Science.gov

Sample records for polycrystalline gd-activated cubic

  1. Transparent polycrystalline cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  2. Transparent polycrystalline cubic silicon nitride.

    PubMed

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-17

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  3. Transparent polycrystalline cubic silicon nitride

    PubMed Central

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  4. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Kuruc, Marcel; Peterka, Jozef

    2014-12-01

    Poly-crystalline cubic boron nitride (PCBN) is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM) is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics). This contribution investigates this advanced machining method during machining of PCBN.

  5. Modelling the magnetostriction coefficient of polycrystalline ferromagnetic materials with a cubic structure by means of the finite element method

    NASA Astrophysics Data System (ADS)

    Decocker, R.; Kestens, L.; Houbaert, Y.

    2002-04-01

    A finite element code was used to calculate the magnetostriction coefficient of a polycrystalline ferromagnetic material with a cubic structure. Based on the crystallographic texture, the finite element code was employed to average the single crystal behaviour of the various orientations, which were present in the polycrystalline aggregate. A standard electrical steel was used for experimental verification.

  6. Self-oriented Ag-based polycrystalline cubic nanostructures through polymer stabilization

    NASA Astrophysics Data System (ADS)

    Alonso, Amanda; Vigués, Núria; Rodríguez-Rodríguez, Rosalía; Borrisé, Xavier; Muñoz, María; Muraviev, Dmitri N.; Mas, Jordi; Muñoz-Berbel, Xavier

    2016-10-01

    This paper presents the study of the dynamics of the formation of polymer-assisted highly-orientated polycrystalline cubic structures (CS) by a fractal-mediated mechanism. This mechanism involves the formation of seed Ag@Co nanoparticles by InterMatrix Synthesis and subsequent overgrowth after incubation at a low temperature in chloride and phosphate solutions. These ions promote the dissolution and recrystallization in an ordered configuration of pre-synthetized nanoparticles initially embedded in negatively-charged polymeric matrices. During recrystallization, silver ions aggregate in AgCl@Co fractal-like structures, then evolve into regular polycrystalline solid nanostructures (e.g. CS) in a single crystallization step on specific regions of the ion exchange resin (IER) which maintain the integrity of polycrystalline nanocubes. Here, we study the essential role of the IER in the formation of these CS for the maintenance of their integrity and stability. Thus, this synthesis protocol may be easily expanded to the composition of other nanoparticles providing an interesting, cheap and simple alternative for cubic structure formation and isolation.

  7. Mechanical properties of polycrystalline translucent cubic boron nitride as characterized by the Vickers indentation method

    SciTech Connect

    Taniguchi, Takashi; Akaishi, Minoru; Yamaoka, Shinobu

    1996-02-01

    Mechanical properties of polycrystalline translucent cubic boron nitride (cBN) were characterized by Vickers indentation measurement. The calculated hardness decreased from 54 to 49 GPa as the load increased to 39 N, and then remained constant for values above this load. According to the relationship between crack length and applied indentation load, the formation of the median/radial type of cracks seems to take place at an applied load above 29 N. Assuming that the ratio of hardness and Young`s modulus is constant in the polycrystalline cBN, the fracture toughness, K{sub IC}, of cBN was estimated to be 5.0 {+-} 0.5 MPa {center_dot} m{sup 1/2}.

  8. Mechanism study on the wear of polycrystalline cubic boron nitride cutting tools

    NASA Astrophysics Data System (ADS)

    Jia, Yunhai; Li, Jiangang

    2010-12-01

    The samples of bearing steel, alloy cold-die steel, cold-harden cast iron were continuous machined by polycrystalline cubic boron nitride(PcBN) cutting tools dry turning. After the machining, the phases of cutting tools blade-edge were analyzed by X-ray diffraction analyzer and cutting tools blade-edge microstructure were observed by scanning electronic microscope. And then, the wear mechanism of PcBN cutting tools in turing process was studied. The result showed that the oxidation wear and felt wear were main invalidation factors using PcBN cutting tools dry turning bearing steel and alloy cold-die steel samples; chemical wear and oxidation wear were main invalidation factors using PcBN cutting tools dry turning cold-harden cast iron. In turning process, the granularity of cBN, the heated-stability and chemical characteristic of felt material have key function to cutting tools wear.

  9. Picosecond pulsed laser processing of polycrystalline diamond and cubic boron nitride composite materials

    NASA Astrophysics Data System (ADS)

    Warhanek, Maximilian G.; Pfaff, Josquin; Meier, Linus; Walter, Christian; Wegener, Konrad

    2016-03-01

    Capabilities and advantages of laser ablation processes utilizing ultrashort pulses have been demonstrated in various applications of scientific and industrial nature. Of particular interest are applications that require high geometrical accuracy, excellent surface integrity and thus tolerate only a negligible heat-affected zone in the processed area. In this context, this work presents a detailed study of the ablation characteristics of common ultrahard composite materials utilized in the cutting tool industry, namely polycrystalline diamond (PCD) and polycrystalline cubic boron nitride composite (PCBN). Due to the high hardness of these materials, conventional mechanical processing is time consuming and costly. Herein, laser ablation is an appealing solution, since no process forces and no wear have to be taken into consideration. However, an industrially viable process requires a detailed understanding of the ablation characteristics of each material. Therefore, the influence of various process parameters on material removal and processing quality at 10 ps pulse duration are investigated for several PCD and PCBN grades. The main focus of this study examines the effect of different laser energy input distributions, such as pulse frequency and burst pulses, on the processing conditions in deep cutting kerfs and the resulting processing speed. Based on these results, recommendations for efficient processing of such materials are derived.

  10. Thermo-radiative and optical properties of a cutting tool based on polycrystalline cubic boron nitride (PCBN)

    NASA Astrophysics Data System (ADS)

    González de Arrieta, I.; Echániz, T.; Pérez-Sáez, R. B.; Tello, M. J.

    2016-04-01

    The normal spectral emissivity of a cutting tool based on polycrystalline cubic boron nitride (PCBN) between 400 °C and 1000 °C has been measured. Its shape shows significant differences with respect to that of pure cubic boron nitride (c-BN). Therefore, while the reflectance spectrum of pure c-BN can be fitted to a Lorentz model for linear dielectrics, the reflectance spectrum of the cutting tool (calculated from the emissivity using Kirchhoff’s laws) requires a combination of a four-parameter Kurosawa model with a double-damping Drude one. A detailed study of the dependence of the emissivity spectrum with temperature is also performed. The experimental data of this paper is required for accurate temperature measurements with radiation thermometers in machining processes.

  11. Hybrid CO2 laser/waterjet (CO2-LWJ) cutting of Polycrystalline Cubic Boron Nitride (PCBN) blanks with phase transformation induced fracture

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoru; Melaibari, Ammar A.; Molian, Pal; Shrotriya, Pranav

    2015-07-01

    The present paper investigates a transformation induced fracture mechanism for the cutting of Polycrystalline Cubic Boron Nitride (PCBN) sample by a hybrid CO2 laser/waterjet (CO2-LWJ) manufacturing process. In CO2-LWJ machining, a laser was used for local heating followed by waterjet quenching leading to fracture propagation along the sample surface. Cutting results indicate that as line energy of the laser was increased the sample response transitioned from scribing to through cutting. Raman spectroscopy analysis of the cut surface indicates that laser heated PCBN undergoes chemical phase transformation from sp3-bonded cubic Boron Nitride (cBN) into hexagonal Boron Nitride (hBN) and other sp2-bonded phases. The sp2-bonded structure occupies more volume than sp3-bonded structure such that the transformed material has a tendency to expand the original material and leads to surface deformation around the cutting path. Surface profile of the cut samples was experimentally measured using profilometry and compared with numerical predictions in order to estimate the expansion strain and dimensions of transformation region. Based on the obtained expansion strain and transformation zone, stress fields and crack driving forces were computed for channeling cracks that result in material separation. Comparison of the crack driving forces with fracture toughness of PCBN shows that transformation induced crack propagation is the feasible mechanism for cutting during CO2-LWJ machining.

  12. Measurement of Transient Tool Internal Temperature Fields by Novel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron Nitride Cutting Inserts

    NASA Astrophysics Data System (ADS)

    Werschmoeller, Dirk

    Monitoring and control of thermomechanical phenomena in tooling are imperative for advancing fundamental understanding, enhancing reliability, and improving workpiece quality in material removal processes. Polycrystalline cubic boron nitride (PCBN) tools are being used heavily in numerous machining processes, e.g., machining of hardened low carbon steel and superalloys. These processes are very sensitive to variations in local cutting conditions at, or close to, the tool-workpiece interface, but lack a thorough understanding of fundamental transient thermo-mechanical phenomena present. As a result, abrupt catastrophic tool failures and degraded machined surfaces frequently occur. Existing sensors are not suitable for process control and monitoring, as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to provide relevant data during machining. This research presents a novel approach for obtaining thermomechanical data from the close vicinity (i.e., 10s of micrometers) of the tool-workpiece interface. Arrays of micro thin film thermocouples with junction size 5 x 5 mum were fabricated by standard microfabrication methods and have been successfully embedded into PCBN using diffusion bonding. Electron microscopy and X-ray spectroscopy were employed to examine material interactions at the bonding interface and to determine optimal bonding parameters. Static and dynamic sensor performances have been characterized. The sensors exhibit excellent linearity up to 1300 °C, fast rise time of 150 ns, and possess good sensitivity. The inserts instrumented with embedded thin film C-type thermocouples were successfully applied to measure internal tool temperatures as close as 70 mum to the cutting edge while machining aluminum and hardened steel workpieces at industrially relevant cutting parameters. Acquired temperature data follow theoretical trends very well. Correlations between temperature and cutting parameters have

  13. High-pressure, high-temperature sintering of polycrystalline cubic boron nitride with improved thermostability and mechanical properties for high temperature applications

    NASA Astrophysics Data System (ADS)

    Yao, Xian

    Polycrystalline cubic boron nitride (PCBN) is one of the few materials suitable for friction stir welding (FSW) of hardened steels, which demands tool materials to possess high temperature strength, toughness, abrasion resistance, thermal and chemical stabilities. In FSW process at temperatures higher than 980°C PCBN consisting of AlB2, as one of the major reaction products, underwent a reverse peritectic reaction: AlB2 → Al(l) + AlB 12 and released liquid Al, which was believed to cause inter-cBN granular cracking in the PCBN tool during FSW of hardened steel. In the present research, PCBN starting with decreased Al additive and addition of fine cBN powder, was HP/HT-sintered at higher B:Al ratio and increased available BN surface area for fast in situ reaction with liquid Al in favor of forming AlB12 instead of AlB2. Titanium powder in HP/HT-sintering of PCBN under the same pressure and temperature conditions resulted in cBN, TiN, and TiB2 reaction products but could not achieve the densification comparable to the Al additives. However, using Ti-coated cBN particles with addition of the fine cBN powder led to PCBN with highly packed reaction products of cBN, TiN, and TiB2 and strong mechanical properties. Applying electron backscattered diffraction (EBSD) method, the PCBN with 10vol%Al additive was detected to consist of 0.5vol% and finely dispersed AlB2 in addition to AlB12 as the major borides in addition to cBN and AlN. Such PCBN was shown to possess high thermostability measured at 1000°C and measureable increases in flexural strength at temperatures up to 1100°C, while room temperature fracture toughness value was retained up to 1100° C as well. Combine x-ray diffraction (XRD) and EBSD results revealed the increase in high-temperature strength was resultant of high residual compressive-stress on cBN grains applied by thermal expansion of the AlN-AlB 12 grainboundary phase. The PCBN sintered from cBN with 10vo%Al powder, possessing improved

  14. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  15. Deposition Of Cubic BN On Diamond Interlayers

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P.; Shing, Yuh-Han

    1994-01-01

    Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.

  16. Ultrasonic velocities in anisotropic polycrystalline aggregates

    NASA Astrophysics Data System (ADS)

    Sayers, C. M.

    1982-04-01

    The ultrasonic velocities in a polycrystalline aggregate of cubic crystals with orthorhombic symmetry are derived. Use is made of the formalism of Roe for treating the texture of polycrystalline aggregates. It is shown how information about the crystallite orientation distribution function can be derived from ultrasonic velocity measurements. This enables the construction of ultrasonic pole figures, which may be compared with those obtained with neutron diffraction. Application is made to the effect of texture on ultrasonic propagation in austenitic welds.

  17. polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Cai, Yunqi; Ma, Ji; Cui, Qi; Wang, Wenzhang; Zhang, Hui; Chen, Qingming

    2014-12-01

    La2/3Ca1/3MnO3 polycrystalline ceramics were synthesized by sol-gel method. Sharp temperature coefficient of resistance (TCR) variation (with peak value up to 22 %) has been observed near the metal-insulator transition temperature T MI (273 K) for the sample sintered at 1,450 °C. This TCR value is much higher than the previously reported values for the undoped and Ag-doped La0.67Ca0.33MnO3 samples and is comparable to the optimized thin films. It was concluded that the improved physical properties of the La0.67Ca0.33MnO3 material are due to its improved microstructure and homogeneity.

  18. Shock waves in polycrystalline iron.

    PubMed

    Kadau, Kai; Germann, Timothy C; Lomdahl, Peter S; Albers, Robert C; Wark, Justin S; Higginbotham, Andrew; Holian, Brad Lee

    2007-03-30

    The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone.

  19. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  20. Development of Novel Polycrystalline Ceramic Scintillators

    SciTech Connect

    Wisniewska, Monika; Boatner, Lynn A; Neal, John S; Jellison Jr, Gerald Earle; Ramey, Joanne Oxendine; North, Andrea L; Wisniewski, Monica; Payzant, E Andrew; Howe, Jane Y; Lempicki, Aleksander; Brecher, Charlie; Glodo, J.

    2008-01-01

    For several decades most of the efforts to develop new scintillator materials have concentrated on high-light-yield inorganic single-crystals while polycrystalline ceramic scintillators, since their inception in the early 1980 s, have received relatively little attention. Nevertheless, transparent ceramics offer a promising approach to the fabrication of relatively inexpensive scintillators via a simple mechanical compaction and annealing process that eliminates single-crystal growth. Until recently, commonly accepted concepts restricted the polycrystalline ceramic approach to materials exhibiting a cubic crystal structure. Here, we report our results on the development of two novel ceramic scintillators based on the non-cubic crystalline materials: Lu SiO:Ce (LSO:Ce) and LaBr:Ce. While no evidence for texturing has been found in their ceramic microstructures, our LSO:Ce ceramics exhibit a surprisingly high level of transparency/ translucency and very good scintillation characteristics. The LSO:Ce ceramic scintillation reaches a light yield level of about 86% of that of a good LSO:Ce single crystal, and its decay time is even faster than in single crystals. Research on LaBr:Ce shows that translucent ceramics of the high-light-yield rare-earth halides can also be synthesized. Our LaBr:Ce ceramics have light yields above 42 000 photons/MeV (i.e., 70%of the single-crystal light yield).

  1. Recrystallization of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  2. Ultrahard nanotwinned cubic boron nitride.

    PubMed

    Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan

    2013-01-17

    Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.

  3. Piecewise Cubic Interpolation Package

    SciTech Connect

    Fritsch, F. N.; LLNL,

    1982-04-23

    PCHIP (Piecewise Cubic Interpolation Package) is a set of subroutines for piecewise cubic Hermite interpolation of data. It features software to produce a monotone and "visually pleasing" interpolant to monotone data. Such an interpolant may be more reasonable than a cubic spline if the data contain both 'steep' and 'flat' sections. Interpolation of cumulative probability distribution functions is another application. In PCHIP, all piecewise cubic functions are represented in cubic Hermite form; that is, f(x) is determined by its values f(i) and derivatives d(i) at the breakpoints x(i), i=1(1)N. PCHIP contains three routines - PCHIM, PCHIC, and PCHSP to determine derivative values, six routines - CHFEV, PCHFE, CHFDV, PCHFD, PCHID, and PCHIA to evaluate, differentiate, or integrate the resulting cubic Hermite function, and one routine to check for monotonicity. A FORTRAN 77 version and SLATEC version of PCHIP are included.

  4. Texture independent determination of residual stress in polycrystalline aggregates using Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Sayers, C. M.

    1984-09-01

    The Rayleigh wave velocity for a polycrystalline aggregate of cubic crystals with orthorhombic symmetry is derived. The formalism of Rod for treating the texture of polycrystalline aggregates is used. It is shown that surface wave velocity measurements can be combined with the normal shear wave birefringence technique to give a texture independent determination of the difference in principal stresses. The accuracy of the theory is demonstrated for rolled aluminum and steel plates.

  5. Polycrystalline superhard material and method of producing thereof

    SciTech Connect

    Bakul, V.N.; Deryagin, B.V.; Fedoseev, D.V.; Gerasimenko, V.K.; Nikitin, J.I.; Poltoratsky, V.G.; Prikhna, A.I.; Varnin, V.P.; Vnukov, S.P.

    1980-09-02

    The proposed polycrystalline superhard material comprises sintered particles of cubic boron nitride coated over the whole surface thereof with a layer of a crystalline compound of the chemical formula BsNyCz, where x, y and z can assume any value from 0 to 1, said compound binding together the particles of the cubic boron nitride. According to the present invention the proposed material is produced in the following way: particles of cubic boron nitride are placed in a flow of a gas containing carbon for a carbon layer 1-100 a thick to be built up on the whole surface of said particles. Then the particles of cubic boron nitride with the carbon layer built up over the whole surface of the particles are subjected to sintering at a temperature and under a pressure corresponding to the region of thermodynamic stability of cubic boron nitride. The herein-proposed material is highly uniform and features mechanical properties superior to those of the known cubic boron nitride materials. Thus, for example, under the identical conditions of cutting, durability of cutters made from the proposed material is 2-5 times higher than that of the cutters made from the known material based on cubic boron nitride.

  6. Surface enhanced Raman study of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Zhang, Xu

    2003-05-01

    Surface enhancement for Raman scattering of single crystal cubic boron nitride (c-BN) (1 1 1) and polycrystalline cubic BN was observed by depositing silver nanoparticles on the substrate surface. The c-BN samples were subjected to hydrogen plasma, as well as deuterium plasma treatment to observe the isotopic shift of surface binding species. Characteristic Raman peaks corresponding to the molecular vibrational modes of surface chemisorbed hydrogen and deuterium could be observed for the first time and were assigned according to ab initio molecular orbital calculations.

  7. Cubic topological Kondo insulators.

    PubMed

    Alexandrov, Victor; Dzero, Maxim; Coleman, Piers

    2013-11-27

    Current theories of Kondo insulators employ the interaction of conduction electrons with localized Kramers doublets originating from a tetragonal crystalline environment, yet all Kondo insulators are cubic. Here we develop a theory of cubic topological Kondo insulators involving the interaction of Γ(8) spin quartets with a conduction sea. The spin quartets greatly increase the potential for strong topological insulators, entirely eliminating the weak topological phases from the diagram. We show that the relevant topological behavior in cubic Kondo insulators can only reside at the lower symmetry X or M points in the Brillouin zone, leading to three Dirac cones with heavy quasiparticles.

  8. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  9. Accurate monotone cubic interpolation

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1991-01-01

    Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.

  10. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  11. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  12. Gelcasting Polycrystalline Alumina

    SciTech Connect

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  13. Cubic nitride templates

    DOEpatents

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei

    2013-04-30

    A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.

  14. Cubic colloidal platinum nanoparticles

    SciTech Connect

    Ahmadi, T.S.; Wang, Z.L.; Henglein, A.; El-Sayed, M.A.

    1996-06-01

    Cubic platinum nanoparticles (4-18 nm) have been synthesized for the first time in solution by the controlled reduction of K{sub 2}PtCl{sub 4} with hydrogen gas in the presence of sodium polyacrylate as a capping material. The nanoparticles are found to have fcc structures, similar to the bulk metal with (100) facets.

  15. BF into cubic meters

    Treesearch

    Henry Spelter

    2002-01-01

    Noted forest products industry researcher and writer says the conversion factor traditionally used to convert logs measured in board feet to cubic meters has risen. In the U.S., most timber is measured in terms of board feet. The log scales currently in use to estimate lumber recovery from roundwood, however, were created in the 19th century according to sawmill...

  16. Temperature dependence of magnetic anisotropy of textured polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Apostolov, A.; Masheva, V.; Mikhov, M.

    1984-09-01

    A method for the determination of the temperature dependence of several magnetic anisotropy constants (for example K1( T), K2( T) etc.) for a cubic ferromagnetic is proposed. The measurements were carried out on textured polycrystalline samples. The effective constants of the magnetic anisotropy for low-carbon cold rolled steels were determined by the torque curves for rotation about the perpendicular axis of the rolling plane for several temperatures. The K1( T) relative temperature dependence for Fe is obtained. The temperature, above which material structural changes appear is found experimentally.

  17. Deformation microstructure of neutron-irradiated pure polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Byun, T. S.; Farrell, K.; Zinkle, S. J.

    2004-08-01

    The effects of neutron-irradiation near 80 °C on the deformation behavior of pure polycrystalline metals vanadium (body centered cubic, BCC), copper (face centered cubic, FCC) and zirconium (hexagonal close packed, HCP) have been investigated. Dislocation channel deformation is observed in all metals, and is coincident with prompt plastic instability at yield. Dislocation pileup was observed at grain boundaries in the deformed vanadium irradiated to 0.012 dpa, indicating that channel formation could lead to dislocation pileup and the resulting stress localization could be a source of grain boundary cracking. TEM analysis suggests that the loss of work hardening capacity in irradiated V, Cu, and Zr at higher doses is mainly due to dislocation channeling in local regions that experience a high resolved shear stress.

  18. Why is Polonium simple cubic?

    NASA Astrophysics Data System (ADS)

    Roundy, David; Kraig, Robert E.; Cohen, Marvin L.

    2002-03-01

    Scientists have long pondered why the simple cubic structure is so rarely seen in nature. Only one element forms the simple cubic structure: polonium. There are `proofs' dating back to 1954 that the simple cubic lattice should be unstable. We will attempt to address the question of why polonium takes the simple cubic structure by means of ab initio calculations using the pseudopotential density functional method. We will discuss the electronic structure of polonium in relation to its crystal structure.

  19. Gelcasting polycrystalline alumina

    SciTech Connect

    Janney, M.A.

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  20. Hopping conduction in polycrystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Shukla, A. K.; Kapoor, A. K.; Srivastava, R.; Mathur, P. C.

    1985-03-01

    Measurements of dc conductivity (sigma) on polycrystalline semiconductors, viz., InSb, Si, and CdTe, have been reported in the temperature range 77-300 K. The conduction mechanism near liquid-nitrogen temperature has been identified as the hopping of charge carriers from the charged trap centers to empty traps near the Fermi level.

  1. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  2. Electronic transport in polycrystalline graphene.

    PubMed

    Yazyev, Oleg V; Louie, Steven G

    2010-10-01

    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours--either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.

  3. A New Polycrystalline Co-Ni Superalloy

    NASA Astrophysics Data System (ADS)

    Knop, M.; Mulvey, P.; Ismail, F.; Radecka, A.; Rahman, K. M.; Lindley, T. C.; Shollock, B. A.; Hardy, M. C.; Moody, M. P.; Martin, T. L.; Bagot, P. A. J.; Dye, D.

    2014-12-01

    In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/ γ' superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ' fraction of ~56% and a secondary γ' size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm-3, which is similar to existing Ni alloys with this level of γ'. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/ γ' Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm-2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

  4. Infrared cubic dielectric resonator metamaterial.

    SciTech Connect

    Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.

    2010-06-01

    Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.

  5. Morphological changes in polycrystalline Fe after compression and release

    NASA Astrophysics Data System (ADS)

    Gunkelmann, Nina; Tramontina, Diego R.; Bringa, Eduardo M.; Urbassek, Herbert M.

    2015-02-01

    Despite a number of large-scale molecular dynamics simulations of shock compressed iron, the morphological properties of simulated recovered samples are still unexplored. Key questions remain open in this area, including the role of dislocation motion and deformation twinning in shear stress release. In this study, we present simulations of homogeneous uniaxial compression and recovery of large polycrystalline iron samples. Our results reveal significant recovery of the body-centered cubic grains with some deformation twinning driven by shear stress, in agreement with experimental results by Wang et al. [Sci. Rep. 3, 1086 (2013)]. The twin fraction agrees reasonably well with a semi-analytical model which assumes a critical shear stress for twinning. On reloading, twins disappear and the material reaches a very low strength value.

  6. Development of transparent polycrystalline beta-silicon carbide

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam S.; Villalobos, Guillermo R.; Hunt, Michael P.; Sanghera, Jasbinder S.; Sadowski, Bryan M.; Aggarwal, Ishwar D.; Cinibulk, Michael; Carney, Carmen; Keller, Kristin

    2013-09-01

    Transparent beta-SiC is of great interest because its high strength, low coefficient of thermal expansion, very high thermal conductivity, and cubic crystal structure give it a very high thermal shock resistance. A transparent, polycrystalline beta-SiC window will find applications in armor, hypersonic missiles, and thermal control for thin disc lasers. SiC is currently available as either small transparent vapor grown disks or larger opaque shapes. Neither of which are useful in window applications. We are developing sintering technology to enable transparent SiC ceramics. This involves developing procedures to make high purity powders and studying their densification behavior. We have been successful in demonstrating transparency in thin sections using Field Assisted Sintering Technology (FAST). This paper will discuss the reaction mechanisms in the formation of beta-SiC powder and its sintering behavior in producing transparent ceramics.

  7. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wohlgemuth, J. H.

    1982-01-01

    Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.

  8. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  9. Fracture behaviour of polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Gaganidze, Ermile; Rupp, Daniel; Aktaa, Jarir

    2014-03-01

    Fracture behaviour of round blank polycrystalline tungsten was studied by means of three point bending Fracture-Mechanical (FM) tests at temperatures between RT and 1000 °C and under high vacuum. To study the influence of the anisotropic microstructure on the fracture toughness (FT) and ductile-to-brittle transition (DBT) the specimens were extracted in three different, i.e. longitudinal, radial and circumferential orientations. The FM tests yielded distinctive fracture behaviour for each specimen orientation. The crack propagation was predominantly intergranular for longitudinal orientation up to 600 °C, whereas transgranular cleavage was observed at low test temperatures for radial and circumferentially oriented specimens. At intermediate test temperatures the change of the fracture mode took place for radial and circumferential orientations. Above 800 °C all three specimen types showed large ductile deformation without noticeable crack advancement. For longitudinal specimens the influence of the loading rate on the FT and DBT was studied in the loading rate range between 0.06 and 18 MPa m1/2/s. Though an increase of the FT was observed for the lowest loading rate, no resolvable dependence of the DBT on the loading rate was found partly due to loss of FT validity. A Master Curve approach is proposed to describe FT vs. test temperature data on polycrystalline tungsten. Fracture safe design space was identified by analysis compiled FT data.

  10. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  11. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  12. Polishing of polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Harker, Alan B.; Flintoff, John F.; DeNatale, Jeffrey F.

    1990-12-01

    Optically smooth surfaces can be produced on initially rough polycrystalline diamond film through the combined use of reactive ion etching and high temperature lapping on Fe metai Protective thin film barriers are first applied to the diamond surface to restrict the reactiv oxygen or hydrogen ion etching process to regions of greatest roughness. When the overaJ surface roughness has been reduced sufficiently by etching mechanical lapping of the surfac on an Fe plate at temperatures of 730C-900C in the presence of hydrogen can be used t produce surface roughnesses of less than 10 nm as measured by profilimetry. The tw techniques are complementary for flat surfaces while the reactive etching process alone can b used with shaped substrates to produce a surface finish suitable for LWIR optical applications. 1.

  13. Interface scattering in polycrystalline thermoelectrics

    SciTech Connect

    Popescu, Adrian; Haney, Paul M.

    2014-03-28

    We study the effect of electron and phonon interface scattering on the thermoelectric properties of disordered, polycrystalline materials (with grain sizes larger than electron and phonons' mean free path). Interface scattering of electrons is treated with a Landauer approach, while that of phonons is treated with the diffuse mismatch model. The interface scattering is embedded within a diffusive model of bulk transport, and we show that, for randomly arranged interfaces, the overall system is well described by effective medium theory. Using bulk parameters similar to those of PbTe and a square barrier potential for the interface electron scattering, we identify the interface scattering parameters for which the figure of merit ZT is increased. We find the electronic scattering is generally detrimental due to a reduction in electrical conductivity; however, for sufficiently weak electronic interface scattering, ZT is enhanced due to phonon interface scattering.

  14. Bioactivity of polycrystalline silicon layers.

    PubMed

    Pramatarova, Lilyana; Pecheva, Emilia; Montgomery, Paul; Dimova-Malinovska, Doriana; Petrov, Todor; Toth, Attila L; Dimitrova, Magdalena

    2008-02-01

    After oxygen, silicon is the second most abundant element in the environment and is present as an impurity in most materials. The widespread occurrence of siliceous biominerals as structural elements in lower plants and animals suggests that Si plays a role in the production and maintenance of connective tissue in higher organisms. It has been shown that the presence of Si is necessary in bones, cartilage and in the formation of connective tissue, as well as in some important metabolic processes. In this work, polycrystalline silicon layers are tested in terms of bioactivity, i.e., their ability to induce hydroxyapatite formation from simulated body fluid. Hydroxyapatite is a biologically compatible material with chemical similarity to the inorganic part of bones and teeth. Polycrystalline silicon layers are obtained by aluminum induced crystallization of Al and amorphous Si thin films deposited sequentially on glass substrates by radio-frequency magnetron sputtering and subsequently annealed in different atmospheres. The hydroxyapatite formation is induced by applying a method of laser-liquid-solid interaction. The method consists of irradiating the samples with laser light while immersed in a solution that is supersaturated with respect to Ca and P. As a result, heterogeneous porous sponge-like carbonate-containing hydroxyapatite is grown on the polysilicon surfaces. Crystals that are spherical in shape, containing Ca, P and O, Na, Cl, Mg, Al, Si and S, as well as well-faceted NaCl crystals are embedded in the hydroxyapatite layer. Enhancement of the hydroxyapatite growth and increased crystallinity is observed due to the applied laser-liquid-solid interaction.

  15. Elastic constants of cubic and wurtzite boron nitrides

    NASA Astrophysics Data System (ADS)

    Nagakubo, A.; Ogi, H.; Sumiya, H.; Kusakabe, K.; Hirao, M.

    2013-06-01

    We synthesized pure polycrystalline cubic boron nitride (cBN) and wurtzite boron nitride (wBN) by the direct conversion method from hexagonal boron nitride, and measured their longitudinal-wave elastic constants CL between 20 and 300 K using picosecond ultrasound spectroscopy. Their room-temperature values are 945 ± 3 GPa and 930 ± 18 GPa for cBN and wBN, respectively. The shear modulus G of cBN was also determined by combining resonance ultrasound spectroscopy and micromechanics calculation as G = 410 GPa. We performed ab-initio calculations and confirmed that the generalized gradient approximation potential fails to yield correct elastic constants, which indicated the necessity of a hybrid-functional method.

  16. Polycrystalline Garnet Porphyroblasts, an EBSD Study

    NASA Astrophysics Data System (ADS)

    Seaton, N. C.; Whitney, D. L.; Anderson, C.; Alpert, A.

    2008-12-01

    Polycrystalline garnet porphyroblasts (PGP's) are significant because their formation provides information about metamorphic crystalline mechanisms, in particular during early stages of crystal growth, which may differ from those governing later stages; and because their existence may affect the chemical and structural evolution of metamorphic rocks. For example, the extent of element exchange between the garnet interior and the matrix may be affected by the presence of grain boundaries within PGP's. There have been several previous studies of PGP's but important questions about them remain; e.g. whether early coalescence is a common method by which garnets crystallize, whether grains rotate during growth to attain an energetically favorable grain-grain contact, and whether deformation and/or precursor minerals or other chemical or mechanical heterogeneities influence the formation of PGP's. PGP's have been detected by us in several different localities including; micaschist from SE Vermont (USA), including locality S35j of Rosenfeld (1968); the Solitude Range (British Columbia, Canada); the Southern Menderes Massif (Turkey); and three zones (garnet, staurolite, kyanite) from the Dutchess County Barrovian sequence in NY (USA). We have identified two types of PGP: cryptic and morphologically distinct. Cryptic PGP have no obvious morphological expression of the high angle boundaries within them and appear to be a single crystal. Morphologically distinct PGP have an obvious depression in the outer grain boundary where it is intersected by the internal grain boundary. Most PGP's contain inclusion trails and the high angle grain boundaries crosscut the trend of these as well as the inclusions themselves. PGP also show major element growth zoning that is not influenced by the internal grain boundaries except in rare cases. PGP's comprise ~ 5-35% of the garnet populations analyzed. More than 95% of the PGP's we have analyzed are comprised of 2-3 domains; the rest contain

  17. Electron diffraction from polycrystalline materials showing stress induced preferred orientation

    NASA Astrophysics Data System (ADS)

    McKenzie, D. R.; Bilek, M. M. M.

    1999-07-01

    The Gibbs free energy as generalized by J. F. Nye [Physical Properties of Crystals (Clarendon Press, Oxford, 1957), p. 179] is minimized in thermodynamic systems held at constant temperature and constant stress. This function is orientation dependent in all crystal systems in stress fields which are not purely hydrostatic. There are situations in which preferred orientation arises as a result of the synthesis of materials under impressed stress conditions such as thin film growth under ion bombardment and the pressing of powders into solids. Here, we derive the orientational constraints for cubic crystals which result from growth under a general biaxial stress field. The sign of the expression δ=s11-s12-1/2s44 determines the behavior of a cubic crystal. Electron diffraction patterns of face-centered-cubic specimens with both positive and negative values of δ are calculated using a program in MATLAB and displayed in a form suitable for direct comparison with experiment. The use of a biaxial stress with unequal principal components for producing highly oriented polycrystalline material is discussed. In the case of δ positive, as occurs in silicon, the preferred orientation is simply an alignment of the <100> directions along the principal stresses. For δ negative, as occurs in titanium nitride, the preferred orientation depends on the ratio of the principal stresses and low index directions are aligned with the principal stresses only when the principal stresses are either equal or one of them is zero. In the general case, arc-like diffraction patterns are produced. The results of a calculation of a diffraction pattern from a cross-sectional TiN film are compared with diffraction patterns reported by L. Hultman et al. [J. Appl. Phys. 78, 5395 (1995)] and show good agreement.

  18. How Cubic Can Ice Be?

    DOE PAGES

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...

    2017-06-28

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  19. Multiple CubicBezier Curves.

    ERIC Educational Resources Information Center

    Khonsari, Michael M.; Horn, Douglas

    1990-01-01

    An algorithm is described for generating smooth curves of first-order continuity. The algorithm is composed of several cubic Bezier curves joined together at the user defined control points. Introduced is a tension control parameter which can be set thus providing additional flexibility in the design of free-form curves. (KR)

  20. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  1. Cubication of Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  2. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  3. Polycrystalline configurations that maximize electrical resistivity

    NASA Astrophysics Data System (ADS)

    Nesi, Vincenzo; Milton, Graeme W.

    A lower bound on the effective conductivity tensor of polycrystalline aggregates formed from a single basic crystal of conductivity σ was recently established by Avellaneda. Cherkaev, Lurie and Milton. The bound holds for any basic crystal, but for isotropic aggregates of a uniaxial crystal, the bound is achieved by a sphere assemblage model of Schulgasser. This left open the question of attainability of the bound when the crystal is not uniaxial. The present work establishes that the bound is always attained by a rather large class of polycrystalline materials. These polycrystalline materials, with maximal electrical resistivity, are constructed by sequential lamination of the basic crystal and rotations of itself on widely separated length scales. The analysis is facilitated by introducing a tensor S = 0( 0I + σ) -1 where 0 > 0 is chosen so that Tr S = 1. This tensor s is related to the electric field in the optimal polycrystalline configurations.

  4. Efficient Process for Making Polycrystalline Silicon

    NASA Technical Reports Server (NTRS)

    Mccormick, J. R.; Plahutnik, F. JR.; Sawyer, D. H.; Arvidson, A. N.; Goldfarb, S. M.

    1985-01-01

    Solar cells made with lower capital and operating costs. Process based on chemical-vapor deposition (CVD) of dichlorosilane produces high-grade polycrystalline silicon for solar cells. Process has potential as cost-effective replacement for CVD of trichlorosilane.

  5. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  6. Improving Solar Cells With Polycrystalline Silicon

    NASA Technical Reports Server (NTRS)

    Rohatgi, Ajeet; Campbell, Robert B.; Rai-Choudhury, Prosenjit

    1987-01-01

    In proposed solar-cell design, layers of polycrystalline silicon grown near front metal grid and back metal surface. Net electrical effect increases open-circuit voltage and short-circuit current, resulting in greater cell power output and energy conversion efficiency. Solar-cell configuration differs from existing one in that layers of doped polycrystalline silicon added to reduce recombination in emitter and back surface field regions.

  7. Possible new edge barriers in polycrystalline superconductors

    NASA Astrophysics Data System (ADS)

    Belevtsov, L. V.

    2002-09-01

    We present a theoretical prediction of the new edge barriers for Abrikosov vortex penetration into polycrystalline superconductors. The traditional Bean-Livingston surface barrier is governed by the strength of the external field. Edge barriers in polycrystalline superconductors are also governed by the external field as well as by the anisotropy ratio, grain-coupling strength and grain size. We support our theory with concrete calculation of the critical current density in both high-Tc oxide and MgB2 superconductors.

  8. Cubic Icosahedra? A Problem in Assigning Symmetry

    ERIC Educational Resources Information Center

    Lloyd, D. R.

    2010-01-01

    There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…

  9. Solving Cubic Equations by Polynomial Decomposition

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2011-01-01

    Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…

  10. Cubic Icosahedra? A Problem in Assigning Symmetry

    ERIC Educational Resources Information Center

    Lloyd, D. R.

    2010-01-01

    There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…

  11. Glycerol prevents dehydration in lipid cubic phases.

    PubMed

    Richardson, S J; Staniec, P A; Newby, G E; Rawle, J L; Slaughter, A R; Terrill, N J; Elliott, J M; Squires, A M

    2015-07-21

    Lipid cubic phase samples dry out and undergo phase transitions when exposed to air. We demonstrate experimentally and theoretically that adding glycerol controllably lowers the humidity at which cubic phases form. These results broaden the potential applications of cubic phases and open up the potential of a new humidity-responsive nanomaterial.

  12. Dislocation mechanism for transformation between cubic ice Ic and hexagonal ice Ih

    NASA Astrophysics Data System (ADS)

    Hondoh, T.

    2015-11-01

    Cubic ice Ic is metastable, yet can form by the freezing of supercooled water, vapour deposition at low temperatures and by depressurizing high-pressure forms of ice. Its structure differs from that of common hexagonal ice Ih in the order its molecular layers are stacked. This stacking order, however, typically has considerable disorder; that is, not purely cubic, but alternating in hexagonal and cubic layers. In time, stacking-disordered ice gradually decreases in cubicity (fraction having cubic structure), transforming to hexagonal ice. But, how does this disorder originate and how does it transform to hexagonal ice? Here we use numerical data on dislocations in hexagonal ice Ih to show that (1) stacking-disordered ice (or Ic) can be viewed as fine-grained polycrystalline ice with a high density of extended dislocations, each a widely extended stacking fault bounded by partial dislocations, and (2) the transformation from ice Ic to Ih is caused by the reaction and motion of these partial dislocations. Moreover, the stacking disorder may be in either a higher stored energy state consisting of a sub-boundary network arrangement of partial dislocations bounding stacking faults, or a lower stored energy state consisting of a grain structure with a high density of stacking faults, but without bounding partial dislocations. Each state transforms to Ih differently, with a duration to fully transform that strongly depends on temperature and crystal grain size. The results are consistent with the observed transformation rates, transformation temperatures and wide range in heat of transformation.

  13. Hydrogen migration in polycrystalline silicon

    SciTech Connect

    Nickel, N.H.; Jackson, W.B.; Walker, J.

    1996-03-01

    Hydrogen migration in solid-state crystallized and low-pressure chemical-vapor-deposited (LPCVD) polycrystalline silicon (poly-Si) was investigated by deuterium diffusion experiments. The concentration profiles of deuterium, introduced into the poly-Si samples either from a remote D plasma or from a deuterated amorphous-silicon layer, were measured as a function of time and temperature. At high deuterium concentrations the diffusion was dispersive depending on exposure time. The dispersion is consistent with multiple trapping within a distribution of hopping barriers. The data can be explained by a two-level model used to explain diffusion in hydrogenated amorphous silicon. The energy difference between the transport level and the deuterium chemical potential was found to be about 1.2{endash}1.3 eV. The shallow levels for hydrogen trapping are about 0.5 eV below the transport level, while the deep levels are about 1.5{endash}1.7 eV below. The hydrogen chemical potential {mu}{sub H} decreases as the temperature increases. At lower concentrations, {mu}{sub H} was found to depend markedly on the method used to prepare the poly-Si, a result due in part to the dependence of crystallite size on the deposition process. Clear evidence for deuterium deep traps was found only in the solid-state crystallized material. The LPCVD-grown poly-Si, with columnar grains extending through the film thickness, displayed little evidence of deep trapping, and exhibited enhanced D diffusion. Many concentration profiles in the columnar LPCVD material indicated complex diffusion behavior, perhaps reflecting spatial variations of trap densities, complex formation, and/or multiple transport paths. Many aspects of the diffusion in poly-Si are consistent with diffusion data obtained in amorphous silicon. {copyright} {ital 1996 The American Physical Society.}

  14. Weighted cubic and biharmonic splines

    NASA Astrophysics Data System (ADS)

    Kvasov, Boris; Kim, Tae-Wan

    2017-01-01

    In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.

  15. Hardness of cubic solid solutions

    PubMed Central

    Gao, Faming

    2017-01-01

    We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1−x, where BNxP1−x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications. PMID:28054659

  16. Vacancy Relaxation in Cubic Crystals

    NASA Technical Reports Server (NTRS)

    Girifalco, L. A.; Weizer, V. G.

    1960-01-01

    The configuration of the atoms surrounding a vacancy in four face-centered cubic and three body-centered cubic metals has been computed, using a pairwise, central-force model in which the energy of interaction between two atoms was taken to have the form of a Morse function. Only radial relaxations were considered. The first and second nearest-neighbor relaxations for the face-centered systems were found to be: Pb (1.42,-0.43), Ni (2.14,-0.39), Cu(2.24,-0.40) and Ca (2.73,-0.41, expressed in percentages of normal distances. For the body-centered systems the relaxations out to the fourth nearest neighbors to the vacancy were: Fe (6.07,-2.12, -0.25, -), Ba (7.85, -2.70, 0.70, -0.33) and Na (10.80, -3.14, 3.43, -0.20). The positive signs indicate relaxation toward the vacancy and the negative signs indicate relaxation away from the vacancy. The energies of relaxation (eV) are: Pb (0.162), Ni (0.626), Cu (0.560), Ca (0.400), Fe (1.410), Ba (0.950) and Na (0.172).

  17. Hardness of cubic solid solutions

    NASA Astrophysics Data System (ADS)

    Gao, Faming

    2017-01-01

    We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55-0.85 in BNxP1-x, where BNxP1-x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications.

  18. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  19. Scaling properties of polycrystalline graphene: a review

    NASA Astrophysics Data System (ADS)

    Isacsson, Andreas; Cummings, Aron W.; Colombo, Luciano; Colombo, Luigi; Kinaret, Jari M.; Roche, Stephan

    2017-03-01

    We present an overview of the electrical, mechanical, and thermal properties of polycrystalline graphene. Most global properties of this material, such as the charge mobility, thermal conductivity, or Young’s modulus, are sensitive to its microstructure, for instance the grain size and the presence of line or point defects. Both the local and global features of polycrystalline graphene have been investigated by a variety of simulations and experimental measurements. In this review, we summarize the properties of polycrystalline graphene, and by establishing a perspective on how the microstructure impacts its large-scale physical properties, we aim to provide guidance for further optimization and improvement of applications based on this material, such as flexible and wearable electronics, and high-frequency or spintronic devices.

  20. Elastic properties of polycrystalline dense matter

    NASA Astrophysics Data System (ADS)

    Kobyakov, D.; Pethick, C. J.

    2015-04-01

    Elastic properties of the solid regions of neutron star crusts and white dwarfs play an important role in theories of stellar oscillations. Matter in compact stars is presumably polycrystalline and, since the elastic properties of single crystals of such matter are very anisotropic, it is necessary to relate elastic properties of the polycrystal to those of a single crystal. We calculate the effective shear modulus of polycrystalline matter with randomly oriented crystallites using a self-consistent theory that has been very successful in applications to terrestrial materials and show that previous calculations overestimate the shear modulus by approximately 28 per cent.

  1. Orientation imaging microscopy of polycrystalline sodium chloride

    SciTech Connect

    Staiger, M.P.; Kolbeinsson, I.; Newman, J.; Woodfield, T.; Sato, T.

    2010-04-15

    A novel preparation technique is described that makes possible grain size analysis of polycrystalline NaCl using orientation imaging microscopy via electron backscatter diffraction (EBSD). The preparation methodology is specifically developed to overcome difficulties in preparing microporous NaCl for microscopy. The grain size and crystallographic texture of polycrystalline NaCl samples, prepared via solution pressure and sintered in the range of 650-780 deg. C, were able to be measured successfully with EBSD. The limitations of the preparation technique for EBSD analysis of NaCl are also discussed.

  2. Thermal conductivity of polycrystalline CVD diamond: Experiment and theory

    SciTech Connect

    Inyushkin, A. V. Taldenkov, A. N.; Ral'chenko, V. G.; Konov, V. I.; Khomich, A. V.; Khmel'nitskii, R. A.

    2008-09-15

    The temperature dependences of thermal conductivity {kappa} of polycrystalline CVD diamond are measured in the temperature range from 5 to 410 K. The diamond sample is annealed at temperatures sequentially increasing from 1550 to 1690{sup o}C to modify the properties of the intercrystallite contacts in it. As a result of annealing, the thermal conductivity decreases strongly at temperatures below 45 K, and its temperature dependence changes from approximately quadratic to cubic. At T > 45 K, the thermal conductivity remains almost unchanged upon annealing at temperatures up to 1650{sup o}C and decreases substantially at higher annealing temperatures. The experimental data are analyzed in terms of the Callaway theory of thermal conductivity [9], which takes into account the specific role of normal phonon-phonon scattering processes. The thermal conductivity is calculated with allowance for three-phonon scattering processes, the diffuse scattering by sample boundaries, the scattering by point and extended defects, the specular scattering by crystallite boundaries, and the scattering by intercrystallite contacts. A model that reproduces the main specific features of the thermal conductivity of CVD diamond is proposed. The phonon scattering by intercrystallite contacts plays a key role in this model.

  3. Processing of transparent polycrystalline AlON:Ce3+ scintillators

    DOE PAGES

    Chen, Ching -Fong; Yang, Pin; King, Graham; ...

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+more » activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.« less

  4. Size effects and Hall-Petch relation in polycrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Fleurier, Gwendoline; Hug, Eric; Martinez, Mayerling; Dubos, Pierre-Antoine; Keller, Clément

    2015-02-01

    The mechanical behaviour of polycrystalline hexagonal close-packed cobalt was investigated over a large range of grain size d in order to examine the occurrence of size effects. Crystallographic texture and amount of face centred cubic allotropic phase were maintained unchanged thanks to appropriate heat treatment procedures. The Hall-Petch (HP) relation exhibits two distinct behaviours from the very beginning of plastic strain levels. The conventional HP law is fulfilled for a number of grains across the thickness t higher than a critical value (t/d)c = 14. For t/d lower than (t/d)c, a multicrystalline regime is evidenced highlighting a strong reduction in flow stress. The high value of (t/d)c is related to the low-stacking fault energy of cobalt in the basal plane. The size effect is predominant in the first work hardening stage where slip mechanisms and stacking faults predominate. In the second stage, driven by mechanical twinning processes, this effect is less sensitive. Finally, the size effect could also affect the end of the elastic stage, in link with nonlinear elasticity mechanisms.

  5. Automated reasoning about cubic curves.

    SciTech Connect

    Padmanabhan, R.; McCune, W.; Mathematics and Computer Science; Univ. of Manitoba

    1995-01-01

    It is well known that the n-ary morphisms defined on projective algebraic curves satisfy some strong local-to-global equational rules of derivation not satisfied in general by universal algebras. For example, every rationally defined group law on a cubic curve must be commutative. Here we extract from the geometry of curves a first order property (gL) satisfied by all morphisms defined on these curves such that the equational consequences known for projective curves can be derived automatically from a set of six rules (stated within the first-order logic with equality). First, the rule (gL) is implemented in the theorem-proving program Otter. Then we use Otter to automatically prove some incidence theorems on projective curves without any further reference to the underlying geometry or topology of the curves.

  6. Two-dimensional cubic convolution.

    PubMed

    Reichenbach, Stephen E; Geng, Frank

    2003-01-01

    The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.

  7. RESEARCH ON THIN FILM POLYCRYSTALLINE SOLAR CELLS.

    DTIC Science & Technology

    Studies of factors affecting the properties of polycrystalline CdTe film grown by the vapor reaction process are discussed and a variety of...molybdenum substrates are compared. No real differences are found. Rough measures of temperature effects and tellurium flow rate on film growth rate are

  8. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Culik, J. S.

    1982-01-01

    The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.

  9. Stochastic multiscale modeling of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  10. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    SciTech Connect

    Jamshidian, M.; Thamburaja, P.; Rabczuk, T.

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  11. Cubic spline functions for curve fitting

    NASA Technical Reports Server (NTRS)

    Young, J. D.

    1972-01-01

    FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.

  12. Modified cubic convolution resampling for Landsat

    NASA Technical Reports Server (NTRS)

    Prakash, A.; Mckee, B.

    1985-01-01

    An overview is given of Landsat Thematic Mapper resampling technique, including a modification of the well-known cubic convolution interpolator (nearest neighbor interpolation) used to provide geometric correction for TM data. Post launch study has shown that the modified cubic convolution interpolator can selectively enhance or suppress frequency bands in the output image. This selectivity is demonstrated on TM Band 3 imagery.

  13. Cubic spline functions for curve fitting

    NASA Technical Reports Server (NTRS)

    Young, J. D.

    1972-01-01

    FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.

  14. Assembly of body-centered cubic crystals in hard spheres.

    PubMed

    Xu, W-S; Sun, Z-Y; An, L-J

    2011-05-01

    We investigate the crystallization of monodisperse hard spheres confined by two square patterned substrates (possessing the basic character of the body-centered cubic (bcc) crystal structure) at varying substrate separations via molecular dynamics simulation. Through slowly increasing the density of the system, we find that crystallization under the influence of square patterned substrates can set in at lower densities compared with the homogeneous crystallization. As the substrate separation decreases, the density, where crystallization occurs (i.e., pressure drops), becomes small. Moreover, two distinct regimes are identified in the plane of bcc particle fraction and density for the separation range investigated. For large substrate separations, the bcc particle fraction displays a local maximum as the density is increased, and the resulting formed crystals have a polycrystalline structure. However, and more importantly, another situation emerges for small substrate separations: the capillary effects (stemming from the presence of two substrates) overwhelm the bulk driving forces (stemming from the spontaneous thermal fluctuations in the bulk) during the densification, eventually resulting in the formation of a defect-free bcc crystal (unstable with respect to the bulk hard-sphere crystals) by using two square patterned substrates.

  15. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1982-01-01

    The investigation of the performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was continued by fabricating a set of minicell wafers on a selection of 10 cm x 10 cm wafers. A minicell wafer consists of an array of small (approximately 0.2 sq cm in area) photodiodes which are isolated from one another by a mesa structure. The junction capacitance of each minicell was used to obtain the dopant concentration, and therefore the resistivity, as a function of position across each wafer. The results indicate that there is no significant variation in resistivity with position for any of the polycrystalline wafers, whether Semix or Wacker. However, the resistivity of Semix brick 71-01E did decrease slightly from bottom to top.

  16. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  17. Modeling of polycrystalline thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fahrenbruch, Alan L.

    1999-03-01

    This paper describes modeling polycrystalline thin-film solar cells using the program AMPS-1D1 to visualize the relationships between the many variables involved. These simulations are steps toward two dimensional modeling the effects of grain boundaries in polycrystalline cells. Although this paper describes results for the CdS/CdTe cell, the ideas presented here are applicable to copper-indium-gallium selenide (CIGS) cells as well as other types of cells. Results of these one-dimensional simulations are presented: (a) the duplication of experimentally observed cell parameters, (b) the effects of back-contact potential barrier height and its relation to stressing the cell, (c) the effects of the depletion layer width in the CdTe layer on cell parameters, and (d) the effects of CdS layer thickness on the cell parameters. Experience using the software is also described.

  18. Fluidized bed for production of polycrystalline silicon

    SciTech Connect

    Flagella, R.N.

    1992-08-18

    This patent describes a method for removing silicon powder particles from a reactor that produces polycrystalline silicon by the pyrolysis of a silane containing gas in a fluidized bed reaction zone of silicon seed particles. It comprises introducing the silane containing gas stream into the reaction zone of fluidized silicon seed particles; heterogeneously decomposing the silane containing gas under conditions; collecting the silicon product particles from the collection zone; and removing silicon powder particles from the reactor.

  19. Effective structural properties in polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Hossain, Zubaer

    This talk will discuss effective structural properties in polycrystalline graphene under the presence of atomic scale heterogeneity. Polycrystallinity is ubiquitous in solids, but theories describing their effective behavior remain limited, particularly when heterogeneity is present in the form of nonuniform deformation or composition. Over the decades, exploration of the effective transport and strength properties of heterogeneous systems has been carried out mostly with random distribution of grains or regular periodic structures under various approximations, in translating the underlying physics into a single representative volume element. Although heterogeneity can play a critical role in modulating the basic behavior of low-dimensional materials, it is difficult to capture the local characteristics accurately by these approximations. Taking polycrystalline graphene as an example material, we study the effective structural properties (such as Young's Modulus, Poisson's ratio and Toughness) by using a combination of density functional theory and molecular dynamic simulations. We identify the key mechanisms that govern their effective behavior and exploit the understanding to engineer the behavior by doping with a carefully selected choice of chemical elements.

  20. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  1. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, Leonard C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  2. Cubical Sets and Trace Monoid Actions

    PubMed Central

    Husainov, Ahmet A.

    2013-01-01

    This paper is devoted to connections between trace monoids and cubical sets. We prove that the category of trace monoids is isomorphic to the category of generalized tori and it is a reflective subcategory of the category of cubical sets. Adjoint functors between the categories of cubical sets and trace monoid actions are constructed. These functors carry independence preserving morphisms in the independence preserving morphisms. This allows us to build adjoint functors between the category of weak asynchronous systems and the category of higher dimensional automata. PMID:24453827

  3. Biomechanical Analysis with Cubic Spline Functions

    ERIC Educational Resources Information Center

    McLaughlin, Thomas M.; And Others

    1977-01-01

    Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)

  4. Biomechanical Analysis with Cubic Spline Functions

    ERIC Educational Resources Information Center

    McLaughlin, Thomas M.; And Others

    1977-01-01

    Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)

  5. A note on cubic convolution interpolation.

    PubMed

    Meijering, Erik; Unser, Michael

    2003-01-01

    We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.

  6. Great Plains makes 100 billion cubic feet

    SciTech Connect

    Not Available

    1987-03-01

    The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

  7. Electrostatic swelling of bicontinuous cubic lipid phases.

    PubMed

    Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J

    2015-04-28

    Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.

  8. Electric, thermal, and magnetic properties of hexagonal and cubic UPtSn

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Zan, J. A.; Yuen, Tan; Myer, G. H.

    2003-05-01

    Resistivity, specific heat, and magnetization measurements have been carried out for polycrystalline UPtSn. Samples as cast and those annealed at temperatures below 300 °C crystallize in a hexagonal structure. The structure of samples annealed between 800 and 935 °C transforms into the cubic MgAgAs phase. The hexagonal UPtSn sample undergoes a ferromagnetic transition at TC=27 K. Below TC both the zero-field-cooled (ZFC) and field-cooled (FC) magnetization data initially increase as the temperature is decreased. However, when the temperature is lowered further, the ZFC magnetization drops significantly whereas the FC magnetization saturates. This irreversible behavior in the ZFC and FC curves could be attributed to intrinsic domain-wall pinning. On the other hand, the cubic UPtSn sample is paramagnetic down to the lowest measured temperature 0.5 K. The resistivity of cubic UPtSn is unusually large and exhibits a semiconductor-like behavior.

  9. Electron paramagnetic resonance of Er3+ ions in a polycrystalline α-Al2O3

    NASA Astrophysics Data System (ADS)

    Asatryan, H. R.; Zakharchenya, R. I.; Kutsenko, A. B.; Babunts, R. A.; Baranov, P. G.

    2007-06-01

    The EPR spectra of rare-earth Er3+ ions in a polycrystalline corundum α-Al2O3 synthesized by the sol-gel technology were revealed. It is shown that the EPR spectra belong to the Er3+ ions in the ground state corresponding to the lower Stark sublevel of the 4 I 15/2 term and can be described by the spin Hamiltonian of axial symmetry with an effective spin S = 1/2 and the g tensor with components g ‖ = 12.176 and g ⊥ = 4.14. The average value of the g tensor ( = 6.82) corresponds to the Γ7 state in a cubic field. Erbium is assumed to substitute for aluminum in the Al2O3 corundum crystal. The local symmetry C 3 of the Al3+ ion remains despite the pronounced expansion of the lattice around the Er3+ ion.

  10. Abnormality in fracture strength of polycrystalline silicene

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-09-01

    Silicene, a silicon-based homologue of graphene, arouses great interest in nano-electronic devices due to its outstanding electronic properties. However, its promising electronic applications are greatly hindered by lack of understanding in the mechanical strength of silicene. Therefore, in order to design mechanically reliable devices with silicene, it is necessary to thoroughly explore the mechanical properties of silicene. Due to current fabrication methods, graphene is commonly produced in a polycrystalline form; the same may hold for silicene. Here we perform molecular dynamics simulations to investigate the mechanical properties of polycrystalline silicene. First, an annealing process is employed to construct a more realistic modeling structure of polycrystalline silicene. Results indicate that a more stable structure is formed due to the breaking and reformation of bonds between atoms on the grain boundaries. Moreover, as the grain size decreases, the efficiency of the annealing process, which is quantified by the energy change, increases. Subsequently, biaxial tensile tests are performed on the annealed samples in order to explore the relation between grain size and mechanical properties, namely in-plane stiffness, fracture strength and fracture strain etc. Results indicate that as the grain size decreases, the fracture strain increases while the fracture strength shows an inverse trend. The decreasing fracture strength may be partly attributed to the weakening effect from the increasing area density of defects which acts as the reservoir of stress-concentrated sites on the grain boundary. The observed crack localization and propagation and fracture strength are well-explained by a defect-pileup model.

  11. Superelastic effect in polycrystalline ferrous alloys.

    PubMed

    Omori, T; Ando, K; Okano, M; Xu, X; Tanaka, Y; Ohnuma, I; Kainuma, R; Ishida, K

    2011-07-01

    In superelastic alloys, large deformation can revert to a memorized shape after removing the stress. However, the stress increases with increasing temperature, which limits the practical use over a wide temperature range. Polycrystalline Fe-Mn-Al-Ni shape memory alloys show a small temperature dependence of the superelastic stress because of a small transformation entropy change brought about by a magnetic contribution to the Gibbs energies. For one alloy composition, the superelastic stress varies by 0.53 megapascal/°C over a temperature range from -196 to 240°C.

  12. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  13. Polycrystalline gamma plutonium's elastic moduli versus temperature

    SciTech Connect

    Migliori, Albert; Betts, J; Trugman, A; Mielke, C H; Mitchell, J N; Ramos, M; Stroe, I

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  14. Cubic mesoporous titanium phosphonates with multifunctionality.

    PubMed

    Ma, Tian-Yi; Lin, Xiu-Zhen; Yuan, Zhong-Yong

    2010-07-26

    Cubic mesoporous titanium phosphonate materials with bridged organic groups inside the framework were synthesized by means of a one-pot hydrothermal autoclaving process, with the assistance of cationic surfactant cetyltrimethylammonium bromide. 1-Hydroxyethylidene-1,1-diphosphonic acid was used as the coupling molecule. A typical cubic mesophase with surface area of 1052 m(2) g(-1) and pore size of 2.6 nm was confirmed by XRD, TEM, and N(2) sorption analysis. The organophosphonate groups were homogeneously incorporated in the network of the mesoporous solids, as revealed by FTIR and magic-angle spinning (MAS) NMR spectroscopy, and thermogravimetry and differential scanning calorimetry (TG-DSC) measurements. The synthesized hydroxyethylidene-bridged cubic mesoporous titanium phosphonates proved to be thermally stable up to 350 degrees C, with a well-preserved hybrid framework and cubic mesoporous architecture. The obtained cubic mesophase could be transformed into a hexagonal mesophase by simply adjusting the molar ratios of the added raw materials, namely, a Ti/P molar ratio of 1:4 and a CTAB/Ti molar ratio of 1.9-2.3 for the cubic phase and Ti/P molar ratio of 3:4 and CTAB/Ti molar ratio of 0.1-0.4 for the hexagonal phase. The cubic hybrid materials could be used as efficient photocatalysts for the photodegradation of rhodamine B. Moreover, they were also used for adsorption of CO(2) and heavy metal ions and exhibited a significant capture amount of around 1.0 mmol g(-1) for CO(2) molecules at 35 degrees C and high adsorption capacity of 28.5 micromol g(-1) for Cu(2+) ions with good reusability, which demonstrated their promising potential in environmental remediation.

  15. Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach

    DOE PAGES

    Lebensohn, Ricardo A.; Zecevic, Miroslav; Knezevic, Marko; ...

    2015-12-15

    Here, this work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fccmore » and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach.« less

  16. Average intragranular misorientation trends in polycrystalline materials predicted by a viscoplastic self-consistent approach

    SciTech Connect

    Lebensohn, Ricardo A.; Zecevic, Miroslav; Knezevic, Marko; McCabe, Rodney J.

    2015-12-15

    Here, this work presents estimations of average intragranular fluctuations of lattice rotation rates in polycrystalline materials, obtained by means of the viscoplastic self-consistent (VPSC) model. These fluctuations give a tensorial measure of the trend of misorientation developing inside each single crystal grain representing a polycrystalline aggregate. We first report details of the algorithm implemented in the VPSC code to estimate these fluctuations, which are then validated by comparison with corresponding full-field calculations. Next, we present predictions of average intragranular fluctuations of lattice rotation rates for cubic aggregates, which are rationalized by comparison with experimental evidence on annealing textures of fcc and bcc polycrystals deformed in tension and compression, respectively, as well as with measured intragranular misorientation distributions in a Cu polycrystal deformed in tension. The orientation-dependent and micromechanically-based estimations of intragranular misorientations that can be derived from the present implementation are necessary to formulate sound sub-models for the prediction of quantitatively accurate deformation textures, grain fragmentation, and recrystallization textures using the VPSC approach.

  17. Growth of nanostructured polycrystalline cerium oxide through a solvothermal precipitation using near-supercritical fluids.

    PubMed

    Lee, Jongmin; Ahn, Jae-Pyoung; Kim, Sang Woo

    2010-01-01

    Well-crystallized cerium dioxide with cubic phase were formed and self-assembly grown to nanofibers or nanosheets via a solvothermal precipitation from near-supercritical fluids without any help of metal catalysts or capping agents. The self-assembly attachment process without any preferred or selective orientation dominated the growth of the polycrystalline nanofibers or nanosheets consisting of grains of approximately 3 nm to which are formed by the coalescence of the single crystalline cerium oxide seeds. The growth is attributed to be driven by phase separation due to partial compatibility between ethyl alcohol and supercritical carbon dioxide fluid during the precipitation reaction, not by different surface energies or defects. With increasing temperature, the nanofibers with a weblike network structure were formed and then fused to large spherical particles. As a result, the polycrystalline fibers or sheets consisting of pure cerium dioxide phase were produced by the solvothermal reaction with an aid of the supercritical carbon dioxide from the alcoholic metal salt solution.

  18. Interpolation by two-dimensional cubic convolution

    NASA Astrophysics Data System (ADS)

    Shi, Jiazheng; Reichenbach, Stephen E.

    2003-08-01

    This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.

  19. Electrical properties of polycrystalline methane hydrate

    USGS Publications Warehouse

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  20. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1984-01-01

    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells.

  1. Acidic magnetorheological finishing of infrared polycrystalline materials

    SciTech Connect

    Salzman, S.; Romanofsky, H. J.; West, G.; Marshall, K. L.; Jacobs, S. D.; Lambropoulos, J. C.

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however, surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.

  2. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    SciTech Connect

    Stevenson, T. Bennett, J.; Brown, A. P.; Wines, T.; Bell, A. J.; Comyn, T. P.; Smith, R. I.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 μ{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.

  3. Acidic magnetorheological finishing of infrared polycrystalline materials

    DOE PAGES

    Salzman, S.; Romanofsky, H. J.; West, G.; ...

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however,more » surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.« less

  4. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  5. Acidic magnetorheological finishing of infrared polycrystalline materials

    SciTech Connect

    Salzman, S.; Romanofsky, H. J.; West, G.; Marshall, K. L.; Jacobs, S. D.; Lambropoulos, J. C.

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however, surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.

  6. Neutron diffraction study of Bi doped cubic spinel Co{sub 2}MnO{sub 4}

    SciTech Connect

    Rajeevan, N. E.; Kaushik, S. D.; Kumar, Ravi

    2015-06-24

    Polycrystalline Bi doped spinel Bi{sub x}Co{sub 2-x}MnO{sub 4} compounds were prepared by solid state reaction route. Room temperature neutron diffraction study reveals that all the compounds are formed in cubic phase and there is no change in the crystal structure due to Bi doping and the compound has cubic structure with Fd-3m space group. Cell parameter found to increase with respect to Bi doping and ferrimagnetic nature is established through magnetization. Low temperature neutron diffraction is carried out and emphasis the ferrimagnetic ordering in the samples of Bi{sub x}Co{sub 2-x}MnO{sub 4} series.

  7. Superhard BC3 in cubic diamond structure

    DOE PAGES

    Zhang, Miao; Liu, Hanyu; Li, Quan; ...

    2015-01-06

    We solve the crystal structure of recently synthesized cubic BC3 using an unbiased swarm structure search, which identifies a highly symmetric BC3 phase in the cubic diamond structure (d–BC3) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d–BC3 are in excellent agreement with experimental data. Calculated stress-strain relations of d–BC3 demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. Here, the present results establish the first boron carbide inmore » the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.« less

  8. Image reconstruction by parametric cubic convolution

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Schowengerdt, R. A.

    1983-01-01

    Cubic convolution, which has been discussed by Rifman and McKinnon (1974), was originally developed for the reconstruction of Landsat digital images. In the present investigation, the reconstruction properties of the one-parameter family of cubic convolution interpolation functions are considered and thee image degradation associated with reasonable choices of this parameter is analyzed. With the aid of an analysis in the frequency domain it is demonstrated that in an image-independent sense there is an optimal value for this parameter. The optimal value is not the standard value commonly referenced in the literature. It is also demonstrated that in an image-dependent sense, cubic convolution can be adapted to any class of images characterized by a common energy spectrum.

  9. Progress in polycrystalline thin-film solar cells

    SciTech Connect

    Zweibel, K; Hermann, A; Mitchell, R

    1983-07-01

    Photovoltaic devices based on several polycrystalline thin-film materials have reached near and above 10% sunlight-to-electricity conversion efficiencies. This paper examines the various polycrystalline thin-film PV materials including CuInSe/sub 2/ and CdTe in terms of their material properties, fabrication techniques, problems, and potentials.

  10. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  11. Diffuse reflectivity measurement using cubic cavity.

    PubMed

    Yu, Jia; Zhang, Y G; Gao, Qiang; Hu, Gang; Zhang, Z G; Wu, S H

    2014-04-01

    A method for measuring diffuse reflectivity using cubic cavity based on the variable port fraction method was developed by measuring oxygen P11 line at 762 nm using tunable diode laser absorption spectroscopy. An experimental method to determine the additional path length l0 was presented. We measured the diffuse reflectivity of a cubic cavity with scattering coatings of different thickness. The error of diffuse reflectivity was reduced from 0.004 to 0.0003 when the diffuse reflectivity increased from 0.867(4) to 0.9887(3). A simulation result manifests that the error of diffuse reflectivity has the potential to be further reduced at higher diffuse reflectivity.

  12. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-08-19

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

  13. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  14. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    PubMed

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  15. Inverse pseudo Hall-Petch relation in polycrystalline graphene.

    PubMed

    Sha, Z D; Quek, S S; Pei, Q X; Liu, Z S; Wang, T J; Shenoy, V B; Zhang, Y W

    2014-08-08

    Understanding the grain size-dependent failure behavior of polycrystalline graphene is important for its applications both structurally and functionally. Here we perform molecular dynamics simulations to study the failure behavior of polycrystalline graphene by varying both grain size and distribution. We show that polycrystalline graphene fails in a brittle mode and grain boundary junctions serve as the crack nucleation sites. We also show that its breaking strength and average grain size follow an inverse pseudo Hall-Petch relation, in agreement with experimental measurements. Further, we find that this inverse pseudo Hall-Petch relation can be naturally rationalized by the weakest-link model, which describes the failure behavior of brittle materials. Our present work reveals insights into controlling the mechanical properties of polycrystalline graphene and provides guidelines for the applications of polycrystalline graphene in flexible electronics and nano-electronic-mechanical devices.

  16. Formation and structure of cubic particles of sodium magnesium fluoride (neighborite).

    PubMed

    Sevonkaev, Igor; Goia, Dan V; Matijević, Egon

    2008-01-01

    Uniform cubic particles of neighborite (NaMgF3) were prepared by mixing solutions of magnesium chloride and sodium fluoride, followed by aging for extended periods of time (up to 3 h). Such particles could be obtained directly either by using sodium fluoride in sufficient excess, or by first producing spherical particles of magnesium fluoride and converting them into neighborite cubes by admixing sodium fluoride. It was shown that both MgF2 and NaMgF3 particles so prepared are polycrystalline and that in both procedures to form neighborite a two stage reaction takes place. In the first stage nanosize subunits of MgF2 are formed, which are subsequently converted in the presence of excess sodium fluoride to neighborite crystallites. The latter are then reorganized into larger subunits that constitute colloidal cubes.

  17. Rotation-limited growth of three-dimensional body-centered-cubic crystals.

    PubMed

    Tarp, Jens M; Mathiesen, Joachim

    2015-07-01

    According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

  18. Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature

    PubMed Central

    Wu, H. C.; Kumar, A.; Wang, J.; Bi, X. F.; Tomé, C. N.; Zhang, Z.; Mao, S. X.

    2016-01-01

    Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: 〈0001〉hcp||〈001〉fcc and , different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning. PMID:27067515

  19. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  20. Polycrystalline silicon ion sensitive field effect transistors

    NASA Astrophysics Data System (ADS)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  1. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    An investigation was begun into the usefulness of molecular hydrogen annealing on polycrystalline solar cells. No improvement was realized even after twenty hours of hydrogenation. Thus, samples were chosen on the basis of: (1) low open circuit voltage; (2) low shunt conductance; and (3) high light generated current. These cells were hydrogenated in molecular hydrogen at 300 C. The differences between the before and after hydrogenation values are so slight as to be negligible. These cells have light generated current densities that indicate long minority carrier diffusion lengths. The open circuit voltage appears to be degraded, and quasi-neutral recombination current enhanced. Therefore, molecular hydrogen is not usful for passivating electrically active defects.

  2. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  3. Reststrahlen band studies of polycrystalline beryllium oxide.

    PubMed

    Chibuye, T; Ribbing, C G; Wäckelgård, E

    1994-09-01

    New experimental bulk reflectance and emittance spectra from the 9-15-µm reststrahlen band region of polycrystallline beryllium oxide are reported. Note that the polycrystalline material exhibits a dip at 10 pm, which is not present in spectra for single crystals. The possible origins of this feature are discussed including absorption by a surfaceboscillation excited at boundaries of 20-µm crystalline grains. Owing to the reststrahlen band, beryllium oxide is selectively low, emitting in the primary atmospheric window, which makes this material useful for frost prevention when electrical conductors cannot be used. This protection is susceptible to reduction by surface contaminants from air pollution. Using an established acceleration procedure, we simulated such pollution, and the increase in emittance was measured. It was observed that the emissivity increased from 0.31 for a clean surface to 0.36 for a surface heavily polluted by an industrial atmosphere.

  4. Polycrystalline Thin Film Device Degradation Studies

    SciTech Connect

    Albin, D. S.; McMahon, T. J.; Pankow, J. W.; Noufi, R.; Demtsu, S. H.; Davies, A.

    2005-11-01

    Oxygen during vapor CdCl2 (VCC) treatments significantly reduced resistive shunts observed in CdS/CdTe polycrystalline devices using thinner CdS layers during 100 deg C, open-circuit, 1-sun accelerated stress testing. Cu oxidation resulting from the reduction of various trace oxides present in as-grown and VCC treated films is the proposed mechanism by which Cu diffusion, and subsequent shunts are controlled. Graphite paste layers between metallization and CdTe behave like diffusion barriers and similarly benefit device stability. Ni-based contacts form a protective Ni2Te3 intermetallic layer that reduces metal diffusion but degrades performance through increased series resistance.

  5. Imaging performance of crystalline and polycrystalline oxides

    NASA Astrophysics Data System (ADS)

    Duncan, Donald D.; Lange, Charles H.; Fischer, David J.

    1990-10-01

    Knowledge of the scatter characteristics of candidate infrared sensor dome materials is necessary for the evaluation of image quality and susceptibility to bright off-axis sources. For polycrystalline materials in particular, the scattering levels are high enough to warrant concern. To evaluate the effects of scatter on image quality, estimates of the window Point Spread Function (PSF), or its transform, the Optical Transfer Function (OTF) are required. Additionally, estimates of the material scatter cross-section per unit volume are essential for determining flare susceptibility. Experimental procedures and models in use at JHU/APL allow the determination of each. Measurement results are provided for samples of A1203 (ordinary ray), Y203, LaO3-doped Y203, MgAL2O4, and ALON. Applications of these results are illustrated for planar windows having arbitrary orientations with respect to the optical axis.

  6. Dynamical electrophotoconductivity in polycrystalline thin films

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.

    1982-01-01

    Polycrystalline cadmium sulfide (CdS) films were deposited on lithium niobate (LiNbO3) substrates by vacuum evaporation and annealed to obtain high photosensitivity. The change in photoconductivity of these films due to the penetration of electric fields associated with elastic waves propagating on their substrates was demonstrated and studied. The relationship between the acoustic electric field and the induced change in film conductivity was found to be a nonlinear one. The fractional change in conductivity is strongly dependent on the light intensity and the film temperature, showing a prominent maximum as a function of these quantities. The largest recorded fractional change in conductivity was about 25% at electric fields of the order of 1,000 volts per centimeter. A phenomological model was developed based on the interaction between the space charge created by the electric field and the electron trapping states in the photoconductor.

  7. Plastic deformation of polycrystalline zirconium carbide

    NASA Technical Reports Server (NTRS)

    Darolia, R.; Archbold, T. F.

    1976-01-01

    The compressive yield strength of arc-melted polycrystalline zirconium carbide has been found to vary from 77 kg per sq mm at 1200 C to 19 kg per sq mm at 1800 C. Yield drops were observed with plastic strain-rates greater than 0.003/sec but not with slower strain rates. Strain-rate change experiments yielded values for the strain-rate sensitivity parameter m which range from 6.5 at 1500 C to 3.8 at 1800 C, and the product dislocation velocity stress exponent times T was found to decrease linearly with increasing temperature. The deformation rate results are consistent with the Kelly-Rowcliffe model in which the diffusion of carbon assists the motion of dislocations.

  8. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  9. A monotonicity conjecture for real cubic maps

    SciTech Connect

    Dawson, S.P.; Galeeva, R.; Milnor, J.; Tresser, C.

    1993-12-01

    This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends ``monotonely`` on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set. This material will be presented in more detail in a later paper.

  10. Sound velocity anisotropy in cubic crystals

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Park, H. Y.

    1983-01-01

    Simple analytical expressions may be derived for sound velocities in cubic crystals by using lattice harmonics or functions which are invariant under the crystal symmetry operations. These expressions are in good agreement with the exact results for typical crystals such as metallic iron and potassium fluoride.

  11. Ytterbium: Transition at High Pressure from Face-Centered Cubic to Body-Centered Cubic Structure.

    PubMed

    Hall, H T; Barnett, J D; Merrill, L

    1963-01-11

    Pressure of 40,000 atmospheres at 25 degrees C induces a phase transformation in ytterbium metal; the face-centered cubic structure changes to body-centered cubic. The radius of the atom changes from 1.82 to 1.75 A. At the same time the atom's volume decreases by 11 percent and the volume, observed macroscopically, decreases 3.2 percent.

  12. Polycrystallinity and stacking in CVD graphene.

    PubMed

    Tsen, Adam W; Brown, Lola; Havener, Robin W; Park, Jiwoong

    2013-10-15

    Graphene, a truly two-dimensional hexagonal lattice of carbon atoms, possesses remarkable properties not seen in any other material, including ultrahigh electron mobility, high tensile strength, and uniform broadband optical absorption. While scientists initially studied its intrinsic properties with small, mechanically exfoliated graphene crystals found randomly, applying this knowledge would require growing large-area films with uniform structural and physical properties. The science of graphene has recently experienced revolutionary change, mainly due to the development of several large-scale growth methods. In particular, graphene synthesis by chemical vapor deposition (CVD) on copper is a reliable method to obtain films with mostly monolayer coverage. These films are also polycrystalline, consisting of multiple graphene crystals joined by grain boundaries. In addition, portions of these graphene films contain more than one layer, and each layer can possess a different crystal orientation and stacking order. In this Account, we review the structural and physical properties that originate from polycrystallinity and stacking in CVD graphene. To begin, we introduce dark-field transmission electron microscopy (DF-TEM), a technique which allows rapid and accurate imaging of key structural properties, including the orientation of individual domains and relative stacking configurations. Using DF-TEM, one can easily identify "lateral junctions," or grain boundaries between adjacent domains, as well as "vertical junctions" from the stacking of graphene multilayers. With this technique, we can distinguish between oriented (Bernal or rhombohedral) and misoriented (twisted) configurations. The structure of lateral junctions in CVD graphene is sensitive to growth conditions and is reflected in the material's electrical and mechanical properties. In particular, grain boundaries in graphene grown under faster reactant flow conditions have no gaps or overlaps, unlike more

  13. Face-Centered-Cubic Nanostructured Polymer Foams

    NASA Astrophysics Data System (ADS)

    Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.

    1998-03-01

    Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.

  14. Nontrivial topology of cubic alkali bismuthides

    NASA Astrophysics Data System (ADS)

    Rusinov, I. P.; Sklyadneva, I. Yu.; Heid, R.; Bohnen, K.-P.; Petrov, E. K.; Koroteev, Yu. M.; Echenique, P. M.; Chulkov, E. V.

    2017-06-01

    We report an ab initio study of the effect of pressure on vibrational and electronic properties of K3Bi and Rb3Bi in the cubic F m 3 ¯m structure. It is shown that the high-temperature cubic phase of K3Bi and Rb3Bi is dynamically unstable at T =0 but can be stabilized by pressure. The electronic spectra of alkali bismuthides are found to possess the bulk band touching at the Brillouin zone center and an inverted spin-orbit bulk band structure. Upon hydrostatic compression the compounds transform from the topologically nontrivial semimetal (K3Bi )/metal (Rb3Bi ) into a trivial semiconductor (metal) with a conical Dirac-type dispersion of electronic bands at the point of the topological transition. In K3Bi the dynamical stabilization occurs before the system undergoes the topological phase transition.

  15. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  16. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  17. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  18. Cubic Polynomials with Rational Roots and Critical Points

    ERIC Educational Resources Information Center

    Gupta, Shiv K.; Szymanski, Waclaw

    2010-01-01

    If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.

  19. Cubic Polynomials with Rational Roots and Critical Points

    ERIC Educational Resources Information Center

    Gupta, Shiv K.; Szymanski, Waclaw

    2010-01-01

    If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.

  20. Effect of cubic aeroelastic nonlinearities on flutter

    NASA Astrophysics Data System (ADS)

    Berci, M.

    2017-07-01

    The effect of cubic aero-structural nonlinearities on aeroelastic flutter instability is here investigated. Focusing on the unstable flutter mode, the exact amplitude and frequency of the arising limit cycle oscillations are determined analytically. Both harmonic balance and multiple scales methods are adopted and perfect agreement of the explicit results is demonstrated, for the case of small perturbations of the aircraft speed in the neighborhood of the flutter instability.

  1. Quasiparticle Interference on Cubic Perovskite Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro

    2017-08-01

    We report the observation of coherent surface states on cubic perovskite oxide SrVO3(001 ) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a dx y -derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO2 plane play a critical role in controlling the coherent surface state via modulating orbital state.

  2. Cubic pencils of lines and bivariate interpolation

    NASA Astrophysics Data System (ADS)

    Carnicer, J. M.; Gasca, M.

    2008-10-01

    Cubic pencils of lines are classified up to projectivities. Explicit formulae for the addition of lines on the set of nonsingular lines of the pencils are given. These formulae can be used for constructing planar generalized principal lattices, which are sets of points giving rise to simple Lagrange formulae in bivariate interpolation. Special attention is paid to the irreducible nonsingular case, where elliptic functions are used in order to express the addition in a natural form.

  3. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  4. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  5. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  6. Water vapor interactions with polycrystalline titanium surfaces

    NASA Astrophysics Data System (ADS)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  7. Stability of polycrystalline Nextel 720 fiber

    SciTech Connect

    Das, G.

    1996-12-31

    The microstructure and tensile properties of polycrystalline Nextel 720 fiber (85 wt.% Al{sub 2}O{sub 3} - 15 wt-% SiO{sub 2}), both crystallized and precrystallized, were evaluated following prolonged thermal exposure at 982{degrees}C in air. The room temperature tensile strengths of Nextel 720 fibers did not appear to suffer degradation for exposures up to 3000 h and the microstructure remained unaffected by thermal exposures. The tensile strength of precrystallized Nextel 720 fiber was also determined at room temperature following heat treatments at 1093-1427{degrees}C in air. The precrystallized Nextel 720 fiber started to show a slight loss of strength after heat treatment at 1093{degrees}C/4 h and the strength deterioration was exacerbated for heat treatments at 1204{degrees}C/4 h and above. Microstructural characterization by x-ray and transmission electron microscopy (TEM) revealed the formation of mullite in heat treated precrystallized Nextel 720 fiber at 1204{degrees}C and a coarsening of microstructure above 1204{degrees}C. The degradation of strength in precrystallized Nextel 720 fiber heat treated at 1204{degrees}C/4 h and above may be attributed to phase instability and grain coarsening. Fractographs showed that fracture originated predominantly at the fiber surface.

  8. Solution-processed polycrystalline silicon on paper

    SciTech Connect

    Trifunovic, M.; Ishihara, R.; Shimoda, T.

    2015-04-20

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

  9. Solution-processed polycrystalline silicon on paper

    NASA Astrophysics Data System (ADS)

    Trifunovic, M.; Shimoda, T.; Ishihara, R.

    2015-04-01

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

  10. Abnormal hopping conduction in semiconducting polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Mitchel, William C.; Elhamri, Said; Grazulis, Larry; Altfeder, Igor

    2013-07-01

    We report the observation of an abnormal carrier transport phenomenon in polycrystalline semiconducting graphene grown by solid carbon source molecular beam epitaxy. At the lowest temperatures in samples with small grain size, the conduction does not obey the two-dimensional Mott-type variable-range hopping (VRH) conduction often reported in semiconducting graphene. The hopping exponent p is found to deviate from the 1/3 value expected for Mott VRH with several samples exhibiting a p=2/5 dependence. We also show that the maximum energy difference between hopping sites is larger than the activation energy for nearest-neighbor hopping, violating the assumptions of the Mott model. The 2/5 dependence more closely agrees with the quasi-one-dimensional VRH model proposed by Fogler, Teber, and Shklovskii (FTS). In the FTS model, conduction occurs by tunneling between neighboring metallic wires. We suggest that metallic edge states and conductive grain boundaries play the role of the metallic wires in the FTS model.

  11. Texture and Anisotropy of Polycrystalline Piezoelectics

    SciTech Connect

    Jones,J.; Iverson, B.; Bowman, K.

    2007-01-01

    Piezoelectricity is manifested in ferroelectric ceramics by inducing a preferred volume fraction of one ferroelectric domain variant orientation at the expense of degenerate orientations. The piezoelectric effect is therefore largely controlled by the effectiveness of the electrical poling in producing a bias in ferroelectric (180{sup o}) and ferroelastic (non-180{sup o}) domain orientations. Further enhancement of the piezoelectric effect in bulk ceramics can be accomplished by inducing preferred orientation through grain-orientation processes such as hot forging or tape casting that precede the electrical-poling process. Coupled crystal orientation and domain orientation processing yields ceramics with an even greater piezoelectric response. In this paper, preferred orientations of domains and grains in polycrystalline piezoelectric ceramics generated through both domain- and grain-orientation processing are characterized through pole figures and orientation distribution functions obtained using data from a variety of diffraction techniques. The processing methods used to produce these materials and the methods used to evaluate preferred orientation and texture are described and discussed in the context of prior research. Different sample and crystal symmetries are explored across a range of commercial and laboratory-prepared materials. Some of the variables presented in this work include the effects of in situ thermal depoling and the detailed processing parameters used in tape casting of materials with preferred crystallite orientations. Preferred orientation is also correlated with anisotropic properties, demonstrating a clear influence of both grain and domain orientations on piezoelectricity.

  12. Interface cavitation damage in polycrystalline copper

    SciTech Connect

    Field, D.P.; Adams, B.L. . Dept. of Mechanical Engineering)

    1992-06-01

    In this paper determination of an interface damage function (IDF), from a stereological procedure similar to that presented by Hillard is described. The mathematical and experimental simplicity of the method is utilized in measuring an IDF for polycrystalline copper crept at 0.6T{sub m} under uniaxial tension. Whereas previous work focussed on a five parameter description of the local state of a grain boundary, the domain of the IDF is increased to eight degrees of freedom in the present study to include the complete geometrical description of grain boundary structure. The resulting functions identify certain types of grain boundaries which were preferentially damaged. Most of the damage occurred on interfaces oriented nearly normal to the principal stress axis. Some relatively small angle boundaries demonstrated a surprising propensity to cavitate as did certain special boundaries distinguished by a group multiplicity in misorientation space greater than one. A sequence of two dimensional projections through the eight-dimensional domain of the IDF is shown to identify a number of interface structures which are readily damaged.

  13. Polishing of dental porcelain by polycrystalline diamond.

    PubMed

    Nakamura, Yoshiharu; Sato, Hideaki; Ohtsuka, Masaki; Hojo, Satoru

    2010-01-01

    Polycrystalline diamond (PCD) exhibits excellent abrasive characteristics and is commonly used as loose grains for precision machining of hard ceramics and other materials that are difficult to grind and polish. In the present study, we investigated using bonded PCD for polishing dental porcelain, for which a lustrous surface is difficult to obtain by polishing. We compared the surface texture and characteristics of dental porcelain after polishing with bonded PCD with that obtained using bonded monocrystalline diamond (MCD), which is commonly used for this purpose. Polishing was performed at various pressures and rotational speeds on a custom-built polishing apparatus using bonded PCD or MCD with grain sizes of 3.92 μm on specimens consisting of VITA Omega 900 dentin porcelain after firing and then glazing to a specified surface roughness. The surface roughness of the polished porcelain and the abrasion quantity in terms of its polishing depth were measured, and its surface texture and characteristics were investigated. At low polishing pressures, PCD yielded a finer polished surface than MCD. The polishing depth after polishing for 20-30 min was approximately 2-3 μm with PCD and 1-2 μm with MCD. The polished surface was more uniform and smooth with PCD than with MCD.

  14. Colloidal polycrystalline monolayers under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Steinacher, Mathias; Spanke, Hendrik Th.; Pokki, Juho; Bahmann, Severin; Nelson, Bradley; Foffi, Giuseppe; Isa, Lucio

    2017-01-01

    In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.

  15. Conduction mechanisms in undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Chou, Hsueh-Tao; Lee, Chia-Chang; Sun, Chia-Hsin

    2000-07-01

    The unadopted polycrystalline diamond films are deposited on p-type silicon substrates by a microwave plasma chemical vapor deposition (MPCVD) system. The deposition conditions are CH4?/H(subscript 2=0.5%, pressure equals 45 torr, power equals 2.2kW, and subtract temperature equals 885 degree(s)C. SEM was used to inspect the surface morphology, Raman Spectroscopy to determine the quality, and XPS to analyze the chemical composition. It in concluded that a cleaning procedure on diamond surfaces can eliminate the carbon phase but enhance the oxygenation on the films. The electrical characteristics were investigated by current-voltage-temperature measurements in a metal-insulator-semiconductor (MIS) structure with top metal contacts and back silicon substrates contacts. It can be found a transition electric field of 240 kV/cm, where Schottky emission (SE) mechanism is responsible for electric conduction below 240kV/cm, and Poole-Frenkel transport (PF) mechanism dominates beyond 240 kV/cm. By the extrapolations, the Schottky barrier height of silver and diamond film is 2.4 eV, and the tarp depth is 4.75 eV in the diamond film.

  16. Hydrogen passivation of polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.

    2012-09-01

    The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.

  17. Geometric considerations for diffusion in polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Schuh, Christopher A.

    2007-03-01

    Mass transport in polycrystals is usually enhanced by short-circuit diffusion along various defect paths, e.g., grain boundaries, dislocation cores, and triple junctions. In the "kinetic-A" regime, diffusion fields associated with the various diffusion paths overlap each other, forming a macroscopically homogeneous diffusion profile that can be described by an effective diffusion coefficient. Here, we develop a composite diffusion model for polycrystals based on realistic arrangements between various microstructural elements, which usually exhibit complex network morphologies. Asymmetric effective medium equations and power-law scaling relationships are used to evaluate the effective diffusivity of a general isotropic polycrystal, and are compared to predictions of the simple arithmetic rule of mixtures used frequently in the literature. We also examine the grain size and temperature dependence of polycrystalline diffusion in terms of the apparent grain size exponent and activation energy, which in turn provide the basis by which we assess dominant diffusion processes and construct generalized diffusion mechanism maps. Implications of geometry on experimental diffusivity measurements are also discussed.

  18. Thermophotovoltaic Cells on Zinc Diffused Polycrystalline GaSb

    SciTech Connect

    Sulima, O.V.; Bett, A.W.; Dutta, P.S.; Ehsani, H.; Gutmann, R.J.

    2000-05-01

    For the first time, it has been demonstrated that thermophotovoltaic cells made of polycrystalline GaSb with small grain sizes (down to 100 x 100 {micro}m) have similar characteristics to the best Zinc diffused single crystal GaSb cells with identified device parameters. The grain boundaries in polycrystalline GaSb do not degrade TPV cell parameters, indicating that such material can be used for high-efficiency thermophotovoltaic cells.

  19. 46 CFR 160.035-9 - Cubic capacity of lifeboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...

  20. 46 CFR 160.035-9 - Cubic capacity of lifeboats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...

  1. Northeastern forest survey revised cubic-foot volume equations

    Treesearch

    Charles T. Scott

    1981-01-01

    Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.

  2. Degree of disorder in cubic mesophases in thermotropics: thermodynamic study of a liquid crystal showing two cubic mesophases.

    PubMed

    Saito, Kazuya; Shinhara, Takashi; Nakamoto, Tadahiro; Kutsumizu, Shoichi; Yano, S; Sorai, Michio

    2002-03-01

    Heat capacity of a thermotropic mesogen ANBC(22) (4(')-alkoxy-3(')-nitrobiphenyl-4-carboxylic acid with 22 carbon atoms in alkyl chain) showing two cubic mesophases was measured by adiabatic calorimetry between 13 and 480 K. Excess enthalpies and entropies due to phase transitions were determined. A small thermal anomaly due to the cubic Im3m-->cubic Ia3d phase transition was successfully detected. Through an analysis of chain-length dependence of the entropy of transition, the sequence of two cubic mesophases (with space groups Ia3d and Im3m) is deduced for thermotropic mesogens ANBC(n). It is shown that the disorder of the core arrangement decreases in the order of Sm-C-->cubic (Im3m)-->cubic (Ia3d) while that of the chain in the reverse order cubic (Ia3d)-->cubic (Im3m)-->Sm C.

  3. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  4. Growth and characterization of cubic and non-cubic Ge nanocrystals

    SciTech Connect

    Mukherjee, S.; Pradhan, A.; Bhunia, S.; Mukherjee, S.; Maitra, T.; Nayak, A.

    2016-05-06

    Germanium nanocrystals with tetragonal (ST-12) and diamond like cubic (Ge-I) phases have been selectively grown by controlling the ionization and electrostatic potential of Ge clusters in an ion cluster beam deposition system. Predominantly tetragonal nanocrystals were obtained when grown using neutral clusters. The percentage of cubic phase increased when grown by ionizing the clusters and accelerating them towards substrates by applying electrostatic bias in the range of 1.5 –2.5 kV. Raman spectroscopic measurement showed strong peak at 275 cm{sup −1} and 300 cm{sup −1} for tetragonal and cubic Ge nanocrystals, respectively. TEM measurements showed crystalline lattice fringes of both type of the nanocrystals. The selected area electron diffraction patterns showed (111) and (210) as the dominating lattice planes for tetragonal nanocrystals while the cubic phases had (111), (311) and (331) as the prominent lattice planes. The optical absorption edge redshifted from 1.75 to 1.55 eV as the percentage of the cubic phases increased in the NC composition in the composite film.

  5. Real-time X-ray Diffraction Measurements of Shocked Polycrystalline Tin and Aluminum

    SciTech Connect

    Dane V. Morgan, Don Macy, Gerald Stevens

    2008-11-22

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35-ns pulse. The characteristic Kα lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic Kβ line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3-mm by 6-mm spot and 1° full-width-half-maximum (FWHM) angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5°. A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device (CCD) camera through a coherent fiberoptic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1-mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic (fcc) aluminum lattice with no phase transformation.

  6. Spontaneous Graphitization of Ultrathin Cubic Structures: A Computational Study

    NASA Astrophysics Data System (ADS)

    Sorokin, Pavel B.; Kvashnin, Alexander G.; Zhu, Zhen; Tománek, David

    2014-12-01

    Results based on {\\em ab initio} density functional calculations indicate a general graphitization tendency in ultrathin slabs of cubic diamond, boron nitride, and many other cubic structures including rocksalt. Whereas such compounds often show an energy preference for cubic rather than layered atomic arrangements in the bulk, the surface energy of layered systems is commonly lower than that of their cubic counterparts. We determine the critical slab thickness for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures.

  7. Effect of vorticity on polycrystalline ice deformation

    NASA Astrophysics Data System (ADS)

    Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka

    2017-04-01

    Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our

  8. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  9. Nonlinear alternating current conduction in polycrystalline manganites

    SciTech Connect

    Ghosh, T. N.; Nandi, U. N.; Jana, D.; Dey, K.; Giri, S.

    2014-06-28

    The real part of ac conductance Σ(T, f) of yttrium-doped mixed-valent polycrystalline manganite systems La{sub 1−x−y}Y{sub y}Ca{sub x}MnO{sub 3} with x = 0.33 and 0.05 and y = 0.07 and iron doped LaMn{sub 1−x}Fe{sub x}O{sub 3} with x = 0.15 is measured as a function of frequency f by varying zero-frequency Ohmic conductance Σ{sub 0} by T. The former shows a metal-insulator transition, whereas the latter exhibits insulating character throughout the measured temperature range. At a fixed temperature T, Σ(T, f) remains almost constant to the value Σ{sub 0} up to a certain frequency, known as the onset frequency f{sub c} and increases from Σ{sub 0} as frequency is increased from f{sub c}. Scaled appropriately, the data for Σ(T, f) at different T fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductance. f{sub c} scales with Σ{sub 0} as f{sub c}∼Σ{sub 0}{sup x{sub f}}, where x{sub f} is the nonlinearity exponent characterising the onset. With the help of data for ac conduction, it is shown that x{sub f} is very much phase sensitive and can be used to characterize the different phases in a manganite system originated due to change in temperature or disorder. Scaling theories and existing theoretical models are used to analyze the results of ac conduction and the nonlinearity exponent x{sub f}.

  10. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  11. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  12. Two-layer tubes from cubic crystals

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A.

    2016-12-01

    Effective Young's moduli and Poisson's ratios of two-layer tubes from cubic crystals have been analyzed theoretically. It is shown (using derived formulas for numerical estimates) that the mechanical properties of two-layer tube composites from auxetics and nonauxetics are not described by the mixture rule. It is demonstrated that the deviation of the effective modulus from the mixture rule predictions rapidly increases with an increase in Young's modulus of the nonauxetic components of a composite. It is established that, combining auxetics and nonauxetics in layered tubes, one can obtain, depending on the packing order in layers, either a strong increase or a decrease in auxeticity.

  13. Cherenkov and Scintillation Properties of Cubic Zirconium

    NASA Technical Reports Server (NTRS)

    Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.

    2008-01-01

    Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed

  14. Electronic structure of nonstoichiometric cubic hydrides

    SciTech Connect

    Switendick, A.C.

    1980-01-01

    Using the supercell approach we have calculated the electronic structure of Y/sub 4/H/sub 8/, Y/sub 4/H/sub 9/, Y/sub 4/H/sub 11/, and Y/sub 4/H/sub 12/ as prototypic of nonstoichiometric cubic di- and trihydrides. The nature of the interaction between the yttrium and the octahedral and tetrahedral hydrogens is shown by the relative amount of charge contained in the crystal spheres. Each added hydrogen lowers one band which was already partially filled. The charge on both the octahedral and tetrahedral sites is very similar and significantly more than is contained in a comparable atomic sphere.

  15. Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method.

    PubMed

    Liu, Jie; Fan, Xiayue; Liu, Xiaorui; Song, Zhishuang; Deng, Yida; Han, Xiaopeng; Hu, Wenbin; Zhong, Cheng

    2017-06-07

    A new approach has been developed for in situ preparing cubic-shaped Pt particles with (100) preferential orientation on the surface of the conductive support by using a quick, one-step, and clean electrochemical method with periodic square-wave potential. The whole electrochemical deposition process is very quick (only 6 min is required to produce cubic Pt particles), without the use of particular capping agents. The shape and the surface structure of deposited Pt particles can be controlled by the lower and upper potential limits of the square-wave potential. For a frequency of 5 Hz and an upper potential limit of 1.0 V (vs saturated calomel electrode), as the lower potential limit decreases to the H adsorption potential region, the Pt deposits are changed from nearly spherical particles to cubic-shaped (100)-oriented Pt particles. High-resolution transmission electron microscopy and selected-area electron diffraction reveal that the formed cubic Pt particles are single-crystalline and enclosed by (100) facets. Cubic Pt particles exhibit characteristic H adsorption/desorption peaks corresponding to the (100) preferential orientation. Ge irreversible adsorption indicates that the fraction of wide Pt(100) surface domains is 47.8%. The electrocatalytic activities of different Pt particles are investigated by ammonia electro-oxidation, which is particularly sensitive to the amount of Pt(100) sites, especially larger (100) domains. The specific activity of cubic Pt particles is 3.6 times as high as that of polycrystalline spherical Pt particles, again confirming the (100) preferential orientation of Pt cubes. The formation of cubic-shaped Pt particles is related with the preferential electrochemical deposition and dissolution processes of Pt, which are coupled with the periodic desorption and adsorption processes of O-containing species and H adatoms.

  16. Single crystal elastic constants evaluated with surface acoustic waves generated and detected by lasers within polycrystalline steel samples

    NASA Astrophysics Data System (ADS)

    Gasteau, D.; Chigarev, N.; Ducousso-Ganjehi, L.; Gusev, V. E.; Jenson, F.; Calmon, P.; Tournat, V.

    2016-01-01

    We report on a laser generated and detected surface acoustic wave method for evaluating the elastic constants of micro-crystals composing polycrystalline steel. The method is based on the measurement of surface wave velocities in many micro-crystals oriented randomly relative to both the wave propagation direction and the sample surface. The surface wave velocity distribution is obtained experimentally thanks to the scanning potentiality of the method and is then compared to the theoretical one. The inverse problem can then be solved, leading to the determination of three elastic constants of the cubic symmetry micro-crystals. Extensions of the method to the characterization of texture, preferential orientation of micro-crystals or welds could be foreseen.

  17. High cycle fatigue life improvement of polycrystalline alpha-iron modified by silver, chromium, aluminium, and yttrium ion implantation

    SciTech Connect

    Wang, H.W.; Yang, D.Z.; Shi, W.D.; Patu, S.

    1995-06-15

    Body-centered cubic (bcc) metals are at least of parallel significance to fcc ones. Work on bcc metal`s fatigue modification by ion implantation is rare. The asymmetry deformation and high SFE characteristics in the microplasticity of bcc metals make the fatigue process more complex. The authors have chosen polycrystalline alpha-iron as the target metal to be implanted with silver, chromium, aluminium, and yttrium ions, which are mutually immiscible, limited soluble without precipitation, and soluble with precipitation in iron, respectively. This work aims at providing a systematic investigation on different mechanisms dominant in fatigue. This brief report is on the high cycle fatigue (HCF) property improvement by these metallic ion implantations, which is part of a series of reports both on HCF and low cycle fatigue (LCF) modifications by each individual ion implantation.

  18. Rheological properties of Cubic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao

    2016-11-01

    Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.

  19. Multiply charged monopoles in cubic dimer model

    NASA Astrophysics Data System (ADS)

    Ganesh Jaya, Sreejith; Powell, Stephen

    2015-03-01

    The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.

  20. The electrical conductivity of polycrystalline metallic films

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  1. Polycrystalline thin film materials and devices

    NASA Astrophysics Data System (ADS)

    Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

    1991-11-01

    Results and conclusions of Phase 1 of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe2 and CdTe solar cells. The kinetics of the formation of CuInSe2 by selenization with hydrogen selenide was investigated and a CuInSe2/Cds solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe2 films and a cell efficiency of 7 percent. Detailed investigations of the open circuit voltage of CuInSe2 solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe2 thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe2 is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10 percent can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm(exp 2) are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  2. Cubic membranes: a structure-based design for DNA uptake.

    PubMed

    Almsherqi, Zakaria; Hyde, Stephen; Ramachandran, Malarmathy; Deng, Yuru

    2008-09-06

    Cubic membranes are soft three-dimensional crystals found within cell organelles in a variety of living systems, despite the aphorism of Fedorov: 'crystallization is death'. They consist of multi-bilayer lipid-protein stacks, folded onto anticlastic surfaces that resemble triply periodic minimal surfaces, forming highly swollen crystalline sponges. Although cubic membranes have been observed in numerous cell types and under different pathophysiological conditions, knowledge about the formation and potential function(s) of non-lamellar, cubic structures in biological systems is scarce. We report that mitochondria with this cubic membrane organization isolated from starved amoeba Chaos carolinense interact sufficiently with short segments of phosphorothioate oligonucleotides (PS-ODNs) to give significant ODNs uptake. ODNs condensed within the convoluted channels of cubic membrane by an unknown passive targeting mechanism. Moreover, the interaction between ODNs and cubic membrane is sufficient to retard electrophoretic mobility of the ODN component in the gel matrix. These ODN-cubic membrane complexes are readily internalized within the cytoplasm of cultured mammalian cells. Transmission electron microscopic analysis confirms ODNs uptake by cubic membranes and internalization of ODN-cubic membrane complexes into the culture cells. Cubic membranes thus may offer a new, potentially benign medium for gene transfection.

  3. Sintering polycrystalline olivine and polycrystalline clinopyroxene containing trace amount of graphite from natural crystals

    NASA Astrophysics Data System (ADS)

    Tsubokawa, Yumiko; Ishikawa, Masahiro

    2017-09-01

    Graphite-bearing polycrystalline olivine and polycrystalline clinopyroxene with submicron to micron grain size were successfully sintered from a single crystal of naturally occurring olivine (Fo88-92Fa12-8: Mg1.76-1.84Fe0.16-0.24SiO4) and a single crystal of naturally occurring clinopyroxene (Di99Hed1: Ca0.92Na0.07Mn0.01Mg0.93Fe0.01Al0.06Si2O6). The milled powders of both these crystals were sintered under argon gas flow at temperatures ranging from 1130 to 1350 °C for 2 h. As the sintering temperature increased, the average grain size of olivine increased from 0.2 to 1.4 µm and that of clinopyroxene increased from 0.1 to 2.4 µm. The porosity of sintered samples remained at an almost-constant volume of 2-5% for olivine and 3-4% for clinopyroxene. The samples sintered from powders milled with ethanol exhibited trace amount of graphite, identified via Raman spectroscopy analysis. As the sintering temperature increased, the intensity of the graphite Raman peak decreased, compared with both olivine and clinopyroxene peaks. The carbon content of the sintered samples was estimated to be a few hundred ppm. The in-plane size ( L a ) of graphite in the sintered olivine was estimated to be <15 nm. Our experiments demonstrate new possibilities for preparing graphite-bearing silicate-mantle mineral rocks, and this method might be useful in understanding the influence of the physical properties of graphite on grain-size-sensitive rheology or the seismic velocity of the Earth's mantle.[Figure not available: see fulltext.

  4. Synthesis of polycrystalline Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property

    SciTech Connect

    Zhou, Hai; Lv, Baoliang; Wu, Dong; Xu, Yao

    2014-12-15

    Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystalline nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.

  5. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  6. Impact of annealing on physical properties of e-beam evaporated polycrystalline CdO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Dhaka, M. S.

    2017-04-01

    An impact of annealing on the physical properties of polycrystalline CdO thin films is carried out in this study. CdO thin films of thickness 650 nm were fabricated on glass and indium tin oxide (ITO) substrates employing e-beam evaporation technique. The pristine thin films were annealed in air atmosphere at 250 °C, 400 °C and 550 °C for one hour followed by investigation of structural, optical, electrical and morphological properties along with elemental composition using X-ray diffraction (XRD), UV-Vis spectrophotometer, Fourier transform infrared (FTIR) spectrometer, source meter, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. XRD patterns confirmed the polycrystalline nature and cubic structure (with space group Fm 3 bar m) of the films. The crystallographic parameters are calculated and found to be influenced by the post-air annealing treatment. The optical study shows that direct band gap is ranging from 1.98 eV to 2.18 eV and found to be decreased with post-annealing. The refractive index and optical conductivity are also increased with annealing temperature. The current-voltage characteristics show ohmic behaviour of the annealed films. The surface morphology is observed to be improved with annealing and grain-size is increased as well as EDS spectrum confirmed the presence of cadmium (Cd) and oxygen (O) in the deposited films.

  7. First-principles calculations of typical anisotropic cubic and hexagonal structures and homogenized moduli estimation based on the Y-parameter: Application to CaO, MgO, CH and Calcite CaCO3

    NASA Astrophysics Data System (ADS)

    Fu, Jia; Bernard, Fabrice; Kamali-Bernard, Siham

    2017-02-01

    X-ray method to test the material properties and to obtain elastic constants is commonly based on the Reuss model and Kroner model. Y parameter has been turned out to be an effective method to estimate elastic properties of polycrystalline material. Since Y-parameters of cubic polycrystalline material based on the certain uniform stress (Reuss model) has not been given, our work aims to complete this part of the theoretical analysis, which can effectively compare elastic constants measured by the X-ray diffraction method. The structural and the elastic properties of cubic structures (CaO and MgO) and hexagonal structures (CH and Calcite CaCO3) are investigated by the density functional theory method. And then the credibility of Y parameters for determing elastic moduli of cubic structures is proved and elastic properties in typical crystallographic planes of [100], [110] and [111] are also calculated. Meanwhile, Young's moduli of CH and Calcite structure are 58.08 GPa and 84.549 GPa, which are all close to references. Elastic properties of cubic and hexagonal structures under various pressures are calculated and the surface constructions of elastic moduli are drawn, showing the anisotropy at various directions. The crystal structure investigated in this work are typical of some primary or secondary components of Hardened Cements Pastes and their homogenized elastic properties are needed in a hierarchical multi-scale modeling, such as the one developed by some of the authors of this paper.

  8. Effect of copper impurity on polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1978-01-01

    The presence of copper impurity, up to 10 to the 15th atoms/cc, in single crystal silicon has been shown to have no deleterious effect on the p-n junction solar cell performance. However, in polycrystalline silicon, copper atoms tend to migrate to the defect sites because of the structural sensitive properties of copper. This study was undertaken to investigate the influence of this behavior of copper impurity on the performance of p-n junction solar cells fabricated from structurally imperfect silicon. Two sets of polycrystalline silicon substrates containing copper were examined. In one set of samples, copper was incorporated during growth, whereas in the other, copper was diffused. Solar cells were fabricated on both the sets of substrates by a standard process. Dark and light I-V and spectral response characteristics of the cells were measured and compared with copper-free polycrystalline silicon solar cells. The results and the model are discussed.

  9. Polycrystalline graphene and other two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Chen, Yong P.

    2014-10-01

    Graphene, a single atomic layer of graphitic carbon, has attracted intense attention because of its extraordinary properties that make it a suitable material for a wide range of technological applications. Large-area graphene films, which are necessary for industrial applications, are typically polycrystalline -- that is, composed of single-crystalline grains of varying orientation joined by grain boundaries. Here, we present a review of the large body of research reported in the past few years on polycrystalline graphene. We discuss its growth and formation, the microscopic structure of grain boundaries and their relations to other types of topological defect such as dislocations. The Review further covers electronic transport, optical and mechanical properties pertaining to the characterizations of grain boundaries, and applications of polycrystalline graphene. We also discuss research, still in its infancy, performed on other two-dimensional materials such as transition metal dichalcogenides, and offer perspectives for future directions of research.

  10. TOPICAL REVIEW: Modelling polycrystalline solidification using phase field theory

    NASA Astrophysics Data System (ADS)

    Gránásy, László; Pusztai, Tamás; Warren, James A.

    2004-10-01

    We review recent advances made in the phase field modelling of polycrystalline solidification. Areas covered include the development of theory from early approaches that allow for only a few crystal orientations, to the latest models relying on a continuous orientation field and a free energy functional that is invariant to the rotation of the laboratory frame. We discuss a variety of phenomena, including homogeneous nucleation and competitive growth of crystalline particles having different crystal orientations, the kinetics of crystallization, grain boundary dynamics, and the formation of complex polycrystalline growth morphologies including disordered ('dizzy') dendrites, spherulites, fractal-like polycrystalline aggregates, etc. Finally, we extend the approach by incorporating walls, and explore phenomena such as heterogeneous nucleation, particle-front interaction, and solidification in confined geometries (in channels or porous media).

  11. Optical characterizations on surface-polished polycrystalline YAG fibers

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjun; Hay, Randall S.; McDaniel, Sean A.; Cook, Gary; Usechak, Nicholas G.; Urbas, Augustine M.; Lee, HeeDong; Corns, Randall G.; Shugart, Kathleen N.; Kadhim, Ali H.; Brown, Dean P.; Griffin, Benjamin

    2017-05-01

    The superior thermal and optical properties of transparent polycrystalline ceramics make them attractive alternatives to glass-based materials for laser gain media. Fibers have other advantages of compactness, vibration-resistance, and reduced cooling requirements. Recently it was found that surface roughness caused by grain boundary grooving dominated optical scattering even though there were other scattering sources in the fiber. Therefore, a lot of effort went to fabrication of fibers with smooth surfaces. A mechanical polishing method for polycrystalline YAG fibers was developed. The fiber surface roughness was reduced, while maintaining a circular cross-section. Surface-polished 1.5% Ho-doped polycrystalline YAG fiber, 62 mm long with 31 μm diameter, was fabricated, and lasing was demonstrated from this fiber. Effects of surface-polishing on the surface roughness and scattering coefficient are presented, and lasing characteristics are discussed.

  12. Improved transport properties of polycrystalline YBCO thin-films

    NASA Astrophysics Data System (ADS)

    Azoulay, J.; Verdyan, A.; Lapsker, I.

    1994-12-01

    Resistive evaporation technique was used to fabricate polycrystalline YBaCuO and YBaNaCuO thin films on MgO substrates. Heat treatment was carried out in a low oxygen partial pressure. Polycrystalline YBCO and Na doped YBCO thin films samples were thus obtained using the same technique and conditions. The critical current density of Na doped YBCO sample was measured to be significantly higher than that of the undoped YBCO one. The results are discussed in terms of the Na contribution to the intragrain conductivity.

  13. New multiphase equation of state for polycrystalline quartz

    SciTech Connect

    Boettger, J.C.; Lyon, S.P.

    1990-10-01

    We have generated separate equations of state (EOS's) for the alpha quartz, coesite, and stishovite phases of polycrystalline quartz (SiO{sub 2}) using the computer program GRIZZLY. We also modified the program GRIZZLY to combine two single-phase EOS's for a given material into a single two-phase EOS via minimization of the Gibbs free energy. This new version of GRIZZLY has been used to generate a three-phase SESAME type EOS for polycrystalline quartz using the three EOS's mentioned above. All four of the EOS's produced for SiO{sub 2} are now available on request. 17 refs., 4 figs., 1 tab.

  14. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect

    Bogdanov, G.; Ludwig, R.; Wiggins, J.; Bertagnolli, K.

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  15. Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.

    2017-09-01

    Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.

  16. Oxidation of polycrystalline materials based on zinc and cadmium chalcogenides

    SciTech Connect

    Gunchenko, N.N.; Dronova, G.N.; Maksimova, I.A.; Mironov, I.A.; Pavlova, V.N.; Pevtsova, N.I.

    1988-06-01

    The resistance of polycrystalline zinc sulfide and selenide and cadmium telluride to atmospheric exposure in heating to 300-700/degrees/C was investigated. Polycrystalline zinc sulfide (KO-2 optical ceramic) was prepared by hot powder molding and zinc selenide and cadmium telluride were prepared by evaporation with filtrations of vapors through porous materials and subsequent condensation on a heated support. Zinc sulfide was most sensitive to oxidation. The rate of oxidation of polycrystals was slightly higher than for single crystals. The possibility of using oxidation for creating protective and antireflective coatings on zinc sulfide and selenide should be noted.

  17. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  18. Processing of transparent polycrystalline AlON:Ce3+ scintillators

    SciTech Connect

    Chen, Ching -Fong; Yang, Pin; King, Graham; Tegtmeier, Eric L.

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+ activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.

  19. Characterization of polycrystalline cBN compacts sintered without any additives

    NASA Astrophysics Data System (ADS)

    Tan, N.; Liu, C. J.; Li, Y. J.; Dou, Y. W.; Wang, H. K.; Ma, H.; Kou, Z. L.; He, D. W.

    2011-01-01

    Sintered cubic boron nitride (cBN) is widely used in various industrial applications because of its extreme wear and corrosion resistance, thermal and electrical properties. Conventional cBN sintered compacts contain binder materials and the binder materials remarkably affect their mechanical and thermal properties. In this work, polycrystalline cBN (PcBN) compacts were sintered on WC-16 wt.%Co substrates without any sintering agent at static high pressure of 5.0 GPa and temperatures of 1550-1750°C1750circC-> for 3-20 min. Chemical reactions between cBN and substances infiltrated from the substrates occurred during the high pressure and high temperature (HPHT) sintering process. Reaction products and their contents strongly depended on the sintering temperatures and heat treatment times according to the X-ray diffraction (XRD) observations. Scanning electron microscopy (SEM) analysis showed that some samples sintered under some specific conditions had plenty of cBN-to-cBN bonding among cBN grains and homogeneous microstructures. We also found that the formation of the cBN-to-cBN bonding in the samples had given rise to an improvement in cutting performance.

  20. Curvature and Tangency Handles for Control of Convex Cubic Shapes

    DTIC Science & Technology

    2000-01-01

    looked at A-splines constructed with segments of singular al- gebraic cubics, which are just rational cubics, with new, geometrically more meaningful...contact interpolation , and curvatures at three prescribed points, see Figures 1-4. Curve and Surface Design: Saint-Malo 1999 91 Pierre-Jean Laurent...curvature at one contact point. §2. Barycentric Coordinates and Curvature at the Endpoints The general algebraic cubic in cartesian coordinates x, y is

  1. Cubic meter volume optical coherence tomography

    PubMed Central

    WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.

    2017-01-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628

  2. On the stability of cubic galileon accretion

    NASA Astrophysics Data System (ADS)

    Bergliaffa, Santiago Esteban Perez; Maier, Rodrigo

    2017-09-01

    We examine the linear stability of the nongravitating steady-state galileon accretion for the case of a Schwarzcshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided into two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.

  3. Polarization conversion in cubic Raman crystals

    NASA Astrophysics Data System (ADS)

    McKay, Aaron; Sabella, Alexander; Mildren, Richard P.

    2017-02-01

    Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB.

  4. Polarization conversion in cubic Raman crystals

    PubMed Central

    McKay, Aaron; Sabella, Alexander; Mildren, Richard P.

    2017-01-01

    Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB. PMID:28169327

  5. Cubic meter volume optical coherence tomography.

    PubMed

    Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E; Swanson, Eric; Fujimoto, James G

    2016-12-01

    Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.

  6. Triangulation of cubic panorama for view synthesis.

    PubMed

    Zhang, Chunxiao; Zhao, Yan; Wu, Falin

    2011-08-01

    An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs.

  7. A smoothing algorithm using cubic spline functions

    NASA Technical Reports Server (NTRS)

    Smith, R. E., Jr.; Price, J. M.; Howser, L. M.

    1974-01-01

    Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.

  8. Polycrystalline silicon conductivity modulated thin film transistors

    NASA Astrophysics Data System (ADS)

    Anish, Kumar K. P.

    1997-09-01

    Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on glass has received significant attention for use in large area microelectronic applications. These applications include both niche and large volume applications such as printer drivers, image scanners, active-matrix liquid crystal displays (AMLCDs), electro-luminescent displays, plasma assisted displays, etc. Currently, the leading technology for these applications is amorphous-Si (a-Si) TFT. However, as the information content increases, a-Si technology encounters severe challenges due to its inherent low mobility, high parasitic capacitance, low aperture ratio, and non-compatibility to CMOS process. On the other hand, poly-Si technology offers high mobility, low parasitic capacitance, small size, CMOS compatibility, good stability, and uses the infrastructure of silicon science and technology. Thus, a simple low temperature poly-Si technology which allows large area system integration on panel will be in great demand for future high definition displays. However, it was found that poly-Si material properties vary with its method of preparation, its grain size, its surface roughness, and the nature and distribution of the inter-granular and bulk defects. Therefore, extensive studies are needed to optimize the key parameters such as the off-current, on-current, and breakdown voltage of the devices. These parameters can be optimized by means of material preparation as well as innovative device designs. In this thesis, three TFT structures were invented and fabricated using a simple low temperature poly-Si technology. With these novel structures, pixels, pixel drivers, and analog and digital peripheral circuits can all be built on the same glass substrate. This allows the ultimate goal of display systems on glass to be much more closer to reality. First, a high voltage transistor called the Conductivity Modulated Thin Film Transistor (CMTFT) is presented. Using this structure, the fundamental current

  9. Vibration analysis of cubic rotary-linear piezoelectric actuator.

    PubMed

    Mashimo, Tomoaki; Toyama, Shigeki

    2011-04-01

    Cubic design of a stator in a rotary-linear piezoelectric actuator is sophisticated and interesting, but the vibration theory of the cubic stator remains unclear when using the finite element method (FEM). In this paper, we analyze the vibration behavior of the cubic stator by applying the energy method, which distinguishes the component of mechanical energy. By changing the design of the stator (especially the length in the direction of the through-hole axis), we clarify how the vibration modes are in accordance at one equal frequency in cubic shape. The behavior of the vibration modes is discussed using conventional vibration theory of a beam and a plate. © 2011 IEEE

  10. FAST TRACK COMMUNICATION: Synthesis of cubic-structured monocrystalline titanium nitride nanoparticles by means of a dual plasma process

    NASA Astrophysics Data System (ADS)

    Tavares, J.; Coulombe, S.; Meunier, J.-L.

    2009-05-01

    Titanium nitride has long been used for its favourable mechanical and chemical properties and it has been demonstrated that monocrystallinity in thin films enhances these properties. While the synthesis of monocrystalline thin films is well documented, common synthesis processes for titanium nitride nanoparticles yield only polycrystalline, spherically shaped powders. The process presented here allows for the synthesis of monocrystalline, cube-shaped nanoparticles by means of a dual plasma process. Pulsed electric arc erosion of a Ti cathode in a N-rich atmosphere produced by a radio-frequency discharge is used for the synthesis of the TiN nanoparticles. Electron microscopy revealed the cubic morphology of the synthesized powders and electron diffraction patterning confirmed the crystalline structure of the TiN nanoparticles.

  11. Orientation-dependent x-ray Raman scattering from cubic crystals: Natural linear dichroism in MnO and CeO2

    NASA Astrophysics Data System (ADS)

    Gordon, R. A.; Haverkort, M. W.; Gupta, Subhra Sen; Sawatzky, G. A.

    2009-11-01

    Information on valence orbitals and electronic interactions in single crystal systems can be obtained through orientation-dependent x-ray measurements, but this can be problematic for a cubic system. Polarisation-dependent x-ray absorption measurements are common, but are dominated by dipole transitions which, for a cubic system, are isotropic even though a cubic system is not. Many edges, particularly for transition metals, do have electric quadrupole features that could lead to dichroism but proximity to the dipole transition can make interpretation challenging. X-ray Raman Spectroscopy (XRS) can also be used to perform orientation-dependent near-edge measurements - not only dependent on the direction of the momentum transfer but also its magnitude, q. Previous XRS measurements on polycrystalline materials revealed that multipole (higher order than dipole) transitions are readily observable in the pre-threshold region of rare earth N4,5 edges, actually replacing the dipole at high-q. We have extended these studies to examine orientation-dependent XRS for CeO2 and MnO single crystals, as prototype systems for theoretical treatment. Dichroism is observed at both the Ce N4,5 and Mn M2,3 edges in these cubic materials.

  12. Solving Buckmaster equation using cubic B-spline and cubic trigonometric B-spline collocation methods

    NASA Astrophysics Data System (ADS)

    Chanthrasuwan, Maveeka; Asri, Nur Asreenawaty Mohd; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah

    2017-08-01

    The cubic B-spline and cubic trigonometric B-spline functions are used to set up the collocation in finding solutions for the Buckmaster equation. These splines are applied as interpolating functions in the spatial dimension while the finite difference method (FDM) is used to discretize the time derivative. The Buckmaster equation is linearized using Taylor's expansion and solved using two schemes, namely Crank-Nicolson and fully implicit. The von Neumann stability analysis is carried out on the two schemes and they are shown to be conditionally stable. In order to demonstrate the capability of the schemes, some problems are solved and compared with analytical and FDM solutions. The proposed methods are found to generate more accurate results than the FDM.

  13. Cubic phases for studies of drug partition into lipid bilayers.

    PubMed

    Engström, S; Nordén, T P; Nyquist, H

    1999-08-01

    Drug partition into lipid bilayers in a cubic liquid-crystalline phase was investigated. Glyceryl monooleate was used to form the lipid bilayer in a reversed bicontinuous cubic liquid-crystalline phase. The reason for using the cubic phase is that it may coexist with an external aqueous phase, and that the phase boundary (cubic phase/aqueous bulk) is well-defined due to the stiffness of the cubic phase. This makes the cubic phase a potential candidate for high throughput screening (HTS) of the lipophilicity and the dissociation constant (if any) of drug compounds. Clomethiazole (CMZ), lidocaine, prilocaine and 4-phenylbutylamine (4-PBA) were chosen as model drug compounds. It was shown that it is possible to determine a pH-dependent apparent partition coefficient, Kbl/w, of a drug compound using a lipid bilayer expressed as a cubic liquid-crystalline structure. Good agreement was found when the resulting Kbl/w vs. pH curves for CMZ, lidocaine and prilocaine were fitted to a mathematical expression. This included the bilayer/water partition coefficient for the unionised and ionised drug respectively and the pKa of the drug. The effect of different experimental conditions; such as amount of cubic phase, temperature, agitation, sample preparation and interfacial area between the cubic phase and the aqueous bulk on the partition kinetics were investigated as well. The studies reveal that the time needed to reach partition equilibrium was, as expected, substantially reduced (from days to hours) by decreasing the amount of cubic phase, increasing the interfacial area between the cubic phase and the aqueous phase, and increasing the temperature and the agitation of the sample. It was also shown that the bilayer affinity of 4-PBA was increased when a zwitterionic lipid (i.e. dioleoyl phosphatidylcholine, DOPC) was incorporated in the bilayer.

  14. System of polarization correlometry of biological liquids layers polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.

    2013-09-01

    A model of generalized optical anisotropy of human bile is suggested and a method of polarimetric of the module and phase Fourier of the image of the field of laser radiation is analytically substantiated, that is generated by the mechanisms of linear and circular birefringence of polycrystalline networks with a diagnosis and differentiation of cholelithiasis against a background of chronic cholecystitis.

  15. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    PubMed

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-07-29

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

  16. Anomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film

    PubMed Central

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-01-01

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators. PMID:25069391

  17. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Cao, Pinqiang; Wu, Jianyang; Zhang, Zhisen; Ning, Fulong

    2017-01-01

    The mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus (MBP) are systematically investigated using classic molecular dynamic simulations. For monocrystalline MBP, it is found that the shear strain rate, sample dimensions, temperature, atomic vacancies and applied statistical ensemble affect the shear behaviour. The wrinkled morphology is closely connected with the direction of the in-plane shear, dimensions of the samples, and applied ensembles. Particularly, small samples subjected to loading/unloading of the shear deformation along the armchair direction demonstrate a clear mechanical hysteresis loop. For polycrystalline MBP, the maximum shear stress as a function of the average grain size follows an inverse pseudo Hall-Petch type relationship under an isothermal-isobaric (NPT) ensemble, whereas under a canonical (NVT) ensemble, the maximum shear stress of polycrystalline MBP exhibits a ‘flipped’ behaviour. Furthermore, polycrystalline MBP subjected to uniaxial tension also exhibits a strongly grain size-dependent mechanical response, and it can fail by brittle intergranular and transgranular fractures because of its weaker grain boundary structures and the direction-dependent edge energy, respectively. These findings provide useful insight into the mechanical design of BP for nanoelectronic devices.

  18. Raman Microscopic Characterization of Proton-Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.; Davidson, J. L.; Lance, M. J.

    2004-01-01

    The microstructural effects of irradiating polycrystalline diamond films with proton dosages ranging from 10(exp 15) to 10(exp 17) H(+) per square centimeter was examined. Scanning Electron Microscopy and Raman microscopy were used to examine the changes in the diamond crystalline lattice as a function of depth. Results indicate that the diamond lattice is retained, even at maximum irradiation levels.

  19. Microstructure evolution of polycrystalline silicon by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Ding, Jianning; Jiang, Cunhua; Liu, Zunfeng; Yuan, Ningyi

    2017-06-01

    Polycrystalline silicon is the dominant material in solar cells and plays an important role in photovoltaic industry. It is important for not only the conventional production of silicon ingots but also the direct growth of silicon wafers to control crystallization for obtaining the desired polycrystalline silicon. To the best of our knowledge, few studies have systematically reported about the effects of crystalline planes on the solidification behavior of liquid silicon and the analysis of the microstructural features of the polysilicon structure. In this study, molecular dynamics simulations were employed to investigate the solidification and microstructure evolution of polysilicon, with focus on the effects of the seed distribution and cooling rate on the growth of polycrystalline silicon. The (110), (111), and (112) planes were extruded by the (100) plane and formed the inclusion shape. The crystallization of silicon consisted of diamond-type structures is relatively high at a low cooling rate. The simulations provide substantial information regarding microstructures and serve as guidance for the growth of polycrystalline silicon.

  20. Laser Deposition of Cubic Boron Nitride on Electronic Materials.

    DTIC Science & Technology

    1991-08-12

    wurtzite or cubic structure of BN (see Figures 4 and 5). It is clear that the films grown via laser processing were amorphous rather than crystalline... cubic structure of BN can be obtained. It appears from our work and Dr. Doll’s work that excimer laser ablated species do not have sufficient energy

  1. Cubic Polynomials with Real or Complex Coefficients: The Full Picture

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2016-01-01

    The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…

  2. Cubic Polynomials with Real or Complex Coefficients: The Full Picture

    ERIC Educational Resources Information Center

    Bardell, Nicholas S.

    2016-01-01

    The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…

  3. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  4. Two New Cubic Structures of Mercury Arsenidehalides

    NASA Astrophysics Data System (ADS)

    Shevelkov, Andrei V.; Dikarev, Evgeny V.; Popovkin, Boris A.

    1996-11-01

    Crystal structures of Hg4As2Br3(I) and Hg7.4As4Cl6(II), which was prepared for the first time, have been refined based on the X-ray single crystal experiments. Both phases crystallize in the cubic space groupPa3. Crystal data: I,a= 12.610(1),Z= 8,R1= 0.0602; II,a= 12.178(1),Z= 4,R1= 0.0584. Characteristic of both structures are the As2Hg6octahedra having an As-As separation of ca. 2.38 Å. Such octahedra share vertices with AsHg4tetrahedra in I, while in II they compose a perovskite-like three-dimensional network by sharing all vertices. Part of the mercury atoms in II have no neighbors up to 3.53 Å and are considered to possess a zero oxidation state. An idealized path for the I to II structure transformation, which is based on the difference of halogen radii, is suggested.

  5. Topological oxide insulator in cubic perovskite structure.

    PubMed

    Jin, Hosub; Rhim, Sonny H; Im, Jino; Freeman, Arthur J

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases.

  6. Radiation damage in cubic-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Beuneu, François; Weber, William J.

    2013-09-01

    Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacement cascades induced by fast neutron irradiation or ion implantations, as showed by molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm-1.

  7. Topological Oxide Insulator in Cubic Perovskite Structure

    PubMed Central

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  8. Smooth cubic commensurate oxides on gallium nitride

    NASA Astrophysics Data System (ADS)

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Biegalski, Michael D.; Christen, Hans M.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul

    2014-02-01

    Smooth, commensurate alloys of ⟨111⟩-oriented Mg0.52Ca0.48O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  9. Radiation damage in cubic-stabilized zirconia

    SciTech Connect

    Costantini, Jean-Marc; Beuneu, Francois; Weber, William J

    2013-01-01

    Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacements cascades induced by fast neutron irradiation or ion implantations, as showed by Molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation, then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm-1.

  10. Preparation of superhard cubic boron nitride sintered from commercially available submicron powders

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Kou, Zili; Lu, Jingrui; Yan, Xiaozhi; Liu, Fangming; Li, Xin; Ding, Wei; Liu, Jin; Zhang, Qiang; Wang, Qiang; Ma, Dejiang; Lei, Li; He, Duanwei

    2017-03-01

    Using submicron cubic boron nitride (cBN) powder as a starting material, polycrystalline cBN (PcBN) samples without additives were sintered from 8.0-14.0 GPa at 1750 °C, and their sintering behaviour and mechanical properties were investigated. Transmission electron microscopy analysis showed that high-density nanotwins could be generated from common submicron cBN grains during high pressure and high temperature treatment. The dislocation glide and (111) mechanical micro-twinning are the main mechanisms that underlie plastic deformation in the sintering process, and this contributes to the grain refinement. A refinement in the grain size (˜120 nm), micro-defect (nanotwin and stacking faults), and strong covalent bonding between the grains are crucial for improving the sample mechanical properties. The PcBN sintered at 11.0 GPa/1750 °C possessed outstanding mechanical properties, including a high Vickers hardness (˜72 GPa), fracture toughness (˜12.4 MPam1/2), and thermal stability (˜1273 °C in air).

  11. Peridynamic Models for Fatigue and Fracture in Isotropic and in Polycrystalline Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Guanfeng

    To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems. Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered and improved in terms of computational efficiency and numerical stabilities. We validated the fatigue crack model by comparing simulation results of a modified compact tension test with experiments. The proposed improvements add the fatigue limits to the propagation phase. We demonstrate that the model simulates all three phases of fatigue failure (initiation, propagation, and final failure) with an example in which a fatigue crack sinks into a cutout and re-initiates from a different location along the cutout, grows, and lead to final failure of the structure. Convergence studies show that the peridynamic results are correct once the nonlocal size is smaller compared with the size of relevant geometrical features. In the second part of this thesis, a 3D peridynamic model for cubic crystalline elastic and brittle materials is proposed. We use the model to simulate the Edge-on impact test of a transparent ceramic material, AlON. Experiments show that in ALON, damage transitions from a fast failure front (faster than the shear wave in the sample) to much slower localized cracks. Using the peridynamic model we explain, for the first time, the reasons behind this transition, and why failure front moves faster than the shear wave speed in the material. We also use

  12. [Study on the micro-infrared spectra and origin of polycrystalline diamonds from Mengyin kimberlite pipes].

    PubMed

    Yang, Zhi-Jun; Liang, Rong; Zeng, Xiang-Qing; Ge, Tie-Yan; Ai, Qun; Zheng, Yun-Long; Peng, Ming-Sheng

    2012-06-01

    The natural polycrystalline diamonds from the Mengyin kimberlite pipes can be classified as the euhedral faceted polycrystalline diamonds and anhedral rounded polycrystalline diamonds. The results of micro-FTIR spectra characterization of the polycrystalline diamonds show that the concentration of nitrogen is low, varying from 16.69 to 72.81 microgram per gram and is different among different diamond grains or position in polycrystalline diamonds. The euhedral faceted polycrystalline diamonds are Ia AB type and have higher concentration of A-center defects than B-center defects. Most of the anhedral rounded polycrystalline diamonds are Ia AB type and have higher content of B-center defects. A minority of the anhedral rounded polycrystalline diamonds have C-center, A-center and B-center defects simultaneously. The polycrystalline diamonds probably originated from the relatively deeper mantle and were not formed in diamond nucleation stage, but in the diamond growth period or some special conditions after the diamond grains were formed already. Furthermore, the euhedral faceted polycrystalline diamonds were formed slightly later and the anhedral rounded polycrystalline diamonds were formed obviously earlier than the diamond single crystals from the Mengyin kimberlite pipes.

  13. On the shock response of cubic metals

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Gray, G. T.; Millett, J. C. F.

    2009-11-01

    The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.

  14. Polyimide nanocomposites based on cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Ramasubramanian Sharma, Gayathri

    2009-12-01

    In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not

  15. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.

    PubMed

    Ren, T; Nuttall, A L; Miller, J M

    1996-12-01

    It has been demonstrated that electrical stimulation of the cochlear partition results in basilar membrane vibration and otoacoustic emissions. Electromotility of stimulated outer hair cells (OHCs) elicits the electrically evoked otoacoustic emissions (EEOAEs). Although electrically evoked upper and lower sideband distortion products (DPs) have been reported, electrically evoked cubic DP has not been investigated. Since the acoustically evoked cubic DP is the most commonly used otoacoustic measure of cochlear nonlinearity, this study tested whether electrical stimuli evoke a cubic DP otoacoustic emission. An electrical current containing the frequency component f1 and f2 (f1 < f2) was delivered to the round window niche of the gerbil, and electrically induced sound pressure change in the external ear canal was measured with a microphone. It was found that, in addition to f1 and f2 EEOAEs, cubic DP (2f1-f2) and other emissions at 3f1-2f2, 2f2-f1 and f2-f1 frequencies are electrically evoked. The electrically evoked cubic DP growth is similar to that of an acoustically evoked cubic DP. An electrical stimulus at f1 or f2 and an acoustic stimulus at f2 or f1 produce an identical cubic DP to that evoked by two electrical stimuli and/or two acoustic stimuli at f1 and f2 frequencies. An acoustic suppressor at a frequency near f2 can completely suppress an electrically evoked cubic DP emission. These data demonstrate that DPs can be provoked by a complex two frequency electrical current delivered to the round window niche. These stimuli elicit mechanical vibrations, from stimulated OHCs near the round window, which propagate apically toward their characteristic frequency places on the basilar membrane, and produce combination DPs. Electrically evoked cubic DPs appear to be produced by the same nonlinear mechanism that generates acoustically evoked DPs.

  16. Formation and stability of cubic ice in water droplets.

    PubMed

    Murray, Benjamin J; Bertram, Allan K

    2006-01-07

    There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.

  17. Experimental study of grain interactions on rolling texture development in face-centered cubic metals

    NASA Astrophysics Data System (ADS)

    Kumar Ray, Atish

    There exists considerable debate in the texture community about whether grain interactions are a necessary factor to explain the development of deformation textures in polycrystalline metals. Computer simulations indicate that grain interactions play a significant role, while experimental evidence shows that the material type and starting orientation are more important in the development of texture and microstructure. A balanced review of the literature on face-centered cubic metals shows that the opposing viewpoints have developed due to the lack of any complete experimental study which considers both the intrinsic (material type and starting orientation) and extrinsic (grain interaction) factors. In this study, a novel method was developed to assemble ideally orientated crystalline aggregates in 99.99% aluminum (Al) or copper (Cu) to experimentally evaluate the effect of grain interactions on room temperature deformation texture. Ideal orientations relevant to face-centered cubic rolling textures, Cube {100} <001>, Goss {110} <001>, Brass {110} <11¯2> and Copper {112} <111¯> were paired in different combinations and deformed by plane strain compression to moderate strain levels of 1.0 to 1.5. Orientation dependent mechanical behavior was distinguishable from that of the neighbor-influenced behavior. In interacting crystals the constraint on the rolling direction shear strains (gammaXY , gammaXZ) was found to be most critical to show the effect of interactions via the evolution of local microstructure and microtexture. Interacting crystals with increasing deformations were observed to gradually rotate towards the S-component, {123} <634>. Apart from the average lattice reorientations, the interacting crystals also developed strong long-range orientation gradients inside the bulk of the crystal, which were identified as accumulating misorientations across the deformation boundaries. Based on a statistical procedure using quaternions, the orientation and

  18. Mechanical instability of monocrystalline and polycrystalline methane hydrates

    PubMed Central

    Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang

    2015-01-01

    Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051

  19. Backside damage-gettering in cast polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Culik, J.; Roncin, S.; Alexander, P.

    1984-01-01

    The technique of backside-damage gettering improves the performance of short minority-carrier diffusion length, large-grain (grain diameter greater than 1 to 2 mm), cast polycrystalline silicon. On average, increases of nearly 20 percent in short-circuit current, 10 mV in open-circuit voltage, and 15 percent in peak-power were obtained by heat-treating 300 micron thick polycrystalline wafers at 1000 C in flowing nitrogen for 5 hours. Additional measurements of the bulk and space-charge recombination current components indicate that this improvement results from a significant increase in the minority-carrier diffusion length due to gettering of impurities from the bulk.

  20. Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    SciTech Connect

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.; Lee, Michael V.; Qi, Yabing; Joo Shin, Tae; Ahn, Docheon; Lee, Han-Koo; Baik, Jaeyoon; Shin, Hyun-Joon

    2015-03-15

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  1. Selective and low temperature synthesis of polycrystalline diamond

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Roppel, T.; Ellis, C.; Baugh, W.; Jaworske, D. A.

    1991-01-01

    Polycrystalline diamond thin films have been deposited on single-crystal silicon substrates at low temperatures (not above 600 C) using a mixture of hydrogen and methane gases by high-pressure microwave plasma-assisted chemical vapor deposition. Low-temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.

  2. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  3. Microscopic studies of polycrystalline nanoparticle growth in free space

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.

    2017-06-01

    We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.

  4. Selective and low temperature synthesis of polycrystalline diamond

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Roppel, T.; Ellis, C.; Baugh, W.; Jaworske, D. A.

    1991-01-01

    Polycrystalline diamond thin films have been deposited on single-crystal silicon substrates at low temperatures (not above 600 C) using a mixture of hydrogen and methane gases by high-pressure microwave plasma-assisted chemical vapor deposition. Low-temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.

  5. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  6. Further development and application of polycrystalline metal whiskers

    NASA Technical Reports Server (NTRS)

    Schladitz, H. J.

    1979-01-01

    High strength metal whiskers have a larger versatile field of application than monocrystalline whiskers. Although polycrystalline metal whiskers can be used for composites, preferably by extrusion in thermoplastics or by infiltration of resins or metals into whisker networks, the chief application at present may be the production and various use of whisker networks. Such networks can be produced up to high degrees of porosity and besides high mechanical strength, they have high inside surfaces and high electric conductivity. There are for instance, applications concerning construction of electrodes for batteries and fuel cells, catalysts and also new heat-exchanger material, capable of preparing fuel oil and gasoline in order to assist a high-efficiency combustion. The technical application of polycrystalline metal whiskers require their modification as well as the construction of a pilot production unit.

  7. Influence of substrates on formation of polycrystalline silicon nanowire films

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Yamazaki, Tatsuya; Miyajima, Shinsuke; Konagai, Makoto

    2014-10-01

    Polycrystalline silicon nanowires (poly-SiNWs) films were successfully prepared by using metal assisted chemical etching of polycrystalline silicon (poly-Si) films. The poly-Si films were prepared by solid-phase crystallization of amorphous silicon (a-Si) deposited by different deposition techniques on different substrates. In the case of the electron beam evaporated a-Si on a quartz substrate, the formation of poly-SiNWs was not observed and the structure was found to be porous silicon. On the other hand, poly-SiNWs successfully formed from poly-Si on a silicon substrate. We also found that deposition techniques for a-Si films affect the formation of poly-SiNWs.

  8. Compton profile study of polycrystalline ZnBr{sub 2}

    SciTech Connect

    Dhaka, M. S.; Sharma, G.; Mishra, M. C.; Kothari, R. K.; Sharma, B. K.

    2010-12-01

    The first ever Compton profile study of polycrystalline ZnBr{sub 2} is presented in this paper. The measurement of polycrystalline sample of ZnBr{sub 2} is performed using 59.54 keV gamma-rays emanating from an {sup 241}Am radioisotope. Theoretical calculations are performed following the Ionic model calculations for a number of configurations Zn{sup +x}Br{sub 2}{sup -x/2}(0.0{<=}x{<=}2.0 in step of 0.5) utilizing free atom profiles. The ionic model suggest transfer of 2.0 electrons from 4 s state of Zn to 4 p state of two Br atoms. The autocorrelation function B(z) is also derived from experiment and the most favoured ionic valence Compton profiles.

  9. Orientation-distribution mapping of polycrystalline materials by Raman microspectroscopy

    PubMed Central

    Schmid, T.; Schäfer, N.; Levcenko, S.; Rissom, T.; Abou-Ras, D.

    2015-01-01

    Raman microspectroscopy provides the means to obtain local orientations on polycrystalline materials at the submicrometer level. The present work demonstrates how orientation-distribution maps composed of Raman intensity distributions can be acquired on large areas of several hundreds of square micrometers. A polycrystalline CuInSe2 thin film was used as a model system. The orientation distributions are evidenced by corresponding measurements using electron backscatter diffraction (EBSD) on the same identical specimen positions. The quantitative, local orientation information obtained by means of EBSD was used to calculate the theoretical Raman intensities for specific grain orientations, which agree well with the experimental values. The presented approach establishes new horizons for Raman microspectroscopy as a tool for quantitative, microstructural analysis at submicrometer resolution. PMID:26673970

  10. Identification of Tetragonal and Cubic Structures of Zirconia

    DTIC Science & Technology

    1990-05-29

    sample containing 13 mol.% yttria-stabilized zirconia possessed the cubic structure with ao = 0.51420 + 0.00012 nm. A sample containing 6.5 mol.% yttria...spectroscopic data for the crystalline phases. However, Benedetti et al.35 have recently reassigned a cubic structure to a zirconia sample prerarel in a...parameters calculated from the diffraction data using 13 a least-square fle, indicate that Sample A has a cubic structure with ao = 0.51420 + 0.00012 nm. This

  11. Strain tuning of topological band order in cubic semiconductors

    SciTech Connect

    Feng, wanxiang; Zhu, Wenguang; Weitering, Hanno; Stocks, George Malcolm; Yao, yugui; Xiao, Di

    2012-01-01

    We theoretically explore the possibility of tuning the topological order of cubic diamond/zinc-blende semi- conductors with external strain. Based on a simple tight-binding model, we analyze the evolution of the cubic semiconductor band structure under hydrostatic or biaxial lattice expansion, by which a generic guiding princi- ple is established that biaxial lattice expansion can induce a topological phase transition of small band-gap cubic semiconductors via a band inversion and symmetry breaking at point. Using density functional theory cal- culations, we demonstrate that a prototype topological trivial semiconductor, InSb, is converted to a nontrivial topological semiconductor with a 2% 3% biaxial lattice expansion.

  12. The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus

    SciTech Connect

    Clark, Simon M; Zaug, Joseph

    2010-03-10

    The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.

  13. Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode

    DTIC Science & Technology

    2011-07-01

    value of the ratio Ian/Icalc: 1. The minimal ratio would be 1, corresponding to a one- electron oxidation of one-site attached CH3CH2O surface...Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode Sol Gilman Sensors and Electron Devices Directorate, ARL...noble metals and noble metal alloys that can provide what amounts to an adsorbed oxygen “valve” for initiating adsorption/reaction on a clean and

  14. Acoustic Nonlinearity in Polycrystalline Nickel from Fatigue-Generated Microstructures

    SciTech Connect

    Cantrell, John H.

    2005-04-09

    An analytical model of the nonlinear interaction of ultrasonic waves with dislocation substructures formed during the fatigue of wavy slip metals is presented. The model is applied to the calculation of the acoustic nonlinearity parameters {beta} of polycrystalline nickel for increasingly higher levels of fatigue from the virgin state. The values calculated for stress-controlled loading at 345 MPa predict a monotonic increase in {beta} of more than 390 percent as a function of percent life to fracture due to substructural evolution.

  15. Modified Sachs's Model of Deformation of Polycrystalline Magnesium

    NASA Astrophysics Data System (ADS)

    Kesarev, A. G.; Vlasova, A. M.

    2017-09-01

    There are a large number of approaches to a description of work hardening of metal polycrystals with various crystal lattices. In the present work, Sachs's model is generalized to uniaxial tension/compression of polycrystalline magnesium with hexagonal densely packed crystal lattice. The tensile yield stress is estimated taking into account two deformation modes: (0001)< 11\\overline{2}0> easy basal slip and (10\\overline{1}2)< \\overline{1}011> twinning.

  16. Polycrystalline thin-film technology: Recent progress in photovoltaics

    NASA Astrophysics Data System (ADS)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1991-12-01

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe2), cadmium telluride (CdTe), and thin film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin film CuInSe2, has made some rapid advances in terms of high efficiency and long term reliability. For CuInSe2 power modules, a world record has been reported on a 0.4 sq m module with an aperture-area efficiency of 10.4 pct. and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe2 modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 sq cm. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10 pct.; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  17. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  18. Hardness of polycrystalline tungsten and molybdenum oxides at elevated temperatures

    SciTech Connect

    Lee, M.; Flom, D.G. . Corporate Research and Development Center)

    1990-07-01

    Vickers hardness of WO{sub 3} W{sub 18}O{sub 49} and MoO{sub 2} is reported for temperatures up to 800{degrees}C. Polycrystalline samples of the oxides were prepared by hot-pressing, and hardness was determined using a Vickers hardness tester modified for high-temperature applications. The hardness of a heavily deformed tungsten rod was also measured as a reference.

  19. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  20. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    SciTech Connect

    Yan, Yanfa Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R.; Li, Chen; Poplawsky, Jonathan; Wang, Zhiwei; Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M.; Pennycook, Stephen J.

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  1. Grain-boundary-induced melting in quenched polycrystalline monolayers.

    PubMed

    Deutschländer, Sven; Boitard, Charlotte; Maret, Georg; Keim, Peter

    2015-12-01

    Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity. For any nonzero cooling rate, critical fluctuations will be frozen out in the vicinity of the transition temperature. This leads to domains with different director of the broken symmetry, separated by a defect structure, e.g., grain boundaries in crystalline systems. After instantaneously quenching a colloidal monolayer from a polycrystalline to the isotropic fluid state, we show that such grain boundaries increase the probability for the formation of dislocations. In addition, we determine the temporal decay of defect core energies during the first few Brownian times after the quench. Despite the fact that the KTHNY scenario describes a continuous phase transition and phase equilibrium does not exist, melting in polycrystalline samples starts at grain boundaries similar to first-order phase transitions.

  2. In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils

    PubMed Central

    2016-01-01

    The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749

  3. Grain-boundary-induced melting in quenched polycrystalline monolayers

    NASA Astrophysics Data System (ADS)

    Deutschländer, Sven; Boitard, Charlotte; Maret, Georg; Keim, Peter

    2015-12-01

    Melting in two dimensions can successfully be explained with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario which describes the formation of the high-symmetry phase with the thermal activation of topological defects within an (ideally) infinite monodomain. With all state variables being well defined, it should hold also as freezing scenario where oppositely charged topological defects annihilate. The Kibble-Zurek mechanism, on the other hand, shows that spontaneous symmetry breaking alongside a continuous phase transition cannot support an infinite monodomain but leads to polycrystallinity. For any nonzero cooling rate, critical fluctuations will be frozen out in the vicinity of the transition temperature. This leads to domains with different director of the broken symmetry, separated by a defect structure, e.g., grain boundaries in crystalline systems. After instantaneously quenching a colloidal monolayer from a polycrystalline to the isotropic fluid state, we show that such grain boundaries increase the probability for the formation of dislocations. In addition, we determine the temporal decay of defect core energies during the first few Brownian times after the quench. Despite the fact that the KTHNY scenario describes a continuous phase transition and phase equilibrium does not exist, melting in polycrystalline samples starts at grain boundaries similar to first-order phase transitions.

  4. Refractive index of infrared-transparent polycrystalline alumina

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.; Johnson, Linda F.; Cambrea, Lee R.; Baldwin, Lawrence; Baronowski, Meghan; Zelmon, David E.; Poston, William B.; Kunkel, John D.; Parish, Mark; Pascucci, Marina R.; Gannon, John J.; Wen, Tzu-Chien

    2017-05-01

    The refractive index of polycrystalline α-alumina prisms with an average grain size of 0.6 μm is reported for the wavelength range 0.9 to 5.0 and the temperature range 293 to 498K. Results agree within 0.0002 with the refractive index predicted for randomly oriented grains of single-crystal aluminum oxide. This paper provides tutorial background on the behavior of birefringent materials and explains how the refractive index of polycrystalline alumina can be predicted from the ordinary and extraordinary refractive indices of sapphire. The refractive index of polycrystalline alumina is described by 𝑛𝑛2 - 1 = (A+B [𝑇𝑇2-𝑇𝑇20]) +Dλ2 /λ2-(λ1+C [𝑇𝑇2-𝑇𝑇20])2 + λ2-λ22 where wavelength λ is expressed in μm, To = 295.15 K, A = 2.07156, B = 6.273× 10-8, λ1 = 0.091293, C = -1.9516 × 10-8, D = 5.62675, and λ2 = 18.5533. The slope dn/dT varies with λ and T, but has the approximate value 1.4 × 10-5 K-1 in the range 296-498 K.

  5. Tribological properties of sintered polycrystalline and single crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Srinivasan, M.

    1982-01-01

    Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.

  6. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  7. Stress-dependent ultrasonic scattering in polycrystalline materials.

    PubMed

    Kube, Christopher M; Turner, Joseph A

    2016-02-01

    Stress-dependent elastic moduli of polycrystalline materials are used in a statistically based model for the scattering of ultrasonic waves from randomly oriented grains that are members of a stressed polycrystal. The stress is assumed to be homogeneous and can be either residual or generated from external loads. The stress-dependent elastic properties are incorporated into the definition of the differential scattering cross-section, which defines how strongly an incident wave is scattered into various directions. Nine stress-dependent differential scattering cross-sections or scattering coefficients are defined to include all possibilities of incident and scattered waves, which can be either longitudinal or (two) transverse wave types. The evaluation of the scattering coefficients considers polycrystalline aluminum that is uniaxially stressed. An analysis of the influence of incident wave propagation direction, scattering direction, frequency, and grain size on the stress-dependency of the scattering coefficients follows. Scattering coefficients for aluminum indicate that ultrasonic scattering is much more sensitive to a uniaxial stress than ultrasonic phase velocities. By developing the stress-dependent scattering properties of polycrystals, the influence of acoustoelasticity on the amplitudes of waves propagating in stressed polycrystalline materials can be better understood. This work supports the ongoing development of a technique for monitoring and measuring stresses in metallic materials.

  8. Nanosized grain polycrystalline scintillators for special nuclear materials detection

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Cooley, J.; Stanek, C.; Byler, D.; Volz, H.; Dickerson, R.; Dombrowski, D.; Tucker, T.; Bartram, B.; Ewing, B.; Mauro, M.; Weinberg, R.

    2007-09-01

    The aim of this work was to explore the limits of polycrystalline ceramic scintillator in countering the nuclear threat. The goal was to develop a polycrystalline LaBr 3:Ce, which can be processed from ceramic forming techniques and can be produced in large size scintillator panels with lower cost and high production rate. Three high purity raw powders were used as the starting materials including LaBr 3, LaCl 3, and CeBr 3. Powder characteristics were measured. A melt spinning method was used to synthesize the nanoparticle LaBr 3:Ce with stoichiometric compositions. The synthesized nanoparticles were characterized and the average particle size of the synthesized nanoparticle LaBr 3:Ce was about 50 nm. The melt spun powders were consolidated using a "Nanosintering" method to achieve a high density while maintaining the stoichiometric composition. The grain size of the sintered polycrystalline is about 50 nm, which shows no grain growth during the densification process.

  9. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    NASA Astrophysics Data System (ADS)

    Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R.; Li, Chen; Poplawsky, Jonathan; Wang, Zhiwei; Moseley, John; Guthrey, Harvey; Moutinho, Helio; Pennycook, Stephen J.; Al-Jassim, Mowafak M.

    2015-03-01

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  10. Nonlinear surface acoustic waves in cubic crystals

    NASA Astrophysics Data System (ADS)

    Kumon, Ronald Edward

    Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform

  11. 19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON THE CHARGING AISLE OF THE BOP SHOP LOOKING NORTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  13. On the role of cubic structure in ice nucleation

    NASA Astrophysics Data System (ADS)

    Takahashi, Tōru

    1982-10-01

    To clarify the formation mechanism of snow polycrystals the possibility of formation of a cubic ice embryo is discussed on the basis of the homogeneous nucleation theory for supercooled water formed from ambient water molecules in the phase of supersaturated vapour. In this connection, attention is paid to a finding from a model of broken hydrogen bonds that the plane {111} of a cubic ice crystal has a smaller specific interfacial energy than each of the {0001} or {10ovbar|10} planes of a hexagonal ice crystal. Hence, it follows that a critical cubic embryo has a smaller activation energy than a critical hexagonal embryo below a critical temperature; namely, Ostwald's step rule (Stufenregel) holds for a change from cubic ice to hexagonal ice below a critical temperature. This discussion is reinforced by examining, from the viewpoint of this step rule, the observed misorientation of the c-axis of natural snow polycrystals and the results of experiments using frozen water droplets.

  14. Monotonicity preserving splines using rational cubic Timmer interpolation

    NASA Astrophysics Data System (ADS)

    Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md

    2017-08-01

    In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.

  15. Late-time attractor for the cubic nonlinear wave equation

    SciTech Connect

    Szpak, Nikodem

    2010-08-15

    We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.

  16. March 20, 2012 Space Station Briefing: Cubic Satellite Deploy

    NASA Image and Video Library

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...

  17. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  18. March 20, 2012 Space Station Briefing: Cubic Satellite Deploy (Narrated)

    NASA Image and Video Library

    This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...

  19. Identification of Hammerstein models with cubic spline nonlinearities.

    PubMed

    Dempsey, Erika J; Westwick, David T

    2004-02-01

    This paper considers the use of cubic splines, instead of polynomials, to represent the static nonlinearities in block structured models. It introduces a system identification algorithm for the Hammerstein structure, a static nonlinearity followed by a linear filter, where cubic splines represent the static nonlinearity and the linear dynamics are modeled using a finite impulse response filter. The algorithm uses a separable least squares Levenberg-Marquardt optimization to identify Hammerstein cascades whose nonlinearities are modeled by either cubic splines or polynomials. These algorithms are compared in simulation, where the effects of variations in the input spectrum and distribution, and those of the measurement noise are examined. The two algorithms are used to fit Hammerstein models to stretch reflex electromyogram (EMG) data recorded from a spinal cord injured patient. The model with the cubic spline nonlinearity provides more accurate predictions of the reflex EMG than the polynomial based model, even in novel data.

  20. On the assumption of cubic graphs of vascular networks

    NASA Astrophysics Data System (ADS)

    Cha, Sung-Hyuk; Chang, Sukmoon; Gargano, Michael L.

    2006-03-01

    A vascular network is often represented by a Reeb graph, which is a topological skeleton, and graph theory has been widely applied to analyze properties of a vascular network. A Reeb graph model for a vascular network is obtained by assigning the branch points of the network to be the vertices of the graph and the vessels between branch points to be the edges of the graph. Vascular networks develop by way of angiogenesis, a growth process that involves the biological mechanisms of vessel sprouting (budding) and splitting (intussusception). Vascular networks develop by way of two biological mechanisms of vessel sprouting (budding) and splitting (intussusception). According to a graph theory modeling of two vascular network growth mechanisms, all nodes in the Reeb graph must be cubic in degree except for two special nodes: the afferent (A) and efferent (E) nodes. We define that a vascular network is cubic if all internal nodes are cubic in degree. We consider six normal adult rat renal glomerular networks and use their reeb graphs already constructed and published in the literature. We observe that five of them contain internal vertices of degree higher than three. Branch points in vascular networks may appear to be of a higher degree if the imaging resolution cannot differentiate between blood vessels that are very close in proximity. Here, we propose a random graph theory model that edits a non-cubic vascular network into a cubic graph. We observe that the edited cubic graph from a non-cubic vascular network has the similar size and order as the one cubic vascular network.

  1. Data interpolation using rational cubic Ball spline with three parameters

    NASA Astrophysics Data System (ADS)

    Karim, Samsul Ariffin Abdul

    2016-11-01

    Data interpolation is an important task for scientific visualization. This research introduces new rational cubic Ball spline scheme with three parameters. The rational cubic Ball will be used for data interpolation with or without true derivative values. Error estimation show that the proposed scheme works well and is a very good interpolant to approximate the function. All graphical examples are presented by using Mathematica software.

  2. Polycrystalline silicon study: Low-cost silicon refining technology prospects and semiconductor-grade polycrystalline silicon availability through 1988

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.

    1984-01-01

    Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.

  3. Effects of stacking disorder on thermal conductivity of cubic ice

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove

    2015-08-01

    Cubic ice is said to have stacking disorder when the H2O sequences in its structure (space group F d 3 ¯ m ) are interlaced with hexagonal ice (space group P63/mmc) sequences, known as stacking faults. Diffraction methods have shown that the extent of this disorder varies in samples made by different methods, thermal history, and the temperature T, but other physical properties of cubic and hexagonal ices barely differ. We had found that at 160 K, the thermal conductivity, κ, of cubic ice is ˜20% less than that of hexagonal ice, and this difference varies for cubic ice samples prepared by different methods and/or subjected to different thermal history. After reviewing the methods of forming cubic ice, we report an investigation of the effects of stacking disorder and other features by using new data, and by analyzing our previous data on the dependence of κ on T and on the pressure. We conclude that the lower κ of cubic ice and its weaker T-dependence is due mainly to stacking disorder and small crystal sizes. On in situ heating at 20-50 MPa pressure, κ increases and cubic ice irreversibly transforms more sharply to ice Ih, and at a higher T of ˜220 K, than it does in ex situ studies. Cooling and heating between 115 and 130 K at 0.1 K min-1 rate yield the same κ value, indicating that the state of cubic ice in these conditions does not change with time and T. The increase in κ of cubic ice observed on heat-annealing before its conversion to hexagonal ice is attributed to the loss of stacking faults and other types of disorders, and to grain growth. After discussing the consequences of our findings on other properties, we suggest that detailed studies of variation of a given property of cubic ice with the fraction of stacking faults in its structure may reveal more about the effect of this disorder. A similar disorder may occur in the mono-layers of H2O adsorbed on a substrate, in bulk materials comprised of two dimensional layers, in diamond and in

  4. Effects of stacking disorder on thermal conductivity of cubic ice.

    PubMed

    Johari, G P; Andersson, Ove

    2015-08-07

    Cubic ice is said to have stacking disorder when the H2O sequences in its structure (space group Fd3̄m) are interlaced with hexagonal ice (space group P6(3)/mmc) sequences, known as stacking faults. Diffraction methods have shown that the extent of this disorder varies in samples made by different methods, thermal history, and the temperature T, but other physical properties of cubic and hexagonal ices barely differ. We had found that at 160 K, the thermal conductivity, κ, of cubic ice is ∼20% less than that of hexagonal ice, and this difference varies for cubic ice samples prepared by different methods and/or subjected to different thermal history. After reviewing the methods of forming cubic ice, we report an investigation of the effects of stacking disorder and other features by using new data, and by analyzing our previous data on the dependence of κ on T and on the pressure. We conclude that the lower κ of cubic ice and its weaker T-dependence is due mainly to stacking disorder and small crystal sizes. On in situ heating at 20-50 MPa pressure, κ increases and cubic ice irreversibly transforms more sharply to ice Ih, and at a higher T of ∼220 K, than it does in ex situ studies. Cooling and heating between 115 and 130 K at 0.1 K min(-1) rate yield the same κ value, indicating that the state of cubic ice in these conditions does not change with time and T. The increase in κ of cubic ice observed on heat-annealing before its conversion to hexagonal ice is attributed to the loss of stacking faults and other types of disorders, and to grain growth. After discussing the consequences of our findings on other properties, we suggest that detailed studies of variation of a given property of cubic ice with the fraction of stacking faults in its structure may reveal more about the effect of this disorder. A similar disorder may occur in the mono-layers of H2O adsorbed on a substrate, in bulk materials comprised of two dimensional layers, in diamond and in

  5. Processing and Characterization of Polycrystalline Yag (Yttrium Aluminum Garnet) Core-Clad Fibers - Postprint

    DTIC Science & Technology

    2015-01-01

    AFRL-RY-WP-TP-2014-0296 PROCESSING AND CHARACTERIZATION OF POLYCRYSTALLINE YAG ( YTTRIUM ALUMINUM GARNET) CORE-CLAD FIBERS -POSTPRINT...April 2013 – 1 April 2014 4. TITLE AND SUBTITLE PROCESSING AND CHARACTERIZATION OF POLYCRYSTALLINE YAG ( YTTRIUM ALUMINUM GARNET) CORE-CLAD FIBERS...of polycrystalline YAG ( Yttrium Aluminum Garnet) core-clad fibers Hyun Jun Kima,b, Geoff E. Faira*, Santeri A

  6. Influence of cold rolling on the anisotropy of the shear modulus and the poisson coefficient of polycrystalline copper and silicon steel

    NASA Astrophysics Data System (ADS)

    Usov, V. V.; Bryukhanov, A. A.; Shkatulyak, N. M.; Manzhikov, A. V.

    1993-02-01

    We consider a method for calculating the anisotropy of the shear modulus and the Poisson coefficient in the rolling plane for textured polycrystalline materials with a cubic lattice, which makes use of the integrated texture characteristics for averaging over the single-crystal properties, which are a certain combination of direction cosines in the sample coordinates, averaged with respect to orientation. The integrated texture characteristics are determined from two experimentally opposite polar figures of the plates. We study the influence of the amount of deformation during cold rolling on the anisotropy of the plate properties listed above for copper and silicon steel. The accuracy in the calculations is better than 5%. The results are compared with data from other authors.

  7. Ion beam nitriding of single and polycrystalline austenitic stainless steel

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Declemy, A.; Pranevicius, L.; Milhet, X.

    2005-04-15

    Polycrystalline and single crystalline [orientations (001) and (011)] AISI 316L austenitic stainless steel was implanted at 400 deg. C with 1.2 keV nitrogen ions using a high current density of 0.5 mA cm{sup -2}. The nitrogen distribution profiles were determined using nuclear reaction analysis (NRA). The structure of nitrided polycrystalline stainless steel samples was analyzed using glancing incidence and symmetric x-ray diffraction (XRD) while the structure of the nitrided single crystalline stainless steel samples was analyzed using x-ray diffraction mapping of the reciprocal space. For identical treatment conditions, it is observed that the nitrogen penetration depth is larger for the polycrystalline samples than for the single crystalline ones. The nitrogen penetration depth depends on the orientation, the <001> being more preferential for nitrogen diffusion than <011>. In both type of samples, XRD analysis shows the presence of the phase usually called 'expanded' austenite or {gamma}{sub N} phase. The lattice expansion depends on the crystallographic plane family, the (001) planes showing an anomalously large expansion. The reciprocal lattice maps of the nitrided single crystalline stainless steel demonstrate that during nitriding lattice rotation takes place simultaneously with lattice expansion. The analysis of the results based on the presence of stacking faults, residual compressive stress induced by the lattice expansion, and nitrogen concentration gradient indicates that the average lattice parameter increases with the nitrided layer depth. A possible explanation of the anomalous expansion of the (001) planes is presented, which is based on the combination of faster nitriding rate in the (001) oriented grains and the role of stacking faults and compressive stress.

  8. Conductive polycrystalline diamond probes for local anodic oxidation lithography.

    PubMed

    Ulrich, A J; Radadia, A D

    2015-11-20

    This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k(Avg)). The metal-coated and the DC tips with comparable k(Avg) showed comparable threshold voltages, whereas the MD tips with similar k(Avg) showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed(v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k(Avg). This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography.

  9. Polycrystalline lead selenide: the resurgence of an old infrared detector

    NASA Astrophysics Data System (ADS)

    Vergara, G.; Montojo, M. T.; Torquemada, M. C.; Rodrigo, M. T.; Sánchez, F. J.; Gómez, L. J.; Almazán, R. M.; Verdú, M.; Rodríguez, P.; Villamayor, V.; Álvarez, M.; Diezhandino, J.; Plaza, J.; Catalán, I.

    2007-06-01

    The existing technology for uncooled MWIR photon detectors based on polycrystalline lead salts is stigmatized for being a 50-year-old technology. It has been traditionally relegated to single-element detectors and relatively small linear arrays due to the limitations imposed by its standard manufacture process based on a chemical bath deposition technique (CBD) developed more than 40 years ago. Recently, an innovative method for processing detectors, based on a vapour phase deposition (VPD) technique, has allowed manufacturing the first 2D array of polycrystalline PbSe with good electro optical characteristics. The new method of processing PbSe is an all silicon technology and it is compatible with standard CMOS circuitry. In addition to its affordability, VPD PbSe constitutes a perfect candidate to fill the existing gap in the photonic and uncooled IR imaging detectors sensitive to the MWIR photons. The perspectives opened are numerous and very important, converting the old PbSe detector in a serious alternative to others uncooled technologies in the low cost IR detection market. The number of potential applications is huge, some of them with high commercial impact such as personal IR imagers, enhanced vision systems for automotive applications and other not less important in the security/defence domain such as sensors for active protection systems (APS) or low cost seekers. Despite the fact, unanimously accepted, that uncooled will dominate the majority of the future IR detection applications, today, thermal detectors are the unique plausible alternative. There is plenty of room for photonic uncooled and complementary alternatives are needed. This work allocates polycrystalline PbSe in the current panorama of the uncooled IR detectors, underlining its potentiality in two areas of interest, i.e., very low cost imaging IR detectors and MWIR fast uncooled detectors for security and defence applications. The new method of processing again converts PbSe into an

  10. Microstructure and texture analyses of polycrystalline ice during hot torsion

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Montagnat, M.; Gest, L.; Barou, F.; Chauve, T.

    2015-12-01

    Water ice Ih is a material with very high plastic anisotropy where deformation is mainly accommodated by dislocation glide on the (0001) plane. This anisotropy gives rise to strong strain incompatibilities between grains during deformation, and therefore impacts texture and microstructure evolution. Accurate understanding of ice mechanical properties is significant for several areas of research such as glaciology, planetary sciences, but also in geosciences and metallurgy as ice can be seen as a model material with easier experimental handling at near melting temperatures. In the present study, we used torsion experiments to study non-coaxial shear strain (γ), very common in natural environments, up to very high values of γ. Numerous studies determined microstructure and texture evolution in polycrystalline assemblage submitted to torsion (metallic alloys and geological materials) but a very limited number focused on polycrystalline ice. Full cylinders of randomly oriented polycrystalline ice (grain size ~ 1 mm) were placed in a torsion apparatus and deformed under ductile regime under constant imposed torque at 266K (0.97 Tf). Macroscopic shear was monitored using a LVDT device or a rotary encoder. Several torsion tests with maximal shear strain up to γmax = 1 were performed. Tangent and axial sections were analyzed ex-situ using Automatic Ice Texture Analyzer (AITA) and Electron BackScatter Diffraction (EBSD). We were able to confirm the previously observed bimodal preferred orientation of the basal slip plane. Macroscopic strain evolution γ(t) displays a weakening after γmax = 0.04 (ɛmax ≃ 2 %), due to the beginning of dynamic recrystallization (DRX) processes. EBSD data provide novel informations on the microstructure that suggest very efficient grain boundary migration processes. In particular, we were able to measure differences of intra-granular misorientations density between the two ODF maxima populations that can highlight the role of DRX

  11. Conductive polycrystalline diamond probes for local anodic oxidation lithography

    NASA Astrophysics Data System (ADS)

    Ulrich, A. J.; Radadia, A. D.

    2015-11-01

    This is the first report characterizing local anodic oxidation (LAO) lithography performed using conductive monolithic polycrystalline diamond (MD) and conductive polycrystalline diamond-coated (DC) tips and comparing it to the diamond-like carbon-coated and metal-coated silicon tips. The range and the rate of increase in the lithographic linewidth and height with tip bias (dw/dV and dh/dV) differed based on the tip material. The DC tips resulted in wider and taller lines and a higher dw/dV and dh/dV compared to metal-coated tips with a similar force constant (k Avg). The metal-coated and the DC tips with comparable k Avg showed comparable threshold voltages, whereas the MD tips with similar k Avg showed a higher threshold voltage. The MD tips exhibited less than half the height and nearly half the dw/dV and dh/dV obtained with the metal-coated tips with similar k Avg, thus also resulting in a smaller width at -10 V. The linewidths were found to be proportional to the inverse of the log of write speed (v) for all the tips; however, the proportionality constant varied with tip material; the DC tips had larger values, and the MD and the metal-coated tips had comparable values. When varying the speed, the height was found to be a sigmoidal function of width, with the MD probes achieving lower height compared to the metal-coated and the DC tips with comparable k Avg. This study expands the application of monolithic conductive polycrystalline diamond (PCD) probes with outstanding wear resistance to fine LAO lithography.

  12. Advances in polycrystalline thin-film photovoltaics for space applications

    SciTech Connect

    Lanning, B.R.; Armstrong, J.H.; Misra, M.S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 eV and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not `reactor-specific` and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a `substrate configuration` by physical vapor deposition techniques and CdTe cells/modules are fabricated in a `superstrate configuration` by wet chemical methods.

  13. Statistical thermodynamics of strain hardening in polycrystalline solids

    DOE PAGES

    Langer, James S.

    2015-09-18

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman. The paper then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  14. Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1995-01-01

    Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.

  15. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    PubMed

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

  16. Polycrystalline silicon optical fibers with atomically smooth surfaces.

    PubMed

    Healy, Noel; Lagonigro, Laura; Sparks, Justin R; Boden, Stuart; Sazio, Pier J A; Badding, John V; Peacock, Anna C

    2011-07-01

    We investigate the surface roughness of polycrystalline silicon core optical fibers fabricated using a high-pressure chemical deposition technique. By measuring the optical transmission of two fibers with different core sizes, we will show that scattering from the core-cladding interface has a negligible effect on the losses. A Zemetrics ZeScope three-dimensional optical profiler has been used to directly measure the surface of the core material, confirming a roughness of only ~0.1 nm. The ability to fabricate low-loss polysilicon optical fibers with ultrasmooth cores scalable to submicrometer dimensions should establish their use in a range of nonlinear optical applications.

  17. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  18. Scattering of ultrasound by minority phases in polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Sayers, C. M.

    1984-01-01

    The scattering of ultrasound by minority phases in polycrystalline metals is discussed. For discrete inclusions, the scattering theory of Ying and Truell describes the attenuation of longitudinal waves. This is demonstrated by comparison with experiments of Papadakis for graphite particles in modular cast iron. To treat the scattering by a second phase formed by segregation at a grain boundary, the scattering by a spherical shell with density and elastic constants different from those of the surrounding medium is developed. Reflection of ultrasound at this boundary is found to enhance the attenuation at low frequencies. Application is made to the scattering by manganese sulphide in free machining steel.

  19. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  20. Valley Filtering and Electronic Optics Using Polycrystalline Graphene

    NASA Astrophysics Data System (ADS)

    Nguyen, V. Hung; Dechamps, S.; Dollfus, P.; Charlier, J.-C.

    2016-12-01

    In this Letter, both the manipulation of valley-polarized currents and the optical-like behaviors of Dirac fermions are theoretically explored in polycrystalline graphene. When strain is applied, the misorientation between two graphene domains separated by a grain boundary can result in a mismatch of their electronic structures. Such a discrepancy manifests itself in a strong breaking of the inversion symmetry, leading to perfect valley polarization in a wide range of transmission directions. In addition, these graphene domains act as different media for electron waves, offering the possibility to modulate and obtain negative refraction indexes.

  1. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  2. Statistical thermodynamics of strain hardening in polycrystalline solids.

    PubMed

    Langer, J S

    2015-09-01

    This paper starts with a systematic rederivation of the statistical thermodynamic equations of motion for dislocation-mediated plasticity proposed in 2010 by Langer, Bouchbinder, and Lookman [Acta Mat. 58, 3718 (2010)ACMAFD1359-645410.1016/j.actamat.2010.03.009]. It then uses that theory to explain the anomalous rate-hardening behavior reported in 1988 by Follansbee and Kocks and to explore the relation between hardening rate and grain size reported in 1995 by Meyers et al. A central theme is the need for physics-based, nonequilibrium analyses in developing predictive theories of the strength of polycrystalline materials.

  3. Electron and Hole Trapping in Polycrystalline Metal Oxide Materials

    SciTech Connect

    Mckenna, Keith P.; Shluger, Alexander L.

    2011-07-08

    Electron and hole trapping by grain boundaries and dislocations in polycrystalline materials is important for wide ranging technological applications such as solar cells, microelectronics, photo-catalysts and rechargeable batteries. In this article, we first give an overview of the computational and methodological challenges involved in modelling such effects. This is followed by a discussion of two recent studies we have made on electron/hole trapping in wide gap insulators. The results suggest that such effects can be important for many applications which we discuss. These computationally demanding calculations have made extensive use of both the HPCx and HECToR services.

  4. Polycrystalline diamond based detector for Z-pinch plasma diagnosis.

    PubMed

    Liu, Linyue; Ouyang, Xiaoping; Zhao, Jizhen; Chen, Liang; Wang, Lan

    2010-08-01

    A detector setup based on polycrystalline chemical-vapor-deposition diamond film is developed with great characteristics: low dark current (lower than 60 pA within 3 V/mum), fast pulsed response time (rise time: 2-3 ns), flat spectral response (3-5 keV), easy acquisition, low cost, and relative large sensitive area. The characterizing data on Qiangguang-I accelerator show that this detector can satisfy the practical requirements in Z-pinch plasma diagnosis very well, which offers a promising prototype for the x-ray detection in Z-pinch diagnosis.

  5. Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1995-01-01

    Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.

  6. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  7. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    SciTech Connect

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  8. Ultrafast carrier dynamics in polycrystalline bismuth telluride nanofilm

    SciTech Connect

    Jia, Lin; Ma, Weigang; Zhang, Xing

    2014-06-16

    In this study, the dynamics of energy carriers in polycrystalline bismuth telluride nanofilm are investigated by the ultrafast pump-probe method. The energy relaxation processes are quantitatively analyzed by using the numerical fitting models. The extracted hot carrier relaxation times of photon excitation, thermalization, and diffusion are around sub-picosecond. The initial reflectivity recovery is found to be dominantly determined by the carrier diffusion, electron-phonon coupling, and photo-generated carriers trapping processes. High-frequency and low-frequency oscillations are both observed and attributed to coherent optical phonons and coherent acoustic phonons, respectively.

  9. The Effect of Crystal Orientation on Growth on Polycrystalline TNT,

    DTIC Science & Technology

    1980-05-01

    satisfactory mechanism to account for its occurrence [1,2]. Investigations carried out at Materials Research Laboratories have confirmed that growth of creamed...AD0A096 591 MATERIALS RESEARCH LABS ASCOT VALE (AUSTRALIA) F/G 20/ 2 THE EFFECT OF CRYSTAL ORIENTATION ON GROWTH ON POLYCRYSTALLINE -ETC(L MAT 80 W S...WILSON UNCLASSIFIED MRL-R775 N N R.-R-775 A/ R-002-156 DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION MATERIALS RESEARCH

  10. Allylamine-mediated DNA attachment to polycrystalline diamond surface

    NASA Astrophysics Data System (ADS)

    Zhuang, H.; Srikanth, Vadali. V. S. S.; Jiang, X.; Luo, J.; Ihmels, H.; Aronov, I.; Wenclawiak, B. W.; Adlung, M.; Wickleder, C.

    2009-10-01

    Allylamine, an unsaturated short carbon chain amine was used to mediate ss-DNA attachment to an H-terminated polycrystalline diamond thin film surface for biosensoric applications. At first, allylamine was photochemically tethered onto the diamond film surface; ss-DNA was then attached via the allylamine linkage. The DNA molecules are then hybridized with the complementary DNA molecules containing fluorescence labels followed by denaturing. Time-of-fight secondary ion mass spectrometry and fluorescence spectroscopy are used to confirm the allylamine bonding and the covalent DNA bonding to the diamond film surface, respectively.

  11. Machining graphite composites with polycrystalline diamond end mills

    NASA Astrophysics Data System (ADS)

    Kohkonen, Kent E.; Anderson, Scott; Strong, A. B.

    One area of focus in developing light-strong materials has been the development of graphite/epoxy composites. The graphite/epoxy materials have created challenges in the area of fabrication and machining. The research objective was to determine if cutting tool material and style of cutting edge showed any significant differences in tool life. The cutting tool materials and cutter styles included helical carbide-end mills and straight and helical polycrystalline diamond-end mill cutters. The experimental design was developed using a fractional factorial design running twelve tests. Results were taken from cutting tool flank edge wear, composite part surface finish, and visual delamination of the part.

  12. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, Fred; Truher, Joel B.; Kaschmitter, James L.; Colella, Nicholas J.

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  13. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  14. Progress and issues in polycrystalline thin-film PV technologies

    SciTech Connect

    Zweibel, K.; Ullal, H.S.; Roedern, B. von

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  15. Josephson tunnel junctions with chemically vapor deposited polycrystalline germanium barriers

    SciTech Connect

    Kroger, H.; Jillie, D.W.; Smith, L.N.; Phaneuf, L.E.; Potter, C.N.; Shaw, D.M.; Cukauskas, E.J.; Nisenoff, M.

    1984-03-01

    High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V/sub m/ (the product of the critical current and the subgap resistance measured at 2 mV and 4.2 K) ranging between 35--48 mV, ideal threshold curves, a steep current rise at the gap voltage, and Josephson current densities from 100 to 1100 A/cm/sup 2/.

  16. Emission of nuclear quadrupole resonance from polycrystalline hexamethylenetetramine.

    PubMed

    Ota, G; Itozaki, H

    2008-03-01

    The angular dependence of the nuclear quadrupole resonance (NQR) signal intensity emitted from polycrystalline hexamethylenetetramine has been analytically investigated for all directions for non-contact detection of chemicals by nuclear quadrupole resonance. The field pattern of the NQR signal from a column sample was measured. The emitted patterns were the same as that from a united single magnetic dipole, which fitted well to the estimation based on quadrupole principle axis system. This result is helpful to design an antenna for NQR remote detection.

  17. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers.

    PubMed

    Yoon, Taeshik; Mun, Jeong Hun; Cho, Byung Jin; Kim, Taek-Soo

    2014-01-07

    We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path.

  18. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A.; Albarghouti, Marwan

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  19. [Spectral analyzing effects of atmosphere states on the structure and characteristics of CdTe polycrystalline thin films made by close-spaced sublimation].

    PubMed

    Zheng, Hua-jing; Zheng, Jia-gui; Feng, Liang-huan; Zhang, Jing-quan; Xie, Er-qing

    2005-07-01

    The structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured. The dependence of preliminary nucleus creation on the atmosphere states (involving component and pressure) was studied. Transparencies were measured and optic energy gaps were calculated. The results show that: (1) The CdTe films deposited in different atmospheres are cubic structure. With increasing oxygen concentration, a increases and reaches the maximum at 6% oxygen concentration, then reduces, and increases again after passing the point at 12% oxygen concentration. Among them, the sample depositing at 9% oxygen concentration is the best. The optic energy gaps are 1.50-1.51 eV for all CdTe films. (2) The samples depositing at different pressures at 9% oxygen concentration are all cubical structure of CdTe, and the diffraction peaks of CdS and SnO2:F still appear. With the gas pressure increasing, the crystal size of CdTe minishes, the transparency of the thin film goes down, and the absorption side shifts to the short-wave direction. (3) The polycrystalline thin films with high quality deposit in 4 minutes under the depositing condition that the substrate temperature is 550 degrees C, and source temperature is 620 degrees C at 9% oxygen concentration.

  20. Lattice matched crystalline substrates for cubic nitride semiconductor growth

    DOEpatents

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2015-02-24

    Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.

  1. Cubic phases of ternary amphiphile-water systems.

    PubMed

    Fraser, Scott; Separovic, Frances; Polyzos, Anastasios

    2009-12-01

    The reversed cubic phases (Q(II)) are a class of self-assembled amphiphile-water structures that are rich in diversity and structural complexity. These nanostructured liquid crystalline materials are generating much interest owing to their unique surface morphology, biological relevance and potential technological and medical applications. The structure of Q(II) phases in binary amphiphile-water systems is affected by the molecular structure of surfactant, water content, temperature and pressure. The presence of additives also plays an important role. The structure and phase behaviour of ternary Q(II) phases, which are comprised of two miscible amphiphiles and water, significantly differ from the binary system alone. The modulation of the phase behaviour through the addition of a second amphiphile offers an opportunity to control the size and shape of the nanostructures using a 'bottom-up' approach. In this mini-review, we discuss the structure of reversed cubic phases of amphiphile-water systems and highlight the modulation of cubic-phase structure in ternary-phase systems. We also extend this review to bulk cubic phases and the corresponding nanoscale dispersions, cubic-phase nanoparticles.

  2. Evolution of cubic membranes as antioxidant defence system.

    PubMed

    Deng, Yuru; Almsherqi, Zakaria A

    2015-08-06

    Possibly the best-characterized cubic membrane transition has been observed in the mitochondrial inner membranes of free-living giant amoeba (Chaos carolinense). In this ancient organism, the cells are able to survive in extreme environments such as lack of food, thermal and osmolarity fluctuations and high levels of reactive oxygen species. Their mitochondrial inner membranes undergo rapid changes in three-dimensional organization upon food depletion, providing a valuable model to study this subcellular adaptation. Our data show that cubic membrane is enriched with unique ether phospholipids, plasmalogens carrying very long-chain polyunsaturated fatty acids. Here, we propose that these phospholipids may not only facilitate cubic membrane formation but may also provide a protective shelter to RNA. The potential interaction of cubic membrane with RNA may reduce the amount of RNA oxidation and promote more efficient protein translation. Thus, recognizing the role of cubic membranes in RNA antioxidant systems might help us to understand the adaptive mechanisms that have evolved over time in eukaryotes.

  3. Evolution of cubic membranes as antioxidant defence system

    PubMed Central

    Deng, Yuru; Almsherqi, Zakaria A.

    2015-01-01

    Possibly the best-characterized cubic membrane transition has been observed in the mitochondrial inner membranes of free-living giant amoeba (Chaos carolinense). In this ancient organism, the cells are able to survive in extreme environments such as lack of food, thermal and osmolarity fluctuations and high levels of reactive oxygen species. Their mitochondrial inner membranes undergo rapid changes in three-dimensional organization upon food depletion, providing a valuable model to study this subcellular adaptation. Our data show that cubic membrane is enriched with unique ether phospholipids, plasmalogens carrying very long-chain polyunsaturated fatty acids. Here, we propose that these phospholipids may not only facilitate cubic membrane formation but may also provide a protective shelter to RNA. The potential interaction of cubic membrane with RNA may reduce the amount of RNA oxidation and promote more efficient protein translation. Thus, recognizing the role of cubic membranes in RNA antioxidant systems might help us to understand the adaptive mechanisms that have evolved over time in eukaryotes. PMID:26464785

  4. Anelastic attenuation in cubic and hexagonal iron alloys: implications for the core

    NASA Astrophysics Data System (ADS)

    Redfern, S. A.; Peng, Z.

    2013-12-01

    Grain boundary processes, phase transitions, line defects and point defects may all play a part in controlling the anelastic properties of iron in Earth's core. We have explored the high temperature behaviour of Fe-Ni alloys to investigate the possible role of phase interfaces at phase transitions between cubic phases of iron. The role of point defects has been considered by analogy with previous measurements on hexagonal metals. The mechanical properties of Fe-Ni alloys were studied by torsion pendulum at seismic frequencies from 0.01 to 1 Hz over temperatures from 30 C to 1000 C and atmospheric pressure. The cubic Fe-Ni system undergoes an equilibrium fcc-bcc phase transition for Ni concentration < 5 at.%, but shows a metastable martensitic phase transition from austenite to a distorted bcc martensite when there is more than 5 at.% Ni in the alloy. Mechanical properties show significant variation at the phase transition temperature: significant softening in shear modulus, abrupt change in elastic strain, and massive energy dissipation. Variation in elastic constant as a function of temperature defines the shear modulus, while the volumetric difference between the fcc and bcc structure contributes to a sudden variation in strain at the transition. The movement of interfaces (phase interfaces and martensite variant interfaces) is the key mechanism for anelastic damping at the transition. An intermediate mixture of phases (bcc + fcc or martenste + fcc) was identified over a wide range of temperatures, indicating the importance of phase nucleation process at the transition. For a pure hexagonal iron core there remains the possibility of energy dissipation by an intrinsic atomistic process. While no measurements of anelastic relaxation have been made in hexagonal iron, earlier studies of zirconium and titanium (hexagonal metals).Reorientation of pairs of interstitial atoms or even interstitial-substitutional pairs of atoms provides a mechanism for anelastic relaxation

  5. Superconductivity in cubic noncentrosymmetric PdBiSe Crystal

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Thamizhavel, A.; Ramakrishnan, S.

    2015-03-01

    Mixing of spin singlet and spin triplet superconducting pairing state is expected in noncentrosymmetric superconductors (NCS) due to the inherent presence of Rashba-type antisymmetric spin-orbit coupling. Unlike low symmetry (tetragonal or monoclinic) NCS, parity is isotropicaly broken in space for cubic NCS and can additionally lead to the coexistence of magnetic and superconducting state under certain conditions. Motivated with such enriched possibility of unconventional superconducting phases in cubic NCS we are reporting successful formation of single crystalline cubic noncentrosymmetric PdBiSe with lattice parameter a = 6.4316 Å and space group P21 3 (space group no. 198) which undergoes to superconducting transition state below 1.8 K as measured by electrical transport and AC susceptibility measurements. Significant strength of Rashba-type antisymmetric spin-orbit coupling can be expected for PdBiSe due to the presence of high Z (atomic number) elements consequently making it potential candidate for unconventional superconductivity.

  6. Compensation in epitaxial cubic SiC films

    NASA Technical Reports Server (NTRS)

    Segall, B.; Alterovitz, S. A.; Haugland, E. J.; Matus, L. G.

    1986-01-01

    Hall measurements on four n-type cubic SiC films epitaxially grown by chemical vapor deposition on SiC substrates are reported. The temperature dependent carrier concentrations indicate that the samples are highly compensated. Donor ionization energies, E sub D, are less than one half the values previously reported. The values for E sub D and the donor concentration N sub D, combined with results for small bulk platelets with nitrogen donors, suggest the relation E sub D (N sub D) = E sub D(O) - alpha N sub N sup 1/3 for cubic SiC. A curve fit gives alpha is approx 2.6x10/5 meV cm and E sub D (O) approx 48 meV, which is the generally accepted value of E sub D(O) for nitrogen donors in cubic SiC.

  7. Superhard cubic BC2N compared to diamond.

    PubMed

    Zhang, Yi; Sun, Hong; Chen, Changfeng

    2004-11-05

    Recent experiments claimed successful synthesis of cubic boron-carbonitride compounds BC2N with an extreme hardness second only to diamond. In the present Letter, we examine the ideal strength of cubic BC2N using first-principles calculations. Our results reveal that, despite the large elastic parameters, compositional anisotropy and strain dependent bonding character impose limitation on their strength. Consequently, the hardness of the optimal BC2N structure is predicted to be lower than that of cubic BN, the second hardest material known. The measured extreme hardness of BC2N nanocomposites is most likely due to the nanocrystalline size effect and the bonding to the surrounding amorphous carbon matrix. This may prove to be a general rule useful in the quest for new superhard covalent materials.

  8. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    PubMed Central

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  9. [Multimodal medical image registration using cubic spline interpolation method].

    PubMed

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  10. Tetragonal and cubic zirconia multilayered ceramic constructs created by EPD.

    PubMed

    Mochales, Carolina; Frank, Stefan; Zehbe, Rolf; Traykova, Tania; Fleckenstein, Christine; Maerten, Anke; Fleck, Claudia; Mueller, Wolf-Dieter

    2013-02-14

    The interest in electrophoretic deposition (EPD) for nanomaterials and ceramics production has widely increased due to the versatility of this technique to effectively combine different materials in unique shapes and structures. We successfully established an EPD layering process with submicrometer sized powders of Y-TZP with different mol percentages of yttrium oxide (3 and 8%) and produced multilayers of alternating tetragonal and cubic phases with a clearly defined interface. The rationale behind the design of these multilayer constructs was to optimize the properties of the final ceramic by combining the high mechanical toughness of the tetragonal phase of zirconia together with the high ionic conductivity of its cubic phase. In this work, a preliminary study of the mechanical properties of these constructs proved the good mechanical integrity of the multilayered constructs obtained as well as crack deflection in the interface between tetragonal and cubic zirconia layers.

  11. Body-centered-cubic Ni and its magnetic properties.

    PubMed

    Tian, C S; Qian, D; Wu, D; He, R H; Wu, Y Z; Tang, W X; Yin, L F; Shi, Y S; Dong, G S; Jin, X F; Jiang, X M; Liu, F Q; Qian, H J; Sun, K; Wang, L M; Rossi, G; Qiu, Z Q; Shi, J

    2005-04-08

    The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x10(4) ergs x cm(-3) for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.

  12. Penetration and lateral diffusion characteristics of polycrystalline graphene barriers

    NASA Astrophysics Data System (ADS)

    Yoon, Taeshik; Mun, Jeong Hun; Cho, Byung Jin; Kim, Taek-Soo

    2013-12-01

    We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path.We report penetration and lateral diffusion behavior of environmental molecules on synthesized polycrystalline graphene. Penetration occurs through graphene grain boundaries resulting in local oxidation. However, when the penetrated molecules diffuse laterally, the oxidation region will expand. Therefore, we measured the lateral diffusion rate along the graphene-copper interface for the first time by the environment-assisted crack growth test. It is clearly shown that the lateral diffusion is suppressed due to the high van der Waals interaction. Finally, we employed bilayer graphene for a perfect diffusion barrier facilitated by decreased defect density and increased lateral diffusion path. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03849a

  13. In Situ TEM Observation of Dislocation Evolutionin Polycrystalline UO2

    SciTech Connect

    L. F. HE; 1 M. A. KIRK; Argonne National Laboratory; J. Gan; T. R. ALLEN

    2014-10-01

    In situ transmission electron microscopy observation of polycrystalline UO2 (with average grain size of about 5 lm) irradiated with Kr ions at 600C and 800C was conducted to understand the radiation-induced dislocation evolution under the influence of grain boundaries. The dislocation evolution in the grain interior of polycrystalline UO2 was similar under Kr irradiation at different ion energies and temperatures. As expected, it was characterized by the nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation lines and tangles at high doses. For the first time, a dislocation-denuded zone was observed near a grain boundary in the 1-MeV Kr-irradiated UO2 sample at 800C. The denuded zone in the vicinity of grain boundary was not found when the irradiation temperature was at 600C. The suppression of dislocation loop formation near the boundary is likely due to the enhanced interstitial diffusion toward grain boundary at the high temperature.

  14. Polycrystalline Thin-Film Photovoltaic Technologies: Progress and Technical Issues

    SciTech Connect

    Ullal, H. S.

    2004-08-01

    Polycrystalline thin-film materials based on copper indium diselenide (CuInSe2, CIS) and cadmium telluride (CdTe) are promising thin-film solar cells for various power and specialty applications. Impressive results have been obtained in the past few years for both thin-film copper indium gallium diselenide (CIGS) solar cells and thin-film CdTe solar cells. NCPV/NREL scientists have achieved world-record, total-area efficiencies of 19.3% for a thin-film CIGS solar cell and 16.5% for thin-film CdTe solar cell. A number of technical R&D issues related to CIS and CdTe have been identified. Thin-film power module efficiencies up to 13.4% has been achieved thus far. Tremendous progress has been made in the technology development for module fabrication, and multi-megawatt manufacturing facilities are coming on line with expansion plans in the next few years. Several 40-480 kW polycrystalline thin-film, grid-connected PV arrays have been deployed worldwide. Hot and humid testing is also under way to validate the long-term reliability of these emerging thin-film power products. The U.S. thin-film production (amorphous silicon[a-Si], CIS, CdTe) is expected to exceed 50 MW by the end of 2005.

  15. Limiting mechanisms in large-grain polycrystalline silicon Spatial homogeneity

    NASA Technical Reports Server (NTRS)

    Culik, J.; Grimes, K.

    1984-01-01

    An experiment to investigate the spatial homogeneity of large-grain polycrystalline silicon shows a number of performance-loss mechanisms. Arrays of up to 400 small (about 0.2 sq cm in area) photodiodes were fabricated on a selection of 10 cm x 10 cm polycrystalline silicon wafers. Measurements of the illuminated current-voltage (J-V) characteristics were used to generate maps of Voc, Jsc, and FF as a function of position; and dark J-V and LBIC analysis were used to determine the cause of low performance in areas with significantly degraded J-V characteristics. In addition to the presence of inclusions, which act as resistive shunts, the performance of many of the cells is limited by quasineutral recombination current, which may vary by up to an order of magnitude across a wafer. The increase is the result of either electrically-active grain boundaries or numerous subgrain boundaries within the grain bulk. In other isolated instances, the open-circuit voltage is reduced by excess space-charge recombination current that is not correlated with either grain or subgrain boundary activity.

  16. GaAs Photovoltaics on Polycrystalline Ge Substrates

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Pal, AnnaMaria T.; McNatt, Jeremiah S.; Wolford, David S.; Landis, Geoffrey A.; Smith, Mark A.; Scheiman, David; Jenkins, Phillip P.; McElroy Bruce

    2007-01-01

    High efficiency III-V multijunction solar cells deposited on metal foil or even polymer substrates can provide tremendous advantages in mass and stowage, particularly for planetary missions. As a first step towards that goal, poly-crystalline p/i/n GaAs solar cells are under development on polycrystalline Ge substrates. Organo Metallic Vapor Phase Epitaxy (OMVPE) parameters for pre-growth bake, nucleation and deposition have been examined. Single junction p/i/n GaAs photovoltaic devices, incorporating InGaP front and back window layers, have been grown and processed. Device performance has shown a dependence upon the thickness of a GaAs buffer layer deposited between the Ge substrate and the active device structure. A thick (2 m) GaAs buffer provides for both increased average device performance as well as reduced sensitivity to variations in grain size and orientation. Illumination under IR light (lambda > 1 micron), the cells showed a Voc, demonstrating the presence of an unintended photoactive junction at the GaAs/Ge interface. The presence of this junction limited the efficiency to approx.13% (estimated with an anti-refection coating) due to the current mismatch and lack of tunnel junction interconnect.

  17. Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics

    PubMed Central

    Bintachitt, P.; Jesse, S.; Damjanovic, D.; Han, Y.; Reaney, I. M.; Trolier-McKinstry, S.; Kalinin, S. V.

    2010-01-01

    Nanoscale and mesoscopic disorder and associated local hysteretic responses underpin the unique properties of spin and cluster glasses, phase-separated oxides, polycrystalline ferroelectrics, and ferromagnets alike. Despite the rich history of the field, the relationship between the statistical descriptors of hysteresis behavior such as Preisach density, and micro and nanostructure has remained elusive. By using polycrystalline ferroelectric capacitors as a model system, we now report quantitative nonlinearity measurements in 0.025–1 μm3 volumes, approximately 106 times smaller than previously possible. We discover that the onset of nonlinear behavior with thickness proceeds through formation and increase of areal density of micron-scale regions with large nonlinear response embedded in a more weakly nonlinear matrix. This observation indicates that large-scale collective domain wall dynamics, as opposed to motion of noninteracting walls, underpins Rayleigh behavior in disordered ferroelectrics. The measurements provide evidence for the existence and extent of the domain avalanches in ferroelectric materials, forcing us to rethink 100-year old paradigms. PMID:20368462

  18. Observations of Dynamic Strain Aging in Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Kaufman, M. J.

    1996-01-01

    Dynamic strain aging has been investigated at temperatures between 77 and 1100 K in eight polycrystalline NiAl alloys. The 0.2% offset yield stress and work hardening rates for these alloys generally decreased with increasing temperature. However, local plateaus or maxima were observed in conventional purity and carbon doped alloys at intermediate temperatures (600-900 K). This anomalous behavior was not observed in low interstitial high-purity, nitrogen doped, or in titanium doped materials. Low or negative strain rate sensitivities (SRS) were also observed in all eight alloys in this intermediate temperature range. Coincident with the occurrence of negative SRS was the occurrence of serrated flow in conventional purity alloys containing high concentrations of Si in addition to C. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main species causing strain aging in polycrystalline NiAl is C but indicate that residual Si impurities can enhance the strain aging effect.

  19. Origins of Folding Instabilities on Polycrystalline Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.

    2014-12-01

    Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.

  20. Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics.

    PubMed

    Bintachitt, P; Jesse, S; Damjanovic, D; Han, Y; Reaney, I M; Trolier-McKinstry, S; Kalinin, S V

    2010-04-20

    Nanoscale and mesoscopic disorder and associated local hysteretic responses underpin the unique properties of spin and cluster glasses, phase-separated oxides, polycrystalline ferroelectrics, and ferromagnets alike. Despite the rich history of the field, the relationship between the statistical descriptors of hysteresis behavior such as Preisach density, and micro and nanostructure has remained elusive. By using polycrystalline ferroelectric capacitors as a model system, we now report quantitative nonlinearity measurements in 0.025-1 microm(3) volumes, approximately 10(6) times smaller than previously possible. We discover that the onset of nonlinear behavior with thickness proceeds through formation and increase of areal density of micron-scale regions with large nonlinear response embedded in a more weakly nonlinear matrix. This observation indicates that large-scale collective domain wall dynamics, as opposed to motion of noninteracting walls, underpins Rayleigh behavior in disordered ferroelectrics. The measurements provide evidence for the existence and extent of the domain avalanches in ferroelectric materials, forcing us to rethink 100-year old paradigms.

  1. Connecting grain boundary properties to microstructural evolution in polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Holm, Elizabeth

    2013-03-01

    Within the last decade, both computational and experimental methods have evolved to the point that large-scale surveys of grain boundary properties have become tractable. Such studies have provided new information and insight about boundary structure, energetics, motion mechanisms, and mobility on a scale that invites application to polycrystalline systems. However, the complex behavior revealed in these studies often generates as many questions as it answers. This presentation will review pertinent computational and experimental studies of grain boundary properties in FCC metals, concentrating on boundary energy and mobility. The goal will be to identify the microstructural signatures of boundary properties in polycrystalline grain boundary networks. Topics will include how boundary energy and mobility trends manifest in real microstructures; the effects of shear coupling on boundary motion in bicrystals and polycrystals; the significance of boundaries that move in a non-thermally-activated manner to low temperature grain growth; and the consequences of the thermal roughening transition on grain stagnation. In each case, individual grain boundary properties couple with the characteristics of the grain boundary network to generate diverse microstructural outcomes. Supported in part by the US Department of Energy Office of Basic Energy Sciences.

  2. On the Hugoniot elastic limit in polycrystalline alumina

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Millett, J. C. F.; Chen, M.; McCauley, J. W.; Dandekar, D. P.

    2007-10-01

    The use of polycrystalline ceramics in engineering applications requires a better knowledge of microstructural response than exists at present. The continuum response of the alumina AD995 to shock loading has been extensively investigated. This work aims to connect microstructural response with continuum observations. Over recent years, workers have reported failure in various polycrystalline ceramics occurring behind a propagating front running behind the shock. These phenomena have been investigated using embedded stress sensors and a recovery technique that has allowed the observation of the microstructure above and below the Hugoniot elastic limit (HEL). These results are brought together here to explain the observed behavior. The failure front velocity is found to change with the applied stress, in particular, it slows markedly as the HEL is exceeded. Further, the curvature of histories recorded by sensors may be related to the observed response. The evidence in the microstructure shows that the response below HEL is dominated by the intergranular failure, while above it by plasticity in grains (including twinning), which alters the deformation and failure characteristics. These microstructural features are combined with the continuum observations to review the response of the alumina.

  3. Grain-boundary unzipping by oxidation in polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Alexandre, Simone; Lucio, Aline; Nunes, Ricardo

    2011-03-01

    The need for large-scale production of graphene will inevitably lead to synthesis of the polycrystalline material [1,2]. Understanding the chemical, mechanical, and electronic properties of grain boundaries in graphene polycrystals will be crucial for the development of graphene-based electronics. Oxidation of this material has been suggested to lead to graphene ribbons, by the oxygen-driven unzipping mechanism. A cooperative-strain mechanism, based on the formation of epoxy groups along lines of parallel bonds in the hexagons of graphene's honeycomb lattice, was proposed to explain the unzipping effect in bulk graphene In this work we employ ab initio calculations to study the oxidation of polycrystalline graphene by chemisorption of oxygen at the grain boundaries. Our results indicate that oxygen tends to segregate at the boundaries, and that the unzipping mechanism is also operative along the grain boundaries, despite the lack of the parallel bonds due to the presence of fivefold and sevenfold carbon rings along the boundary core. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  4. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    NASA Astrophysics Data System (ADS)

    Sharma, Kamal P.; Mahyavanshi, Rakesh D.; Kalita, Golap; Tanemura, Masaki

    2017-01-01

    Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal catalyst crystallographic structure.

  5. Creep and stress relaxation modeling of polycrystalline ceramic fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.

  6. Concurrent atomistic-continuum simulation of polycrystalline strontium titanate

    NASA Astrophysics Data System (ADS)

    Yang, Shengfeng; Zhang, Ning; Chen, Youping

    2015-08-01

    This paper presents the new development of a concurrent atomistic-continuum (CAC) method in simulation of the dynamic evolution of defects in polycrystalline polyatomic materials. The CAC method is based on a theoretical formulation that extends Kirkwood's statistical mechanical theory of transport processes to a multiscale description of crystalline materials. It solves for both the deformation of lattice cells and the internal deformation within each lattice cell, making it a suitable method for simulations of polyatomic materials. The simulation results of this work demonstrate that CAC can simulate the nucleation of dislocations and cracks from atomistically resolved grain boundary (GB) regions and the subsequent propagation into coarsely meshed grain interiors in polycrystalline strontium titanate without the need of supplemental constitutive equations or additional numerical treatments. With a significantly reduced computational cost, CAC predicts not only the GB structures, but also the dynamic behaviour of dislocations, cracks and GBs, all of which are comparable with those obtained from atomic-level molecular dynamics simulations. Simulation results also show that dislocations tend to initiate from GBs and triple junctions. The angle between the slip planes and the GB planes plays a key role in determining the GB-dislocation reactions.

  7. Surface roughness measurements of micromachined polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Phinney, L. M.; Lin, G.; Wellman, J.; Garcia, A.

    2004-07-01

    The characteristics of the materials and surfaces in microelectromechanical systems (MEMS) and microsystems technology (MST) profoundly affect the performance, reliability, and wear of MEMS and MST devices. It is critical to measure the properties of surfaces that are in contact during microstructure movement, such as the underside of a MEMS gear and the underlying substrate. However, contacting surfaces are usually inaccessible unless the MEMS device is broken and removed from the substrate. This paper presents a nondestructive method for characterizing commercially fabricated surface micromachined polycrystalline silicon (polysilicon) devices. Microhinged flaps were designed that enable access to the upper surface, the part of a structural layer deposited last; the lower surface, the part of a structural layer deposited first; and the underlying substrate. Due to the susceptibility of surface-micromachined MEMS to adhesion failures, the surface roughness is a key parameter for predicting device behavior. Using the microhinged flaps, the RMS surface roughness for polycrystalline surfaces was measured and indicated that the upper surfaces were 3.5-6.4 times rougher than the lower surfaces. The difference in the surface roughness for the upper surface, which is easily accessed and the one most commonly characterized, and that for the lower surface reveals the importance of characterizing contacting surfaces in MEMS and MST devices.

  8. Dielectric and conducting behaviour of polycrystalline holmium octa-molybdate

    NASA Astrophysics Data System (ADS)

    Want, Basharat; Zahoor Ahmad, Bhat; Bhat, Bilal Hamid

    2014-09-01

    Polycrystalline holmium octa-molybdate spherulites have been obtained by using gel diffusion technique and characterized by different physio-chemical techniques. The surfaces of these spherulites are composed of nano-rod with an average diameter of about 80 nm. At room temperature the initial crystal structure is triclinic, space group P1. Thermal studies suggested a phase transition occurring in holmium octa-molybdate crystals at about 793 K. The electrical properties of the system have been studied as a function of frequency and temperature in the ranges of 20 Hz-3 MHz and 290-570 K, respectively. A giant dielectric constant and two loss peaks have been observed in the permittivity formalism. The conducting behaviour of the material is also discussed. The conductivity was found to be 1572 μ Ω-1 m-1 at room temperature and 3 MHz frequency. The conductivity of the polycrystalline material was attributed to the fact that it arises due to the migration of defects on the oxygen sub-lattice. Impedance studies were also performed in the frequency domain to infer the bulk and grain boundary contributions to the overall electric response of the material. The electrical responses have been attributed to the grain, grain-boundary, and interfacial effects.

  9. Thermomechanical response of polycrystalline BaZrO{sub 3}.

    SciTech Connect

    Goretta, K. C.; Park, E. T.; Koritala, R. E.; Cuber, M. M.; Pascual, E. A.; Chen, N.; de Arellano-Lopez, A. R.; Routbort, J. L.; Univ. de Sevilla

    1998-01-01

    Thermomechanical properties of fine-grained, 96% dense, polycrystalline BaZrO{sub 3} specimens were studied. The average thermal expansion coefficient of BaZrO{sub 3} at 2511000{sup o}C was 7.72x10{sup -6}{sup o}C{sup -1}. At 25{sup o}C, Young's modulus was 240.5 GPa and the shear modulus was 97.2 GPa. These values decreased by {approx}10% with heating to 1015{sup o}C. Poisson's ratio was 0.237 and was independent of temperature. The BaZrO{sub 3} specimens exhibited a thermal expansion coefficient of about one half, and elastic moduli more than twice, those of polycrystalline high-temperature superconductors. Diffusional creep was observed when BaZrO{sub 3} was compressed at 1300-1400{sup o}C; the activation energy for steady-state deformation was 460{+-}30 kJ/mole. The mechanism was probably grain-boundary sliding, controlled by diffusion of one of the cations along grain boundaries. Deformation rates below 1000{sup o}C were too low to relax thermally generated stresses.

  10. Image interpolation by two-dimensional parametric cubic convolution.

    PubMed

    Shi, Jiazheng; Reichenbach, Stephen E

    2006-07-01

    Cubic convolution is a popular method for image interpolation. Traditionally, the piecewise-cubic kernel has been derived in one dimension with one parameter and applied to two-dimensional (2-D) images in a separable fashion. However, images typically are statistically nonseparable, which motivates this investigation of nonseparable cubic convolution. This paper derives two new nonseparable, 2-D cubic-convolution kernels. The first kernel, with three parameters (designated 2D-3PCC), is the most general 2-D, piecewise-cubic interpolator defined on [-2, 2] x [-2, 2] with constraints for biaxial symmetry, diagonal (or 90 degrees rotational) symmetry, continuity, and smoothness. The second kernel, with five parameters (designated 2D-5PCC), relaxes the constraint of diagonal symmetry, based on the observation that many images have rotationally asymmetric statistical properties. This paper also develops a closed-form solution for determining the optimal parameter values for parametric cubic-convolution kernels with respect to ensembles of scenes characterized by autocorrelation (or power spectrum). This solution establishes a practical foundation for adaptive interpolation based on local autocorrelation estimates. Quantitative fidelity analyses and visual experiments indicate that these new methods can outperform several popular interpolation methods. An analysis of the error budgets for reconstruction error associated with blurring and aliasing illustrates that the methods improve interpolation fidelity for images with aliased components. For images with little or no aliasing, the methods yield results similar to other popular methods. Both 2D-3PCC and 2D-5PCC are low-order polynomials with small spatial support and so are easy to implement and efficient to apply.

  11. Dynamical stabilization of solitons in cubic-quintic nonlinear Schroedinger model

    SciTech Connect

    Abdullaev, Fatkhulla Kh.; Garnier, Josselin

    2005-09-01

    We consider the existence of a dynamically stable soliton in the one-dimensional cubic-quintic nonlinear Schroedinger model with strong cubic nonlinearity management for periodic and random modulations. We show that the predictions of the averaged cubic-quintic nonlinear Schroedinger (NLS) equation and modified variational approach for the arrest of collapse coincide. The analytical results are confirmed by numerical simulations of a one-dimensional cubic-quintic NLS equation with a rapidly and strongly varying cubic nonlinearity coefficient.

  12. Single-crystalline cubic structured InP nanosprings

    NASA Astrophysics Data System (ADS)

    Shen, G. Z.; Bando, Y.; Zhi, C. Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D.

    2006-06-01

    Cubic structured nanosprings, InP nanosprings, have been synthesized via a simple thermochemical process using InP and ZnS as the source materials. Each InP nanospring is formed by rolling up a single InP nanobelt with the growth direction along the ⟨111⟩ orientation. The formation of these novel nanostructures is mainly attributed to the minimization of the electrostatic energy due to the polar charges on the ±(002) side surfaces of cubic InP. Cathodoluminescence properties were also studied, which reveal that the InP nanosprings have three emission bands centered at ˜736, ˜920, and ˜980nm.

  13. The singular cubical set of a topological space

    NASA Astrophysics Data System (ADS)

    Antolini, Rosa; Wiest, Bert

    1999-01-01

    For any topological space X let C(X) be the realization of the singular cubical set of X; let * be the topological space consisting of one point. In [1] Antolini proves, as a corollary to a general theorem about cubical sets, that C(X) and X×C(*) are homotopy equivalent, provided X is a CW-complex. In this note we give a short geometric proof that for any topological space X there is a natural weak homotopy equivalence between C(X) and X×C(*).

  14. Stationary phase analysis of generalized cubic phase mask wavefront coding

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Dong, Liquan; Zhao, Yuejin; Hui, Mei; Jia, Wei

    2013-07-01

    The modified generalized cubic phase mask (GCPM) has recently been applied in wavefront coding systems including infrared imaging and microscopy. In this paper, the stationary phase method is employed to analyze the GCPM characteristics. The SPA of the modulation transfer function (MTF) under misfocus aberration is derived for a wavefront coding system with a GCPM. The approximation corresponds with the Fast Fourier Transform (FFT) approach. On the basis of this approximation, we compare the characteristics of GCPM and cubic phase masks (CPM). A GCPM design approach based on stationary phase approximation is presented which helps to determine the initial parameter of phase mask, significantly decreasing the computational time required for numerical simulation.

  15. Optical spectroscopy of cubic GaN in nanowires

    NASA Astrophysics Data System (ADS)

    Renard, J.; Tourbot, G.; Sam-Giao, D.; Bougerol, C.; Daudin, B.; Gayral, B.

    2010-08-01

    We show that highly homogeneous cubic GaN can be grown by plasma-assisted molecular beam epitaxy on wurtzite GaN nanowires. The line width of the donor bound exciton is below 3 meV and can reach 1.6 meV in the best parts of the studied sample. This allows to perform a detailed spectroscopy of cubic GaN, and, in particular, to determine the precise spectral positions of the donor bound exciton, the fundamental free exciton and the split-off exciton in a photoluminescence experiment.

  16. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J. Birch; Kingman, deceased, Donald D.; Bianchini, Gregory M.

    1992-01-01

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  17. Simple adaptive cubic spline interpolation of fluorescence decay functions

    NASA Astrophysics Data System (ADS)

    Kuśba, J.; Czuper, A.

    2007-05-01

    Simple method allowing for adaptive cubic spline interpolation of fluorescence decay functions is proposed. In the first step of the method, the interpolated function is integrated using the known adaptive algorithm based on Newton-Cotes quadratures. It is shown that, in this step, application of the Simpson's rule provides the smallest number of calls of the interpolated function. In the second step of the method, a typical cubic spline approximation is used to find values of the interpolated function between the points evaluated in the first step.

  18. Process for producing wurtzitic or cubic boron nitride

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1992-04-28

    Disclosed is a process for producing wurtzitic or cubic boron nitride comprising the steps of: [A] preparing an intimate mixture of powdered boron oxide, a powdered metal selected from the group consisting of magnesium or aluminum, and a powdered metal azide; [B] igniting the mixture and bringing it to a temperature at which self-sustaining combustion occurs; [C] shocking the mixture at the end of the combustion thereof with a high pressure wave, thereby forming as a reaction product, wurtzitic or cubic boron nitride and occluded metal oxide; and, optionally [D] removing the occluded metal oxide from the reaction product. Also disclosed are reaction products made by the process described.

  19. Cubic metallic phase of aluminum hydride showing improved hydrogen desorption

    NASA Astrophysics Data System (ADS)

    Scheicher, R. H.; Kim, D. Y.; Lebègue, S.; Arnaud, B.; Alouani, M.; Ahuja, R.

    2008-05-01

    We report on our results calculated from density functional theory and GW of the dehydrogenation properties in a cubic phase of AlH3. The metallic nature of the electronic structure entails a more favorable hydrogen removal energy which is lowered by 75% compared to the insulating hexagonal phase. This remarkable reduction in the Al-H bond strength bears important consequences for feasible applications of AlH3 as an on-board hydrogen storage material for mobile applications. We suggest that the cubic phase could be prepared and stabilized experimentally at ambient pressure by off-board quenching.

  20. Interpolation in numerical optimization. [by cubic spline generation

    NASA Technical Reports Server (NTRS)

    Hall, K. R.; Hull, D. G.

    1975-01-01

    The present work discusses the generation of the cubic-spline interpolator in numerical optimization methods which use a variable-step integrator with step size control based on local relative truncation error. An algorithm for generating the cubic spline with successive over-relaxation is presented which represents an improvement over that given by Ralston and Wilf (1967). Rewriting the code reduces the number of N-vectors from eight to one. The algorithm is formulated in such a way that the solution of the linear system set up yields the first derivatives at the nodal points. This method is as accurate as other schemes but requires the minimum amount of storage.

  1. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  2. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO{sub 3}

    SciTech Connect

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-10-20

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO{sub 3} at temperatures above the Curie point (T{sub C}) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T{sub C}. The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T{sub C}, while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm{sup −1}) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  3. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  4. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C.

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6-50 GW/cm2) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology.

  5. Prediction study of the structural and elastic properties for the cubic skutterudites LaFe 4A 12 (A = P, As and Sb) under pressure effect

    NASA Astrophysics Data System (ADS)

    Hachemaoui, M.; Khenata, R.; Bouhemadou, A.; Bin-Omran, S.; Reshak, Ali H.; Semari, F.; Rached, D.

    2010-10-01

    We have performed accurate ab initio total energy calculations using the full-potential linear augmented plane wave plus local orbitals method with the local density approximation for the exchange-correlation potential to investigate the systematic trends for structural and elastic properties of the cubic LaFe 4A 12 skutterudites' family depending on the type of A pnicogen atom (A stands for P, As and Sb). The calculated equilibrium lattice constants and internal free parameters are in good agreement with the experimental results. For the first time, the numerical estimates of the independent elastic constants and their pressure dependence are performed using the total energy variation as function of strain technique. Isotropic elastic parameters and related properties, namely bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Lamé's coefficients, average sound velocity and Debye temperature, are estimated in the framework of the Voigt-Reuss-Hill approximation for ideal polycrystalline LaFe 4A 12 aggregates.

  6. Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO)

    NASA Astrophysics Data System (ADS)

    Rosenkiewitz, N.; Schuhmacher, J.; Bockmeyer, M.; Deubener, J.

    2015-03-01

    A nitrogen-free sol-gel synthesis of Al-substituted cubic lithium lanthanum zirconium garnet (c-LLZO) was developed. Polycrystalline powders of c-LLZO of the composition Li6.42Al0.32La3Zr1.91O12.02 were prepared from the molecular mixtures of lithium acetate, lanthanum acetate, zirconium propoxide and aluminum chloride and subsequent annealing of the dried precursor sol at 1000 °C for 7 h free of nitrogen oxide gas emissions. The obtained powders had traces of lithium zirconate (<4 wt%), an ionic conductivity of the order of 10-5 S cm-1 and showed a heterogeneous microstructure, which was assumed to result from early melt formation.

  7. Ab initio comparative study of the structural, elastic and electronic properties of SnAMn (A=N,C) antiperovskite cubic compounds

    NASA Astrophysics Data System (ADS)

    Cherrad, D.; Maouche, D.; Louail, L.; Maamache, M.

    2010-05-01

    The structural, elastic and electronic properties of intermetallic SnAMn 3 compounds with the cubic antiperovskite structure have been investigated, by employing ab initio calculations. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young's moduli for ideal monocrystalline and for polycrystalline SnAMn 3 aggregates which we have classified as ductile in nature. Band structures reveal that these compounds are strong conductors. The analysis of the site and momentum projected densities, valence charge density bond length, bond population and Milliken charges, shows that bonding is of covalent-ionic nature. We have found that the elastic constants C11, C12, C44 are in good correlation with the bonding properties.

  8. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    DOEpatents

    Goyal, Amit; Shin, Junsoo

    2015-03-31

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  9. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics

    SciTech Connect

    Vikharev, A. L. Gorbachev, A. M.; Dukhnovsky, M. P.; Muchnikov, A. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2012-02-15

    The fabrication of diamond substrates in which single-crystalline and polycrystalline CVD diamond form a single wafer, and the epitaxial growth of diamond films on such combined substrates containing polycrystalline and (100) single-crystalline CVD diamond regions are studied.

  10. Toward Characterization of Single Crystal Elastic Properties in Polycrystalline Materials using Resonant Ultrasound (Preprint)

    DTIC Science & Technology

    2017-04-06

    AFRL-RX-WP-JA-2017-0331 TOWARD CHARACTERIZATION OF SINGLE CRYSTAL ELASTIC PROPERTIES IN POLYCRYSTALLINE MATERIALS USING RESONANT...STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR...SINGLE CRYSTAL ELASTIC PROPERTIES IN POLYCRYSTALLINE MATERIALS USING RESONANT ULTRASOUND (PREPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT

  11. A generalized inverse-pole-figure method to analyze domain switching in polycrystalline ferroelectrics

    NASA Astrophysics Data System (ADS)

    Ryo, Hyok-Su; Ryo, In-Gwang

    2016-08-01

    In this study, a generalized inverse-pole-figure (IPF) method has been suggested to analyze domain switching in polycrystalline ferroelectrics including composition of morphotropic phase boundary (MPB). Using the generalized IPF method, saturated domain orientation textures of single-phase polycrystalline ferroelectrics with tetragonal and rhombohedral symmetry have been analytically calculated and the results have been confirmed by comparison with the results from preceding studies. In addition, saturated domain orientation textures near MPBs of different multiple-phase polycrystalline ferroelectrics have been also analytically calculated. The results show that the generalized IPF method is an efficient method to analyze not only domain switching of single-phase polycrystalline ferroelectrics but also MPB of multiple-phase polycrystalline ferroelectrics.

  12. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  13. Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles

    DOEpatents

    Carpenter, Donald A.

    1995-01-01

    A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.

  14. Micromechanical modelling of partially molten and sand reinforced polycrystalline ice

    NASA Astrophysics Data System (ADS)

    Castelnau, O.; Duval, P.

    2009-12-01

    The viscoplastic behaviour of polycrystalline ice is strongly affected by the very strong anisotropy of ice crystals. Indeed, in the dislocations creep regime relevant for ice sheet flow, dislocation glide on the basal plane of ice single crystals leads to strain-rates ~6 order of magnitude larger than strain-rates that might be obtain if only non-basal glide is activated. At the polycrystal scale, this behaviour is responsible for a strong mechanical interaction between grains in the secondary (stationary) creep regime, and strain-rate is essentially partitioned between soft grains well-oriented for basal glide and hard grains exhibiting an unfavourable orientation for basal slip. As a consequence, the macroscopic flow stress at the polycrystal scale essentially depends on the resistance of the hardest slip systems or on the associated accommodation processes such as climb of basal dislocation on non-basal planes. Creep experiments performed on polycrystalline ices containing a small amount (less than 10% volume fraction) of liquid water show a dramatic increase of strain-rate, by more than one order of magnitude, compared to solid ice when deformed under similar thermo-mechanical conditions. Similarly, a strong hardening is observed when polycrystalline ice is reinforced by sand (which can be considered as a rigid phase here). This behaviour can be explained by micromechanical models, which aims at estimating the mechanical interactions between grains. For example, the presence of water releases stress concentrations at grain boundaries and therefore favours the inactivation of non-basal systems. To estimate such effect and to reach quantitative comparison with experimental data, we make use of the recent Second-Order homogenization mean-field approach of Ponte-Castaneda, based on self-consistent scheme. The advantage of this approach, which has been shown to provide excellent results when applied to many different non-linear composite materials, comes from the

  15. Lattice Green's Function for the Body-Centered Cubic Lattice

    NASA Astrophysics Data System (ADS)

    Sakaji, A. J.

    2002-05-01

    An expression for the Green's function (GF) of Body-Centered Cubic (BCC) lat tice is evaluated analytically and numerically for a single impurity lattice. Th e density of states (DOS), phase shift, and scattering cross section are express ed in terms of complete elliptic integrals of the first kind.

  16. Integrability of Lotka-Volterra Planar Complex Cubic Systems

    NASA Astrophysics Data System (ADS)

    Dukarić, Maša; Giné, Jaume

    In this paper, we study the Lotka-Volterra complex cubic systems. We obtain necessary conditions of integrability for these systems with some restriction on the parameters. The sufficiency is proved for all conditions, except one which remains open, using different methods.

  17. An effective packing density of binary cubic crystals

    NASA Astrophysics Data System (ADS)

    Eremin, I. E.; Eremina, V. V.; Sychev, M. S.; Moiseenko, V. G.

    2015-04-01

    The methodology of effective macroscopic calculation of numerical values of internuclear distances in binary crystals of a cubic crystal system is based on the use of coefficients of the structural packing density of the crystal lattice. The possibility of combining the reference data on the main physicochemical parameters of the substance is implemented by synthesis of the corresponding mathematical models.

  18. Connecting the Dots Parametrically: An Alternative to Cubic Splines.

    ERIC Educational Resources Information Center

    Hildebrand, Wilbur J.

    1990-01-01

    Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)

  19. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  20. Assessing Inquiry Learning: How Much Is a Cubic Metre?

    ERIC Educational Resources Information Center

    Fry, Kym

    2014-01-01

    In this article, Kym Fry uses the "Programme for International Student Assessment" (PISA) assessment framework to break down what her Year 6 students learned as they explored the inquiry question, "How much is a cubic metre?" First, an overview of the lessons in the unit is provided. Quality assessment opportunities are…

  1. Tangent Lines without Derivatives for Quadratic and Cubic Equations

    ERIC Educational Resources Information Center

    Carroll, William J.

    2009-01-01

    In the quadratic equation, y = ax[superscript 2] + bx + c, the equation y = bx + c is identified as the equation of the line tangent to the parabola at its y-intercept. This is extended to give a convenient method of graphing tangent lines at any point on the graph of a quadratic or a cubic equation. (Contains 5 figures.)

  2. Effective interatomic potential for body-centered-cubic metals

    SciTech Connect

    Wang, Y.R.; Boercker, D.B.

    1995-07-01

    An effective interatomic potential suitable for all body-centered-cubic (bcc) metals is developed based on the embedded atom method. The potential predicts all major anomalies displayed in the phonon spectra of the bcc transition metals, as well as the large relaxation of the (100) surface of V, Nb, and Ta. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  3. Cubic surfaces and their invariants: Some memories of Raymond Stora

    NASA Astrophysics Data System (ADS)

    Bauer, Michel

    2016-11-01

    Cubic surfaces embedded in complex projective 3-space are a classical illustration of the use of old and new methods in algebraic geometry. Recently, they made their appearance in physics, and in particular aroused the interest of Raymond Stora, to the memory of whom these notes are dedicated, and to whom I'm very much indebted.

  4. Rheology of cubic particles suspended in a Newtonian fluid.

    PubMed

    Cwalina, Colin D; Harrison, Kelsey J; Wagner, Norman J

    2016-05-18

    Many real-world industrial processes involve non-spherical particles suspended in a fluid medium. Knowledge of the flow behavior of these suspensions is essential for optimizing their transport properties and designing processing equipment. In the present work, we explore and report on the rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and normal stress differences at high shear stresses. Scalings are proposed to connect the material properties of these suspensions of cubic particle to those measured for suspensions of spherical particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models for the viscosity and normal stress difference coefficients are presented for the shear-thickened state. The results of this study indicate that cubic particles offer new and unique opportunities to formulate colloidal dispersions for field-responsive materials.

  5. A look through ‘lens’ cubic mitochondria

    PubMed Central

    Almsherqi, Zakaria; Margadant, Felix; Deng, Yuru

    2012-01-01

    Cell membranes may fold up into three-dimensional nanoperiodic cubic structures in biological systems. Similar geometries are well studied in other disciplines such as mathematics, physics and polymer chemistry. The fundamental function of cubic membranes in biological systems has not been uncovered yet; however, their appearance in specialized cell types indicates a role as structural templates or perhaps direct physical entities with specialized biophysical properties. The mitochondria located at the inner segment of the retinal cones of tree shrew (Tupaia glis and Tupaia belangeri) contain unique patterns of concentric cristae with a highly ordered membrane arrangement in three dimensions similar to the photonic nanostructures observed in butterfly wing scales. Using a direct template matching method, we show that the inner mitochondrial membrane folds into multi-layered (8 to 12 layers) gyroid cubic membrane arrangements in the photoreceptor cells. Three-dimensional simulation data demonstrate that such multi-layer gyroid membrane arrangements in the retinal cones of a tree shrew's eye can potentially function as: (i) multi-focal lens; (ii) angle-independent interference filters to block UV light; and (iii) a waveguide photonic crystal. These theoretical results highlight for the first time the significance of multi-layer cubic membrane arrangements to achieve near-quasi-photonic crystal properties through the simple and reversible biological process of continuous membrane folding. PMID:24098837

  6. Structure and stability of pseudo-cubic tetragonal boron

    NASA Astrophysics Data System (ADS)

    Shirai, Koun; Uemura, Naoki; Dekura, Haruhiko

    2017-05-01

    Pseudo-cubic tetragonal boron, which may be another form of boron allotropes, has recently been discovered under high pressure and high temperature conditions. In this paper, the structure of pseudo-cubic tetragonal boron is studied by density-functional-theory (DFT) calculation. The structure is abnormal compared with other boron allotropes in many respects, making it difficult to comprehend. The lattice is very close to a cubic lattice, such that the icosahedra are largely distorted along the c-axis. Such distortions are normally not favorable for boron crystals; in fact, the present calculations supported this. The reported positions of partially occupied interstitial sites render the intericosahedral bonds unusually long or short, which were again not supported by the present calculations. Furthermore, the potential of involving impurities is unlikely in terms of the formation energy and lattice parameters. Therefore, the structure of pseudo-cubic tetragonal boron was not proven by calculation, despite this extensive study. Something may be overlooked in the present structural model, or something unusual may have happened in this structure, the solution of which is left as an open question.

  7. Magnetic relaxation of nanoparticles with cubic and uniaxial anisotropies

    NASA Astrophysics Data System (ADS)

    Correia, Marcos J.; Schwarzacher, Walther; Ferreira Chagas, Edson; Figueiredo, Wagner

    2016-01-01

    We use Monte Carlo methods to simulate the influence of Brownian rotation on the magnetic properties of a system of single-domain magnetic nanoparticles with cubic and uniaxial magnetic anisotropies. The distinguishing feature of the system is a strongly temperature-dependent viscosity. Such a system has been realized experimentally using magnetic nanoparticles suspended in a freeze-concentrated cryoprotectant solution.

  8. Cubic spline approximation techniques for parameter estimation in distributed systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.; Kunisch, K.

    1983-01-01

    Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.

  9. Connecting the Dots Parametrically: An Alternative to Cubic Splines.

    ERIC Educational Resources Information Center

    Hildebrand, Wilbur J.

    1990-01-01

    Discusses a method of cubic splines to determine a curve through a series of points and a second method for obtaining parametric equations for a smooth curve that passes through a sequence of points. Procedures for determining the curves and results of each of the methods are compared. (YP)

  10. Cubic Equations and the Ideal Trisection of the Arbitrary Angle

    ERIC Educational Resources Information Center

    Farnsworth, Marion B.

    2006-01-01

    In the year 1837 mathematical proof was set forth authoritatively stating that it is impossible to trisect an arbitrary angle with a compass and an unmarked straightedge in the classical sense. The famous proof depends on an incompatible cubic equation having the cosine of an angle of 60 and the cube of the cosine of one-third of an angle of 60 as…

  11. Estimating the board foot to cubic foot ratio

    Treesearch

    Steve P. Verrill; Victoria L. Herian; Henry N. Spelter

    2004-01-01

    Certain issues in recent softwood lumber trade negotiations have centered on the method for converting estimates of timber volumes reported in cubic meters to board feet. Such conversions depend on many factors; three of the most important of these are log length, diameter, and taper. Average log diameters vary by region and have declined in the western United States...

  12. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    PubMed

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism.

  13. Aspects on mediated glucose oxidation at a supported cubic phase.

    PubMed

    Aghbolagh, Mahdi Shahmohammadi; Khani Meynaq, Mohammad Yaser; Shimizu, Kenichi; Lindholm-Sethson, Britta

    2017-12-01

    A supported liquid crystalline cubic phase housing glucose oxidase on an electrode surface has been suggested as bio-anode in a biofuel. The purpose of this investigation is to clarify some aspect on the mediated enzymatic oxidation of glucose in such a bio-anode where the mediator ferrocene-carboxylic acid and glucose were dissolved in the solution. The enzyme glucose oxidase was housed in the water channels of the mono-olein cubic phase. The system was investigated with cyclic voltammetry at different scan rates and the temperature was varied between 15°C and 30°C. The diffusion coefficient of the mediator and also the film resistance was estimated showing a large decrease in the mass-transport properties as the temperature was decreased. The current from mediated oxidation of glucose at the electrode surface increased with decreasing film thickness. The transport of the mediator in the cubic phase was the rate-limiting step in the overall reaction, where the oxidation of glucose took place at the outer surface of the cubic phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    SciTech Connect

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  15. Ferrous polycrystalline shape-memory alloy showing huge superelasticity.

    PubMed

    Tanaka, Y; Himuro, Y; Kainuma, R; Sutou, Y; Omori, T; Ishida, K

    2010-03-19

    Shape-memory alloys, such as Ni-Ti and Cu-Zn-Al, show a large reversible strain of more than several percent due to superelasticity. In particular, the Ni-Ti-based alloy, which exhibits some ductility and excellent superelastic strain, is the only superelastic material available for practical applications at present. We herein describe a ferrous polycrystalline, high-strength, shape-memory alloy exhibiting a superelastic strain of more than 13%, with a tensile strength above 1 gigapascal, which is almost twice the maximum superelastic strain obtained in the Ni-Ti alloys. Furthermore, this ferrous alloy has a very large damping capacity and exhibits a large reversible change in magnetization during loading and unloading. This ferrous shape-memory alloy has great potential as a high-damping and sensor material.

  16. Dosimetric characterization of a 2D polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Bartoli, A.; Cupparo, I.; Baldi, A.; Scaringella, M.; Pasquini, A.; Pallotta, S.; Talamonti, C.; Bruzzi, M.

    2017-03-01

    A bidimensional pixelated dosimeter composed of two polycrystalline Chemical Vapour Deposited diamond films, 2.5 × 2.5 cm2 each placed aside, has been manufactured so as to obtain a detector with a 2 mm pitch over a total active area of 5.0 × 2.5 cm2. We performed the dosimetric characterization of the detector with an Elekta Synergy linear accelerator using a 6 MV photon beam. Uniformity maps, rise and fall times, signal repeatability, dependence on dose rate, linearity with dose and sensitivity show that the device is suitable for dosimetric evaluations in Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy (VMAT) treatments. Then, a first quantitative evaluation of the dose distribution in a lung VMAT treatment plan has been carried out, by comparing data from our device with Treatment Planning Sistem values by means of a Γ test, with promising results.

  17. Modeling crack propagation in polycrystalline microstructure using variational multiscale method

    DOE PAGES

    Sun, Shang; Sundararaghavan, Veera

    2016-01-01

    Crack propagation in a polycrystalline microstructure is analyzed using a novel multiscale model. The model includes an explicit microstructural representation at critical regions (stress concentrators such as notches and cracks) and a reduced order model that statistically captures the microstructure at regions far away from stress concentrations. Crack propagation is modeled in these critical regions using the variational multiscale method. In this approach, a discontinuous displacement field is added to elements that exceed the critical values of normal or tangential tractions during loading. Compared to traditional cohesive zone modeling approaches, the method does not require the use of any specialmore » interface elements in the microstructure and thus can model arbitrary crack paths. As a result, the capability of the method in predicting both intergranular and transgranular failure modes in an elastoplastic polycrystal is demonstrated under tensile and three-point bending loads.« less

  18. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  19. Effect of localized polycrystalline silicon properties on solar cell performance

    NASA Technical Reports Server (NTRS)

    Leung, D.; Iles, P. A.; Hyland, S.; Kachare, A.

    1984-01-01

    Several forms of polycrystalline silicon, mostly from cast ingots, (including UCP, SILSO and HEM) were studied. On typical slices, localized properties were studied in two ways. Small area (about 2.5 sq mm) mesa diodes were formed, and localized photovoltaic properties were measured. Also a small area (about .015 sq mm) light spot was scanned across the cells; the light spot response was calibrated to measure local diffusion length directly. Using these methods, the effects of grain boundaries, or of intragrain imperfections were correlated with cell performance. Except for the fine grain portion of SILSO, grain boundaries played only a secondary role in determining cell performance. The major factor was intra-grain material quality and it varied with position in ingots and probably related to solidification procedure.

  20. Si nanotubes and nanospheres with two-dimensional polycrystalline walls.

    PubMed

    Castrucci, Paola; Diociaiuti, Marco; Tank, Chiti Manohar; Casciardi, Stefano; Tombolini, Francesca; Scarselli, Manuela; De Crescenzi, Maurizio; Mathe, Vikas Laxman; Bhoraskar, Sudha Vasant

    2012-08-21

    We report on the characteristics of a new class of Si-based nanotubes and spherical nanoparticles synthesized by the dc-arc plasma method in a mixture of argon and hydrogen. These two nanostructures share common properties: they are hollow and possess very thin, highly polycrystalline and mainly oxidized walls. In particular, we get several hints indicating that their walls could constitute only one single Si oxidized layer. Moreover, we find that only the less oxidized nanotubes exhibit locally atomic ordered, snakeskin-like areas which possess a hexagonal arrangement which can be interpreted either as an sp(2) or sp(3) hybridized Si or Si-H layer. Their ability to not react with oxygen seems to suggest the presence of sp(2) configuration or the formation of silicon-hydrogen bonding.

  1. Slot waveguides with polycrystalline silicon for electrical injection.

    PubMed

    Preston, Kyle; Lipson, Michal

    2009-02-02

    We demonstrate horizontal slot waveguides using high-index layers of polycrystalline and single crystalline silicon separated by a 10 nm layer of silicon dioxide. We measure waveguide propagation loss of 7 dB/cm and a ring resonator intrinsic quality factor of 83,000. The electric field of the optical mode is strongly enhanced in the low-index oxide layer, which can be used to induce a strong modal gain when an active material is embedded in the slot. Both high-index layers are made of electrically conductive silicon which can efficiently transport charge to the slot region. The incorporation of conductive silicon materials with high-Q slot waveguide cavities is a key step for realizing electrical tunneling devices such as electrically pumped silicon-based light sources.

  2. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  3. Optical properties of ultrapure nano-polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Ikeda, Kazuhiro; Sumiya, Hitoshi

    2016-12-01

    We synthesized an ultrapure nano-polycrystalline diamond (NPD) containing very few chemical impurities (<1 ppm). The 13C concentration of the carbon source was reduced to less than 0.01% by using 12C-enriched high-purity carbon. The ultrapure NPD was synthesized by direct conversion from graphite under high-pressure and high-temperature (HPHT) conditions. We measured the optical properties of the ultrapure NPD, which appeared yellowish, attributed to the structural features of the specimen. Also, the one-phonon absorption peak at 1220 cm-1 is attributed to the broken symmetry of the diamond lattice. Moreover, a defect-related PL peak was found at 730 nm.

  4. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    NASA Astrophysics Data System (ADS)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  5. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Lucchini, M.; Sato, S. A.; Ludwig, A.; Herrmann, J.; Volkov, M.; Kasmi, L.; Shinohara, Y.; Yabana, K.; Gallmann, L.; Keller, U.

    2016-08-01

    Short, intense laser pulses can be used to access the transition regime between classical and quantum optical responses in dielectrics. In this regime, the relative roles of inter- and intraband light-driven electronic transitions remain uncertain. We applied attosecond transient absorption spectroscopy to investigate the interaction between polycrystalline diamond and a few-femtosecond infrared pulse with intensity below the critical intensity of optical breakdown. Ab initio time-dependent density functional theory calculations, in tandem with a two-band parabolic model, accounted for the experimental results in the framework of the dynamical Franz-Keldysh effect and identified infrared induction of intraband currents as the main physical mechanism responsible for the observations.

  6. EBIC and IBIC Imaging on Polycrystalline CdTe

    NASA Astrophysics Data System (ADS)

    Baier, Nicolas; Brambilla, Andrea; Feuillet, Guy; Lohstroh, Annika; Renet, Sébastien; Sellin, Paul

    2007-06-01

    Polycrystalline Cadmium Telluride samples were electrically characterized using two high resolution imaging techniques: Electron and Ion Beam Induced Current. Using different probes, electrons and protons, both surface and bulk transport properties were obtained. The grain structure was observed and grain boundaries effects were studied. The material tends to have a homogeneous response under low excitation, with only few weakly responding grains and no dead areas. Under higher excitation, the material exhibits some particular behavior, like grain sub-structures. The IBIC experiment gives a measure of Charge Collection Efficiency under different sample bias voltages. In addition to the measurement of the response dispersion, it leads to a discussion of the charge transport properties and a mobility-lifetime product calculation.

  7. Polycrystalline diamond MEMS resonator technology for sensor applications.

    SciTech Connect

    Sullivan, John P.; Aslam, Dean; Sepulveda-Alancastro, Nelson

    2005-07-01

    Due to material limitations of poly-Si resonators, polycrystalline diamond (poly-C) has been explored as a new MEMS resonator material. The poly-C resonators are designed, fabricated and tested using electrostatic (Michigan State University) and piezoelectric (Sandia National Laboratories) actuation methods, and the results are compared. For comparable resonator structures, although the resonance frequencies are similar, the measured Q values in the ranges of 1000-2000 and 10,000-15,000 are obtained for electrostatic and piezoelectric actuation methods, respectively. The difference in Q for the two methods is related to different pressures used during the measurement and not to the method of measurement. For the poly-C cantilever beam resonators, the highest value of their quality factor (Q) is reported for the first time (15,263).

  8. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  9. Electron microscopy of gallium nitride growth on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Cherns, D.; Kuball, M.; Jiang, Q.; Allsopp, D.

    2015-11-01

    Transmission and scanning electron microscopy were used to examine the growth of gallium nitride (GaN) on polycrystalline diamond substrates grown by metalorganic vapour phase epitaxy with a low-temperature aluminium nitride (AlN) nucleation layer. Growth on unmasked substrates was in the (0001) orientation with threading dislocation densities ≈7 × 109 cm-2. An epitaxial layer overgrowth technique was used to reduce the dislocation densities further, by depositing silicon nitride stripes on the surface and etching the unmasked regions down to the diamond substrate. A re-growth was then performed on the exposed side walls of the original GaN growth, reducing the threading dislocation density in the overgrown regions by two orders of magnitude. The resulting microstructures and the mechanisms of dislocation reduction are discussed.

  10. Defect engineering by ultrasound treatment in polycrystalline silicon

    SciTech Connect

    Ostapenko, S.; Jastrzebski, L.

    1995-08-01

    By applying ultrasound treatment (UST) to bulk and thin film polycrystalline Si (poly-Si) we have found a dramatic improvement of recombination and transport properties. The increasing of minority carrier lifetime by as much as one order of magnitude was found in short diffusion length regions, while exhibiting a strong dispersion for entire solar-grade poly-Si wafer. Relevant mechanisms are attributed to ultrasound processing on crystallographic defects, as well as UST stimulated dissociation of Fe-B pairs followed by Fe{sub i} gettering. A spectacular improvement of hydrogenation efficiency in poly-Si thin-films on glass substrate is demonstrated by resistivity study and confirmed using spatially resolved photoluminescence and nanoscale contact potential difference mapping. By applying UST to commercial solar cells we found the increasing of cell efficiency at low light excitation.

  11. Preparation and adhesion of ultrathin polyimide films on polycrystalline silver

    NASA Astrophysics Data System (ADS)

    Grunze, M.; Lamb, R. N.

    1987-01-01

    4.4-oxydianiline (ODA) and 1,2,3,5-benzenetetracarboxylic anhydride (PMDA) were deposited from the vapor phase onto a polycrystalline silver substrate and polymerization of the two components to form ultrathin polyimide films ( d≈ 11 Å) was followed by X-ray photoelectron spectroscopy. Both PMDA and ODA chemisorb on the clean surface under partial fragmentation. Co-deposition of ODA and PMDA followed by heating of the substrate led to formation of thermally stable ( T<450°C) polyimide films. Our data indicate that adhesion of the polyimide film to the surface involves chemical bonding to fragmented PMDA and/or ODA chemisorbed on the substrate. Our experiments show that polyimide films can be prepared sufficiently thin to allow the application of surface sensitive techniques to probe the substrate-polymer interface and to study the basic physics and chemistry of adhesion.

  12. Hydrogen transport in phosphorus and boron doped polycrystalline silicon

    SciTech Connect

    Nickel, N.H.; Kaiser, I.

    1999-07-01

    Hydrogen diffusion in phosphorus and boron doped polycrystalline silicon was investigated by deuterium diffusion experiments. The presence of dopants enhances hydrogen diffusion. The effective diffusion coefficient D{sub eff} is thermally activated and the activation energy varies between 0.1 and 0.4 eV. This is accompanied by a variation of the diffusion prefactor by 12 orders of magnitude. Using the theoretical diffusion prefactor the actual energy {bar E}{sub A} was calculated from D{sub eff}. {bar E}{sub A} also depends strongly on the Fermi energy and exhibits a similar dependence as the formation energies of H{sup +} and H{sup {minus}} in single crystal silicon.

  13. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  14. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  15. Temperature dependence of the internal friction of polycrystalline indium

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, K. V.; Golyandin, S. N.; Kustov, S. B.

    2010-12-01

    The temperature dependences of the internal friction and the elastic modulus of polycrystalline indium have been investigated in the temperature range 7-320 K at oscillatory loading frequencies of approximately 100 kHz. The effect of temperature on the amplitude dependence and the effect of high-amplitude loading at 7 K on the temperature and amplitude dependences of the internal friction of indium have been analyzed. It has been demonstrated that the thermocycling leads to microplastic deformation of indium due to the anisotropy of thermal expansion and the appearance of a "recrystallization" maximum in the spectrum of the amplitude-dependent internal friction. The conclusion has been drawn that the bulk diffusion of vacancies and impurities begins at temperatures of approximately 90 K and that, at lower temperatures, the diffusion occurs in the vicinity of dislocations. It has been revealed that the high-temperature internal friction background becomes noticeable after the dissolution of Cottrell atmospheres.

  16. Convoy electron production in polycrystalline and monocrystalline targets

    SciTech Connect

    Huldt, S.

    1980-01-01

    The velocity distribution of electrons ejected close to the forward direction by 0.8-2 MeV/A ions traversing various solid targets, including a Au monocrystal, is measured in coincidence with emerging charge-selected ions. The velocity spectrum is observed to be independent of outgoing projectile velocity and charge state for polycrystalline targets. Measurements on the Au crystal under channeling conditions show dependences on final charge state, and are tentatively explained by assuming that the main contribution to the production yield comes from the non-channeled fraction of the ions. A simple model for the creation of the forward-ejected electrons is proposed, which accounts for most of the experimental findings.

  17. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    SciTech Connect

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example components created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.

  18. Magnetoelectric coupling in polycrystalline FeVO{sub 4}

    SciTech Connect

    Kundys, Bohdan; Martin, Christine; Simon, Charles

    2009-11-01

    We report coupling between magnetic and electric orders for antiferromagnetic polycrystalline FeVO{sub 4} in which magnetism-induced polarization has been recently found in noncollinear antiferromagnetic state below the second antiferromagnetic phase transition at T{sub N2}{approx_equal}15.7 K. In this low symmetry phase space group P1, the magnetic field dependence of electric polarization evidences a clear magnetoelectric coupling in the noncollinear spin-configured antiferromagnetic phase. The discontinuity of magnetodielectric effect observed at the vicinity of the polar to nonpolar transition evidences competition between different magnetodielectric couplings in the two different antiferromagnetic states. The existence of thermal expansion anomaly near T{sub N2} and magnetostriction effect support magnetoelastically mediated scenario of the observed magnetoelectric effect.

  19. Radiation hardness of three-dimensional polycrystalline diamond detectors

    SciTech Connect

    Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  20. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    SciTech Connect

    Tiwari, A.; Boussois, K.; Nait-Ali, B.; Smith, D. S.; Blanchart, P.

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  1. Dependence of resistivity on the doping level of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.

    1975-01-01

    The electrical resistivity of polycrystalline silicon films has been studied as a function of doping concentration and heat treatment. The films were grown by the chemical vapor decomposition of silane on oxidized silicon wafers. The resistivity of the as-deposited films was widely scattered but independent of dopant atom concentration at the lightly doped levels and was strong function of dopant level in the more heavily doped regions. Postdeposition heat treatments in an oxidizing atmosphere remove scatter in the data. The resultant resistivity for dopant levels less than 10 to the 16th atoms/per cu cm was approximately equal to that of intrinsic silicon. In the next 2 orders of magnitude increase in dopant level, the resistivity dropped 6 orders of magnitude. A model, based on high dopant atom segregation in the grain boundaries, is proposed to explain the results.

  2. Bosonic Anomalies in Boron-Doped Polycrystalline Diamond

    NASA Astrophysics Data System (ADS)

    Zhang, Gufei; Samuely, Tomas; Kačmarčík, Jozef; Ekimov, Evgeny A.; Li, Jun; Vanacken, Johan; Szabó, Pavol; Huang, Junwei; Pereira, Paulo J.; Cerbu, Dorin; Moshchalkov, Victor V.

    2016-12-01

    Quantum confinement and coherence effects are considered the cause of many specific features for systems which are generally low dimensional, strongly disordered, and/or situated in the vicinity of the metal-insulator transition. Here, we report on the observation of anomalous resistance peak and specific heat peaks superimposed at the superconducting transition of heavily boron-doped polycrystalline bulk diamond, which is a three-dimensional system situated deep on the metallic side of the boron-doping-driven metal-insulator transition in diamond. The anomalous resistance peak and specific heat peaks are interpreted as a result of confinement and coherence effects in the presence of intrinsic and extrinsic granularity. Our data, obtained for superconducting diamond, provide a reference for understanding the superconductivity in other granular disordered systems. Furthermore, our study brings attention to the significant influence of granular disorder on the physical properties of boron-doped diamond, which is considered a promising candidate for electronics applications.

  3. Ion implantation of erbium into polycrystalline cadmium telluride

    SciTech Connect

    Ushakov, V. V. Klevkov, Yu. V.; Dravin, V. A.

    2015-05-15

    The specific features of the ion implantation of polycrystalline cadmium telluride with grains 20–1000 μm in dimensions are studied. The choice of erbium is motivated by the possibility of using rare-earth elements as luminescent “probes” in studies of the defect and impurity composition of materials and modification of the composition by various technological treatments. From the microphotoluminescence data, it is found that, with decreasing crystal-grain dimensions, the degree of radiation stability of the material is increased. Microphotoluminescence topography of the samples shows the efficiency of the rare-earth probe in detecting regions with higher impurity and defect concentrations, including regions of intergrain boundaries.

  4. Predicting fracture in micron-scale polycrystalline silicon MEMS structures.

    SciTech Connect

    Hazra, Siddharth S.; de Boer, Maarten Pieter; Boyce, Brad Lee; Ohlhausen, James Anthony; Foulk, James W., III; Reedy, Earl David, Jr.

    2010-09-01

    Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile strength distribution to predict the strength of a complex MEMS structure. To address such issues, two recently developed high throughput MEMS tensile test techniques have been used to measure strength distribution tails. The measured tensile strength distributions enable the definition of a threshold strength as well as an inferred maximum flaw size. The nature of strength-controlling flaws has been identified and sources of the observed variation in strength investigated. A double edge-notched specimen geometry was also tested to study the effect of a severe, micron-scale stress concentration on the measured strength distribution. Strength-based, Weibull-based, and fracture mechanics-based failure analyses were performed and compared with the experimental results.

  5. Polycrystalline CVD diamond device level modeling for particle detection applications

    NASA Astrophysics Data System (ADS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  6. Edge determination for polycrystalline silicon lines on gate oxide

    NASA Astrophysics Data System (ADS)

    Villarrubia, John S.; Vladar, Andras E.; Lowney, Jeremiah R.; Postek, Michael T., Jr.

    2001-08-01

    In a scanning electron microscope (SEM) top-down secondary electron image, areas within a few tens of nanometers of the line edges are characteristically brighter than the rest of the image. In general, the shape of the secondary electron signal within such edge regions depends upon the energy and spatial distribution of the electron beam and the sample composition, and it is sensitive to small variations in sample geometry. Assigning edge shape and position is done by finding a model sample that is calculated, on the basis of a mathematical model of the instrument-sample interaction, to produce an image equal to the one actually observed. Edge locations, and consequently line widths, are then assigned based upon this model sample. In previous years we have applied this strategy to lines with geometry constrained by preferential etching of single crystal silicon. With this study we test the procedure on polycrystalline silicon lines. Polycrystalline silicon lines fabricated according to usual industrial processes represent a commercially interesting albeit technically more challenging application of this method. With the sample geometry less constrained a priori, a larger set of possible sample geometries must be modeled and tested for a match to the observed line scan, and the possibility of encountering multiple acceptable matches is increased. For this study we have implemented a data analysis procedure that matches measured image line scans to a precomputed library of sample shapes and their corresponding line scans. Linewidth test patterns containing both isolated and dense lines separated form the underlying silicon substrate by a thin gate oxide have been fabricated. Line scans from test pattern images have been fitted to the library of modeled shapes.

  7. Growth of textured mullite fibers using polycrystalline precursors

    NASA Astrophysics Data System (ADS)

    Yoon, Wonki

    Fine ceramic oxide fibers are widely used as reinforcements in composites for high temperature applications. The primary goal of this research was to investigate the growth of textured or single crystal oxide fibers by heat treatment of polycrystalline or amorphous, extruded precursor fibers. Mullite was selected for this study due to its excellent chemical stability, creep resistance and strength at high temperatures. Micrographic analysis and in-situ synchrotron X-ray diffraction analysis have been performed on mullite systems in order to study the anisotropic grain growth and the effect of titania additions in mullite. The estimated activation energies from the SEM micrographic particle size analysis were 644.3 kJ/mol and 773.7 kJ/mol for the length and thickness, respectively. An in-situ synchrotron X-ray diffraction microstructure analysis was done with a Curved Image Plate (CIP) detector and the fiber was heat treated in a QLF. The apparent crystallite size showed anisotropy in crystallite growth. Furthermore, a higher growth rate along the [001] direction than the [110] direction was observed. Mullite whiskers were prepared by HF leaching and templated into polycrystalline mullite fibers by extrusion. Textured growth of mullite fibers with elongated grains, aligned along the long-axis of the fibers, was achieved by heat treatment. Repeated heat treatment cycles of a whisker-templated fiber showed a bamboo-like microstructure. It was confirmed by SEM, TEM and optical microscopy (OM) that the growth direction along the fiber length was the [001] direction of orthorhombic mullite.

  8. Precipitate Rafting in a Polycrystalline Superalloy During Compression Creep

    NASA Astrophysics Data System (ADS)

    Altincekic, Arun; Balikci, Ercan

    2014-12-01

    Rafting is an industrially and scientifically important phenomenon for precipitate-strengthened alloys utilized at high temperatures. Although this phenomenon is observed in polycrystalline alloys as well, the literature lacks scientific work on rafting in polycrystals. Scientific work is usually conducted on single-crystal superalloys. Being one of the many polycrystalline nickel-base superalloys, IN738LC has a good high-temperature strength and hot corrosion resistance. Coherency strains between the FCC gamma matrix ( γ)- and L12 gamma prime ( γ')-precipitate phase particles mainly provide the high-temperature strength in IN738LC. Conical IN738LC specimens have been aged under compression for various times [24, 192, 480, and 960 hours at 1223 K (950 °C) and 12, 24, 192, and 480 hours at 1323 K (1050 °C)] in order to observe the morphological evolution of the γ' precipitate microstructure. Dislocations play a determining role in morphological changes. Fingerprints of matrix dislocations in the form of indentations on γ' precipitates have been identified by scanning electron microscope. Precipitate morphology has become more complex through dissolution/merging as temperature, aging time, and stress have increased. The precipitate morphology has evolved toward rafting at appropriate strain, temperature, and time. Localized slip bands have marked the beginning of rafting. The rafts have been observed at around a 45 deg angle away from the load direction. For higher stress positions, there is a trend toward N-type rafting which is expected of a positive misfit alloy under compression. Rafts eventually have collapsed due to severe creep deformation.

  9. Macroscopic elastic properties of textured ZrN-AlN polycrystalline aggregates: From ab initio calculations to grain-scale interactions

    NASA Astrophysics Data System (ADS)

    Holec, D.; Tasnádi, F.; Wagner, P.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.; Keckes, J.

    2014-11-01

    Despite the fast development of computational material modeling, the theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic Zr1 -xAlxN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to make the three cubic directions [1 0 0 ] , [0 1 0 ] , and [0 0 1 ] as similar as possible. In this way, only a small spread of elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder and computational limits regarding the supercell size and calculational time is proposed. The single-crystal elastic constants are shown to vary smoothly with composition, yielding x ≈0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and sharpness. It turns out that for low AlN mole fractions, the spread of the possible Young's modulus data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic Zr1 -xAlxN contains also the evaluation of the texture typical for thin films.

  10. Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo.

    PubMed

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2010-10-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0-200 μV) and 2) test if noise amplitudes ( 0-15 μV ) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9-10 kΩ for voltages typical of neural signal amplitudes ( > 150-200 μV). Acute multiunit measurements and noise measurements were made in n=6 and n=8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ±10.13 pW) was significantly higher than the corresponding value in polycrystalline silicon microelectrodes (7.49 ±2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements.

  11. Surface properties of atomically flat poly-crystalline SrTiO3

    PubMed Central

    Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok

    2015-01-01

    Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275

  12. Structural, elastic, electronic and optical properties of the cubic perovskites CaXO ( X=Hf and Sn)

    NASA Astrophysics Data System (ADS)

    Cherrad, D.; Maouche, D.; Reffas, M.; Benamrani, A.

    2010-02-01

    The structural, elastic, electronic and optical properties of CaXO 3 compounds with the cubic perovskites structure have been investigated, by employing a first principles method, using the plane wave pseudo potential calculations (PP-PW), based on the density functional theory (DFT), within the local density approximation (LDA). The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk, shear and Young's moduli for ideal monocrystalline and for polycrystalline CaXO 3 aggregates which we have classified as ductile in nature. Band structures reveal that these compounds are indirect energy band gap (R-G) semiconductors; the analysis of the site and momentum projected densities, valence charge density bond length, bond population and Milliken charges, shows that bonding is of covalent-ionic nature. We have found that the elastic constants C 11, C 12, C 44 are in good correlation with the bonding properties. The optical constants, including the dielectric function, optical reflectivity, refractive index and electron energy loss, are calculated for radiation up to 20 eV.

  13. Structural, elastic, and electronic properties of cubic perovskite BaHfO3 obtained from first principles

    NASA Astrophysics Data System (ADS)

    Zhao, Hongsheng; Chang, Aimin; Wang, Yunlan

    2009-08-01

    We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants ( C11, C12, and C44), bulk modules B and its pressure derivatives B‧, compressibility β, shear modulus G, Young's modulus Y, Poisson's ratio ν, and Lamé constants ( μ,λ) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3.

  14. Different spin relaxation mechanisms between epitaxial and polycrystalline Ta thin films

    NASA Astrophysics Data System (ADS)

    Gamou, Hiromu; Ryu, Jeongchun; Kohda, Makoto; Nitta, Junsaku

    2017-02-01

    We demonstrate that spin relaxation mechanisms are different between epitaxial Ta and disordered polycrystalline Ta thin films by determining the relationship between spin relaxation time and diffusion constant. To control the diffusion constant, epitaxial Ta and polycrystalline Ta thin films are prepared by sputtering on different substrates and at different growth temperatures. The spin relaxation time is extracted from the results of weak antilocalization analysis including the superconducting fluctuation effect. The dominant spin relaxation mechanism for polycrystalline Ta thin films is the Elliot–Yafet mechanism, as is expected for centrosymmetric metal films. In contrast, the D’yakonov–Perel’ mechanism plays a role in epitaxial Ta thin films.

  15. Impact of graphene polycrystallinity on the performance of graphene field-effect transistors

    SciTech Connect

    Jiménez, David; Chaves, Ferney; Cummings, Aron W.; Van Tuan, Dinh; Kotakoski, Jani; Roche, Stephan

    2014-01-27

    We have used a multi-scale physics-based model to predict how the grain size and different grain boundary morphologies of polycrystalline graphene will impact the performance metrics of graphene field-effect transistors. We show that polycrystallinity has a negative impact on the transconductance, which translates to a severe degradation of the maximum and cutoff frequencies. On the other hand, polycrystallinity has a positive impact on current saturation, and a negligible effect on the intrinsic gain. These results reveal the complex role played by graphene grain boundaries and can be used to guide the further development and optimization of graphene-based electronic devices.

  16. Preparation and characterization of polycrystalline and single crystal Gd doped barium cerium oxide

    SciTech Connect

    West, D.; Haile, S.M.; Feigelson, R.S.

    1995-12-31

    Polycrystalline samples of BaCe{sub x}Gd{sub 1{minus}x}O{sub 3} have been prepared with 0.10 < x < 0.20. X-ray powder diffraction indicates the samples contain only one crystalline phase for doping levels < 0.15. Transmission electron microscopy analyses on the 10% doped sample revealed no glassy phases in the intergranular regions. Single crystal fibers were prepared by Laser Heated Pedestal Growth (LHPG) from the polycrystalline samples. Fiber growth was non-conservative thus the single crystal quality was limited. Preliminary conductivity measurements on the polycrystalline samples using AC impedance spectroscopy are compared with literature data.

  17. Molecular Dynamics Simulations of Displacement Cascades in Single and Polycrystalline Zirconia

    SciTech Connect

    Du Jincheng

    2009-03-10

    Displacement cascades in zirconia have been studied using classical molecular dynamics simulations. Polycrystalline zirconia with nano-meter grains were created using Voronoi polyhedra construction and studied in comparison with single crystalline zirconia. The results show that displacement cascades with similar kinetic energy generated larger number of displaced atoms in polycrystalline than in the single crystal structure. The fraction of atoms with coordination number change was also higher in polycrystalline zirconia that was explained to be due to the diffusion of oxygen and relaxation at grain boundaries.

  18. Alpha decay self-damage in cubic and monoclinic zirconolite

    SciTech Connect

    Clinard, F.W. Jr.; Land, C.C.; Peterson, D.E.; Rohr, D.L.; Roof, R.B.

    1981-01-01

    Samples of primarily-monoclinic /sup 238/Pu-doped zirconolite were stored at ambient temperature to allow accumulation of alpha decay self-damage to a dose of 1 x 10/sup 24/ ..cap alpha../m/sup 3/ (equivalent to a SYNROC age of approx. 10/sup 3/y). Bulk swelling reached 2.3 vol% with no tendency toward saturation, a damage response similar to that observed for cubic Pu-doped zirconolite. X-ray volumetric swelling at 4 x 10/sup 24/ ..cap alpha../m/sup 3/ was 1 vol%, considerably less than that for the cubic material. Changes in cell dimensions differed significantly from those reported by others for a monoclinic natural mineral. Extensive microcracking was observed, and is attributed at least partially to swelling differences between the matrix and minor phases.

  19. Cubic ideal ferromagnets at low temperature and weak magnetic field

    NASA Astrophysics Data System (ADS)

    Hofmann, Christoph P.

    2017-04-01

    The low-temperature series for the free energy density, pressure, magnetization and susceptibility of cubic ideal ferromagnets in weak external magnetic fields are discussed within the effective Lagrangian framework up to three loops. The structure of the simple, body-centered, and face-centered cubic lattice is taken into account explicitly. The expansion involves integer and half-integer powers of the temperature. The corresponding coefficients depend on the magnetic field and on low-energy effective constants that can be expressed in terms of microscopic quantities. Our formulas may also serve as efficiency or consistency check for other techniques like Green's function methods, where spurious terms in the low-temperature expansion have appeared. We explore the sign and magnitude of the spin-wave interaction in the pressure, magnetization and susceptibility, and emphasize that our effective field theory approach is fully systematic and rigorous.

  20. Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals.

    PubMed

    Gharbi, Mohamed Amine; Manet, Sabine; Lhermitte, Julien; Brown, Sarah; Milette, Jonathan; Toader, Violeta; Sutton, Mark; Reven, Linda

    2016-03-22

    Blue phases (BPs), a distinct class of liquid crystals (LCs) with 3D periodic ordering of double twist cylinders involving orthogonal helical director twists, have been theoretically studied as potential templates for tunable colloidal crystals. Here, we report the spontaneous formation of thermally reversible, cubic crystal nanoparticle (NP) assemblies in BPs. Gold NPs, functionalized to be highly miscible in cyanobiphenyl-based LCs, were dispersed in BP mixtures and characterized by polarized optical microscopy and synchrotron small-angle X-ray scattering (SAXS). The NPs assemble by selectively migrating to periodic strong trapping sites in the BP disclination lines. The NP lattice, remarkably robust given the small particle size (4.5 nm diameter), is commensurate with that of the BP matrix. At the BP I to BP II phase transition, the NP lattice reversibly switches between two different cubic structures. The simultaneous presence of two different symmetries in a single material presents an interesting opportunity to develop novel dynamic optical materials.

  1. Infinite geometric frustration in a cubic dipole cluster

    NASA Astrophysics Data System (ADS)

    Schönke, Johannes; Schneider, Tobias M.; Rehberg, Ingo

    2015-01-01

    The geometric arrangement of interacting (magnetic) dipoles is a question of fundamental importance in physics, chemistry, and engineering. Motivated by recent progress concerning the self-assembly of magnetic structures, the equilibrium orientation of eight interacting dipoles in a cubic cluster is investigated in detail. Instead of discrete equilibria we find a type of ground state consisting of infinitely many orientations. This continuum of energetically degenerate states represents a yet unknown form of magnetic frustration. The corresponding dipole rotations in the flat potential valley of this Goldstone mode enable the construction of frictionless magnetic couplings. Using computer-assisted algebraic geometry methods, we moreover completely enumerate all equilibrium configurations. The seemingly simple cubic system allows for exactly 9536 unstable discrete equilibria falling into 183 distinct energy families.

  2. Conformal cubical 3D transformation-based metamaterial invisibility cloak.

    PubMed

    Savić, Slobodan V; Notaroš, Branislav M; Ilić, Milan M

    2013-01-01

    A conformal cubical transformation-based metamaterial invisibility cloak is presented and verified, in the near and the far field, by a rigorous full-wave numerical technique based on a higher-order, large-domain finite element method, employing large anisotropic, continuously inhomogeneous generalized hexahedral finite elements, with no need for discretization of the permittivity and permeability profiles of the cloak. The analysis requires about 30 times fewer unknowns than with commercial software. To our knowledge, this is the first conformal cubical cloak and the first full-wave computational characterization of such a structure with sharp edges. The presented methodology can also be used in development of conformal, transformation-based perfectly matched layers.

  3. Hermite cubic spline multi-wavelets on the cube

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2015-11-01

    In 2000, W. Dahmen et al. proposed a construction of Hermite cubic spline multi-wavelets adapted to the interval [0, 1]. Later, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of non-zero elements in each column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions, use an anisotropic tensor product to obtain bases on the cube [0, 1]3, and compare their condition numbers.

  4. Extreme values of the Poisson's ratio of cubic crystals

    NASA Astrophysics Data System (ADS)

    Epishin, A. I.; Lisovenko, D. S.

    2016-10-01

    The problem of determining the extrema of Poisson's ratio for cubic crystals is considered, and analytical expressions are derived to calculate its extreme values. It follows from the obtained solution that, apart from extreme values at standard orientations, extreme values of Poisson's ratio can also be detected at special orientations deviated from the standard ones. The derived analytical expressions are used to calculate the extreme values of Poisson's ratio for a large number of known cubic crystals. The extremely high values of Poisson's ratio are shown to be characteristic of metastable crystals, such as crystals with the shape memory effect caused by martensitic transformation. These crystals are mainly represented by metallic alloys. For some crystals, the absolute extrema of Poisson's ratio can exceed the standard values, which are-1 for a standard minimum and +2 for a standard maximum.

  5. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    PubMed

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  6. Data reduction using cubic rational B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.; Piegl, Les A.

    1992-01-01

    A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.

  7. Circular dichroism in biological photonic crystals and cubic chiral nets.

    PubMed

    Saba, M; Thiel, M; Turner, M D; Hyde, S T; Gu, M; Grosse-Brauckmann, K; Neshev, D N; Mecke, K; Schröder-Turk, G E

    2011-03-11

    Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.

  8. Negative thermal expansion materials related to cubic zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Lind, Cora

    2001-12-01

    A non-hydrolytic sol-gel method for the preparation of ZrW2O 8 was developed. A new trigonal polymorph was discovered, which is structurally related to trigonal ZrMO2O8 and MnRe2O 8 as evidenced by powder x-ray diffraction and EXAFS studies. Seeding of the starting mixtures with cubic ZrW2O8 promoted crystallization of the cubic phase instead of trigonal material. Dehydration of ZrW2O7(OH)2·2H 2O gave cubic ZrW2O8 at 650°C, and a modification of this route led to the discovery of the new NTE materials cubic ZrMo 2O8 and HfMo2O8. These compounds crystallize in the same temperature range as the more stable trigonal AMo2O 8 polymorphs. To facilitate preparation of phase pure cubic molybdates, the influence of precursor chemistry on the crystallization behavior was investigated. The synthesis was extended to the solid solution system ZrxHf 1-xMoyW2-yO8 (0 ≤ x ≤ 1, 0 ≤ y ≤ 2). All compounds showed negative thermal expansion between 77 and 573 K. High-pressure in situ diffraction experiments were conducted on several AM2O8 polymorphs. With the exception of monoclinic ZrMo2O8, all materials underwent at least one pressure induced phase transition. Quasi-hydrostatic experiments on cubic AMo 2O8 led to a reversible transition to a new high-pressure structure, while low-pressure amorphization was observed under non-hydrostatic conditions. Isothermal kinetic studies of the cubic to trigonal transformation for ZrMo2O8 were carried out on four samples. Apparent activation energies of 170--290 kJ/mol were obtained using an Avrami model in combination with an Arrhenius analysis. This corresponds to 5% conversion levels after one year at temperatures between 220 and 315°C. Ex situ studies showed that the conversion at lower temperatures was considerably slower than what would be expected from extrapolation of the kinetic data. Drop solution calorimetry was carried out on several polymorphs of ZrMo 2O8, HfMo2O8 and ZrW2O 8. Only monoclinic ZrMo2O8 was enthalpically

  9. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    PubMed Central

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2010-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some times. Here we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3̄n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, e.g. for co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously uptaken by cells as demonstrated by fluorescence microscopy. PMID:21158438

  10. The Piecewise Cubic Method (PCM) for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook; Faller, Hugues; Reyes, Adam

    2017-07-01

    We present a new high-order finite volume reconstruction method for hyperbolic conservation laws. The method is based on a piecewise cubic polynomial which provides its solutions a fifth-order accuracy in space. The spatially reconstructed solutions are evolved in time with a fourth-order accuracy by tracing the characteristics of the cubic polynomials. As a result, our temporal update scheme provides a significantly simpler and computationally more efficient approach in achieving fourth order accuracy in time, relative to the comparable fourth-order Runge-Kutta method. We demonstrate that the solutions of PCM converges at fifth-order in solving 1D smooth flows described by hyperbolic conservation laws. We test the new scheme on a range of numerical experiments, including both gas dynamics and magnetohydrodynamics applications in multiple spatial dimensions.

  11. Data reduction using cubic rational B-splines

    NASA Technical Reports Server (NTRS)

    Chou, Jin J.; Piegl, Les A.

    1992-01-01

    A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.

  12. Novel approaches to the parametric cubic-spline interpolation.

    PubMed

    Hong, Shao-Hua; Wang, Lin; Truong, Trieu-Kien; Lin, Tsung-Ching; Wang, Lung-Jen

    2013-03-01

    The cubic-spline interpolation (CSI) scheme can be utilized to obtain a better quality reconstructed image. It is based on the least-squares method with cubic convolution interpolation (CCI) function. Within the parametric CSI scheme, it is difficult to determine the optimal parameter for various target images. In this paper, a novel method involving the concept of opportunity costs is proposed to identify the most suitable parameter for the CCI function needed in the CSI scheme. It is shown that such an optimal four-point CCI function in conjunction with the least-squares method can achieve a better performance with the same arithmetic operations in comparison with the existing CSI algorithm. In addition, experimental results show that the optimal six-point CSI scheme together with cross-zonal filter is superior in performance to the optimal four-point CSI scheme without increasing the computational complexity.

  13. A facile synthesis of cubic (Im3m) alumina films on glass with potential catalytic activity.

    PubMed

    Mitra, Anuradha; Jana, Debrina; De, Goutam

    2012-04-04

    Thermally stable phase pure mesoporous cubic (Im3m) alumina films were synthesized on glass substrates under ambient conditions. These cubic alumina films incorporated with Au NPs exhibited excellent catalytic property.

  14. Predicted cubic-foot yields of sawmill products for black cherry trees

    Treesearch

    Leland F. Hanks

    1980-01-01

    Equations and tables for estimating the cubic-foot volumes of lumber, sawdust, and sawmill residue for black cherry trees are presented. Also included are cubic-foot and board-foot predictions for the sawlog portion of the trees.

  15. Multiscale Modeling of Point and Line Defects in Cubic Lattices

    DTIC Science & Technology

    2007-01-01

    and discli- nations with finite micropolar elastoplasticity . Int. J. Plasticity. 22:210–256, 2006. 56. Menzel, A., and Steinmann, P., On the contin...Voyiadjis, G. Z., A finite strain plastic- damage model for high velocity impact using combined viscosity and gradient localization limiters: Part I...Theoretical for- mulation. Int. J. Damage Mech. 15:293–334, 2006. 58. Milstein, F., and Chantasiriwan, S,. Theoretical study of the response of 12 cubic

  16. Radiating dipoles in woodpile and simple cubic structures

    NASA Astrophysics Data System (ADS)

    Enoch, Stefan; Tayeb, Gerard; Gralak, Boris

    2002-04-01

    The emission of a dipole in a finite-thickness photonic band gap structure is investigated. The dipole is located at a large value of the local density of states and its wavelength is taken at the edge of a full band gap. The resulting emission is highly enhanced and is confined in a small angular region. This is confirmed numerically for two different structures designed from two different tree-dimensional crystal: the woodpile and the simple cubic photonic crystals.

  17. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  18. Photon-pair generation in arrays of cubic nonlinear waveguides.

    PubMed

    Solntsev, Alexander S; Sukhorukov, Andrey A; Neshev, Dragomir N; Kivshar, Yuri S

    2012-11-19

    We study photon-pair generation in arrays of cubic nonlinear waveguides through spontaneous four-wave mixing. We analyze numerically the quantum statistics of photon pairs at the array output as a function of waveguide dispersion and pump beam power. We show flexible spatial quantum state control such as pump-power-controlled transition between bunching and anti-bunching correlations due to nonlinear self-focusing.

  19. The Number of Real Roots of a Cubic Equation

    ERIC Educational Resources Information Center

    Kavinoky, Richard; Thoo, John B.

    2008-01-01

    To find the number of distinct real roots of the cubic equation (1) x[caret]3 + bx[caret]2 + cx + d = 0, we could attempt to solve the equation. Fortunately, it is easy to tell the number of distinct real roots of (1) without having to solve the equation. The key is the discriminant. The discriminant of (1) appears in Cardan's (or Cardano's) cubic…

  20. Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Jibin; Feng, Zhaosheng

    We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.

  1. Why GPCRs behave differently in cubic and lamellar lipidic mesophases

    PubMed Central

    2012-01-01

    Recent successes in the crystallographic determination of structures of transmembrane proteins in the G protein-coupled receptor (GPCR) family have established the lipidic cubic phase (LCP) environment as the medium of choice for growing structure-grade crystals by the method termed “in meso”. The understanding of in meso crystallogenesis is currently at a descriptive level. To enable an eventual quantitative, energy-based description of the nucleation and crystallization mechanism, we have examined the properties of the lipidic cubic phase system and the dynamics of the GPCR rhodopsin reconstituted into the LCP with coarse-grained molecular dynamics simulations with the Martini force-field. Quantifying the differences in the hydrophobic/hydrophilic exposure of the GPCR to lipids in the cubic and lamellar phases, we found that the highly curved geometry of the cubic phase provides more efficient shielding of the protein from unfavorable hydrophobic exposure, which leads to a lesser hydrophobic mismatch and less unfavorable hydrophobic–hydrophilic interactions between the protein and lipid–water interface in the LCP, compared to the lamellar phase. Since hydrophobic mismatch is considered a driving force for oligomerization, the differences in exposure mismatch energies between the LCP and the lamellar structures suggest that the latter provide a more favorable setting in which GPCRs can oligomerize as a prelude to nucleation and crystal growth. These new findings lay the foundation for future investigations of in meso crystallization mechanisms related to the transition from the LCP to the lamellar phase and studies aimed at an improved rational approach for generating structure-quality crystals of membrane proteins. PMID:22931253

  2. Cubic lattice nanosheets: thickness-driven light emission.

    PubMed

    Golberg, Dmitri; Zhang, Chao; Xu, Zhi

    2014-07-22

    Silicon has a diamond-like cubic crystal lattice for which two-dimensional (2D) nanometer thickness nanosheet crystallization appears not to be trivial. However, in this issue of ACS Nano, the group led by Heon-Jin Choi demonstrates the gas-phase dendritic growth of Si nanosheets, only 1 to 13 nm thick. Moreover, such nanosheets display strong thickness-dependent photoluminescence in a visible range with red, green, and blue emission each documented.

  3. A resurgence analysis for cubic and quartic anharmonic potentials

    NASA Astrophysics Data System (ADS)

    Gahramanov, Ilmar; Tezgin, Kemal

    2017-02-01

    In this work, we explicitly show resurgence relations between perturbative and one instanton sectors of the resonance energy levels for cubic and quartic anharmonic potentials in one-dimensional quantum mechanics. Both systems satisfy the Dunne-Ünsal relation and hence we are able to derive one-instanton nonperturbative contributions with the fluctuation terms to the energy merely from the perturbative data. We confirm our results with previous results obtained in the literature.

  4. Nanoparticle Phosphors Manufactured Using the Bicontinuous Cubic Phase Process

    DTIC Science & Technology

    1997-11-18

    be lipids. Some typical surfactants userul in forming bicontinuous cubic phases include sodium diethyl hexylsulphosuccinate (AOT). potassium...CaS, SrS, Zn.Cd.-.S, Y,0:, Y202S, Zn2Si04, Y3A15012, Y3(AlGa)5012, Y2Si05, LaOCl, InB03, Gd202S, ZnGa204, yttrium niobate , TAG and YAGAG. 4 Some

  5. Image data compression using cubic convolution spline interpolation.

    PubMed

    Truong, T K; Wang, L J; Reed, I S; Hsieh, W S

    2000-01-01

    A new cubic convolution spline interpolation (CCSI )for both one-dimensional (1-D) and two-dimensional (2-D) signals is developed in order to subsample signal and image compression data. The CCSI yields a very accurate algorithm for smoothing. It is also shown that this new and fast smoothing filter for CCSI can be used with the JPEG standard to design an improved JPEG encoder-decoder for a high compression ratio.

  6. Higher-order numerical solutions using cubic splines

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.; Khosla, P. K.

    1976-01-01

    A cubic spline collocation procedure was developed for the numerical solution of partial differential equations. This spline procedure is reformulated so that the accuracy of the second-derivative approximation is improved and parallels that previously obtained for lower derivative terms. The final result is a numerical procedure having overall third-order accuracy of a nonuniform mesh. Solutions using both spline procedures, as well as three-point finite difference methods, are presented for several model problems.

  7. Lattice dynamics of cubic PbTiO3

    NASA Astrophysics Data System (ADS)

    Tomeno, Izumi; Fernandez-Baca, Jaime A.; Marty, Karol J.; Tsunoda, Yorihiko; Oka, Kunihiko

    2012-02-01

    The lattice dynamics of cubic PbTiO3 has been investigated using inelastic neutron scattering. We found four kinds of soft modes in cubic PbTiO3: (1) the TO modes toward the γ point, (2) the TA λ3 mode toward the R point, (3) the TA λ3 mode around the midpoint (1/4,1/4,1/4), and (4) the TA branches in the entire range. Moreover, the TO σ4 branch becomes flat away from the zone center. The steep dispersion of the TO modes toward γ is isotropic and confined to the region ξ<0.2. The temperature dependence of the γ15 mode up to 1173 K is explained by a combination of the Lydanne-Sachs-Taller relation and the Curie-Weiss law. In contrast, the TA λ3 modes at the midpoint and R point are weakly temperature dependent. The coexistence of the soft γ15 and R25 modes is in agreement with the predicted phonon instability. The midpoint softening suggests the tendency toward forming a fourfold periodicity along the [1,1,1] direction. The energy of the TO δ5 branch for cubic PbTiO3 is considerably higher than that for Pb(Zn1/3Nb2/3)O3. This indicates that the TO modes are dominated by the B-site atom motion.

  8. Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics

    NASA Astrophysics Data System (ADS)

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-12-01

    Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.

  9. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    NASA Astrophysics Data System (ADS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-08-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.

  10. Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems

    PubMed Central

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330

  11. Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics.

    PubMed

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M Reza Rahimi

    2016-12-01

    Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO_{2} sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016)2045-232210.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.

  12. Cubic and hexagonal liquid crystals as drug delivery systems.

    PubMed

    Chen, Yulin; Ma, Ping; Gui, Shuangying

    2014-01-01

    Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.

  13. Physical properties optimization of polycrystalline LiFeAs

    NASA Astrophysics Data System (ADS)

    Singh, Shiv J.; Gräfe, Uwe; Beck, Robert; Wolter, Anja U. B.; Grafe, Hans-Joachim; Hess, Christian; Wurmehl, Sabine; Büchner, Bernd

    2016-10-01

    We present a study of parameter optimization for synthesizing truly stoichiometric polycrystalline LiFeAs. Stoichiometric LiFeAs has been prepared in a very broad range of synthesis temperature (200-900 °C) under otherwise exactly the same conditions, and has been characterized by structural, magnetic, transport, nuclear quadrupole resonance (NQR), and specific heat measurements. Our study showed that the LiFeAs phase is formed at 200 °C with a large amount of impurity phases. The amount of these impurity phases reduces with increasing synthesis temperature and the clean LiFeAs phase is obtained at a synthesis temperature of 600 °C. Magnetic susceptibility and resistivity measurements confirmed that the superconducting properties such as the critical temperature Tc, and the upper critical field Hc2 do not depend on the synthesis temperature (≤ 700 °C), remaining at almost the same value of ∼19 K and ∼40 T, respectively. However, the width ΔTc of the transition and the NQR line width decrease with increasing the synthesis temperature and reached to minimum value for the synthesis temperature of 600 °C. Our careful analysis suggests that the best sample obtained at 600 °C is optimal concerning the low resistivity, high residual resistivity ratio (RRR), low ΔTc, high Tc and Hc2, and a small NQR line width with values which are comparable to that reported for LiFeAs single crystals. Specific heat measurements confirmed the bulk superconducting nature of the samples. The Hc2 value estimated from the specific heat is consistent with that of the resistivity measurements. Concisely, 600 °C synthesis temperature yields optimal high quality polycrystalline LiFeAs bulk samples. Further improvement of the quality of the sample prepared at 600 °C could be obtained by a controlled slow cooling process. Microstructural analysis reveals that the abundance of micro-cracks becomes strongly reduced by the slow cooling process, resulting in an increase in clean and

  14. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices.

    PubMed

    Wilson, Mark W B; Rao, Akshay; Ehrler, Bruno; Friend, Richard H

    2013-06-18

    Singlet exciton fission is the process in conjugated organic molecules bywhich a photogenerated singlet exciton couples to a nearby chromophore in the ground state, creating a pair of triplet excitons. Researchers first reported this phenomenon in the 1960s, an event that sparked further studies in the following decade. These investigations used fluorescence spectroscopy to establish that exciton fission occurred in single crystals of several acenes. However, research interest has been recently rekindled by the possibility that singlet fission could be used as a carrier multiplication technique to enhance the efficiency of photovoltaic cells. The most successful architecture to-date involves sensitizing a red-absorbing photoactive layer with a blue-absorbing material that undergoes fission, thereby generating additional photocurrent from higher-energy photons. The quest for improved solar cells has spurred a drive to better understand the fission process, which has received timely aid from modern techniques for time-resolved spectroscopy, quantum chemistry, and small-molecule device fabrication. However, the consensus interpretation of the initial studies using ultrafast transient absorption spectroscopy was that exciton fission was suppressed in polycrystalline thin films of pentacene, a material that would be otherwise expected to be an ideal model system, as well as a viable candidate for fission-sensitized photovoltaic devices. In this Account, we review the results of our recent transient absorption and device-based studies of polycrystalline pentacene. We address the controversy surrounding the assignment of spectroscopic features in transient absorption data, and illustrate how a consistent interpretation is possible. This work underpins our conclusion that singlet fission in pentacene is extraordinarily rapid (∼80 fs) and is thus the dominant decay channel for the photoexcited singlet exciton. Further, we discuss our demonstration that triplet excitons

  15. Multiple Diamond Anvil (MDA) apparatus using nano-polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kunimoto, T.; Tange, Y.; Shinmei, T.; Isobe, F.; Kurio, A.; Funakoshi, K.

    2011-12-01

    Thanks to the great efforts by Dave Mao, Bill Bassett, Taro Takahashi, and their colleagues at the University of Rochester through 1960s-70s, diamond anvil cell (DAC) became a major tool to investigate the deep Earth after its invention by scientists at NBS in 1958. DAC can now cover almost the entire pressure and temperature regimes of the Earth's interior, which seems to have solved the longstanding debate on the crystal structure of iron under the P-T conditions of the Earth's inner core. In contrast, various types of static large-volume presses (LVP) have been invented, where tungsten carbide has conventionally been used as anvils. Kawai-type multianvil apparatus (MA), which utilize 6 first-stage harden steel and 8 tungsten carbide anvils, is the most successful LVP, and has been used for accurate measurements of phase transitions, physical properties, element partitioning, etc. at high pressure and temperature. However, pressures using tungsten carbide as the second-stage anvils have been limited to about 30 GPa due to significant plastic deformation of the anvils. Efforts have been made to expand this pressure limit by replacing tungsten carbide anvils with harder sintered diamond (SD) anvils over the last two decades, but the pressures available in KMA with SD anvils have still been limited to below 100 GPa. We succeeded to produce nano-polycrystalline diamond (NPD or HIME-Diamond) in 2003, which is known to have ultrahigh hardness, very high toughness and elastic stiffness, high transmittance of light, relatively low thermal conductivity. These properties are feasible for its use as anvils, and some preliminary experiments of application of NPD anvils to laser heated DAC have successfully made in the last few years. We are now able to synthesize NPD rods with about 1cm in both diameter and length using a newly constructed 6000-ton KMA at Geodynamics Research Center, Ehime University, and have just started to apply this new polycrystalline diamond as anvils

  16. Phase field modeling of grain growth in porous polycrystalline solids

    NASA Astrophysics Data System (ADS)

    Ahmed, Karim E.

    The concurrent evolution of grain size and porosity in porous polycrystalline solids is a technically important problem. All the physical properties of such materials depend strongly on pore fraction and pore and grain sizes and distributions. Theoretical models for the pore-grain boundary interactions during grain growth usually employ restrictive, unrealistic assumptions on the pore and grain shapes and motions to render the problem tractable. However, these assumptions limit the models to be only of qualitative nature and hence cannot be used for predictions. This has motivated us to develop a novel phase field model to investigate the process of grain growth in porous polycrystalline solids. Based on a dynamical system of coupled Cahn-Hilliard and All en-Cahn equations, the model couples the curvature-driven grain boundary motion and the migration of pores via surface diffusion. As such, the model accounts for all possible interactions between the pore and grain boundary, which highly influence the grain growth kinetics. Through a formal asymptotic analysis, the current work demonstrates that the phase field model recovers the corresponding sharp-interface dynamics of the co-evolution of grain boundaries and pores; this analysis also fixes the model kinetic parameters in terms of real materials properties. The model was used to investigate the effect of porosity on the kinetics of grain growth in UO2 and CeO2 in 2D and 3D. It is shown that the model captures the phenomenon of pore breakaway often observed in experiments. Pores on three- and four- grain junctions were found to transform to edge pores (pores on two-grain junction) before complete separation. The simulations demonstrated that inhomogeneous distribution of pores and pore breakaway lead to abnormal grain growth. The simulations also showed that grain growth kinetics in these materials changes from boundary-controlled to pore-controlled as the amount of porosity increases. The kinetic growth

  17. Growth, nitrogen vacancy reduction, and solid solution formation in cubic GaN thin films and the subsequent fabrication of superlattice structures using AlN and InN

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Ailey-Trent, K. S.; Kester, Daniel; Paisley, Michael J.; Perry, Bill

    1992-06-01

    Undoped GaN films have been deposited by gas-source MBE having essentially intrinsic electrical character. Acceptor-type behavior has been achieved with Mg doping. The electrical properties of these latter films were resistivity = 0.5 omega-cm, Hall mobility (holes = 10 sq cm/V-s and carrier concentration = 1(10)(exp 18) cu cm. Photo-assisted gas-source MBE growth of stoichiometric GaN was also achieved using a 500 W Hg lamp. Illumination and Ga cell temperature altered the texture of the polycrystalline GaN in unusual ways, changing the growth habit from (0001) is parallel to (100) to (0001) is parallel to (111) and back again. Thin films of cubic-BN (c-BN) were also deposited on various substrates via both gas-source MBE and electron beam MBE. The use of Si(100) substrates, the latter technique, and the characterization tools of RHEED, XPS, LEED, SEM, FTIR, and HRTEM resulted in the achievement of an initial amorphous BN layer followed by a layer of turbostratic BN and subsequently by a layer of cubic BN. Cubic BN films were also deposited on polycrystalline diamond films grown via CVD on Si(100). The effect of the bombarding species was examined. Finally, the plans for both a systematic investigation of the ion implantation and contact development and related characterization of AlN and GaN with n- and p-type dopants and the construction and employment of a UV luminescence facility is discussed.

  18. 16 CFR 500.14 - Statements of cubic measure and dry measure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Statements of cubic measure and dry measure... UNDER SECTION 4 OF THE FAIR PACKAGING AND LABELING ACT § 500.14 Statements of cubic measure and dry measure. Statements of cubic measure and dry measure shall be expressed in terms most appropriate to the...

  19. 16 CFR 500.14 - Statements of cubic measure and dry measure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Statements of cubic measure and dry measure... UNDER SECTION 4 OF THE FAIR PACKAGING AND LABELING ACT § 500.14 Statements of cubic measure and dry measure. Statements of cubic measure and dry measure shall be expressed in terms most appropriate to the...

  20. 16 CFR 500.14 - Statements of cubic measure and dry measure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Statements of cubic measure and dry measure... UNDER SECTION 4 OF THE FAIR PACKAGING AND LABELING ACT § 500.14 Statements of cubic measure and dry measure. Statements of cubic measure and dry measure shall be expressed in terms most appropriate to the...