AUTS2 protein has been shown to interact with polycomb repressor complex 1 subtype 5 (PRC1.5), transforming this particular complex into an activator. Accordingly, expression profiling and functional analyses demonstrated that AUTS2 activated while PCGF5 repressed transcription of NKL homeobox gene MSX1 in T-ALL cells. Forced expression and pharmacological inhibition of EZH2 in addition to H3K27me3 analysis indicated that PRC2 repressed MSX1 as well. Taken together, we found that AUTS2 and MEF2C, despite lying on different chromosomes, share strikingly similar regulatory upstream regions and aberrant expression in T-ALL subsets. Our data implicate chromatin complexes PRC1/AUTS2 and PRC2 in a gene network in T-ALL regulating early lymphoid differentiation.

  5. Fine-tuning of chromatin composition and Polycomb recruitment by two Mi2 homologues during C. elegans early embryonic development.

    PubMed

    Käser-Pébernard, Stéphanie; Pfefferli, Catherine; Aschinger, Caroline; Wicky, Chantal

    2016-01-01

    The nucleosome remodeling and deacetylase complex promotes cell fate decisions throughout embryonic development. Its core enzymatic subunit, the SNF2-like ATPase and Helicase Mi2, is well conserved throughout the eukaryotic kingdom and can be found in multiple and highly homologous copies in all vertebrates and some invertebrates. However, the reasons for such duplications and their implications for embryonic development are unknown. Here we studied the two C. elegans Mi2 homologues, LET-418 and CHD-3, which displayed redundant activities during early embryonic development. At the transcriptional level, these two Mi2 homologues redundantly repressed the expression of a large gene population. We found that LET-418 physically accumulated at TSS-proximal regions on transcriptionally active genomic targets involved in growth and development. Moreover, LET-418 acted redundantly with CHD-3 to block H3K4me3 deposition at these genes. Our study also revealed that LET-418 was partially responsible for recruiting Polycomb to chromatin and for promoting H3K27me3 deposition. Surprisingly, CHD-3 displayed opposite activities on Polycomb, as it was capable of moderating its LET-418-dependent recruitment and restricted the amount of H3K27me3 on the studied target genes. Although closely homologous, LET-418 and CHD-3 showed both redundant and opposite functions in modulating the chromatin environment at developmental target genes. We identified the interplay between LET-418 and CHD-3 to finely tune the levels of histone marks at developmental target genes. More than just repressors, Mi2-containing complexes appear as subtle modulators of gene expression throughout development. The study of such molecular variations in vertebrate Mi2 counterparts might provide crucial insights to our understanding of the epigenetic control of early development.

  6. GRHL3/GET1 and Trithorax Group Members Collaborate to Activate the Epidermal Progenitor Differentiation Program

    PubMed Central

    Hopkin, Amelia Soto; Gordon, William; Klein, Rachel Herndon; Espitia, Francisco; Daily, Kenneth; Zeller, Michael; Baldi, Pierre; Andersen, Bogi

    2012-01-01

    The antagonistic actions of Polycomb and Trithorax are responsible for proper cell fate determination in mammalian tissues. In the epidermis, a self-renewing epithelium, previous work has shown that release from Polycomb repression only partially explains differentiation gene activation. We now show that Trithorax is also a key regulator of epidermal differentiation, not only through activation of genes repressed by Polycomb in progenitor cells, but also through activation of genes independent of regulation by Polycomb. The differentiation associated transcription factor GRHL3/GET1 recruits the ubiquitously expressed Trithorax complex to a subset of differentiation genes. PMID:22829784

  7. Polycomb purification by in vivo biotinylation tagging reveals cohesin and Trithorax group proteins as interaction partners

    PubMed Central

    Strübbe, Gero; Popp, Christian; Schmidt, Alexander; Pauli, Andrea; Ringrose, Leonie; Beisel, Christian; Paro, Renato

    2011-01-01

    The maintenance of specific gene expression patterns during cellular proliferation is crucial for the identity of every cell type and the development of tissues in multicellular organisms. Such a cellular memory function is conveyed by the complex interplay of the Polycomb and Trithorax groups of proteins (PcG/TrxG). These proteins exert their function at the level of chromatin by establishing and maintaining repressed (PcG) and active (TrxG) chromatin domains. Past studies indicated that a core PcG protein complex is potentially associated with cell type or even cell stage-specific sets of accessory proteins. In order to better understand the dynamic aspects underlying PcG composition and function we have established an inducible version of the biotinylation tagging approach to purify Polycomb and associated factors from Drosophila embryos. This system enabled fast and efficient isolation of Polycomb containing complexes under near physiological conditions, thereby preserving substoichiometric interactions. Novel interacting proteins were identified by highly sensitive mass spectrometric analysis. We found many TrxG related proteins, suggesting a previously unrecognized extent of molecular interaction of the two counteracting chromatin regulatory protein groups. Furthermore, our analysis revealed an association of PcG protein complexes with the cohesin complex and showed that Polycomb-dependent silencing of a transgenic reporter depends on cohesin function. PMID:21415365

  8. Biochemical and Functional Interactions of Human Papillomavirus Proteins with Polycomb Group Proteins

    PubMed Central

    McLaughlin-Drubin, Margaret E.; Munger, Karl

    2013-01-01

    The role of enzymes involved in polycomb repression of gene transcription has been studied extensively in human cancer. Polycomb repressive complexes mediate oncogene-induced senescence, a principal innate cell-intrinsic tumor suppressor pathway that thwarts expansion of cells that have suffered oncogenic hits. Infections with human cancer viruses including human papillomaviruses (HPVs) and Epstein-Barr virus can trigger oncogene-induced senescence, and the viruses have evolved strategies to abrogate this response in order to establish an infection and reprogram their host cells to establish a long-term persistent infection. As a consequence of inhibiting polycomb repression and evading oncogene induced-senescence, HPV infected cells have an altered epigenetic program as evidenced by aberrant homeobox gene expression. Similar alterations are frequently observed in non-virus associated human cancers and may be harnessed for diagnosis and therapy. PMID:23673719

  9. Illustrations of mathematical modeling in biology: epigenetics, meiosis, and an outlook.

    PubMed

    Richards, D; Berry, S; Howard, M

    2012-01-01

    In the past few years, mathematical modeling approaches in biology have begun to fulfill their promise by assisting in the dissection of complex biological systems. Here, we review two recent examples of predictive mathematical modeling in plant biology. The first involves the quantitative epigenetic silencing of the floral repressor gene FLC in Arabidopsis, mediated by a Polycomb-based system. The second involves the spatiotemporal dynamics of telomere bouquet formation in wheat-rye meiosis. Although both the biology and the modeling framework of the two systems are different, both exemplify how mathematical modeling can help to accelerate discovery of the underlying mechanisms in complex biological systems. In both cases, the models that developed were relatively minimal, including only essential features, but both nevertheless yielded fundamental insights. We also briefly review the current state of mathematical modeling in biology, difficulties inherent in its application, and its potential future development.

  10. BCL6 interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function

    PubMed Central

    Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.

    2015-01-01

    CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHCII-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh differentiation and humoral immunity. PMID:25964495

  11. A functionally conserved Polycomb response element from mouse HoxD complex responds to heterochromatin factors

    NASA Astrophysics Data System (ADS)

    Vasanthi, Dasari; Nagabhushan, A.; Matharu, Navneet Kaur; Mishra, Rakesh K.

    2013-10-01

    Anterior-posterior body axis in all bilaterians is determined by the Hox gene clusters that are activated in a spatio-temporal order. This expression pattern of Hox genes is established and maintained by regulatory mechanisms that involve higher order chromatin structure and Polycomb group (PcG) and trithorax group (trxG) proteins. We identified earlier a Polycomb response element (PRE) in the mouse HoxD complex that is functionally conserved in flies. We analyzed the molecular and genetic interactions of mouse PRE using Drosophila melanogaster and vertebrate cell culture as the model systems. We demonstrate that the repressive activity of this PRE depends on PcG/trxG genes as well as the heterochromatin components. Our findings indicate that a wide range of factors interact with the HoxD PRE that can contribute to establishing the expression pattern of homeotic genes in the complex early during development and maintain that pattern at subsequent stages.

  12. Maintenance of Tissue Pluripotency by Epigenetic Factors Acting at Multiple Levels

    PubMed Central

    Sadasivam, Devendran A.; Huang, Der-Hwa

    2016-01-01

    Pluripotent stem cells often adopt a unique developmental program while retaining certain flexibility. The molecular basis of such properties remains unclear. Using differentiation of pluripotent Drosophila imaginal tissues as assays, we examined the contribution of epigenetic factors in ectopic activation of Hox genes. We found that over-expression of Trithorax H3K4 methyltransferase can induce ectopic adult appendages by selectively activating the Hox genes Ultrabithorax and Sex comb reduced in wing and leg discs, respectively. This tissue-specific inducibility correlates with the presence of paused RNA polymerase II in the promoter-proximal region of these genes. Although the Antennapedia promoter is paused in eye-antenna discs, it cannot be induced by Trx without a reduction in histone variants or their chaperones, suggesting additional control by the nucleosomal architecture. Lineage tracing and pulse-chase experiments revealed that the active state of Hox genes is maintained substantially longer in mutants deficient for HIRA, a chaperone for the H3.3 variant. In addition, both HIRA and H3.3 appeared to act cooperatively with the Polycomb group of epigenetic repressors. These results support the involvement of H3.3-mediated nucleosome turnover in restoring the repressed state. We propose a regulatory framework integrating transcriptional pausing, histone modification, nucleosome architecture and turnover for cell lineage maintenance. PMID:26926299

  13. An Evolutionary Conserved Epigenetic Mark of Polycomb Response Elements Implemented by Trx/MLL/COMPASS.

    PubMed

    Rickels, Ryan; Hu, Deqing; Collings, Clayton K; Woodfin, Ashley R; Piunti, Andrea; Mohan, Man; Herz, Hans-Martin; Kvon, Evgeny; Shilatifard, Ali

    2016-07-21

    Polycomb response elements (PREs) are specific DNA sequences that stably maintain the developmental pattern of gene expression. Drosophila PREs are well characterized, whereas the existence of PREs in mammals remains debated. Accumulating evidence supports a model in which CpG islands recruit Polycomb group (PcG) complexes; however, which subset of CGIs is selected to serve as PREs is unclear. Trithorax (Trx) positively regulates gene expression in Drosophila and co-occupies PREs to antagonize Polycomb-dependent silencing. Here we demonstrate that Trx-dependent H3K4 dimethylation (H3K4me2) marks Drosophila PREs and maintains the developmental expression pattern of nearby genes. Similarly, the mammalian Trx homolog, MLL1, deposits H3K4me2 at CpG-dense regions that could serve as PREs. In the absence of MLL1 and H3K4me2, H3K27me3 levels, a mark of Polycomb repressive complex 2 (PRC2), increase at these loci. By inhibiting PRC2-dependent H3K27me3 in the absence of MLL1, we can rescue expression of these loci, demonstrating a functional balance between MLL1 and PRC2 activities at these sites. Thus, our study provides rules for identifying cell-type-specific functional mammalian PREs within the human genome. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Repressive coping and self-reports of parenting.

    PubMed

    Myers, L B; Brewin, C R; Winter, D A

    1999-03-01

    To investigate whether women who possess a repressive coping style (repressors) self-report more positive judgments of their childhood on questionnaire and repertory grid measures compared with non-repressors. Repressors (low anxiety-high defensiveness) were compared with a composite group of non-repressors, containing some low anxious (low anxiety-low defensiveness), some high anxious (high anxiety-low defensiveness), some defensive high anxious (high anxiety-high defensiveness) and some non-extreme scorers. Participants completed the Parental Bonding Instrument (PBI; Parker, Tupling & Brown, 1979) and a 10 x 10 repertory grid, Self-Identification Form. On the PBI, repressors scored significantly higher than non-repressors on paternal care and significantly lower on paternal overprotection. There were no group differences for maternal measures. On the repertory grid, repressors compared with non-repressors perceived (a) themselves as significantly closer to their father, a woman they like, and their ideal partner, and significantly further from a woman they dislike, and a man they dislike; and (b) their father as significantly closer to a woman they like, a partner/person they admire, and an ideal partner. In addition, repressors were significantly tighter on construing than non-repressors. The results supported the hypothesis that repressors would rate their interactions with their fathers more positively than non-repressors when allowed to do so on self-report measures.

  15. Polycomb group (PcG) proteins and Pax6 cooperate to inhibit in vivo reprogramming of the developing Drosophila eye.

    PubMed

    Zhu, Jinjin; Ordway, Alison J; Weber, Lena; Buddika, Kasun; Kumar, Justin P

    2018-04-04

    How different cells and tissues commit to and determine their fates has been a central question in developmental biology since the seminal embryological experiments conducted by Wilhelm Roux and Hans Driesch in sea urchins and frogs. Here, we demonstrate that Polycomb group (PcG) proteins maintain Drosophila eye specification by suppressing the activation of alternative fate choices. The loss of PcG in the developing eye results in a cellular reprogramming event in which the eye is redirected to a wing fate. This fate transformation occurs with either the individual loss of Polycomb proteins or the simultaneous reduction of the Pleiohomeotic repressive complex and Pax6. Interestingly, the requirement for retinal selector genes is limited to Pax6, as the removal of more downstream members does not lead to the eye-wing transformation. We also show that distinct PcG complexes are required during different developmental windows throughout eye formation. These findings build on earlier observations that the eye can be reprogrammed to initiate head epidermis, antennal and leg development. © 2018. Published by The Company of Biologists Ltd.

  16. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.

    PubMed

    Achour, Cyrinne; Aguilo, Francesca

    2018-06-01

    High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript ( XIST ), antisense non-coding RNA in the INK4 locus ( ANRIL ), metastasis associated lung adenocarcinoma transcript 1 ( MALAT1 ), and HOX transcript antisense RNA ( HOTAIR ).

  17. Insights into GATA-1 Mediated Gene Activation versus Repression via Genome-wide Chromatin Occupancy Analysis

    PubMed Central

    Yu, Ming; Riva, Laura; Xie, Huafeng; Schindler, Yocheved; Moran, Tyler B.; Cheng, Yong; Yu, Duonan; Hardison, Ross; Weiss, Mitchell J; Orkin, Stuart H.; Bernstein, Bradley E.; Fraenkel, Ernest; Cantor, Alan B.

    2009-01-01

    Summary The transcription factor GATA-1 is required for terminal erythroid maturation and functions as an activator or repressor depending on gene context. Yet its in vivo site selectivity and ability to distinguish between activated versus repressed genes remain incompletely understood. In this study, we performed GATA-1 ChIP-seq in erythroid cells and compared it to GATA-1 induced gene expression changes. Bound and differentially expressed genes contain a greater number of GATA binding motifs, a higher frequency of palindromic GATA sites, and closer occupancy to the transcriptional start site versus non-differentially expressed genes. Moreover, we show that the transcription factor Zbtb7a occupies GATA-1 bound regions of some direct GATA-1 target genes, that the presence of SCL/TAL1 helps distinguish transcriptional activation versus repression, and that Polycomb Repressive Complex 2 (PRC2) is involved in epigenetic silencing of a subset of GATA-1 repressed genes. These data provide insights into GATA-1 mediated gene regulation in vivo. PMID:19941827

  18. Genome-wide analysis of Polycomb targets in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Yuri B.; Kahn, Tatyana G.; Nix, David A.

    2006-04-01

    Polycomb Group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. We have determined the distribution of the PcG proteins PC, E(Z) and PSC and of histone H3K27 trimethylation in the Drosophila genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb Response Elements (PREs). In contrast, H3 me3K27 forms broad domains including the entiremore » transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors but receptors, signaling proteins, morphogens and regulators representing all major developmental pathways are also included.« less

  19. Polycomb Repressive Complex 2 Confers BRG1 Dependency on the CIITA Locus.

    PubMed

    Abou El Hassan, Mohamed; Yu, Tao; Song, Lan; Bremner, Rod

    2015-05-15

    CIITA (or MHC2TA) coordinates constitutive and IFN-γ-induced expression of MHC class II genes. IFN-γ responsiveness of CIITA requires BRG1 (SMARCA4), the ATPase engine of the chromatin remodeling SWI/SNF complex (also called BAF). SWI/SNF is defective in many human cancers, providing a mechanism to explain IFN-γ resistance. BRG1 dependency is mediated through remote elements. Short CIITA reporters lacking these elements respond to IFN-γ, even in BRG1-deficient cells, suggesting that BRG1 counters a remote repressive influence. The nature of this distal repressor is unknown, but it would represent a valuable therapeutic target to reactivate IFN-γ responsiveness in cancer. In this article, we show that the polycomb repressive complex 2 (PRC2) components EZH2 and SUZ12, as well as the associated histone mark H3K27me3, are codetected at interenhancer regions across the CIITA locus. IFN-γ caused a BRG1-dependent reduction in H3K27me3, associated with nucleosome displacement. SUZ12 knockdown restored IFN-γ responsiveness in BRG1-null cells, and it mimicked the ability of BRG1 to induce active histone modifications (H3K27ac, H3K4me) at the -50-kb enhancer. Thus, PRC2 confers BRG1 dependency on the CIITA locus. Our data suggest that, in addition to its known roles in promoting stemness and proliferation, PRC2 may inhibit immune surveillance, and it could be targeted to reactivate CIITA expression in SWI/SNF deficient cancers. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks.

    PubMed

    Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe

    2018-04-15

    The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.

  1. A methyltransferase required for proper timing of the vernalization response in Arabidopsis

    DOE PAGES

    Lee, Joohyun; Yun, Jae-Young; Zhao, Wei; ...

    2015-01-20

    Prolonged exposure to winter cold enables flowering in many plant species through a process called vernalization. In Arabidopsis, vernalization results from the epigenetic silencing of the floral repressor FLOWERING LOCUS C (FLC) via a Polycomb Repressive Complex 2 (PRC2)-mediated increase in the density of the epigenetic silencing mark H3K27me3 at FLC chromatin. During cold exposure, a gene encoding a unique, cold-specific PRC2 component, VERNALIZATION INSENSITIVE 3 (VIN3), which is necessary for PRC2-mediated silencing of FLC, is induced. In this paper, we show that SET DOMAIN GROUP 7 (SDG7) is required for proper timing of VIN3 induction and of the vernalizationmore » process. Loss of SDG7 results in a vernalization-hypersensitive phenotype, as well as more rapid cold-mediated up-regulation of VIN3. In the absence of cold, loss of SDG7 results in elevated levels of long noncoding RNAs, which are thought to participate in epigenetic repression of FLC. Furthermore, loss of SDG7 results in increased H3K27me3 deposition on FLC chromatin in the absence of cold exposure and enhanced H3K27me3 spreading during cold treatment. In conclusion, SDG7 is a negative regulator of vernalization, and loss of SDG7 creates a partially vernalized state without cold exposure.« less

  2. Structural basis of DNA target recognition by the B3 domain of Arabidopsis epigenome reader VAL1

    PubMed Central

    Sasnauskas, Giedrius; Kauneckaitė, Kotryna; Siksnys, Virginijus

    2018-01-01

    Abstract Arabidopsis thaliana requires a prolonged period of cold exposure during winter to initiate flowering in a process termed vernalization. Exposure to cold induces epigenetic silencing of the FLOWERING LOCUS C (FLC) gene by Polycomb group (PcG) proteins. A key role in this epigenetic switch is played by transcriptional repressors VAL1 and VAL2, which specifically recognize Sph/RY DNA sequences within FLC via B3 DNA binding domains, and mediate recruitment of PcG silencing machinery. To understand the structural mechanism of site-specific DNA recognition by VAL1, we have solved the crystal structure of VAL1 B3 domain (VAL1-B3) bound to a 12 bp oligoduplex containing the canonical Sph/RY DNA sequence 5′-CATGCA-3′/5′-TGCATG-3′. We find that VAL1-B3 makes H-bonds and van der Waals contacts to DNA bases of all six positions of the canonical Sph/RY element. In agreement with the structure, in vitro DNA binding studies show that VAL1-B3 does not tolerate substitutions at any position of the 5′-TGCATG-3′ sequence. The VAL1-B3–DNA structure presented here provides a structural model for understanding the specificity of plant B3 domains interacting with the Sph/RY and other DNA sequences. PMID:29660015

  3. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing

    PubMed Central

    Tie, Feng; Banerjee, Rakhee; Saiakhova, Alina R.; Howard, Benny; Monteith, Kelsey E.; Scacheri, Peter C.; Cosgrove, Michael S.; Harte, Peter J.

    2014-01-01

    Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a ‘cellular memory’ of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trxZ11 missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trxZ11 also suppresses the impaired silencing phenotypes of the Pc3 mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory. PMID:24550119

  4. The NUCLEAR FACTOR-CONSTANS complex antagonizes Polycomb repression to de-repress FLOWERING LOCUS T expression in response to inductive long days in Arabidopsis.

    PubMed

    Luo, Xiao; Gao, Zheng; Wang, Yizhong; Chen, Zhijuan; Zhang, Wenju; Huang, Jirong; Yu, Hao; He, Yuehui

    2018-07-01

    Many plants sense the seasonal cues, day length or photoperiod changes, to align the timing of the developmental transition to flowering with changing seasons for reproductive success. Inductive day lengths through the photoperiod pathway induce the expression of FLOWERING LOCUS T (FT) or FT relatives that encode a major mobile florigen to promote flowering. In Arabidopsis thaliana, under inductive long days the photoperiod pathway output CONSTANS (CO) accumulates toward the end of the day, and associates with the B and C subunits of Nuclear Factor Y (NF-Y) to form the NF-CO complex that acts to promote FT expression near dusk, whereas Polycomb group (PcG) proteins function to silence FT expression. How NF-CO acts to antagonize the function of PcG proteins to regulate FT expression remains unclear. Here, we show that the NF-CO complex bound to the proximal FT promoter, through chromatin looping, acts in concert with an NF-Y complex bound to a distal enhancer to reduce the levels of PcG proteins, including both Polycomb repressive complex 1 (PRC1) and PRC2 at the FT promoter, leading to a relieving of Polycomb silencing and thus FT de-repression near dusk. Thus, our study provides molecular insights on how the 'active' photoperiod pathway and the 'repressive' Polycomb silencing system interact to control temporal FT expression, conferring the long-day induction of flowering in Arabidopsis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  5. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands

    PubMed Central

    Farcas, Anca M; Blackledge, Neil P; Sudbery, Ian; Long, Hannah K; McGouran, Joanna F; Rose, Nathan R; Lee, Sheena; Sims, David; Cerase, Andrea; Sheahan, Thomas W; Koseki, Haruhiko; Brockdorff, Neil; Ponting, Chris P; Kessler, Benedikt M; Klose, Robert J

    2012-01-01

    CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs. DOI: http://dx.doi.org/10.7554/eLife.00205.001 PMID:23256043

  6. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy.

    PubMed

    Wang, Zhihua; Zhang, Xiao-Jing; Ji, Yan-Xiao; Zhang, Peng; Deng, Ke-Qiong; Gong, Jun; Ren, Shuxun; Wang, Xinghua; Chen, Iris; Wang, He; Gao, Chen; Yokota, Tomohiro; Ang, Yen Sin; Li, Shen; Cass, Ashley; Vondriska, Thomas M; Li, Guangping; Deb, Arjun; Srivastava, Deepak; Yang, Huang-Tian; Xiao, Xinshu; Li, Hongliang; Wang, Yibin

    2016-10-01

    Epigenetic reprogramming is a critical process of pathological gene induction during cardiac hypertrophy and remodeling, but the underlying regulatory mechanisms remain to be elucidated. Here we identified a heart-enriched long noncoding (lnc)RNA, named cardiac-hypertrophy-associated epigenetic regulator (Chaer), which is necessary for the development of cardiac hypertrophy. Mechanistically, Chaer directly interacts with the catalytic subunit of polycomb repressor complex 2 (PRC2). This interaction, which is mediated by a 66-mer motif in Chaer, interferes with PRC2 targeting to genomic loci, thereby inhibiting histone H3 lysine 27 methylation at the promoter regions of genes involved in cardiac hypertrophy. The interaction between Chaer and PRC2 is transiently induced after hormone or stress stimulation in a process involving mammalian target of rapamycin complex 1, and this interaction is a prerequisite for epigenetic reprogramming and induction of genes involved in hypertrophy. Inhibition of Chaer expression in the heart before, but not after, the onset of pressure overload substantially attenuates cardiac hypertrophy and dysfunction. Our study reveals that stress-induced pathological gene activation in the heart requires a previously uncharacterized lncRNA-dependent epigenetic checkpoint.

  7. The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    PubMed Central

    Battistelli, C; Cicchini, C; Santangelo, L; Tramontano, A; Grassi, L; Gonzalez, F J; de Nonno, V; Grassi, G; Amicone, L; Tripodi, M

    2017-01-01

    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT. PMID:27452518

  8. Bmi-1: At the crossroads of physiological and pathological biology

    PubMed Central

    Bhattacharya, Resham; Mustafi, Soumyajit Banerjee; Street, Mark; Dey, Anindya; Dwivedi, Shailendra Kumar Dhar

    2015-01-01

    Bmi-1 is a member of the Polycomb Repressor Complex1 that mediates gene silencing by regulating chromatin structure and is indispensable for self-renewal of both normal and cancer stem cells. Despite three decades of research that have elucidated the transcriptional regulation, post-translational modifications and functions of Bmi-1 in regulating the DNA damage response, cellular bioenergetics, and pathologies, the entire potential of a protein with such varied function remains to be realized. This review attempts to synthesize the current knowledge on Bmi-1 with an emphasis on its role in both normal physiology and cancer. Additionally, since cancer stem cells are emerging as a new paradigm for therapy resistance, the role of Bmi-1 in this perspective is also highlighted. The wide spectrum of malignancies that implicate Bmi-1 as a signature for stemness and oncogenesis also make it a suitable candidate for therapy. Nonetheless new approaches are vitally needed to further characterize physiological roles of Bmi-1 with the long-term goal of using Bmi-1 as a prognostic marker and a therapeutic target. PMID:26448339

  9. Crystallization and preliminary X-ray diffraction analysis of the arginine repressor of the hyperthermophile Thermotoga neapolitana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massant, Jan, E-mail: jan.massant@vub.ac.be; Peeters, Eveline; Charlier, Daniel

    2006-01-01

    The arginine repressor of the hyperthermophile T. neapolitana was crystallized with and without its corepressor arginine. Both crystals diffracted to high resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with similar unit-cell parameters. The arginine repressor of Thermotoga neapolitana (ArgRTnp) is a member of the family of multifunctional bacterial arginine repressors involved in the regulation of arginine metabolism. This hyperthermophilic repressor shows unique DNA-binding features that distinguish it from its homologues. ArgRTnp exists as a homotrimeric protein that assembles into hexamers at higher protein concentrations and/or in the presence of arginine. ArgRTnp was crystallized with andmore » without its corepressor arginine using the hanging-drop vapour-diffusion method. Crystals of the aporepressor diffracted to a resolution of 2.1 Å and belong to the orthorhombic P2{sub 1}2{sub 1}2{sub 1} space group, with unit-cell parameters a = 117.73, b = 134.15, c = 139.31 Å. Crystals of the repressor in the presence of its corepressor arginine diffracted to a resolution of 2.4 Å and belong to the same space group, with similar unit-cell parameters.« less

  10. Impact of EZH2 polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic features.

    PubMed

    Yu, Yung-Luen; Su, Kuo-Jung; Hsieh, Ming-Ju; Wang, Shian-Shiang; Wang, Po-Hui; Weng, Wei-Chun; Yang, Shun-Fa

    2014-01-01

    The gene EZH2, the polycomb group protein enhancer of zeste 2, encodes a transcriptional repressor that also serves as a histone methyltransferase that is associated with progression to more advanced disease in a variety of malignancies. EZH2 expression level in urothelial cell carcinoma (UCC) is highly correlated with tumor aggressiveness, but it has not been determined if specific EZH2 genetic variants are associated with UCC risk. This study investigated the potential associations of EZH2 single-nucleotide polymorphisms with UCC susceptibility and its clinicopathologic characteristics. A total of 233 UCC patients and 552 cancer-free controls, all of whom were from Taiwan, were analyzed for four EZH2 single-nucleotide polymorphisms (rs6950683, rs2302427, rs3757441, and rs41277434) using real-time PCR genotyping. After adjusting for other co-variants, we found that individuals carrying at least one C allele at EZH2 rs6950683 had a lower risk of developing UCC than did major allele carriers. The CCCA or TGTA haplotype among the four EZH2 sites was also associated with a reduced risk of UCC. Furthermore, UCC patients who carried at least one G allele at rs2302427 had a lower invasive tumor stage than did patients carrying the major allele. The rs6950683 SNPs of EZH2 might contribute to the prediction of UCC susceptibility. This is the first study to provide insight into risk factors associated with EZH2 variants in carcinogenesis of UCC in Taiwan.

  11. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    PubMed

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  12. The SAND domain protein ULTRAPETALA1 acts as a trithorax group factor to regulate cell fate in plants

    USDA-ARS?s Scientific Manuscript database

    During development, trithorax group (trxG) chromatin remodeling complexes counteract repression by Polycomb group (PcG) complexes to sustain active expression of key regulatory genes. Although PcG complexes are well characterized in plants, little is known about trxG activities. Here we demonstrate ...

  13. The ULT trxG Fatcors play a role in Arabidopsis Fertilization

    USDA-ARS?s Scientific Manuscript database

    Trithorax group (trxG) and Polycomb group (PcG) proteins are epigenetic modifiers that play key roles in eukaryotic development by promoting active or repressive gene expression states, respectively. Although PcG proteins have well-defined roles in controlling developmental transitions, cell fate de...

  14. S6K1ing to ResTOR Adipogenesis with Polycomb.

    PubMed

    Juan, Aster H; Sartorelli, Vittorio

    2016-05-05

    Signal-directed chromatin recruitment of mammalian Polycomb complexes is a fundamental component of epigenetic regulation. In this issue, Yi et al. (2016) reveal how mTORC1 activation deploys the ribosomal serine/threonine kinase S6K1 and Polycomb proteins at genomic regulatory regions to repress expression of anti-adipogenic developmental regulators. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.

    PubMed

    Christofides, Anthos; Karantanos, Theodoros; Bardhan, Kankana; Boussiotis, Vassiliki A

    2016-12-20

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.

  16. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2

    PubMed Central

    Bardhan, Kankana; Boussiotis, Vassiliki A.

    2016-01-01

    Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity. PMID:27793053

  17. Additional sex combs-like 1 belongs to the enhancer of trithorax and Polycomb Group and genetically interacts with Cbx2 in mice

    PubMed Central

    Fisher, C.L.; Lee, I.; Bloyer, S.; Bozza, S.; Chevalier, J.; Dahl, A; Bodner, C.; Helgason, C. D.; Hess, J.L.; Humphries, R.K.; Brock, H.W.

    2009-01-01

    The Additional sex combs (Asx) gene of Drosophila behaves genetically as an enhancer of trithorax and Polycomb (ETP) in displaying bidirectional homeotic phenotypes, suggesting that is required for maintenance of both activation and silencing of Hox genes. There are 3 murine homologs of Asx called Additional sex combs-like1, 2, and-3. Asxl1 is required for normal adult hematopoiesis; however its embryonic function is unknown. We used a targeted mouse mutant line Asxl1tm1Bc to determine if Asxl1 is required to silence and activate Hox genes in mice during axial patterning. The mutant embryos exhibit simultaneous anterior and posterior transformations of the axial skeleton, consistent with a role for Asxl1 in activation and silencing of Hox genes. Transformations of the axial skeleton are enhanced in compound mutant embryos for the Polycomb group gene M33/Cbx2. Hox a4, a7, and c8 are derepressed in Asxl1tm1Bc mutants in the antero-posterior axis, but Hox c8 expression is reduced in the brain of mutants, consistent with Asxl1 being required both for activation and repression of Hox genes. We discuss the genetic and molecular definition of ETPs, and suggest that the function of Asxl1 depends on its cellular context. PMID:19833123

  18. Prenatal alcohol exposure and cellular differentiation: a role for Polycomb and Trithorax group proteins in FAS phenotypes?

    PubMed

    Veazey, Kylee J; Muller, Daria; Golding, Michael C

    2013-01-01

    Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell-cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell's identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes--the Polycomb and Trithorax proteins--are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder.

  19. PcG and trxG in plants - friends or foes.

    PubMed

    Pu, Li; Sung, Zinmay Renee

    2015-05-01

    The highly-conserved Polycomb group (PcG) and trithorax group (trxG) proteins play major roles in regulating gene expression and maintaining developmental states in many organisms. However, neither the recruitment of Polycomb repressive complexes (PRC) nor the mechanisms of PcG and trxG-mediated gene silencing and activation are well understood. Recent progress in Arabidopsis research challenges the dominant model of PRC2-dependent recruitment of PRC1 to target genes. Moreover, evidence indicates that diverse forms of PRC1, with shared components, are a common theme in plants and mammals. Although trxG is known to antagonize PcG, emerging data reveal that trxG can also repress gene expression, acting cooperatively with PcG. We discuss these recent findings and highlight the employment of diverse epigenetic mechanisms during development in plants and animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Differential transcriptional regulation by alternatively designed mechanisms: A mathematical modeling approach.

    PubMed

    Yildirim, Necmettin; Aktas, Mehmet Emin; Ozcan, Seyma Nur; Akbas, Esra; Ay, Ahmet

    2017-01-01

    Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.

  1. Dynamic regulation of EZH2 from HPSc to hepatocyte-like cell fate

    PubMed Central

    Helsen, Nicky; Vanhove, Jolien; Boon, Ruben; Xu, Zhuofei; Ordovas, Laura; Verfaillie, Catherine M.

    2017-01-01

    Currently, drug metabolization and toxicity studies rely on the use of primary human hepatocytes and hepatoma cell lines, which both have conceivable limitations. Human pluripotent stem cell (hPSC)—derived hepatocyte-like cells (HLCs) are an alternative and valuable source of hepatocytes that can overcome these limitations. EZH2 (enhancer of zeste homolog 2), a transcriptional repressor of the polycomb repressive complex 2 (PRC2), may play an important role in hepatocyte development, but its role during in vitro hPSC-HLC differentiation has not yet been assessed. We here demonstrate dynamic regulation of EZH2 during hepatic differentiation of hPSC. To enhance EZH2 expression, we inducibly overexpressed EZH2 between d0 and d8, demonstrating a significant improvement in definitive endoderm formation, and improved generation of HLCs. Despite induction of EZH2 overexpression until d8, EZH2 transcript and protein levels decreased from d4 onwards, which might be caused by expression of microRNAs predicted to inhibit EZH2 expression. In conclusion, our studies demonstrate that EZH2 plays a role in endoderm formation and hepatocyte differentiation, but its expression is tightly post-transcriptionally regulated during this process. PMID:29091973

  2. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration.

    PubMed

    Cheng, Yating; Jutooru, Indira; Chadalapaka, Gayathri; Corton, J Christopher; Safe, Stephen

    2015-05-10

    HOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5' tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expressed in pancreatic cancer cell lines and knockdown of HOTTIP by RNA interference (siHOTTIP) in Panc1 pancreatic cancer cells decreased proliferation, induced apoptosis and decreased migration. In Panc1 cells transfected with siHOTTIP, there was a decrease in expression of 757 genes and increased expression of 514 genes, and a limited gene analysis indicated that HOTTIP regulation of genes is complex. For example, Aurora kinase A, an important regulator of cell growth, is coregulated by MLL and not WDR5 and, in contrast to previous studies in liver cancer cells, HOTTIP does not regulate HOXA13 but plays a role in regulation of several other HOX genes including HOXA10, HOXB2, HOXA11, HOXA9 and HOXA1. Although HOTTIP and the HOX-associated lncRNA HOTAIR have similar pro-oncogenic functions, they regulate strikingly different sets of genes in Panc1 cells and in pancreatic tumors.

  3. Loss of corepressor PER2 under hypoxia up-regulates OCT1-mediated EMT gene expression and enhances tumor malignancy

    PubMed Central

    Hwang-Verslues, Wendy W.; Chang, Po-Hao; Jeng, Yung-Ming; Kuo, Wen-Hung; Chiang, Pei-Hsun; Chang, Yi-Cheng; Hsieh, Tsung-Han; Su, Fang-Yi; Lin, Liu-Chen; Abbondante, Serena; Yang, Cheng-Yuan; Hsu, Huan-Ming; Yu, Jyh-Cherng; Chang, King-Jen; Shew, Jin-Yuh; Lee, Eva Y.-H. P.; Lee, Wen-Hwa

    2013-01-01

    The circadian clock gene Period2 (PER2) has been suggested to be a tumor suppressor. However, detailed mechanistic evidence has not been provided to support this hypothesis. We found that loss of PER2 enhanced invasion and activated expression of epithelial-mesenchymal transition (EMT) genes including TWIST1, SLUG, and SNAIL. This finding was corroborated by clinical observation that PER2 down-regulation was associated with poor prognosis in breast cancer patients. We further demonstrated that PER2 served as a transcriptional corepressor, which recruited polycomb proteins EZH2 and SUZ12 as well as HDAC2 to octamer transcription factor 1 (OCT1) (POU2F1) binding sites of the TWIST1 and SLUG promoters to repress expression of these EMT genes. Hypoxia, a condition commonly observed in tumors, caused PER2 degradation and disrupted the PER2 repressor complex, leading to activation of EMT gene expression. This result was further supported by clinical data showing a significant negative correlation between hypoxia and PER2. Thus, our findings clearly demonstrate the tumor suppression function of PER2 and elucidate a pathway by which hypoxia promotes EMT via degradation of PER2. PMID:23836662

  4. The Roles and Regulation of Polycomb Complexes in Neural Development

    PubMed Central

    Corley, Matthew; Kroll, Kristen L.

    2014-01-01

    In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb Repressive Complexes, effectively limiting the expression of fate-determining genes. Here, we review distinct roles that the Polycomb Repressive Complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of how Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation, facilitating the efficient generation of specific neuronal and glial cell types for many biological applications. PMID:25367430

  5. MLL-ENL inhibits polycomb repressive complex 1 to achieve efficient transformation of hematopoietic cells

    PubMed Central

    Maethner, Emanuel; Garcia-Cuellar, Maria-Paz; Breitinger, Constanze; Takacova, Sylvia; Divoky, Vladimir; Hess, Jay L.; Slany, Robert K.

    2014-01-01

    Summary Stimulation of transcriptional elongation is a key activity of leukemogenic MLL fusion proteins. Here we provide evidence that MLL-ENL also inhibits polycomb-mediated silencing as a prerequisite for efficient transformation. Biochemical studies identified ENL as scaffold that contacted the elongation machinery as well as the PRC1 (polycomb repressive complex 1) component CBX8. These interactions were mutually exclusive in vitro corresponding to an antagonistic behavior of MLL-ENL and CBX8 in vivo. CBX8 inhibited elongation in a specific reporter assay and this effect was neutralized by direct association with ENL. Correspondingly MLL-ENL defective in CBX8 binding could not fully activate gene loci necessary for transformation. Finally, we demonstrate dimerization of MLL-ENL as neomorphic activity that may augment polycomb inhibition and transformation. PMID:23623499

  6. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  7. [Three-dimensional genome organization: a lesson from the Polycomb-Group proteins].

    PubMed

    Bantignies, Frédéric

    2013-01-01

    As more and more genomes are being explored and annotated, important features of three-dimensional (3D) genome organization are just being uncovered. In the light of what we know about Polycomb group (PcG) proteins, we will present the latest findings on this topic. The PcG proteins are well-conserved chromatin factors that repress transcription of numerous target genes. They bind the genome at specific sites, forming chromatin domains of associated histone modifications as well as higher-order chromatin structures. These 3D chromatin structures involve the interactions between PcG-bound regulatory regions at short- and long-range distances, and may significantly contribute to PcG function. Recent high throughput "Chromosome Conformation Capture" (3C) analyses have revealed many other higher order structures along the chromatin fiber, partitioning the genomes into well demarcated topological domains. This revealed an unprecedented link between linear epigenetic domains and chromosome architecture, which might be intimately connected to genome function. © Société de Biologie, 2013.

  8. Regulation of gene transcription by Polycomb proteins

    PubMed Central

    Aranda, Sergi; Mas, Gloria; Di Croce, Luciano

    2015-01-01

    The Polycomb group (PcG) of proteins defines a subset of factors that physically associate and function to maintain the positional identity of cells from the embryo to adult stages. PcG has long been considered a paradigmatic model for epigenetic maintenance of gene transcription programs. Despite intensive research efforts to unveil the molecular mechanisms of action of PcG proteins, several fundamental questions remain unresolved: How many different PcG complexes exist in mammalian cells? How are PcG complexes targeted to specific loci? How does PcG regulate transcription? In this review, we discuss the diversity of PcG complexes in mammalian cells, examine newly identified modes of recruitment to chromatin, and highlight the latest insights into the molecular mechanisms underlying the function of PcGs in transcription regulation and three-dimensional chromatin conformation. PMID:26665172

  9. Transcriptional cosuppression of yeast Ty1 retrotransposons

    PubMed Central

    Jiang, Yi Wei

    2002-01-01

    Cosuppression, the silencing of dispersed homologous genes triggered by high copy number, may have evolved in eukaryotic organisms to control molecular parasites such as viruses and transposons. Ty1 retrotransposons are dispersed gene repeats in Saccharomyces cerevisiae, where no cosuppression has been previously observed. Ty1 elements are seemingly expressed undeterred to a level as high as 10% of total mRNA. Using Ty1–URA3 reporters and negative selection with 5-fluoroorotic acid, it is shown that Ty1 genes can undergo transcriptional cosuppression that is independent of DNA methylation and polycomb-mediated repression. Expression of Ty1-related genes was shown to be in one of two states, the coexpressed state with all Ty1-related genes transcribed or the cosuppressed state with all Ty1-related genes shut off, without uncoordinated or mosaic expression in any individual cell. Rapid switches between the two states were observed. A high copy number of Ty1 elements was shown to be required for the initiation of Ty1 homology-dependent gene silencing, implying that Ty1 gene expression is under negative feedback control. Ty1 transcriptional repressors facilitated the onset of Ty1 cosuppression, and the native Ty1 promoters were required for Ty1 cosuppression, indicating that Ty1 cosuppression occurs at the transcriptional level. PMID:11850409

  10. The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration

    PubMed Central

    Cheng, Yating; Jutooru, Indira; Chadalapaka, Gayathri; Corton, J. Christopher; Safe, Stephen

    2015-01-01

    HOTTIP is a long non-coding RNA (lncRNA) transcribed from the 5′ tip of the HOXA locus and is associated with the polycomb repressor complex 2 (PRC2) and WD repeat containing protein 5 (WDR5)/mixed lineage leukemia 1 (MLL1) chromatin modifying complexes. HOTTIP is expressed in pancreatic cancer cell lines and knockdown of HOTTIP by RNA interference (siHOTTIP) in Panc1 pancreatic cancer cells decreased proliferation, induced apoptosis and decreased migration. In Panc1 cells transfected with siHOTTIP, there was a decrease in expression of 757 genes and increased expression of 514 genes, and a limited gene analysis indicated that HOTTIP regulation of genes is complex. For example, Aurora kinase A, an important regulator of cell growth, is coregulated by MLL and not WDR5 and, in contrast to previous studies in liver cancer cells, HOTTIP does not regulate HOXA13 but plays a role in regulation of several other HOX genes including HOXA10, HOXB2, HOXA11, HOXA9 and HOXA1. Although HOTTIP and the HOX-associated lncRNA HOTAIR have similar pro-oncogenic functions, they regulate strikingly different sets of genes in Panc1 cells and in pancreatic tumors. PMID:25912306

  11. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome

    PubMed Central

    McGinty, Robert K.; Henrici, Ryan C.; Tan, Song

    2014-01-01

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358

  12. Structure of a BMI-1-Ring1B Polycomb Group Ubiquitin Ligase Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li,Z.; Cao, R.; Wang, M.

    2006-01-01

    Polycomb group (PcG) proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5 Angstroms structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B 'hugs' Bmi-1 through extensive RING domain contactsmore » and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.« less

  13. Altered Expression of Polycomb Group Genes in Glioblastoma Multiforme

    PubMed Central

    Li, Gang; Warden, Charles; Zou, Zhaoxia; Neman, Josh; Krueger, Joseph S.; Jain, Alisha; Jandial, Rahul; Chen, Mike

    2013-01-01

    The Polycomb group (PcG) proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM). By systematically interrogating The Cancer Genome Atlas (TCGA), we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy. PMID:24260522

  14. Altered expression of polycomb group genes in glioblastoma multiforme.

    PubMed

    Li, Gang; Warden, Charles; Zou, Zhaoxia; Neman, Josh; Krueger, Joseph S; Jain, Alisha; Jandial, Rahul; Chen, Mike

    2013-01-01

    The Polycomb group (PcG) proteins play a critical role in histone mediated epigenetics which has been implicated in the malignant evolution of glioblastoma multiforme (GBM). By systematically interrogating The Cancer Genome Atlas (TCGA), we discovered widespread aberrant expression of the PcG members in GBM samples compared to normal brain. The most striking differences were upregulation of EZH2, PHF19, CBX8 and PHC2 and downregulation of CBX7, CBX6, EZH1 and RYBP. Interestingly, changes in EZH2, PHF19, CBX7, CBX6 and EZH1 occurred progressively as astrocytoma grade increased. We validated the aberrant expression of CBX6, CBX7, CBX8 and EZH2 in GBM cell lines by Western blotting and qRT-PCR, and further the aberrant expression of CBX6 in GBM tissue samples by immunohistochemical staining. To determine if there was functional significance to the diminished CBX6 levels in GBM, CBX6 was overexpressed in GBM cells resulting in decreased proliferative capacity. In conclusion, aberrant expression of PcG proteins in GBMs may play a role in the development or maintenance of the malignancy.

  15. The impact of Polycomb group (PcG) and Trithorax group (TrxG) epigenetic factors in plant plasticity.

    PubMed

    de la Paz Sanchez, Maria; Aceves-García, Pamela; Petrone, Emilio; Steckenborn, Stefan; Vega-León, Rosario; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana; García-Ponce, Berenice

    2015-11-01

    Current advances indicate that epigenetic mechanisms play important roles in the regulatory networks involved in plant developmental responses to environmental conditions. Hence, understanding the role of such components becomes crucial to understanding the mechanisms underlying the plasticity and variability of plant traits, and thus the ecology and evolution of plant development. We now know that important components of phenotypic variation may result from heritable and reversible epigenetic mechanisms without genetic alterations. The epigenetic factors Polycomb group (PcG) and Trithorax group (TrxG) are involved in developmental processes that respond to environmental signals, playing important roles in plant plasticity. In this review, we discuss current knowledge of TrxG and PcG functions in different developmental processes in response to internal and environmental cues and we also integrate the emerging evidence concerning their function in plant plasticity. Many such plastic responses rely on meristematic cell behavior, including stem cell niche maintenance, cellular reprogramming, flowering and dormancy as well as stress memory. This information will help to determine how to integrate the role of epigenetic regulation into models of gene regulatory networks, which have mostly included transcriptional interactions underlying various aspects of plant development and its plastic response to environmental conditions. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Segregating Variation in the Polycomb Group Gene cramped Alters the Effect of Temperature on Multiple Traits

    PubMed Central

    Gibert, Jean-Michel; Karch, François; Schlötterer, Christian

    2011-01-01

    The phenotype produced by a given genotype can be strongly modulated by environmental conditions. Therefore, natural populations continuously adapt to environment heterogeneity to maintain optimal phenotypes. It generates a high genetic variation in environment-sensitive gene networks, which is thought to facilitate evolution. Here we analyze the chromatin regulator crm, identified as a candidate for adaptation of Drosophila melanogaster to northern latitudes. We show that crm contributes to environmental canalization. In particular, crm modulates the effect of temperature on a genomic region encoding Hedgehog and Wingless signaling effectors. crm affects this region through both constitutive heterochromatin and Polycomb silencing. Furthermore, we show that crm European and African natural variants shift the reaction norms of plastic traits. Interestingly, traits modulated by crm natural variants can differ markedly between Drosophila species, suggesting that temperature adaptation facilitates their evolution. PMID:21283785

  17. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    PubMed

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.

  18. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma

    PubMed Central

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D.; Schlecht, Nicolas F.; Einstein, Mark H.; Greally, John M.

    2016-01-01

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors. PMID:27557505

  19. A polycomb-mediated epigenetic field defect precedes invasive cervical carcinoma.

    PubMed

    Wijetunga, Neil Ari; Ben-Dayan, Miriam; Tozour, Jessica; Burk, Robert D; Schlecht, Nicolas F; Einstein, Mark H; Greally, John M

    2016-09-20

    Human papillomavirus (HPV)-associated cervical carcinoma is preceded by stages of cervical intra-epithelial neoplasia (CIN) that can variably progress to malignancy. Understanding the different molecular processes involved in the progression of pre-malignant CIN is critical to the development of improved predictive and interventional capabilities. We tested the role of regulators of transcription in both the development and the progression of HPV-associated CIN, performing the most comprehensive genomic survey to date of DNA methylation in HPV-associated cervical neoplasia, testing ~2 million loci throughout the human genome in biopsies from 78 HPV+ women, identifying changes starting in early CIN and maintained through carcinogenesis. We identified loci at which DNA methylation is consistently altered, beginning early in the course of neoplastic disease and progressing with disease advancement. While the loss of DNA methylation occurs mostly at intergenic regions, acquisition of DNA methylation is at sites involved in transcriptional regulation, with strong enrichment for targets of polycomb repression. Using an independent cohort from The Cancer Genome Atlas, we validated the loci with increased DNA methylation and found that these regulatory changes were associated with locally decreased gene expression. Secondary validation using immunohistochemistry showed that the progression of neoplasia was associated with increasing polycomb protein expression specifically in the cervical epithelium. We find that perturbations of genomic regulatory processes occur early and persist in cervical carcinoma. The results indicate a polycomb-mediated epigenetic field defect in cervical neoplasia that may represent a target for early, topical interventions using polycomb inhibitors.

  20. XIAP as a Molecular Target for Therapeutic Intervention in Prostate Cancer

    DTIC Science & Technology

    2007-10-01

    receptor corepressor Clara Hwang Æ Veda N. Giri Æ John C. Wilkinson Æ Casey W. Wright Æ Amanda S. Wilkinson Æ Kathleen A. Cooney Æ Colin S. Duckett Received...including BRCA1, histone deacetylases (HDAC), and members of the polycomb group (PcG) of proteins. Clara Hwang and Veda N. Giri contributed equally to

  1. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis1

    PubMed Central

    Picó, Sara; Merini, Wiam

    2015-01-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. PMID:25897002

  2. Deciphering the Role of POLYCOMB REPRESSIVE COMPLEX1 Variants in Regulating the Acquisition of Flowering Competence in Arabidopsis.

    PubMed

    Picó, Sara; Ortiz-Marchena, M Isabel; Merini, Wiam; Calonje, Myriam

    2015-08-01

    Polycomb group (PcG) proteins play important roles in regulating developmental phase transitions in plants; however, little is known about the role of the PcG machinery in regulating the transition from juvenile to adult phase. Here, we show that Arabidopsis (Arabidopsis thaliana) B lymphoma Moloney murine leukemia virus insertion region1 homolog (BMI1) POLYCOMB REPRESSIVE COMPLEX1 (PRC1) components participate in the repression of microRNA156 (miR156). Loss of AtBMI1 function leads to the up-regulation of the primary transcript of MIR156A and MIR156C at the time the levels of miR156 should decline, resulting in an extended juvenile phase and delayed flowering. Conversely, the PRC1 component EMBRYONIC FLOWER (EMF1) participates in the regulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE and MIR172 genes. Accordingly, plants impaired in EMF1 function displayed misexpression of these genes early in development, which contributes to a CONSTANS-independent up-regulation of FLOWERING LOCUS T (FT) leading to the earliest flowering phenotype described in Arabidopsis. Our findings show how the different regulatory roles of two functional PRC1 variants coordinate the acquisition of flowering competence and help to reach the threshold of FT necessary to flower. Furthermore, we show how two central regulatory mechanisms, such as PcG and microRNA, assemble to achieve a developmental outcome. © 2015 American Society of Plant Biologists. All Rights Reserved.

  3. Chromatin-Bound IκBα Regulates a Subset of Polycomb Target Genes in Differentiation and Cancer

    PubMed Central

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Albà, M. Mar; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M.; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2014-01-01

    Summary IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation. PMID:23850221

  4. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster.

    PubMed

    Tolhuis, Bas; de Wit, Elzo; Muijrers, Inhua; Teunissen, Hans; Talhout, Wendy; van Steensel, Bas; van Lohuizen, Maarten

    2006-06-01

    Polycomb group (PcG) proteins maintain transcriptional repression of developmentally important genes and have been implicated in cell proliferation and stem cell self-renewal. We used a genome-wide approach to map binding patterns of PcG proteins (Pc, esc and Sce) in Drosophila melanogaster Kc cells. We found that Pc associates with large genomic regions of up to approximately 150 kb in size, hereafter referred to as 'Pc domains'. Sce and esc accompany Pc in most of these domains. PcG-bound chromatin is trimethylated at histone H3 Lys27 and is generally transcriptionally silent. Furthermore, PcG proteins preferentially bind to developmental genes. Many of these encode transcriptional regulators and key components of signal transduction pathways, including Wingless, Hedgehog, Notch and Delta. We also identify several new putative functions of PcG proteins, such as in steroid hormone biosynthesis. These results highlight the extensive involvement of PcG proteins in the coordination of development through the formation of large repressive chromatin domains.

  5. Stuxnet Facilitates the Degradation of Polycomb Protein during Development.

    PubMed

    Du, Juan; Zhang, Junzheng; He, Tao; Li, Yajuan; Su, Ying; Tie, Feng; Liu, Min; Harte, Peter J; Zhu, Alan Jian

    2016-06-20

    Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An interactive environment for agile analysis and visualization of ChIP-sequencing data.

    PubMed

    Lerdrup, Mads; Johansen, Jens Vilstrup; Agrawal-Singh, Shuchi; Hansen, Klaus

    2016-04-01

    To empower experimentalists with a means for fast and comprehensive chromatin immunoprecipitation sequencing (ChIP-seq) data analyses, we introduce an integrated computational environment, EaSeq. The software combines the exploratory power of genome browsers with an extensive set of interactive and user-friendly tools for genome-wide abstraction and visualization. It enables experimentalists to easily extract information and generate hypotheses from their own data and public genome-wide datasets. For demonstration purposes, we performed meta-analyses of public Polycomb ChIP-seq data and established a new screening approach to analyze more than 900 datasets from mouse embryonic stem cells for factors potentially associated with Polycomb recruitment. EaSeq, which is freely available and works on a standard personal computer, can substantially increase the throughput of many analysis workflows, facilitate transparency and reproducibility by automatically documenting and organizing analyses, and enable a broader group of scientists to gain insights from ChIP-seq data.

  7. Sjögren's syndrome X-chromosome dose effect: An epigenetic perspective.

    PubMed

    Mougeot, J-Lc; Noll, B D; Bahrani Mougeot, F K

    2018-01-09

    Sjögren's syndrome (SS) is a chronic autoimmune disease affecting exocrine glands leading to mouth and eyes dryness. The extent to which epigenetic DNA methylation changes are responsible for an X-chromosome dose effect has yet to be determined. Our objectives were to (i) describe how epigenetic DNA methylation changes could explain an X-chromosome dose effect in SS for women with normal 46,XX genotype and (ii) determine the relevant relationships to this dose effect, between X-linked genes, genes controlling X-chromosome inactivation (XCI) and genes encoding associated transcription factors, all of which are differentially expressed and/or differentially methylated in the salivary glands of patients with SS. We identified 58 upregulated X-chromosome genes, including 22 genes previously shown to escape XCI, based on the analysis of SS patient salivary gland GEO2R gene expression datasets. Moreover, we found XIST and its cis regulators RLIM, FTX, and CHIC1, and polycomb repressor genes of the PRC1/2 complexes to be upregulated. Many of the X-chromosome genes implicated in SS pathogenesis can be regulated by transcription factors which we found to be overexpressed and/or differentially methylated in patients with SS. Determination of the mechanisms underlying methylation-dependent gene expression and impaired XCI is needed to further elucidate the etiopathogenesis of SS. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  8. EED and KDM6B Coordinate the First Mammalian Cell Lineage Commitment To Ensure Embryo Implantation

    PubMed Central

    Saha, Biswarup; Home, Pratik; Ray, Soma; Larson, Melissa; Paul, Arindam; Rajendran, Ganeshkumar; Behr, Barry

    2013-01-01

    The first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood. Here, we show that proper development of the TE and ICM lineages is coordinated via combinatorial regulation of embryonic ectoderm development (EED) and lysine-specific demethylase 6B (KDM6B). During blastocyst formation, the relative levels of EED and KDM6B expression determine altered polycomb repressor 2 (PRC2) complex recruitment and incorporation of the repressive histone H3 lysine 27 trimethylation (H3K27Me3) mark at the chromatin domains of TE-specific master regulators CDX2 and GATA3, leading to their activation in the TE lineage and repression in the ICM lineage. Furthermore, ectopic gain of EED along with depletion of KDM6B in preimplantation mouse embryos abrogates CDX2 and GATA3 expression in the nascent TE lineage. The loss of CDX2 and GATA3 in the nascent TE lineage results in improper TE development, leading to failure in embryo implantation to the uterus. Our study delineates a novel epigenetic mechanism that orchestrates proper development of the first mammalian cell lineages. PMID:23671187

  9. A Novel YY1-miR-1 Regulatory Circuit in Skeletal Myogenesis Revealed by Genome-Wide Prediction of YY1-miRNA Network

    PubMed Central

    Lu, Leina; Zhou, Liang; Chen, Eric Z.; Sun, Kun; Jiang, Peiyong; Wang, Lijun; Su, Xiaoxi; Sun, Hao; Wang, Huating

    2012-01-01

    microRNAs (miRNAs) are non-coding RNAs that regulate gene expression post-transcriptionally, and mounting evidence supports the prevalence and functional significance of their interplay with transcription factors (TFs). Here we describe the identification of a regulatory circuit between muscle miRNAs (miR-1, miR-133 and miR-206) and Yin Yang 1 (YY1), an epigenetic repressor of skeletal myogenesis in mouse. Genome-wide identification of potential down-stream targets of YY1 by combining computational prediction with expression profiling data reveals a large number of putative miRNA targets of YY1 during skeletal myoblasts differentiation into myotubes with muscle miRs ranking on top of the list. The subsequent experimental results demonstrate that YY1 indeed represses muscle miRs expression in myoblasts and the repression is mediated through multiple enhancers and recruitment of Polycomb complex to several YY1 binding sites. YY1 regulating miR-1 is functionally important for both C2C12 myogenic differentiation and injury-induced muscle regeneration. Furthermore, we demonstrate that miR-1 in turn targets YY1, thus forming a negative feedback loop. Together, these results identify a novel regulatory circuit required for skeletal myogenesis and reinforce the idea that regulatory circuitries involving miRNAs and TFs are prevalent mechanisms. PMID:22319554

  10. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription.

    PubMed

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier

    2012-05-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation.

  11. Neuropilin-2: Novel Biomarker and Therapeutic Target for Aggressive Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    pathways GLI1 BMI1 Perivascular niche Oncogenic stimuli Self- renewal Polycomb group Proteins that were first described in Drosophila melanogaster ...Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author...s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation

  12. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer.

    PubMed

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Mar Albà, M; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2013-08-12

    IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Clarifying the impact of polycomb complex component disruption in human cancers.

    PubMed

    Yamamoto, Yukiya; Abe, Akihiro; Emi, Nobuhiko

    2014-04-01

    The dysregulation of proper transcriptional control is a major cause of developmental diseases and cancers. Polycomb proteins form chromatin-modifying complexes that transcriptionally silence genome regions in higher eukaryotes. The BCL6 corepressor (BCOR) complex comprises ring finger protein 1B (RNF2/RING1B), polycomb group ring finger 1 (PCGF1), and lysine-specific demethylase 2B (KDM2B) and is uniquely recruited to nonmethylated CpG islands, where it removes histone H3K36me2 and induces repressive histone H2A monoubiquitylation. Germline BCOR mutations have been detected in patients with oculofaciocardiodental and Lenz microphthalmia syndromes, which are inherited conditions. Recently, several variants of BCOR and BCOR-like 1 (BCORL1) chimeric fusion transcripts were reported in human cancers, including acute promyelocytic leukemia, bone sarcoma, and hepatocellular carcinoma. In addition, massively parallel sequencing has identified inactivating somatic BCOR and BCORL1 mutations in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia, medulloblastoma, and retinoblastoma. More importantly, patients with AML and MDS with BCOR mutations exhibit poor prognosis. This perspective highlights the detection of BCOR mutations and fusion transcripts of BCOR and BCORL1 and discusses their importance for diagnosing cancer subtypes and estimating the treatment responses of patients. Furthermore, this perspective proposes the need for additional functional studies to clarify the oncogenic mechanism by which BCOR and BCORL1 are disrupted in cancers, and how this may lead to the development of novel therapeutics. Mol Cancer Res; 12(4); 479-84. ©2014 AACR.

  14. Genome-wide co-localization of Polycomb orthologs and their effects on gene expression in human fibroblasts

    PubMed Central

    2014-01-01

    Background Polycomb group proteins form multicomponent complexes that are important for establishing lineage-specific patterns of gene expression. Mammalian cells encode multiple permutations of the prototypic Polycomb repressive complex 1 (PRC1) with little evidence for functional specialization. An aim of this study is to determine whether the multiple orthologs that are co-expressed in human fibroblasts act on different target genes and whether their genomic location changes during cellular senescence. Results Deep sequencing of chromatin immunoprecipitated with antibodies against CBX6, CBX7, CBX8, RING1 and RING2 reveals that the orthologs co-localize at multiple sites. PCR-based validation at representative loci suggests that a further six PRC1 proteins have similar binding patterns. Importantly, sequential chromatin immunoprecipitation with antibodies against different orthologs implies that multiple variants of PRC1 associate with the same DNA. At many loci, the binding profiles have a distinctive architecture that is preserved in two different types of fibroblast. Conversely, there are several hundred loci at which PRC1 binding is cell type-specific and, contrary to expectations, the presence of PRC1 does not necessarily equate with transcriptional silencing. Interestingly, the PRC1 binding profiles are preserved in senescent cells despite changes in gene expression. Conclusions The multiple permutations of PRC1 in human fibroblasts congregate at common rather than specific sites in the genome and with overlapping but distinctive binding profiles in different fibroblasts. The data imply that the effects of PRC1 complexes on gene expression are more subtle than simply repressing the loci at which they bind. PMID:24485159

  15. Expression, purification and preliminary X-ray analysis of the C-terminal domain of an arginine repressor protein from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, George J.; Garen, Craig R.; Cherney, Maia M.

    2007-11-01

    The C-terminal portion of the arginine repressor protein from M. tuberculosis H37Rv has been crystallized. The complete transcriptional factor regulates arginine biosynthesis by binding operator DNA when arginine is bound at the C-terminal domain. The gene product of an open reading frame Rv1657 from Mycobacterium tuberculosis is a putative arginine repressor protein (ArgR), a transcriptional factor that regulates the expression of arginine-biosynthetic enzymes. Rv1657 was expressed and purified and a C-terminal domain was crystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected and processed to a resolution of 2.15 Å. The crystals belong to space group P1 and themore » Matthews coefficient suggests that the crystals contain six C-terminal domain molecules per unit cell. Previous structural and biochemical studies on the arginine repressor proteins from other organisms have likewise shown the presence of six molecules per unit cell.« less

  16. ATRX Directs Binding of PRC2 to Xist RNA and Polycomb Targets

    PubMed Central

    Sarma, Kavitha; Cifuentes-Rojas, Catherine; Ergun, Ayla; del Rosario, Amanda; Jeon, Yesu; White, Forest; Sadreyev, Ruslan; Lee, Jeannie T.

    2015-01-01

    SUMMARY X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function. PMID:25417162

  17. Significance of Pathways Leading to RhoC Overexpression in Breast Cancer

    DTIC Science & Technology

    2008-04-01

    relationship of RhoC and NF-kappa B to aggressive, metastatic, and therapy-resistant breast cancer. Inflammation is currently being considered a key...scored the initial TMA for EZH2 (Polycomb group protein Enhancer of zeste-2) and found a significant relationship with estrogen and progesterone... relationship of RhoC and NF-kappa B expression to aggressive tumors while controlling for demographics and treatment. EPIDEMIOLOGY

  18. A Genetic Analysis of the Suppressor 2 of Zeste Complex of Drosophila Melanogaster

    PubMed Central

    Wu, C. T.; Howe, M.

    1995-01-01

    The zeste(1) (z(1)) mutation of Drosophila melanogaster produces a mutant yellow eye color instead of the wild-type red. Genetic and molecular data suggest that z(1) achieves this change by altering expression of the wild-type white gene in a manner that exhibits transvection effects. There exist suppressor and enhancer mutations that modify the z(1) eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C]. The Su(z)2-C consists of at least three subregions called Psc (Posterior sex combs), Su(z)2 and Su(z)2D (Distal). The products of these subregions are proposed to act at the level of chromatin. Complementation analyses predict that the products are functionally similar and interacting. The alleles of Psc define two overlapping phenotypic classes, the hopeful and hapless. The distinctions between these two classes and the intragenic complementation seen among some of the Psc alleles are consistent with a multidomain structure for the product of Psc. Psc is a member of the homeotic Polycomb group of genes. A general discussion of the Polycomb and trithorax group of genes, position-effect variegation, transvection, chromosome pairing and chromatin structure is presented. PMID:7635282

  19. Polycomb group protein complexes exchange rapidly in living Drosophila.

    PubMed

    Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J

    2005-09-01

    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.

  20. Expression, Purification And Preliminary X-Ray Analysis of the C-Terminal Domain of An Arginine Repressor Protein From Mycobacterium Tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, G.J.; Garen, C.R.; Cherney, M.M.

    2009-06-03

    The gene product of an open reading frame Rv1657 from Mycobacterium tuberculosis is a putative arginine repressor protein (ArgR), a transcriptional factor that regulates the expression of arginine-biosynthetic enzymes. Rv1657 was expressed and purified and a C-terminal domain was crystallized using the hanging-drop vapour-diffusion method. Diffraction data were collected and processed to a resolution of 2.15 {angstrom}. The crystals belong to space group P1 and the Matthews coefficient suggests that the crystals contain six C-terminal domain molecules per unit cell. Previous structural and biochemical studies on the arginine repressor proteins from other organisms have likewise shown the presence of sixmore » molecules per unit cell.« less

  1. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells

    PubMed Central

    Qin, Haiyan; Zhang, Guang; Zhang, Lianbo

    2018-01-01

    Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation. PMID:29545866

  2. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.

    PubMed

    Shaver, Scott; Casas-Mollano, J Armando; Cerny, Ronald L; Cerutti, Heriberto

    2010-05-16

    Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in unicellular model fungi and its function in the repression of genes vital for the development of higher eukaryotes led to the proposal that this complex may have evolved together with the emergence of multicellularity. However, we report here on the widespread presence of PRC2 core subunits in unicellular eukaryotes from the Opisthokonta, Chromalveolata and Archaeplastida supergroups. To gain insight on the role of PRC2 in single celled organisms, we characterized an E(z) homolog, EZH, in the green alga Chlamydomonas reinhardtii. RNAi-mediated suppression of EZH led to defects in the silencing of transgenes and retrotransposons as well as to a global increase in histone post-translational modifications associated with transcriptional activity, such as trimethylation of histone H3 lysine 4 and acetylation of histone H4. On the basis of the parsimony principle, our findings suggest that PRC2 appeared early in eukaryotic evolution, even perhaps in the last unicellular common ancestor of eukaryotes. One of the ancestral roles of PCR2 may have been in defense responses against intragenomic parasites such as transposable elements, prior to being co-opted for lineage specific functions like developmental regulation in multicellular eukaryotes.

  3. MGA, L3MBTL2 and E2F6 determine genomic binding of the non-canonical Polycomb repressive complex PRC1.6

    PubMed Central

    Stielow, Bastian; Finkernagel, Florian; Stiewe, Thorsten

    2018-01-01

    Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation, differentiation and development. Six major groups of PRC1 complexes that differ in their subunit composition have been identified in mammals. How the different PRC1 complexes are recruited to specific genomic sites is poorly understood. The Polycomb Ring finger protein PCGF6, the transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2 are specific components of the non-canonical PRC1.6 complex. In this study, we have investigated their role in genomic targeting of PRC1.6. ChIP-seq analysis revealed colocalization of MGA, L3MBTL2, E2F6 and PCGF6 genome-wide. Ablation of MGA in a human cell line by CRISPR/Cas resulted in complete loss of PRC1.6 binding. Rescue experiments revealed that MGA recruits PRC1.6 to specific loci both by DNA binding-dependent and by DNA binding-independent mechanisms. Depletion of L3MBTL2 and E2F6 but not of PCGF6 resulted in differential, locus-specific loss of PRC1.6 binding illustrating that different subunits mediate PRC1.6 loading to distinct sets of promoters. Mga, L3mbtl2 and Pcgf6 colocalize also in mouse embryonic stem cells, where PRC1.6 has been linked to repression of germ cell-related genes. Our findings unveil strikingly different genomic recruitment mechanisms of the non-canonical PRC1.6 complex, which specify its cell type- and context-specific regulatory functions. PMID:29381691

  4. Polycomb (PcG) Proteins, BMI1 and SUZ12, Regulate Arsenic-induced Cell Transformation*

    PubMed Central

    Kim, Hong-Gyum; Kim, Dong Joon; Li, Shengqing; Lee, Kun Yeong; Li, Xiang; Bode, Ann M.; Dong, Zigang

    2012-01-01

    Inorganic arsenic is a well-documented human carcinogen associated with cancers of the skin, lung, liver, and bladder. However, the underlying mechanisms explaining the tumorigenic role of arsenic are not well understood. The present study explored a potential mechanism of cell transformation induced by arsenic exposure. Exposure to a low dose (0.5 μm) of arsenic trioxide (As2O3) caused transformation of BALB/c 3T3 cells. In addition, in a xenograft mouse model, tumor growth of the arsenic-induced transformed cells was dramatically increased. In arsenic-induced transformed cells, polycomb group (PcG) proteins, including BMI1 and SUZ12, were activated resulting in enhanced histone H3K27 tri-methylation levels. On the other hand, tumor suppressor p16INK4a and p19ARF mRNA and protein expression were dramatically suppressed. Introduction of small hairpin (sh) RNA-BMI1 or -SUZ12 into BALB/c 3T3 cells resulted in suppression of arsenic-induced transformation. Histone H3K27 tri-methylation returned to normal in BMI1- or SUZ12-knockdown BALB/c 3T3 cells compared with BMI1- or SUZ12-wildtype cells after arsenic exposure. As a consequence, the expression of p16INK4a and p19ARF was recovered in arsenic-treated BMI1- or SUZ12-knockdown cells. Thus, arsenic-induced cell transformation was blocked by inhibition of PcG function. Taken together, these results strongly suggest that the polycomb proteins, BMI1 and SUZ12 are required for cell transformation induced by organic arsenic exposure. PMID:22843710

  5. DWARF 53 acts as a repressor of strigolactone signalling in rice

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Liu, Xue; Xiong, Guosheng; Liu, Huihui; Chen, Fulu; Wang, Lei; Meng, Xiangbing; Liu, Guifu; Yu, Hong; Yuan, Yundong; Yi, Wei; Zhao, Lihua; Ma, Honglei; He, Yuanzheng; Wu, Zhongshan; Melcher, Karsten; Qian, Qian; Xu, H. Eric; Wang, Yonghong; Li, Jiayang

    2013-12-01

    Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.

  6. Additional sex combs interacts with enhancer of zeste and trithorax and modulates levels of trimethylation on histone H3K4 and H3K27 during transcription of hsp70.

    PubMed

    Li, Taosui; Hodgson, Jacob W; Petruk, Svetlana; Mazo, Alexander; Brock, Hugh W

    2017-09-19

    Maintenance of cell fate determination requires the Polycomb group for repression; the trithorax group for gene activation; and the enhancer of trithorax and Polycomb (ETP) group for both repression and activation. Additional sex combs (Asx) is a genetically identified ETP for the Hox loci, but the molecular basis of its dual function is unclear. We show that in vitro, Asx binds directly to the SET domains of the histone methyltransferases (HMT) enhancer of zeste [E(z)] (H3K27me3) and Trx (H3K4me3) through a bipartite interaction site separated by 846 amino acid residues. In Drosophila S2 cell nuclei, Asx interacts with E(z) and Trx in vivo. Drosophila Asx is required for repression of heat-shock gene hsp70 and is recruited downstream of the hsp70 promoter. Changes in the levels of H3K4me3 and H3K27me3 downstream of the hsp70 promoter in Asx mutants relative to wild type show that Asx regulates H3K4 and H3K27 trimethylation. We propose that during transcription Asx modulates the ratio of H3K4me3 to H3K27me3 by selectively recruiting the antagonistic HMTs, E(z) and Trx or other nucleosome-modifying enzymes to hsp70.

  7. The Role of Polycomb Group Gene BMI1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2014-03-01

    SUBJECT TERMS BMI1, Wnt Signaling, Bcl-2, TCF, Prostate Cancer 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a...Status: Completed; Data presented in this report. Task 3 : Studies in athymic nude mouse xenograft model will be conducted (a) to...colon cancer cell line HT29 which is known to exhibit increased Wnt signaling and TCF-transcriptional activity ( 18 ). We first determined BMI1 levels in

  8. Prostate Cancer Aggressiveness Gene in Hereditary Prostate Cancer

    DTIC Science & Technology

    2007-03-01

    with REA, and estrogen receptor corepressor. Breast Canc Res Treat., in press (2007). This grant provided research support for Dr Veda Giri while...an estrogen receptor corepressor Clara Hwang Æ Veda N. Giri Æ John C. Wilkinson Æ Casey W. Wright Æ Amanda S. Wilkinson Æ Kathleen A. Cooney Æ Colin S...histone deacetylases (HDAC), and members of the polycomb group (PcG) of proteins. Clara Hwang and Veda N. Giri contributed equally to this work. C

  9. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato.

    PubMed

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-08-25

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life.

  10. Site-Specific Expression of Polycomb-Group Genes Encoding the HPC-HPH/PRC1 Complex in Clinically Defined Primary Nodal and Cutaneous Large B-Cell Lymphomas

    PubMed Central

    Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.

    2004-01-01

    Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259

  11. Polycomb-group protein SlMSI1 represses the expression of fruit-ripening genes to prolong shelf life in tomato

    PubMed Central

    Liu, Dan-Dan; Zhou, Li-Jie; Fang, Mou-Jing; Dong, Qing-Long; An, Xiu-Hong; You, Chun-Xiang; Hao, Yu-Jin

    2016-01-01

    Polycomb-group (PcG) protein MULTICOPY SUPPRESSOR OF IRA1 (MSI1) protein is an evolutionarily conserved developmental suppressor and plays a crucial role in regulating epigenetic modulations. However, the potential role and function of MSI1 in fleshy fruits remain unknown. In this study, SlMSI1 was cloned and transformed into tomato to explore its function. The quantitative real-time PCR results showed that SlMSI1 was highly expressed in flowers and fruits and that its transcript and protein levels were significantly decreased in fruits after the breaker stage. Additionally, SlMSI1-overexpressing transgenic tomatoes displayed abnormal non-ripening fruit formation, whereas its suppression promoted fruit ripening in transgenic tomatoes. Quantitative real-time PCR assays also showed that RIN and its regulons were decreased in SlMSI1 overexpression transgenic tomato fruits. Furthermore, RNA-seq analysis demonstrated that SlMSI1 inhibits fruit ripening by negatively regulating a large set of fruit-ripening genes in addition to RIN and its regulons. Finally, genetic manipulation of SlMSI1 and RIN successfully prolonged the fruit shelf life by regulating the fruit-ripening genes in tomato. Our findings reveal a novel regulatory function of SlMSI1 in fruit ripening and provide a new regulator that may be useful for genetic engineering and modification of fruit shelf life. PMID:27558543

  12. High expression of Polycomb group protein EZH2 predicts poor survival in salivary gland adenoid cystic carcinoma.

    PubMed

    Vékony, H; Raaphorst, F M; Otte, A P; van Lohuizen, M; Leemans, C R; van der Waal, I; Bloemena, E

    2008-06-01

    The prognosis of adenoid cystic carcinoma (ACC), a malignant salivary gland tumour, depends on clinicopathological parameters. To decipher the biological behaviour of ACC, and to identify patients at risk of developing metastases, additional markers are needed. Expression of the cell cycle proteins p53, cyclin D1, p16(INK4a), E2F1 and Ki-67, together with the Polycomb group (PcG) proteins BMI-1, MEL-18, EZH2 and EED was investigated immunohistochemically 21 formalin-fixed, paraffin-embedded primary ACCs in relation to tumour characteristics. ACC revealed significantly increased expression of the cell cycle proteins compared to normal salivary tissue (n = 17). Members of the two PcG complexes displayed mutually exclusive expression in normal salivary gland tissue, with BMI-1 and MEL-18 being abundantly present. In ACC, this expression pattern was disturbed, with EZH2 and EED showing significantly increased expression levels. In univariate analysis, presence of recurrence, poor differentiation and high EZH2 levels (>25% immunopositivity) significantly correlated with unfavourable outcome. ACCs with high proliferative rate (>25% Ki-67 immunopositivity) significantly correlated with high levels of EZH2 and p16. Only the development of recurrence was an independent prognostic factor of survival in multivariate analysis. Expression of PcG complexes and of essential cell cycle proteins is highly deregulated in ACC. Also, EZH2 expression has prognostic relevance in this malignancy.

  13. [SINEs in mammalian genomes can serve as additional signals in formation of facultative heterochromatin].

    PubMed

    Usmanova, N M; Kazakov, V I; Tomilin, N V

    2008-01-01

    Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.

  14. The Role of Polycomb Group Gene Bmi-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2011-09-01

    new tricks. Cell Div. 2006 Jul 24;1:15. 17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions... Pestell RG. Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer...Datar 22 R, Cote R, Pestell R, Albanese C. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res. 2007

  15. The Role of Polycomb Group Gene BMI1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2012-07-01

    16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b...Completed; Data presented in this report. 11 Task 3 (OF SOW): Sub-task: (3A) Studies in athymic nude mouse xenograft model will be conducted (a) to...to exhibit increased Wnt signaling and TCF-transcriptional activity ( 18 ). We first determined BMI1 levels in HT29 cells and then generated BMI1

  16. Dopamine Signaling Leads to Loss of Polycomb Repression and Aberrant Gene Activation in Experimental Parkinsonism

    PubMed Central

    Lerdrup, Mads; Gomes, Ana-Luisa; Kryh, Hanna; Spigolon, Giada; Caboche, Jocelyne; Fisone, Gilberto; Hansen, Klaus

    2014-01-01

    Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease. PMID:25254549

  17. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy

    2014-01-01

    Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030

  18. Divergent Requirements for EZH1 in Heart Development Versus Regeneration.

    PubMed

    Ai, Shanshan; Yu, Xianhong; Li, Yumei; Peng, Yong; Li, Chen; Yue, Yanzhu; Tao, Ge; Li, Chuanyun; Pu, William T; He, Aibin

    2017-07-07

    Polycomb repressive complex 2 is a major epigenetic repressor that deposits methylation on histone H3 on lysine 27 (H3K27me) and controls differentiation and function of many cells, including cardiac myocytes. EZH1 and EZH2 are 2 alternative catalytic subunits with partial functional redundancy. The relative roles of EZH1 and EZH2 in heart development and regeneration are unknown. We compared the roles of EZH1 versus EZH2 in heart development and neonatal heart regeneration. Heart development was normal in Ezh1 -/- ( Ezh 1 knockout) and Ezh2 f/f ::cTNT -Cre ( Ezh 2 knockout) embryos. Ablation of both genes in Ezh1 -/- ::Ezh2 f/f ::cTNT -Cre embryos caused lethal heart malformations, including hypertrabeculation, compact myocardial hypoplasia, and ventricular septal defect. Epigenome and transcriptome profiling showed that derepressed genes were upregulated in a manner consistent with total EZH dose. In neonatal heart regeneration, Ezh1 was required, but Ezh2 was dispensable. This finding was further supported by rescue experiments: cardiac myocyte-restricted re-expression of EZH1 but not EZH2 restored neonatal heart regeneration in Ezh 1 knockout. In myocardial infarction performed outside of the neonatal regenerative window, EZH1 but not EZH2 likewise improved heart function and stimulated cardiac myocyte proliferation. Mechanistically, EZH1 occupied and activated genes related to cardiac growth. Our work unravels divergent mechanisms of EZH1 in heart development and regeneration, which will empower efforts to overcome epigenetic barriers to heart regeneration. © 2017 American Heart Association, Inc.

  19. Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B

    PubMed Central

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Pey, Ángel L.; Soubeyran, Philippe; Vidal, Miguel; Urrutia, Raúl; Iovanna, Juan L.; Neira, José L.

    2017-01-01

    Intrinsically disordered proteins (IDPs) are ubiquitous in eukaryotes, and they are often associated with diseases in humans. The protein NUPR1 is a multifunctional IDP involved in chromatin remodeling and in the development and progression of pancreatic cancer; however, the details of such functions are unknown. Polycomb proteins are involved in specific transcriptional cascades and gene silencing. One of the proteins of the Polycomb complex is the Ring finger protein 1 (RING1). RING1 is related to aggressive tumor features in multiple cancer types. In this work we characterized the interaction between NUPR1 and the paralogue RING1B in vitro, in silico, and in cellulo. The interaction occurred through the C-terminal region of RING1B (C-RING1B), with an affinity in the low micromolar range (∼10 μM). The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch at the 30s region of its sequence, as pinpointed by computational results and site-directed mutagenesis at Ala33. The association between C-RING1B and wild-type NUPR1 also occurred in cellulo as tested by protein ligation assays; this interaction is inhibited by trifluoperazine, a drug known to hamper binding of wild-type NUPR1 with other proteins. Furthermore, the Thr68Gln and Ala33Gln/Thr68Gln mutants had a reduction in the binding toward C-RING1B as shown by in vitro, in silico, and in cellulo studies. This is an example of a well-folded partner of NUPR1, because its other interacting proteins are also unfolded. We hypothesize that NUPR1 plays an active role in chromatin remodeling and carcinogenesis, together with Polycomb proteins. PMID:28720707

  20. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins.

    PubMed

    Panina, Ekaterina M; Mironov, Andrey A; Gelfand, Mikhail S

    2003-08-19

    Zinc is an important component of many proteins, but in large concentrations it is poisonous to the cell. Thus its transport is regulated by zinc repressors ZUR of proteobacteria and Gram-positive bacteria from the Bacillus group and AdcR of bacteria from the Streptococcus group. Comparative computational analysis allowed us to identify binding signals of ZUR repressors GAAATGTTATANTATAACATTTC for gamma-proteobacteria, GTAATGTAATAACATTAC for the Agrobacterium group, GATATGTTATAACATATC for the Rhododoccus group, TAAATCGTAATNATTACGATTTA for Gram-positive bacteria, and TTAACYRGTTAA of the streptococcal AdcR repressor. In addition to known transporters and their paralogs, zinc regulons were predicted to contain a candidate component of the ATP binding cassette, zinT (b1995 in Escherichia coli and yrpE in Bacillus subtilis). Candidate AdcR-binding sites were identified upstream of genes encoding pneumococcal histidine triad (PHT) proteins from a number of pathogenic streptococci. Protein functional analysis of this family suggests that PHT proteins are involved in the invasion process. Finally, repression by zinc was predicted for genes encoding a variety of paralogs of ribosomal proteins. The original copies of all these proteins contain zinc-ribbon motifs and thus likely bind zinc, whereas these motifs are destroyed in zinc-regulated paralogs. We suggest that the induction of these paralogs in conditions of zinc starvation leads to their incorporation in a fraction of ribosomes instead of the original ribosomal proteins; the latter are then degraded with subsequent release of some zinc for the utilization by other proteins. Thus we predict a mechanism for maintaining zinc availability for essential enzymes.

  1. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2009-09-01

    17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004 Dec;145(12):5439-47. 18...connecting development to breast cancer. Cell Cycle. 2004 Feb;3(2):145-8. 32. Wang C, Li Z, Fu M, Bouras T, Pestell RG. Signal transduction mediated by...Ferzli G, Johnson K, Fricke S, Diba F, Kallakury B, Ohanyerenwa C, Chen M, Ostrowski M, Hung MC, Rabbani SA, Datar R, Cote R, Pestell R, Albanese C

  2. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2010-09-01

    2006 Jul 24;1:15. 17. Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004 Dec;145...and cyclin D1:connecting development to breast cancer. Cell Cycle. 2004 Feb;3(2):145-8. 32. Wang C, Li Z, Fu M, Bouras T, Pestell RG. Signal... Pestell R, Albanese C. ErbB-2 induces the cyclin D1 gene in prostate epithelial cells in vitro and in vivo. Cancer Res. 2007 May 1;67(9):4364-72. 36

  3. The Role of Polycomb Group Gene BMI-1 in the Development of Prostate Cancer

    DTIC Science & Technology

    2013-07-01

    cyclin D1 (Wnt target) and Bcl-2 (Sonic Hedgehog -SHH target). The novel finding in presented in the 2nd annual report was that regulation of Bcl-2... hedgehog (SHH) pathway that is very well know to regulate Bcl-2. For this purpose we determined the expression level of Bcl-2 in BMI1- overexpressing and...2006; 15: 217-27. 16. Hegde GV, Munger CM, Emanuel K, Joshi AD, Greiner TC, Weisenburger DD, Vose JM, et al. Targeting of sonic hedgehog -GLI signaling

  4. KDM2B Recruitment of the Polycomb Group Complex, PRC1.1, Requires Cooperation between PCGF1 and BCORL1.

    PubMed

    Wong, Sarah J; Gearhart, Micah D; Taylor, Alexander B; Nanyes, David R; Ha, Daniel J; Robinson, Angela K; Artigas, Jason A; Lee, Oliver J; Demeler, Borries; Hart, P John; Bardwell, Vivian J; Kim, Chongwoo A

    2016-10-04

    KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repression. We investigated the molecular basis of recruitment using in vitro assembly assays to identify minimal components, subcomplexes, and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA-binding KDM2B/SKP1 heterodimer and the heterodimer of BCORL1 and PCGF1, a core component of PRC1.1. The crystal structure of the KDM2B/SKP1/BCORL1/PCGF1 complex illustrates the crucial role played by the PCGF1/BCORL1 heterodimer. The BCORL1 PUFD domain positions residues preceding the RAWUL domain of PCGF1 to create an extended interface for interaction with KDM2B, which is unique to the PCGF1-containing PRC1.1 complex. The structure also suggests how KDM2B might simultaneously function in PRC1.1 and an SCF ubiquitin ligase complex and the possible molecular consequences of BCOR PUFD internal tandem duplications found in pediatric kidney and brain tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Prenatal Alcohol Exposure and Cellular Differentiation

    PubMed Central

    Veazey, Kylee J.; Muller, Daria; Golding, Michael C.

    2013-01-01

    Exposure to alcohol significantly alters the developmental trajectory of progenitor cells and fundamentally compromises tissue formation (i.e., histogenesis). Emerging research suggests that ethanol can impair mammalian development by interfering with the execution of molecular programs governing differentiation. For example, ethanol exposure disrupts cellular migration, changes cell–cell interactions, and alters growth factor signaling pathways. Additionally, ethanol can alter epigenetic mechanisms controlling gene expression. Normally, lineage-specific regulatory factors (i.e., transcription factors) establish the transcriptional networks of each new cell type; the cell’s identity then is maintained through epigenetic alterations in the way in which the DNA encoding each gene becomes packaged within the chromatin. Ethanol exposure can induce epigenetic changes that do not induce genetic mutations but nonetheless alter the course of fetal development and result in a large array of patterning defects. Two crucial enzyme complexes—the Polycomb and Trithorax proteins—are central to the epigenetic programs controlling the intricate balance between self-renewal and the execution of cellular differentiation, with diametrically opposed functions. Prenatal ethanol exposure may disrupt the functions of these two enzyme complexes, altering a crucial aspect of mammalian differentiation. Characterizing the involvement of Polycomb and Trithorax group complexes in the etiology of fetal alcohol spectrum disorders will undoubtedly enhance understanding of the role that epigenetic programming plays in this complex disorder. PMID:24313167

  6. Endosperm and Nucellus Develop Antagonistically in Arabidopsis Seeds

    PubMed Central

    Xu, Wenjia; Coen, Olivier; Pechoux, Christine; Magnani, Enrico

    2016-01-01

    In angiosperms, seed architecture is shaped by the coordinated development of three genetically different components: embryo, endosperm, and maternal tissues. The relative contribution of these tissues to seed mass and nutrient storage varies considerably among species. The development of embryo, endosperm, or nucellus maternal tissue as primary storage compartments defines three main typologies of seed architecture. It is still debated whether the ancestral angiosperm seed accumulated nutrients in the endosperm or the nucellus. During evolution, plants shifted repeatedly between these two storage strategies through molecular mechanisms that are largely unknown. Here, we characterize the regulatory pathway underlying nucellus and endosperm tissue partitioning in Arabidopsis thaliana. We show that Polycomb-group proteins repress nucellus degeneration before fertilization. A signal initiated in the endosperm by the AGAMOUS-LIKE62 MADS box transcription factor relieves this Polycomb-mediated repression and therefore allows nucellus degeneration. Further downstream in the pathway, the TRANSPARENT TESTA16 (TT16) and GORDITA MADS box transcription factors promote nucellus degeneration. Moreover, we demonstrate that TT16 mediates the crosstalk between nucellus and seed coat maternal tissues. Finally, we characterize the nucellus cell death program and its feedback role in timing endosperm development. Altogether, our data reveal the antagonistic development of nucellus and endosperm, in coordination with seed coat differentiation. PMID:27233529

  7. Epstein-Barr Virus (EBV) Latent Protein EBNA3A Directly Targets and Silences the STK39 Gene in B Cells Infected by EBV.

    PubMed

    Bazot, Quentin; Paschos, Kostas; Allday, Martin J

    2018-04-01

    Epstein-Barr virus (EBV) establishes latent infection in human B cells and is associated with a wide range of cancers. The EBV nuclear antigen 3 (EBNA3) family proteins are critical for B cell transformation and function as transcriptional regulators. It is well established that EBNA3A and EBNA3C cooperate in the regulation of cellular genes. Here, we demonstrate that the gene STK39 is repressed only by EBNA3A. This is the first example of a gene regulated only by EBNA3A in EBV-transformed lymphoblastoid cell lines (LCLs) without the help of EBNA3C. This was demonstrated using a variety of LCLs carrying either knockout, revertant, or conditional EBNA3 recombinants. Investigating the kinetics of EBNA3A-mediated changes in STK39 expression showed that STK39 becomes derepressed quickly after EBNA3A inactivation. This derepression is reversible as EBNA3A reactivation represses STK39 in the same cells expressing a conditional EBNA3A. STK39 is silenced shortly after primary B cell infection by EBV, and no STK39 -encoded protein (SPAK) is detected 3 weeks postinfection. Chromatin immunoprecipitation (ChIP) analysis indicates that EBNA3A directly binds to a regulatory region downstream of the STK39 transcription start site. For the first time, we demonstrated that the polycomb repressive complex 2 with the deposition of the repressive mark H3K27me3 is not only important for the maintenance of an EBNA3A target gene ( STK39 ) but is also essential for the initial establishment of its silencing. Finally, we showed that DNA methyltransferases are involved in the EBNA3A-mediated repression of STK39 IMPORTANCE EBV is well known for its ability to transform B lymphocytes to continuously proliferating lymphoblastoid cell lines. This is achieved in part by the reprogramming of cellular gene transcription by EBV transcription factors, including the EBNA3 proteins that play a crucial role in this process. In the present study, we found that EBNA3A epigenetically silences STK39 This is the first gene where EBNA3A has been found to exert its repressive role by itself, without needing its coregulators EBNA3B and EBNA3C. Furthermore, we demonstrated that the polycomb repressor complex is essential for EBNA3A-mediated repression of STK39 Findings in this study provide new insights into the regulation of cellular genes by the transcription factor EBNA3A. Copyright © 2018 Bazot et al.

  8. The Growth-Suppressive Function of the Polycomb Group Protein Polyhomeotic Is Mediated by Polymerization of Its Sterile Alpha Motif (SAM) Domain*

    PubMed Central

    Robinson, Angela K.; Leal, Belinda Z.; Chadwell, Linda V.; Wang, Renjing; Ilangovan, Udayar; Kaur, Yogeet; Junco, Sarah E.; Schirf, Virgil; Osmulski, Pawel A.; Gaczynska, Maria; Hinck, Andrew P.; Demeler, Borries; McEwen, Donald G.; Kim, Chongwoo A.

    2012-01-01

    Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions. PMID:22275371

  9. Alterations in Seed Development Gene Expression Affect Size and Oil Content of Arabidopsis Seeds1[C][W][OPEN

    PubMed Central

    Fatihi, Abdelhak; Zbierzak, Anna Maria; Dörmann, Peter

    2013-01-01

    Seed endosperm development in Arabidopsis (Arabidopsis thaliana) is under control of the polycomb group complex, which includes Fertilization Independent Endosperm (FIE). The polycomb group complex regulates downstream factors, e.g. Pheres1 (PHE1), by genomic imprinting. In heterozygous fie mutants, an endosperm develops in ovules carrying a maternal fie allele without fertilization, finally leading to abortion. Another endosperm development pathway depends on MINISEED3 (a WRKY10 transcription factor) and HAIKU2 (a leucine-rich repeat kinase). While the role of seed development genes in the embryo and endosperm establishment has been studied in detail, their impact on metabolism and oil accumulation remained unclear. Analysis of oil, protein, and sucrose accumulation in mutants and overexpression plants of the four seed development genes revealed that (1) seeds carrying a maternal fie allele accumulate low oil with an altered composition of triacylglycerol molecular species; (2) homozygous mutant seeds of phe1, mini3, and iku2, which are smaller, accumulate less oil and slightly less protein, and starch, which accumulates early during seed development, remains elevated in mutant seeds; (3) embryo-specific overexpression of FIE, PHE1, and MINI3 has no influence on seed size and weight, nor on oil, protein, or sucrose content; and (4) overexpression of IKU2 results in seeds with increased size and weight, and oil content of overexpressed IKU2 seeds is increased by 35%. Thus, IKU2 overexpression represents a novel strategy for the genetic manipulation of the oil content in seeds. PMID:24014578

  10. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  11. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis

    PubMed Central

    Peng, F; Jiang, J; Yu, Y; Tian, R; Guo, X; Li, X; Shen, M; Xu, M; Zhu, F; Shi, C; Hu, J; Wang, M; Qin, R

    2013-01-01

    Background: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described. Methods: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3′-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting. Results: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex). Conclusion: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms. PMID:24169343

  12. Human-Specific Histone Methylation Signatures at Transcription Start Sites in Prefrontal Neurons

    PubMed Central

    Cheung, Iris; Bharadwaj, Rahul; Chou, Hsin-Jung; Houston, Isaac B.; Peter, Cyril J.; Mitchell, Amanda C.; Yao, Wei-Dong; Myers, Richard H.; Chen, Jiang-fan; Preuss, Todd M.; Rogaev, Evgeny I.; Jensen, Jeffrey D.; Weng, Zhiping; Akbarian, Schahram

    2012-01-01

    Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5–1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans. PMID:23185133

  13. Interplay of protein and DNA structure revealed in simulations of the lac operon.

    PubMed

    Czapla, Luke; Grosner, Michael A; Swigon, David; Olson, Wilma K

    2013-01-01

    The E. coli Lac repressor is the classic textbook example of a protein that attaches to widely spaced sites along a genome and forces the intervening DNA into a loop. The short loops implicated in the regulation of the lac operon suggest the involvement of factors other than DNA and repressor in gene control. The molecular simulations presented here examine two likely structural contributions to the in-vivo looping of bacterial DNA: the distortions of the double helix introduced upon association of the highly abundant, nonspecific nucleoid protein HU and the large-scale deformations of the repressor detected in low-resolution experiments. The computations take account of the three-dimensional arrangements of nucleotides and amino acids found in crystal structures of DNA with the two proteins, the natural rest state and deformational properties of protein-free DNA, and the constraints on looping imposed by the conformation of the repressor and the orientation of bound DNA. The predicted looping propensities capture the complex, chain-length-dependent variation in repression efficacy extracted from gene expression studies and in vitro experiments and reveal unexpected chain-length-dependent variations in the uptake of HU, the deformation of repressor, and the folding of DNA. Both the opening of repressor and the presence of HU, at levels approximating those found in vivo, enhance the probability of loop formation. HU affects the global organization of the repressor and the opening of repressor influences the levels of HU binding to DNA. The length of the loop determines whether the DNA adopts antiparallel or parallel orientations on the repressor, whether the repressor is opened or closed, and how many HU molecules bind to the loop. The collective behavior of proteins and DNA is greater than the sum of the parts and hints of ways in which multiple proteins may coordinate the packaging and processing of genetic information.

  14. Direct Role for the Rpd3 Complex in Transcriptional Induction of the Anaerobic DAN/TIR Genes in Yeast▿‡

    PubMed Central

    Sertil, Odeniel; Vemula, Arvind; Salmon, Sharon L.; Morse, Randall H.; Lowry, Charles V.

    2007-01-01

    Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of “anaerobic” genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression. PMID:17210643

  15. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

    PubMed

    Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian

    2018-02-08

    Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.

  16. Identification of the gene transcription repressor domain of Gli3.

    PubMed

    Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit

    2009-01-05

    Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.

  17. Functional characterization of an apple apomixis-related MhFIE gene in reproduction development.

    PubMed

    Liu, Dan-Dan; Dong, Qing-Long; Sun, Chao; Wang, Qing-Lian; You, Chun-Xiang; Yao, Yu-Xin; Hao, Yu-Jin

    2012-04-01

    The products of the FIS genes play important regulatory roles in diverse developmental processes, especially in seed formation after fertilization. In this study, a FIS-class gene MhFIE was isolated from apple. It encoded a predicted protein highly similar to polycomb group (PcG) protein FERTILIZATION-INDEPENDENT ENDOSPERM (FIE). MhFIE functioned as an Arabidopsis FIE homologue, as indicated by functional complementation experiment using Arabidopsis fie mutant. In addition, BiFC assay showed that MhFIE protein interacted with AtCLF. Furthermore, transgenic Arabidopsis ectopically expressing MhFIE produced less APETALA3 (AtAP3) and AGAMOUS (AtAG) transcripts than WT control, and therefore exhibited abnormal flower, seed development. These results suggested that polycomb complex including FIE and CLF proteins played an important role in reproductive development by regulating the expression of its downstream genes. In addition, it was found that MhFIE constitutively expressed in various tissues tested. Its expression levels were lower in apomictic apple species than the sexual reproductive species, suggested it was possibly involved into apomixis in apple. Furthermore, the hybrids of tea crabapple generated MhFIE transcripts at different levels. The parthenogenesis capacity was negatively correlated with MhFIE expression level in these hybrids. These results suggested that MhFIE was involved into the regulation of flower development and apomixis in apple. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. The plant Polycomb repressive complex 1 (PRC1) existed in the ancestor of seed plants and has a complex duplication history.

    PubMed

    Berke, Lidija; Snel, Berend

    2015-03-13

    Polycomb repressive complex 1 (PRC1) is an essential protein complex for plant development. It catalyzes ubiquitination of histone H2A that is an important part of the transcription repression machinery. Absence of PRC1 subunits in Arabidopsis thaliana plants causes severe developmental defects. Many aspects of the plant PRC1 are elusive, including its origin and phylogenetic distribution. We established the evolutionary history of the plant PRC1 subunits (LHP1, Ring1a-b, Bmi1a-c, EMF1, and VRN1), enabled by sensitive phylogenetic methods and newly sequenced plant genomes from previously unsampled taxonomic groups. We showed that all PRC1 core subunits exist in gymnosperms, earlier than previously thought, and that VRN1 is a recent addition, found exclusively in eudicots. The retention of individual subunits in chlorophytes, mosses, lycophytes and monilophytes indicates that they can moonlight as part of other complexes or processes. Moreover, we showed that most PRC1 subunits underwent a complex, duplication-rich history that differs significantly between Brassicaceae and other eudicots. PRC1 existed in the last common ancestor of seed plants where it likely played an important regulatory role, aiding their radiation. The presence of LHP1, Ring1 and Bmi1 in mosses, lycophytes and monilophytes also suggests the presence of a primitive yet functional PRC1.

  19. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development1[OPEN

    PubMed Central

    Zhou, Yue

    2017-01-01

    Polycomb Group regulation in Arabidopsis (Arabidopsis thaliana) is required to maintain cell differentiation and allow developmental phase transitions. This is achieved by the activity of three PcG repressive complex 2s (PRC2s) and the participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 components perform discrete roles during plant development, suggesting the existence of PRC1 variants; however, it is not clear in how many processes these components participate. We show that AtBMI1 proteins are required to promote all developmental phase transitions and to control cell proliferation during organ growth and development, expanding their proposed range of action. While AtBMI1 function during germination is closely linked to B3 domain transcription factors VAL1/2 possibly in combination with GT-box binding factors, other AtBMI1 regulatory networks require participation of different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 positive genes up-regulated in atbmi1a/b/c mutants; however, loss of their function affects expression of a different subset, suggesting that even if EMF1, LHP1, and AtBMI1 exist in a common PRC1 variant, their role in repression depends on the functional context. PMID:27837089

  20. Cell Cycle-Dependent Recruitment of Polycomb Proteins to the ASNS Promoter Counteracts C/ebp-Mediated Transcriptional Activation in Bombyx mori

    PubMed Central

    Li, Zhiqing; Cheng, Daojun; Mon, Hiroaki; Zhu, Li; Xu, Jian; Tatsuke, Tsuneyuki; Lee, Jae Man; Xia, Qingyou; Kusakabe, Takahiro

    2013-01-01

    Epigenetic modifiers and transcription factors contribute to developmentally programmed gene expression. Here, we establish a functional link between epigenetic regulation by Polycomb group (PcG) proteins and transcriptional regulation by C/ebp that orchestrates the correct expression of Bombyx mori asparagine synthetase (BmASNS), a gene involved in the biosynthesis of asparagine. We show that the cis-regulatory elements of YY1-binding motifs and the CpG island present on the BmASNS promoter are required for the recruitment of PcG proteins and the subsequent deposition of the epigenetic repression mark H3K27me3. RNAi-mediated knockdown of PcG genes leads to derepression of the BmASNS gene via the recruitment of activators, including BmC/ebp, to the promoter. Intriguingly, we find that PcG proteins and BmC/ebp can dynamically modulate the transcriptional output of the BmASNS target in a cell cycle-dependent manner. It will be essential to suppress BmASNS expression by PcG proteins at the G2/M phase of the cell cycle in the presence of BmC/ebp activator. Thus, our results provide a novel insight into the molecular mechanism underlying the recruitment and regulation of the PcG system at a discrete gene locus in Bombyx mori. PMID:23382816

  1. Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells

    PubMed Central

    Min, Irene M.; Waterfall, Joshua J.; Core, Leighton J.; Munroe, Robert J.; Schimenti, John; Lis, John T.

    2011-01-01

    Transitions between pluripotent stem cells and differentiated cells are executed by key transcription regulators. Comparative measurements of RNA polymerase distribution over the genome's primary transcription units in different cell states can identify the genes and steps in the transcription cycle that are regulated during such transitions. To identify the complete transcriptional profiles of RNA polymerases with high sensitivity and resolution, as well as the critical regulated steps upon which regulatory factors act, we used genome-wide nuclear run-on (GRO-seq) to map the density and orientation of transcriptionally engaged RNA polymerases in mouse embryonic stem cells (ESCs) and mouse embryonic fibroblasts (MEFs). In both cell types, progression of a promoter-proximal, paused RNA polymerase II (Pol II) into productive elongation is a rate-limiting step in transcription of ∼40% of mRNA-encoding genes. Importantly, quantitative comparisons between cell types reveal that transcription is controlled frequently at paused Pol II's entry into elongation. Furthermore, “bivalent” ESC genes (exhibiting both active and repressive histone modifications) bound by Polycomb group complexes PRC1 (Polycomb-repressive complex 1) and PRC2 show dramatically reduced levels of paused Pol II at promoters relative to an average gene. In contrast, bivalent promoters bound by only PRC2 allow Pol II pausing, but it is confined to extremely 5′ proximal regions. Altogether, these findings identify rate-limiting targets for transcription regulation during cell differentiation. PMID:21460038

  2. Structural Context of Disease-Associated Mutations and Putative Mechanism of Autoinhibition Revealed by X-Ray Crystallographic Analysis of the EZH2-SET Domain

    PubMed Central

    Antonysamy, Stephen; Condon, Bradley; Druzina, Zhanna; Bonanno, Jeffrey B.; Gheyi, Tarun; Zhang, Feiyu; MacEwan, Iain; Zhang, Aiping; Ashok, Sheela; Rodgers, Logan; Russell, Marijane; Gately Luz, John

    2013-01-01

    The enhancer-of-zeste homolog 2 (EZH2) gene product is an 87 kDa polycomb group (PcG) protein containing a C-terminal methyltransferase SET domain. EZH2, along with binding partners, i.e., EED and SUZ12, upon which it is dependent for activity forms the core of the polycomb repressive complex 2 (PRC2). PRC2 regulates gene silencing by catalyzing the methylation of histone H3 at lysine 27. Both overexpression and mutation of EZH2 are associated with the incidence and aggressiveness of various cancers. The novel crystal structure of the SET domain was determined in order to understand disease-associated EZH2 mutations and derive an explanation for its inactivity independent of complex formation. The 2.00 Å crystal structure reveals that, in its uncomplexed form, the EZH2 C-terminus folds back into the active site blocking engagement with substrate. Furthermore, the S-adenosyl-L-methionine (SAM) binding pocket observed in the crystal structure of homologous SET domains is notably absent. This suggests that a conformational change in the EZH2 SET domain, dependent upon complex formation, must take place for cofactor and substrate binding activities to be recapitulated. In addition, the data provide a structural context for clinically significant mutations found in the EZH2 SET domain. PMID:24367637

  3. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling.

    PubMed

    Martín-Subero, José I; Kreuz, Markus; Bibikova, Marina; Bentink, Stefan; Ammerpohl, Ole; Wickham-Garcia, Eliza; Rosolowski, Maciej; Richter, Julia; Lopez-Serra, Lidia; Ballestar, Esteban; Berger, Hilmar; Agirre, Xabier; Bernd, Heinz-Wolfram; Calvanese, Vincenzo; Cogliatti, Sergio B; Drexler, Hans G; Fan, Jian-Bing; Fraga, Mario F; Hansmann, Martin L; Hummel, Michael; Klapper, Wolfram; Korn, Bernhard; Küppers, Ralf; Macleod, Roderick A F; Möller, Peter; Ott, German; Pott, Christiane; Prosper, Felipe; Rosenwald, Andreas; Schwaenen, Carsten; Schübeler, Dirk; Seifert, Marc; Stürzenhofecker, Benjamin; Weber, Michael; Wessendorf, Swen; Loeffler, Markus; Trümper, Lorenz; Stein, Harald; Spang, Rainer; Esteller, Manel; Barker, David; Hasenclever, Dirk; Siebert, Reiner

    2009-03-12

    Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.

  4. Loss of Polycomb Group Protein Pcgf1 Severely Compromises Proper Differentiation of Embryonic Stem Cells

    PubMed Central

    Yan, Yun; Zhao, Wukui; Huang, Yikai; Tong, Huan; Xia, Yin; Jiang, Qing; Qin, Jinzhong

    2017-01-01

    The Polycomb repressive complex 1 (PRC1) is essential for fate decisions of embryonic stem (ES) cells. Emerging evidence suggests that six major variants of PRC1 complex, defined by the mutually exclusive presence of Pcgf subunit, regulate distinct biological processes, yet very little is known about the mechanism by which each version of PRC1 instructs and maintains cell fate. Here, we disrupted the Pcgf1, also known as Nspc1 and one of six Pcgf paralogs, in mouse ES cells by the CRISPR/Cas9 technology. We showed that although these mutant cells were viable and retained normal self-renewal, they displayed severe defects in differentiation in vitro. To gain a better understanding of the role of Pcgf1 in transcriptional control of differentiation, we analysed mRNA profiles from Pcgf1 deficient cells using RNA-seq. Interestingly, we found that Pcgf1 positively regulated expression of essential transcription factors involved in ectoderm and mesoderm differentiation, revealing an unexpected function of Pcgf1 in gene activation during ES cell lineage specification. Chromatin immunoprecipitation experiments demonstrated that Pcgf1 deletion caused a decrease in Ring1B and its associated H2AK119ub1 mark binding to target genes. Altogether, our results suggested an unexpected function of Pcgf1 in gene activation during ES cell maintenance. PMID:28393894

  5. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal

    PubMed Central

    Mrinal, Nirotpal; Tomar, Archana; Nagaraju, Javaregowda

    2011-01-01

    Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network. PMID:21890896

  6. Unusual Properties of Regulatory DNA from the Drosophila Engrailed Gene: Three ``pairing-Sensitive'' Sites within a 1.6-Kb Region

    PubMed Central

    Kassis, J. A.

    1994-01-01

    We have previously shown that a 2-kb fragment of engrailed DNA can suppress expression of a linked marker gene, white, in the P element vector CaSpeR. This suppression is dependent on the presence of two copies of engrailed DNA-containing P elements (P[en]) in proximity in the Drosophila genome (either in cis or in trans). In this study, the 2-kb fragment was dissected and found to contain three fragments of DNA which could mediate white suppression [called ``pairing-sensitive sites'' (PS)]. A PS site was also identified in regulatory DNA from the Drosophila escargot gene. The eye colors of six different P[en] insertions in the escargot gene suggest an interaction between P[en]-encoded and genome-encoded PS sites. I hypothesize that white gene expression from P[en] is repressed by the formation of a protein complex which is initiated at the engrailed PS sites and also requires interactions with flanking genomic DNA. Genes were sought which influence the function of PS sites. Mutations in some Polycomb and trithorax group genes were found to affect the eye color from some P[en] insertion sites. However, different mutations affected expression from different P[en] insertion sites and no one mutation was found to affect expression from all P[en] insertion sites examined. These results suggest that white expression from P[en] is not directly regulated by members of the Polycomb and trithorax group genes, but in some cases can be influenced by them. I propose that engrailed PS sites normally act to promote interactions between distantly located engrailed regulatory sites and the engrailed promoter. PMID:8005412

  7. The Human Polycomb Group Complex Associates with Pericentromeric Heterochromatin to Form a Novel Nuclear Domain

    PubMed Central

    Saurin, Andrew J.; Shiels, Carol; Williamson, Jill; Satijn, David P.E.; Otte, Arie P.; Sheer, Denise; Freemont, Paul S.

    1998-01-01

    The Polycomb group (PcG) complex is a chromatin-associated multiprotein complex, involved in the stable repression of homeotic gene activity in Drosophila. Recently, a mammalian PcG complex has been identified with several PcG proteins implicated in the regulation of Hox gene expression. Although the mammalian PcG complex appears analogous to the complex in Drosophila, the molecular mechanisms and functions for the mammalian PcG complex remain unknown. Here we describe a detailed characterization of the human PcG complex in terms of cellular localization and chromosomal association. By using antibodies that specifically recognize three human PcG proteins— RING1, BMI1, and hPc2—we demonstrate in a number of human cell lines that the PcG complex forms a unique discrete nuclear structure that we term PcG bodies. PcG bodies are prominent novel nuclear structures with the larger PcG foci generally localized near the centromeres, as visualized with a kinetochore antibody marker. In both normal fetal and adult fibroblasts, PcG bodies are not randomly dispersed, but appear clustered into defined areas within the nucleus. We show in three different human cell lines that the PcG complex can tightly associate with large pericentromeric heterochromatin regions (1q12) on chromosome 1, and with related pericentromeric sequences on different chromosomes, providing evidence for a mammalian PcG–heterochromatin association. Furthermore, these heterochromatin-bound PcG complexes remain stably associated throughout mitosis, thereby allowing the potential inheritance of the PcG complex through successive cell divisions. We discuss these results in terms of the known function of the PcG complex as a transcriptional repression complex. PMID:9722603

  8. Short germ insects utilize both the ancestral and derived mode of Polycomb group-mediated epigenetic silencing of Hox genes

    PubMed Central

    Matsuoka, Yuji; Bando, Tetsuya; Watanabe, Takahito; Ishimaru, Yoshiyasu; Noji, Sumihare; Popadić, Aleksandar; Mito, Taro

    2015-01-01

    In insect species that undergo long germ segmentation, such as Drosophila, all segments are specified simultaneously at the early blastoderm stage. As embryogenesis progresses, the expression boundaries of Hox genes are established by repression of gap genes, which is subsequently replaced by Polycomb group (PcG) silencing. At present, however, it is not known whether patterning occurs this way in a more ancestral (short germ) mode of embryogenesis, where segments are added gradually during posterior elongation. In this study, two members of the PcG family, Enhancer of zeste (E(z)) and Suppressor of zeste 12 (Su(z)12), were analyzed in the short germ cricket, Gryllus bimaculatus. Results suggest that although stepwise negative regulation by gap and PcG genes is present in anterior members of the Hox cluster, it does not account for regulation of two posterior Hox genes, abdominal-A (abd-A) and Abdominal-B (Abd-B). Instead, abd-A and Abd-B are predominantly regulated by PcG genes, which is the mode present in vertebrates. These findings suggest that an intriguing transition of the PcG-mediated silencing of Hox genes may have occurred during animal evolution. The ancestral bilaterian state may have resembled the current vertebrate mode of regulation, where PcG-mediated silencing of Hox genes occurs before their expression is initiated and is responsible for the establishment of individual expression domains. Then, during insect evolution, the repression by transcription factors may have been acquired in anterior Hox genes of short germ insects, while PcG silencing was maintained in posterior Hox genes. PMID:25948756

  9. SSX and the synovial-sarcoma-specific chimaeric protein SYT-SSX co-localize with the human Polycomb group complex.

    PubMed

    Soulez, M; Saurin, A J; Freemont, P S; Knight, J C

    1999-04-29

    Chromosome translocation t(X;18)(p11.2;q11.2) is unique to synovial sarcomas and results in an 'in frame' fusion of the SYT gene with the SSX1 or closely-related SSX2 gene. Wild-type SYT and SSX proteins, and the SYT-SSX chimaeric proteins, can modulate transcription in gene reporter assays. To help elucidate the role of these proteins in cell function and neoplasia we have performed immunolabelling experiments to determine their subcellular localization in three cell types. Transient expression of epitope-tagged proteins produced distinctive nuclear staining patterns. The punctate staining of SYT and SYT-SSX proteins showed some similarities. We immunolabelled a series of endogenous nuclear antigens and excluded the SYT and SYT-SSX focal staining from association with these domains (e.g. sites of active transcription, snRNPs). In further experiments we immunolabelled the Polycomb group (PcG) proteins RING1 or BMI-1 and showed that SSX and SYT-SSX proteins, but not SYT, co-localized with these markers. Consistent with this we show that SSX and SYT-SSX associate with chromatin, and also associate with condensed chromatin at metaphase. Noteably, SSX produced a dense signal over the surface of metaphase chromosomes whereas SYT-SSX produced discrete focal staining. Our data indicate that SSX and SYT-SSX proteins are recruited to nuclear domains occupied by PcG complexes, and this provides us with a new insight into the possible function of wild-type SSX and the mechanism by which the aberrant SYT-SSX protein might disrupt fundamental mechanisms controlling cell division and cell fate.

  10. Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation.

    PubMed

    Villa, Elizabeth; Balaeff, Alexander; Schulten, Klaus

    2005-05-10

    A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.

  11. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma.

    PubMed

    Hernández-Ruiz, Eugenia; Toll, Agustí; García-Diez, Irene; Andrades, Evelyn; Ferrandiz-Pulido, Carla; Masferrer, Emili; Yébenes, Mireia; Jaka, Ane; Gimeno, Javier; Gimeno, Ramón; García-Patos, Vicenç; Pujol, Ramón M; Hernández-Muñoz, Inmaculada

    2018-03-08

    Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.

  12. Somatic mutation of EZH2 (Y641) in follicular and diffuse large B-cell lymphomas of germinal center origin | Office of Cancer Genomics

    Cancer.gov

    Morin et al. describe recurrent somatic mutations in EZH2, a polycomb group oncogene. The mutation, found in the SET domain of this gene encoding a histone methyltransferase, is found only in a subset of lymphoma samples. Specifically, EZH2 mutations are found in about 12% of follicular lymphomas (FL) and almost 23% of diffuse large B-cell lymphomas (DLBCL) of germinal center origin. This paper goes on to demonstrate that altered EZH2 proteins, corresponding to the most frequent mutations found in human lymphomas, have reduced activity using in vitro histone methylation assays.

  13. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    PubMed Central

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. PMID:29233846

  14. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    PubMed

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. © 2017 The Authors.

  15. Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind.

    PubMed Central

    Kasajima, Ichiro; Ohtsubo, Norihiro; Sasaki, Katsutomo

    2017-01-01

    Although chimeric repressors such as the Arabidopsis TCP3 repressor are known to have significant effects on flower morphology and color, their cellular-level effects on flower petals are not understood. The promoter sequences of the genes expressed in the flowers of cyclamen, a representative potted flower grown during the winter season, are also unknown. Here, we isolated eight promoters from cyclamen genes that are reportedly expressed in the petals. These promoters were then fused to four chimeric repressors and introduced into the model flower torenia to screen for effective combinations of promoters and repressors for flower breeding. As expected, some of the constructs altered flower phenotypes upon transformation. We further analyzed the effects of chimeric repressors at the cellular level. We observed that complicated petal and leaf serrations were accompanied by excessive vascular branching. Dichromatism in purple anthocyanin was inferred to result in bluish flowers, and imbalanced cell proliferation appeared to result in epinastic flowers. Thus, the genetic constructs and phenotypic changes described in this report will benefit the future breeding and characterization of ornamental flowers. PMID:28446955

  16. Regulation of T Cell Differentiation and Function by EZH2

    PubMed Central

    Karantanos, Theodoros; Christofides, Anthos; Bardhan, Kankana; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    The enhancer of zeste homolog 2 (EZH2), one of the polycomb-group proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2) and induces the trimethylation of the histone H3 lysine 27 (H3K27me3) promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity, while the three other protein components of PRC2, namely EED, SUZ12, and RpAp46/48, induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency, and cancer biology, being currently at the cutting edge of research. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft-versus-host disease (GVHD). The aim of this review is to summarize the current knowledge regarding the role of EZH2 in the regulation of the differentiation and function of T cells focusing on possible applications in various immune-mediated conditions, including autoimmune disorders and GVHD. PMID:27199994

  17. The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer.

    PubMed

    Crea, Francesco; Venalainen, Erik; Ci, Xinpei; Cheng, Hongwei; Pikor, Larissa; Parolia, Abhijit; Xue, Hui; Nur Saidy, Nur Ridzwan; Lin, Dong; Lam, Wan; Collins, Colin; Wang, Yuzhuo

    2016-05-01

    Neuroendocrine prostate cancer (NEPC) is the most lethal prostatic neoplasm. NEPC is thought to originate from the transdifferentiation of AR-positive adenocarcinoma cells. We have previously shown that an epigenetic/noncoding interactome (ENI) orchestrates cancer cells' plasticity, thereby allowing the emergence of metastatic, drug-resistant neoplasms. The primary objective of this manuscript is to discuss evidence indicating that some components of the ENI (Polycomb genes, miRNAs) play a key role in NEPC initiation and progression. Long noncoding RNAs represent vast and largely unexplored component of the ENI. Their role in NEPC has not been investigated. We show preliminary evidence indicating that a lncRNA (MIAT) is selectively upregulated in NEPCs and might interact with Polycomb genes. Our results indicate that long noncoding RNAs can be exploited as new biomarkers and therapeutic targets for NEPC.

  18. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  19. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  20. TGF-{beta} signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luciakova, Katarina, E-mail: katarina.luciakova@savba.sk; Kollarovic, Gabriel; Kretova, Miroslava

    2011-08-05

    Highlights: {yields} TGF-{beta} induces the formation of unique nuclear NF1/Smad4 complexes that repress expression of the ANT-2 gene. {yields} Repression is mediated through an NF1-dependent repressor element in the promoter. {yields} The formation of NF1/Smad4 complexes and the repression of ANT2 are prevented by inhibitors of p38 kinase and TGF-{beta} RI. {yields} NF1/Smad complexes implicate novel role for NF1 and Smad proteins in the regulation of growth. -- Abstract: We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G.more » Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-{beta}, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-{beta} is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-{beta} are prevented by inhibitors of TGF-{beta} RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-{beta} and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-{beta} signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.« less

  1. Repressor logic modules assembled by rolling circle amplification platform to construct a set of logic gates

    PubMed Central

    Wei, Hua; Hu, Bo; Tang, Suming; Zhao, Guojie; Guan, Yifu

    2016-01-01

    Small molecule metabolites and their allosterically regulated repressors play an important role in many gene expression and metabolic disorder processes. These natural sensors, though valuable as good logic switches, have rarely been employed without transcription machinery in cells. Here, two pairs of repressors, which function in opposite ways, were cloned, purified and used to control DNA replication in rolling circle amplification (RCA) in vitro. By using metabolites and repressors as inputs, RCA signals as outputs, four basic logic modules were constructed successfully. To achieve various logic computations based on these basic modules, we designed series and parallel strategies of circular templates, which can further assemble these repressor modules in an RCA platform to realize twelve two-input Boolean logic gates and a three-input logic gate. The RCA-output and RCA-assembled platform was proved to be easy and flexible for complex logic processes and might have application potential in molecular computing and synthetic biology. PMID:27869177

  2. Plant chromatin warms up in Madrid

    PubMed Central

    Jarillo, José A; Gaudin, Valerie; Hennig, Lars; Köhler, Claudia; Piñeiro, Manuel

    2014-01-01

    The 3rd European Workshop on Plant Chromatin (EWPC) was held on August 2013 in Madrid, Spain. A number of different topics on plant chromatin were presented during the meeting, including new factors mediating Polycomb Group protein function in plants, chromatin-mediated reprogramming in plant developmental transitions, the role of histone variants, and newly identified chromatin remodeling factors. The function of interactions between chromatin and transcription factors in the modulation of gene expression, the role of chromatin dynamics in the control of nuclear processes and the influence of environmental factors on chromatin organization were also reported. In this report, we highlight some of the new insights emerging in this growing area of research, presented at the 3rd EWPC. PMID:24504145

  3. Solution structure of dimeric Mnt repressor (1-76).

    PubMed

    Burgering, M J; Boelens, R; Gilbert, D E; Breg, J N; Knight, K L; Sauer, R T; Kaptein, R

    1994-12-20

    Wild-type Mnt repressor of Salmonella bacteriophage P22 is a tetrameric protein of 82 residues per monomer. A C-terminal deletion mutant of the repressor denoted Mnt (1-76) is a dimer in solution. The structure of this dimer has been determined using NMR. The NMR assignments of the majority of the 1H, 15N, and 13C resonances were obtained using 2D and triple-resonance 3D techniques. Elements of secondary structure were identified on the basis of characteristic sequential and medium range NOEs. For the structure determination more than 1000 NOEs per monomer were obtained, and structures were generated using distance geometry and restrained simulated annealing calculations. The discrimination of intra- vs intermonomer NOEs was based upon the observation of intersubunit NOEs in [15N,13C] double half-filtered NOESY experiments. The N-terminal part of Mnt (residues 1-44), which shows a 40% sequence homology with the Arc repressor, has a similar secondary and tertiary structure. Mnt (1-76) continues with a loop region of irregular structure, a third alpha-helix, and a random coil C-terminal peptide. Analysis of the secondary structure NOEs, the exchange rates, and the backbone chemical shifts suggests that the carboxy-terminal third helix is less stable than the remainder of the protein, but the observation of intersubunit NOEs for this part of the protein enables the positioning of this helix. The rsmd's between the backbone atoms of the N-terminal part of the Mnt repressor (residues 5-43, 5'-43') and the Arc repressor is 1.58 A, and between this region and the corresponding part of the MetJ repressor 1.43 A.

  4. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safo, Martin K., E-mail: msafo@vcu.edu; Ko, Tzu-Ping; Musayev, Faik N.

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA,more » and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less

  5. Resetting the epigenetic balance of Polycomb and COMPASS function at enhancers for cancer therapy.

    PubMed

    Wang, Lu; Zhao, Zibo; Ozark, Patrick A; Fantini, Damiano; Marshall, Stacy A; Rendleman, Emily J; Cozzolino, Kira A; Louis, Nundia; He, Xingyao; Morgan, Marc A; Takahashi, Yoh-Hei; Collings, Clayton K; Smith, Edwin R; Ntziachristos, Panagiotis; Savas, Jeffrey N; Zou, Lihua; Hashizume, Rintaro; Meeks, Joshua J; Shilatifard, Ali

    2018-06-01

    The lysine methyltransferase KMT2C (also known as MLL3), a subunit of the COMPASS complex, implements monomethylation of Lys4 on histone H3 (H3K4) at gene enhancers. KMT2C (hereafter referred to as MLL3) frequently incurs point mutations across a range of human tumor types, but precisely how these lesions alter MLL3 function and contribute to oncogenesis is unclear. Here we report a cancer mutational hotspot in MLL3 within the region encoding its plant homeodomain (PHD) repeats and demonstrate that this domain mediates association of MLL3 with the histone H2A deubiquitinase and tumor suppressor BAP1. Cancer-associated mutations in the sequence encoding the MLL3 PHD repeats disrupt the interaction between MLL3 and BAP1 and correlate with poor patient survival. Cancer cells that had PHD-associated MLL3 mutations or lacked BAP1 showed reduced recruitment of MLL3 and the H3K27 demethylase KDM6A (also known as UTX) to gene enhancers. As a result, inhibition of the H3K27 methyltransferase activity of the Polycomb repressive complex 2 (PRC2) in tumor cells harboring BAP1 or MLL3 mutations restored normal gene expression patterns and impaired cell proliferation in vivo. This study provides mechanistic insight into the oncogenic effects of PHD-associated mutations in MLL3 and suggests that restoration of a balanced state of Polycomb-COMPASS activity may have therapeutic efficacy in tumors that bear mutations in the genes encoding these epigenetic factors.

  6. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  7. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    PubMed

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.

  8. Identification of interacting proteins of the TaFVE protein involved in spike development in bread wheat.

    PubMed

    Zheng, Yong-Sheng; Lu, Yu-Qing; Meng, Ying-Ying; Zhang, Rong-Zhi; Zhang, Han; Sun, Jia-Mei; Wang, Mu-Mu; Li, Li-Hui; Li, Ru-Yu

    2017-05-01

    WD-40 repeat-containing protein MSI4 (FVE)/MSI4 plays important roles in determining flowering time in Arabidopsis. However, its function is unexplored in wheat. In the present study, coimmunoprecipitation and nanoscale liquid chromatography coupled to MS/MS were used to identify FVE in wheat (TaFVE)-interacting or associated proteins. Altogether 89 differentially expressed proteins showed the same downregulated expression trends as TaFVE in wheat line 5660M. Among them, 62 proteins were further predicted to be involved in the interaction network of TaFVE and 11 proteins have been shown to be potential TaFVE interactors based on curated databases and experimentally determined in other species by the STRING. Both yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that histone deacetylase 6 and histone deacetylase 15 directly interacted with TaFVE. Multiple chromatin-remodelling proteins and polycomb group proteins were also identified and predicted to interact with TaFVE. These results showed that TaFVE directly interacted with multiple proteins to form multiple complexes to regulate spike developmental process, e.g. histone deacetylate, chromatin-remodelling and polycomb repressive complex 2 complexes. In addition, multiple flower development regulation factors (e.g. flowering locus K homology domain, flowering time control protein FPA, FY, flowering time control protein FCA, APETALA 1) involved in floral transition were also identified in the present study. Taken together, these results further elucidate the regulatory functions of TaFVE and help reveal the genetic mechanisms underlying wheat spike differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nucleotide substitutions revealing specific functions of Polycomb group genes.

    PubMed

    Bajusz, Izabella; Sipos, László; Pirity, Melinda K

    2015-04-01

    POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of in vivo functions of PcG proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. EZH2 Impairs Human Dental Pulp Cell Mineralization via the Wnt/β-Catenin Pathway.

    PubMed

    Li, B; Yu, F; Wu, F; Hui, T; A, P; Liao, X; Yin, B; Wang, C; Ye, L

    2018-05-01

    The enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of PRC2 (polycomb repressor complex 2). It mediates gene silencing via methyltransferase activity and is involved in the determination of cell lineage. However, the function of EZH2 and the underlying mechanisms by which it affects the differentiation of human dental pulp cell (hDPC) have remained underexplored. In this research, we found that EZH2 expression decreased during the mineralization of hDPCs, with attenuated H3K27me3 (trimethylation on lysine 27 in histone H3). Overexpression of EZH2 impaired the odontogenic differentiation of hDPCs, while EZH2 without methyltransferase activity mutation (mutation of suppressed variegation of 3 to 9, enhancer of zeste and trithorax domain, EZH2ΔSET) did not display this phenotype. In addition, siRNA knockdown studies showed that EZH2 negatively modulated hDPC differentiation in vitro and inhibited mineralized nodule formation in transplanted β-tricalcium phosphate / hDPC composites. To further investigate the underlying mechanisms, we explored the Wnt/β-catenin signaling pathway in view of the fact that previous research had documented the essential role that it plays during hDPC mineralization, as well as its links to EZH2 in other cells. We demonstrated for the first time that EZH2 depletion activated the Wnt/β-catenin signaling pathway and enhanced the accumulation of β-catenin in hDPCs. Chromatin immunoprecipitation analysis suggested that these effects are attributable to the level of the EZH2-regulated H3K27me3 on the β-catenin promoter. We conclude that EZH2 plays a negative role during the odontogenic differentiation of hDPCs. Suppression of EZH2 could promote hDPC mineralization by epigenetically regulating the expression of β-catenin and activating the Wnt canonical signaling pathway.

  11. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia.

    PubMed

    Schäfer, Vivien; Ernst, Jana; Rinke, Jenny; Winkelmann, Nils; Beck, James F; Hochhaus, Andreas; Gruhn, Bernd; Ernst, Thomas

    2016-07-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in children and young adults. The polycomb repressive complex 2 (PRC2) has been identified as one of the most frequently mutated epigenetic protein complexes in hematologic cancers. PRC2 acts as an epigenetic repressor through histone H3 lysine 27 trimethylation (H3K27me3), catalyzed by the histone methyltransferase enhancer of zeste homolog 2 protein (EZH2). To study the prevalence and clinical impact of PRC2 aberrations in an unselected childhood ALL cohort (n = 152), we performed PRC2 mutational screenings by Sanger sequencing and promoter methylation analyses by quantitative pyrosequencing for the three PRC2 core component genes EZH2, suppressor of zeste 12 (SUZ12), and embryonic ectoderm development (EED). Targeted deep next-generation sequencing of 30 frequently mutated genes in leukemia was performed to search for cooperating mutations in patients harboring PRC2 aberrations. Finally, the functional consequence of EZH2 promoter hypermethylation on H3K27me3 was studied by Western blot analyses of primary cells. Loss-of-function EZH2 mutations were detected in 2/152 (1.3 %) patients with common-ALL and early T-cell precursor (ETP)-ALL, respectively. In one patient, targeted deep sequencing identified cooperating mutations in ASXL1 and TET2. EZH2 promoter hypermethylation was found in one patient with ETP-ALL which led to reduced H3K27me3. In comparison with healthy children, the EZH2 promoter was significantly higher methylated in T-ALL patients. No mutations or promoter methylation changes were identified for SUZ12 or EED genes, respectively. Although PRC2 aberrations seem to be rare in childhood ALL, our findings indicate that EZH2 aberrations might contribute to the disease in specific cases. Hereby, EZH2 promoter hypermethylation might have functionally similar consequences as loss-of-function mutations.

  12. NF-κB–YY1–miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma

    PubMed Central

    Wang, Huating; Garzon, Ramiro; Sun, Hao; Ladner, Katherine J.; Singh, Ravi; Dahlman, Jason; Cheng, Alfred; Hall, Brett M.; Qualman, Stephen J.; Chandler, Dawn S.; Croce, Carlo M.; Guttridge, Denis C.

    2008-01-01

    SUMMARY Studies support the importance of microRNAs in physiological and pathological processes. Here we describe the regulation and function of miR-29 in myogenesis and Rhabdomyosarcoma (RMS). Results demonstrate that in myoblasts miR-29 is repressed by NF-κB acting through YY1 and the Polycomb. During myogenesis, NF-κB and YY1 downregulation causes derepression of miR-29, which in turn accelerates differentiation by targeting its repressor YY1. However, in RMS cells and primary tumors that possess impaired differentiation, miR-29 is epigenetically silenced by an activated NF-κB-YY1 pathway. Reconstitution of miR-29 in RMS in mice inhibits tumor growth and stimulates differentiation, suggesting that miR-29 acts as a tumor suppressor through its pro-myogenic function. Together, results identify a NF-κB–YY1–miR-29 regulatory circuit whose disruption may contribute to RMS. SIGNIFICANCE MicroRNAs regulate skeletal myogenesis, but their impact in muscle diseases is not well understood. Here we describe miR-29 as an enhancer of myogenic differentiation and a suppressor of RMS. We find that miR-29 exists in a regulatory circuit involving NF-κB and YY1. In myoblasts NF-B acts through YY1 to epigenetically suppress miR-29, while during differentiation miR-29 is induced to facilitate myogenesis by a negative feedback on YY1. Significantly, RMS tumors lose miR-29 due to an elevation in NF-B and YY1, and readjustment of miR-29 levels in RMS stimulates differentiation. Thus, myogenesis is dependent on NF-κB–YY1–miR-29 circuitry whose dysfunction may contribute to RMS pathogenesis. Such findings offer potential avenues for the diagnosis and treatment of muscle relevant cancers. PMID:18977326

  13. Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator

    PubMed Central

    Rajasekar, Karthik V.; Lovering, Andrew L.; Dancea, Felician; Scott, David J.; Harris, Sarah A.; Bingle, Lewis E.H.; Roessle, Manfred; Thomas, Christopher M.; Hyde, Eva I.; White, Scott A.

    2016-01-01

    Abstract The IncP (Incompatibility group P) plasmids are important carriers in the spread of antibiotic resistance across Gram-negative bacteria. Gene expression in the IncP-1 plasmids is stringently controlled by a network of four global repressors, KorA, KorB, TrbA and KorC interacting cooperatively. Intriguingly, KorA and KorB can act as co-repressors at varying distances between their operators, even when they are moved to be on opposite sides of the DNA. KorA is a homodimer with the 101-amino acid subunits, folding into an N-terminal DNA-binding domain and a C-terminal dimerization domain. In this study, we have determined the structures of the free KorA repressor and two complexes each bound to a 20-bp palindromic DNA duplex containing its consensus operator sequence. Using a combination of X-ray crystallography, nuclear magnetic resonance spectroscopy, SAXS and molecular dynamics calculations, we show that the linker between the two domains is very flexible and the protein remains highly mobile in the presence of DNA. This flexibility allows the DNA-binding domains of the dimer to straddle the operator DNA on binding and is likely to be important in cooperative binding to KorB. Unexpectedly, the C-terminal domain of KorA is structurally similar to the dimerization domain of the tumour suppressor p53. PMID:27016739

  14. BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci.

    PubMed

    Milbredt, Sarah; Waldminghaus, Torsten

    2017-06-07

    Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. Copyright © 2017 Milbredt and Waldminghaus.

  15. BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci

    PubMed Central

    Milbredt, Sarah; Waldminghaus, Torsten

    2017-01-01

    Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. PMID:28450375

  16. The role of repressor kinetics in relief of transcriptional interference between convergent promoters

    PubMed Central

    Hao, Nan; Palmer, Adam C.; Ahlgren-Berg, Alexandra; Shearwin, Keith E.; Dodd, Ian B.

    2016-01-01

    Transcriptional interference (TI), where transcription from a promoter is inhibited by the activity of other promoters in its vicinity on the same DNA, enables transcription factors to regulate a target promoter indirectly, inducing or relieving TI by controlling the interfering promoter. For convergent promoters, stochastic simulations indicate that relief of TI can be inhibited if the repressor at the interfering promoter has slow binding kinetics, making it either sensitive to frequent dislodgement by elongating RNA polymerases (RNAPs) from the target promoter, or able to be a strong roadblock to these RNAPs. In vivo measurements of relief of TI by CI or Cro repressors in the bacteriophage λ PR–PRE system show strong relief of TI and a lack of dislodgement and roadblocking effects, indicative of rapid CI and Cro binding kinetics. However, repression of the same λ promoter by a catalytically dead CRISPR Cas9 protein gave either compromised or no relief of TI depending on the orientation at which it binds DNA, consistent with dCas9 being a slow kinetics repressor. This analysis shows how the intrinsic properties of a repressor can be evolutionarily tuned to set the magnitude of relief of TI. PMID:27378773

  17. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    NASA Astrophysics Data System (ADS)

    D'Aquino, J. Alejandro; Ringe, Dagmar

    2006-08-01

    The diphtheria toxin repressor, DtxR, is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear (1 - 3). Calorimetric techniques have demonstrated that while binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 × 10-7, binding site 2 (primary) is a low affinity binding site with a binding constant of 6.3 × 10-4. These two binding sites act independently and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here and the previously reported DtxR(H79A) (4) has allowed us to propose a mechanism of metal ion activation for DtxR.

  18. Course 1: Physics of Protein-DNA Interaction

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  19. Solution structure of Mycobacterium tuberculosis NmtR in the apo-state: Insights into Ni(II)-mediated allostery

    PubMed Central

    Lee, Chul Won; Chakravorty, Dhruva K.; Chang, Feng-Ming James; Reyes-Caballero, Hermes; Ye, Yuzhen; Merz, Kenneth M.; Giedroc, David P.

    2012-01-01

    Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately ten arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal αNH2-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) “open conformation” that is similar to the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Ni(II) binding to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the Gly2 α-amino group is strongly attenuated in the Ni(II) complex relative to the apo-state and non-cognate Zn(II) complex. Ni(II) binding also induces dynamic disorder in the μs-ms timescale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91′, His93′, His104 and His107, which collectively define a new metal sensing site configuration in ArsR family regulators. PMID:22394357

  20. The nuclear receptor NR2E1/TLX controls senescence.

    PubMed

    O'Loghlen, Ana; Martin, Nadine; Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2015-07-30

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21(CIP1) or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16(INK4a) and direct repression of p21(CIP1). In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.

  1. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  2. Polycomb repressive complex 1 modifies transcription of active genes

    PubMed Central

    Pherson, Michelle; Misulovin, Ziva; Gause, Maria; Mihindukulasuriya, Kathie; Swain, Amanda; Dorsett, Dale

    2017-01-01

    This study examines the role of Polycomb repressive complex 1 (PRC1) at active genes. The PRC1 and PRC2 complexes are crucial for epigenetic silencing during development of an organism. They are recruited to Polycomb response elements (PREs) and establish silenced domains over several kilobases. Recent studies show that PRC1 is also directly recruited to active genes by the cohesin complex. Cohesin participates broadly in control of gene transcription, but it is unknown whether cohesin-recruited PRC1 also plays a role in transcriptional control of active genes. We address this question using genome-wide RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq). The results show that PRC1 influences transcription of active genes, and a significant fraction of its effects are likely direct. The roles of different PRC1 subunits can also vary depending on the gene. Depletion of PRC1 subunits by RNA interference alters phosphorylation of RNA polymerase II (Pol II) and occupancy by the Spt5 pausing-elongation factor at most active genes. These effects on Pol II phosphorylation and Spt5 are likely linked to changes in elongation and RNA processing detected by nascent RNA-seq, although the mechanisms remain unresolved. The experiments also reveal that PRC1 facilitates association of Spt5 with enhancers and PREs. Reduced Spt5 levels at these regulatory sequences upon PRC1 depletion coincide with changes in Pol II occupancy and phosphorylation. Our findings indicate that, in addition to its repressive roles in epigenetic gene silencing, PRC1 broadly influences transcription of active genes and may suppress transcription of nonpromoter regulatory sequences. PMID:28782042

  3. Polycomb-like proteins link the PRC2 complex to CpG islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haojie; Liefke, Robert; Jiang, Junyi

    The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and has essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like (PCL) proteins, such as PHF1, MTF2 and PHF19, are PRC2-associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate the enzymatic activity of PRC2 or the recruitment of PRC2 to specific genomic loci4,5,6,7,8,9,10,11,12,13. Mammalian PRC2-binding sites are enriched in CG content, which correlates with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood.more » Here we solve the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We show that the extended homologous regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a completely different manner from the canonical winged-helix DNA recognition motif. We also show that the PCL extended homologous domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic stem cells. Our research provides the first, to our knowledge, direct evidence to demonstrate that PCL proteins are crucial for PRC2 recruitment to CpG islands, and further clarifies the roles of these proteins in transcriptional regulation in vivo.« less

  4. Cancer, acute stress disorder, and repressive coping.

    PubMed

    Pedersen, Anette Fischer; Zachariae, Robert

    2010-02-01

    The purpose of this study was to investigate the association between repressive coping style and Acute Stress Disorder (ASD) in a sample of cancer patients. A total of 112 cancer patients recently diagnosed with cancer participated in the study. ASD was assessed by the Stanford Acute Stress Reaction Questionnaire, and repressive coping was assessed by a combination of scores from the Marlowe-Crowne Social Desirability Scale, and the Bendig version of the Taylor Manifest Anxiety Scale. Significantly fewer patients classified as "repressors" were diagnosed with ASD compared to patients classified as "non-repressors". However, further investigations revealed that the lower incidence of ASD in repressors apparently was caused by a low score on anxiety and not by an interaction effect between anxiety and defensiveness. Future studies have to investigate whether different psychological mechanisms are responsible for the lower incidence of ASD in repressors and true low-anxious patients.

  5. Genomic maps of lincRNA occupancy reveal principles of RNA-chromatin interactions

    PubMed Central

    Chu, Ci; Qu, Kun; Zhong, Franklin; Artandi, Steven E.; Chang, Howard Y.

    2011-01-01

    SUMMARY Long intergenic noncoding RNAs (lincRNAs) are key regulators of chromatin state, yet the nature and sites of RNA-chromatin interaction are mostly unknown. Here we introduce Chromatin Isolation by RNA Purification (ChIRP), where tiling oligonucleotides retrieve specific lincRNAs with bound protein and DNA sequences, which are enumerated by deep sequencing. ChIRP-seq of three lincRNAs reveal that RNA occupancy sites in the genome are focal, sequence-specific, and numerous. Drosophila roX2 RNA occupies male X-linked gene bodies with increasing tendency toward the 3’ end, peaking at CES sites. Human telomerase RNA TERC occupies telomeres and Wnt pathway genes. HOTAIR lincRNA preferentially occupies a GA-rich DNA motif to nucleate broad domains of Polycomb occupancy and histone H3 lysine 27 trimethylation. HOTAIR occupancy occurs independently of EZH2, suggesting the order of RNA guidance of Polycomb occupancy. ChIRP-seq is generally applicable to illuminate the intersection of RNA and chromatin with newfound precision genome-wide. PMID:21963238

  6. Shaping epigenetic memory via genomic bookmarking.

    PubMed

    Michieletto, Davide; Chiang, Michael; Colì, Davide; Papantonis, Argyris; Orlandini, Enzo; Cook, Peter R; Marenduzzo, Davide

    2018-01-09

    Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by 'writer' proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or 'readers', such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Shaping epigenetic memory via genomic bookmarking

    PubMed Central

    Chiang, Michael; Colì, Davide; Papantonis, Argyris; Orlandini, Enzo; Cook, Peter R

    2018-01-01

    Abstract Reconciling the stability of epigenetic patterns with the rapid turnover of histone modifications and their adaptability to external stimuli is an outstanding challenge. Here, we propose a new biophysical mechanism that can establish and maintain robust yet plastic epigenetic domains via genomic bookmarking (GBM). We model chromatin as a recolourable polymer whose segments bear non-permanent histone marks (or colours) which can be modified by ‘writer’ proteins. The three-dimensional chromatin organisation is mediated by protein bridges, or ‘readers’, such as Polycomb Repressive Complexes and Transcription Factors. The coupling between readers and writers drives spreading of biochemical marks and sustains the memory of local chromatin states across replication and mitosis. In contrast, GBM-targeted perturbations destabilise the epigenetic patterns. Strikingly, we demonstrate that GBM alone can explain the full distribution of Polycomb marks in a whole Drosophila chromosome. We finally suggest that our model provides a starting point for an understanding of the biophysics of cellular differentiation and reprogramming. PMID:29190361

  8. Polycomb Responds to Low Levels of Transcription.

    PubMed

    Berrozpe, Georgina; Bryant, Gene O; Warpinski, Katherine; Spagna, Dan; Narayan, Santosh; Shah, Shivangi; Ptashne, Mark

    2017-07-25

    How is Polycomb (Pc), a eukaryotic negative regulator of transcription, targeted to specific mammalian genes? Our genome-wide analysis of the Pc mark H3K27me3 in murine cells revealed that Pc is preferentially associated with CpG island promoters of genes that are transcribed at a low level and less so with promoters of genes that are either silent or more highly expressed. Studies of the CpG island promoter of the Kit gene demonstrate that Pc is largely absent when the gene is silent in myeloid cells, as well as when the gene is highly expressed in mast cells. Manipulations that increase transcription in the former case, and reduce it in the latter, increase Pc occupancy. The average negative effect of Pc, we infer, is about 2-fold. We suggest possible biological roles for such negative effects and propose a mechanism by which Pc might be recruited to weakly transcribed genes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling.

    PubMed

    Singh, Praveen K; Ramachandran, Gayetri; Ramos-Ruiz, Ricardo; Peiró-Pastor, Ramón; Abia, David; Wu, Ling J; Meijer, Wilfried J J

    2013-10-01

    Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.

  10. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Aquino,J.; Tetenbaum-Novatt, J.; White, A.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with amore » binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.« less

  11. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safo,M.; Ko, T.; Musayev, F.

    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtualmore » DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less

  12. Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.

    PubMed

    Mosquna, Assaf; Katz, Aviva; Decker, Eva L; Rensing, Stefan A; Reski, Ralf; Ohad, Nir

    2009-07-01

    The Polycomb group (PcG) complex is involved in the epigenetic control of gene expression profiles. In flowering plants, PcG proteins regulate vegetative and reproductive programs. Epigenetically inherited states established in the gametophyte generation are maintained after fertilization in the sporophyte generation, having a profound influence on seed development. The gametophyte size and phase dominance were dramatically reduced during angiosperm evolution, and have specialized in flowering plants to support the reproductive process. The moss Physcomitrella patens is an ideal organism in which to study epigenetic processes during the gametophyte stage, as it possesses a dominant photosynthetic gametophytic haploid phase and efficient homologous recombination, allowing targeted gene replacement. We show that P. patens PcG protein FIE (PpFIE) accumulates in haploid meristematic cells and in cells that undergo fate transition during dedifferentiation programs in the gametophyte. In the absence of PpFIE, meristems overproliferate and are unable to develop leafy gametophytes or reach the reproductive phase. This aberrant phenotype might result from failure of the PcG complex to repress proliferation and differentiation of three-faced apical stem cells, which are designated to become lateral shoots. The PpFIE phenotype can be partially rescued by FIE of Arabidopsis thaliana, a flowering plant that diverged >450 million years ago from bryophytes. PpFIE can partially complement the A. thaliana fie mutant, illustrating functional conservation of the protein during evolution in regulating the differentiation of meristematic cells in gametophyte development, both in bryophytes and angiosperms. This mechanism was harnessed at the onset of the evolution of alternating generations, facilitating the establishment of sporophytic developmental programs.

  13. Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival

    PubMed Central

    Li, Hui; Ma, XianYong; Wang, Jinglan; Koontz, Jason; Nucci, Marisa; Sklar, Jeffrey

    2007-01-01

    Polycomb group genes (PcGs) have been implicated in cancer based on altered levels of expression observed in certain tumors and the behavior of cultured cells containing inserted PcG transgenes. Endometrial stromal tumors provide evidence for a direct causal relationship because they contain several chromosomal translocations and resultant gene fusions involving PcGs, the most common of which joins portions of theJAZF1 gene to the PcGJJAZ1/SUZ12. We show here that both benign and malignant forms of this tumor have theJAZF1–JJAZ1 fusion but only the malignant form also exhibits exclusion of the unrearrangedJJAZ1 allele. To evaluate the effects of both theJJAZ1/SUZ12 fusion and allelic exclusion on functions related to cell growth, we studied HEK293 cells that were modified with respect toJJAZ1 expression. We found that theJAZF1–JJAZ1 fusion restored levels of the polycomb protein EZH2 and histone 3 lysine 27 trimethylation, which were reduced by knockdown of endogenous JJAZ1. At the same time, the presence ofJAZF1–JJAZ1 markedly inhibited apoptosis and induced above normal proliferation rates, although the latter effect occurred only when normalJJAZ1 was suppressed. Our findings suggest a genetic pathway for progression of a benign precursor to a sarcoma involving increased cell survival associated with acquisition of a PcG rearrangement, followed by accelerated cellular proliferation upon allelic exclusion of the unrearranged copy of that gene. Furthermore, these results indicate the likely functional importance of allelic exclusion of genes disrupted by chromosomal translocations, as seen in a variety of other cancers. PMID:18077430

  14. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A.

    PubMed

    Puppe, Julian; Drost, Rinske; Liu, Xiaoling; Joosse, Simon A; Evers, Bastiaan; Cornelissen-Steijger, Paulien; Nederlof, Petra; Yu, Qiang; Jonkers, Jos; van Lohuizen, Maarten; Pietersen, Alexandra M

    2009-01-01

    Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy. We investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors. Gene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells. We demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.

  15. Positive Selection at the Polyhomeotic Locus Led to Decreased Thermosensitivity of Gene Expression in Temperate Drosophila melanogaster

    PubMed Central

    Voigt, Susanne; Laurent, Stefan; Litovchenko, Maria; Stephan, Wolfgang

    2015-01-01

    Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles. PMID:25855066

  16. Mechanism of repression of the inhibin alpha-subunit gene by inducible 3',5'-cyclic adenosine monophosphate early repressor.

    PubMed

    Burkart, Anna D; Mukherjee, Abir; Mayo, Kelly E

    2006-03-01

    The rodent ovary is regulated throughout the reproductive cycle to maintain normal cyclicity. Ovarian follicular development is controlled by changes in gene expression in response to the gonadotropins FSH and LH. The inhibin alpha-subunit gene belongs to a group of genes that is positively regulated by FSH and negatively regulated by LH. Previous studies established an important role for inducible cAMP early repressor (ICER) in repression of alpha-inhibin. These current studies investigate the mechanisms of repression by ICER. It is not clear whether all four ICER isoforms expressed in the ovary can act as repressors of the inhibin alpha-subunit gene. EMSAs demonstrate binding of all isoforms to the inhibin alpha-subunit CRE (cAMP response element), and transfection studies demonstrate that all isoforms can repress the inhibin alpha-subunit gene. Repression by ICER is dependent on its binding to DNA as demonstrated by mutations to ICER's DNA-binding domain. These mutational studies also demonstrate that repression by ICER is not dependent on heterodimerization with CREB (CRE-binding protein). Competitive EMSAs show that ICER effectively competes with CREB for binding to the inhibin alpha CRE in vitro. Chromatin immunoprecipitation assays demonstrate a replacement of CREB dimers bound to the inhibin alpha CRE by ICER dimers in ovarian granulosa cells in response to LH signaling. Thus, there is a temporal association of transcription factors bound to the inhibin alpha-CRE controlling inhibin alpha-subunit gene expression.

  17. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31.

    PubMed

    Wilson, S E; Smith, M C

    1998-05-15

    Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.

  18. Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia.

    PubMed

    Srivas, Sweta; Thakur, Mahendra K

    2018-05-01

    Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long-term memory. Earlier we demonstrated that scopolamine-induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in mice. DNMT1 and HDAC2 act together by recruiting a co-repressor complex and deacetylating the chromatin. The catalytic activity of HDACs is mainly dependent on its incorporation into multiprotein co-repressor complexes, among which SIN3A-HDAC2 co-repressor is widely studied to regulate synaptic plasticity. However, the involvement of co-repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co-repressor SIN3A in scopolamine-induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN3A expression in mice. To prevent such increase in SIN3A expression, we used hippocampal infusion of SIN3A-siRNA and assessed the effect of SIN3A silencing on scopolamine-induced amnesia. Silencing of SIN3A in amnesic mice reduced the binding of HDAC2 at neuronal immediate early genes (IEGs) promoter, but did not change the expression of HDAC2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEGs (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine-induced down-regulation of IEGs and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies. © 2018 International Society for Neurochemistry.

  19. Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.

    PubMed

    Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver

    2017-01-04

    A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Situational Discrimination in Repressor-type and Sensitizer-type Approval Seekers and the Birth Order by Subject Sex Interaction

    ERIC Educational Resources Information Center

    Becker, Gilbert

    1970-01-01

    Five experiments are reported. One conclusion in that repressor-type high need-for-approval subjects made the discrimination and permitted less favorable self-description, but sensitizer-type high need-for-approval subjects did not. (DB)

  1. Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates

    PubMed Central

    Stanton, Brynne C.; Nielsen, Alec A.K.; Tamsir, Alvin; Clancy, Kevin; Peterson, Todd; Voigt, Christopher A.

    2014-01-01

    Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply “part mining” to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and do not interact with other promoters. Each repressor:promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOR gates, there are >1054 circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits. PMID:24316737

  2. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.

    PubMed

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-08-29

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock.

  3. Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    PubMed Central

    Stadhouders, Ralph; Cico, Alba; Stephen, Tharshana; Thongjuea, Supat; Kolovos, Petros; Baymaz, H. Irem; Yu, Xiao; Demmers, Jeroen; Bezstarosti, Karel; Maas, Alex; Barroca, Vilma; Kockx, Christel; Ozgur, Zeliha; van Ijcken, Wilfred; Arcangeli, Marie-Laure; Andrieu-Soler, Charlotte; Lenhard, Boris; Grosveld, Frank; Soler, Eric

    2015-01-01

    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2–IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation. PMID:26593974

  4. New concept: cellular senescence in pathophysiology of cholangiocarcinoma.

    PubMed

    Sasaki, Motoko; Nakanuma, Yasuni

    2016-01-01

    Cholangiocarcinoma, a malignant tumor arising in the hepatobiliary system, presents with poor prognosis because of difficulty in its early detection/diagnosis. Recent progress revealed that cellular senescence may be involved in the pathophysiology of cholangiocarcinoma. Cellular senescence is defined as permanent growth arrest caused by several cellular injuries, such as oncogenic mutations and oxidative stress. "Oncogene-induced" and/or stress-induced senescence may occur in the process of multi-step cholangiocarcinogenesis, and overexpression of a polycomb group protein EZH2 may play a role in the escape from, and/or bypassing of, senescence. Furthermore, senescent cells may play important roles in tumor development and progression via the production of senescence-associated secretory phenotypes. Cellular senescence may be a new target for the prevention, early diagnosis, and therapy of cholangiocarcinoma in the near future.

  5. Purification and DNA binding properties of the blaI gene product, repressor for the beta-lactamase gene, blaP, of Bacillus licheniformis.

    PubMed Central

    Grossman, M J; Lampen, J O

    1987-01-01

    The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148

  6. SPOROCYTELESS is a novel embryophyte-specific transcription repressor that interacts with TPL and TCP proteins in Arabidopsis.

    PubMed

    Chen, Guang-Hui; Sun, Jia-Ying; Liu, Man; Liu, Jie; Yang, Wei-Cai

    2014-12-20

    Germlines in plants are formed de novo during post-embryonic development, while little is known about the mechanism that controls this process. In Arabidopsis, the earliest gene controlling this process is SPOROCYTELESS (SPL). A decade ago, we showed that loss of SPL function abolished sporogenesis in both male and female organs of Arabidopsis. However, its function is unclear up to now. In this study, we showed that SPL belongs to a novel transcription repressor family specific in embryophyte, which consists of 173 members in the land plants so far. All of them contain a conserved SPL-motif in their N-terminal and an ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif in the C-terminal, therefore designated as SPL-like, EAR-containing proteins (SPEARs). Consistently, SPL acts as a transcriptional repressor in yeast and tobacco cells, and SPEAR proteins are able to form homodimer and/or heterodimer with each other in vitro. Furthermore, SPEARs interact with the TOPLESS (TPL) co-repressors via the EAR motif and TCP family transcription factors in yeast cells. Together, we propose that SPL and SPEARs most likely belong to a novel transcription repressor family in land plants which may play a variety of developmental roles in plants. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. The biotin repressor: modulation of allostery by corepressor analogs.

    PubMed

    Brown, Patrick H; Cronan, John E; Grøtli, Morten; Beckett, Dorothy

    2004-04-02

    The Escherichia coli biotin repressor functions in biotin retention and regulation of biotin biosynthesis. Biotin retention is accomplished via the two-step biotinylation of the biotin-dependent enzyme, acetyl-CoA carboxylase. In the first step of this reaction the substrates biotin and ATP are utilized in synthesis of the activated biotin, biotinyl-5'-AMP, while in the second step this activated biotin is transferred to a unique lysine residue of the biotin carboxyl carrier protein subunit of the carboxylase. Regulation of biotin biosynthesis is accomplished through binding of the repressor to the transcription control region of the biotin biosynthetic operon. The adenylated or activated biotin functions as the corepressor in this DNA binding process. The activated biotin is a mixed anhydride and thus labile. In efforts to develop tools for structural and thermodynamic studies of the biotin regulatory interactions, two analogs of the adenylate, a sulfamoyl derivative and an ester derivative, have been synthesized and functionally characterized. Results of fluorescence measurements indicate that both analogs bind with high affinity to the repressor and that both are inactive in biotin transfer to the acceptor protein. Functional studies of their corepressor properties indicate that while the sulfamoyl is a weak allosteric activator, the ester closely mimics the physiological corepressor in activation of assembly of the transcription repression complex. Results of these studies also provide further insight into the allosteric mechanism of the biotin repressor.

  8. The Repression-Sensitization Dimension in Relation to Impending Painful Stimulation

    ERIC Educational Resources Information Center

    Scarpetti, William L.

    1973-01-01

    The study attempted to replicate previous findings of differences between self-report and physiological indices of disturbance in repressors and sensitizers placed in threatening situations. Results indicate that repressors admit to less anxiety on the self-report measure while producing more physiological reactivity to threat of shock. No such…

  9. Evolution of the NET (NocA, Nlz, Elbow, TLP-1) protein family in metazoans: insights from expression data and phylogenetic analysis

    PubMed Central

    Pereira, Filipe; Duarte-Pereira, Sara; Silva, Raquel M.; da Costa, Luís Teixeira; Pereira-Castro, Isabel

    2016-01-01

    The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease. PMID:27929068

  10. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  11. Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma

    PubMed Central

    2013-01-01

    Background Human papillomavirus-positive (HPV+) head and neck squamous cell carcinoma (HNSCC) represents a distinct clinical and epidemiological condition compared with HPV-negative (HPV-) HNSCC. To test the possible involvement of epigenetic modulation by HPV in HNSCC, we conducted a genome-wide DNA-methylation analysis. Methods Using laser-capture microdissection of 42 formalin-fixed paraffin wax-embedded (FFPE) HNSCCs, we generated DNA-methylation profiles of 18 HPV+ and 14 HPV- samples, using Infinium 450 k BeadArray technology. Methylation data were validated in two sets of independent HPV+/HPV- HNSCC samples (fresh-frozen samples and cell lines) using two independent methods (Infinium 450 k and whole-genome methylated DNA immunoprecipitation sequencing (MeDIP-seq)). For the functional analysis, an HPV- HNSCC cell line was transduced with lentiviral constructs containing the two HPV oncogenes (E6 and E7), and effects on methylation were assayed using the Infinium 450 k technology. Results and discussion Unsupervised clustering over the methylation variable positions (MVPs) with greatest variation showed that samples segregated in accordance with HPV status, but also that HPV+ tumors are heterogeneous. MVPs were significantly enriched at transcriptional start sites, leading to the identification of a candidate CpG island methylator phenotype in a sub-group of the HPV+ tumors. Supervised analysis identified a strong preponderance (87%) of MVPs towards hypermethylation in HPV+ HNSCC. Meta-analysis of our HNSCC and publicly available methylation data in cervical and lung cancers confirmed the observed DNA-methylation signature to be HPV-specific and tissue-independent. Grouping of MVPs into functionally more significant differentially methylated regions identified 43 hypermethylated promoter DMRs, including for three cadherins of the Polycomb group target genes. Integration with independent expression data showed strong negative correlation, especially for the cadherin gene-family members. Combinatorial ectopic expression of the two HPV oncogenes (E6 and E7) in an HPV- HNSCC cell line partially phenocopied the hypermethylation signature seen in HPV+ HNSCC tumors, and established E6 as the main viral effector gene. Conclusions Our data establish that archival FFPE tissue is very suitable for this type of methylome analysis, and suggest that HPV modulates the HNSCC epigenome through hypermethylation of Polycomb repressive complex 2 target genes such as cadherins, which are implicated in tumor progression and metastasis. PMID:23419152

  12. Polycomb Repressive Complex 2 Regulates MiR-200b in Retinal Endothelial Cells: Potential Relevance in Diabetic Retinopathy

    PubMed Central

    Ruiz, Michael Anthony; Feng, Biao; Chakrabarti, Subrata

    2015-01-01

    Glucose-induced augmented vascular endothelial growth factor (VEGF) production is a key event in diabetic retinopathy. We have previously demonstrated that downregulation of miR-200b increases VEGF, mediating structural and functional changes in the retina in diabetes. However, mechanisms regulating miR-200b in diabetes are not known. Histone methyltransferase complex, Polycomb Repressive Complex 2 (PRC2), has been shown to repress miRNAs in neoplastic process. We hypothesized that, in diabetes, PRC2 represses miR-200b through its histone H3 lysine-27 trimethylation mark. We show that human retinal microvascular endothelial cells exposed to high levels of glucose regulate miR-200b repression through histone methylation and that inhibition of PRC2 increases miR-200b while reducing VEGF. Furthermore, retinal tissue from animal models of diabetes showed increased expression of major PRC2 components, demonstrating in vivo relevance. This research established a repressive relationship between PRC2 and miR-200b, providing evidence of a novel mechanism of miRNA regulation through histone methylation. PMID:25884496

  13. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis.

    PubMed

    Wassef, Michel; Rodilla, Veronica; Teissandier, Aurélie; Zeitouni, Bruno; Gruel, Nadege; Sadacca, Benjamin; Irondelle, Marie; Charruel, Margaux; Ducos, Bertrand; Michaud, Audrey; Caron, Matthieu; Marangoni, Elisabetta; Chavrier, Philippe; Le Tourneau, Christophe; Kamal, Maud; Pasmant, Eric; Vidaud, Michel; Servant, Nicolas; Reyal, Fabien; Meseure, Dider; Vincent-Salomon, Anne; Fre, Silvia; Margueron, Raphaël

    2015-12-15

    Alterations of chromatin modifiers are frequent in cancer, but their functional consequences often remain unclear. Focusing on the Polycomb protein EZH2 that deposits the H3K27me3 (trimethylation of Lys27 of histone H3) mark, we showed that its high expression in solid tumors is a consequence, not a cause, of tumorigenesis. In mouse and human models, EZH2 is dispensable for prostate cancer development and restrains breast tumorigenesis. High EZH2 expression in tumors results from a tight coupling to proliferation to ensure H3K27me3 homeostasis. However, this process malfunctions in breast cancer. Low EZH2 expression relative to proliferation and mutations in Polycomb genes actually indicate poor prognosis and occur in metastases. We show that while altered EZH2 activity consistently modulates a subset of its target genes, it promotes a wider transcriptional instability. Importantly, transcriptional changes that are consequences of EZH2 loss are predominantly irreversible. Our study provides an unexpected understanding of EZH2's contribution to solid tumors with important therapeutic implications. © 2015 Wassef et al.; Published by Cold Spring Harbor Laboratory Press.

  14. Impaired PRC2 activity promotes transcriptional instability and favors breast tumorigenesis

    PubMed Central

    Wassef, Michel; Rodilla, Veronica; Teissandier, Aurélie; Zeitouni, Bruno; Gruel, Nadege; Sadacca, Benjamin; Irondelle, Marie; Charruel, Margaux; Ducos, Bertrand; Michaud, Audrey; Caron, Matthieu; Marangoni, Elisabetta; Chavrier, Philippe; Le Tourneau, Christophe; Kamal, Maud; Pasmant, Eric; Vidaud, Michel; Servant, Nicolas; Reyal, Fabien; Meseure, Dider; Vincent-Salomon, Anne; Fre, Silvia; Margueron, Raphaël

    2015-01-01

    Alterations of chromatin modifiers are frequent in cancer, but their functional consequences often remain unclear. Focusing on the Polycomb protein EZH2 that deposits the H3K27me3 (trimethylation of Lys27 of histone H3) mark, we showed that its high expression in solid tumors is a consequence, not a cause, of tumorigenesis. In mouse and human models, EZH2 is dispensable for prostate cancer development and restrains breast tumorigenesis. High EZH2 expression in tumors results from a tight coupling to proliferation to ensure H3K27me3 homeostasis. However, this process malfunctions in breast cancer. Low EZH2 expression relative to proliferation and mutations in Polycomb genes actually indicate poor prognosis and occur in metastases. We show that while altered EZH2 activity consistently modulates a subset of its target genes, it promotes a wider transcriptional instability. Importantly, transcriptional changes that are consequences of EZH2 loss are predominantly irreversible. Our study provides an unexpected understanding of EZH2's contribution to solid tumors with important therapeutic implications. PMID:26637281

  15. Brg1 modulates enhancer activation in mesoderm lineage commitment

    DOE PAGES

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less

  16. How Polycomb-Mediated Cell Memory Deals With a Changing Environment: Variations in PcG complexes and proteins assortment convey plasticity to epigenetic regulation as a response to environment.

    PubMed

    Marasca, Federica; Bodega, Beatrice; Orlando, Valerio

    2018-04-01

    Cells and tissues are continuously exposed to a changing microenvironment, hence the necessity of a flexible modulation of gene expression that in complex organism have been achieved through specialized chromatin mechanisms. Chromatin-based cell memory enables cells to maintain their identity by fixing lineage specific transcriptional programs, ensuring their faithful transmission through cell division; in particular PcG-based memory system evolved to maintain the silenced state of developmental and cell cycle genes. In evolution the complexity of this system have increased, particularly in vertebrates, indicating combinatorial and dynamic properties of Polycomb proteins, in some cases even overflowing outside the cell nucleus. Therefore, their function may not be limited to the imposition of rigid states of genetic programs, but on the ability to recognize signals and allow plastic transcriptional changes in response to different stimuli. Here, we discuss the most novel PcG mediated memory functions in facing and responding to the challenges posed by a fluctuating environment. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  17. Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus.

    PubMed

    Néant, Isabelle; Mellström, Britt; Gonzalez, Paz; Naranjo, Jose R; Moreau, Marc; Leclerc, Catherine

    2015-09-01

    In amphibian embryos, our previous work has demonstrated that calcium transients occurring in the dorsal ectoderm at the onset of gastrulation are necessary and sufficient to engage the ectodermal cells into a neural fate by inducing neural specific genes. Some of these genes are direct targets of calcium. Here we search for a direct transcriptional mechanism by which calcium signals are acting. The only known mechanism responsible for a direct action of calcium on gene transcription involves an EF-hand Ca²⁺ binding protein which belongs to a group of four proteins (Kcnip1 to 4). Kcnip protein can act in a Ca²⁺-dependent manner as a transcriptional repressor by binding to a specific DNA sequence, the Downstream Regulatory Element (DRE) site. In Xenopus, among the four kcnips, we show that only kcnip1 is timely and spatially present in the presumptive neural territories and is able to bind DRE sites in a Ca²⁺-dependent manner. The loss of function of kcnip1 results in the expansion of the neural plate through an increased proliferation of neural progenitors. Later on, this leads to an impairment in the development of anterior neural structures. We propose that, in the embryo, at the onset of neurogenesis Kcnip1 is the Ca²⁺-dependent transcriptional repressor that controls the size of the neural plate. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Copyright © 2014. Published by Elsevier B.V.

  18. Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii

    PubMed Central

    Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard

    2002-01-01

    Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052

  19. Loss of floral repressor function adapts rice to higher latitudes in Europe

    PubMed Central

    Gómez-Ariza, Jorge; Galbiati, Francesca; Goretti, Daniela; Brambilla, Vittoria; Shrestha, Roshi; Pappolla, Andrea; Courtois, Brigitte; Fornara, Fabio

    2015-01-01

    The capacity to discriminate variations in day length allows plants to align flowering with the most favourable season of the year. This capacity has been altered by artificial selection when cultivated varieties became adapted to environments different from those of initial domestication. Rice flowering is promoted by short days when HEADING DATE 1 (Hd1) and EARLY HEADING DATE 1 (Ehd1) induce the expression of florigenic proteins encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Repressors of flowering antagonize such induction under long days, maintaining vegetative growth and delaying flowering. To what extent artificial selection of long day repressor loci has contributed to expand rice cultivation to Europe is currently unclear. This study demonstrates that European varieties activate both Hd3a and RFT1 expression regardless of day length and their induction is caused by loss-of-function mutations at major long day floral repressors. However, their contribution to flowering time control varies between locations. Pyramiding of mutations is frequently observed in European germplasm, but single mutations are sufficient to adapt rice to flower at higher latitudes. Expression of Ehd1 is increased in varieties showing reduced or null Hd1 expression under natural long days, as well as in single hd1 mutants in isogenic backgrounds. These data indicate that loss of repressor genes has been a key strategy to expand rice cultivation to Europe, and that Ehd1 is a central node integrating floral repressive signals. PMID:25732533

  20. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    PubMed Central

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-01-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  1. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis.

    PubMed

    Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M

    2013-03-19

    Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.

  2. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    PubMed

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Multi‐layered inhibition of Streptomyces development: BldO is a dedicated repressor of whiB

    PubMed Central

    Chandra, Govind; Findlay, Kim C.; Buttner, Mark J.

    2017-01-01

    Summary BldD‐(c‐di‐GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation. PMID:28271577

  4. Research Results

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Relations found between human memories and similar neural patterns Double Star Program Received the IAA Laurels for Team Achievement Award Prof. Piao's Review Paper Published in Nature Arsenic Trioxide Controls the Fate of the PML-RARα Oncoprotein by Directly Binding PML Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity Short-range scattering in quantum dots Single-molecule magnets may find their use in microelectronics β-Arrestin1 Regulates Zebrafish Hematopoiesis through Binding to YY1 and Relieving Polycomb Group Repression Studies shown gene present and absent complementation may contribute to the heterosis of maize Low frequency genetic variation may determine complex diseases Cation-π interaction playing vital roles in the regulation of integrin affinity, signaling, and biological functions Soybean diversity map may provide important basis for breeding Mutations related to Alzheimer's and rare skin disease

  5. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone.

    PubMed

    Astapova, Inna

    2016-04-01

    Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3 binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3 target genes and hypothalamic-pituitary-thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis. © 2016 Society for Endocrinology.

  6. EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.

    PubMed

    Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko

    2018-05-01

    The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also that EZH2-related NTRK1 transcriptional regulation may be the key pathway for NB cell differentiation.

  7. Effects of Task Familiarity on Stress Responses of Repressors and Sensitizers

    ERIC Educational Resources Information Center

    Pagano, Don F.

    1973-01-01

    R.S. Lazarus's theory of coping was used to investigate appraisal and reappraisal of threat in repressors and sensitizers. Two indexes of stress, self-report ratings of affect and palmar skin conductance, were measured prior to performance on a reaction time task, after one-third of the task was completed and after two-thirds of the task was…

  8. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    PubMed Central

    Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten

    2015-01-01

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. PMID:25691470

  9. Short linear motif acquisition, exon formation and alternative splicing determine a pathway to diversity for NCoR-family co-repressors

    PubMed Central

    Short, Stephen; Peterkin, Tessa; Guille, Matthew; Patient, Roger; Sharpe, Colin

    2015-01-01

    Vertebrate NCoR-family co-repressors play central roles in the timing of embryo and stem cell differentiation by repressing the activity of a range of transcription factors. They interact with nuclear receptors using short linear motifs (SLiMs) termed co-repressor for nuclear receptor (CoRNR) boxes. Here, we identify the pathway leading to increasing co-repressor diversity across the deuterostomes. The final complement of CoRNR boxes arose in an ancestral cephalochordate, and was encoded in one large exon; the urochordates and vertebrates then split this region between 10 and 12 exons. In Xenopus, alternative splicing is prevalent in NCoR2, but absent in NCoR1. We show for one NCoR1 exon that alternative splicing can be recovered by a single point mutation, suggesting NCoR1 lost the capacity for alternative splicing. Analyses in Xenopus and zebrafish identify that cellular context, rather than gene sequence, predominantly determines species differences in alternative splicing. We identify a pathway to diversity for the NCoR family beginning with the addition of a SLiM, followed by gene duplication, the generation of alternatively spliced isoforms and their differential deployment. PMID:26289800

  10. Repressing a Repressor

    PubMed Central

    Silverstone, Aron L.; Jung, Hou-Sung; Dill, Alyssa; Kawaide, Hiroshi; Kamiya, Yuji; Sun, Tai-ping

    2001-01-01

    RGA (for repressor of ga1-3) and SPINDLY (SPY) are likely repressors of gibberellin (GA) signaling in Arabidopsis because the recessive rga and spy mutations partially suppressed the phenotype of the GA-deficient mutant ga1-3. We found that neither rga nor spy altered the GA levels in the wild-type or the ga1-3 background. However, expression of the GA biosynthetic gene GA4 was reduced 26% by the rga mutation, suggesting that partial derepression of the GA response pathway by rga resulted in the feedback inhibition of GA4 expression. The green fluorescent protein (GFP)–RGA fusion protein was localized to nuclei in transgenic Arabidopsis. This result supports the predicted function of RGA as a transcriptional regulator based on sequence analysis. Confocal microscopy and immunoblot analyses demonstrated that the levels of both the GFP-RGA fusion protein and endogenous RGA were reduced rapidly by GA treatment. Therefore, the GA signal appears to derepress the GA signaling pathway by degrading the repressor protein RGA. The effect of rga on GA4 gene expression and the effect of GA on RGA protein level allow us to identify part of the mechanism by which GA homeostasis is achieved. PMID:11449051

  11. Structural basis for corepressor assembly by the orphan nuclear receptor TLX

    DOE PAGES

    Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; ...

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conservedmore » ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.« less

  12. The relationship between two types of impaired emotion processing: repressive coping and alexithymia

    PubMed Central

    Myers, Lynn B.; Derakshan, Nazanin

    2015-01-01

    The constructs of repressive coping and alexithymia are both related to impaired emotion processing, yet individuals with a repressive coping style (repressors) score lower than controls on standard self-report measures of alexithymia. A large body of evidence indicates that repressors avoid negative affect. Therefore, the current study examined the relationship between repressive coping and alexithymia by using independently-rated interviews with the aim of bypassing repressors’ tendency of avoiding negative affect. Results showed that repressors scored high on alexithymia, similar to anxious individuals on the independently-rated interview, but scored low on alexithymia on a questionnaire measure. Our findings confirm a link between alexithymia and repressive coping and stress the need for non-standard measures in exploring the nature of the relationship between repressive coping and alexithymia. PMID:26136706

  13. Social adjustment and repressive adaptive style in survivors of pediatric cancer.

    PubMed

    Schulte, Fiona; Wurz, Amanda; Russell, K Brooke; Reynolds, Kathleen; Strother, Douglas; Dewey, Deborah

    2018-01-01

    The aim of the study was to explore the relationship between repressive adaptive style and self-reports of social adjustment in survivors of pediatric cancer compared to their siblings. We hypothesized that there would be a greater proportion of repressors among survivors of pediatric cancer compared to siblings, and that repressive adaptive style would be significantly associated with more positive self-reports of social adjustment. We utilized a cross-sectional approach. Seventy-seven families participated. Survivors of pediatric cancer (n = 77, 48% male; 8-18 years of age) and one sibling (n = 50, 48% male; 8-18 years of age) completed measures assessing repressive adaptive style and social adjustment. As well, one parent from each family completed a socio-demographic questionnaire. Questionnaire packages were mailed to eligible families who agreed to participate, and were mailed back to investigators in a pre-addressed, pre-stamped envelope. Chi-square analyses revealed there was no significant difference in the proportion of repressors among survivors and siblings. Social adjustment scores were subjected to a two (group: survivor, sibling) by two (repressor, nonrepressor) ANCOVA with gender and age as covariates. There was a significant main effect of repressive adaptive style (F = 5.69, p < .05, η 2 = 0.05) with a modest effect. Survivors and siblings with a repressive style reported significantly higher social adjustment scores (M = 106.91, SD = 11.69) compared to nonrepressors (M = 99.57, SD = 13.45). Repressive adaptive style explains some of the variance in survivors and siblings' self-reports of social adjustment. Future research should aim to better understand the role of the repressive adaptive style in survivors and siblings of children with cancer.

  14. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint

    PubMed Central

    Dimitrova, Nadya; Zamudio, Jesse R.; Jong, Robyn M.; Soukup, Dylan; Resnick, Rebecca; Sarma, Kavitha; Ward, Amanda J.; Raj, Arjun; Lee, Jeannie; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    SUMMARY The p53-regulated long non-coding RNA lincRNA-p21 has been proposed to act in trans via several mechanisms ranging from repressing genes in the p53 transcriptional network to regulating mRNA translation and protein stability. To further examine lincRNA-p21 function we generated a conditional knockout mouse model. We find that lincRNA-p21 predominantly functions in cis to activate expression of its neighboring gene, p21. Mechanistically, we show that lincRNA-p21 acts in concert with hnRNP-K as a co-activator for p53-dependent p21 transcription. Additional phenotypes of lincRNA-p21 deficiency could be attributed to diminished p21 levels, including deregulated expression and altered chromatin state of some Polycomb target genes, defective G1/S checkpoint, increased proliferation rates, and enhanced reprogramming efficiency. These findings indicate that lincRNA-p21 affects global gene expression and influences the p53 tumor suppressor pathway by acting in cis as a locus-restricted co-activator for p53-mediated p21 expression. PMID:24857549

  15. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation.

    PubMed

    Saksouk, Nehmé; Barth, Teresa K; Ziegler-Birling, Celine; Olova, Nelly; Nowak, Agnieszka; Rey, Elodie; Mateos-Langerak, Julio; Urbach, Serge; Reik, Wolf; Torres-Padilla, Maria-Elena; Imhof, Axel; Déjardin, Jérome; Simboeck, Elisabeth

    2014-11-20

    Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Noncoding RNAs of the Ultrabithorax Domain of the Drosophila Bithorax Complex

    PubMed Central

    Pease, Benjamin; Borges, Ana C.; Bender, Welcome

    2013-01-01

    RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function. PMID:24077301

  17. Effects of transgenic sterilization constructs and their repressor compounds on hatch, developmental rate and early survival of electroporated channel catfish embryos and fry.

    PubMed

    Su, Baofeng; Shang, Mei; Li, Chao; Perera, Dayan A; Pinkert, Carl A; Irwin, Michael H; Peatman, Eric; Grewe, Peter; Patil, Jawahar G; Dunham, Rex A

    2015-04-01

    Channel catfish (Ictalurus punctatus) embryos were electroporated with sterilization constructs targeting primordial germ cell proteins or with buffer. Some embryos then were treated with repressor compounds, cadmium chloride, copper sulfate, sodium chloride or doxycycline, to prevent expression of the transgene constructs. Promoters included channel catfish nanos and vasa, salmon transferrin (TF), modified yeast Saccharomyces cerevisiae copper transport protein (MCTR) and zebrafish racemase (RM). Knock-down systems were the Tet-off (nanos and vasa constructs), MCTR, RM and TF systems. Knock-down genes included shRNAi targeting 5' nanos (N1), 3' nanos (N2) or dead end (DND), or double-stranded nanos RNA (dsRNA) for overexpression of nanos mRNA. These constructs previously were demonstrated to knock down nanos, vasa and dead end, with the repressors having variable success. Exogenous DNA affected percentage hatch (% hatch), as all 14 constructs, except for the TF dsRNA, TF N1 (T), RM DND (C), vasa DND (C), vasa N1 (C) and vasa N2 (C), had lower % hatch than the control electroporated with buffer. The MCTR and RM DND (T) constructs resulted in delayed hatch, and the vasa and nanos constructs had minimal effects on time of hatch (P < 0.05). Cadmium chloride appeared to counteract the slow development caused by the TF constructs in two TF treatments (P < 0.05). The 4 ppt sodium chloride treatment for the RM system decreased % hatch (P < 0.05) and slowed development. In the case of nanos constructs, doxycycline greatly delayed hatch (P < 0.05). Adverse effects of the transgenes and repressors continued for several treatments for the first 6 days after hatch, but only in a few treatments during the next 10 days. Repressors and gene expression impacted the yield of putative transgenic channel catfish fry, and need to be considered and accounted for in the hatchery phase of producing transgenically sterilized catfish fry and their fertile counterparts. This fry output should be considered to ensure that sufficient numbers of transgenic fish are produced for future applications and for defining repressor systems that are the most successful.

  18. Transcription factor FBI-1 acts as a dual regulator in adipogenesis by coordinated regulation of cyclin-A and E2F-4.

    PubMed

    Laudes, Matthias; Bilkovski, Roman; Oberhauser, Frank; Droste, Andrea; Gomolka, Matthias; Leeser, Uschi; Udelhoven, Michael; Krone, Wilhelm

    2008-05-01

    Generation of new adipocytes plays a major role in the development of obesity. We previously have shown that transcriptional repressor factor that binds to IST (FBI)-1 exerts a dual effect in the process of adipogenesis by inhibiting proliferation and promoting differentiation of preadipocytes. The aim of the present study was to identify FBI-1 regulated molecular effectors that could account for these effects. Overexpressing FBI-1 in preadipocytes resulted in reduced expression of the cell cycle regulator cyclin A, which may explain FBI-1 induced inhibition of proliferation. Interestingly, FBI-1 repressed cyclin A promoter activity through an indirect mechanisms that did not involve direct binding of FBI-1 to the promoter sequence, but rather FBI-1 inhibition of transcriptional activator Sp1 binding to a regulatory element at -452 to -443. We also show that FBI-1 promotes terminal preadipocyte differentiation through a mechanism involving decreased levels of expression of the PPARgamma inhibitor E2F-4. FBI-1 significantly reduced E2F-4 promoter activity. Contrary to cyclin A, we found FBI-1-induced repression of E2F-4 is mediated by a direct mechanism via a FBI-1 regulatory element at -11 to -5. As function of transcriptional repressors normally depends on the presence of regulatory co-factors we also performed expression profiling of potential FBI-1 co-repressors throughout adipogenesis. In these experiments Sin3A and histon deacetylase (HDAC)-1 showed a similar expression pattern compared to FBI-1. Strikingly, co-immunoprecipitation studies revealed that FBI-1 binds Sin3A and HDAC-1 to form a repressor complex. Furthermore, by mutational analysis the amino terminal Poxvirus (POZ) domain of FBI-1 was found to be important for Sin3A and HDAC-1 binding. Taken together, FBI-1 is the first transcriptional repressor shown to act as a dual regulator in adipogenesis exerting repressor activities on target genes by both, direct and indirect mechanisms.

  19. Trichloroethylene-induced alterations in DNA methylation were enriched in polycomb protein binding sites in effector/memory CD4+ T cells

    PubMed Central

    Gilbert, Kathleen M.; Blossom, Sarah J.; Reisfeld, Brad; Erickson, Stephen W.; Vyas, Kanan; Maher, Mary; Broadfoot, Brannon; West, Kirk; Bai, Shasha; Cooney, Craig A.; Bhattacharyya, Sudeepa

    2017-01-01

    Abstract Exposure to industrial solvent and water pollutant trichloroethylene (TCE) can promote autoimmunity, and expand effector/memory (CD62L) CD4+ T cells. In order to better understand etiology reduced representation bisulfite sequencing was used to study how a 40-week exposure to TCE in drinking water altered methylation of ∼337 770 CpG sites across the entire genome of effector/memory CD4+ T cells from MRL+/+ mice. Regardless of TCE exposure, 62% of CpG sites in autosomal chromosomes were hypomethylated (0–15% methylation), and 25% were hypermethylated (85–100% methylation). In contrast, only 6% of the CpGs on the X chromosome were hypomethylated, and 51% had mid-range methylation levels. In terms of TCE impact, TCE altered (≥ 10%) the methylation of 233 CpG sites in effector/memory CD4+ T cells. Approximately 31.7% of these differentially methylated sites occurred in regions known to bind one or more Polycomb group (PcG) proteins, namely Ezh2, Suz12, Mtf2 or Jarid2. In comparison, only 23.3% of CpG sites not differentially methylated by TCE were found in PcG protein binding regions. Transcriptomics revealed that TCE altered the expression of ∼560 genes in the same effector/memory CD4+ T cells. At least 80% of the immune genes altered by TCE had binding sites for PcG proteins flanking their transcription start site, or were regulated by other transcription factors that were in turn ordered by PcG proteins at their own transcription start site. Thus, PcG proteins, and the differential methylation of their binding sites, may represent a new mechanism by which TCE could alter the function of effector/memory CD4+ T cells. PMID:29129997

  20. Multiple conformations of the cytidine repressor DNA-binding domain coalesce to one upon recognition of a specific DNA surface.

    PubMed

    Moody, Colleen L; Tretyachenko-Ladokhina, Vira; Laue, Thomas M; Senear, Donald F; Cocco, Melanie J

    2011-08-09

    The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties. © 2011 American Chemical Society

  1. Purification of bacteriophage lambda repressor

    PubMed Central

    Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David

    2013-01-01

    Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434

  2. Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-08

    Understanding how root hair development is controlled is important for understanding of many fundamental aspects of plant biology. Previously, we identified two plant-specific adaptor proteins GIR1 and GIR2 that interact with the major regulator of root hair development GL2 and suppress formation of root hair. Here, we show that GIR1 and GIR2 also interact with the co-repressor TOPLESS (TPL). This interaction required the GIR1 protein EAR motif, and was essential for the transcriptional repressor activity of GIR1. Both GIR1 and GIR2 promoted histone hypoacetylation of their target chromatin. Potentially, GIR1 and GIR2 might may link TPL to and participate in epigenetic regulation of root hair development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Auxin production couples endosperm development to fertilization.

    PubMed

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Köhler, Claudia

    2015-11-23

    In flowering plants, seed development is preceded by a double fertilization event, whereby two male sperm cells fuse with two female gametes: the egg and central cells. The fertilized egg cell will form the embryo, and the fertilized central cell will give rise to the triploid endosperm, whose function is to nourish and support the embryo. Even though the endosperm has an unparalleled role for human nutrition, the molecular bases for its development are yet to be understood. Our results reveal that increasing auxin levels after fertilization drive the replication of the central cell in Arabidopsis thaliana. Auxin is sufficient to trigger central cell division and is necessary for correct endosperm development, a process dependent on the MADS-box transcription factor AGL62 (AGAMOUS-LIKE 62). We propose that the epigenetic regulators of the Polycomb group (PcG) family block central cell division before fertilization by repressing the expression of auxin biosynthesis genes in the female gametophyte.

  4. Three-Dimensional Genome Organization and Function in Drosophila

    PubMed Central

    Schwartz, Yuri B.; Cavalli, Giacomo

    2017-01-01

    Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques. PMID:28049701

  5. The many faces of ubiquitinated histone H2A: insights from the DUBs

    PubMed Central

    Vissers, Joseph HA; Nicassio, Francesco; van Lohuizen, Maarten; Di Fiore, Pier Paolo; Citterio, Elisabetta

    2008-01-01

    Monoubiquitination of H2A is a major histone modification in mammalian cells. Understanding how monoubiquitinated H2A (uH2A) regulates DNA-based processes in the context of chromatin is a challenging question. Work in the past years linked uH2A to transcriptional repression by the Polycomb group proteins of developmental regulators. Recently, a number of mammalian deubiquitinating enzymes (DUBs) that catalyze the removal of ubiquitin from H2A have been discovered. These studies provide convincing evidence that H2A deubiquitination is connected with gene activation. In addition, uH2A regulatory enzymes have crucial roles in the cellular response to DNA damage and in cell cycle progression. In this review we will discuss new insights into uH2A biology, with emphasis on the H2A DUBs. PMID:18430235

  6. Loss of the tumor suppressor BAP1 causes myeloid transformation

    PubMed Central

    Dey, Anwesha; Seshasayee, Dhaya; Noubade, Rajkumar; French, Dorothy M.; Liu, Jinfeng; Chaurushiya, Mira S.; Kirkpatrick, Donald S.; Pham, Victoria C.; Lill, Jennie R.; Bakalarski, Corey E.; Wu, Jiansheng; Phu, Lilian; Katavolos, Paula; Saunders, Lindsay M.; Abdel-Wahab, Omar; Modrusan, Zora; Seshagiri, Somasekar; Dong, Ken; Lin, Zhonghua; Balazs, Mercedesz; Suriben, Rowena; Newton, Kim; Hymowitz, Sarah; Garcia-Manero, Guillermo; Martin, Flavius; Levine, Ross L.; Dixit, Vishva M.

    2016-01-01

    Deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with increased risk of mesothelioma and uveal melanoma. Somatic BAP1 mutations occur in various malignancies. We show that mouse Bap1 gene deletion is lethal during embryogenesis, but systemic or hematopoietic-restricted deletion in adults recapitulates features of human myelodysplastic syndrome (MDS). Knock-in mice expressing BAP1 with a 3xFlag tag revealed that BAP1 interacts with HCF-1, OGT, and the polycomb group proteins ASXL1 and ASXL2 in vivo. OGT and HCF-1 levels were decreased by Bap1 deletion, indicating a critical role for BAP1 in stabilizing these epigenetic regulators. Human ASXL1 is mutated frequently in chronic myelomonocytic leukemia (CMML) so an ASXL/BAP1 complex may suppress CMML. A novel BAP1 catalytic mutation found in a MDS patient implies that BAP1 loss of function has similar consequences in mouse and man. PMID:22878500

  7. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?

    PubMed

    Andreu-Vieyra, Claudia; Matzuk, Martin M

    2007-02-01

    Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.

  8. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.

    PubMed

    Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric

    2015-02-15

    The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Cu(I)-mediated Allosteric Switching in a Copper-sensing Operon Repressor (CsoR)*

    PubMed Central

    Chang, Feng-Ming James; Coyne, H. Jerome; Cubillas, Ciro; Vinuesa, Pablo; Fang, Xianyang; Ma, Zhen; Ma, Dejian; Helmann, John D.; García-de los Santos, Alejandro; Wang, Yun-Xing; Dann, Charles E.; Giedroc, David P.

    2014-01-01

    The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12–19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2–10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed. PMID:24831014

  10. Structures of ω repressors bound to direct and inverted DNA repeats explain modulation of transcription

    PubMed Central

    Weihofen, Wilhelm Andreas; Cicek, Aslan; Pratto, Florencia; Alonso, Juan Carlos; Saenger, Wolfram

    2006-01-01

    Repressor ω regulates transcription of genes required for copy number control, accurate segregation and stable maintenance of inc18 plasmids hosted by Gram-positive bacteria. ω belongs to homodimeric ribbon-helix-helix (RHH2) repressors typified by a central, antiparallel β-sheet for DNA major groove binding. Homodimeric ω2 binds cooperatively to promotors with 7 to 10 consecutive non-palindromic DNA heptad repeats (5′-A/TATCACA/T-3′, symbolized by →) in palindromic inverted, converging (→←) or diverging (←→) orientation and also, unique to ω2 and contrasting other RHH2 repressors, to non-palindromic direct (→→) repeats. Here we investigate with crystal structures how ω2 binds specifically to heptads in minimal operators with (→→) and (→←) repeats. Since the pseudo-2-fold axis relating the monomers in ω2 passes the central C–G base pair of each heptad with ∼0.3 Å downstream offset, the separation between the pseudo-2-fold axes is exactly 7 bp in (→→), ∼0.6 Å shorter in (→←) but would be ∼0.6 Å longer in (←→). These variations grade interactions between adjacent ω2 and explain modulations in cooperative binding affinity of ω2 to operators with different heptad orientations. PMID:16528102

  11. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    PubMed

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Cytotype Control of Drosophila Melanogaster P Element Transposition: Genomic Position Determines Maternal Repression

    PubMed Central

    Misra, S.; Buratowski, R. M.; Ohkawa, T.; Rio, D. C.

    1993-01-01

    P element transposition in Drosophila is controlled by the cytotype regulatory state: in P cytotype, transposition is repressed, whereas in M cytotype, transposition can occur. P cytotype is determined by a combination of maternally inherited factors and chromosomal P elements in the zygote. Transformant strains containing single elements that encoded the 66-kD P element protein zygotically repressed transposition, but did not display the maternal repression characteristic of P cytotype. Upon mobilization to new genomic positions, some of these repressor elements showed significant maternal repression of transposition in genetic assays, involving a true maternal effect. Thus, the genomic position of repressor elements can determine the maternal vs. zygotic inheritance of P cytotype. Immunoblotting experiments indicate that this genomic position effect does not operate solely by controlling the expression level of the 66-kD repressor protein during oogenesis. Likewise, P element derivatives containing the hsp26 maternal regulator sequence expressed high levels of the 66-kD protein during oogenesis, but showed no detectable maternal repression. These data suggest that the location of a repressor element in the genome may determine maternal inheritance of P cytotype by a mechanism involving more than the overall level of expression of the 66-kD protein in the ovary. PMID:8293979

  13. Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis

    PubMed Central

    Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth

    2007-01-01

    Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705

  14. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty.

    PubMed

    Toro, Carlos A; Wright, Hollis; Aylwin, Carlos F; Ojeda, Sergio R; Lomniczi, Alejandro

    2018-01-04

    Polycomb group (PcG) proteins control the timing of puberty by repressing the Kiss1 gene in hypothalamic arcuate nucleus (ARC) neurons. Here we identify two members of the Trithorax group (TrxG) of modifiers, mixed-lineage leukemia 1 (MLL1), and 3 (MLL3), as central components of an activating epigenetic machinery that dynamically counteracts PcG repression. Preceding puberty, MLL1 changes the chromatin configuration at the promoters of Kiss1 and Tac3, two genes required for puberty to occur, from repressive to permissive. Concomitantly, MLL3 institutes a chromatin structure that changes the functional status of a Kiss1 enhancer from poised to active. RNAi-mediated, ARC-specific Mll1 knockdown reduced Kiss1 and Tac3 expression, whereas CRISPR-Cas9-directed epigenome silencing of the Kiss1 enhancer selectively reduced Kiss1 activity. Both interventions delay puberty and disrupt reproductive cyclicity. Our results demonstrate that an epigenetic switch from transcriptional repression to activation is crucial to the regulatory mechanism controlling the timing of mammalian puberty.

  15. Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer.

    PubMed

    Glöckner, Sabine C; Dhir, Mashaal; Yi, Joo Mi; McGarvey, Kelly E; Van Neste, Leander; Louwagie, Joost; Chan, Timothy A; Kleeberger, Wolfram; de Bruïne, Adriaan P; Smits, Kim M; Khalid-de Bakker, Carolina A J; Jonkers, Daisy M A E; Stockbrügger, Reinhold W; Meijer, Gerrit A; Oort, Frank A; Iacobuzio-Donahue, Christine; Bierau, Katja; Herman, James G; Baylin, Stephen B; Van Engeland, Manon; Schuebel, Kornel E; Ahuja, Nita

    2009-06-01

    We have used a gene expression array-based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)-marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA-based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future.

  16. Directed evolution of a synthetic phylogeny of programmable Trp repressors.

    PubMed

    Ellefson, Jared W; Ledbetter, Michael P; Ellington, Andrew D

    2018-04-01

    As synthetic regulatory programs expand in sophistication, an ever increasing number of biological components with predictable phenotypes is required. Regulators are often 'part mined' from a diverse, but uncharacterized, array of genomic sequences, often leading to idiosyncratic behavior. Here, we generate an entire synthetic phylogeny from the canonical allosteric transcription factor TrpR. Iterative rounds of positive and negative compartmentalized partnered replication (CPR) led to the exponential amplification of variants that responded with high affinity and specificity to halogenated tryptophan analogs and novel operator sites. Fourteen repressor variants were evolved with unique regulatory profiles across five operators and three ligands. The logic of individual repressors can be modularly programmed by creating heterodimeric fusions, resulting in single proteins that display logic functions, such as 'NAND'. Despite the evolutionarily limited regulatory role of TrpR, vast functional spaces exist around this highly conserved protein scaffold and can be harnessed to create synthetic regulatory programs.

  17. Pokemon decreases the transcriptional activity of RARα in the absence of ligand.

    PubMed

    Yang, Yutao; Li, Yueting; Di, Fei; Cui, Jiajun; Wang, Yue; David Xu, Zhi-Qing

    2016-12-20

    Pokemon is a transcriptional repressor that belongs to the POZ and Krüppel (POK) protein family. In this study, we investigated the potential interaction between Pokemon and retinoic acid receptor alpha (RARα) and determined the role of Pokemon in regulation of RARα transcriptional activity in the absence of ligand. We found that Pokemon could directly interact with RARα. Moreover, we demonstrated that Pokemon could decrease the transcriptional activity of RARα in the absence of ligand. Furthermore, we showed that Pokemon could repress the transcriptional activity of RARα by increasing the recruitment of nuclear receptor co-repressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) to the retinoic acid response element (RARE) element. Taken together, these data suggest that Pokemon is a novel partner of RARα that acts as a co-repressor to regulate RARα transcriptional activity in the absence of ligand.

  18. Sensitive maintenance: a cognitive process underlying individual differences in memory for threatening information.

    PubMed

    Peters, Jan H; Hock, Michael; Krohne, Heinz Walter

    2012-01-01

    Dispositional styles of coping with threat influence memory for threatening information. In particular, sensitizers excel over repressors in their memory for threatening information after long retention intervals, but not after short ones. We therefore suggested that sensitizers, but not repressors, employ active maintenance processes during the retention interval to selectively retain threatening material. Sensitive maintenance was studied in 2 experiments in which participants were briefly exposed to threatening and nonthreatening pictures (Experiment 1, N = 128) or words (Experiment 2, N = 145). Following, we administered unannounced recognition tests before and after an intervening task that generated either high or low cognitive load, assuming that high cognitive load would impede sensitizers' memory maintenance of threatening material. Supporting our hypotheses, the same pattern of results was obtained in both experiments: Under low cognitive load, sensitizers forgot less threat material than repressors did; no such differences were observed under high cognitive load.

  19. Effect of mutation at the interface of Trp-repressor dimeric protein: a steered molecular dynamics simulation.

    PubMed

    Miño, German; Baez, Mauricio; Gutierrez, Gonzalo

    2013-09-01

    The strength of key interfacial contacts that stabilize protein-protein interactions have been studied by computer simulation. Experimentally, changes in the interface are evaluated by generating specific mutations at one or more points of the protein structure. Here, such an evaluation is performed by means of steered molecular dynamics and use of a dimeric model of tryptophan repressor and in-silico mutants as a test case. Analysis of four particular cases shows that, in principle, it is possible to distinguish between wild-type and mutant forms by examination of the total energy and force-extension profiles. In particular, detailed atomic level structural analysis indicates that specific mutations at the interface of the dimeric model (positions 19 and 39) alter interactions that appear in the wild-type form of tryptophan repressor, reducing the energy and force required to separate both subunits.

  20. Tunicate cytostatic factor TC14-3 induces a polycomb group gene and histone modification through Ca2+ binding and protein dimerization

    PubMed Central

    2012-01-01

    Background As many invertebrate species have multipotent cells that undergo cell growth and differentiation during regeneration and budding, many unique and interesting homeostatic factors are expected to exist in those animals. However, our understanding of such factors and global mechanisms remains very poor. Single zooids of the tunicate, Polyandrocarpa misakiensis, can give off as many as 40 buds during the life span. Bud development proceeds by means of transdifferentiation of very limited number of cells and tissues. TC14-3 is one of several different but closely related polypeptides isolated from P. misakiensis. It acts as a cytostatic factor that regulates proliferation, adhesion, and differentiation of multipotent cells, although the molecular mechanism remains uncertain. The Polycomb group (PcG) genes are involved in epigenetic control of genomic activity in mammals. In invertebrates except Drosophila, PcG and histone methylation have not been studied so extensively, and genome-wide gene regulation is poorly understood. Results When Phe65 of TC14-3 was mutated to an acidic amino acid, the resultant mutant protein failed to dimerize. The replacement of Thr69 with Arg69 made dimers unstable. When Glu106 was changed to Gly106, the resultant mutant protein completely lost Ca2+ binding. All these mutant proteins lacked cytostatic activity, indicating the requirement of protein dimerization and calcium for the activity. Polyandrocarpa Eed, a component of PcG, is highly expressed during budding, like TC14-3. When wild-type and mutant TC14-3s were applied in vivo and in vitro to Polyandrocarpa cells, only wild-type TC14-3 could induce Eed without affecting histone methyltransferase gene expression. Eed-expressing cells underwent trimethylation of histone H3 lysine27. PmEed knockdown by RNA interference rescued cultured cells from the growth-inhibitory effects of TC14-3. Conclusion These results show that in P. misakiensis, the cytostatic activity of TC14-3 is mediated by PmEed and resultant histone modification, and that the gene expression requires both the protein dimerization and Ca2+-binding of TC14-3. This system consisting of a humoral factor, PcG, and histone methylation would contribute to the homeostatic regulation of cell growth and terminal differentiation of invertebrate multipotent cells. PMID:22296827

  1. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    PubMed

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.

  2. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes.

    PubMed

    Fan, Rongrong; Toubal, Amine; Goñi, Saioa; Drareni, Karima; Huang, Zhiqiang; Alzaid, Fawaz; Ballaire, Raphaelle; Ancel, Patricia; Liang, Ning; Damdimopoulos, Anastasios; Hainault, Isabelle; Soprani, Antoine; Aron-Wisnewsky, Judith; Foufelle, Fabienne; Lawrence, Toby; Gautier, Jean-Francois; Venteclef, Nicolas; Treuter, Eckardt

    2016-07-01

    Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.

  3. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  4. On the use of the T-REx tetracycline-inducible gene expression system in vivo.

    PubMed

    Dobrovolsky, Vasily N; Heflich, Robert H

    2007-10-15

    Components of the commercially available T-REx system were used to create two types of transgenic mice. The first contained the tetracycline-repressor transgene under the control of the CMV promoter/enhancer; the second type contained a green fluorescent protein (GFP) reporter transgene under the control of the CMV promoter/enhancer with a tetracycline repressor operator sequence. Transgene expression was unpredictable in animals containing the individual transgenes. Animals with the reporter transgene expressed GFP in only some tissues (e.g., pancreas, kidney), and one line of reporter transgenic animals developed kidney disease, presumably due to expression of the transgene. The two types of transgenic animals were crossbred to produce double-transgenic animals with the object of regulating the expression of the reporter in vivo. When a similar double-transgenic system was constructed in cultured cells, the repressor protein suppressed the transcription of the reporter transgene. The presence of the repressor in double-transgenic animals had no effect on the expression of the reporter; double transgenic animals developed the same kidney disease that was seen in singly transgenic mice with the reporter. Our results indicate that transgenes under the control of the CMV promoter in the T-REx system express somewhat unpredictably and in only a limited number of tissues, making the use of this system for the development of in vivo models problematical. Copyright 2007 Wiley Periodicals, Inc.

  5. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum

    PubMed Central

    Thatcher, Louise F.; Cevik, Volkan; Grant, Murray; Zhai, Bing; Jones, Jonathan D.G.; Manners, John M.; Kazan, Kemal

    2016-01-01

    In Arabidopsis, jasmonate (JA)-signaling plays a key role in mediating Fusarium oxysporum disease outcome. However, the roles of JASMONATE ZIM-domain (JAZ) proteins that repress JA-signaling have not been characterized in host resistance or susceptibility to this pathogen. Here, we found most JAZ genes are induced following F. oxysporum challenge, and screening T-DNA insertion lines in Arabidopsis JAZ family members identified a highly disease-susceptible JAZ7 mutant (jaz7-1D). This mutant exhibited constitutive JAZ7 expression and conferred increased JA-sensitivity, suggesting activation of JA-signaling. Unlike jaz7 loss-of-function alleles, jaz7-1D also had enhanced JA-responsive gene expression, altered development and increased susceptibility to the bacterial pathogen Pst DC3000 that also disrupts host JA-responses. We also demonstrate that JAZ7 interacts with transcription factors functioning as activators (MYC3, MYC4) or repressors (JAM1) of JA-signaling and contains a functional EAR repressor motif mediating transcriptional repression via the co-repressor TOPLESS (TPL). We propose through direct TPL recruitment, in wild-type plants JAZ7 functions as a repressor within the JA-response network and that in jaz7-1D plants, misregulated ectopic JAZ7 expression hyper-activates JA-signaling in part by disturbing finely-tuned COI1-JAZ-TPL-TF complexes. PMID:26896849

  6. Phosphorylation of Trihelix Transcriptional Repressor ASR3 by MAP KINASE4 Negatively Regulates Arabidopsis Immunity

    PubMed Central

    Li, Bo; Jiang, Shan; Yu, Xiao; Cheng, Cheng; Chen, Sixue; Cheng, Yanbing; Yuan, Joshua S.; Jiang, Daohong; He, Ping; Shan, Libo

    2015-01-01

    Proper control of immune-related gene expression is crucial for the host to launch an effective defense response. Perception of microbe-associated molecular patterns (MAMPs) induces rapid and profound transcriptional reprogramming via unclear mechanisms. Here, we show that ASR3 (ARABIDOPSIS SH4-RELATED3) functions as a transcriptional repressor and plays a negative role in regulating pattern-triggered immunity (PTI) in Arabidopsis thaliana. ASR3 belongs to a plant-specific trihelix transcription factor family for which functional studies are lacking. MAMP treatments induce rapid phosphorylation of ASR3 at threonine 189 via MPK4, a mitogen-activated protein kinase that negatively regulates PTI responses downstream of multiple MAMP receptors. ASR3 possesses transcriptional repressor activity via its ERF-associated amphiphilic repression motifs and negatively regulates a large subset of flg22-induced genes. Phosphorylation of ASR3 by MPK4 enhances its DNA binding activity to suppress gene expression. Importantly, the asr3 mutant shows enhanced disease resistance to virulent bacterial pathogen infection, whereas transgenic plants overexpressing the wild-type or phospho-mimetic form of ASR3 exhibit compromised PTI responses. Our studies reveal a function of the trihelix transcription factors in plant innate immunity and provide evidence that ASR3 functions as a transcriptional repressor regulated by MAMP-activated MPK4 to fine-tune plant immune gene expression. PMID:25770109

  7. Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster

    PubMed Central

    Maier, Dieter; Kurth, Patricia; Schulz, Adriana; Russell, Andrew; Yuan, Zhenyu; Gruber, Kim; Kovall, Rhett A.; Preiss, Anette

    2011-01-01

    In metazoans, the highly conserved Notch pathway drives cellular specification. On receptor activation, the intracellular domain of Notch assembles a transcriptional activator complex that includes the DNA-binding protein CSL, a composite of human C-promoter binding factor 1, Suppressor of Hairless of Drosophila melanogaster [Su(H)], and lin-12 and Glp-1 phenotype of Caenorhabditis elegans. In the absence of ligand, CSL represses Notch target genes. However, despite the structural similarity of CSL orthologues, repression appears largely diverse between organisms. Here we analyze the Notch repressor complex in Drosophila, consisting of the fly CSL protein, Su(H), and the corepressor Hairless, which recruits general repressor proteins. We show that the C-terminal domain of Su(H) is necessary and sufficient for forming a high-affinity complex with Hairless. Mutations in Su(H) that affect interactions with Notch and Mastermind have no effect on Hairless binding. Nonetheless, we demonstrate that Notch and Hairless compete for CSL in vitro and in cell culture. In addition, we identify a site in Hairless that is crucial for binding Su(H) and subsequently show that this Hairless mutant is strongly impaired, failing to properly assemble the repressor complex in vivo. Finally, we demonstrate Hairless-mediated inhibition of Notch signaling in a cell culture assay, which hints at a potentially similar repression mechanism in mammals that might be exploited for therapeutic purposes. PMID:21737682

  8. Mechanisms of information decoding in a cascade system of gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Haohua; Yuan, Zhanjiang; Liu, Peijiang; Zhou, Tianshou

    2016-05-01

    Biotechnology advances have allowed investigation of heterogeneity of cellular responses to stimuli on the single-cell level. Functionally, this heterogeneity can compromise cellular responses to environmental signals, and it can also enlarge the repertoire of possible cellular responses and hence increase the adaptive nature of cellular behaviors. However, the mechanism of how this response heterogeneity is generated remains elusive. Here, by systematically analyzing a representative cellular signaling system, we show that (1) the upstream activator always amplifies the downstream burst frequency (BF) but the noiseless activator performs better than the noisy one, remarkably for small or moderate input signal strengths, and the repressor always reduces the downstream BF but the difference in the reducing effect between noiseless and noise repressors is very small; (2) both the downstream burst size and mRNA mean are a monotonically increasing function of the activator strength but a monotonically decreasing function of the repressor strength; (3) for repressor-type input, there is a noisy signal strength such that the downstream mRNA noise arrives at an optimal level, but for activator-type input, the output noise intensity is fundamentally a monotonically decreasing function of the input strength. Our results reveal the essential mechanisms of both signal information decoding and cellular response heterogeneity, whereas our analysis provides a paradigm for analyzing dynamics of noisy biochemical signaling systems.

  9. Epigenetic Therapy of Hematopoietic Malignancies: Novel Approaches for Tissue-Specific and Global Inhibition of EZH2 Enzymatic Activities

    DTIC Science & Technology

    2015-08-01

    such as myelodysplastic syndromes (MDSs), primary myelofibrosis (PMF), myeloproliferative neoplasms (MPNs), and chronic myelomonocytic leukemia (CMML...Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelo- dysplastic/ myeloproliferative neoplasms . Blood. 2012;119:1208...and emerges as regulator of myeloid neoplasms .19,20 Inhibitors selective to EZH2 have recently been developed and shown to be effective in killing

  10. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    PubMed Central

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  11. Increased Maternal Genome Dosage Bypasses the Requirement of the FIS Polycomb Repressive Complex 2 in Arabidopsis Seed Development

    PubMed Central

    Kradolfer, David; Hennig, Lars; Köhler, Claudia

    2013-01-01

    Seed development in flowering plants is initiated after a double fertilization event with two sperm cells fertilizing two female gametes, the egg cell and the central cell, leading to the formation of embryo and endosperm, respectively. In most species the endosperm is a polyploid tissue inheriting two maternal genomes and one paternal genome. As a consequence of this particular genomic configuration the endosperm is a dosage sensitive tissue, and changes in the ratio of maternal to paternal contributions strongly impact on endosperm development. The FERTILIZATION INDEPENDENT SEED (FIS) Polycomb Repressive Complex 2 (PRC2) is essential for endosperm development; however, the underlying forces that led to the evolution of the FIS-PRC2 remained unknown. Here, we show that the functional requirement of the FIS-PRC2 can be bypassed by increasing the ratio of maternal to paternal genomes in the endosperm, suggesting that the main functional requirement of the FIS-PRC2 is to balance parental genome contributions and to reduce genetic conflict. We furthermore reveal that the AGAMOUS LIKE (AGL) gene AGL62 acts as a dosage-sensitive seed size regulator and that reduced expression of AGL62 might be responsible for reduced size of seeds with increased maternal genome dosage. PMID:23326241

  12. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    PubMed Central

    2011-01-01

    Background Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling. PMID:21401930

  13. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity

    PubMed Central

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa

    2017-01-01

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001

  14. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    PubMed

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  15. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    PubMed

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  16. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.

    PubMed

    Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R

    2009-08-01

    Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.

  17. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor.

    PubMed Central

    Guenot, J.; Kollman, P. A.

    1992-01-01

    Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable. PMID:1304396

  18. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    DTIC Science & Technology

    2012-10-01

    support with our hypothesis, expressions of AR co-repressors (48-50), HDAC1, HDAC3 or SirT1 inhibit the ligand-induced AR activation at different...signaling and androgen-dependent growth. We hypothesis that DACH1/Six1/Eya pathway is an endogenous regulator of AR trans- activation and contributes to...mechanism. Inhibitory function of Eya1 on AR transactivation required a phosphates activity and could be enhanced by ectopic expression of co-repressors

  19. Stochastic model of template-directed elongation processes in biology.

    PubMed

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer.

    PubMed

    Bowring, Janine; Neamah, Maan M; Donderis, Jorge; Mir-Sanchis, Ignacio; Alite, Christian; Ciges-Tomas, J Rafael; Maiques, Elisa; Medmedov, Iltyar; Marina, Alberto; Penadés, José R

    2017-08-08

    Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature's most fascinating subcellular parasites.

  1. Histone Methylation and Epigenetic Silencing in Breast Cancer

    DTIC Science & Technology

    2008-07-01

    Curr Opin Genet Dev 14(2): 155-164. Caretti, G ., Di Padova, M., Micales, B., Lyons, G.E., and Sartorelli, V. 2004. The Polycomb Ezh2...tissues. Cancer Res 66(8): 4095-4099. Egger, G ., Liang, G ., Aparicio, A., and Jones, P.A. 2004. Epigenetics in human disease and prospects for...Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G ., Marth, C., Weisenberger, D.J., Campan, M., Young, J., Jacobs, I., and Laird

  2. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation[OPEN

    PubMed Central

    Zhang, Jinzhe; Wei, Baoye; Yuan, Rongrong; Yu, Hao

    2017-01-01

    The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D. We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1. PMID:28100709

  3. The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells.

    PubMed

    Wang, Jun; Lee, Seungsoo; Teh, Charis En-Yi; Bunting, Karen; Ma, Lina; Shannon, M Frances

    2009-03-01

    Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.

  4. Ski co-repressor complexes maintain the basal repressed state of the TGF-beta target gene, SMAD7, via HDAC3 and PRMT5.

    PubMed

    Tabata, Takanori; Kokura, Kenji; Ten Dijke, Peter; Ishii, Shunsuke

    2009-01-01

    The products encoded by ski and its related gene, sno, (Ski and Sno) act as transcriptional co-repressors and interact with other co-repressors such as N-CoR/SMRT and mSin3A. Ski and Sno mediate transcriptional repression by various repressors, including Mad, Rb and Gli3. Ski/Sno also suppress transcription induced by multiple activators, such as Smads and c-Myb. In particular, the inhibition of TGF-beta-induced transcription by binding to Smads is correlated with the oncogenic activity of Ski and Sno. However, the molecular mechanism by which Ski and Sno mediate transcriptional repression remains unknown. In this study, we report the purification and characterization of Ski complexes. The Ski complexes purified from HeLa cells contained histone deacetylase 3 (HDAC3) and protein arginine methyltransferase 5 (PRMT5), in addition to multiple Smad proteins (Smad2, Smad3 and Smad4). Chromatin immunoprecipitation assays indicated that these components of the Ski complexes were localized on the SMAD7 gene promoter, which is the TGF-beta target gene, in TGF-beta-untreated HepG2 cells. Knockdown of these components using siRNA led to up-regulation of SMAD7 mRNA. These results indicate that Ski complexes serve to maintain a TGF-beta-responsive promoter at a repressed basal level via the activities of histone deacetylase and histone arginine methyltransferase.

  5. Evidence that the Dictyostelium Dd-STATa protein is a repressor that regulates commitment to stalk cell differentiation and is also required for efficient chemotaxis.

    PubMed

    Mohanty, S; Jermyn, K A; Early, A; Kawata, T; Aubry, L; Ceccarelli, A; Schaap, P; Williams, J G; Firtel, R A

    1999-08-01

    Dd-STATa is a structural and functional homologue of the metazoan STAT (Signal Transducer and Activator of Transcription) proteins. We show that Dd-STATa null cells exhibit several distinct developmental phenotypes. The aggregation of Dd-STATa null cells is delayed and they chemotax slowly to a cyclic AMP source, suggesting a role for Dd-STATa in these early processes. In Dd-STATa null strains, slug-like structures are formed but they have an aberrant pattern of gene expression. In such slugs, ecmB/lacZ, a marker that is normally specific for cells on the stalk cell differentiation pathway, is expressed throughout the prestalk region. Stalk cell differentiation in Dictyostelium has been proposed to be under negative control, mediated by repressor elements present in the promoters of stalk cell-specific genes. Dd-STATa binds these repressor elements in vitro and the ectopic expression of ecmB/lacZ in the null strain provides in vivo evidence that Dd-STATa is the repressor protein that regulates commitment to stalk cell differentiation. Dd-STATa null cells display aberrant behavior in a monolayer assay wherein stalk cell differentiation is induced using the stalk cell morphogen DIF. The ecmB gene, a general marker for stalk cell differentiation, is greatly overinduced by DIF in Dd-STATa null cells. Also, Dd-STATa null cells are hypersensitive to DIF for expression of ST/lacZ, a marker for the earliest stages in the differentiation of one of the stalk cell sub-types. We suggest that both these manifestations of DIF hypersensitivity in the null strain result from the balance between activation and repression of the promoter elements being tipped in favor of activation when the repressor is absent. Paradoxically, although Dd-STATa null cells are hypersensitive to the inducing effects of DIF and readily form stalk cells in monolayer assay, the Dd-STATa null cells show little or no terminal stalk cell differentiation within the slug. Dd-STATa null slugs remain developmentally arrested for several days before forming very small spore masses supported by a column of apparently undifferentiated cells. Thus, complete stalk cell differentiation appears to require at least two events: a commitment step, whereby the repression exerted by Dd-STATa is lifted, and a second step that is blocked in a Dd-STATa null organism. This latter step may involve extracellular cAMP, a known repressor of stalk cell differentiation, because Dd-STATa null cells are abnormally sensitive to the inhibitory effects of extracellular cyclic AMP.

  6. Successful Establishment of Plasmids R1 and pMV158 in a New Host Requires the Relief of the Transcriptional Repression of Their Essential rep Genes

    PubMed Central

    Ruiz-Masó, José Á.; Luengo, Luis M.; Moreno-Córdoba, Inmaculada; Díaz-Orejas, Ramón; del Solar, Gloria

    2017-01-01

    Although differing in size, encoded traits, host range, and replication mechanism, both narrow-host-range theta-type conjugative enterobacterial plasmid R1 and promiscuous rolling-circle-type mobilizable streptococcal plasmid pMV158 encode a transcriptional repressor protein, namely CopB in R1 and CopG in pMV158, involved in replication control. The gene encoding CopB or CopG is cotranscribed with a downstream gene that encodes the replication initiator Rep protein of the corresponding plasmid. However, whereas CopG is an auto-repressor that inhibits transcription of the entire copG-repB operon, CopB is expressed constitutively and represses a second, downstream promoter that directs transcription of repA. As a consequence of the distinct regulatory pathways implied by CopB and CopG, these repressor proteins play a different role in control of plasmid replication during the steady state: while CopB has an auxiliary role by keeping repressed the regulated promoter whenever the plasmid copy number is above a low threshold, CopG plays a primary role by acting coordinately with RNAII. Here, we have studied the role of the regulatory circuit mediated by these transcriptional repressors during the establishment of these two plasmids in a new host cell, and found that excess Cop repressor molecules in the recipient cell result in a severe decrease in the frequency and/or the velocity of appearance of transformant colonies for the cognate plasmid but not for unrelated plasmids. Using the pMV158 replicon as a model system, together with highly sensitive real-time qPCR and inverse PCR methods, we have also analyzed the effect of CopG on the kinetics of repopulation of the plasmid in Streptococcus pneumoniae. We show that, whereas in the absence of CopG pMV158 repopulation occurs mainly during the first 45 min following plasmid transfer, the presence of the transcriptional repressor in the recipient cell severely impairs the replicon repopulation and makes the plasmid replicate at approximately the same rate as the chromosome at any time after transformation, which results in maximal plasmid loss rate in the absence of selection. Overall, these findings indicate that unrepressed activity of the Cop-regulated promoter is crucial for the successful colonization of the recipient bacterial cells by the plasmid. PMID:29250051

  7. Regulation of DREAM Expression by Group I mGluR

    PubMed Central

    Lee, Jinu; Kim, Insook; Oh, So Ra; Ko, Suk Jin; Lim, Mi Kyung; Kim, Dong Goo

    2011-01-01

    DREAM (downstream regulatory element antagonistic modulator) is a calcium-binding protein that regulates dynorphin expression, promotes potassium channel surface expression, and enhances presenilin processing in an expression level-dependent manner. However, no molecular mechanism has yet explained how protein levels of DREAM are regulated. Here we identified group I mGluR (mGluR1/5) as a positive regulator of DREAM protein expression. Overexpression of mGluR1/5 increased the cellular level of DREAM. Up-regulation of DREAM resulted in increased DREAM protein in both the nucleus and cytoplasm, where the protein acts as a transcriptional repressor and a modulator of its interacting proteins, respectively. DHPG (3,5-dihydroxyphenylglycine), a group I mGluR agonist, also up-regulated DREAM expression in cortical neurons. These results suggest that group I mGluR is the first identified receptor that may regulate DREAM activity in neurons. PMID:21660149

  8. Methylation of TFPI2 in Stool DNA: A Potential Novel Biomarker for the Detection of Colorectal Cancer

    PubMed Central

    Glöckner, Sabine C.; Dhir, Mashaal; Yi, Joo Mi; McGarvey, Kelly E.; Van Neste, Leander; Louwagie, Joost; Chan, Timothy A.; Kleeberger, Wolfram; de Bruïne, Adriaan P.; Smits, Kim M.; Khalid-de Bakker, Carolina A.J.; Jonkers, Daisy M.A.E.; Stockbrügger, Reinhold W.; Meijer, Gerrit A.; Oort, Frank A.; Iacobuzio-Donahue, Christine; Bierau, Katja; Herman, James G.; Baylin, Stephen B.; Van Engeland, Manon; Schuebel, Kornel E.; Ahuja, Nita

    2011-01-01

    We have used a gene expression array–based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)–marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA–based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future. PMID:19435926

  9. Association between BMI-1 expression, acute graft-versus-host disease, and outcome following allogeneic stem cell transplantation from HLA-identical siblings in chronic myeloid leukemia.

    PubMed

    Mohty, Mohamad; Szydlo, Richard M; Yong, Agnes S M; Apperley, Jane F; Goldman, John M; Melo, Junia V

    2008-09-01

    Expression of CD7, ELA-2, PR-3, and the polycomb group gene BMI-1 reflects the intrinsic heterogeneity and predicts prognosis of patients with chronic myeloid leukemia (CML) who were not treated with allogeneic stem cell transplantation (allo-SCT). This study investigated whether expression of these genes determined outcome following allo-SCT in a cohort of 84 patients with chronic-phase (CP) CML. We found that patients expressing BMI-1 at a "high" level before allo-SCT had an improved overall survival (P = .005) related to a reduced transplantation-related mortality. In multivariate analysis, when adjusted for the European Group for Blood and Marrow Transplantation (EBMT)-Gratwohl score and other prog-nostic factors, there was an independent association between BMI-1 expression and grades 2 to 4 acute graft-versus-host disease (relative risk [RR] = 2.85; 95% confidence interval [CI], 1.3-6.4; P = .011), suggesting that BMI-1 measured prior to allo-SCT can serve as a biomarker for predicting outcome in patients with CP-CML receiving allo-SCT, and may thus contribute to better therapeutic decisions.

  10. Genetic and epigenetic profiling of CLL disease progression reveals limited somatic evolution and suggests a relationship to memory-cell development.

    PubMed

    Smith, E N; Ghia, E M; DeBoever, C M; Rassenti, L Z; Jepsen, K; Yoon, K-A; Matsui, H; Rozenzhak, S; Alakus, H; Shepard, P J; Dai, Y; Khosroheidari, M; Bina, M; Gunderson, K L; Messer, K; Muthuswamy, L; Hudson, T J; Harismendy, O; Barrett, C L; Jamieson, C H M; Carson, D A; Kipps, T J; Frazer, K A

    2015-04-10

    We examined genetic and epigenetic changes that occur during disease progression from indolent to aggressive forms of chronic lymphocytic leukemia (CLL) using serial samples from 27 patients. Analysis of DNA mutations grouped the leukemia cases into three categories: evolving (26%), expanding (26%) and static (47%). Thus, approximately three-quarters of the CLL cases had little to no genetic subclonal evolution. However, we identified significant recurrent DNA methylation changes during progression at 4752 CpGs enriched for regions near Polycomb 2 repressive complex (PRC2) targets. Progression-associated CpGs near the PRC2 targets undergo methylation changes in the same direction during disease progression as during normal development from naive to memory B cells. Our study shows that CLL progression does not typically occur via subclonal evolution, but that certain CpG sites undergo recurrent methylation changes. Our results suggest CLL progression may involve developmental processes shared in common with the generation of normal memory B cells.

  11. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds

    PubMed Central

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc

    2017-01-01

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169

  12. The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia.

    PubMed

    Di Costanzo, Antonella; Del Gaudio, Nunzio; Conte, Lidio; Dell'Aversana, Carmela; Vermeulen, Michiel; de Thé, Hugues; Migliaccio, Antimo; Nebbioso, Angela; Altucci, Lucia

    2018-05-01

    Polycomb group (PcG) proteins regulate transcription, playing a key role in stemness and differentiation. Deregulation of PcG members is known to be involved in cancer pathogenesis. Emerging evidence suggests that CBX2, a member of the PcG protein family, is overexpressed in several human tumors, correlating with lower overall survival. Unraveling the mechanisms regulating CBX2 expression may thus provide a promising new target for anticancer strategies. Here we show that the HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. We identify CBX4 and RNF4 as the E3 SUMO and E3 ubiquitin ligase, respectively, and describe the specific molecular mechanism regulating CBX2 protein stability. Finally, we show that CBX2-depleted leukemic cells display impaired proliferation, underscoring its critical role in regulating leukemia cell tumorogenicity. Our results show that SAHA affects CBX2 stability, revealing a potential SAHA-mediated anti-leukemic activity though SUMO2/3 pathway.

  13. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation

    PubMed Central

    Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo

    2014-01-01

    ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058

  14. SatR Is a Repressor of Fluoroquinolone Efflux Pump SatAB

    PubMed Central

    Escudero, Jose Antonio; San Millan, Alvaro; Montero, Natalia; Gutierrez, Belen; Ovejero, Cristina Martinez; Carrilero, Laura

    2013-01-01

    Streptococcus suis is an emerging zoonotic agent responsible for high-mortality outbreaks among the human population in China. In this species, the ABC transporter SatAB mediates fluoroquinolone resistance when overexpressed. Here, we describe and characterize satR, an open reading frame (ORF) encoding a MarR superfamily regulator that acts as a repressor of satAB. satR is cotranscribed with satAB, and its interruption entails the overexpression of the pump, leading to a clinically relevant increase in resistance to fluoroquinolones. PMID:23650171

  15. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-I-like receptor signalling and is a potential prognostic biomarker for colon cancer.

    PubMed

    Shu, Xing-Sheng; Zhao, Yingying; Sun, Yanmei; Zhong, Lan; Cheng, Yingduan; Zhang, Yixiang; Ning, Kaile; Tao, Qian; Wang, Yejun; Ying, Ying

    2018-01-01

    It has long been known that patients suffering from inflammatory bowel disease (IBD) have an increased risk of developing colorectal cancer (CRC). The innate immune system of host cells provides a first-line defence against pathogenic infection, whereas an uncontrolled inflammatory response under homeostatic conditions usually leads to pathological consequences, as exemplified by the chronic inflammation of IBD. The key molecules and pathways keeping innate immunity in check are still poorly defined. Here, we report that the chromatin remodeller polybromo-1 (PBRM1) is a repressor of innate immune signalling mediated by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). Knockdown of PBRM1 in colon cancer cells increased the expression of two receptor genes (RIG-I and MDA5) and upregulated interferon (IFN)-related and inflammation-related gene signatures. The innate immune signal stimulated by a double-stranded RNA viral mimic was exaggerated by PBRM1 suppression. PBRM1 cooperated with polycomb protein EZH2 to directly bind the cis-regulatory elements of RIG-I and MDA5, thereby suppressing their transcription. Moreover, upregulation of RIG-I and MDA5 is required for IFN response activation induced by PBRM1 silencing. TRIM25, a protein stimulated by the RLR pathway and IFN production, physically interacted with PBRM1 and induced PBRM1 protein destabilization by promoting its ubiquitination. These findings reveal a PBRM1-RLR regulatory circuit that can keep innate immune activity at a minimal level in resting cells, and also ensure a robust inflammatory response in the case of pathogen invasion. PBRM1 was found to be downregulated in primary tissues from patients with CRC or IBD, and its expression correlated negatively with that of RLR genes and interferon-stimulated genes in CRC samples. Lower PBRM1 expression was associated with advanced pathological grade and poorer survival of CRC patients, indicating that PBRM1 could serve as a potential prognostic biomarker for CRC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. EBNA3C Directs Recruitment of RBPJ (CBF1) to Chromatin during the Process of Gene Repression in EBV Infected B Cells.

    PubMed

    Kalchschmidt, Jens S; Gillman, Adam C T; Paschos, Kostas; Bazot, Quentin; Kempkes, Bettina; Allday, Martin J

    2016-01-01

    It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells.

  17. Enhancer of polycomb coordinates multiple signaling pathways to promote both cyst and germline stem cell differentiation in the Drosophila adult testis

    PubMed Central

    Feng, Lijuan; Shi, Zhen; Chen, Xin

    2017-01-01

    Stem cells reside in a particular microenvironment known as a niche. The interaction between extrinsic cues originating from the niche and intrinsic factors in stem cells determines their identity and activity. Maintenance of stem cell identity and stem cell self-renewal are known to be controlled by chromatin factors. Herein, we use the Drosophila adult testis which has two adult stem cell lineages, the germline stem cell (GSC) lineage and the cyst stem cell (CySC) lineage, to study how chromatin factors regulate stem cell differentiation. We find that the chromatin factor Enhancer of Polycomb [E(Pc)] acts in the CySC lineage to negatively control transcription of genes associated with multiple signaling pathways, including JAK-STAT and EGF, to promote cellular differentiation in the CySC lineage. E(Pc) also has a non-cell-autonomous role in regulating GSC lineage differentiation. When E(Pc) is specifically inactivated in the CySC lineage, defects occur in both germ cell differentiation and maintenance of germline identity. Furthermore, compromising Tip60 histone acetyltransferase activity in the CySC lineage recapitulates loss-of-function phenotypes of E(Pc), suggesting that Tip60 and E(Pc) act together, consistent with published biochemical data. In summary, our results demonstrate that E(Pc) plays a central role in coordinating differentiation between the two adult stem cell lineages in Drosophila testes. PMID:28196077

  18. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    PubMed

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. Copyright 2009 S. Karger AG, Basel.

  19. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling

    DOE PAGES

    Zhang, Feng; Yao, Jian; Ke, Jiyuan; ...

    2015-08-10

    The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins frommore » transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. In this paper, we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Finally, our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.« less

  20. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR

    PubMed Central

    Bhattacharya, Nilakshee; Yi, Myunggi; Zhou, Huan-Xiang; Logan, Timothy M.

    2008-01-01

    Summary The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of DtxR by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. In this study we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low order parameters with internal rotational correlation times on the order of 0.6 – 1 ns. Further analysis showed that the SH3 domain was rich in millisecond timescale motions while the Pr segment was rich in motions on the 100s μs timescale. Molecular dynamics simultations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results of this study provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity. PMID:17976643

  1. SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures1[OPEN

    PubMed Central

    Marín-González, Esther; Matías-Hernández, Luis; Aguilar-Jaramillo, Andrea E.; Lee, Jeong Hwan; Ahn, Ji Hoon; Suárez-López, Paula; Pelaz, Soraya

    2015-01-01

    Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under inductive photoperiods, through repression of FT, revealing the importance of floral repressors acting at low temperatures. Previously, we have reported that the floral repressors TEMPRANILLO (TEM; TEM1 and TEM2) control flowering time through direct regulation of FT at 22°C. Here, we show that tem mutants are less sensitive than the wild type to changes in ambient growth temperature, indicating that TEM genes may play a role in floral repression at 16°C. Moreover, we have found that TEM2 directly represses the expression of FT and TWIN SISTER OF FT at 16°C. In addition, the floral repressor SHORT VEGETATIVE PHASE (SVP) directly regulates TEM2 but not TEM1 expression at 16°C. Flowering time analyses of svp tem mutants indicate that TEM may act in the same genetic pathway as SVP to repress flowering at 22°C but that SVP and TEM are partially independent at 16°C. Thus, TEM2 partially mediates the temperature-dependent function of SVP at low temperatures. Taken together, our results indicate that TEM genes are also able to repress flowering at low ambient temperatures under inductive long-day conditions. PMID:26243615

  2. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis[W

    PubMed Central

    Tao, Qing; Guo, Dongshu; Wei, Baoye; Zhang, Fan; Pang, Changxu; Jiang, Hao; Zhang, Jinzhe; Wei, Tong; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2013-01-01

    Leaf size and shape are mainly determined by coordinated cell division and differentiation in lamina. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors are key regulators of leaf development. However, the mechanisms that control TCP activities during leaf development are largely unknown. We identified the TCP Interactor containing EAR motif protein1 (TIE1), a novel transcriptional repressor, as a major modulator of TCP activities during leaf development. Overexpression of TIE1 leads to hyponastic and serrated leaves, whereas disruption of TIE1 causes epinastic leaves. TIE1 is expressed in young leaves and encodes a transcriptional repressor containing a C-terminal EAR motif, which mediates interactions with the TOPLESS (TPL)/TOPLESS-RELATED (TPR) corepressors. In addition, TIE1 physically interacts with CIN-like TCPs. We propose that TIE1 regulates leaf size and morphology by inhibiting the activities of TCPs through recruiting the TPL/TPR corepressors to form a tertiary complex at early stages of leaf development. PMID:23444332

  3. Solution NMR investigation of the response of the lactose repressor core domain dimer to hydrostatic pressure.

    PubMed

    Fuglestad, Brian; Stetz, Matthew A; Belnavis, Zachary; Wand, A Joshua

    2017-12-01

    Previous investigations of the sensitivity of the lac repressor to high-hydrostatic pressure have led to varying conclusions. Here high-pressure solution NMR spectroscopy is used to provide an atomic level view of the pressure induced structural transition of the lactose repressor regulatory domain (LacI* RD) bound to the ligand IPTG. As the pressure is raised from ambient to 3kbar the native state of the protein is converted to a partially unfolded form. Estimates of rotational correlation times using transverse optimized relaxation indicates that a monomeric state is never reached and that the predominate form of the LacI* RD is dimeric throughout this pressure change. Spectral analysis suggests that the pressure-induced transition is localized and is associated with a volume change of approximately -115mlmol -1 and an average pressure dependent change in compressibility of approximately 30mlmol -1 kbar -1 . In addition, a subset of resonances emerge at high-pressures indicating the presence of a non-native but folded alternate state. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Imprinting regulator DNMT3L is a transcriptional repressor associated with histone deacetylase activity.

    PubMed

    Aapola, Ulla; Liiv, Ingrid; Peterson, Pärt

    2002-08-15

    DNMT3L is a regulator of imprint establishment of normally methylated maternal genomic sequences. DNMT3L shows high similarity to the de novo DNA methyltransferases, DNMT3A and DNMT3B, however, the amino acid residues needed for DNA cytosine methyltransferase activity have been lost from the DNMT3L protein sequence. Apart from methyltransferase activity, Dnmt3a and Dnmt3b serve as transcriptional repressors associating with histone deacetylase (HDAC) activity. Here we show that DNMT3L can also repress transcription by binding directly to HDAC1 protein. We have identified the PHD-like zinc finger of the ATRX domain as a main repression motif of DNMT3L, through which DNMT3L recruits the HDAC activity needed for transcriptional silencing. Furthermore, we show that DNMT3L protein contains an active nuclear localisation signal at amino acids 156-159. These results describe DNMT3L as a co-repressor protein and suggest that a transcriptionally repressed chromatin organisation through HDAC activity is needed for establishment of genomic imprints.

  5. A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth.

    PubMed

    Butter, Falk; Kappei, Dennis; Buchholz, Frank; Vermeulen, Michiel; Mann, Matthias

    2010-04-01

    Single-nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin-like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor--which we call muscle growth regulator (MGR)--by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED-type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo-Ac-Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.

  6. Crystal structure of enterococcus faecalis sly A-like transcriptional factor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Zhang, R.; Zagnitko, O.

    2003-05-30

    The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed themore » same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.« less

  7. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Zhiqiang; Su, Lijing; Pei, Jimin

    In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices,more » are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.« less

  9. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    PubMed

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  10. Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome1[W][OA

    PubMed Central

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T.; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-01-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors. PMID:21873571

  11. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2013-10-01

    collagen-adherent α2β1hi/CD44hi cells2 (see appendix). Recent experimental and clinical studies have identified BMI-1 as a member of the polycomb family of...next phase of studies will examine BMI-1 targeted therapy in combination with Taxotere and other recently approved therapies. These studies will...project, we are on track for determining which BMI-1 inhibitor(s) to be used for in vivo studies in NOD-SCID mice and fish during the second and third

  12. Identification of early indicators of altered metabolism in normal development using a rodent model system.

    PubMed

    Prabakaran, Ashok Daniel; Karakkat, Jimsheena Valiyakath; Vijayan, Ranjit; Chalissery, Jisha; Ibrahim, Marwa F; Kaimala, Suneesh; Adeghate, Ernest A; Al-Marzouqi, Ahmed Hassan; Ansari, Suraiya Anjum; Mensah-Brown, Eric; Emerald, Bright Starling

    2018-03-01

    Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups - lower birth weight (LBW, 5th to 25th percentile) and average birth weight (ABW, 50th to 75th percentile) - using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII ( Ins2 ) gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1) and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life. © 2018. Published by The Company of Biologists Ltd.

  13. Identification of early indicators of altered metabolism in normal development using a rodent model system

    PubMed Central

    Prabakaran, Ashok Daniel; Karakkat, Jimsheena Valiyakath; Chalissery, Jisha; Ibrahim, Marwa F.; Kaimala, Suneesh; Adeghate, Ernest A.; Al-Marzouqi, Ahmed Hassan; Ansari, Suraiya Anjum

    2018-01-01

    ABSTRACT Although the existence of a close relationship between the early maternal developmental environment, fetal size at birth and the risk of developing disease in adulthood has been suggested, most studies, however, employed experimentally induced intrauterine growth restriction as a model to link this with later adult disease. Because embryonic size variation also occurs under normal growth and differentiation, elucidating the molecular mechanisms underlying these changes and their relevance to later adult disease risk becomes important. The birth weight of rat pups vary according to the uterine horn positions. Using birth weight as a marker, we compared two groups of rat pups – lower birth weight (LBW, 5th to 25th percentile) and average birth weight (ABW, 50th to 75th percentile) – using morphological, biochemical and molecular biology, and genetic techniques. Our results show that insulin metabolism, Pi3k/Akt and Pparγ signaling and the genes regulating growth and metabolism are significantly different in these groups. Methylation at the promoter of the InsII (Ins2) gene and DNA methyltransferase 1 in LBW pups are both increased. Additionally, the Dnmt1 repressor complex, which includes Hdac1, Rb (Rb1) and E2f1, was also upregulated in LBW pups. We conclude that the Dnmt1 repressor complex, which regulates the restriction point of the cell cycle, retards the rate at which cells traverse the G1 or G0 phase of the cell cycle in LBW pups, thereby slowing down growth. This regulatory mechanism mediated by Dnmt1 might contribute to the production of small-size pups and altered physiology and pathology in adult life. PMID:29434026

  14. The Logic of Circadian Organization in Drosophila

    PubMed Central

    Dissel, Stephane; Hansen, Celia N.; Özkaya, Özge; Hemsley, Matthew; Kyriacou, Charalambos P.; Rosato, Ezio

    2014-01-01

    Summary Background In the fruit fly Drosophila melanogaster, interlocked negative transcription/translation feedback loops provide the core of the circadian clock that generates rhythmic phenotypes. Although the current molecular model portrays the oscillator as cell autonomous, cross-talk among clock neurons is essential for robust cycling behavior. Nevertheless, the functional organization of the neuronal network remains obscure. Results Here we show that shortening or lengthening of the circadian period of locomotor activity can be obtained either by targeting different groups of clock cells with the same genetic manipulation or by challenging the same group of cells with activators and repressors of neuronal excitability. Conclusions Based on these observations we interpret circadian rhythmicity as an emerging property of the circadian network and we propose an initial model for its architectural design. PMID:25220056

  15. Structure of the C-terminal domain of the arginine repressor protein from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherney, Leonid T.; Cherney, Maia M.; Garen, Craig R.

    2008-09-01

    The structure of the core domain of the arginine repressor protein from M. tuberculosis has been determined with (1.85 Å resolution) and without (2.15 Å resolution) the arginine corepressor bound. Three additional arginine molecules have been found to bind to the core domain hexamer at high (0.2 M) arginine concentration. The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the l-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of argininemore » repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 Å resolution with bound arginine and at 2.15 Å resolution in the unliganded form. These structures show that six molecules of MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11° upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.« less

  16. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.

    PubMed Central

    McEntee, K; Weinstock, G M

    1981-01-01

    The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains. Images PMID:7031642

  17. Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence ▿

    PubMed Central

    Hsu, Po-Chen; Yang, Cheng-Yao; Lan, Chung-Yu

    2011-01-01

    Candida albicans is an opportunistic fungal pathogen that exists as normal flora in healthy human bodies but causes life-threatening infections in immunocompromised patients. In addition to innate and adaptive immunities, hosts also resist microbial infections by developing a mechanism of “natural resistance” that maintains a low level of free iron to restrict the growth of invading pathogens. C. albicans must overcome this iron-deprived environment to cause infections. There are three types of iron-responsive transcriptional regulators in fungi; Aft1/Aft2 activators in yeast, GATA-type repressors in many fungi, and HapX/Php4 in Schizosaccharomyces pombe and Aspergillus species. In this study, we characterized the iron-responsive regulator Hap43, which is the C. albicans homolog of HapX/Php4 and is repressed by the GATA-type repressor Sfu1 under iron-sufficient conditions. We provide evidence that Hap43 is essential for the growth of C. albicans under low-iron conditions and for C. albicans virulence in a mouse model of infection. Hap43 was not required for iron acquisition under low-iron conditions. Instead, it was responsible for repression of genes that encode iron-dependent proteins involved in mitochondrial respiration and iron-sulfur cluster assembly. We also demonstrated that Hap43 executes its function by becoming a transcriptional repressor and accumulating in the nucleus in response to iron deprivation. Finally, we found a connection between Hap43 and the global corepressor Tup1 in low-iron-induced flavinogenesis. Taken together, our data suggest a complex interplay among Hap43, Sfu1, and Tup1 to coordinately regulate iron acquisition, iron utilization, and other iron-responsive metabolic activities. PMID:21131439

  18. A New lncRNA, APTR, Associates with and Represses the CDKN1A/p21 Promoter by Recruiting Polycomb Proteins

    PubMed Central

    Negishi, Masamitsu; Wongpalee, Somsakul P.; Sarkar, Sukumar; Park, Jonghoon; Lee, Kyung Yong; Shibata, Yoshiyuki; Reon, Brian J.; Abounader, Roger; Suzuki, Yutaka; Sugano, Sumio; Dutta, Anindya

    2014-01-01

    Long noncoding RNAs (lncRNAs) have emerged as a major regulator of cell physiology, but many of which have no known function. CDKN1A/p21 is an important inhibitor of the cell-cycle, regulator of the DNA damage response and effector of the tumor suppressor p53, playing a crucial role in tumor development and prevention. In order to identify a regulator for tumor progression, we performed an siRNA screen of human lncRNAs required for cell proliferation, and identified a novel lncRNA, APTR, that acts in trans to repress the CDKN1A/p21 promoter independent of p53 to promote cell proliferation. APTR associates with the promoter of CDKN1A/p21 and this association requires a complementary-Alu sequence encoded in APTR. A different module of APTR associates with and recruits the Polycomb repressive complex 2 (PRC2) to epigenetically repress the p21 promoter. A decrease in APTR is necessary for the induction of p21 after heat stress and DNA damage by doxorubicin, and the levels of APTR and p21 are anti-correlated in human glioblastomas. Our data identify a new regulator of the cell-cycle inhibitor CDKN1A/p21 that acts as a proliferative factor in cancer cell lines and in glioblastomas and demonstrate that Alu elements present in lncRNAs can contribute to targeting regulatory lncRNAs to promoters. PMID:24748121

  19. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2017-02-15

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation. © The Author 2016. Published by Oxford University Press.

  20. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    PubMed

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  1. Light-induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti-repressor of CarA.

    PubMed

    Whitworth, D E; Hodgson, D A

    2001-11-01

    In the bacterium Myxococcus xanthus, carotenoids are produced in response to illumination, as a result of expression of the crt carotenoid biosynthesis genes. The majority of crt genes are clustered in the crtEBDC operon, which is repressed in the dark by CarA. Genetic data suggest that, in the light, CarS is synthesized and achieves activation of the crtEBDC operon by removing the repressive action of CarA. As CarS contains no known DNA-binding motif, the relief of CarA-mediated repression was postulated to result from a direct interaction between these two proteins. Use of the yeast two-hybrid system demonstrated direct interaction between CarA and CarS. The two-hybrid system also implied that CarA and, possibly, CarS are capable of homodimerization. Direct evidence for CarS anti-repressor action was provided in vitro. A glutathione S-transferase (GST)-CarA protein fusion was shown to bind specifically to a palindromic operator sequence within the crtEBDC promoter. CarA was prevented from binding to its operator, and prebound CarA was removed by the addition of purified CarS. CarS is therefore an anti-repressor.

  2. Design, Synthesis, and Evaluation of Novel p-(methylthio)styryl Substituted Quindoline Derivatives as Neuroblastoma RAS (NRAS) Repressors via Specific Stabilizing the RNA G-Quadruplex.

    PubMed

    Peng, Wang; Sun, Zhi-Yin; Zhang, Qi; Cheng, Sui-Qi; Wang, Shi-Ke; Wang, Xiao-Na; Kuang, Guo-Tao; Su, Xiao-Xuan; Tan, Jia-Heng; Huang, Zhi-Shu; Ou, Tian-Miao

    2018-05-25

    The human proto-oncogene neuroblastoma RAS (NRAS) contains a guanine-rich sequence in the 5'-untranslated regions (5'-UTR) of the mRNA that could form an RNA G-quadruplex structure. This structure acts as a repressor for NRAS translation and could be a potential target for anti-cancer drugs. Our previous studies found an effective scaffold, the quindoline scaffold, for binding and stabilizing the DNA G-quadruplex structures. Here, basing on the previous studies and reported RNA-specific probes, a series of novel p-(methylthio)styryl substituted quindoline (MSQ) derivatives were designed, synthesized and evaluated as NRAS RNA G-quadruplex ligands. Panels of experiments turned out that the introduction of p-(methylthio)styryl side chain could enhance the specific binding to the NRAS RNA G-quadruplex. One of the hits, 4a-10, showed strong stabilizing activity on the G-quadruplex, and subsequently repressed NRAS's translation and inhibited tumor cells proliferation. Our finding provided a novel strategy to discover novel NRAS repressors by specifically binding to the RNA G-quadruplex in the 5'-UTR of mRNA.

  3. Cntnap2 expression in the cerebellum of Foxp2(R552H) mice, with a mutation related to speech-language disorder.

    PubMed

    Fujita, Eriko; Tanabe, Yuko; Momoi, Mariko Y; Momoi, Takashi

    2012-01-11

    Foxp2(R552H) knock-in (KI) mice carrying a mutation related to human speech-language disorder exhibit impaired ultrasonic vocalization and poor Purkinje cell development. Foxp2 is a forkhead domain-containing transcriptional repressor that associates with its co-repressor CtBP; Foxp2(R552H) displays reduced DNA binding activity. A genetic connection between FOXP2 and CNTNAP2 has been demonstrated in vitro, but not in vivo. Here we show that Cntnap2 mRNA levels significantly increased in the cerebellum of Foxp2(R552H) KI pups, although the cerebellar population of Foxp2-positive Purkinje cells was very small. Furthermore, Cntnap2 immunofluorescence did not decrease in the poorly developed Purkinje cells of Foxp2(R552H) KI pups, although synaptophysin immunofluorescence decreased. Cntnap2 and CtBP were ubiquitously expressed, while Foxp2 co-localized with CtBP only in Purkinje cells. Taken together, these observations suggest that Foxp2 may regulate ultrasonic vocalization by associating with CtBP in Purkinje cells; Cntnap2 may be a target of this co-repressor. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Integration host factor is necessary for lysogenization of Escherichia coli by bacteriophage P2.

    PubMed

    Saha, S; Haggård-Ljungquist, E; Nordström, K

    1990-01-01

    Whether infection by bacteriophage P2 results in lysogenization of the host or vegetative growth of the phage depends upon a race between transcription from the repressor promoter Pc and the early promoter Pe; transcription from these promoters is mutually exclusive, since the Pc repressor Cox is formed from the Pe transcript and the Pe repressor C from the Pc transcript. The involvement of integration host factor (IHF) in the lysogenization of Escherichia coli K12 by P2 was tested by comparing wild-type and IHF-deficient (himA and himD) mutants. No lysogenic clones were formed following infection of the mutant bacteria. A switch plasmid that contains Pc-C-cat and Pe-cox-kan was used to test the choice for expression of Pc versus Pe. In the wild-type K12 bacteria, 20% of the clones expressed Pe transcription and 80% Pc transcription, whereas all transformed IHF-defective clones expressed transcription from Pe only. The effects of IHF on the in vivo expression of the Pe and Pc promoters were only marginal. The IHF protein was found to bind upstream of the Pe promoter, where a potential ihf sequence is located.

  5. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles.

    PubMed

    Dedrick, Rebekah M; Marinelli, Laura J; Newton, Gerald L; Pogliano, Kit; Pogliano, Joseph; Hatfull, Graham F

    2013-05-01

    Bacteriophages represent a majority of all life forms, and the vast, dynamic population with early origins is reflected in their enormous genetic diversity. A large number of bacteriophage genomes have been sequenced. They are replete with novel genes without known relatives. We know little about their functions, which genes are required for lytic growth, and how they are expressed. Furthermore, the diversity is such that even genes with required functions - such as virion proteins and repressors - cannot always be recognized. Here we describe a functional genomic dissection of mycobacteriophage Giles, in which the virion proteins are identified, genes required for lytic growth are determined, the repressor is identified, and the transcription patterns determined. We find that although all of the predicted phage genes are expressed either in lysogeny or in lytic growth, 45% of the predicted genes are non-essential for lytic growth. We also describe genes required for DNA replication, show that recombination is required for lytic growth, and that Giles encodes a novel repressor. RNAseq analysis reveals abundant expression of a small non-coding RNA in a lysogen and in late lytic growth, although it is non-essential for lytic growth and does not alter lysogeny. © 2013 Blackwell Publishing Ltd.

  6. Molecular dynamics simulation of trp-repressor/operator complex: analysis of hydrogen bond patterns of protein DNA interaction

    NASA Astrophysics Data System (ADS)

    Suenaga, A.; Yatsu, C.; Komeiji, Y.; Uebayasi, M.; Meguro, T.; Yamato, I.

    2000-08-01

    Molecular dynamics simulation of Escherichia colitrp-repressor/operator complex was performed to elucidate protein-DNA interactions in solution for 800 ps on special-purpose computer MD-GRAPE. The Ewald summation method was employed to treat the electrostatic interaction without cutoff. DNA kept stable conformation in comparison with the result of the conventional cutoff method. Thus, the trajectories obtained were used to analyze the protein-DNA interaction and to understand the role of dynamics of water molecules forming sequence specific recognition interface. The dynamical cross-correlation map showed a significant positive correlation between the helix-turn-helix DNA-binding motifs and the major grooves of operator DNA. The extensive contact surface was stable during the simulation. Most of the contacts consisted of direct interactions between phosphates of DNA and the protein, but several water-mediated polar contacts were also observed. These water-mediated interactions, which were also seen in the crystal structure (Z. Otwinowski, et al., Nature, 335 (1998) 321) emerged spontaneously from the randomized initial configuration of the solvent. This result suggests the importance of the water-mediated interaction in specific recognition of DNA by the trp-repressor, consistent with X-ray structural information.

  7. Functional domains of the Drosophila Engrailed protein.

    PubMed Central

    Han, K; Manley, J L

    1993-01-01

    We have studied the transcriptional activity of the Drosophila homeodomain protein Engrailed (En) by using a transient expression assay employing Schneider L2 cells. En was found to very strongly repress promoters activated by a variety of different activator proteins. However, unlike another Drosophila homeodomain-containing repressor, Even-skipped (Eve), En was unable to repress the activity of several basal promoters in the absence of activator expression. These findings indicate that En is a specific repressor of activated transcription, and suggest that En may repress transcription by a different mechanism than Eve, perhaps by interfering with interactions between transcriptional activators and the general transcription machinery. By analyzing the properties of a variety of En mutants, we identified a minimal repression domain composed of 55 residues, which can function when fused to a heterologous DNA binding domain. Like repression domains identified in the Drosophila repressors Eve and Krüppel, the En repression domain is rich in alanine residues (26%), but unlike these other domains, is moderately charged (six arginine and three glutamic acid residues). Separate regions of En that may in some circumstances function in transcriptional activation were also identified. Images PMID:8334991

  8. Modeling the Lac repressor-operator assembly: The influence of DNA looping on Lac repressor conformation

    PubMed Central

    Swigon, David; Coleman, Bernard D.; Olson, Wilma K.

    2006-01-01

    Repression of transcription of the Escherichia coli Lac operon by the Lac repressor (LacR) is accompanied by the simultaneous binding of LacR to two operators and the formation of a DNA loop. A recently developed theory of sequence-dependent DNA elasticity enables one to relate the fine structure of the LacR–DNA complex to a wide range of heretofore-unconnected experimental observations. Here, that theory is used to calculate the configuration and free energy of the DNA loop as a function of its length and base-pair sequence, its linking number, and the end conditions imposed by the LacR tetramer. The tetramer can assume two types of conformations. Whereas a rigid V-shaped structure is observed in the crystal, EM images show extended forms in which two dimer subunits are flexibly joined. Upon comparing our computed loop configurations with published experimental observations of permanganate sensitivities, DNase I cutting patterns, and loop stabilities, we conclude that linear DNA segments of short-to-medium chain length (50–180 bp) give rise to loops with the extended form of LacR and that loops formed within negatively supercoiled plasmids induce the V-shaped structure. PMID:16785444

  9. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  10. [Role of Ski/SnoN protein in the regulation of TGF-beta signal pathway].

    PubMed

    Lu, Zhao-hui; Chen, Jie

    2003-04-01

    TGF-beta signal pathway plays an important role in the cell growth, differentiation, formation of extracellular matrix, embryo development and carcinogenesis, etc. However, the regulation of TGF-beta pathway is not totally understood. In 1999, three independent research groups found that Ski/SnoN protein could inhibit the TGF-beta mediated transcription by recruiting N-CoR, a transcription co-repressor. Later studies suggested that TGF-beta and SMADs degraded the Ski/SnoN protein by mediating ubiquitin linkage, showing negative feedback regulation. The important findings in Ski/SnoN laid the theoretical foundation for demonstrating the function of TGF-beta signal pathway.

  11. The Emerging Role of Epigenetics in the Regulation of Female Puberty.

    PubMed

    Lomniczi, Alejandro; Ojeda, Sergio R

    2016-01-01

    In recent years the pace of discovering the molecular and genetic underpinnings of the pubertal process has accelerated considerably. Genes required for human puberty to occur have been identified and evidence has been provided suggesting that the initiation of puberty requires coordinated changes in the output of a multiplicity of genes organized into functional networks. Recent evidence suggests that a dual mechanism of epigenetic regulation affecting the transcriptional activity of neurons involved in stimulating gonadotropin-releasing hormone release plays a fundamental role in the timing of puberty. The Polycomb group (PcG) of transcriptional silencers appears to be a major component of the repressive arm of this mechanism. PcG proteins prevent the premature initiation of female puberty by silencing the Kiss1 gene in kisspeptin neurons of the arcuate nucleus (ARC) of the hypothalamus. Because the abundance of histone marks either catalyzed by--or associated with--the Trithorax group (TrxG) of transcriptional activators increases at the time when PcG control subsides, it appears that the TrxG complex is the counteracting partner of PcG-mediated gene silencing. In this chapter, we discuss the concept that a switch from epigenetic repression to activation within ARC kisspeptin neurons is a core mechanism underlying the initiation of female puberty. © 2016 S. Karger AG, Basel.

  12. The Emerging Role of Epigenetics in the Regulation of Female Puberty

    PubMed Central

    Lomniczi, Alejandro; Ojeda, Sergio R.

    2016-01-01

    In recent years the pace of discovering the molecular and genetic underpinnings of the pubertal process has accelerated considerably. Genes required for human puberty to occur have been identified and evidence has been provided suggesting that the initiation of puberty requires coordinated changes in the output of a multiplicity of genes organized into functional networks. Recent evidence suggests that a dual mechanism of epigenetic regulation affecting the transcriptional activity of neurons involved in stimulating gonadotropin-releasing hormone release plays a fundamental role in the timing of puberty. The Polycomb group (PcG) of transcriptional silencers appears to be a major component of the repressive arm of this mechanism. PcG proteins prevent the premature initiation of female puberty by silencing the Kiss1 gene in kisspeptin neurons of the arcuate nucleus (ARC) of the hypothalamus. Because the abundance of histone marks either catalyzed by – or associated with – the Trithorax group (TrxG) of transcriptional activators increases at the time when PcG control subsides, it appears that the TrxG complex is the counteracting partner of PcG-mediated gene silencing. In this chapter, we discuss the concept that a switch from epigenetic repression to activation within ARC kisspeptin neurons is a core mechanism underlying the initiation of female puberty. PMID:26680569

  13. Concepts of epigenetics in prostate cancer development.

    PubMed

    Cooper, C S; Foster, C S

    2009-01-27

    Substantial evidence now supports the view that epigenetic changes have a role in the development of human prostate cancer. Analyses of the patterns of epigenetic alteration are providing important insights into the origin of this disease and have identified specific alterations that may serve as useful diagnostic and prognostic biomarkers. Examination of cancer methylation patterns supports a stem cell origin of prostate cancer. It is well established that methylation of GSTpi is a marker of prostate cancer, and global patterns of histone marking appear to be linked to cancer prognosis with levels of acetylated histones H3K9, H3K18, and H4K12, and of dimethylated H4R3 and H3K4, dividing low-grade prostate cancer (Gleason 6 or less) into two prognostically separate groups. Elevated levels of several components of the polycomb group protein complex, EZH2, BMI1, and RING1, can also act as biomarkers of poor clinical outcome. Many components of the epigenetic machinery, including histone deacetylase (whose expression level is linked to the TMPRSS2:ERG translocation) and the histone methylase EZH2, are potential therapeutic targets. The recent discovery of the role of small RNAs in governing the epigenetic status of individual genes offers exciting new possibilities in therapeutics and chemoprevention.

  14. BCOR regulates myeloid cell proliferation and differentiation

    PubMed Central

    Cao, Qi; Gearhart, Micah D.; Gery, Sigal; Shojaee, Seyedmehdi; Yang, Henry; Sun, Haibo; Lin, De-chen; Bai, Jing-wen; Mead, Monica; Zhao, Zhiqiang; Chen, Qi; Chien, Wen-wen; Alkan, Serhan; Alpermann, Tamara; Haferlach, Torsten; Müschen, Markus; Bardwell, Vivian J.; Koeffler, H. Phillip

    2016-01-01

    BCOR is a component of a variant Polycomb group repressive complex 1 (PRC1). Recently, we and others reported recurrent somatic BCOR loss-of-function mutations in myelodysplastic syndrome and acute myelogenous leukaemia (AML). However, the role of BCOR in normal hematopoiesis is largely unknown. Here, we explored the function of BCOR in myeloid cells using myeloid murine models with Bcor conditional loss-of-function or overexpression alleles. Bcor mutant bone marrow cells showed significantly higher proliferation and differentiation rates with upregulated expression of Hox genes. Mutation of Bcor reduced protein levels of RING1B, an H2A ubiquitin ligase subunit of PRC1 family complexes and reduced H2AK119ub upstream of upregulated HoxA genes. Global RNA expression profiling in murine cells and AML patient samples with BCOR loss-of-function mutation suggested that loss of BCOR expression is associated with enhanced cell proliferation and myeloid differentiation. Our results strongly suggest that BCOR plays an indispensable role in hematopoiesis by inhibiting myeloid cell proliferation and differentiation and offer a mechanistic explanation for how BCOR regulates gene expression such as Hox genes. PMID:26847029

  15. Enhancer regions show high histone H3.3 turnover that changes during differentiation

    PubMed Central

    Deaton, Aimee M; Gómez-Rodríguez, Mariluz; Mieczkowski, Jakub; Tolstorukov, Michael Y; Kundu, Sharmistha; Sadreyev, Ruslan I; Jansen, Lars ET; Kingston, Robert E

    2016-01-01

    The organization of DNA into chromatin is dynamic; nucleosomes are frequently displaced to facilitate the ability of regulatory proteins to access specific DNA elements. To gain insight into nucleosome dynamics, and to follow how dynamics change during differentiation, we used a technique called time-ChIP to quantitatively assess histone H3.3 turnover genome-wide during differentiation of mouse ESCs. We found that, without prior assumptions, high turnover could be used to identify regions involved in gene regulation. High turnover was seen at enhancers, as observed previously, with particularly high turnover at super-enhancers. In contrast, regions associated with the repressive Polycomb-Group showed low turnover in ESCs. Turnover correlated with DNA accessibility. Upon differentiation, numerous changes in H3.3 turnover rates were observed, the majority of which occurred at enhancers. Thus, time-ChIP measurement of histone turnover shows that active enhancers are unusually dynamic in ESCs and changes in highly dynamic nucleosomes predominate at enhancers during differentiation. DOI: http://dx.doi.org/10.7554/eLife.15316.001 PMID:27304074

  16. BMI1 Is Expressed in Canine Osteosarcoma and Contributes to Cell Growth and Chemotherapy Resistance

    PubMed Central

    Gandour-Edwards, Regina; Withers, Sita S.; Holt, Roseline; Rebhun, Robert B.

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy. PMID:26110620

  17. Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer

    PubMed Central

    Nacerddine, Karim; Beaudry, Jean-Bernard; Ginjala, Vasudeva; Westerman, Bart; Mattiroli, Francesca; Song, Ji-Ying; van der Poel, Henk; Ponz, Olga Balagué; Pritchard, Colin; Cornelissen-Steijger, Paulien; Zevenhoven, John; Tanger, Ellen; Sixma, Titia K.; Ganesan, Shridar; van Lohuizen, Maarten

    2012-01-01

    Prostate cancer (PCa) is a major lethal malignancy in men, but the molecular events and their interplay underlying prostate carcinogenesis remain poorly understood. Epigenetic events and the upregulation of polycomb group silencing proteins including Bmi1 have been described to occur during PCa progression. Here, we found that conditional overexpression of Bmi1 in mice induced prostatic intraepithelial neoplasia, and elicited invasive adenocarcinoma when combined with PTEN haploinsufficiency. In addition, Bmi1 and the PI3K/Akt pathway were coactivated in a substantial fraction of human high-grade tumors. We found that Akt mediated Bmi1 phosphorylation, enhancing its oncogenic potential in an Ink4a/Arf-independent manner. This process also modulated the DNA damage response and affected genomic stability. Together, our findings demonstrate the etiological role of Bmi1 in PCa, unravel an oncogenic collaboration between Bmi1 and the PI3K/Akt pathway, and provide mechanistic insights into the modulation of Bmi1 function by phosphorylation during prostate carcinogenesis. PMID:22505453

  18. The TRPM7 chanzyme is cleaved to release a chromatin modifying kinase

    PubMed Central

    Krapivinsky, Grigory; Krapivinsky, Luba; Manasian, Yunona; Clapham, David E.

    2014-01-01

    SUMMARY TRPM7 is a ubiquitous ion channel and kinase, a unique ‘chanzyme’, required for proper early embryonic development. It conducts Zn2+, Mg2+, Ca2+ as well as monovalent cations, and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell type-specific manner. These TRPM7 Cleaved Kinase fragments (M7CKs) translocate to the nucleus and bind multiple components of chromatin remodeling complexes, including Polycomb group proteins. In the nucleus, the kinase phosphorylates specific serines/threonines of histones. M7CK-dependent phosphorylation of H3Ser10 at promoters of TRPM7-dependent genes correlates with their activity. We also demonstrate that cytosolic free [Zn2+] is TRPM7-dependent and regulates M7CK binding to transcription factors containing zinc-finger domains. These findings suggest that TRPM7-mediated modulation of intracellular Zn2+ concentration couples ion channel signaling to epigenetic chromatin covalent modifications that affect gene expression patterns. PMID:24855944

  19. Enhancer of zeste homolog 2 depletion arrests the proliferation of hepatoblastoma cells.

    PubMed

    Wang, Yue; Xiao, Yongtao; Chen, Kai; Chen, Sheng; Zhang, Min; Wu, Zhixiang; Wu, Yeming

    2016-03-01

    Hepatoblastoma is the most common type of malignant liver tumor in children. While outcomes have been greatly improved in the past decades, the treatment of advanced hepatoblastoma has remained challenging. Enhancer of zeste homologue 2 (EZH2), a member of the polycomb group regulators of gene activity, is amplified and overexpressed in a variety of cancers. However, the role of EZH2 in hepatoblastoma has remained to be fully elucidated. The purpose of the present study was to investigate the expression patterns of EZH2 in hepatoblastoma cells and to assess the anti‑cancer effects of EZH2 depletion. Western blot analysis revealed that EZH2 expression was significantly higher in hepatoblastoma specimens compared with that in peri‑tumor tissues, while p27 was reduced in hepatoblastoma. Suppression of EHZ2 using lentiviral small hairpin RNA inhibited hepatoblastoma cell proliferation, induced cell cycle arrest in G1 phase and enhanced the expression of G1/S‑phase checkpoint protein p27. These results suggested that EZH2 may represent a potential diagnostic marker and therapeutic target for the treatment of hepatoblastoma.

  20. BMI1 is expressed in canine osteosarcoma and contributes to cell growth and chemotherapy resistance.

    PubMed

    Shahi, Mehdi Hayat; York, Daniel; Gandour-Edwards, Regina; Withers, Sita S; Holt, Roseline; Rebhun, Robert B

    2015-01-01

    BMI1, a stem cell factor and member of the polycomb group of genes, has been shown to contribute to growth and chemoresistance of several human malignancies including primary osteosarcoma (OSA). Naturally occurring OSA in the dog represents a large animal model of human OSA, however the potential role of BMI1 in canine primary and metastatic OSA has not been examined. Immunohistochemical staining of canine primary and metastatic OSA tumors revealed strong nuclear expression of BMI1. An identical staining pattern was found in both primary and metastatic human OSA tissues. Canine OSA cell lines (Abrams, Moresco, and D17) expressed high levels of BMI1 compared with canine osteoblasts and knockdown or inhibition of BMI1 by siRNA or by small molecule BMI1-inhibitor PTC-209 demonstrated a role for BMI1 in canine OSA cell growth and resistance to carboplatin and doxorubicin chemotherapy. These findings suggest that inhibition of BMI1 in primary or metastatic OSA may improve response to chemotherapy and that the dog may serve as a large animal model to evaluate such therapy.

  1. Transcriptional activation of NAD+-dependent protein deacetylase SIRT1 by nuclear receptor TLX.

    PubMed

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi; Horio, Yoshiyuki

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD(+)-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  2. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum.

    PubMed

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum , the purple pigment violacein is under positive regulation by the N -acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.

  3. Mitosis-associated repression in development.

    PubMed

    Esposito, Emilia; Lim, Bomyi; Guessous, Ghita; Falahati, Hanieh; Levine, Michael

    2016-07-01

    Transcriptional repression is a pervasive feature of animal development. Here, we employ live-imaging methods to visualize the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm of early Drosophila embryos. Snail target enhancers were attached to an MS2 reporter gene, permitting detection of nascent transcripts in living embryos. The transgenes exhibit initially broad patterns of transcription but are refined by repression in the mesoderm following mitosis. These observations reveal a correlation between mitotic silencing and Snail repression. We propose that mitosis and other inherent discontinuities in transcription boost the activities of sequence-specific repressors, such as Snail. © 2016 Esposito et al.; Published by Cold Spring Harbor Laboratory Press.

  4. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.

    PubMed

    Malik, Sohail; Roeder, Robert G

    2010-11-01

    The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.

  5. High density growth of T7 expression strains with auto-induction option

    DOEpatents

    Studier, F. William

    2010-07-20

    A bacterial growth medium for promoting auto-induction of transcription of cloned DNA in cultures of bacterial cells grown batchwise is disclosed. The transcription is under the control of a lac repressor. Also disclosed is a bacterial growth medium for improving the production of a selenomethionine-containing protein or polypeptide in a bacterial cell, the protein or polypeptide being produced by recombinant DNA techniques from a lac or T7lac promoter, the bacterial cell encoding a vitamin B12-dependent homocysteine methylase. Finally, disclosed is a bacterial growth medium for suppressing auto-induction of expression in cultures of bacterial cells grown batchwise, said transcription being under the control of lac repressor.

  6. Transcriptional activation of NAD{sup +}-dependent protein deacetylase SIRT1 by nuclear receptor TLX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwahara, Naotoshi; Hisahara, Shin; Hayashi, Takashi

    2009-09-04

    An orphan nuclear receptor TLX is a transcriptional repressor that promotes the proliferation and self-renewal of neural precursor cells (NPCs). SIRT1, an NAD{sup +}-dependent protein deacetylase, is highly expressed in the NPCs and participates in neurogenesis. Here, we found that TLX colocalized with SIRT1 and knockdown of TLX by small interfering RNAs decreased SIRT1 levels in NPCs. TLX increased the SIRT1 expression by binding to the newly identified TLX-activating element in the SIRT1 gene promoter in HEK293 cells. Thus, TLX is an inducer of SIRT1 and may contribute to neurogenesis both as a transactivator and as a repressor.

  7. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors.

    PubMed

    Elmi, Muna; Matsumoto, Yoshiki; Zeng, Zhao-jun; Lakshminarasimhan, Pavithra; Yang, Weiwen; Uemura, Akiyoshi; Nishikawa, Shin-ichi; Moshiri, Alicia; Tajima, Nobuyoshi; Agren, Hans; Funa, Keiko

    2010-10-01

    The orphan nuclear receptor TLX has been proposed to act as a repressor of cell cycle inhibitors to maintain the neural stem cells in an undifferentiated state, and prevents commitment into astrocyte lineages. However, little is known about the mechanism of TLX in neuronal lineage commitment and differentiation. A majority of adult rat hippocampus-derived progenitors (AHPs) cultured in the presence of FGF express a high level of TLX and a fraction of these cells also express the proneural gene MASH1. Upon FGF withdrawal, TLX rapidly decreased, while MASH1 was intensely expressed within 1h, decreasing gradually to disappear at 24h. Adenoviral transduction of TLX in AHP cells in the absence of FGF transiently increased cell proliferation, however, later resulted in neuronal differentiation by inducing MASH1, Neurogenin1, DCX, and MAP2ab. Furthermore, TLX directly targets and activates the MASH1 promoter through interaction with Sp1, recruiting co-activators whereas dismissing the co-repressor HDAC4. Conversely, silencing of TLX in AHPs decreased beta-III tubulin and DCX expression and promoted glial differentiation. Our results thus suggest that TLX not only acts as a repressor of cell cycle and glial differentiation but also activates neuronal lineage commitment in AHPs. Copyright 2010 Elsevier Inc. All rights reserved.

  8. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis

    PubMed Central

    Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A.; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M.; Maitra, Sushmit; Thomas, Stephen G.; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F.; Olszewski, Neil E.; Sun, Tai-ping

    2016-01-01

    The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein–protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors—PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)—that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development. PMID:26773002

  9. A Negative-Feedback Loop between the Detoxification/Antioxidant Response Factor SKN-1 and Its Repressor WDR-23 Matches Organism Needs with Environmental Conditions

    PubMed Central

    Leung, Chi K.; Wang, Ying; Deonarine, Andrew; Tang, Lanlan; Prasse, Stephanie

    2013-01-01

    Negative-feedback loops between transcription factors and repressors in responses to xenobiotics, oxidants, heat, hypoxia, DNA damage, and infection have been described. Although common, the function of feedback is largely unstudied. Here, we define a negative-feedback loop between the Caenorhabditis elegans detoxification/antioxidant response factor SKN-1/Nrf and its repressor wdr-23 and investigate its function in vivo. Although SKN-1 promotes stress resistance and longevity, we find that tight regulation by WDR-23 is essential for growth and reproduction. By disabling SKN-1 transactivation of wdr-23, we reveal that feedback is required to set the balance between growth/reproduction and stress resistance/longevity. We also find that feedback is required to set the sensitivity of a core SKN-1 target gene to an electrophile. Interestingly, the effect of feedback on target gene induction is greatly reduced when the stress response is strongly activated, presumably to ensure maximum activation of cytoprotective genes during potentially fatal conditions. Our work provides a framework for understanding the function of negative feedback in inducible stress responses and demonstrates that manipulation of feedback alone can shift the balance of competing animal processes toward cell protection, health, and longevity. PMID:23836880

  10. Adaptive style and differences in parent and child report of health-related quality of life in children with cancer.

    PubMed

    Jurbergs, Nichole; Russell, Kathryn M W; Long, Alanna; Phipps, Sean

    2008-01-01

    The objective of this study was to examine the self-reported health-related quality of life (HRQL) of children with cancer, and the consistency between child and parent reports of child HRQL, as a function of the child's adaptive style. Participants included 199 children with cancer, 108 healthy children, and their parents. Children completed self-report measures of HRQL and adaptive style. Measures of adaptive style were used to categorize children as high anxious, low anxious, defensive high anxious or repressor. Parents completed measures reporting their children's HRQL. Adaptive style was a significant predictor of child-reported HRQL, particularly on the psychosocial scales, with children identified as repressors reporting the best HRQL. Adaptive style was also predictive of discrepancies between parent and child report of child HRQL. Repressor and low anxious children reported better HRQL than did their parents, while high anxious children reported poorer HRQL, regardless of health status. Adaptive style is a significant determinant of self-reported HRQL in children, particularly in psychosocial domains, while health status (i.e. cancer patient vs healthy control) is predictive only of physical health domains. Researchers and clinicians should be aware of the impact of child adaptive style when assessing HRQL outcomes using self- or parent report.

  11. Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase.

    PubMed

    Kang, Dong-Min; Michon, Christophe; Morinaga, Tetsuro; Tanaka, Kosei; Takenaka, Shinji; Ishikawa, Shu; Yoshida, Ken-Ichi

    2017-07-11

    Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD + -dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.

  12. Differential temporal control of Foxa.a and Zic-r.b specifies brain versus notochord fate in the ascidian embryo.

    PubMed

    Ikeda, Tatsuro; Satou, Yutaka

    2017-01-01

    In embryos of an invertebrate chordate, Ciona intestinalis, two transcription factors, Foxa.a and Zic-r.b, are required for specification of the brain and the notochord, which are derived from distinct cell lineages. In the brain lineage, Foxa.a and Zic-r.b are expressed with no temporal overlap. In the notochord lineage, Foxa.a and Zic-r.b are expressed simultaneously. In the present study, we found that the temporally non-overlapping expression of Foxa.a and Zic-r.b in the brain lineage was regulated by three repressors: Prdm1-r.a (formerly called BZ1), Prdm1-r.b (BZ2) and Hes.a. In morphant embryos of these three repressor genes, Foxa.a expression was not terminated at the normal time, and Zic-r.b was precociously expressed. Consequently, Foxa.a and Zic-r.b were expressed simultaneously, which led to ectopic activation of Brachyury and its downstream pathways for notochord differentiation. Thus, temporal controls by transcriptional repressors are essential for specification of the two distinct fates of brain and notochord by Foxa.a and Zic-r.b Such a mechanism might enable the repeated use of a limited repertoire of transcription factors in developmental gene regulatory networks. © 2017. Published by The Company of Biologists Ltd.

  13. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.

    PubMed

    Kasajima, Ichiro; Sasaki, Katsutomo

    2016-05-03

    The development of new phenotypes is key to the commercial development of the main floricultural species and cultivars. Important new phenotypes include features such as multiple-flowers, color variations, increased flower size, new petal shapes, variegation and distinctive petal margin colourations. Although their commercial use is not yet common, the transgenic technologies provide a potentially rapid means of generating interesting new phenotypes. In this report, we construct 5 vectors which we expected to change the color of the flower anthocyanins, from purple to blue, regulating vacuolar pH. When these constructs were transformed into purple torenia, we unexpectedly recovered some genotypes having slightly margined petals. These transgenic lines expressed a chimeric repressor of the petunia PhPH4 gene under the control of Cauliflower mosaic virus 35 S RNA promoter. PhPH4 is an R2R3-type MYB transcription factor. The transgenic lines lacked pigmentation in the petal margin cells both on the adaxial and abaxial surfaces. Expressions of Flavanone 3-hydroxylase (F3H), Flavonoid 3'-hydroxylase (F3'H) and Flavonoid 3'5'-hydroxylase (F3'5'H) genes were reduced in the margins of these transgenic lines, suggesting an inhibitory effect of PhPH4 repressor on anthocyanin synthesis.

  14. DNA residence time is a regulatory factor of transcription repression

    PubMed Central

    Clauß, Karen; Popp, Achim P.; Schulze, Lena; Hettich, Johannes; Reisser, Matthias; Escoter Torres, Laura; Uhlenhaut, N. Henriette

    2017-01-01

    Abstract Transcription comprises a highly regulated sequence of intrinsically stochastic processes, resulting in bursts of transcription intermitted by quiescence. In transcription activation or repression, a transcription factor binds dynamically to DNA, with a residence time unique to each factor. Whether the DNA residence time is important in the transcription process is unclear. Here, we designed a series of transcription repressors differing in their DNA residence time by utilizing the modular DNA binding domain of transcription activator-like effectors (TALEs) and varying the number of nucleotide-recognizing repeat domains. We characterized the DNA residence times of our repressors in living cells using single molecule tracking. The residence times depended non-linearly on the number of repeat domains and differed by more than a factor of six. The factors provoked a residence time-dependent decrease in transcript level of the glucocorticoid receptor-activated gene SGK1. Down regulation of transcription was due to a lower burst frequency in the presence of long binding repressors and is in accordance with a model of competitive inhibition of endogenous activator binding. Our single molecule experiments reveal transcription factor DNA residence time as a regulatory factor controlling transcription repression and establish TALE-DNA binding domains as tools for the temporal dissection of transcription regulation. PMID:28977492

  15. Foxp1/2/4 regulate endochondral ossification as a suppresser complex

    PubMed Central

    Zhao, Haixia; Zhou, Wenrong; Yao, Zhengju; Wan, Yong; Cao, Jingjing; Zhang, Lingling; Zhao, Jianzhi; Li, Hanjun; Zhou, Rujiang; Li, Baojie; Wei, Gang; Zhang, Zhenlin; French, Catherine A.; Dekker, Joseph D.; Yang, Yingzi; Fisher, Simon E.; lucker, Haley O.; Guo, Xizhi

    2015-01-01

    Osteoblast induction and differentiation in developing long bones is dynamically controlled by the opposing action of transcriptional activators and repressors. In contrast to the long list of activators that have been discovered over past decades, the network of repressors is not well-defined. Here we identify the expression of Foxp1/2/4 proteins, comprised of Forkhead-box (Fox) transcription factors of the Foxp subfamily, in both perichondrial skeletal progenitors and proliferating chondrocytes during endochondral ossification. Mice carrying loss-of-function and gain-of-function Foxp mutations had gross defects in appendicular skeleton formation. At the cellular level, over-expression of Foxp1/2/4 in chondroctyes abrogated osteoblast formation and chondrocyte hypertrophy. Conversely, single or compound deficiency of Foxp1/2/4 in skeletal progenitors or chondrocytes resulted in premature osteoblast differentiation in the perichondrium, coupled with impaired proliferation, survival, and hypertrophy of chondrocytes in the growth plate. Foxp1/2/4 and Runx2 proteins interacted in vitro and in vivo, and Foxp1/2/4 repressed Runx2 transactivation function in heterologous cells. This study establishes Foxp1/2/4 proteins as coordinators of osteogenesis and chondrocyte hypertrophy in developing long bones and suggests that a novel transcriptional repressor network involving Foxp1/2/4 may regulate Runx2 during endochondral ossification. PMID:25527076

  16. O-GlcNAcylation of master growth repressor DELLA by SECRET AGENT modulates multiple signaling pathways in Arabidopsis.

    PubMed

    Zentella, Rodolfo; Hu, Jianhong; Hsieh, Wen-Ping; Matsumoto, Peter A; Dawdy, Andrew; Barnhill, Benjamin; Oldenhof, Harriëtte; Hartweck, Lynn M; Maitra, Sushmit; Thomas, Stephen G; Cockrell, Shelley; Boyce, Michael; Shabanowitz, Jeffrey; Hunt, Donald F; Olszewski, Neil E; Sun, Tai-Ping

    2016-01-15

    The DELLA family of transcription regulators functions as master growth repressors in plants by inhibiting phytohormone gibberellin (GA) signaling in response to developmental and environmental cues. DELLAs also play a central role in mediating cross-talk between GA and other signaling pathways via antagonistic direct interactions with key transcription factors. However, how these crucial protein-protein interactions can be dynamically regulated during plant development remains unclear. Here, we show that DELLAs are modified by the O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) SECRET AGENT (SEC) in Arabidopsis. O-GlcNAcylation of the DELLA protein REPRESSOR OF ga1-3 (RGA) inhibits RGA binding to four of its interactors-PHYTOCHROME-INTERACTING FACTOR3 (PIF3), PIF4, JASMONATE-ZIM DOMAIN1, and BRASSINAZOLE-RESISTANT1 (BZR1)-that are key regulators in light, jasmonate, and brassinosteroid signaling pathways, respectively. Consistent with this, the sec-null mutant displayed reduced responses to GA and brassinosteroid and showed decreased expression of several common target genes of DELLAs, BZR1, and PIFs. Our results reveal a direct role of OGT in repressing DELLA activity and indicate that O-GlcNAcylation of DELLAs provides a fine-tuning mechanism in coordinating multiple signaling activities during plant development. © 2016 Zentella et al.; Published by Cold Spring Harbor Laboratory Press.

  17. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA.

    PubMed

    Yang, W; Ni, L; Somerville, R L

    1993-06-15

    Highly purified preparations of trp repressor (TrpR) protein derived from Escherichia coli strains that were engineered to overexpress this material were found to contain another protein, of 21 kDa. The second protein, designated WrbA [for tryptophan (W) repressor-binding protein] remained associated with its namesake through several sequential protein fractionation steps. The N-terminal amino acid sequence of the WrbA protein guided the design of two degenerate oligonucleotides that were used as probes in the cloning of the wrbA gene (198 codons). The WrbA protein, in purified form, was found by several criteria to enhance the formation and/or stability of noncovalent complexes between TrpR holorepressor and its primary operator targets. The formation of an operator-holorepressor-WrbA ternary complex was demonstrated by gel mobility-shift analysis. The WrbA protein alone does not interact with the trp operator. During the stationary phase, cells deficient in the WrbA protein were less efficient than wild type in their ability to repress the trp promoter. It is proposed that the WrbA protein functions as an accessory element in blocking TrpR-specific transcriptional processes that might be physiologically disadvantageous in the stationary phase of the bacterial life cycle.

  18. RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis.

    PubMed

    Lam, Patricia; Zhao, Lifang; McFarlane, Heather E; Aiga, Mytyl; Lam, Vivian; Hooker, Tanya S; Kunst, Ljerka

    2012-08-01

    The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).

  19. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    PubMed Central

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  20. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade.

    PubMed

    Yang, Dong-Lei; Yao, Jian; Mei, Chuan-Sheng; Tong, Xiao-Hong; Zeng, Long-Jun; Li, Qun; Xiao, Lang-Tao; Sun, Tai-ping; Li, Jigang; Deng, Xing-Wang; Lee, Chin Mei; Thomashow, Michael F; Yang, Yinong; He, Zuhua; He, Sheng Yang

    2012-05-08

    Plants must effectively defend against biotic and abiotic stresses to survive in nature. However, this defense is costly and is often accompanied by significant growth inhibition. How plants coordinate the fluctuating growth-defense dynamics is not well understood and remains a fundamental question. Jasmonate (JA) and gibberellic acid (GA) are important plant hormones that mediate defense and growth, respectively. Binding of bioactive JA or GA ligands to cognate receptors leads to proteasome-dependent degradation of specific transcriptional repressors (the JAZ or DELLA family of proteins), which, at the resting state, represses cognate transcription factors involved in defense (e.g., MYCs) or growth [e.g. phytochrome interacting factors (PIFs)]. In this study, we found that the coi1 JA receptor mutants of rice (a domesticated monocot crop) and Arabidopsis (a model dicot plant) both exhibit hallmark phenotypes of GA-hypersensitive mutants. JA delays GA-mediated DELLA protein degradation, and the della mutant is less sensitive to JA for growth inhibition. Overexpression of a selected group of JAZ repressors in Arabidopsis plants partially phenocopies GA-associated phenotypes of the coi1 mutant, and JAZ9 inhibits RGA (a DELLA protein) interaction with transcription factor PIF3. Importantly, the pif quadruple (pifq) mutant no longer responds to JA-induced growth inhibition, and overexpression of PIF3 could partially overcome JA-induced growth inhibition. Thus, a molecular cascade involving the COI1-JAZ-DELLA-PIF signaling module, by which angiosperm plants prioritize JA-mediated defense over growth, has been elucidated.

  1. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution.

    PubMed

    Okano, Yosuke; Aono, Naoki; Hiwatashi, Yuji; Murata, Takashi; Nishiyama, Tomoaki; Ishikawa, Takaaki; Kubo, Minoru; Hasebe, Mitsuyasu

    2009-09-22

    Land plants have distinct developmental programs in haploid (gametophyte) and diploid (sporophyte) generations. Although usually the two programs strictly alternate at fertilization and meiosis, one program can be induced during the other program. In a process called apogamy, cells of the gametophyte other than the egg cell initiate sporophyte development. Here, we report for the moss Physcomitrella patens that apogamy resulted from deletion of the gene orthologous to the Arabidopsis thaliana CURLY LEAF (PpCLF), which encodes a component of polycomb repressive complex 2 (PRC2). In the deletion lines, a gametophytic vegetative cell frequently gave rise to a sporophyte-like body. This body grew indeterminately from an apical cell with the character of a sporophytic pluripotent stem cell but did not form a sporangium. Furthermore, with continued culture, the sporophyte-like body branched. Sporophyte branching is almost unknown among extant bryophytes. When PpCLF was expressed in the deletion lines once the sporophyte-like bodies had formed, pluripotent stem cell activity was arrested and a sporangium-like organ formed. Supported by the observed pattern of PpCLF expression, these results demonstrate that, in the gametophyte, PpCLF represses initiation of a sporophytic pluripotent stem cell and, in the sporophyte, represses that stem cell activity and induces reproductive organ development. In land plants, branching, along with indeterminate apical growth and delayed initiation of spore-bearing reproductive organs, were conspicuous innovations for the evolution of a dominant sporophyte plant body. Our study provides insights into the role of PRC2 gene regulation for sustaining evolutionary innovation in land plants.

  2. Epigenetic dysregulation of key developmental genes in radiation-induced rat mammary carcinomas.

    PubMed

    Daino, Kazuhiro; Nishimura, Mayumi; Imaoka, Tatsuhiko; Takabatake, Masaru; Morioka, Takamitsu; Nishimura, Yukiko; Shimada, Yoshiya; Kakinuma, Shizuko

    2018-02-13

    With the increase in the number of long-term cancer survivors worldwide, there is a growing concern about the risk of secondary cancers induced by radiotherapy. Epigenetic modifications of genes associated with carcinogenesis are attractive targets for the prevention of cancer owing to their reversible nature. To identify genes with possible changes in functionally relevant DNA methylation patterns in mammary carcinomas induced by radiation exposure, we performed microarray-based global DNA methylation and expression profiling in γ-ray-induced rat mammary carcinomas and normal mammary glands. The gene expression profiling identified dysregulation of developmentally related genes, including the downstream targets of polycomb repressive complex 2 (PRC2) and overexpression of enhancer of zeste homolog 2, a component of PRC2, in the carcinomas. By integrating expression and DNA methylation profiles, we identified ten hypermethylated and three hypomethylated genes that possibly act as tumor-suppressor genes and oncogenes dysregulated by aberrant DNA methylation; half of these genes encode developmental transcription factors. Bisulfite sequencing and quantitative PCR confirmed the dysregulation of the polycomb-regulated developmentally related transcription-factor genes Dmrt2, Hoxa7, Foxb1, Sox17, Lhx8, Gata3 and Runx1. Silencing of Hoxa7 was further verified by immunohistochemistry. These results suggest that, in radiation-induced mammary gland carcinomas, PRC2-mediated aberrant DNA methylation leads to dysregulation of developmentally related transcription-factor genes. Our findings provide clues to molecular mechanisms linking epigenetic regulation and radiation-induced breast carcinogenesis and underscore the potential of such epigenetic mechanisms as targets for cancer prevention. © 2018 UICC.

  3. New Partners in Regulation of Gene Expression: The Enhancer of Trithorax and Polycomb Corto Interacts with Methylated Ribosomal Protein L12 Via Its Chromodomain

    PubMed Central

    Coléno-Costes, Anne; Jang, Suk Min; de Vanssay, Augustin; Rougeot, Julien; Bouceba, Tahar; Randsholt, Neel B.; Gibert, Jean-Michel; Le Crom, Stéphane; Mouchel-Vielh, Emmanuèle

    2012-01-01

    Chromodomains are found in many regulators of chromatin structure, and most of them recognize methylated lysines on histones. Here, we investigate the role of the Drosophila melanogaster protein Corto's chromodomain. The Enhancer of Trithorax and Polycomb Corto is involved in both silencing and activation of gene expression. Over-expression of the Corto chromodomain (CortoCD) in transgenic flies shows that it is a chromatin-targeting module, critical for Corto function. Unexpectedly, mass spectrometry analysis reveals that polypeptides pulled down by CortoCD from nuclear extracts correspond to ribosomal proteins. Furthermore, real-time interaction analyses demonstrate that CortoCD binds with high affinity RPL12 tri-methylated on lysine 3. Corto and RPL12 co-localize with active epigenetic marks on polytene chromosomes, suggesting that both are involved in fine-tuning transcription of genes in open chromatin. RNA–seq based transcriptomes of wing imaginal discs over-expressing either CortoCD or RPL12 reveal that both factors deregulate large sets of common genes, which are enriched in heat-response and ribosomal protein genes, suggesting that they could be implicated in dynamic coordination of ribosome biogenesis. Chromatin immunoprecipitation experiments show that Corto and RPL12 bind hsp70 and are similarly recruited on gene body after heat shock. Hence, Corto and RPL12 could be involved together in regulation of gene transcription. We discuss whether pseudo-ribosomal complexes composed of various ribosomal proteins might participate in regulation of gene expression in connection with chromatin regulators. PMID:23071455

  4. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    PubMed

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. A Single Molecule Study of Two Bacteriophage Epigenetic Switches

    NASA Astrophysics Data System (ADS)

    Wang, Haowei

    Epigenetic switches allow organisms to evolve into different states by activating/repressing different sets of genes without mutations of the underlying DNA sequence. The study of epigenetic switches is very important to understand the mechanism of human development, the origin of cancer, mental illness and fundamental processes such as gene regulation. The coliphage lambda epigenetic switch, which allows switching from lysogeny to lysis, has been studied for more than 50 years as a paradigm, and has recently received renewed attention. Atomic force microscopy (AFM) was used here to show that the lambda repressor oligomerizes on DNA, primarily as a dodecamer, to secure a DNA loop, which is the basis of the lambda switch. This study also provides support for the idea that specifically bound repressor stabilizes adjacent, non-specifically bound repressor molecules, which confers robustness to the switch. 186 is a member of a different coliphage family. One of the major differences between the two coliphage families is that lambda phages can be induced to switch from the lysogenic to the lytic state by UV radiation, but most coliphages of P2 family, to which 186 belongs, cannot. Interaction between coliphage 186 repressor and DNA is characterized by AFM and tethered particle motion (TPM). To expedite analysis of the AFM data, MatLab codes were written to automate the laborious, manual tracing procedures. The programs automatically recognize DNA segments and protein particles in an image, in order to measure the DNA length and position of bound particles as well as their height, diameter and volume. Application of these algorithms greatly improved the efficiency of AFM analysis. It was showed that 186 CI dimers form heptameric wheels, which induce DNA wrapping and different kinds of DNA looping producing various conformations of nucleoprotein complexes. Information about the dynamics of DNA wrapping and looping on 186 CI particles was also obtained by TPM.

  6. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    PubMed Central

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of transcriptional activators. PMID:25659381

  7. CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum.

    PubMed

    Borovsky, Yelena; Sharma, Vinod K; Verbakel, Henk; Paran, Ilan

    2015-06-01

    The APETALA2 transcription factor homolog CaAP2 is a candidate gene for a flowering repressor in pepper, as revealed by induced-mutation phenotype, and a candidate underlying a major QTL controlling natural variation in flowering time. To decipher the genetic control of transition to flowering in pepper (Capsicum spp.) and determine the extent of gene function conservation compared to model species, we isolated and characterized several ethyl methanesulfonate (EMS)-induced mutants that vary in their flowering time compared to the wild type. In the present study, we report on the isolation of an early-flowering mutant that flowers after four leaves on the primary stem compared to nine leaves in the wild-type 'Maor'. By genetic mapping and sequencing of putative candidate genes linked to the mutant phenotype, we identified a member of the APETALA2 (AP2) transcription factor family, CaAP2, which was disrupted in the early-flowering mutant. CaAP2 is a likely ortholog of AP2 that functions as a repressor of flowering in Arabidopsis. To test whether CaAP2 has an effect on controlling natural variation in the transition to flowering in pepper, we performed QTL mapping for flowering time in a cross between early and late-flowering C. annuum accessions. We identified a major QTL in a region of chromosome 2 in which CaAP2 was the most significant marker, explaining 52 % of the phenotypic variation of the trait. Sequence comparison of the CaAP2 open reading frames in the two parents used for QTL mapping did not reveal significant variation. In contrast, significant differences in expression level of CaAP2 were detected between near-isogenic lines that differ for the flowering time QTL, supporting the putative function of CaAP2 as a major repressor of flowering in pepper.

  8. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Dongmin; Perros, Frédéric; Caramori, Gaetano

    Highlights: • Nuclear IL-33 expression is reduced in vascular endothelial cells from PAH patients. • Knockdown of IL-33 leads to increased IL-6 and sST2 mRNA expression. • IL-33 binds homeobox motifs in target gene promoters and recruits repressor proteins. - Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the “alarmin” family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclearmore » in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.« less

  9. Understanding how cells allocate metals using metal sensors and metallochaperones.

    PubMed

    Tottey, Stephen; Harvie, Duncan R; Robinson, Nigel J

    2005-10-01

    Each metalloprotein must somehow acquire the correct metal. We review the insights into metal specificity in cells provided by studies of ArsR-SmtB DNA binding, metal-responsive transcriptional repressors, and a bacterial copper chaperone. Cyanobacteria are the one bacterial group that have known enzymatic demand for cytoplasmic copper import. The copper chaperone and ATPases that supply cyanobacterial plastocyanin and cytochrome oxidase are reviewed, along with related ATPases for cobalt and zinc. These studies highlight the contributions of protein-protein interactions to metal speciation. Metal sensors and metallochaperones, along with metal transporters and metal-storage proteins, act in concert not only to supply the correct metals but also to withhold the wrong ones.

  10. EZH2 expression is a prognostic biomarker in patients with colorectal cancer treated with anti-EGFR therapeutics.

    PubMed

    Yamamoto, Itaru; Nosho, Katsuhiko; Kanno, Shinichi; Igarashi, Hisayoshi; Kurihara, Hiroyoshi; Ishigami, Keisuke; Ishiguro, Kazuya; Mitsuhashi, Kei; Maruyama, Reo; Koide, Hideyuki; Okuda, Hiroyuki; Hasegawa, Tadashi; Sukawa, Yasutaka; Okita, Kenji; Takemasa, Ichiro; Yamamoto, Hiroyuki; Shinomura, Yasuhisa; Nakase, Hiroshi

    2017-03-14

    The polycomb group protein enhancer of zeste homolog 2 (EZH2) is a methyltransferase that suppresses microRNA-31 (miR-31) in various human malignancies including colorectal cancer. We recently suggested that miR-31 regulates the signaling pathway downstream of epidermal growth factor receptor (EGFR) in colorectal cancer. Therefore, we conducted this study for assessing the relationship between EZH2 expression and clinical outcomes in patients with colorectal cancer treated with anti-EGFR therapeutics. We immunohistochemically evaluated EZH2 expression and assessed miR-31 and gene mutations [KRAS (codon 61/146), NRAS (codon 12/13/61), and BRAF (codon 600)] in 109 patients with colorectal cancer harboring KRAS (codon 12/13) wild-type. We also evaluated the progression-free survival (PFS) and overall survival (OS). In the result, low EZH2 expression was significantly associated with shorter PFS (log-rank test: P = 0.023) and OS (P = 0.036) in patients with colorectal cancer. In the low-miR-31-expression group and the KRAS (codon 61/146), NRAS, and BRAF wild-type groups, a significantly shorter PFS (P = 0.022, P = 0.039, P = 0.021, and P = 0.036, respectively) was observed in the EZH2 low-expression groups than in the high-expression groups. In the multivariate analysis, low EZH2 expression was associated with a shorter PFS (P = 0.046), independent of the mutational status and miR-31. In conclusion, EZH2 expression was associated with survival in patients with colorectal cancer who were treated with anti-EGFR therapeutics. Moreover, low EZH2 expression was independently associated with shorter PFS in patients with cancer, suggesting that EZH2 expression is a useful additional prognostic biomarker for anti-EGFR therapy.

  11. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum

    PubMed Central

    Devescovi, Giulia; Kojic, Milan; Covaceuszach, Sonia; Cámara, Miguel; Williams, Paul; Bertani, Iris; Subramoni, Sujatha; Venturi, Vittorio

    2017-01-01

    In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control. PMID:28326068

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulatormore » of the IFN/STAT1 signaling pathway.« less

  13. Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains

    PubMed Central

    Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng

    2012-01-01

    Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628

  14. Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

    PubMed

    Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping

    2017-02-13

    The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.

  15. Trithorax complex component Menin controls differentiation and maintenance of T helper 17 cells

    PubMed Central

    Watanabe, Yukiko; Onodera, Atsushi; Kanai, Urara; Ichikawa, Tomomi; Obata-Ninomiya, Kazushige; Wada, Tomoko; Kiuchi, Masahiro; Iwamura, Chiaki; Tumes, Damon J.; Shinoda, Kenta; Yagi, Ryoji; Motohashi, Shinichiro; Hirahara, Kiyoshi; Nakayama, Toshinori

    2014-01-01

    Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin−/− T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression. PMID:25136117

  16. Regulated expression of a repressor protein: FadR activates iclR.

    PubMed Central

    Gui, L; Sunnarborg, A; LaPorte, D C

    1996-01-01

    The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR. PMID:8755903

  17. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus.

    PubMed

    Luebke, Justin L; Shen, Jiangchuan; Bruce, Kevin E; Kehl-Fie, Thomas E; Peng, Hui; Skaar, Eric P; Giedroc, David P

    2014-12-01

    How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR [Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor] represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high-resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60' interprotomer cross-links, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR. © 2014 John Wiley & Sons Ltd.

  18. The CsoR-like sulfurtransferase repressor (CstR) is a persulfide sensor in Staphylococcus aureus

    PubMed Central

    Luebke, Justin L.; Shen, Jiangchuan; Bruce, Kevin E.; Kehl-Fie, Thomas E.; Peng, Hui; Skaar, Eric P.; Giedroc, David P.

    2014-01-01

    How cells regulate the bioavailability of utilizable sulfur while mitigating the effects of hydrogen sulfide toxicity is poorly understood. CstR (Copper-sensing operon repressor (CsoR)-like sulfurtransferase repressor) represses the expression of the cst operon encoding a putative sulfide oxidation system in Staphylococcus aureus. Here, we show that the cst operon is strongly and transiently induced by cellular sulfide stress in an acute phase and specific response and that cst-encoded genes are necessary to mitigate the effects of sulfide toxicity. Growth defects are most pronounced when S. aureus is cultured in chemically defined media with thiosulfate (TS) as a sole sulfur source, but are also apparent when cystine is used or in rich media. Under TS growth conditions, cells fail to grow as a result of either unregulated expression of the cst operon in a ΔcstR strain or transformation with a non-inducible C31A/C60A CstR that blocks cst induction. This suggests that the cst operon contributes to cellular sulfide homeostasis. Tandem high resolution mass spectrometry reveals derivatization of CstR by both inorganic tetrasulfide and an organic persulfide, glutathione persulfide, to yield a mixture of Cys31-Cys60’ interprotomer crosslinks, including di-, tri- and tetrasulfide bonds, which allosterically inhibit cst operator DNA binding by CstR. PMID:25318663

  19. Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80α dUTPase.

    PubMed

    Alite, Christian; Humphrey, Suzanne; Donderis, Jordi; Maiques, Elisa; Ciges-Tomas, J Rafael; Penadés, José R; Marina, Alberto

    2017-09-11

    The trimeric staphylococcal phage-encoded dUTPases (Duts) are signalling molecules that induce the cycle of some Staphylococcal pathogenicity islands (SaPIs) by binding to the SaPI-encoded Stl repressor. To perform this regulatory role, these Duts require an extra motif VI, as well as the Dut conserved motifs IV and V. While the apo form of Dut is required for the interaction with the Stl repressor, usually only those Duts with normal enzymatic activity can induce the SaPI cycle. To understand the link between the enzymatic activities and inducing capacities of the Dut protein, we analysed the structural, biochemical and physiological characteristics of the Dut80α D95E mutant, which loses the SaPI cycle induction capacity despite retaining enzymatic activity. Asp95 is located at the threefold central channel of the trimeric Dut where it chelates a divalent ion. Here, using state-of-the-art techniques, we demonstrate that D95E mutation has an epistatic effect on the motifs involved in Stl binding. Thus, ion binding in the central channel correlates with the capacity of motif V to twist and order in the SaPI-inducing disposition, while the tip of motif VI is disturbed. These alterations in turn reduce the affinity for the Stl repressor and the capacity to induce the SaPI cycle.

  20. Molecular basis for repression of liver X receptor-mediated gene transcription by receptor-interacting protein 140

    PubMed Central

    Jakobsson, Tomas; Osman, Waffa; Gustafsson, Jan-Åke; Zilliacus, Johanna; Wärnmark, Anette

    2007-01-01

    Similarities in physiological roles of LXR (liver X receptors) and co-repressor RIP140 (receptor-interacting protein 140) in regulating energy homoeostasis and lipid and glucose metabolism suggest that the effects of LXR could at least partly be mediated by recruitment of the co-repressor RIP140. In the present study, we have elucidated the molecular basis for regulation of LXR transcriptional activity by RIP140. LXR is evenly localized in the nucleus and neither the N-terminal domain nor the LBD (ligand-binding domain) is necessary for nuclear localization. Both LXR subtypes, LXRα and LXRβ, interact with RIP140 and co-localize in diffuse large nuclear domains. Interaction and co-localization are dependent on the LBD of the receptor. The C-terminal domain of RIP140 is sufficient for full repressive effect. None of the C-terminal NR (nuclear receptor)-boxes is required for the co-repressor activity, whereas the NR-box-like motif as well as additional elements in the C-terminal region are required for full repressive function. The C-terminal NR-box-like motif is necessary for interaction with LXRβ, whereas additional elements are needed for strong interaction with LXRα. In conclusion, our results suggest that co-repression of LXR activity by RIP140 involves an atypical binding mode of RIP140 and a repression element in the RIP140 C-terminus. PMID:17391100

  1. Loss of Wild-Type ATRX Expression in Somatic Cell Hybrids Segregates with Activation of Alternative Lengthening of Telomeres

    PubMed Central

    Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L.; Moy, Elsa L.; Reddel, Roger R.

    2012-01-01

    Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT. PMID:23185534

  2. Crystal Structure of the Arginine Repressor Protein in Complex With the DNA Operator From Mycobacterium Tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherney, L.T.; Cherney, M.M.; Garen, C.R.

    2009-05-12

    The Mycobacterium tuberculosis (Mtb) gene product encoded by open reading frame Rv1657 is an arginine repressor (ArgR). All genes involved in the L-arginine (hereafter arginine) biosynthetic pathway are essential for optimal growth of the Mtb pathogen, thus making MtbArgR a potential target for drug design. The C-terminal domains of arginine repressors (CArgR) participate in oligomerization and arginine binding. Several crystal forms of CArgR from Mtb (MtbCArgR) have been obtained. The X-ray crystal structures of MtbCArgR were determined at 1.85 {angstrom} resolution with bound arginine and at 2.15 {angstrom} resolution in the unliganded form. These structures show that six molecules ofmore » MtbCArgR are arranged into a hexamer having approximate 32 point symmetry that is formed from two trimers. The trimers rotate relative to each other by about 11{sup o} upon binding arginine. All residues in MtbCArgR deemed to be important for hexamer formation and for arginine binding have been identified from the experimentally determined structures presented. The hexamer contains six regular sites in which the arginine molecules have one common binding mode and three sites in which the arginine molecules have two overlapping binding modes. The latter sites only bind the ligand at high (200 mM) arginine concentrations.« less

  3. A Set of Activators and Repressors Control Peripheral Glucose Pathways in Pseudomonas putida To Yield a Common Central Intermediate▿

    PubMed Central

    del Castillo, Teresa; Duque, Estrella; Ramos, Juan L.

    2008-01-01

    Pseudomonas putida KT2440 channels glucose to the central Entner-Doudoroff intermediate 6-phosphogluconate through three convergent pathways. The genes for these convergent pathways are clustered in three independent regions on the host chromosome. A number of monocistronic units and operons coexist within each of these clusters, favoring coexpression of catabolic enzymes and transport systems. Expression of the three pathways is mediated by three transcriptional repressors, HexR, GnuR, and PtxS, and by a positive transcriptional regulator, GltR-2. In this study, we generated mutants in each of the regulators and carried out transcriptional assays using microarrays and transcriptional fusions. These studies revealed that HexR controls the genes that encode glucokinase/glucose 6-phosphate dehydrogenase that yield 6-phosphogluconate; the genes for the Entner-Doudoroff enzymes that yield glyceraldehyde-3-phosphate and pyruvate; and gap-1, which encodes glyceraldehyde-3-phosphate dehydrogenase. GltR-2 is the transcriptional regulator that controls specific porins for the entry of glucose into the periplasmic space, as well as the gtsABCD operon for glucose transport through the inner membrane. GnuR is the repressor of gluconate transport and gluconokinase responsible for the conversion of gluconate into 6-phosphogluconate. PtxS, however, controls the enzymes for oxidation of gluconate to 2-ketogluconate, its transport and metabolism, and a set of genes unrelated to glucose metabolism. PMID:18245293

  4. A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA.

    PubMed Central

    Yang, W; Ni, L; Somerville, R L

    1993-01-01

    Highly purified preparations of trp repressor (TrpR) protein derived from Escherichia coli strains that were engineered to overexpress this material were found to contain another protein, of 21 kDa. The second protein, designated WrbA [for tryptophan (W) repressor-binding protein] remained associated with its namesake through several sequential protein fractionation steps. The N-terminal amino acid sequence of the WrbA protein guided the design of two degenerate oligonucleotides that were used as probes in the cloning of the wrbA gene (198 codons). The WrbA protein, in purified form, was found by several criteria to enhance the formation and/or stability of noncovalent complexes between TrpR holorepressor and its primary operator targets. The formation of an operator-holorepressor-WrbA ternary complex was demonstrated by gel mobility-shift analysis. The WrbA protein alone does not interact with the trp operator. During the stationary phase, cells deficient in the WrbA protein were less efficient than wild type in their ability to repress the trp promoter. It is proposed that the WrbA protein functions as an accessory element in blocking TrpR-specific transcriptional processes that might be physiologically disadvantageous in the stationary phase of the bacterial life cycle. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8516330

  5. Animal-specific C-terminal domain links myeloblastosis oncoprotein (Myb) to an ancient repressor complex

    PubMed Central

    Andrejka, Laura; Wen, Hong; Ashton, Jonathan; Grant, Megan; Iori, Kevin; Wang, Amy; Manak, J. Robert; Lipsick, Joseph S.

    2011-01-01

    Members of the Myb oncoprotein and E2F-Rb tumor suppressor protein families are present within the same highly conserved multiprotein transcriptional repressor complex, named either as Myb and synthetic multivuval class B (Myb-MuvB) or as Drosophila Rb E2F and Myb-interacting proteins (dREAM). We now report that the animal-specific C terminus of Drosophila Myb but not the more highly conserved N-terminal DNA-binding domain is necessary and sufficient for (i) adult viability, (ii) proper localization to chromosomes in vivo, (iii) regulation of gene expression in vivo, and (iv) interaction with the highly conserved core of the MuvB/dREAM transcriptional repressor complex. In addition, we have identified a conserved peptide motif that is required for this interaction. Our results imply that an ancient function of Myb in regulating G2/M genes in both plants and animals appears to have been transferred from the DNA-binding domain to the animal-specific C-terminal domain. Increased expression of B-MYB/MYBL2, the human ortholog of Drosophila Myb, correlates with poor prognosis in human patients with breast cancer. Therefore, our results imply that the specific interaction of the C terminus of Myb with the MuvB/dREAM core complex may provide an attractive target for the development of cancer therapeutics. PMID:21969598

  6. Suppressor of Fused Chaperones Gli Proteins To Generate Transcriptional Responses to Sonic Hedgehog Signaling

    PubMed Central

    Zhang, Ziyu; Shen, Longyan; Law, Kelvin; Zhang, Zengdi; Liu, Xiaotong; Hua, Hu; Li, Sanen; Huang, Huijie; Yue, Shen; Hui, Chi-chung

    2016-01-01

    ABSTRACT Cellular responses to the graded Sonic Hedgehog (Shh) morphogenic signal are orchestrated by three Gli genes that give rise to both transcription activators and repressors. An essential downstream regulator of the pathway, encoded by the tumor suppressor gene Suppressor of fused (Sufu), plays critical roles in the production, trafficking, and function of Gli proteins, but the mechanism remains controversial. Here, we show that Sufu is upregulated in active Shh responding tissues and accompanies Gli activators translocating into and Gli repressors out of the nucleus. Trafficking of Sufu to the primary cilium, potentiated by Gli activators but not repressors, was found to be coupled to its nuclear import. We have identified a nuclear export signal (NES) motif of Sufu in juxtaposition to the protein kinase A (PKA) and glycogen synthase kinase 3 (GSK3) dual phosphorylation sites and show that Sufu binds the chromatin with both Gli1 and Gli3. Close comparison of neural tube development among individual Ptch1−/−, Sufu−/−, and Ptch1−/−; Sufu−/− double mutant embryos indicates that Sufu is critical for the maximal activation of Shh signaling essential to the specification of the most-ventral neurons. These data define Sufu as a novel class of molecular chaperone required for every aspect of Gli regulation and function. PMID:27849569

  7. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less

  8. Isolating intrinsic noise sources in a stochastic genetic switch.

    PubMed

    Newby, Jay M

    2012-01-01

    The stochastic mutual repressor model is analysed using perturbation methods. This simple model of a gene circuit consists of two genes and three promotor states. Either of the two protein products can dimerize, forming a repressor molecule that binds to the promotor of the other gene. When the repressor is bound to a promotor, the corresponding gene is not transcribed and no protein is produced. Either one of the promotors can be repressed at any given time or both can be unrepressed, leaving three possible promotor states. This model is analysed in its bistable regime in which the deterministic limit exhibits two stable fixed points and an unstable saddle, and the case of small noise is considered. On small timescales, the stochastic process fluctuates near one of the stable fixed points, and on large timescales, a metastable transition can occur, where fluctuations drive the system past the unstable saddle to the other stable fixed point. To explore how different intrinsic noise sources affect these transitions, fluctuations in protein production and degradation are eliminated, leaving fluctuations in the promotor state as the only source of noise in the system. The process without protein noise is then compared to the process with weak protein noise using perturbation methods and Monte Carlo simulations. It is found that some significant differences in the random process emerge when the intrinsic noise source is removed.

  9. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction

    PubMed Central

    Carvalho, Luciani R.; Woods, Kathryn S.; Mendonca, Berenice B.; Marcal, Nathalie; Zamparini, Andrea L.; Stifani, Stefano; Brickman, Joshua M.; Arnhold, Ivo J.P.; Dattani, Mehul T.

    2003-01-01

    The paired-like homeobox gene expressed in embryonic stem cells Hesx1/HESX1 encodes a developmental repressor and is expressed in early development in a region fated to form the forebrain, with subsequent localization to Rathke’s pouch, the primordium of the anterior pituitary gland. Mutations within the gene have been associated with septo-optic dysplasia, a constellation of phenotypes including eye, forebrain, and pituitary abnormalities, or milder degrees of hypopituitarism. We identified a novel homozygous nonconservative missense mutation (I26T) in the critical Engrailed homology repressor domain (eh1) of HESX1, the first, to our knowledge, to be described in humans, in a girl with evolving combined pituitary hormone deficiency born to consanguineous parents. Neuroimaging revealed a thin pituitary stalk with anterior pituitary hypoplasia and an ectopic posterior pituitary, but no midline or optic nerve abnormalities. This I26T mutation did not affect the DNA-binding ability of HESX1 but led to an impaired ability to recruit the mammalian Groucho homolog/Transducin-like enhancer of split-1 (Gro/TLE1), a crucial corepressor for HESX1, thereby leading to partial loss of repression. Thus, the novel pituitary phenotype highlighted here appears to be a specific consequence of the inability of HESX1 to recruit Groucho-related corepressors, suggesting that other molecular mechanisms govern HESX1 function in the forebrain. PMID:14561704

  10. Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product

    PubMed Central

    Ikushima, Shigehito; Zhao, Yu; Boeke, Jef D.

    2015-01-01

    Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor. PMID:26206350

  11. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate.

    PubMed

    Dawes, H E; Berlin, D S; Lapidus, D M; Nusbaum, C; Davis, T L; Meyer, B J

    1999-06-11

    In many organisms, master control genes coordinately regulate sex-specific aspects of development. SDC-2 was shown to induce hermaphrodite sexual differentiation and activate X chromosome dosage compensation in Caenorhabditis elegans. To control these distinct processes, SDC-2 acts as a strong gene-specific repressor and a weaker chromosome-wide repressor. To initiate hermaphrodite development, SDC-2 associates with the promoter of the male sex-determining gene her-1 to repress its transcription. To activate dosage compensation, SDC-2 triggers assembly of a specialized protein complex exclusively on hermaphrodite X chromosomes to reduce gene expression by half. SDC-2 can localize to X chromosomes without other components of the dosage compensation complex, suggesting that SDC-2 targets dosage compensation machinery to X chromosomes.

  12. Beta-Lactamase Repressor BlaI Modulates Staphylococcus aureus Cathelicidin Antimicrobial Peptide Resistance and Virulence.

    PubMed

    Pence, Morgan A; Haste, Nina M; Meharena, Hiruy S; Olson, Joshua; Gallo, Richard L; Nizet, Victor; Kristian, Sascha A

    2015-01-01

    BlaI is a repressor of BlaZ, the beta-lactamase responsible for penicillin resistance in Staphylococcus aureus. Through screening a transposon library in S. aureus Newman for susceptibility to cathelicidin antimicrobial peptide, we discovered BlaI as a novel cathelicidin resistance factor. Additionally, through integrational mutagenesis in S. aureus Newman and MRSA Sanger 252 strains, we confirmed the role of BlaI in resistance to human and murine cathelidicin and showed that it contributes to virulence in human whole blood and murine infection models. We further demonstrated that BlaI could be a target for innate immune-based antimicrobial therapies; by removing BlaI through subinhibitory concentrations of 6-aminopenicillanic acid, we were able to sensitize S. aureus to LL-37 killing.

  13. Two bHLH-type transcription factors, JA-ASSOCIATED MYC2-LIKE2 and JAM3, are transcriptional repressors and affect male fertility

    PubMed Central

    Nakata, Masaru; Ohme-Takagi, Masaru

    2013-01-01

    The jasmonate (JA) plant hormones regulate responses to biotic and abiotic stress and aspects of plant development, including male fertility in Arabidopsis thaliana. The bHLH-type transcription factor JA-ASSOCIATED MYC2-LIKE1 (JAM1) negatively regulates JA signaling and gain-of-function JAM1 transgenic plants have impaired JA-mediated male fertility. Here we report that JAM2 and JAM3, 2 bHLHs closely related to JAM1, also act as transcriptional repressors. Moreover, overexpression of JAM2 and JAM3 also results in reduced male fertility. These results suggest that JAM1, JAM2, and JAM3 act redundantly as negative regulators of JA-mediated male fertility. PMID:24056034

  14. LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis.

    PubMed

    Geng, Xiaoyu; Horst, Walter J; Golz, John F; Lee, Joanne E; Ding, Zhaojun; Yang, Zhong-Bao

    2017-05-01

    A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. The Impact of Coping Style on Gaze Duration

    PubMed Central

    Klucken, Tim; Brouwer, Anne-Marie; Chatziastros, Astros; Kagerer, Sabine; Netter, Petra; Hennig, Juergen

    2010-01-01

    The understanding of individual differences in response to threat (e.g., attentional bias) is important to better understand the development of anxiety disorders. Previous studies revealed only a small attentional bias in high-anxious (HA) subjects. One explanation for this finding may be the assumption that all HA-subjects show a constant attentional bias. Current models distinguish HA-subjects depending on their level of tolerance for uncertainty and for arousal. These models assume that only HA-subjects with intolerance for uncertainty but tolerance for arousal (“sensitizers”) show an attentional bias, compared to HA-subjects with intolerance for uncertainty and intolerance for arousal (“fluctuating subjects”). Further, it is assumed that repressors (defined as intolerance for arousal but tolerance for uncertainty) would react with avoidance behavior when confronted with threatening stimuli. The present study investigated the influence of coping styles on attentional bias. After an extensive recruiting phase, 36 subjects were classified into three groups (sensitizers, fluctuating, and repressors). All subjects were exposed to presentations of happy and threatening faces, while recording gaze durations with an eye-tracker. The results showed that only sensitizer showed an attentional bias: they gazed longer at the threatening face rather than at the happy face during the first 500 ms. The results support the findings of the relationship between anxiety and attention and extend these by showing variations according to coping styles. The differentiation of subjects according to a multifaceted coping style allows a better prediction of the attentional bias and contributes to an insight into the complex interplay of personality, coping, and behavior. PMID:21085590

  16. Novel Variants in ZNF34 and Other Brain-Expressed Transcription Factors are Shared Among Early-Onset MDD Relatives

    PubMed Central

    Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.

    2018-01-01

    There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146

  17. Architecture of epigenetic reprogramming following Twist1-mediated epithelial-mesenchymal transition

    PubMed Central

    2013-01-01

    Background Epithelial-mesenchymal transition (EMT) is known to impart metastasis and stemness characteristics in breast cancer. To characterize the epigenetic reprogramming following Twist1-induced EMT, we characterized the epigenetic and transcriptome landscapes using whole-genome transcriptome analysis by RNA-seq, DNA methylation by digital restriction enzyme analysis of methylation (DREAM) and histone modifications by CHIP-seq of H3K4me3 and H3K27me3 in immortalized human mammary epithelial cells relative to cells induced to undergo EMT by Twist1. Results EMT is accompanied by focal hypermethylation and widespread global DNA hypomethylation, predominantly within transcriptionally repressed gene bodies. At the chromatin level, the number of gene promoters marked by H3K4me3 increases by more than one fifth; H3K27me3 undergoes dynamic genomic redistribution characterized by loss at half of gene promoters and overall reduction of peak size by almost half. This is paralleled by increased phosphorylation of EZH2 at serine 21. Among genes with highly altered mRNA expression, 23.1% switch between H3K4me3 and H3K27me3 marks, and those point to the master EMT targets and regulators CDH1, PDGFRα and ESRP1. Strikingly, Twist1 increases the number of bivalent genes by more than two fold. Inhibition of the H3K27 methyltransferases EZH2 and EZH1, which form part of the Polycomb repressive complex 2 (PRC2), blocks EMT and stemness properties. Conclusions Our findings demonstrate that the EMT program requires epigenetic remodeling by the Polycomb and Trithorax complexes leading to increased cellular plasticity. This suggests that inhibiting epigenetic remodeling and thus decrease plasticity will prevent EMT, and the associated breast cancer metastasis. PMID:24367927

  18. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE).

    PubMed

    Basu, Amitava; Dasari, Vasanthi; Mishra, Rakesh K; Khosla, Sanjeev

    2014-01-01

    DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC) acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE) and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.

  19. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes

    PubMed Central

    Dozmorov, Mikhail G

    2015-01-01

    Although age-associated gene expression and methylation changes have been reported throughout the literature, the unifying epigenomic principles of aging remain poorly understood. Recent explosion in availability and resolution of functional/regulatory genome annotation data (epigenomic data), such as that provided by the ENCODE and Roadmap Epigenomics projects, provides an opportunity for the identification of epigenomic mechanisms potentially altered by age-associated differentially methylated regions (aDMRs) and regulatory signatures in the promoters of age-associated genes (aGENs). In this study we found that aDMRs and aGENs identified in multiple independent studies share a common Polycomb Repressive Complex 2 signature marked by EZH2, SUZ12, CTCF binding sites, repressive H3K27me3, and activating H3K4me1 histone modification marks, and a “poised promoter” chromatin state. This signature is depleted in RNA Polymerase II-associated transcription factor binding sites, activating H3K79me2, H3K36me3, H3K27ac marks, and an “active promoter” chromatin state. The PRC2 signature was shown to be generally stable across cell types. When considering the directionality of methylation changes, we found the PRC2 signature to be associated with aDMRs hypermethylated with age, while hypomethylated aDMRs were associated with enhancers. In contrast, aGENs were associated with the PRC2 signature independently of the directionality of gene expression changes. In this study we demonstrate that the PRC2 signature is the common epigenomic context of genomic regions associated with hypermethylation and gene expression changes in aging. PMID:25880792

  20. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

    PubMed Central

    Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J.; Cohen, Idan; Santoriello, Francis J.; Zhao, Dejian; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-01-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures. PMID:27414999

  1. Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development.

    PubMed

    Perdigoto, Carolina N; Dauber, Katherine L; Bar, Carmit; Tsai, Pai-Chi; Valdes, Victor J; Cohen, Idan; Santoriello, Francis J; Zhao, Dejian; Zheng, Deyou; Hsu, Ya-Chieh; Ezhkova, Elena

    2016-07-01

    An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signaling pathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required for Merkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel cell differentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

  2. Effects of hypo-O-GlcNAcylation on Drosophila development.

    PubMed

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  3. Crystallization and preliminary crystallographic analysis of an Enterococcus faecalis repressor protein, CylR2, involved in regulating cytolysin production through quorum-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.

    2004-06-01

    CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.

  4. Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity.

    PubMed

    Rus, Florentina; Flatt, Thomas; Tong, Mei; Aggarwal, Kamna; Okuda, Kendi; Kleino, Anni; Yates, Elisabeth; Tatar, Marc; Silverman, Neal

    2013-05-29

    Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.

  5. A genetic screen for zygotic embryonic lethal mutations affecting cuticular morphology in the wasp Nasonia vitripennis.

    PubMed Central

    Pultz, M A; Zimmerman, K K; Alto, N M; Kaeberlein, M; Lange, S K; Pitt, J N; Reeves, N L; Zehrung, D L

    2000-01-01

    We have screened for zygotic embryonic lethal mutations affecting cuticular morphology in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Our broad goal was to investigate the use of Nasonia for genetically surveying conservation and change in regulatory gene systems, as a means to understand the diversity of developmental strategies that have arisen during the course of evolution. Specifically, we aim to compare anteroposterior patterning gene functions in two long germ band insects, Nasonia and Drosophila. In Nasonia, unfertilized eggs develop as haploid males while fertilized eggs develop as diploid females, so the entire genome can be screened for recessive zygotic mutations by examining the progeny of F1 females. We describe 74 of >100 lines with embryonic cuticular mutant phenotypes, including representatives of coordinate, gap, pair-rule, segment polarity, homeotic, and Polycomb group functions, as well as mutants with novel phenotypes not directly comparable to those of known Drosophila genes. We conclude that Nasonia is a tractable experimental organism for comparative developmental genetic study. The mutants isolated here have begun to outline the extent of conservation and change in the genetic programs controlling embryonic patterning in Nasonia and Drosophila. PMID:10866651

  6. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds

    PubMed Central

    Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc

    2017-01-01

    The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031

  7. Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe

    PubMed Central

    Apitz, Holger

    2016-01-01

    Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC. PMID:27381228

  8. Pho dynamically interacts with Spt5 to facilitate transcriptional switches at the hsp70 locus.

    PubMed

    Pereira, Allwyn; Paro, Renato

    2017-12-06

    Numerous target genes of the Polycomb group (PcG) are transiently activated by a stimulus and subsequently repressed. However, mechanisms by which PcG proteins regulate such target genes remain elusive. We employed the heat shock-responsive hsp70 locus in Drosophila to study the chromatin dynamics of PRC1 and its interplay with known regulators of the locus before, during and after heat shock. We detected mutually exclusive binding patterns for HSF and PRC1 at the hsp70 locus. We found that Pleiohomeotic (Pho), a DNA-binding PcG member, dynamically interacts with Spt5, an elongation factor. The dynamic interaction switch between Pho and Spt5 is triggered by the recruitment of HSF to chromatin. Mutation in the protein-protein interaction domain (REPO domain) of Pho interferes with the dynamics of its interaction with Spt5. The transcriptional kinetics of the heat shock response is negatively affected by a mutation in the REPO domain of Pho. We propose that a dynamic interaction switch between PcG proteins and an elongation factor enables stress-inducible genes to efficiently switch between ON/OFF states in the presence/absence of the activating stimulus.

  9. Development and validation of reagents and assays for EZH2 peptide and nucleosome high-throughput screens.

    PubMed

    Diaz, Elsie; Machutta, Carl A; Chen, Stephanie; Jiang, Yong; Nixon, Christopher; Hofmann, Glenn; Key, Danielle; Sweitzer, Sharon; Patel, Mehul; Wu, Zining; Creasy, Caretha L; Kruger, Ryan G; LaFrance, Louis; Verma, Sharad K; Pappalardi, Melissa B; Le, Baochau; Van Aller, Glenn S; McCabe, Michael T; Tummino, Peter J; Pope, Andrew J; Thrall, Sara H; Schwartz, Benjamin; Brandt, Martin

    2012-12-01

    Histone methyltransferases (HMT) catalyze the methylation of histone tail lysines, resulting in changes in gene transcription. Misregulation of these enzymes has been associated with various forms of cancer, making this target class a potential new area for the development of novel chemotherapeutics. EZH2 is the catalytic component of the polycomb group repressive complex (PRC2), which selectively methylates histone H3 lysine 27 (H3K27). EZH2 is overexpressed in prostate, breast, bladder, brain, and other tumor types and is recognized as a molecular marker for cancer progression and aggressiveness. Several new reagents and assays were developed to aid in the identification of EZH2 inhibitors, and these were used to execute two high-throughput screening campaigns. Activity assays using either an H3K27 peptide or nucleosomes as substrates for methylation are described. The strategy to screen EZH2 with either a surrogate peptide or a natural substrate led to the identification of the same tractable series. Compounds from this series are reversible, are [(3)H]-S-adenosyl-L-methionine competitive, and display biochemical inhibition of H3K27 methylation.

  10. Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.

    PubMed

    Clermont, Pier-Luc; Crea, Francesco; Chiang, Yan Ting; Lin, Dong; Zhang, Amy; Wang, James Z L; Parolia, Abhijit; Wu, Rebecca; Xue, Hui; Wang, Yuwei; Ding, Jiarui; Thu, Kelsie L; Lam, Wan L; Shah, Sohrab P; Collins, Colin C; Wang, Yuzhuo; Helgason, Cheryl D

    2016-01-01

    While localized prostate cancer (PCa) can be effectively cured, metastatic disease inevitably progresses to a lethal state called castration-resistant prostate cancer (CRPC). Emerging evidence suggests that aberrant epigenetic repression by the polycomb group (PcG) complexes fuels PCa progression, providing novel therapeutic opportunities. In the search for potential epigenetic drivers of CRPC, we analyzed the molecular profile of PcG members in patient-derived xenografts and clinical samples. Overall, our results identify the PcG protein and methyl-lysine reader CBX2 as a potential therapeutic target in advanced PCa. We report that CBX2 was recurrently up-regulated in metastatic CRPC and that elevated CBX2 expression was correlated with poor clinical outcome in PCa cohorts. Furthermore, CBX2 depletion abrogated cell viability and induced caspase 3-mediated apoptosis in metastatic PCa cell lines. Mechanistically explaining this phenotype, microarray analysis in CBX2-depleted cells revealed that CBX2 controls the expression of many key regulators of cell proliferation and metastasis. Taken together, this study provides the first evidence that CBX2 inhibition induces cancer cell death, positioning CBX2 as an attractive drug target in lethal CRPC.

  11. The Effectiveness of Early Group Intervention for Military Reserves Soldiers: The Role of the Repressive Coping Style.

    PubMed

    Shoval-Zuckerman, Yael; Dekel, Rachel; Solomon, Zahava; Levi, Ofir

    2015-01-01

    This study had two aims: 1. To examine whether soldiers who participated in Early Group Intervention (EGI) would show less distress and better functioning and physical health than soldiers who did not participate in EGI, and 2. To examine the contribution of the intervention to participants with repressive coping style. The sample comprised 166 male reserve soldiers who fought in the Second Lebanon War. The intervention was conducted three months after the traumatic event, was based on military protocol, and took place over the course of one day. Data were collected at two points in time (four months apart). The findings indicated that after EGI, the intervention group experienced less post-traumatic distress than did the control group. In addition, four months after the intervention, the functioning and physical health of the intervention group was significantly better than that of the control group. Notably, the intensity of post-traumatic distress before the intervention was lower among repressors and low-anxious soldiers than among soldiers in the other two groups (high-anxious and defensive). No significant differences were found after the intervention with regard to the various styles of coping with post-traumatic distress. Future clinical implications of the findings are discussed.

  12. Trithorax Group Protein Oryza sativa Trithorax1 Controls Flowering Time in Rice via Interaction with Early heading date31[W][OPEN

    PubMed Central

    Choi, Sang Chul; Lee, Shinyoung; Kim, Sung-Ryul; Lee, Yang-Seok; Liu, Chunyan; Cao, Xiaofeng; An, Gynheung

    2014-01-01

    Trithorax group proteins are chromatin-remodeling factors that activate target gene expression by antagonistically functioning against the Polycomb group. In Arabidopsis (Arabidopsis thaliana), Arabidopsis Trithorax protein1 (ATX1) regulates flowering time and floral organ identity. Here, we observed that suppression of Oryza sativa Trithorax1 (OsTrx1), an ortholog of ATX1, delayed flowering time in rice (Oryza sativa). Because the delay occurred only under long-day conditions, we evaluated the flowering signal pathways that specifically function under long-day conditions. Among them, the OsMADS50 and Heading date1 pathways were not affected by the mutation. However, the Grain number, plant height, and heading date7 (Ghd7) pathway was altered in ostrx1. Transcript levels of OsGI, phytochrome genes, and Early heading date3 (Ehd3), which function upstream of Ghd7, were unchanged in the mutant. Because Trx group proteins form a complex with other proteins to modify the chromatin structure of target genes, we investigated whether OsTrx1 interacts with a previously identified protein that functions upstream of Ghd7. We demonstrated that the plant homeodomain motif of OsTrx1 binds to native histone H3 from the calf thymus and that OsTrx1 binds to Ehd3 through the region between the plant homeodomain and SET domains. Finally, we showed that the SET domain at the C-terminal end of OsTrx1 has histone H3 methyltransferase activity when incubated with oligonucleosomes. Our results suggest that OsTrx1 plays an important role in regulating flowering time in rice by modulating chromatin structure. PMID:24420930

  13. Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat.

    PubMed

    Chen, Dandan; Richardson, Terese; Chai, Shoucheng; Lynne McIntyre, C; Rae, Anne L; Xue, Gang-Ping

    2016-10-01

    A well-known physiological adaptation process of plants encountering drying soil is to achieve water balance by reducing shoot growth and maintaining or promoting root elongation, but little is known about the molecular basis of this process. This study investigated the role of a drought-up-regulated Triticum aestivum NAC69-1 (TaNAC69-1) in the modulation of root growth in wheat. TaNAC69-1 was predominantly expressed in wheat roots at the early vegetative stage. Overexpression of TaNAC69-1 in wheat roots using OsRSP3 (essentially root-specific) and OsPIP2;3 (root-predominant) promoters resulted in enhanced primary seminal root length and a marked increase in maturity root biomass. Competitive growth analysis under water-limited conditions showed that OsRSP3 promoter-driven TaNAC69-1 transgenic lines produced 32% and 35% more above-ground biomass and grains than wild-type plants, respectively. TaNAC69-1 overexpression in the roots down-regulated the expression of TaSHY2 and TaIAA7, which are from the auxin/IAA (Aux/IAA) transcriptional repressor gene family and are the homologs of negative root growth regulators SHY2/IAA3 and IAA7 in Arabidopsis. The expression of TaSHY2 and TaIAA7 in roots was down-regulated by drought stress and up-regulated by cytokinin treatment, which inhibited root growth. DNA binding and transient expression analyses revealed that TaNAC69-1 bound to the promoters of TaSHY2 and TaIAA7, acted as a transcriptional repressor and repressed the expression of reporter genes driven by the TaSHY2 or TaIAA7 promoter. These data suggest that TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7 homologous to Arabidopsis negative root growth regulators and is likely to be involved in promoting root elongation in drying soil. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission1

    PubMed Central

    Li, Pei-Fang; Lee, Yung-I; Yang, Chang-Hsien

    2015-01-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506

  15. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.

    PubMed

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-08-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. Water-mediated contacts in the trp-repressor operator complex recognition process.

    PubMed

    Wibowo, Fajar R; Rauch, Christine; Trieb, Michael; Wellenzohn, Bernd; Liedl, Klaus R

    2004-04-15

    Water-mediated contacts are known as an important recognition tool in trp-repressor operator systems. One of these contacts involves two conserved base pairs (G(6).C(-6) and A(5). T(-5)) and three amino acids (Lys 72, Ile 79, and Ala 80). To investigate the nature of these contacts, we analyzed the X-ray structure (PDB code: 1TRO) of the trp-repressor operator complex by means of molecular dynamics simulations. This X-ray structure contains two dimers that exhibit structural differences. From these two different starting structures, two 10 ns molecular dynamics simulations have been performed. Both of our simulations show an increase of water molecules in the major groove at one side of the dimer, while the other side remains unchanged compared to the X-ray structure. Though the maximum residence time of the concerned water molecules decreases with an increase of solvent at the interface, these water molecules continue to play an important role in mediating DNA-protein contacts. This is shown by new stable amino acids-DNA distances and a long water residence time compared to free DNA simulation. To maintain stability of the new contacts, the preferential water binding site on O6(G6) is extended. This extension agrees with mutation experiment data on A5 and G6, which shows different relative affinity due to mutation on these bases [A. Joachimiak, T. E. Haran, P. B. Sigler, EMBO Journal 1994, Vol. 13, No. (2) pp. 367-372]. Due to the rearrangements in the system, the phosphate of the base G6 is able to interconvert to the B(II) substate, which is not observed on the other half side of the complex. The decrease of the number of hydrogen bonds between protein and DNA backbone could be the initial step of the dissociation process of the complex, or in other words an intermediate complex conformation of the association process. Thus, we surmise that these features show the importance of water-mediated contacts in the trp-repressor operator recognition process. Copyright 2004 Wiley Periodicals, Inc.

  17. Corepressive interaction and clustering of degrade-and-fire oscillators

    PubMed Central

    Fernandez, Bastien; Tsimring, Lev S.

    2016-01-01

    Strongly nonlinear degrade-and-fire (DF) oscillations may emerge in genetic circuits having a delayed negative feedback loop as their core element. Here we study the synchronization of DF oscillators coupled through a common repressor field. For weak coupling, initially distinct oscillators remain desynchronized. For stronger coupling, oscillators can be forced to wait in the repressed state until the global repressor field is sufficiently degraded, and then they fire simultaneously forming a synchronized cluster. Our analytical theory provides necessary and sufficient conditions for clustering and specifies the maximum number of clusters that can be formed in the asymptotic regime. We find that in the thermodynamic limit a phase transition occurs at a certain coupling strength from the weakly clustered regime with only microscopic clusters to a strongly clustered regime where at least one giant cluster has to be present. PMID:22181453

  18. FBI-1 functions as a novel AR co-repressor in prostate cancer cells.

    PubMed

    Cui, Jiajun; Yang, Yutao; Zhang, Chuanfu; Hu, Pinliang; Kan, Wei; Bai, Xianhong; Liu, Xuelin; Song, Hongbin

    2011-03-01

    The pro-oncogene FBI-1, encoded by Zbtb7a, is a transcriptional repressor that belongs to the POK (POZ/BTB and Krüppel) protein family. In this study, we investigated a potential interaction between androgen receptor (AR) signaling and FBI-1 and demonstrated that overexpression of FBI-1 inhibited ligand-dependent AR activation. A protein-protein interaction was identified between FBI-1 and AR in a ligand-dependent manner. Furthermore, FBI-1, AR and SMRT formed a ternary complex and FBI-1 enhanced the recruitment of NCoR and SMRT to endogenous PSA upstream sequences. Our data also indicated that the FBI-1-mediated inhibition of AR transcriptional activity is partially dependent on HDAC. Interestingly, FBI-1 plays distinct roles in regulating LNCaP (androgen-dependent) and PC-3 cell (androgen-independent) proliferation.

  19. Cdyl: a new transcriptional co-repressor

    PubMed Central

    Caron, Cécile; Pivot-Pajot, Christophe; van Grunsven, Leo A.; Col, Edwige; Lestrat, Cécile; Rousseaux, Sophie; Khochbin, Saadi

    2003-01-01

    Cdyl (chromodomain-Y-like) is a chromodomain-containing protein that is predominantly expressed during mouse spermiogenesis. In its carboxy-terminal portion, there is a domain with homology to the coenzyme A (CoA) pocket of the enoyl-CoA hydratase/isomerase, which is shown here to be able to bind CoA and histone deacetylases (HDACs). It also efficiently represses transcription. Moreover, the binding of Hdac1 represses the ability of Cdyl to bind CoA, and a Cdyl–CoA interaction only occurs in the absence of HDACs. These data suggest that Cdyl is primarily a transcriptional co-repressor. However, the degradation of cellular Hdac1 and Hdac2, as observed here in the elongating spermatids, may provide an HDAC-free environment in which Cdyl could bind CoA and participate in the global chromatin remodelling that occurs in these cells. PMID:12947414

  20. λ-Repressor Oligomerization Kinetics at High Concentrations Using Fluorescence Correlation Spectroscopy in Zero-Mode Waveguides

    PubMed Central

    Samiee, K. T.; Foquet, M.; Guo, L.; Cox, E. C.; Craighead, H. G.

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) has demonstrated its utility for measuring transport properties and kinetics at low fluorophore concentrations. In this article, we demonstrate that simple optical nanostructures, known as zero-mode waveguides, can be used to significantly reduce the FCS observation volume. This, in turn, allows FCS to be applied to solutions with significantly higher fluorophore concentrations. We derive an empirical FCS model accounting for one-dimensional diffusion in a finite tube with a simple exponential observation profile. This technique is used to measure the oligomerization of the bacteriophage λ repressor protein at micromolar concentrations. The results agree with previous studies utilizing conventional techniques. Additionally, we demonstrate that the zero-mode waveguides can be used to assay biological activity by measuring changes in diffusion constant as a result of ligand binding. PMID:15613638

  1. Molecular brake pad hypothesis: pulling off the brakes for emotional memory

    PubMed Central

    Vogel-Ciernia, Annie

    2015-01-01

    Under basal conditions histone deacetylases (HDACs) and their associated co-repressor complexes serve as molecular ‘brake pads’ to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation. Inhibition of HDACs increases histone acetylation, extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories. PMID:23096102

  2. DAX1 suppresses FXR transactivity as a novel co-repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin; Lu, Yan; Liu, Ruya

    2011-09-09

    Highlights: {yields} DAX1 is co-localized with FXR and interacts with FXR. {yields} DAX1 acts as a negative regulator of FXR. {yields} Three LXXLL motifs in the N-terminus of DAX1 were required. {yields} DAX1 suppresses FXR transactivation by competing with co-activators. -- Abstract: Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor familymore » due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1{alpha}. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.« less

  3. Transcriptional repressor foxl1 regulates central nervous system development by suppressing shh expression in zebra fish.

    PubMed

    Nakada, Chisako; Satoh, Shinya; Tabata, Yoko; Arai, Ken-ichi; Watanabe, Sumiko

    2006-10-01

    We identified zebra fish forkhead transcription factor l1 (zfoxl1) as a gene strongly expressed in neural tissues such as midbrain, hindbrain, and the otic vesicle at the early embryonic stage. Loss of the function of zfoxl1 effected by morpholino antisense oligonucleotide resulted in defects in midbrain and eye development, and in that of formation of the pectoral fins. Interestingly, ectopic expression of shh in the midbrain and elevated pax2a expression in the optic stalk were observed in foxl1 MO-injected embryos. In contrast, expression of pax6a, which is negatively regulated by shh, was suppressed in the thalamus and pretectum regions, supporting the idea of augmentation of the shh signaling pathway by suppression of foxl1. Expression of zfoxl1-EnR (repressing) rather than zfoxl1-VP16 (activating) resulted in a phenotype similar to that induced by foxl1-mRNA, suggesting that foxl1 may act as a transcriptional repressor of shh in zebra fish embryos. Supporting this notion, foxl1 suppressed isolated 2.7-kb shh promoter activity in PC12 cells, and the minimal region of foxl1 required for its transcriptional repressor activity showed strong homology with the groucho binding motif, which is found in genes encoding various homeodomain proteins. In view of all of our data taken together, we propose zfoxl1 to be a novel regulator of neural development that acts by suppressing shh expression.

  4. Transcriptional Repressor foxl1 Regulates Central Nervous System Development by Suppressing shh Expression in Zebra Fish†

    PubMed Central

    Nakada, Chisako; Satoh, Shinya; Tabata, Yoko; Arai, Ken-ichi; Watanabe, Sumiko

    2006-01-01

    We identified zebra fish forkhead transcription factor l1 (zfoxl1) as a gene strongly expressed in neural tissues such as midbrain, hindbrain, and the otic vesicle at the early embryonic stage. Loss of the function of zfoxl1 effected by morpholino antisense oligonucleotide resulted in defects in midbrain and eye development, and in that of formation of the pectoral fins. Interestingly, ectopic expression of shh in the midbrain and elevated pax2a expression in the optic stalk were observed in foxl1 MO-injected embryos. In contrast, expression of pax6a, which is negatively regulated by shh, was suppressed in the thalamus and pretectum regions, supporting the idea of augmentation of the shh signaling pathway by suppression of foxl1. Expression of zfoxl1-EnR (repressing) rather than zfoxl1-VP16 (activating) resulted in a phenotype similar to that induced by foxl1-mRNA, suggesting that foxl1 may act as a transcriptional repressor of shh in zebra fish embryos. Supporting this notion, foxl1 suppressed isolated 2.7-kb shh promoter activity in PC12 cells, and the minimal region of foxl1 required for its transcriptional repressor activity showed strong homology with the groucho binding motif, which is found in genes encoding various homeodomain proteins. In view of all of our data taken together, we propose zfoxl1 to be a novel regulator of neural development that acts by suppressing shh expression. PMID:16980626

  5. Transcriptional repression mediated by the KRAB domain of the human C2H2 zinc finger protein Kox1/ZNF10 does not require histone deacetylation.

    PubMed

    Lorenz, P; Koczan, D; Thiesen, H J

    2001-04-01

    The KRAB domain of human Kox1, a member of the KRAB C2H2 zinc finger family, confers strong transcriptional repressor activities even to remote promoter positions. Here, HDAC inhibitors were used to demonstrate that histone deacetylation is not required for mediating transcriptional repression of KRAB zinc finger proteins. Two reporter systems with either stably integrated or transiently transfected templates, both under control of strong viral promoters, were analyzed. Under all circumstances, HDAC inhibition did not alter the repression potential of the KRAB domain. In case of the stably integrated luciferase reporter gene system, neither expression levels of the KRAB fusion protein nor complex formation with its putative co-repressor TIF1beta were significantly changed. Furthermore, the TIF1beta/KRAB complex was devoid of mSin3A and HDAC1. In the transient transfection system, the transcriptional repression induced by TIF1beta and HP1alpha was not diminished by HDAC inhibitors, whereas the repressory activity of TIF1alpha was significantly affected. Thus, KRAB, TIF1beta and HP1alpha are likely to be functionally linked. In conclusion, HDAC activity is not essential for the strong transcriptional repressor activity mediated by the KRAB domain of Kox1 in particular and, presumably, by KRAB domains in general. This feature might be helpful in identifying and characterizing target genes under the control of

  6. The Dual Estrogen Receptor α Inhibitory Effects of the Tissue-Selective Estrogen Complex for Endometrial and Breast Safety

    PubMed Central

    Han, Sang Jun; Begum, Khurshida; Foulds, Charles E.; Hamilton, Ross A.; Bailey, Suzanna; Malovannaya, Anna; Chan, Doug; Qin, Jun

    2016-01-01

    The conjugated estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) is designed to minimize the undesirable effects of estrogen in the uterus and breast tissues and to allow the beneficial effects of estrogen in other estrogen-target tissues, such as the bone and brain. However, the molecular mechanism underlying endometrial and breast safety during TSEC use is not fully understood. Estrogen receptor α (ERα)–estrogen response element (ERE)–DNA pull-down assays using HeLa nuclear extracts followed by mass spectrometry–immunoblotting analyses revealed that, upon TSEC treatment, ERα interacted with transcriptional repressors rather than coactivators. Therefore, the TSEC-mediated recruitment of transcriptional repressors suppresses ERα-mediated transcription in the breast and uterus. In addition, TSEC treatment also degraded ERα protein in uterine tissue and breast cancer cells, but not in bone cells. Interestingly, ERα-ERE-DNA pull-down assays also revealed that, upon TSEC treatment, ERα interacted with the F-box protein 45 (FBXO45) E3 ubiquitin ligase. The loss-of- and gain-of-FBXO45 function analyses indicated that FBXO45 is involved in TSEC-mediated degradation of the ERα protein in endometrial and breast cells. In preclinical studies, these synergistic effects of TSEC on ERα inhibition also suppressed the estrogen-dependent progression of endometriosis. Therefore, the endometrial and breast safety effects of TSEC are associated with synergy between the selective recruitment of transcriptional repressors to ERα and FBXO45-mediated degradation of the ERα protein. PMID:26487511

  7. Evidence for a non-canonical role of HDAC5 in regulation of the cardiac Ncx1 and Bnp genes.

    PubMed

    Harris, Lillianne G; Wang, Sabina H; Mani, Santhosh K; Kasiganesan, Harinath; Chou, C James; Menick, Donald R

    2016-05-05

    Class IIa histone deacetylases (HDACs) are very important for tissue specific gene regulation in development and pathology. Because class IIa HDAC catalytic activity is low, their exact molecular roles have not been fully elucidated. Studies have suggested that class IIa HDACs may serve as a scaffold to recruit the catalytically active class I HDAC complexes to their substrate. Here we directly address whether the class IIa HDAC, HDAC5 may function as a scaffold to recruit co-repressor complexes to promoters. We examined two well-characterized cardiac promoters, the sodium calcium exchanger (Ncx1) and the brain natriuretic peptide (Bnp) whose hypertrophic upregulation is mediated by both class I and IIa HDACs. Selective inhibition of class IIa HDACs did not prevent adrenergic stimulated Ncx1 upregulation, however HDAC5 knockout prevented pressure overload induced Ncx1 upregulation. Using the HDAC5((-/-)) mouse we show that HDAC5 is required for the interaction of the HDAC1/2/Sin3a co-repressor complexes with the Nkx2.5 and YY1 transcription factors and critical for recruitment of the HDAC1/Sin3a co-repressor complex to either the Ncx1 or Bnp promoter. Our novel findings support a non-canonical role of class IIa HDACs in the scaffolding of transcriptional regulatory complexes, which may be relevant for therapeutic intervention for pathologies. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, andmore » the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.« less

  9. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    PubMed

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  10. CCN5, a Novel Transcriptional Repressor of the Transforming Growth Factor β Signaling Pathway ▿

    PubMed Central

    Sabbah, Michèle; Prunier, Céline; Ferrand, Nathalie; Megalophonos, Virginie; Lambein, Kathleen; De Wever, Olivier; Nazaret, Nicolas; Lachuer, Joël; Dumont, Sylvie; Redeuilh, Gérard

    2011-01-01

    CCN5 is a member of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family and was identified as an estrogen-inducible gene in estrogen receptor-positive cell lines. However, the role of CCN5 in breast carcinogenesis remains unclear. We report here that the CCN5 protein is localized mostly in the cytoplasm and in part in the nucleus of human tumor breast tissue. Using a heterologous transcription assay, we demonstrate that CCN5 can act as a transcriptional repressor presumably through association with histone deacetylase 1 (HDAC1). Microarray gene expression analysis showed that CCN5 represses expression of genes associated with epithelial-mesenchymal transition (EMT) as well as expression of key components of the transforming growth factor β (TGF-β) signaling pathway, prominent among them TGF-βRII receptor. We show that CCN5 is recruited to the TGF-βRII promoter, thereby providing a mechanism by which CCN5 restricts transcription of the TGF-βRII gene. Consistent with this finding, CCN5, we found, functions to suppress TGF-β-induced transcriptional responses and invasion that is concomitant with EMT. Thus, our data uncovered CCN5 as a novel transcriptional repressor that plays an important role in regulating tumor progression functioning, at least in part, by inhibiting the expression of genes involved in the TGF-β signaling cascade that is known to promote EMT. PMID:21262769

  11. Identification of a Signal-Responsive Nuclear Export Sequence in Class II Histone Deacetylases

    PubMed Central

    McKinsey, Timothy A.; Zhang, Chun Li; Olson, Eric N.

    2001-01-01

    Activation of muscle-specific genes by the MEF2 transcription factor is inhibited by class II histone deacetylases (HDACs) 4 and 5, which contain carboxy-terminal deacetylase domains and amino-terminal extensions required for association with MEF2. The inhibitory action of HDACs is overcome by myogenic signals which disrupt MEF2-HDAC interactions and stimulate nuclear export of these transcriptional repressors. Nucleocytoplasmic trafficking of HDAC5 is mediated by binding of the chaperone protein 14-3-3 to two phosphoserine residues (Ser-259 and Ser-498) in its amino-terminal extension. Here we show that HDAC4 and -5 each contain a signal-responsive nuclear export sequence (NES) at their extreme carboxy termini. The NES is conserved in another class II HDAC, HDAC7, but is absent in class I HDACs and the HDAC-related corepressor, MEF2-interacting transcription repressor. Our results suggest that this conserved NES is inactive in unphosphorylated HDAC5, which is localized to the nucleus, and that calcium-calmodulin-dependent protein kinase (CaMK)-dependent binding of 14-3-3 to phosphoserines 259 and 498 activates the NES, with consequent export of the transcriptional repressor to the cytoplasm. A single amino acid substitution in this NES is sufficient to retain HDAC5 in the nucleus in the face of CaMK signaling. These findings provide molecular insight into the mechanism by which extracellular cues alter chromatin structure to promote muscle differentiation and other MEF2-regulated processes. PMID:11509672

  12. Observation of Complete Pressure-Jump Protein Refolding in Molecular Dynamics Simulation and Experiment

    PubMed Central

    2015-01-01

    Density is an easily adjusted variable in molecular dynamics (MD) simulations. Thus, pressure-jump (P-jump)-induced protein refolding, if it could be made fast enough, would be ideally suited for comparison with MD. Although pressure denaturation perturbs secondary structure less than temperature denaturation, protein refolding after a fast P-jump is not necessarily faster than that after a temperature jump. Recent P-jump refolding experiments on the helix bundle λ-repressor have shown evidence of a <3 μs burst phase, but also of a ∼1.5 ms “slow” phase of refolding, attributed to non-native helical structure frustrating microsecond refolding. Here we show that a λ-repressor mutant is nonetheless capable of refolding in a single explicit solvent MD trajectory in about 19 μs, indicating that the burst phase observed in experiments on the same mutant could produce native protein. The simulation reveals that after about 18.5 μs of conformational sampling, the productive structural rearrangement to the native state does not occur in a single swift step but is spread out over a brief series of helix and loop rearrangements that take about 0.9 μs. Our results support the molecular time scale inferred for λ-repressor from near-downhill folding experiments, where transition-state population can be seen experimentally, and also agrees with the transition-state transit time observed in slower folding proteins by single-molecule spectroscopy. PMID:24437525

  13. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    PubMed Central

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  14. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms.

    PubMed

    Dai, Yan; Sangerman, Jose; Luo, Hong Yuan; Fucharoen, Suthat; Chui, David H K; Faller, Douglas V; Perrine, Susan P

    2016-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ-globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Therapeutic γ-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms

    PubMed Central

    Dai, Yan; Sangerman, Jose; Hong, Yuan Luo; Fuchareon, Suthat; Chui, David H.K.; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. PMID:26603726

  16. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1)

    PubMed Central

    Vaeth, Martin; Gogishvili, Tea; Bopp, Tobias; Klein, Matthias; Berberich-Siebelt, Friederike; Gattenloehner, Stefan; Avots, Andris; Sparwasser, Tim; Grebe, Nadine; Schmitt, Edgar; Hünig, Thomas; Serfling, Edgar; Bodor, Josef

    2011-01-01

    Inducible cAMP early repressor (ICER) is a transcriptional repressor, which, because of alternate promoter use, is generated from the 3′ region of the cAMP response modulator (Crem) gene. Its expression and nuclear occurrence are elevated by high cAMP levels in naturally occurring regulatory T cells (nTregs). Using two mouse models, we demonstrate that nTregs control the cellular localization of ICER/CREM, and thereby inhibit IL-2 synthesis in conventional CD4+ T cells. Ablation of nTregs in depletion of regulatory T-cell (DEREG) mice resulted in cytosolic localization of ICER/CREM and increased IL-2 synthesis upon stimulation. Direct contacts between nTregs and conventional CD4+ T cells led to nuclear accumulation of ICER/CREM and suppression of IL-2 synthesis on administration of CD28 superagonistic (CD28SA) Ab. In a similar way, nTregs communicated with B cells and induced the cAMP-driven nuclear localization of ICER/CREM. High levels of ICER suppressed the induction of nuclear factor of activated T cell c1 (Nfatc1) gene in T cells whose inducible Nfatc1 P1 promoter bears two highly conserved cAMP-responsive elements to which ICER/CREM can bind. These findings suggest that nTregs suppress T-cell responses by the cAMP-dependent nuclear accumulation of ICER/CREM and inhibition of NFATc1 and IL-2 induction. PMID:21262800

  17. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor.

    PubMed

    Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S

    2012-02-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.

  18. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor

    PubMed Central

    Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.

    2012-01-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659

  19. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    PubMed

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.

  20. Repressive coping among British college women: A potential protective factor against body image concerns, drive for thinness, and bulimia symptoms.

    PubMed

    Mohiyeddini, Changiz

    2017-09-01

    Repressive coping, as a means of preserving a positive self-image, has been widely explored in the context of dealing with self-evaluative cues. The current study extends this research by exploring whether repressive coping is associated with lower levels of body image concerns, drive for thinness, bulimic symptoms, and higher positive rational acceptance. A sample of 229 female college students was recruited in South London. Repressive coping was measured via the interaction between trait anxiety and defensiveness. The results of moderated regression analysis with simple slope analysis show that compared to non-repressors, repressors reported lower levels of body image concerns, drive for thinness, and bulimic symptoms while exhibiting a higher use of positive rational acceptance. These findings, in line with previous evidence, suggest that repressive coping may be adaptive particularly in the context of body image. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems.

    PubMed

    Uberti-Manassero, Nora G; Coscueta, Ezequiel R; Gonzalez, Daniel H

    2016-11-01

    Plants that express a fusion of the Arabidopsis thaliana class I TCP transcription factor TCP16 to the EAR repressor domain develop several phenotypic alterations, including rounder leaves, short petioles and pedicels, and delayed elongation of sepals, petals and anthers. In addition, these plants develop lobed cotyledons and ectopic meristems. Ectopic meristems are formed on the adaxial side of cotyledon petioles and arise from a cleft that is formed at this site. Analysis of the expression of reporter genes indicated that meristem genes are reactivated at the site of emergence of ectopic meristems, located near the bifurcation of cotyledon veins. The plants also show increased transcript levels of the boundary-specific CUP-SHAPED COTYLEDON (CUC) genes. The results suggest that TCP16 is able to modulate the induction of meristematic programs and the differentiation state of plant cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer

    PubMed Central

    Fancy, Stephen P.J.; Harrington, Emily P.; Baranzini, Sergio E.; Silbereis, John C.; Shiow, Lawrence R.; Yuen, Tracy J.; Huang, Eric J.; Lomvardas, Stavros; Rowitch, David H.

    2014-01-01

    In colon cancer, mutation of the Wnt repressor Adenomatous polyposis coli (APC) leads to a state of aberrant and unrestricted “high-activity” signaling. However, relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct Wnt activity functional states determine oligodendrocyte precursor (OPC) differentiation and myelination. Murine OPCs with genetic Wnt dysregulation (high tone) express multiple genes in common with colon cancer including Lef1, SP5, Ets2, Rnf43 and Dusp4. Surprisingly, we find that OPCs in lesions of hypoxic human neonatal white matter injury upregulate markers of high Wnt activity and lack expression of APC. Finally, we show lack of Wnt repressor tone promotes permanent white matter injury after mild hypoxic insult. These findings suggest a state of pathological high-activity Wnt signaling in human disease tissues that lack pre-disposing genetic mutation. PMID:24609463

  3. A regulatory network to segregate the identity of neuronal subtypes.

    PubMed

    Lee, Seunghee; Lee, Bora; Joshi, Kaumudi; Pfaff, Samuel L; Lee, Jae W; Lee, Soo-Kyung

    2008-06-01

    Spinal motor neurons (MNs) and V2 interneurons (V2-INs) are specified by two related LIM-complexes, MN-hexamer and V2-tetramer, respectively. Here we show how multiple parallel and complementary feedback loops are integrated to assign these two cell fates accurately. While MN-hexamer response elements (REs) are specific to MN-hexamer, V2-tetramer-REs can bind both LIM-complexes. In embryonic MNs, however, two factors cooperatively suppress the aberrant activation of V2-tetramer-REs. First, LMO4 blocks V2-tetramer assembly. Second, MN-hexamer induces a repressor, Hb9, which binds V2-tetramer-REs and suppresses their activation. V2-INs use a similar approach; V2-tetramer induces a repressor, Chx10, which binds MN-hexamer-REs and blocks their activation. Thus, our study uncovers a regulatory network to segregate related cell fates, which involves reciprocal feedforward gene regulatory loops.

  4. A mutation-led search for novel functional domains in MeCP2.

    PubMed

    Guy, Jacky; Alexander-Howden, Beatrice; FitzPatrick, Laura; DeSousa, Dina; Koerner, Martha V; Selfridge, Jim; Bird, Adrian

    2018-04-27

    Most missense mutations causing Rett syndrome affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterised domains. We studied the molecular consequences of four of these "non-canonical" mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of Rett syndrome. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilise these mutant proteins may be of therapeutic value.

  5. Drosophila arginine methyltransferase 1 (DART1) is an ecdysone receptor co-repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shuhei; Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574; Sawatsubashi, Shun

    2008-07-11

    Histone arginine methylation is an epigenetic marker that regulates gene expression by defining the chromatin state. Arginine methyltransferases, therefore, serve as transcriptional co-regulators. However, unlike other transcriptional co-regulators, the physiological roles of arginine methyltransferases are poorly understood. Drosophila arginine methyltransferase 1 (DART1), the mammalian PRMT1 homologue, methylates the arginine residue of histone H4 (H4R3me2). Disruption of DART1 in Drosophila by imprecise P-element excision resulted in low viability during metamorphosis in the pupal stages. In the pupal stage, an ecdysone hormone signal is critical for developmental progression. DART1 interacted with the nuclear ecdysone receptor (EcR) in a ligand-dependent manner, and co-repressedmore » EcR in intact flies. These findings suggest that DART1, a histone arginine methyltransferase, is a co-repressor of EcR that is indispensable for normal pupal development in the intact fly.« less

  6. Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development.

    PubMed

    Wu, Renhong; Citovsky, Vitaly

    2017-07-01

    Plants use specialized root outgrowths, termed root hairs, to enhance acquisition of nutrients and water, help secure anchorage, and facilitate interactions with soil microbiome. One of the major regulators of this process is GLABRA2 (GL2), a transcriptional repressor of root hair differentiation. However, regulation of the GL2-function is relatively well characterized, it remains completely unknown whether GL2 itself functions in complex with other transcriptional regulators. We identified GIR1 and GIR2, a plant-specific two-member family of closely related proteins that interact with GL2. Loss-of-function mutants of GIR1 and GIR2 enhanced development of root hair whereas gain-of-function mutants repressed it. Thus, GIR1 and GIR2 might function as adaptor proteins that associate with GL2 and participate in control of root hair formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Transcription factor clusters regulate genes in eukaryotic cells

    PubMed Central

    Hedlund, Erik G; Friemann, Rosmarie; Hohmann, Stefan

    2017-01-01

    Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression. PMID:28841133

  8. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: an antibiotic target.

    PubMed

    Pendini, Nicole R; Yap, Min Y; Traore, D A K; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-06-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present small-angle X-ray scattering data of SaBPL in complex with its biotin-carboxyl carrier protein substrate as well as the SaBPL:DNA complex that underlies repression. This has revealed the molecular basis of ligand (biotinyl-5'-AMP) binding and conformational changes associated with catalysis and repressor function. These data provide new information to better understand the bifunctional activities of SaBPL and to inform future strategies for antibiotic discovery. © 2013 The Protein Society.

  9. Structural characterization of Staphylococcus aureus biotin protein ligase and interaction partners: An antibiotic target

    PubMed Central

    Pendini, Nicole R; Yap, Min Y; Polyak, Steven W; Cowieson, Nathan P; Abell, Andrew; Booker, Grant W; Wallace, John C; Wilce, Jacqueline A; Wilce, Matthew C J

    2013-01-01

    The essential metabolic enzyme biotin protein ligase (BPL) is a potential target for the development of new antibiotics required to combat drug-resistant pathogens. Staphylococcus aureus BPL (SaBPL) is a bifunctional protein, possessing both biotin ligase and transcription repressor activities. This positions BPL as a key regulator of several important metabolic pathways. Here, we report the structural analysis of both holo- and apo-forms of SaBPL using X-ray crystallography. We also present small-angle X-ray scattering data of SaBPL in complex with its biotin-carboxyl carrier protein substrate as well as the SaBPL:DNA complex that underlies repression. This has revealed the molecular basis of ligand (biotinyl-5′-AMP) binding and conformational changes associated with catalysis and repressor function. These data provide new information to better understand the bifunctional activities of SaBPL and to inform future strategies for antibiotic discovery. PMID:23559560

  10. DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1

    PubMed Central

    de Bruin, R. A. M.; Kalashnikova, T. I.; Aslanian, A.; Wohlschlegel, J.; Chahwan, C.; Yates, J. R.; Russell, P.; Wittenberg, C.

    2008-01-01

    The cell cycle transcriptional program imposes order on events of the cell-cycle and is a target for signals that regulate cell-cycle progression, including checkpoints required to maintain genome integrity. Neither the mechanism nor functional significance of checkpoint regulation of the cell-cycle transcription program are established. We show that Nrm1, an MBF-specific transcriptional repressor acting at the transition from G1 to S phase of the cell cycle, is at the nexus between the cell cycle transcriptional program and the DNA replication checkpoint in fission yeast. Phosphorylation of Nrm1 by the Cds1 (Chk2) checkpoint protein kinase, which is activated in response to DNA replication stress, promotes its dissociation from the MBF transcription factor. This leads to the expression of genes encoding components that function in DNA replication and repair pathways important for cell survival in response to arrested DNA replication. PMID:18682565

  11. Application of TALE-Based Approach for Dissecting Functional MicroRNA-302/367 in Cellular Reprogramming.

    PubMed

    Zhang, Zhonghui; Wu, Wen-Shu

    2018-01-01

    MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishino, Tomonori G.; Department of Biotechnology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657; Miyazaki, Masaya

    Class IIa histone deacetylases (HDACs) form complexes with a class of transcriptional repressors in the nucleus. While screening for compounds that could block the association of HDAC4 with the BTB domain-containing transcriptional repressor Bach2, we discovered that phorbol 12-myristate 13-acetate (PMA) induced the cytoplasmic retention of HDAC4 mutants lacking a nuclear export signal (NES). Although PMA treatment and PKD overexpression has been proposed to facilitate the nuclear export of class IIa HDACs by creating 14-3-3 binding sites containing phosphoserines, our experiments using HDAC mutants demonstrated that PMA greatly reduces nuclear import. PMA treatment repressed the NLS activity in a mannermore » dependent on 14-3-3 binding. These results suggest that nuclear HDAC4 is not tethered in the nucleus, but instead shuttles between the nucleus and the cytoplasm. Phosphorylation-induced 14-3-3 binding biases the balance of nucleo-cytoplasmic shuttling toward the cytoplasm by inhibiting nuclear import.« less

  13. Systematic Transfer of Prokaryotic Sensors and Circuits to Mammalian Cells

    PubMed Central

    2015-01-01

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >105 members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics. PMID:25360681

  14. The aryl hydrocarbon receptor repressor - More than a simple feedback inhibitor of AhR signaling: Clues for its role in inflammation and cancer.

    PubMed

    Vogel, Christoph F A; Haarmann-Stemmann, Thomas

    2017-02-01

    The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional ligand-binding and transactivation domains. Transient transfection experiments with ARNT and AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex mechanism than the simple mechanism of negative feedback through sequestration of ARNT to regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes and silencing of AhRR associated with exposure to cigarette smoke and cancer development. Additional studies from our laboratories have demonstrated that AhRR represses other signaling pathways including NF-κB and is capable of regulating inflammatory responses. A better understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways leading to deregulated inflammatory responses contributing to tumor promotion and other adverse health effects is expected from future studies. This review article summarizes the characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings pointing out the role of AhRR in inflammation and tumorigenesis.

  15. Genome-wide mapping and analysis of aryl hydrocarbon receptor (AHR)- and aryl hydrocarbon receptor repressor (AHRR)-binding sites in human breast cancer cells.

    PubMed

    Yang, Sunny Y; Ahmed, Shaimaa; Satheesh, Somisetty V; Matthews, Jason

    2018-01-01

    The aryl hydrocarbon receptor (AHR) mediates the toxic actions of environmental contaminants, such as 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), and also plays roles in vascular development, the immune response, and cell cycle regulation. The AHR repressor (AHRR) is an AHR-regulated gene and a negative regulator of AHR; however, the mechanisms of AHRR-dependent repression of AHR are unclear. In this study, we compared the genome-wide binding profiles of AHR and AHRR in MCF-7 human breast cancer cells treated for 24 h with TCDD using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq). We identified 3915 AHR- and 2811 AHRR-bound regions, of which 974 (35%) were common to both datasets. When these 24-h datasets were also compared with AHR-bound regions identified after 45 min of TCDD treatment, 67% (1884) of AHRR-bound regions overlapped with those of AHR. This analysis identified 994 unique AHRR-bound regions. AHRR-bound regions mapped closer to promoter regions when compared with AHR-bound regions. The AHRE was identified and overrepresented in AHR:AHRR-co-bound regions, AHR-only regions, and AHRR-only regions. Candidate unique AHR- and AHRR-bound regions were validated by ChIP-qPCR and their ability to regulate gene expression was confirmed by luciferase reporter gene assays. Overall, this study reveals that AHR and AHRR exhibit similar but also distinct genome-wide binding profiles, supporting the notion that AHRR is a context- and gene-specific repressor of AHR activity.

  16. Epithelial-mesenchymal transition, a novel target of sulforaphane via COX-2/MMP2, 9/Snail, ZEB1 and miR-200c/ZEB1 pathways in human bladder cancer cells.

    PubMed

    Shan, Yujuan; Zhang, Lanwei; Bao, Yongping; Li, Baolong; He, Canxia; Gao, Mingming; Feng, Xue; Xu, Weili; Zhang, Xiaohong; Wang, Shuran

    2013-06-01

    Metastasis and recurrence of bladder cancer are the main reasons for its poor prognosis and high mortality rates. Because of its biological activity and high metabolic accumulation in urine, sulforaphane, a phytochemical exclusively occurring in cruciferous vegetables, has a powerful and specific potential for preventing bladder cancer. In this paper, sulforaphane is shown to significantly suppress a variety of biochemical pathways including the attachment, invasion, migration and chemotaxis motion in malignant transitional bladder cancer T24 cells. Transfection with cyclooxygenase-2 (COX-2) overexpression plasmid largely abolished inhibition of MMP2/9 expression as well as cell invasive capability by sulforaphane. Moreover, sulforaphane inhibited the epithelial-to-mesenchymal transition (EMT) process which underlies tumor cell invasion and migration mediated by E-cadherin induction through reducing transcriptional repressors, such as ZEB1 and Snail. Under conditions of over-expression of COX-2 and/or MMP2/9, sulforaphane was still able to induce E-cadherin or reduce Snail/ZEB1 expression, suggesting that additional pathways might be involved. Further studies indicated that miR-200c played a role in the regulation of E-cadherin via the ZEB1 repressor but not by the Snail repressor. In conclusion, the EMT and two recognized signaling pathways (COX-2/MMP2,9/ ZEB1, Snail and miR-200c/ZEB1) are all targets for sulforaphane. This study indicated that sulforaphane may possess therapeutic potential in preventing recurrence of human bladder cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Regulation of neural macroRNAs by the transcriptional repressor REST

    PubMed Central

    Johnson, Rory; Teh, Christina Hui-Leng; Jia, Hui; Vanisri, Ravi Raj; Pandey, Tridansh; Lu, Zhong-Hao; Buckley, Noel J.; Stanton, Lawrence W.; Lipovich, Leonard

    2009-01-01

    The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs (“macroRNAs”), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer. PMID:19050060

  18. Regulation of neural macroRNAs by the transcriptional repressor REST.

    PubMed

    Johnson, Rory; Teh, Christina Hui-Leng; Jia, Hui; Vanisri, Ravi Raj; Pandey, Tridansh; Lu, Zhong-Hao; Buckley, Noel J; Stanton, Lawrence W; Lipovich, Leonard

    2009-01-01

    The essential transcriptional repressor REST (repressor element 1-silencing transcription factor) plays central roles in development and human disease by regulating a large cohort of neural genes. These have conventionally fallen into the class of known, protein-coding genes; recently, however, several noncoding microRNA genes were identified as REST targets. Given the widespread transcription of messenger RNA-like, noncoding RNAs ("macroRNAs"), some of which are functional and implicated in disease in mammalian genomes, we sought to determine whether this class of noncoding RNAs can also be regulated by REST. By applying a new, unbiased target gene annotation pipeline to computationally discovered REST binding sites, we find that 23% of mammalian REST genomic binding sites are within 10 kb of a macroRNA gene. These putative target genes were overlooked by previous studies. Focusing on a set of 18 candidate macroRNA targets from mouse, we experimentally demonstrate that two are regulated by REST in neural stem cells. Flanking protein-coding genes are, at most, weakly repressed, suggesting specific targeting of the macroRNAs by REST. Similar to the majority of known REST target genes, both of these macroRNAs are induced during nervous system development and have neurally restricted expression profiles in adult mouse. We observe a similar phenomenon in human: the DiGeorge syndrome-associated noncoding RNA, DGCR5, is repressed by REST through a proximal upstream binding site. Therefore neural macroRNAs represent an additional component of the REST regulatory network. These macroRNAs are new candidates for understanding the role of REST in neuronal development, neurodegeneration, and cancer.

  19. Systematic transfer of prokaryotic sensors and circuits to mammalian cells.

    PubMed

    Stanton, Brynne C; Siciliano, Velia; Ghodasara, Amar; Wroblewska, Liliana; Clancy, Kevin; Trefzer, Axel C; Chesnut, Jonathan D; Weiss, Ron; Voigt, Christopher A

    2014-12-19

    Prokaryotic regulatory proteins respond to diverse signals and represent a rich resource for building synthetic sensors and circuits. The TetR family contains >10(5) members that use a simple mechanism to respond to stimuli and bind distinct DNA operators. We present a platform that enables the transfer of these regulators to mammalian cells, which is demonstrated using human embryonic kidney (HEK293) and Chinese hamster ovary (CHO) cells. The repressors are modified to include nuclear localization signals (NLS) and responsive promoters are built by incorporating multiple operators. Activators are also constructed by modifying the protein to include a VP16 domain. Together, this approach yields 15 new regulators that demonstrate 19- to 551-fold induction and retain both the low levels of crosstalk in DNA binding specificity observed between the parent regulators in Escherichia coli, as well as their dynamic range of activity. By taking advantage of the DAPG small molecule sensing mediated by the PhlF repressor, we introduce a new inducible system with 50-fold induction and a threshold of 0.9 μM DAPG, which is comparable to the classic Dox-induced TetR system. A set of NOT gates is constructed from the new repressors and their response function quantified. Finally, the Dox- and DAPG- inducible systems and two new activators are used to build a synthetic enhancer (fuzzy AND gate), requiring the coordination of 5 transcription factors organized into two layers. This work introduces a generic approach for the development of mammalian genetic sensors and circuits to populate a toolbox that can be applied to diverse applications from biomanufacturing to living therapeutics.

  20. Suppression and restoration of male fertility using a transcription factor.

    PubMed

    Li, Song Feng; Iacuone, Sylvana; Parish, Roger W

    2007-03-01

    The Arabidopsis AtMYB103 gene codes for an R2R3 MYB domain protein whose expression is restricted to the tapetum of developing anthers and to trichomes. Down-regulation of expression using anti-sense leads to abnormal tapetum and pollen development, although seed setting still occurs (Higginson, T., Li, S.F. and Parish, R.W. (2003) AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J. 35, 177-192). In this study, we show that blocking the function of the AtMYB103 gene, employing either an insertion mutant or an AtMYB103EAR chimeric repressor construct under the control of the AtMYB103 promoter, results in complete male sterility and failure to set seed. These plants exhibit similar abnormalities in tapetum and pollen development, with the tapetum becoming highly vacuolated at early stages and degenerating prematurely. No exine is deposited on to the pollen wall. The degeneration of pollen grains commences prior to pollen mitosis, the pollen collapsing and largely lacking cytoplasmic content. A restorer containing the AtMYB103 gene under the control of a stronger anther-specific promoter was introduced into pollen donor plants and crossed into the male sterile plants transgenic for the repressor. The male fertility of F1 plants was restored. The chimeric repressor and the restorer constitute a reversible male sterility system which could be adapted for hybrid seed production. This is the first reversible male sterility system targeting a transcription factor essential for pollen development. Strategies for generating inducible male sterility and maintainable male sterility for the production of hybrid crops are discussed.

  1. Mi2β Is Required for γ-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in β-YAC Transgenic Mice

    PubMed Central

    Costa, Flávia C.; Fedosyuk, Halyna; Chazelle, Allen M.; Neades, Renee Y.; Peterson, Kenneth R.

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the −566 GATA motif of the Aγ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of Aγ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the −566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1–mediated repressor complex was disrupted by the −566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting −566 Aγ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis. PMID:23284307

  2. Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice.

    PubMed

    Costa, Flávia C; Fedosyuk, Halyna; Chazelle, Allen M; Neades, Renee Y; Peterson, Kenneth R

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of (A)γ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting -566 (A)γ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis.

  3. Sp1 is a transcription repressor to stanniocalcin-1 expression in TSA-treated human colon cancer cells, HT29.

    PubMed

    Law, Alice Y S; Yeung, B H Y; Ching, L Y; Wong, Chris K C

    2011-08-01

    Our previous study demonstrated that, stanniocalcin-1 (STC1) was a target of histone deacetylase (HDAC) inhibitors and was involved in trichostatin A (TSA) induced apoptosis in the human colon cancer cells, HT29. In this study, we reported that the transcriptional factor, specificity protein 1 (Sp1) in association with retinoblastoma (Rb) repressed STC1 gene transcription in TSA-treated HT29 cells. Our data demonstrated that, a co-treatment of the cells with TSA and Sp1 inhibitor, mithramycin A (MTM) led to a marked synergistic induction of STC1 transcript levels, STC1 promoter (1 kb)-driven luciferase activity and an increase of apoptotic cell population. The knockdown of Sp1 gene expression in TSA treated cells, revealed the repressor role of Sp1 in STC1 transcription. Using a protein phosphatase inhibitor okadaic acid (OKA), an increase of Sp1 hyperphosphorylation and so a reduction of its transcriptional activity, led to a significant induction of STC1 gene expression. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 binding on STC1 proximal promoter in TSA treated cells. The binding of Sp1 to STC1 promoter was abolished by the co-treatment of MTM or OKA in TSA-treated cells. Re-ChIP assay illustrated that Sp1-mediated inhibition of STC1 transcription was associated with the recruitment of another repressor molecule, Rb. Collectively our findings identify STC1 is a downstream target of Sp1. Copyright © 2011 Wiley-Liss, Inc.

  4. Effects of atorvastatin metabolites on induction of drug-metabolizing enzymes and membrane transporters through human pregnane X receptor

    PubMed Central

    Hoffart, E; Ghebreghiorghis, L; Nussler, AK; Thasler, WE; Weiss, TS; Schwab, M; Burk, O

    2012-01-01

    BACKGROUND AND PURPOSE Atorvastatin metabolites differ in their potential for drug interaction because of differential inhibition of drug-metabolizing enzymes and transporters. We here investigate whether they exert differential effects on the induction of these genes via activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). EXPERIMENTAL APPROACH Ligand binding to PXR or CAR was analysed by mammalian two-hybrid assembly and promoter/reporter gene assays. Additionally, surface plasmon resonance was used to analyse ligand binding to CAR. Primary human hepatocytes were treated with atorvastatin metabolites, and mRNA and protein expression of PXR-regulated genes was measured. Two-hybrid co-activator interaction and co-repressor release assays were utilized to elucidate the molecular mechanism of PXR activation. KEY RESULTS All atorvastatin metabolites induced the assembly of PXR and activated CYP3A4 promoter activity. Ligand binding to CAR could not be proven. In primary human hepatocytes, the para-hydroxy metabolite markedly reduced or abolished induction of cytochrome P450 and transporter genes. While significant differences in co-activator recruitment were not observed, para-hydroxy atorvastatin demonstrated only 50% release of co-repressors. CONCLUSIONS AND IMPLICATIONS Atorvastatin metabolites are ligands of PXR but not of CAR. Atorvastatin metabolites demonstrate differential induction of PXR target genes, which results from impaired release of co-repressors. Consequently, the properties of drug metabolites have to be taken into account when analysing PXR-dependent induction of drug metabolism and transport. The drug interaction potential of the active metabolite, para-hydroxy atorvastatin, might be lower than that of the parent compound. PMID:21913896

  5. Promoter/repressor system of Lactobacillus plantarum phage og1e: characterization of the promoters pR49-pR-pL and overproduction of the cro-like protein cng in Escherichia coli.

    PubMed

    Kakikawa, M; Watanabe, N; Funawatashi, T; Oki, M; Yasukawa, H; Taketo, A; Kodaira, K I

    1998-07-30

    The Lactobacillus plantarum phage og1e (42259bp) has two repressor-like genes cng and cpg oriented oppositely, accompanied by three potential promoters pR, pL and pR49, and seven operator-like sequences (GATAC-boxes) (Kodaira et al., 1997). In this study, the og1e putative promoters were introduced into the Escherichia coli promoter-detecting plasmid pKK232-8. In E. coli CK111, pR (pKPR1), pL (pKPL1) and pR49 (pKPR49) exhibited distinct CAT activities. When pKPR1 or pKPL1 was coexistent with a compatible plasmid pACYC184 carrying pR-cng (pA4PRCN1), the CAT activity was decreased significantly. On the other hand, cng directed a protein (Cng) of 10.1 kDa in E. coli under the control of T7 promoter. Gel mobility-shift assays demonstrated that Cng binds specifically to a DNA region containing the GATAC-boxes. In addition, primer extension analyses demonstrated that the two sequences pR and pL act as a promoter in L. plantarum as well as in E. coli. These results suggested that the potential promoters pR and pL probably function for the lytic and lysogenic pathways, respectively, and Cng may act as a repressor presumably through the GATAC-boxes as operators.

  6. The transcription repressor NmrA is subject to proteolysis by three Aspergillus nidulans proteases

    PubMed Central

    Zhao, Xiao; Hume, Samantha L; Johnson, Christopher; Thompson, Paul; Huang, Junyong; Gray, Joe; Lamb, Heather K; Hawkins, Alastair R

    2010-01-01

    The role of specific cleavage of transcription repressor proteins by proteases and how this may be related to the emerging theme of dinucleotides as cellular signaling molecules is poorly characterized. The transcription repressor NmrA of Aspergillus nidulans discriminates between oxidized and reduced dinucleotides, however, dinucleotide binding has no effect on its interaction with the zinc finger in the transcription activator AreA. Protease activity in A. nidulans was assayed using NmrA as the substrate, and was absent in mycelium grown under nitrogen sufficient conditions but abundant in mycelium starved of nitrogen. One of the proteases was purified and identified as the protein Q5BAR4 encoded by the gene AN2366.2. Fluorescence confocal microscopy showed that the nuclear levels of NmrA were reduced approximately 38% when mycelium was grown on nitrate compared to ammonium and absent when starved of nitrogen. Proteolysis of NmrA occurred in an ordered manner by preferential digestion within a C-terminal surface exposed loop and subsequent digestion at other sites. NmrA digested at the C-terminal site was unable to bind to the AreA zinc finger. These data reveal a potential new layer of control of nitrogen metabolite repression by the ordered proteolytic cleavage of NmrA. NmrA digested at the C-terminal site retained the ability to bind NAD+ and showed a resistance to further digestion that was enhanced by the presence of NAD+. This is the first time that an effect of dinucleotide binding to NmrA has been demonstrated. PMID:20506376

  7. Light-dependent gene regulation by a coenzyme B12-based photoreceptor

    PubMed Central

    Ortiz-Guerrero, Juan Manuel; Polanco, María Carmen; Murillo, Francisco J.; Padmanabhan, S.; Elías-Arnanz, Montserrat

    2011-01-01

    Cobalamin (B12) typically functions as an enzyme cofactor but can also regulate gene expression via RNA-based riboswitches. B12-directed gene regulatory mechanisms via protein factors have, however, remained elusive. Recently, we reported down-regulation of a light-inducible promoter in the bacterium Myxococcus xanthus by two paralogous transcriptional repressors, of which one, CarH, but not the other, CarA, absolutely requires B12 for activity even though both have a canonical B12-binding motif. Unanswered were what underlies this striking difference, what is the specific cobalamin used, and how it acts. Here, we show that coenzyme B12 (5′-deoxyadenosylcobalamin, AdoB12), specifically dictates CarH function in the dark and on exposure to light. In the dark, AdoB12-binding to the autonomous domain containing the B12-binding motif foments repressor oligomerization, enhances operator binding, and blocks transcription. Light, at various wavelengths at which AdoB12 absorbs, dismantles active repressor oligomers by photolysing the bound AdoB12 and weakens repressor–operator binding to allow transcription. By contrast, AdoB12 alters neither CarA oligomerization nor operator binding, thus accounting for its B12-independent activity. Our findings unveil a functional facet of AdoB12 whereby it serves as the chromophore of a unique photoreceptor protein class acting in light-dependent gene regulation. The prevalence of similar proteins of unknown function in microbial genomes suggests that this distinct B12-based molecular mechanism for photoregulation may be widespread in bacteria. PMID:21502508

  8. Grantee Spotlight: Dr. Meena Jaggi - Investigating Curcumin (Turmeric) as HPV Repressor for Native A

    Cancer.gov

    Dr. Meena Jaggi’s research, funded by an NCI/CRCHD U01 grant, involves the use of curcumin (commonly known as turmeric) to inhibit human papillomavirus (HPV) infection among Native American (NA) women.

  9. MicroRNA miR-124 Controls the Choice between Neuronal and Astrocyte Differentiation by Fine-tuning Ezh2 Expression*

    PubMed Central

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V.; Su, I-hsin

    2014-01-01

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3′-untranslated region (3′-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3′-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator. PMID:24878960

  10. Bmi1 represses Ink4a/Arf and Hox genes to regulate stem cells in the rodent incisor

    PubMed Central

    Biehs, Brian; Hu, Jimmy Kuang-Hsien; Strauli, Nicolas B.; Sangiorgi, Eugenio; Jung, Heekyung; Heber, Ralf-Peter; Ho, Sunita; Goodwin, Alice F.; Dasen, Jeremy S.; Capecchi, Mario R.; Klein, Ophir D.

    2013-01-01

    The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs1, 2. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell cycle inhibitors p16ink4a and p19Arf3. However, deletion of Ink4a/Arf only partially rescues Bmi1 null phenotypes4, indicating that other important targets of BMI1 exist. Here, using the continuously-growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression, and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated1, 2, 5–7, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation. PMID:23728424

  11. MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression.

    PubMed

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V; Su, I-hsin

    2014-07-25

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3'-untranslated region (3'-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3'-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator.

  12. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation.

    PubMed

    Mourad, Raphaël; Cuvier, Olivier

    2016-05-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1.

  13. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation

    PubMed Central

    Mourad, Raphaël; Cuvier, Olivier

    2016-01-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237

  14. Individuality and epigenetics in obesity.

    PubMed

    Campión, J; Milagro, F I; Martínez, J A

    2009-07-01

    Excessive weight gain arises from the interactions among environmental factors, genetic predisposition and the individual behavior. However, it is becoming evident that interindividual differences in obesity susceptibility depend also on epigenetic factors. Epigenetics studies the heritable changes in gene expression that do not involve changes to the underlying DNA sequence. These processes include DNA methylation, covalent histone modifications, chromatin folding and, more recently described, the regulatory action of miRNAs and polycomb group complexes. In this review, we focus on experimental evidences concerning dietary factors influencing obesity development by epigenetic mechanisms, reporting treatment doses and durations. Moreover, we present a bioinformatic analysis of promoter regions for the search of future epigenetic biomarkers of obesity, including methylation pattern analyses of several obesity-related genes (epiobesigenes), such as FGF2, PTEN, CDKN1A and ESR1, implicated in adipogenesis, SOCS1/SOCS3, in inflammation, and COX7A1 LPL, CAV1, and IGFBP3, in intermediate metabolism and insulin signalling. The identification of those individuals that at an early age could present changes in the methylation profiles of specific genes could help to predict their susceptibility to later develop obesity, which may allow to prevent and follow-up its progress, as well as to research and develop newer therapeutic approaches.

  15. A DNA methylation microarray-based study identifies ERG as a gene commonly methylated in prostate cancer.

    PubMed

    Schwartzman, Jacob; Mongoue-Tchokote, Solange; Gibbs, Angela; Gao, Lina; Corless, Christopher L; Jin, Jennifer; Zarour, Luai; Higano, Celestia; True, Lawrence D; Vessella, Robert L; Wilmot, Beth; Bottomly, Daniel; McWeeney, Shannon K; Bova, G Steven; Partin, Alan W; Mori, Motomi; Alumkal, Joshi

    2011-10-01

    DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG's predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.

  16. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12.

    PubMed

    Shimada, Tomohiro; Ogasawara, Hiroshi; Ishihama, Akira

    2018-05-04

    The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation.

  17. Single-target regulators form a minor group of transcription factors in Escherichia coli K-12

    PubMed Central

    Shimada, Tomohiro; Ogasawara, Hiroshi; Ishihama, Akira

    2018-01-01

    Abstract The identification of regulatory targets of all TFs is critical for understanding the entire network of the genome regulation. The lac regulon of Escherichia coli K-12 W3110 is composed of the lacZYA operon and its repressor lacI gene, and has long been recognized as the seminal model of transcription regulation in bacteria with only one highly preferred target. After the Genomic SELEX screening in vitro of more than 200 transcription factors (TFs) from E. coli K-12, however, we found that most TFs regulate multiple target genes. With respect to the number of regulatory targets, a total of these 200 E. coli TFs form a hierarchy ranging from a single target to as many as 1000 targets. Here we focus a total of 13 single-target TFs, 9 known TFs (BetI, KdpE, LacI, MarR, NanR, RpiR, TorR, UlaR and UxuR) and 4 uncharacterized TFs (YagI, YbaO, YbiH and YeaM), altogether forming only a minor group of TFs in E. coli. These single-target TFs were classified into three groups based on their functional regulation. PMID:29529243

  18. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    PubMed

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 AlphaMed Press.

  19. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9.

    PubMed

    Englert, Neal A; Luo, George; Goldstein, Joyce A; Surapureddi, Sailesh

    2015-01-23

    The Mediator complex is vital for the transcriptional regulation of eukaryotic genes. Mediator binds to nuclear receptors at target response elements and recruits chromatin-modifying enzymes and RNA polymerase II. Here, we examine the involvement of Mediator subunit MED25 in the epigenetic regulation of human cytochrome P450 2C9 (CYP2C9). MED25 is recruited to the CYP2C9 promoter through association with liver-enriched HNF4α, and we show that MED25 influences the H3K27 status of the HNF4α binding region. This region was enriched for the activating marker H3K27ac and histone acetyltransferase CREBBP after MED25 overexpression but was trimethylated when MED25 expression was silenced. The epigenetic regulator Polycomb repressive complex (PRC2), which represses expression by methylating H3K27, plays an important role in target gene regulation. Silencing MED25 correlated with increased association of PRC2 not only with the promoter region chromatin but with HNF4α itself. We confirmed the involvement of MED25 for fully functional preinitiation complex recruitment and transcriptional output in vitro. Formaldehyde-assisted isolation of regulatory elements (FAIRE) revealed chromatin conformation changes that were reliant on MED25, indicating that MED25 induced a permissive chromatin state that reflected increases in CYP2C9 mRNA. For the first time, we showed evidence that a functionally relevant human gene is transcriptionally regulated by HNF4α via MED25 and PRC2. CYP2C9 is important for the metabolism of many exogenous chemicals including pharmaceutical drugs as well as endogenous substrates. Thus, MED25 is important for regulating the epigenetic landscape resulting in transcriptional activation of a highly inducible gene, CYP2C9. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Convergent evolution of chromatin modification by structurally distinct enzymes: comparative enzymology of histone H3 Lys²⁷ methylation by human polycomb repressive complex 2 and vSET.

    PubMed

    Swalm, Brooke M; Hallenbeck, Kenneth K; Majer, Christina R; Jin, Lei; Scott, Margaret Porter; Moyer, Mikel P; Copeland, Robert A; Wigle, Tim J

    2013-07-15

    H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.

  1. Salt Sensitive Tet-Off-Like Systems to Knockdown Primordial Germ Cell Genes for Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus.

    PubMed

    Li, Hanbo; Su, Baofeng; Qin, Guyu; Ye, Zhi; Alsaqufi, Ahmed; Perera, Dayan A; Shang, Mei; Odin, Ramjie; Vo, Khoi; Drescher, David; Robinson, Dalton; Zhang, Dan; Abass, Nermeen; Dunham, Rex A

    2017-05-31

    Repressible knockdown approaches were investigated for transgenic sterilization in channel catfish, Ictalurus punctatus . Two primordial germ cell (PGC) marker genes, nanos and dead end , were targeted for knockdown, and an off-target gene, vasa , was monitored. Two potentially salt sensitive repressible promoters, zebrafish adenylosuccinate synthase 2 (ADSS) and zebrafish racemase (Rm), were each coupled with four knockdown strategies: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos , full-length cDNA sequence of channel catfish nanos for overexpression (cDNA) and ds-sh RNA targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with sodium chloride as the repressor compound. Spawning rates of full-sibling P₁ fish exposed or not exposed to the constructs as treated and untreated embryos were 93% and 59%, respectively, indicating potential sterilization of fish and repression of the constructs. Although the mRNA expression data of PGC marker genes were inconsistent in P₁ fish, most F₁ individuals were able to downregulate the target genes in untreated groups and repress the knockdown process in treated groups. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but more data from F₂ or F₃ are needed for evaluation.

  2. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  3. Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana.

    PubMed

    Leeggangers, Hendrika A C F; Nijveen, Harm; Bigas, Judit Nadal; Hilhorst, Henk W M; Immink, Richard G H

    2017-03-01

    The vegetative-to-reproductive phase change in tulip ( Tulipa gesneriana ) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis ( Arabidopsis thaliana ), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1 Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 ( TgTFL1 ) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 ( TgSOC1-like1 ) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. The Zinc Finger Proteins Mxr1p and Repressor of Phosphoenolpyruvate Carboxykinase (ROP) Have the Same DNA Binding Specificity but Regulate Methanol Metabolism Antagonistically in Pichia pastoris*

    PubMed Central

    Kumar, Nallani Vijay; Rangarajan, Pundi N.

    2012-01-01

    The methanol-inducible alcohol oxidase I (AOXI) promoter of the methylotrophic yeast, Pichia pastoris, is used widely for the production of recombinant proteins. AOXI transcription is regulated by the zinc finger protein Mxr1p (methanol expression regulator 1). ROP (repressor of phosphoenolpyruvate carboxykinase, PEPCK) is a methanol- and biotin starvation-inducible zinc finger protein that acts as a negative regulator of PEPCK in P. pastoris cultured in biotin-deficient, glucose-ammonium medium. The function of ROP during methanol metabolism is not known. In this study, we demonstrate that ROP represses methanol-inducible expression of AOXI when P. pastoris is cultured in a nutrient-rich medium containing yeast extract, peptone, and methanol (YPM). Deletion of the gene encoding ROP results in enhanced expression of AOXI and growth promotion whereas overexpression of ROP results in repression of AOXI and growth retardation of P. pastoris cultured in YPM medium. Surprisingly, deletion or overexpression of ROP has no effect on AOXI gene expression and growth of P. pastoris cultured in a minimal medium containing yeast nitrogen base and methanol (YNBM). Subcellular localization studies indicate that ROP translocates from cytosol to nucleus of cells cultured in YPM but not YNBM. In vitro DNA binding studies indicate that AOXI promoter sequences containing 5′ CYCCNY 3′ motifs serve as binding sites for Mxr1p as well as ROP. Thus, Mxr1p and ROP exhibit the same DNA binding specificity but regulate methanol metabolism antagonistically in P. pastoris. This is the first report on the identification of a transcriptional repressor of methanol metabolism in any yeast species. PMID:22888024

  5. Ab Initio Structural Modeling of and Experimental Validation for Chlamydia trachomatis Protein CT296 Reveal Structural Similarity to Fe(II) 2-Oxoglutarate-Dependent Enzymes▿

    PubMed Central

    Kemege, Kyle E.; Hickey, John M.; Lovell, Scott; Battaile, Kevin P.; Zhang, Yang; Hefty, P. Scott

    2011-01-01

    Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF) CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-Å Cα root mean square deviation [RMSD]) the high-resolution (1.8-Å) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur. PMID:21965559

  6. Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor.

    PubMed

    Sexton, Jessica A; Brown, Victoria; Johnston, Mark

    2007-10-01

    The ability of the fungal pathogen Candida albicans to cause systemic infections depends in part on the function of Hgt4, a cell surface sugar sensor. The orthologues of Hgt4 in Saccharomyces cerevisiae, Snf3 and Rgt2, initiate a signalling cascade that inactivates Rgt1, a transcriptional repressor of genes encoding hexose transporters. To determine whether Hgt4 functions similarly through the C. albicans orthologue of Rgt1, we analysed Cargt1 deletion mutants. We found that Cargt1 mutants are sensitive to the glucose analogue 2-deoxyglucose, a phenotype probably due to uncontrolled expression of genes encoding glucose transporters. Indeed, transcriptional profiling revealed that expression of about two dozen genes, including multiple HGT genes encoding hexose transporters, is increased in the Cargt1 mutant in the absence of sugars, suggesting that CaRgt1 represses expression of several HGT genes under this condition. Some of the HGT genes (probably encoding high-affinity transporters) are also repressed by high levels of glucose, and we show that this repression is mediated by CaMig1, the orthologue of the major glucose-activated repressor in S. cerevisiae, but not by its paralogue CaMig2. Therefore, CaRgt1 and CaMig1 collaborate to control expression of C. albicans hexose transporters in response to different levels of sugars. We were surprised to find that CaRgt1 also regulates expression of GAL1, suggesting that regulation of galactose metabolism in C. albicans is unconventional. Finally, Cargt1 mutations cause cells to hyperfilament, and suppress the hypofilamented phenotype of an hgt4 mutant, indicating that the Hgt4 glucose sensor may affect filamentation by modulating sugar import and metabolism via CaRgt1. Copyright 2007 John Wiley & Sons, Ltd.

  7. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation

    PubMed Central

    Coffee, R. Lane; Williamson, Ashley J.; Adkins, Christopher M.; Gray, Marisa C.; Page, Terry L.; Broadie, Kendal

    2012-01-01

    Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior. PMID:22080836

  8. A Simple Negative Interaction in the Positive Transcriptional Feedback of a Single Gene Is Sufficient to Produce Reliable Oscillations

    PubMed Central

    Miró-Bueno, Jesús M.; Rodríguez-Patón, Alfonso

    2011-01-01

    Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. PMID:22205920

  9. Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemege, Kyle E.; Hickey, John M.; Lovell, Scott

    2012-02-13

    Chlamydia trachomatis is a medically important pathogen that encodes a relatively high percentage of proteins with unknown function. The three-dimensional structure of a protein can be very informative regarding the protein's functional characteristics; however, determining protein structures experimentally can be very challenging. Computational methods that model protein structures with sufficient accuracy to facilitate functional studies have had notable successes. To evaluate the accuracy and potential impact of computational protein structure modeling of hypothetical proteins encoded by Chlamydia, a successful computational method termed I-TASSER was utilized to model the three-dimensional structure of a hypothetical protein encoded by open reading frame (ORF)more » CT296. CT296 has been reported to exhibit functional properties of a divalent cation transcription repressor (DcrA), with similarity to the Escherichia coli iron-responsive transcriptional repressor, Fur. Unexpectedly, the I-TASSER model of CT296 exhibited no structural similarity to any DNA-interacting proteins or motifs. To validate the I-TASSER-generated model, the structure of CT296 was solved experimentally using X-ray crystallography. Impressively, the ab initio I-TASSER-generated model closely matched (2.72-{angstrom} C{alpha} root mean square deviation [RMSD]) the high-resolution (1.8-{angstrom}) crystal structure of CT296. Modeled and experimentally determined structures of CT296 share structural characteristics of non-heme Fe(II) 2-oxoglutarate-dependent enzymes, although key enzymatic residues are not conserved, suggesting a unique biochemical process is likely associated with CT296 function. Additionally, functional analyses did not support prior reports that CT296 has properties shared with divalent cation repressors such as Fur.« less

  10. Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha.

    PubMed

    Chakraborty, Sandipan; Biswas, Pradip Kumar

    2014-08-01

    Tamoxifen-an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers-is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of "tamoxifen resistance". DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.

  11. Concomitant expression of far upstream element (FUSE) binding protein (FBP) interacting repressor (FIR) and its splice variants induce migration and invasion of non-small cell lung cancer (NSCLC) cells.

    PubMed

    Müller, Benedikt; Bovet, Michael; Yin, Yi; Stichel, Damian; Malz, Mona; González-Vallinas, Margarita; Middleton, Alistair; Ehemann, Volker; Schmitt, Jennifer; Muley, Thomas; Meister, Michael; Herpel, Esther; Singer, Stephan; Warth, Arne; Schirmacher, Peter; Drasdo, Dirk; Matthäus, Franziska; Breuhahn, Kai

    2015-11-01

    Transcription factors integrate a variety of oncogenic input information, facilitate tumour growth and cell dissemination, and therefore represent promising therapeutic target structures. Because over-expression of DNA-interacting far upstream element binding protein (FBP) supports non-small cell lung cancer (NSCLC) migration, we asked whether its repressor, FBP-interacting repressor (FIR) is functionally inactivated and how FIR might affect NSCLC cell biology. Different FIR splice variants were highly expressed in the majority of NSCLCs, with the highest levels in tumours carrying genomic gains of chromosome 8q24.3, which contained the FIR gene locus. Nuclear FIR expression was significantly enriched at the invasion front of primary NSCLCs, but this did not correlate with tumour cell proliferation. FIR accumulation was associated with worse patient survival and tumour recurrence; in addition, FIR over-expression significantly correlated with lymph node metastasis in squamous cell carcinomas (SCCs). In vitro, we applied newly developed methods and modelling approaches for the quantitative and time-resolved description of the pro-migratory and pro-invasive capacities of SCC cells. siRNA-mediated silencing of all FIR variants significantly reduced the speed and directional movement of tumour cells in all phases of migration. Furthermore, sprouting efficiency and single cell invasiveness were diminished following FIR inhibition. Interestingly, the silencing of FIR isoforms lacking exon 2 (FIR(Δexon2)) alone was sufficient to reduce lateral migration and invasion. In summary, by using scale-spanning data derived from primary human tissues, quantitative cellular analyses and mathematical modelling, we have demonstrated that concomitant over-expression of FIR and its splice variants drives NSCLC migration and dissemination. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown butmore » our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.« less

  13. Lysines 72, 80 and 213 and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression.

    PubMed

    van Rooijen, R J; Dechering, K J; Niek, C; Wilmink, J; de Vos, W M

    1993-02-01

    Site-directed mutagenesis of the Lactococcus lactis lacR gene was performed to identify residues in the LacR repressor that are involved in the induction of lacABCDFEGX operon expression by tagatose-6-phosphate. A putative inducer binding domain located near the C-terminus was previously postulated based on homology studies with the Escherichia coli DeoR family of repressors, which all have a phosphorylated sugar as inducer. Residues within this domain and lysine residues that are charge conserved in the DeoR family were changed into alanine or arginine. The production of the LacR mutants K72A, K80A, K80R, D210A, K213A and K213R in the LacR-deficient L.lactis strain NZ3015 resulted in repressed phospho-beta-galactosidase (LacG) activities and decreased growth rates on lactose. Gel mobility shift assays showed that the complex between a DNA fragment carrying the lac operators and LacR mutants K72A, K80A, K213A and D210A did not dissociate in the presence of tagatose-6-phosphate, in contrast to wild type LacR. Other mutations (K62A/K63A, K72R, K73A, K73R, T212A, F214R, R216R and R216K) exhibited no gross effects on inducer response. The results strongly suggest that the lysines at positions 72, 80 and 213 and aspartic acid at position 210 are involved in the induction of lac operon expression by tagatose-6-phosphate.

  14. Target gene analysis by microarrays and chromatin immunoprecipitation identifies HEY proteins as highly redundant bHLH repressors.

    PubMed

    Heisig, Julia; Weber, David; Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.

  15. Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors

    PubMed Central

    Englberger, Eva; Winkler, Anja; Kneitz, Susanne; Sung, Wing-Kin; Wolf, Elmar; Eilers, Martin; Wei, Chia-Lin; Gessler, Manfred

    2012-01-01

    HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an E-box motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression. PMID:22615585

  16. Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density.

    PubMed

    Liu, Pan; Liu, Jie; Dong, Huixue; Sun, Jiaqiang

    2018-02-01

    Bread wheat (Triticum aestivum) spike architecture is an important agronomic trait. The Q gene plays a key role in the domestication of bread wheat spike architecture. However, the regulatory mechanisms of Q expression and transcriptional activity remain largely unknown. In this study, we show that overexpression of bread wheat tae-miR172 caused a speltoid-like spike phenotype, reminiscent of that in wheat plants with the q gene. The reduction in Q transcript levels in the tae-miR172 overexpression transgenic bread wheat lines suggests that the Q expression can be suppressed by tae-miR172 in bread wheat. Indeed, our RACE analyses confirmed that the Q mRNA is targeted by tae-miR172 for cleavage. According to our analyses, the Q protein is localized in nucleus and confers transcriptional repression activity. Meanwhile, the Q protein could physically interact with the bread wheat transcriptional co-repressor TOPLESS (TaTPL). Specifically, the N-terminal ethylene-responsive element binding factor-associated amphiphilic repression (EAR) (LDLNVE) motif but not the C-terminal EAR (LDLDLR) motif of Q protein mediates its interaction with the CTLH motif of TaTPL. Moreover, we show that the N-terminal EAR motif of Q protein is also essentially required for the transcriptional repression activity of Q protein. Taken together, we reveal the functional regulation of Q protein by tae-miR172 and transcriptional co-repressor TaTPL in controlling the bread wheat spike architecture. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Acetylation of histone deacetylase 1 regulates NuRD corepressor complex activity.

    PubMed

    Yang, Tao; Jian, Wei; Luo, Yi; Fu, Xueqi; Noguchi, Constance; Bungert, Jörg; Huang, Suming; Qiu, Yi

    2012-11-23

    HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.

  18. Borrelia oxidative stress response regulator, BosR: A distinctive Zn-dependent transcriptional activator

    PubMed Central

    Boylan, Julie A.; Posey, James E.; Gherardini, Frank C.

    2003-01-01

    The ability of a pathogen to cause infection depends on successful colonization of the host, which, in turn, requires adaptation to various challenges presented by that host. For example, host immune cells use a variety of mechanisms to control infection by bacterial pathogens, including the production of bactericidal reactive oxygen species. Prokaryotic and eukaryotic cells have developed ways of protecting themselves against this oxidative damage; for instance, Borrelia burgdorferi alters the expression of oxidative-stress-related proteins, such as a Dps/Dpr homolog NapA (BB0690), in response to increasing levels of oxygen and reactive oxygen species. These stress-related genes appear to be regulated by a putative metal-dependent DNA-binding protein (BB0647) that has 50.7% similarity to the peroxide-specific stress response repressor of Bacillus subtilis, PerR. We overexpressed and purified this protein from Escherichia coli and designated it Borrelia oxidative stress regulator, BosR. BosR bound to a 50-nt region 180 bp upstream of the napA transcriptional start site and required DTT and Zn2+ for optimal binding. Unlike the Bacillus subtilis PerR repressor, BosR did not require Fe2+ and Mn2+ for binding, and oxidizing agents, such as t-butyl peroxide, enhanced, not eliminated, BosR binding to the napA promoter region. Surprisingly, transcriptional fusion analysis indicated that BosR exerted a positive regulatory effect on napA that is inducible with t-butyl peroxide. On the basis of these data, we propose that, despite the similarity to PerR, BosR functions primarily as a transcriptional activator, not a repressor of oxidative stress response, in B. burgdorferi. PMID:12975527

  19. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  20. Molecular Regulation of Temperature-Dependent Floral Induction in Tulipa gesneriana1

    PubMed Central

    Leeggangers, Hendrika A.C.F.; Bigas, Judit Nadal

    2017-01-01

    The vegetative-to-reproductive phase change in tulip (Tulipa gesneriana) is promoted by increasing temperatures during spring. The warm winters of recent years interfere with this process and are calling for new adapted cultivars. A better understanding of the underlying molecular mechanisms would be of help, but unlike the model plant Arabidopsis (Arabidopsis thaliana), very little is known about floral induction in tulip. To shed light on the gene regulatory network controlling flowering in tulip, RNA sequencing was performed on meristem-enriched tissue collected under two contrasting temperature conditions, low and high. The start of reproductive development correlated with rounding of the shoot apical meristem and induction of TGSQA expression, a tulip gene with a high similarity to Arabidopsis APETALA1. Gene Ontology enrichment analysis of differentially expressed genes showed the overrepresentation of genes potentially involved in floral induction, bulb maturation, and dormancy establishment. Expression analysis revealed that TERMINAL FLOWER1 (TgTFL1) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1-like1 (TgSOC1-like1) might be repressors, whereas TgSOC1-like2 likely is an activator, of flowering. Subsequently, the flowering time-associated expression of eight potential flowering time genes was confirmed in three tulip cultivars grown in the field. Additionally, heterologous functional analyses in Arabidopsis resulted in flowering time phenotypes in line with TgTFL1 being a floral repressor and TgSOC1-like2 being a floral activator in tulip. Taken together, we have shown that long before morphological changes occur in the shoot apical meristem, the expression of floral repressors in tulip is suppressed by increased ambient temperatures, leading either directly or indirectly to the activation of potential flowering activators shortly before the commencement of the phase change. PMID:28104719

Top