The importance of stress percolation patterns in rocks and other polycrystalline materials.
Burnley, P C
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.
The importance of stress percolation patterns in rocks and other polycrystalline materials
Burnley, P.C.
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties. PMID:23823992
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
Origins of Folding Instabilities on Polycrystalline Metal Surfaces
NASA Astrophysics Data System (ADS)
Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.
2014-12-01
Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.
Effects of polycrystallinity in nano patterning by ion-beam sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sun Mi; Kim, J.-S., E-mail: jskim@sm.ac.kr; Yoon, D.
Employing graphites with distinctly different mean grain sizes, we study the effects of polycrystallinity on the pattern formation by ion-beam sputtering. The grains influence the growth of the ripples in a highly anisotropic fashion; both the mean uninterrupted ripple length along the ridges and the surface width depend on the mean size of the grains, which is attributed to the large sputter yield at the grain boundary compared with that on the terrace. In contrast, the ripple wavelength does not depend on the mean size of the grains, indicating that the mass transport across the grain boundaries should efficiently proceedmore » by both thermal diffusion and ion-induced processes.« less
NASA Astrophysics Data System (ADS)
Yudanto, Sigit Dwi; Imaduddin, Agung; Kurniawan, Budhy; Manaf, Azwar
2018-04-01
Magnesium diboride, MgB2 is a new high critical temperature superconductor that discovered in the beginning of the 21st century. The MgB2 has a simple crystal structure and a high critical temperature, which can be manufactured in several forms like thin films, tapes, wires including bulk in the large scale. For that reason, the MgB2 has good prospects for various applications in the field of electronic devices. In the current work, we have explored the synthesis of MgB2 polycrystalline using powder in a sealed tube method. Different initial boron phase for the synthesized of MgB2 polycrystalline were used. These were, in addition to magnesium powders, crystalline boron, amorphous boron and combination both of them were respectively fitted in the synthesis. The raw materials were mixed in a stoichiometric ratio of Mg: B=1:2, ground using agate mortar, packed into stainless steel SS304. The pack was then sintered at temperature of 800°C for 2 hours in air atmosphere. Phase formation of MgB2 polycrystalline in difference of initial boron phase was characterized using XRD and SEM. Referring to the diffraction pattern and microstructure observation, MgB2 polycrystalline was formed, and the formation was effective when using the crystalline Mg and fully amorphous B as the raw materials. The critical temperature of the specimen was evaluated by the cryogenic magnet. The transition temperature of the MgB2 specimen synthesized using crystalline magnesium and full amorphous boron is 42.678 K (ΔTc = 0.877 K).
NASA Astrophysics Data System (ADS)
Szillat, F.; Mayr, S. G.
2011-09-01
Self-organized pattern formation during physical vapor deposition of organic materials onto rough inorganic substrates is characterized by a complex morphological evolution as a function of film thickness. We employ a combined experimental-theoretical study using atomic force microscopy and numerically solved continuum rate equations to address morphological evolution in the model system: poly(bisphenol A carbonate) on polycrystalline Cu. As the key ingredients for pattern formation, (i) curvature and interface potential driven surface diffusion, (ii) deposition noise, and (iii) interface boundary effects are identified. Good agreement of experiments and theory, fitting only the Hamaker constant and diffusivity within narrow physical parameter windows, corroborates the underlying physics and paves the way for computer-assisted interface engineering.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2015-07-21
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David; Cousins, Peter
2012-12-04
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2014-07-22
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.
NASA Astrophysics Data System (ADS)
Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.
2002-11-01
In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
Polycrystalline silicon availability for photovoltaic and semiconductor industries
NASA Technical Reports Server (NTRS)
Ferber, R. R.; Costogue, E. N.; Pellin, R.
1982-01-01
Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, A. V., E-mail: novak-andrei@mail.ru
2014-12-15
The effect of formation conditions on the morphology of silicon films with hemispherical grains (HSG-Si) obtained by the method of low-pressure chemical vapor deposition (LPCVD) is investigated by atomic-force microscopy. The formation conditions for HSG-Si films with a large surface area are found. The obtained HSG-Si films make it possible to fabricate capacitor structures, the electric capacitance of which is twice as large in comparison to that of capacitors with “smooth” electrodes from polycrystalline silicon.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
NASA Astrophysics Data System (ADS)
Wu, Hua; Briscoe, Wuge H.
2018-04-01
We report polycrystalline residual patterns with dendritic micromorphologies upon fast evaporation of a mixed-solvent sessile drop containing reactive ZnO nanoparticles. The molecular and particulate species generated in situ upon evaporative drying collude with and modify the Marangoni solvent flows and Bénard-Marangoni instabilities, as they undergo self-assembly and self-organization under conditions far from equilibrium, leading to the ultimate hierarchical central cellular patterns surrounded by a peripheral coffee ring upon drying.
NASA Astrophysics Data System (ADS)
Das, D.; Hussain, A. M. P.
2018-04-01
PbS/CdS core/shell (CS) nanoparticles (NPs) were fabricated with three different concentrations of PbS core and CdS shell. Formation of core/shell heterostructure was confirmed from X-ray diffraction studies. The diffraction patterns exhibited formation of cubic phase and polycrystalline core/shell nanostructure. The crystalline sizes calculated from Williamson-Hall plot exhibited increase with molar concentration of precursors with decrease in strain. High resolution electron microscopy studies also confirm the formation of core/shell structure with particle size around 10 nm. A large blue-shift for PbS core compared to its bulk and small red-shift for the PbS/CdS core/shell as compared to the core is being observed in absorption spectra.
2010-04-01
000 the response of damage dependent processes like fatigue crack formation, a framework is needed that accounts for the extreme value life...many different damage processes (e.g. fatigue, creep, fracture). In this work, multiple material volumes for both IN100 and Ti-6Al-4V are simulated via...polycrystalline P/M Ni-base superalloy IN100 Typically, fatigue damage formation in polycrystalline superalloys has been linked to the existence of
NASA Astrophysics Data System (ADS)
Yang, Jinfeng; Sun, Jun; Xu, Jingjun; Li, Qinglian; Shang, Jifang; Zhang, Ling; Liu, Shiguo; Huang, Cunxin
2016-01-01
The twins were observed and investigated in vapor transport equilibration (VTE) treated lithium tantalate crystals by burying congruent lithium tantalate crystals (CLT) in a Li-rich polycrystalline powder. Twins and their etched patterns were observed under an optical polarizing microscope, and the geometry of the twins was discussed. Twin composition planes were the { 01 1 bar 2 } planes. The cause of twinning was analyzed and verified by experiment. The results indicate that the emergence of twins is due to sintering stress, which arises from sintered Li-rich polycrystalline powders at high temperature. 3.2 mm thick stoichiometric lithium tantalate (SLT) crystals without twins were obtained by setting corundum crucibles over the top of the crystals to make crystals free from the sintering stress. In addition, cracks were observed at the intersection of twin bands, and the stress caused by the dislocation pile-up was considered to be the reason for the formation of cracks.
Phase-Field Modeling of Polycrystalline Solidification: From Needle Crystals to Spherulites—A Review
NASA Astrophysics Data System (ADS)
Gránásy, László; Rátkai, László; Szállás, Attila; Korbuly, Bálint; Tóth, Gyula I.; Környei, László; Pusztai, Tamás
2014-04-01
Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed. The models applied incorporate homogeneous and heterogeneous nucleation of growth centers and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon termed growth front nucleation. Examples for PF modeling of such complex polycrystalline structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging from disordered dendrites to spherulitic patterns), and various eutectic structures, including spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns in thin films via external fields, confined geometry, particle additives, scratching/piercing the films, etc. are also displayed. Advantages, problems, and possible solutions associated with quantitative PF simulations are discussed briefly.
Kim, Sang Woo; Ahn, Jae-Pyoung
2013-01-01
This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061
NASA Astrophysics Data System (ADS)
Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar
2018-02-01
This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.
Formation of Si and Ge films and micropatterns by wet process using laser direct writing method
NASA Astrophysics Data System (ADS)
Watanabe, Akira
2011-03-01
The studies toward the formation of Si and Ge films and micropatterns by wet process using laser direct writing method are reported. First is the the formation of Si film by laser scanning irradiation to Si nano- or micro-particle dispersed films. By using organogermanium nanocluster (OrGe) as a dispersion medium of Si particles, a homogeneous Si film was formed by laser scanning irradiation on a Si particle/OrGe composite film. The micro-Raman spectra showed the formation of the polycrystalline Ge and SiGe alloy during the fusion of the Si particles by laser irradiation. The second is the formation of the Si and Ge micropatterns by LLDW (liquid phase laser direct writing) method. Micro-Raman spectra showed the formation of polycrystalline Si and Ge micropatterns by laser irradiation on the interfaces of SiCl4/substrate and GeCl4/substrate, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, K. B.; Saija, K. G.; Sharma, P. U.
2016-05-06
Polycrystalline samples of Cr{sup 3+} - substituted yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) system with general chemical formula, Y{sub 3}Fe{sub 5-x}Cr{sub x}O{sub 12}, x = 0.0, 0.2, 0.4 and 0.6 were synthesized by double sintering ceramic technique and characterized by X-ray powder diffractometry. The Rietveld fitted X-ray diffraction patterns analysis revealed mono phase formation for x = 0.0 - 0.4 compositions while x = 0.6 composition possesses mixed phase character. The observed substitution limit has been discussed in the light of ionic size of substituent, electrostatic energy, electronic configuration and synthesis parameters. These observations strongly suggest that the electronicmore » configuration of Cr{sup 3+}, which is favorable to the formation of d2sp3 (octahedral) type bonds, must be important. In the case of Cr{sup 3+}, the substitution does not appear to proceed well for x much greater than 0.5, this limitation probably is a consequence of the strong preference of a smaller ion Cr{sup 3+}, for a larger octahedral site which quickly leads to a condition not comparable with the requirement of the structure. The distribution of cations, mean ionic radii and theoretical lattice constant values have been determined.« less
Gonzalez, Franklin N.; Neugroschel, Arnost
1984-02-14
A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.
The structural and electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites
NASA Astrophysics Data System (ADS)
Ruli, F.; Kurniawan, B.; Imaduddin, A.
2018-04-01
In this paper, the authors report the electrical properties of polycrystalline La0.8Ca0.17Ag0.03MnO3 manganites synthesized using sol-gel method. The X-ray diffraction (XRD) patterns of polycrystalline La0.8Ca0.17Ag0.03MnO3 samples reveal an orthorhombic perovskite structure with Pnma space group. Analysis using energy dispersive X-ray (EDX) confirms that the sample contains all expected chemical elements without any additional impurity. The measurement of resistivity versus temperature using cryogenic magnetometer was performed to investigate the electrical properties. The results show that the electrical resistivity of polycrystalline La0.8Ca0.17Ag0.03MnO3 exhibits metalic behavior below 244 K. The temperature dependence of electrical resistivity dominantly emanates from electron-electron scattering and the grain/domain boundary play a important role in conduction mechanism in polycrystalline La0.8Ca0.17Ag0.03MnO3.
NASA Astrophysics Data System (ADS)
Proost, Joris; Maex, Karen; Delacy, Luc
2000-01-01
We have discussed electromigration (EM)-induced drift in polycrystalline damascene versus reactive ion etched (RIE) Al(Cu) in part I. For polycrystalline Al(Cu), mass transport is well documented to occur through sequential stages : an incubation period (attributed to Cu depletion beyond a critical length) followed by the Al drift stage. In this work, the drift behavior of bamboo RIE and damascene Al(Cu) is analyzed. Using Blech-type test structures, mass transport in RIE lines was shown to proceed both by lattice and interfacial diffusion. The dominating mechanism depends on the Cu distribution in the line, as was evidenced by comparing as-patterned (lattice EM) and RTP-annealed (interface EM) samples. The interfacial EM only occurs at metallic interfaces. In that case, Cu alloying was observed to retard Al interfacial mass transport, giving rise to an incubation time. Although the activation energy for the incubation time was found similar to the one controlling Al lattice drift, for which no incubation time was observed, lattice EM is preferred over interfacial EM because it is insensitive to enhancing geometrical effects upon scaling. When comparing interfacial electromigration in RIE with bamboo damascene Al(Cu), with the incubation time rate controlling for both, the higher EM threshold observed for damascene was shown to be insufficient to compensate for its significantly increased Cu depletion rate, contrary to the case of polycrystalline Al(Cu) interconnects. Two factors were demonstrated to contribute. First, there are more metallic interfaces, intrinsically related to the use of wetting or barrier layers in recessed features. Second, specific to this study, the additional formation of TiAl3 at the trench sidewalls further enhanced the Cu depletion rate, and reduced the rate-controlling incubation time. A separate drift study on RIE via-type test structures indicated that it is very difficult to suppress interfacial mass transport in favor of lattice EM upon TiAl3 formation.
Test Structures For Bumpy Integrated Circuits
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Sayah, Hoshyar R.
1989-01-01
Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.
Interface shape and crystallinity in LEC GaAs
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, R.; Pearah, P. J.; Ware, R. M.
1991-12-01
Growth striation mapping was used to relate the growth interface shape to crystallinity failure modes in LEC growth of undoped <100> GaAs. The onset of twinning and polycrystallinity were both found to depend on the interface shape near the crystal periphery. The origins of polycrystalline growth were investigated in 8 kg, 3-inch and 4-inch diameter crystals. Interface maps of these crystals show that polycrystalline growth begins when the growth interface periphery turns down, independent of the shape of the central portions. The cause of initial grain boundary formation was found to be included gallium droplets which originate on the surface and migrate through the crystal toward the growth interface. Twinning occurs on {111} facets, usually during shoulder growth. Growth striations show that the sequence of events leading to twin formation consists of deep facet growth, followed by meltback and rapid regrowth. We found it possible to avoid twinning by reducing melt instabilities or by reducing the extent of facet growth.
Progress on uncooled PbSe detectors for low-cost applications
NASA Astrophysics Data System (ADS)
Vergara, German; Gomez, Luis J.; Villamayor, Victor; Alvarez, M.; Rodrigo, Maria T.; del Carmen Torquemada, Maria; Sanchez, Fernando J.; Verdu, Marina; Diezhandino, Jorge; Rodriguez, Purificacion; Catalan, Irene; Almazan, Rosa; Plaza, Julio; Montojo, Maria T.
2004-08-01
This work reports on progress on development of polycrystalline PbSe infrared detectors at the Centro de Investigacion y Desarrollo de la Armada (CIDA). Since mid nineties, the CIDA owns an innovative technology for processing uncooled MWIR detectors of polycrystalline PbSe. Based on this technology, some applications have been developed. However, future applications demand smarter, more complex, faster yet cheaper detectors. Aiming to open new perspectives to polycrystalline PbSe detectors, we are currently working on different directions: 1) Processing of 2D arrays: a) Designing and processing low density x-y addressed arrays with 16x16 and 32x32 elements, as an extension of our standard technology. b) Trying to make compatible standard CMOS and polycrystalline PbSe technologies in order to process monolithic large format arrays. 2) Adding new features to the detector such as monolithically integrated spectral discrimination.
Formation of intra-island grain boundaries in pentacene monolayers.
Zhang, Jian; Wu, Yu; Duhm, Steffen; Rabe, Jürgen P; Rudolf, Petra; Koch, Norbert
2011-12-21
To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.
Polycrystalline semiconductor processing
Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.
1983-01-01
A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.
Polycrystalline semiconductor processing
Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.
1983-04-05
A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.
NASA Technical Reports Server (NTRS)
Varshney, Usha; Eichelberger, B. Davis, III
1995-01-01
This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.
Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.
2010-01-01
Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.
NASA Astrophysics Data System (ADS)
Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, V. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Pavlyukovich, N.; Pavlyukovich, O.
2018-01-01
In this paper, we present the results of a statistical analysis of polarization-interference images of optically thin histological sections of biological tissues and polycrystalline films of biological fluids of human organs. A new analytical parameter is introduced-the local contrast of the interference pattern in the plane of a polarizationinhomogeneous microscopic image of a biological preparation. The coordinate distributions of the given parameter and the sets of statistical moments of the first-fourth order that characterize these distributions are determined. On this basis, the differentiation of degenerative-dystrophic changes in the myocardium and the polycrystalline structure of the synovial fluid of the human knee with different pathologies is realized.
Bi12TiO20 crystallization in a Bi2O3-TiO2-SiO2-Nd2O3 system
NASA Astrophysics Data System (ADS)
Slavov, S.; Jiao, Z.
2018-03-01
Polycrystalline mono-phase bismuth titanate was produced by free cooling from melts heated to 1170 °C. The control over the initial amounts in the starting compositions in the system Bi2O3/TiO2/SiO2/Nd2O3 and over the thermal gradient of the heat process resulted in the formation of specific structures and microstructures of monophase sillenite ceramics. The main phase Bi12TiO20 belongs to the amorphous network groups based on oxides of silicon, bismuth and titanium. In this work, we demonstrated a way to control the crystalline and amorphous phase formation in bulk poly-crystalline materials in the selected system.
Programmable and coherent crystallization of semiconductors
Yu, Liyang; Niazi, Muhammad R.; Ngongang Ndjawa, Guy O.; Li, Ruipeng; Kirmani, Ahmad R.; Munir, Rahim; Balawi, Ahmed H.; Laquai, Frédéric; Amassian, Aram
2017-01-01
The functional properties and technological utility of polycrystalline materials are largely determined by the structure, geometry, and spatial distribution of their multitude of crystals. However, crystallization is seeded through stochastic and incoherent nucleation events, limiting the ability to control or pattern the microstructure, texture, and functional properties of polycrystalline materials. We present a universal approach that can program the microstructure of materials through the coherent seeding of otherwise stochastic homogeneous nucleation events. The method relies on creating topographic variations to seed nucleation and growth at designated locations while delaying nucleation elsewhere. Each seed can thus produce a coherent growth front of crystallization with a geometry designated by the shape and arrangement of seeds. Periodic and aperiodic crystalline arrays of functional materials, such as semiconductors, can thus be created on demand and with unprecedented sophistication and ease by patterning the location and shape of the seeds. This approach is used to demonstrate printed arrays of organic thin-film transistors with remarkable performance and reproducibility owing to their demonstrated spatial control over the microstructure of organic and inorganic polycrystalline semiconductors. PMID:28275737
ISS and TPD study of the adsorption and interaction of CO and H2 on polycrystalline Pt
NASA Technical Reports Server (NTRS)
Melendez, Orlando; Hoflund, Gar B.; Schryer, David R.
1990-01-01
The adsorption and interaction of CO and H2 on polycrystalline Pt has been studied using ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD). The ISS results indicate that the initial CO adsorption on Pt takes place very rapidly and saturates the Pt surface with coverage close to a monolayer. ISS also shows that the CO molecules adsorb at an angular orientation from the surface normal and perhaps parallel to the surface. A TPD spectrum obtained after coadsorbing C-12 O-16 and C-13 O-18 on Pt shows no isotopic mixing, which is indicative of molecular CO adsorption. TPD spectra obtained after coadsorbing H2 and CO on polycrystalline Pt provides evidence for the formation of a CO-H surface species.
The effect of heat treatment on superhydrophilicity of TiO2 nano thin films
NASA Astrophysics Data System (ADS)
Ashkarran, A. A.; Mohammadizadeh, M. R.
2007-11-01
TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.
NASA Astrophysics Data System (ADS)
Guilhem, Yoann; Basseville, Stéphanie; Curtit, François; Stéphan, Jean-Michel; Cailletaud, Georges
2018-06-01
This paper is dedicated to the study of the influence of surface roughness on local stress and strain fields in polycrystalline aggregates. Finite element computations are performed with a crystal plasticity model on a 316L stainless steel polycrystalline material element with different roughness states on its free surface. The subsequent analysis of the plastic strain localization patterns shows that surface roughness strongly affects the plastic strain localization induced by crystallography. Nevertheless, this effect mainly takes place at the surface and vanishes under the first layer of grains, which implies the existence of a critical perturbed depth. A statistical analysis based on the plastic strain distribution obtained for different roughness levels provides a simple rule to define the size of the affected zone depending on the rough surface parameters.
NASA Astrophysics Data System (ADS)
Sala, A.; Palenzona, A.; Bernini, C.; Caglieris, F.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Pani, M.; Hecher, J.; Eisterer, M.; Putti, M.
2014-05-01
The study of overdoped FeTe1-xSex (0.5 < x < 1) polycrystalline superconductor samples is reported. The samples were prepared using a melting technique previously developed by our group. Increasing the Se content a phase separation related to the formation of FeSe inside the Fe(Se,Te) phase happens, as demonstrated by structural analysis and magnetic characterization. The proposed phase separation picture is likely the fingerprint of a miscibility gap in the Fe(Se,Te) system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koneva, N. A., E-mail: koneva@tsuab.ru; Kozlov, E. V.
2016-01-15
Generalization of the results of electron microscopy investigations of the crystal lattice bending-torsion (χ) and the internal stresses (IS) was conducted. The deformed polycrystalline alloys and steels were investigated. The sources of χ and IS origin were established. The regularities of their change with the distance from the sources and the evolution with deformation were revealed. The contribution of IS into the deformation resistance was determined. The nature of formation of two sequences of dislocation substructure transformations during deformation of alloys was established.
Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Peng; Wu, Dongping, E-mail: dongpingwu@fudan.edu.cn; Kubart, Tomas
Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phasemore » formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.« less
NASA Astrophysics Data System (ADS)
Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong
2016-11-01
Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.
High fidelity polycrystalline CdTe/CdS heterostructures via molecular dynamics
Aguirre, Rodolfo; Chavez, Jose Juan; Zhou, Xiaowang; ...
2017-06-20
Molecular dynamics simulations of polycrystalline growth of CdTe/CdS heterostructures have been performed. First, CdS was deposited on an amorphous CdS substrate, forming a polycrystalline film. Subsequently, CdTe was deposited on top of the polycrystalline CdS film. Cross-sectional images show grain formation at early stages of the CdS growth. During CdTe deposition, the CdS structure remains almost unchanged. Concurrently, CdTe grain boundary motion was detected after the first 24.4 nanoseconds of CdTe deposition. With the elapse of time, this grain boundary pins along the CdS/CdTe interface, leaving only a small region of epitaxial growth. CdTe grains are larger than CdS grainsmore » in agreement with experimental observations in the literature. Crystal phase analysis shows that zinc blende structure dominates over the wurtzite structure inside both CdS and CdTe grains. Composition analysis shows Te and S diffusion to the CdS and CdTe films, respectively. Lastly, these simulated results may stimulate new ideas for studying and improving CdTe solar cell efficiency.« less
Silver electrodeposition on nanostructured gold: from nanodots to nanoripples.
Dos Santos Claro, P C; Fonticelli, M; Benítez, G; Azzaroni, O; Schilardi, P L; Luque, N B; Leiva, E; Salvarezza, R C
2006-07-28
Silver nanodots and nanoripples have been grown on nanocavity-patterned polycrystalline Au templates by controlled electrodeposition. The initial step is the growth of a first continuous Ag monolayer followed by preferential deposition at nanocavities. The Ag-coated nanocavities act as preferred sites for instantaneous nucleation and growth of the three-dimensional metallic centres. By controlling the amount of deposited Ag, dots of approximately 50 nm average size and approximately 4 nm average height can be grown with spatial and size distributions dictated by the template. The dots are in a metastable state. Further Ag deposition drives the dot surface structure to nanoripple formation. Results show that electrodeposition on nanopatterned electrodes can be used to prepare a high density of nanostructures with a narrow size distribution and spatial order.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.
Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.
2016-01-01
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122
Sopori, Bhushan L.
1995-01-01
Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.
Sopori, B.L.
1995-04-11
Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.
Interaction of metal layers with polycrystalline Si
NASA Technical Reports Server (NTRS)
Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.
1976-01-01
Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.
A Technique for the Microstructural Examination of Polycrystalline Graphites
1959-02-01
dichromate in concentrated phosphoric acid . This etchsnt reacted quite readily with the graphite surface, yet at a rate that was...formation of lamellar compounds, and carbide formation at high temperatues . Of the three classes of reaction, oxidation seems to...reagents and conditions were directed toward preliminary studies of such chemical oxidants as potassium dichromate-phosphoric acid mixtures
NASA Astrophysics Data System (ADS)
Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.
2011-09-01
The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.
NASA Astrophysics Data System (ADS)
Devi Chandrasekhar, K.; Mallesh, S.; Krishna Murthy, J.; Das, A. K.; Venimadhav, A.
2014-09-01
We have presented the dielectric/impedance spectroscopy of La1-xPbxFeO3 (x=0.15 and 0.25) polycrystalline samples in a wide temperature and frequency range. They exhibited colossal dielectric permittivity and multiple relaxations. Temperature and field dependent magnetization study showed enhancement of magnetization upon Pb doping which has been ascribed to the defect driven magnetization phenomenon. Overall we have emphasized the formation of various kinds of defects and their influence on dielectric and magnetic properties in the system.
Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.
Jaquith, Michael; Muller, Erik M; Marohn, John A
2007-07-12
Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.
NASA Astrophysics Data System (ADS)
Marchuk, Yu F.; Fediv, O. I.; Ivashchuk, I. O.; Andriychuk, D. R.
2012-01-01
The principles of optical modeling of human bile polycrystalline structure are described. The main types of polycrystalline structures are detailed. It has been proposed and founded the scenarios of formation of bile microscopic images polarization structure in coherent radiation. The results of investigating the interrelation between statistical moments of the 1st-4th order are presented that characterize the coordinate distributions of intensity of laser images of bile smears of cholelithiasis patients in combination with other pathologies. The diagnostic criteria of the cholelithiasis nascency and its severity degree differentiation are determined.
Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco
2018-01-11
Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.
Layer Protecting the Surface of Zirconium Used in Nuclear Reactors.
Ashcheulov, Petr; Skoda, Radek; Skarohlíd, Jan; Taylor, Andrew; Fendrych, Frantisek; Kratochvílová, Irena
2016-01-01
Zirconium alloys have very useful properties for nuclear facilities applications having low absorption cross-section of thermal electrons, high ductility, hardness and corrosion resistance. However, there is also a significant disadvantage: it reacts with water steam and during this (oxidative) reaction it releases hydrogen gas, which partly diffuses into the alloy forming zirconium hydrides. A new strategy for surface protection of zirconium alloys against undesirable oxidation in nuclear reactors by polycrystalline diamond film has been patented- Czech patent 305059: Layer protecting the surface of zirconium alloys used in nuclear reactors and PCT patent: Layer for protecting surface of zirconium alloys (Patent Number: WO2015039636-A1). The zirconium alloy surface was covered by polycrystalline diamond layer grown in plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. Substantial progress in the description and understanding of the polycrystalline diamond/ zirconium alloys interface and material properties under standard and nuclear reactors conditions (irradiation, hot steam oxidation experiments and heating-quenching cycles) was made. In addition, process technology for the deposition of protective polycrystalline diamond films onto the surface of zirconium alloys was optimized. Zircaloy2 nuclear fuel pins were covered by 300 nm thick protective polycrystalline diamond layer (PCD) using plasma enhanced chemical vapor deposition apparatus with linear antenna delivery system. The polycrystalline diamond layer protects the zirconium alloy surface against undesirable oxidation and consolidates its chemical stability while preserving its functionality. PCD covered Zircaloy2 and standard Zircaloy2 pins were for 30 min. oxidized in 1100°C hot steam. Under these conditions α phase of zirconium changes to β phase (more opened for oxygen/hydrogen diffusion). PCD anticorrosion protection of Zircaloy nuclear fuel assemblies can significantly prolong lifetime of Zirconium alloy in nuclear reactors even above Zirconium phase transition temperatures. Even after ion beam irradiation (10 dpa, 3 MeV Fe(2+)) the diamond film still shows satisfactory structural integrity with both sp(3) and sp(2) carbon phases. Zircaloy2 under the carbon-based protective layer after hot steam oxidation test differed from the original Zircaloy2 material composition only very slightly, proving that the diamond coating increases the material resistance to high temperature oxidation. Zirconium alloys nuclear fuel pins' surfaces were covered by compact and homogeneous polycrystalline diamond layers consisting of sp(3) and sp(2) carbon phases with a high crystalline diamond content and low roughness. Diamond withstands very high temperatures, has excellent thermal conductivity and low chemical reactivity, it does not degrade over time and (important for the nuclear fuel cladding) being pure carbon, it has perfect neutron cross-section properties. Moreover, polycrystalline diamond layers consisting of crystalline (sp(3)) and amorphous (sp(2)) carbon phases could have suitable thermal expansion. Zirconium alloys coated with polycrystalline diamond film are protected against undesirable changes and processes. Further, the polycrystalline diamond layer prevents the reaction between the alloy surface and water vapor. During such reaction, water molecules dissociate and initiate formation of zirconium dioxide and hydrogen, accompanied by the release of large amount of heat. Thus the protective layer prevents the formation of hydrogen and the release of reaction heat. Few relevant patents to the topic have been reviewed and cited.
NASA Astrophysics Data System (ADS)
Jessadaluk, S.; Khemasiri, N.; Rahong, S.; Rangkasikorn, A.; Kayunkid, N.; Wirunchit, S.; Horprathum, M.; Chananonnawathron, C.; Klamchuen, A.; Nukeaw, J.
2017-09-01
This article provides an approach to improve and control crystal phases of the sputtering vanadium oxide (VxOy) thin films by post-thermal annealing process. Usually, as-deposited VxOy thin films at room temperature are amorphous phase: post-thermal annealing processes (400 °C, 2 hrs) under the various nitrogen (N2) pressures are applied to improve and control the crystal phase of VxOy thin films. The crystallinity of VxOy thin films changes from amorphous to α-V2O5 phase or V9O17 polycrystalline, which depend on the pressure of N2 carrier during annealing process. Moreover, the electrical resistivity of the VxOy thin films decrease from 105 Ω cm (amorphous) to 6×10-1 Ω cm (V9O17). Base on the results, our study show a simply method to improve and control phase formation of VxOy thin films.
NASA Astrophysics Data System (ADS)
Jindal, Shilpi; Devi, Sheela; Vasishth, Ajay; Batoo, Khalid Mujasam; Kumar, Gagan
Polycrystalline cobalt-substituted tungsten bronze ferroelectric ceramics with chemical composition Ba5CaTi2-xCoXNb8O30 (x=0.00, 0.02, 0.04 and 0.08) were synthesized by solid state reaction technique. X-ray diffraction (XRD) technique was used to confirm the phase formation and it revealed the formation of single phase tetragonal structure with space group P4bm. The surface morphology of the samples was studied by using the scanning electron microscopy (SEM) technique. The dielectric properties such as dielectric constant and dielectric loss have been investigated as a function of temperature and frequency. The P-E and M-H studies confirmed the coexistent of ferroelectricity and magnetism at room temperature. The P-E loop study indicated an increase in the coercive field while the M-H study depicted a decrease in the magnetization with the incorporation of cobalt ions.
Direct-patterned optical waveguides on amorphous silicon films
Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan
2005-08-02
An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.
Influence of ammonia flow rate for improving properties of polycrystalline GaN
NASA Astrophysics Data System (ADS)
Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.
2018-06-01
Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.
Process for Polycrystalline film silicon growth
Wang, Tihu; Ciszek, Theodore F.
2001-01-01
A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew
2015-08-14
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...
2015-08-11
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe
2014-04-28
The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.
Grain-boundary unzipping by oxidation in polycrystalline graphene
NASA Astrophysics Data System (ADS)
Alexandre, Simone; Lucio, Aline; Nunes, Ricardo
2011-03-01
The need for large-scale production of graphene will inevitably lead to synthesis of the polycrystalline material [1,2]. Understanding the chemical, mechanical, and electronic properties of grain boundaries in graphene polycrystals will be crucial for the development of graphene-based electronics. Oxidation of this material has been suggested to lead to graphene ribbons, by the oxygen-driven unzipping mechanism. A cooperative-strain mechanism, based on the formation of epoxy groups along lines of parallel bonds in the hexagons of graphene's honeycomb lattice, was proposed to explain the unzipping effect in bulk graphene In this work we employ ab initio calculations to study the oxidation of polycrystalline graphene by chemisorption of oxygen at the grain boundaries. Our results indicate that oxygen tends to segregate at the boundaries, and that the unzipping mechanism is also operative along the grain boundaries, despite the lack of the parallel bonds due to the presence of fivefold and sevenfold carbon rings along the boundary core. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.
NASA Astrophysics Data System (ADS)
Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.
2014-05-01
Recently, we have reported a significant enhancement (>70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO3 ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO3. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr1-xPrxTiO3 ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.
Ultrasonic synthesis of In-doped SnS nanoparticles and their physical properties
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-05-01
Indium (In)-doped Tin (II) Sulfide (SnS) nanoparticles (NPs) were synthesized by an ultra-sonication method and their optical, electrical, dielectric and photocatalytic properties were investigated. XRD patterns of the obtained NPs indicated formation of orthorhombic polycrystalline SnS. Field emission scanning electron microscopy exhibited flower-like NPs with particle sizes below 100 nm for both SnS and In-doped SnS samples. Optical analysis showed a decrease in energy band gap of SnS NPs upon In doping. In addition, electrical results demonstrated p-type nature of the synthesized SnS NPs and enhanced electrical conductivity of the NPs due to increased tin vacancy. Dielectric experiments on SnS NPs suggested an electronic polarizations effect to be responsible for changing dielectric properties of the particles, in terms of frequency. Finally, photocatalytic experiments revealed that high degradation power can be obtained using In-doped SnS NPs.
NASA Astrophysics Data System (ADS)
Zhu, He-Jie; Wang, Xue-Mei; Gao, Xiao-Yong
2015-07-01
Low-cost synthesis of high-quality ZnS films on silicon wafers is of much importance to the ZnSbased heterojunction blue light-emitting device integrated with silicon. Thus, a series of ZnS films were chemically synthesized at low cost on Si(100) wafers at 353 K under a mixed acidic solution with a pH of 4 with zinc acetate and thioacetamide as precursors and with ethylenediamine and hydrochloric acid as the complexing agent and the pH value modifier, respectively. The effects of the ethylenediamine concentration on the crystallization, surface morphology, and optical properties of the ZnS films were investigated by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, and fluorescence spectroscopy. A mechanism for the formation of ZnS film under an acidic condition was also proposed. All of the ZnS films were polycrystalline in nature, with a dominant cubic phase and a small amounts of hexagonal phases. The crystallization and the surface pattern of the films were clearly improved with increasing ethylenediamine concentration due to its enhanced complexing role. The absorption edge of the films almost underwent a blue shift with increasing ethylenediamine concentration, which was largely attributed to the quantum confinement effects caused by the small particle size of the polycrystalline ZnS films. Defect species and the corresponding strengths of the ZnS films were strongly affected by the ethylenediamine concentration.
Improved camera for better X-ray powder photographs
NASA Technical Reports Server (NTRS)
Parrish, W.; Vajda, I. E.
1969-01-01
Camera obtains powder-type photographs of single crystals or polycrystalline powder specimens. X-ray diffraction photographs of a powder specimen are characterized by improved resolution and greater intensity. A reasonably good powder pattern of small samples can be produced for identification purposes.
NASA Astrophysics Data System (ADS)
Caudwell, Christiane; Lang, Jacques; Pascal, André
1997-06-01
The lamination of Rivularia haematites stromatolites (D.C.) Agardh was studied experimentally for 7 years. Micritic laminae are found to form in three stages: biological formation of dark laminae during the wet season, microsparitic calcification of these laminae in the form of clearly individualized polycrystalline aggregates and, finally, micritization of the latter by bacterial action. These three stages develop over 2 to 3 years. The occurrence of transverse, longitudinal and circular microfibrils in the outer sheath is thought to explain the nucleation and the three-dimensional structure of the microsparitic crystals of the dark laminae and of the polycrystalline aggregates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cave, Etosha R.; Montoya, Joseph H.; Kuhl, Kendra P.
In the future, industrial CO 2 electroreduction using renewable energy sources could be a sustainable means to convert CO 2 and water into commodity chemicals at room temperature and atmospheric pressure. This study focuses on the electrocatalytic reduction of CO 2 on polycrystalline Au surfaces, which have high activity and selectivity for CO evolution. Here, we explore the catalytic behavior of polycrystalline Au surfaces by coupling potentiostatic CO 2 electrolysis experiments in an aqueous bicarbonate solution with high sensitivity product detection methods. We observed the production of methanol, in addition to detecting the known products of CO 2 electroreduction onmore » Au: CO, H 2 and formate. We suggest a mechanism that explains Au's evolution of methanol. Specifically, the Au surface does not favor C-O scission, and thus is more selective towards methanol than methane. These insights could aid in the design of electrocatalysts that are selective for CO 2 electroreduction to oxygenates over hydrocarbons.« less
Cave, Etosha R.; Montoya, Joseph H.; Kuhl, Kendra P.; ...
2017-01-06
In the future, industrial CO 2 electroreduction using renewable energy sources could be a sustainable means to convert CO 2 and water into commodity chemicals at room temperature and atmospheric pressure. This study focuses on the electrocatalytic reduction of CO 2 on polycrystalline Au surfaces, which have high activity and selectivity for CO evolution. Here, we explore the catalytic behavior of polycrystalline Au surfaces by coupling potentiostatic CO 2 electrolysis experiments in an aqueous bicarbonate solution with high sensitivity product detection methods. We observed the production of methanol, in addition to detecting the known products of CO 2 electroreduction onmore » Au: CO, H 2 and formate. We suggest a mechanism that explains Au's evolution of methanol. Specifically, the Au surface does not favor C-O scission, and thus is more selective towards methanol than methane. These insights could aid in the design of electrocatalysts that are selective for CO 2 electroreduction to oxygenates over hydrocarbons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nürnberger, P.; Reinhardt, H.; Kim, H-C.
2015-10-07
The research in this paper deals with the angular dependence of the formation of laser-induced periodic surface structures (LIPSS) by linearly polarized nanosecond laser pulses on polycrystalline austenitic stainless steel. Incident angles ranging from 45° to 70° lead to the generation of superimposed merely perpendicular oriented LIPSS on steel as well as on monocrystalline (100) silicon which was used as a reference material. Additional extraordinary orientations of superimposing LIPSS along with significantly different periodicities are found on polycrystalline steel but not on (100) silicon. Electron backscatter diffraction measurements indicate that the expansion of these LIPSS is limited to the grainmore » size and affected by the crystal orientation of the individual grains. Atomic force microscopy imaging shows that LIPSS fringe heights are in good agreement with the theoretically predicted penetration depths of surface plasmon polaritons into stainless steel. These results indicate that optical anisotropies must be taken into account to fully describe the theory of light-matter interaction leading to LIPSS formation.« less
Behm, R Jürgen
2014-01-01
Summary As part of a mechanistic study of the electrooxidation of C1 molecules we have systematically investigated the dissociative adsorption/oxidation of formaldehyde on a polycrystalline Pt film electrode under experimental conditions optimizing the chance for detecting weakly adsorbed reaction intermediates. Employing in situ IR spectroscopy in an attenuated total reflection configuration (ATR-FTIRS) with p-polarized IR radiation to further improve the signal-to-noise ratio, and using low reaction temperatures (3 °C) and deuterium substitution to slow down the reaction kinetics and to stabilize weakly adsorbed reaction intermediates, we could detect an IR absorption band at 1660 cm−1 characteristic for adsorbed formyl intermediates. This assignment is supported by an isotope shift in wave number. Effects of temperature, potential and deuterium substitution on the formation and disappearance of different adsorbed species (COad, adsorbed formate, adsorbed formyl), are monitored and quantified. Consequences on the mechanism for dissociative adsorption and oxidation of formaldehyde are discussed. PMID:24991512
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Jun; Hwang, Soon Hyoung; Jeon, Sohee; Jung, Joo-Yun; Lee, Jihye; Choi, Dae-Geun; Choi, Jun-Hyuk; Park, Sang-Hu; Jeong, Jun-Ho
2017-10-01
In this paper, we demonstrate that use of different nanoimprint resins as a polymer pattern has a significant effect on the morphology of silver (Ag) nanowires deposited via an E-beam evaporator. RM-311 and Ormo-stamp resins are chosen as a polymer pattern to form a line with dimensions of width (100 nm) × space (100 nm) × height (120 nm) by using nanoimprint lithography (NIL). Their contact angles are then measured to evaluate their surface energies. In order to compare the properties of the Ag nanowires deposited on the various polymer patterns with different surface energies, hydrophobic surface treatment of the polymer pattern surface is implemented using self-assembled monolayers. In addition, gold and aluminum nanowires are fabricated for comparison with the Ag nanowires, with the differences in the nanowire morphologies being determined by the different atomic properties. The monocrystalline and polycrystalline structures of the various Ag nanowire formations are observed using transmission electron microscopy. In addition, the melting temperatures and optical properties of four kinds of Ag nanowire morphologies deposited on various polymer patterns are evaluated using a hot plate and an ultraviolet-visible (UV-vis) spectrometer, respectively. The results indicate that the morphology of the Ag nanowire determines the melting temperature and the transmission. We believe that these findings will greatly aid the development of NIL, along with physical evaporation and chemical deposition techniques, and will be widely employed in optics, biology, and surface wettability applications.
Sun, Tao; Fezzaa, Kamel
2016-06-17
Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehkordi, Arash Mehdizadeh, E-mail: amehdiz@g.clemson.edu; Bhattacharya, Sriparna; He, Jian
2014-05-12
Recently, we have reported a significant enhancement (>70% at 500 °C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO{sub 3} ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO{sub 3}. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr{sub 1−x}Pr{sub x}TiO{sub 3} ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factormore » and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500 °C.« less
Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.
In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pelletsmore » during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.« less
NASA Astrophysics Data System (ADS)
Sakhnovskiy, M. Y.; Ushenko, V. A.
2013-09-01
The process of converting of laser radiation by optically anisotropic crystals of biological networks are singular in the sense of total (simultaneous) of mechanisms of orientation and phase (birefringence) anisotropy the formation of polarization-inhomogeneous field of scattered radiation. This work is aimed at developing a method of polarization selection mechanisms of blood plasma polycrystalline networks anisotropy. The relationship between statistics, correlation and fractal parameters of polarization-inhomogeneous images of blood plasma and by linear dichroism and linear birefringence of polycrystalline networks albumin and globulin was found. The criteria of differentiation and diagnostic images of polarization-inhomogeneous plasma samples of the control group (donor) and a group of patients with malignant changes of breast tissue was identified.
NASA Astrophysics Data System (ADS)
Uedono, A.; Wei, L.; Tanigawa, S.; Suzuki, R.; Ohgaki, H.; Mikado, T.; Ohji, Y.
1993-12-01
The positron annihilation in a metal-oxide semiconductor was studied by using a pulsed monoenergetic positron beam. Lifetime spectra of positrons were measured as a function of incident positron energy for a polycrystalline Si(100 nm)/SiO2(400 nm)/Si specimen. Applying a gate voltage between the polycrystalline Si film and the Si substrate, positrons implanted into the specimen were accumulated at the SiO2/Si interface. From the measurements, it was found that the annihilation probability of ortho-positronium (ortho-Ps) drastically decreased at the SiO2/Si interface. The observed inhibition of the Ps formation was attributed to an interaction between positrons and defects at the SiO2/Si interface.
Feasibility investigation of growing gallium arsenide single crystals in ribbon form
NASA Technical Reports Server (NTRS)
Richardson, D. L.
1975-01-01
Polycrystalline GaAs ribbons have been grown in graphite boats by passage of a wide zone through B2O3 encapsulated feed stock, confined by a quartz cover plate. By controlling the heat flow in the graphite boat and controlling the zoning rate, large grained, single phase polycrystalline samples with directional solidification and good thickness control were achieved. Arsenic vaporization was effectively suppressed at the melting point of GaAs by the B2O3 moat and 3 atmospheres of pressure. A vertical constrained-zone-melting apparatus with a B2O3 moat seal, rf heating, and water cooling on the bottom will be used to control the heat flow and temperature patterns required for growth of single crystal ribbons.
NASA Astrophysics Data System (ADS)
Malyutenko, V. K.; Malyutenko, O. Yu.; Leonov, V.; Van Hoof, C.
2009-05-01
The technology for self-supported membraneless polycrystalline SiGe thermal microemitters, their design, and performance are presented. The 128-element arrays with a fill factor of 88% and a 2.5-μm-thick resonant cavity have been grown by low-pressure chemical vapor deposition and fabricated using surface micromachining technology. The 200-nm-thick 60×60 μm2 emitting pixels enforced with a U-shape profile pattern demonstrate a thermal time constant of 2-7 ms and an apparent temperature of 700 K in the 3-5 and 8-12 μm atmospheric transparency windows. The application of the devices to the infrared dynamic scene simulation and their benefit over conventional planar membrane-supported emitters are discussed.
The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.
Three-dimensional whispering gallery modes in InGaAs nanoneedle lasers on silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, T.-T. D.; Chen, R.; Ng, K. W.
2014-09-15
As-grown InGaAs nanoneedle lasers, synthesized at complementary metal–oxide–semiconductor compatible temperatures on polycrystalline and crystalline silicon substrates, were studied in photoluminescence experiments. Radiation patterns of three-dimensional whispering gallery modes were observed upon optically pumping the needles above the lasing threshold. Using the radiation patterns as well as finite-difference-time-domain simulations and polarization measurements, all modal numbers of the three-dimensional whispering gallery modes could be identified.
NASA Astrophysics Data System (ADS)
Krishna, N. S.; Doko, N.; Matsuo, N.; Saito, H.; Yuasa, S.
2017-11-01
We have grown Fe(0 0 1)/GaO x (0 0 1)/MgO(0 0 1)/Fe(0 0 1) magnetic tunnel junctions (MTJs) with or without in situ annealing after the deposition of GaO x layer and performed structural characterizations by focusing on the formation process of the single-crystalline GaO x . It was found that, even without the in situ annealing, the as-grown GaO x grown on the MgO was mostly single-crystalline except near the surface region (amorphous). The crystallization temperature of the amorphous region was reduced from 500 °C down to 250 °C by depositing the Fe upper electrode (poly-crystalline). It was clarified that the crystallization of the amorphous region near the Fe/GaO x interface caused the realignments of the crystal grains in the poly-crystalline Fe upper electrode, and, as a result, the fully epitaxial Fe/GaO x /MgO/Fe structure is eventually formed. All the MTJs showed high tunneling magnetoresistance ratios (about 100%) at room temperature, which was almost independent of the formation temperature of the single-crystalline GaO x .
2013-01-01
That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg2+ on CaCO3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures. PMID:24489438
Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C
2013-12-23
That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO 3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg 2+ on CaCO 3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.
An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si
NASA Technical Reports Server (NTRS)
Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.
1985-01-01
A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.
Evidence of Formation of Superdense Nonmagnetic Cobalt.
Banu, Nasrin; Singh, Surendra; Satpati, B; Roy, A; Basu, S; Chakraborty, P; Movva, Hema C P; Lauter, V; Dev, B N
2017-02-03
Because of the presence of 3d transition metals in the Earth's core, magnetism of these materials in their dense phases has been a topic of great interest. Theory predicts a dense face-centred-cubic phase of cobalt, which would be nonmagnetic. However, this dense nonmagnetic cobalt has not yet been observed. Recent investigations in thin film polycrystalline materials have shown the formation of compressive stress, which can increase the density of materials. We have discovered the existence of ultrathin superdense nonmagnetic cobalt layers in a polycrystalline cobalt thin film. The densities of these layers are about 1.2-1.4 times the normal density of Co. This has been revealed by X-ray reflectometry experiments, and corroborated by polarized neutron reflectometry (PNR) experiments. Transmission electron microscopy provides further evidence. The magnetic depth profile, obtained by PNR, shows that the superdense Co layers near the top of the film and at the film-substrate interface are nonmagnetic. The major part of the Co film has the usual density and magnetic moment. These results indicate the possibility of existence of nonmagnetic Co in the earth's core under high pressure.
Hydrogen passivation of polycrystalline silicon thin films
NASA Astrophysics Data System (ADS)
Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.
2012-09-01
The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.
Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes
NASA Technical Reports Server (NTRS)
Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.
2008-01-01
Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.
NASA Astrophysics Data System (ADS)
Ushenko, Alexander G.; Dubolazov, Alexander V.; Ushenko, Vladimir A.; Novakovskaya, Olga Y.
2016-07-01
The optical model of formation of polarization structure of laser radiation scattered by polycrystalline networks of human skin in Fourier plane was elaborated. The results of investigation of the values of statistical (statistical moments of the 1st to 4th order) parameters of polarization-inhomogeneous images of skin surface in Fourier plane were presented. The diagnostic criteria of pathological process in human skin and its severity degree differentiation were determined.
NASA Astrophysics Data System (ADS)
Boyen, H.-G.; Cossy-Favre, A.; Oelhafen, P.; Siber, A.; Ziemann, P.; Lauinger, C.; Moser, T.; Häussler, P.; Baumann, F.
1995-01-01
Photoelectron-spectroscopy methods combined with electrical-resistance measurements were employed to study the effects of intermixing at Au/Sb interfaces at low temperatures. For the purpose of characterizing the growth processes of the intermixed phase on a ML scale, Au/Sb bilayers (layer thicknesses DAu=0.5-75 ML and DSb=150 ML) were evaporated at 77 K and the different in situ techniques allowed a comparison to vapor-quenched amorphous AuxSb100-x alloys. For Au thicknesses between 0.5 and 0.9 ML, a change from a semiconducting to a metallic behavior of the samples has been detected, as indicated by the development of a steplike photoelectron intensity at the Fermi level. Evidence has been found that for Au coverages <= 6 ML chemical reactions at the Au/Sb interface occur, leading to the formation of a homogeneously intermixed amorphous layer with a maximum thickness of about 2.3 nm and Au concentrations as high as x~=80 at. %. This latter value corresponds to the limiting Au content where amorphous alloys can be prepared at low temperature (0 at. % <=x<= 80 at. %). For nominal coverages beyond 6 ML polycrystalline Au films were formed. Consequently, Au/Sb multilayers with sufficiently small modulation lengths, which were prepared at 130 K by ion-beam sputtering, were observed to grow as a homogeneous amorphous phase over a broad range of compositions, as evidenced by in situ resistance measurements and by comparing the obtained crystallization temperatures to those of vapor-quenched amorphous alloys. Variation of the deposition temperature Ts revealed that an amorphous interface layer is only formed for Ts<= 220 K. This is consistent with the fact that for multilayers with large modulation lengths containing unreacted polycrystalline Au and Sb layers, long-range interdiffusion is found to set in at temperatures above 230 K. This interdiffusion, however, results in the formation of polycrystalline Au-Sb alloys.
Yu, Qin; Jiang, Yanyao; Wang, Jian
2015-04-07
Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of T iC jT j type. T iC i+1T i+1 (or T iC i–1T i–1) variants are observed more frequently than T iC i+2T i+2 (or T iC i–2T i–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.
Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence
NASA Astrophysics Data System (ADS)
Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.
2018-05-01
Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Lima Batista, Anderson Márcio; Miranda, Marcus Aurélio Ribeiro; Martins, Fátima Itana Chaves Custódio
Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However,more » this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO 2that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.« less
Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization
NASA Astrophysics Data System (ADS)
Hong, Won-Eui; Ro, Jae-Sang
2015-01-01
Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.
In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets
de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Júnior, Luiz Gonzaga
2014-01-01
Objective The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Methods Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. Results There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE < 3.7). Conclusion Ceramic brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated. PMID:25279530
In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets.
de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Junior, Luiz Gonzaga
2014-01-01
The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE < 3.7). Ceramic brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated.
SEM and AFM studies of dip-coated CuO nanofilms.
Dhanasekaran, V; Mahalingam, T; Ganesan, V
2013-01-01
Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sahin, Bünyamin; Kaya, Tolga
2016-01-01
In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P.
2016-05-06
Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectramore » and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.« less
NASA Astrophysics Data System (ADS)
Fonder, G.; Cecchet, F.; Peremans, A.; Thiry, P. A.; Delhalle, J.; Mekhalif, Z.
2009-08-01
Self-assembled monolayers (SAMs) of n-dodecanethiol (C 12H 25SH) and n-dodecaneselenol (C 12H 25SeH) on polycrystalline copper have been elaborated with the purpose of achieving densely packed and crystalline-like assemblies. By combining the surface sensitivity of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), the effect of the self-assembly time (15 min, 30 min, 1 h, 2 h and 24 h) on the formation of n-dodecanethiol and n-dodecaneselenol monolayers on untreated and electrochemically reduced polycrystalline copper has been investigated. On electrochemically reduced copper, PM-IRRAS spectroscopy shows that both molecules are able to form well organized layers. SFG spectroscopy indicates that the C 12H 25SeH SAMs are slightly better ordered than those achieved with C 12H 25SH. On untreated copper, the two molecules lead to different film organizations. Both PM-IRRAS and SFG indicate that C 12H 25SH SAMs are of the same film quality as those obtained on electrochemically reduced copper. On the contrary, C 12H 25SeH monolayers are invariably poorly organized at the molecular level.
New PDC cutters improve drilling efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensa-Wilmot, G.
1997-10-27
New polycrystalline diamond compact (PDC) cutters increase penetration rates and cumulative footage through improved abrasion, impact, interface strength, thermal stability, and fatigue characteristics. Studies of formation characterization, vibration analysis, hydraulic layouts, and bit selection continue to improve and expand PDC bit applications. The paper discusses development philosophy, performance characteristics and requirements, Types A, B, and C cutters, and combinations.
Magnetic relaxation behaviour in Pr{sub 2}NiSi{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakhira, Santanu, E-mail: santanupakhira20006@gmail.com; Mazumdar, Chandan; Ranganathan, R.
2016-05-06
Time dependent isothemal remanent magnetizatin (IRM) behaviour for polycrystalline compound Pr{sub 2}NiSi{sub 3} have been studied below its characteristic temperature. The compound undergoes slow magnetic relaxation with time. Along with competing interaction, non-magnetic atom disorder plays an important role in formation of non-equilibrium glassy like ground state for this compound.
Impact of nanosecond proton beam processing on nanoblocks of copper
NASA Astrophysics Data System (ADS)
Borodin, Y. V.; Mantina, A. Y.; Pak, V.; Zhang, X. X.
2017-01-01
X-ray studies in conjunction with the method of recoil nuclei and electron microscopy of irradiated plates polycrystalline Cu by nanosecond high power density proton beams (E = 120 keV; I = 80 A/cm2, t = 50 ns) showed nano block nature of the formation of structure in the surface layer target and condensed-formed film.
Synthesis and characterization of iron based superconductor Nd-1111
NASA Astrophysics Data System (ADS)
Alborzi, Z.; Daadmehr, V.
2018-06-01
Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.
Pollastro, R.M.
1981-01-01
Cores from the Smoky Hill Chalk Member of the Cretaceous Niobrara Formation have several zones containing authigenic kaolinite as spherical, moldic, polycrystalline aggregates that occur within single or multichambered foraminiferal tests and are commonly associated with framboidal pyrite. Such kaolinite is inferred to result from volcanic ash deposited during chalk sedimentation. Shortly after burial, a colloidal aluminous gel or solution formed from the unstable ash and moved into organic-rich foraminiferal tests, where sulfate-reducing bacteria created a favorable microenvironment for the simultaneous crystallization of kaolinite and pyrite. -Author
Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Byungki, E-mail: byungkiryu@keri.re.kr; Lee, Jae Ki; Lee, Ji Eun
Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near themore » band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.« less
Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals
Albright, Scot P.; Chamberlin, Rhodes R.
1996-03-26
A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.
NASA Astrophysics Data System (ADS)
Tong, Y.; Cao, Y.; Liu, R.; Shang, S. Y.; Huang, F. L.
2018-03-01
The formation mechanism of detonation polycrystalline diamond (DPD) generated from the detonation of a mixed RDX/graphite explosive is investigated. It is found experimentally that the DPD conversion rate decreases with both the content and the particle size of the graphite. Moreover, the particle sizes of the generated DPD powder are analyzed, which shows that, with the decrease in the graphite particle size, the mean number diameter of DPD decreases, but the mean volume diameter increases. In addition, with the help of scanning electron microscopy, it is observed that the in situ phase change occurs in the graphite particles, by which the small particles combine to form numerous large DPD particles. Based on both the experimental data and the classical ZND detonation model, we divide such a DPD synthesis process into two stages: In the first stage, the in situ phase change from graphite to diamond is dominant, supplemented by some coalescence growth at high pressure and temperature, which is affected mainly by the detonation performance of the mixed explosive under consideration. In the second stage, the graphitization of DPD caused by the residual heat is dominant, which is affected mainly by the unloading rate of the particle temperature.
Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates
NASA Astrophysics Data System (ADS)
Chandran, Maneesh; Elfimchev, Sergey; Michaelson, Shaul; Akhvlediani, Rozalia; Ternyak, Orna; Hoffman, Alon
2017-10-01
In this paper, we report on a simple, feasible method to fabricate microchannels in diamond. Polycrystalline diamond microchannels were produced by fabricating trenches in a Si wafer and subsequently depositing a thin layer of diamond onto this substrate using the hot filament vapor deposition technique. Fabrication of trenches in the Si substrate at different depths was carried out by standard photolithography, and the subsequent deposition of the diamond layer was performed by the hot filament chemical vapor deposition technique. The growth mechanism of diamond that leads to the formation of closed diamond microchannels is discussed in detail based on the Knudsen number and growth chemistry of diamond. Variations in the crystallite size, crystalline quality, and thickness of the diamond layer along the trench depths were systematically analyzed using cross-sectional scanning electron microscopy and Raman spectroscopy. Defect density and formation of non-diamond forms of carbon in the diamond layer were found to increase with the trench depth, which sets a limit of 5-45 μm trench depth (or an aspect ratio of 1-9) for the fabrication of diamond microchannels using this method under the present conditions.
Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime
2017-09-13
We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.
NASA Astrophysics Data System (ADS)
García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.
2015-05-01
This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of < 111 >, < 200 > and < 220 >. The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.
NASA Astrophysics Data System (ADS)
Guo, Qianying; Thompson, Gregory B.
2018-04-01
In-situ TEM nanoindentation of a polycrystalline Cu film was cross-correlated with precession electron diffraction (PED) to quantify the microstructural evolution. The use of PED is shown to clearly reveal features, such as grain size, that are easily masked by diffraction contrast created by the deformation. Using PED, the accompanying grain refinement and change in texture as well as the preservation of specific grain boundary structures, including a ∑3 boundary, under the indent impression were quantified. The nucleation of dislocations, evident in low-angle grain boundary formations, was also observed under the indent. PED quantification of texture gradients created by the indentation process linked well to bend contours observed in the bright-field images. Finally, PED enabled generating a local orientation spread map that gave an approximate estimation of the spatial distribution of strain created by the indentation impression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Jason M.; Kindvall, Anna; Williams, Desiree
Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less
2017-01-01
We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes. PMID:28410557
NASA Astrophysics Data System (ADS)
Detwiler, Michael D.; Milligan, Cory A.; Zemlyanov, Dmitry Y.; Delgass, W. Nicholas; Ribeiro, Fabio H.
2016-06-01
Formic acid dehydrogenation turnover rates (TORs) were measured on Pt(111), Pt(100), and polycrystalline Pt foil surfaces at a total pressure of 800 Torr between 413 and 513 K in a batch reactor connected to an ultra-high vacuum (UHV) system. The TORs, apparent activation energies, and reaction orders are not sensitive to the structure of the Pt surface, within the precision of the measurements. CO introduced into the batch reactor depressed the formic acid dehydrogenation TOR and increased the reaction's apparent activation energies on Pt(111) and Pt(100), consistent with behavior predicted by the Temkin equation. Two reaction mechanisms were explored which explain the formic acid decomposition mechanism on Pt, both of which include dissociative adsorption of formic acid, rate limiting formate decomposition, and quasi-equilibrated hydrogen recombination and CO adsorption. No evidence was found that catalytic supports used in previous studies altered the reaction kinetics or mechanism.
Study of structural and magnetic characterization of polycrystalline Y0.5Ho0.5CrO3
NASA Astrophysics Data System (ADS)
Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev
2018-05-01
A polycrystalline ceramic sample of Y0.5Ho0.5CrO3 was studied using powder X-ray diffraction, Raman spectroscopic and dc magnetometry measurement to understand the structural and magnetic properties. The Rietveld refinement of X-ray data suggests sample crystallized in Pnma orthorhombic structure without formation of any secondary phases confirming their phase-pure nature. However, Raman study shows a prominent effect of Ho doping in low wavenumber Raman active phonon modes. Further, M-T measurement shows magnetic phase transition (TN) at 141 K and a negative value of Curie-Weiss temperature suggesting an antiferromagnetic system. Subsequent, the appearance of the clear opening in the M-H loop below TN is an evidence of the appearance of a weak ferromagnetic component in the low- temperature regime while the magnetization increases linearly in the high magnetic field regime suggest antiferromagnetic component.
Two-dimensional freezing criteria for crystallizing colloidal monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Ziren; Han Yilong; Alsayed, Ahmed M.
Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At themore » freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.« less
Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides
NASA Astrophysics Data System (ADS)
Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young
2018-06-01
A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, P.; Kamath, H.
Raychem Corporation (RYC) and the Lawrence Livermore National Laboratory (LLNL) conducted a development program with the goal to make rugged, low-cost., high-resolution flat panel displays based on RYC's proprietary Nematic Curvilinear Aligned Phase (NCAP) liquid crystal and LLNL's patented processes for the formation and doping of polycrystalline silicon on low-temperature, flexible, plastic substrates.
On the stability of sub-stoichiometric uranium oxides
NASA Astrophysics Data System (ADS)
Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.
1986-12-01
The oxidation of clean, high-purity polycrystalline uranium metal surfaces for low exposures to dry oxygen was studied with AES and XPS in an attempt to substantiate claims for the formation of a stable UO surface phase at ambient temperatures. We found no evidence for such a surface phase and found instead that grossly sub-stoichiometric surface oxides were formed after sequential oxygen saturation and heating.
NASA Astrophysics Data System (ADS)
Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Polaki, S. R.; Ilango, S.; David, C.; Dash, S.; Panigrahi, B. K.
2017-05-01
The formation of nanocrystalline SiGe without the aid of metal induced crystallization is reported. Re-crystallization of the as-deposited poly-Ge film (deposited at 450 °C) leads to development of regions with depleted Ge concentration upon annealing at 500 °C. Clusters with crystalline facet containing both nanocrystalline SiGe and crystalline Ge phase starts appearing at 600 °C. The structural phase characteristics were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The stoichiometry of the SiGe phase was estimated from the positions of the Raman spectral peaks.
New software to model energy dispersive X-ray diffraction in polycrystalline materials
NASA Astrophysics Data System (ADS)
Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.
2012-02-01
Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.
Monolithic short wave infrared (SWIR) detector array
NASA Technical Reports Server (NTRS)
1983-01-01
A monolithic self-scanned linear detector array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the detector array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of detector yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear detector arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.
NASA Astrophysics Data System (ADS)
Burnley, P. C.
2013-12-01
One of the fundamental challenges in characterizing the plastic properties of deep earth materials at relevant length and time scales is that some form of extrapolation will always be required. With increasing computational power, single crystal mechanical properties will probably be accessible to first principles calculations in the not too distant future. If the relationship between single crystal and polycrystal mechanical properties were straightforward, with some ground truthing in the lab, the bulk behavior could be confidently extrapolated to experimentally inaccessible conditions. However, we currently lack a satisfactory paradigm to describe the relationship between single crystal and polycrystalline deformation. Existing mechanical models, including self-consistent models cannot predict or account for the spatial variations in the local stress and strain states observed in real-world materials. Full field models can be constructed so as to explicitly include the spatial relationships between crystals and their neighbors, but in their explicitness they lose the ability to generalize. Using finite element (FEM) simulations of a polycrystalline material (Figure 1a), I show that local variations in stress and strain participate in large-scale patterns, that are a function of the heterogeneity and statistical distribution of elastic and plastic properties across the population of mechanical components (grains and grain boundaries) in the material. The patterns of modulation in the local stress tensor are similar to the patterns of stress distribution observed in granular materials - often referred to as force chains. Force chains are caused by percolation of stress through strong contacts between particles in a granular aggregate. The patterns in stress modulation observed in the FEM simulations are caused by stress percolation through the elastically heterogeneous mechanical elements. Greater degrees of heterogeneity lead to more intense stress concentrations across a less dense pattern (Figure 1b). Lower degrees of elastic heterogeneity lead to a denser pattern of stress transmission that carries smaller modulations (Figure1e). Paralleling the development of shear bands in granular materials, the stress patterns lead directly to shear localization even in the absence of strain softening. The recognition of stress percolation provides a foundation for devising models that link single crystal mechanics and local interactions to bulk behavior. Such rheological models should provide a more robust platform for extrapolating to deep earth conditions including spatial and time scales. Figure 1: Panel a) FE model mesh, inset shows an enlarged region. Properties are assigned to each of 25 grain sets (coded by color). Panels b)-e) Equivalent von Mises stress patterns for models in compression. For b) Young's modulus E of grain sets ranges from 500 to 0 GPa with v=0.1 to 0.4, for c) E= 500 to 0 GPa with v=0.3 for d) E= 200 to 20 GPa with v=0.3 and for e) E =120 to 100 GPa with v=0.3. The maximum value of the equivalent stress in b) is 10 times that found in e).
A compact electron gun for time-resolved electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk
A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less
Direct formation of (CH sub 3 ) sub 2 HSiCl from silicon and CH sub 3 Cl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magrini, K.A.; Falconer, J.L.; Koel, B.E.
1989-07-13
A Cu-catalyzed reaction procedure was found for the selective formation of dimethylchlorosilane ((CH{sub 3}){sub 2}HSiCl) from the direct reaction of CH{sub 3}Cl with solid Si. The new procedure is a two-step process. A Cu/Si sample is prepared by evaporating Cu onto clean polycrystalline Si under ultrahigh vacuum, and the Cu/Si surface is first activated by exposure to 10% HSiCl{sub 3}/CH{sub 3}Cl at 598 K. After the HSiCl{sub 3}CH{sub 3}Cl mixture is evacuated from the reactor, the activated Cu/Si surface is reacted in fresh CH{sub 3}Cl. For low surface concentrations of Cu, the partially hydrogenated silane, (CH{sub 3}){sub 2}HSiCl, is selectivelymore » produced. Trichlorosilane was also found to activate polycrystalline Si (in the absence of Cu) for production of highly chlorinated methylchlorosilanes at a much higher rate than on the Cu/Si surface but with poor selectively to (CH{sub 3}){sub 2}HSiCl. All reactions are carried out at atmospheric pressure in a reactor that is attached to an ultrahigh-vacuum chamber. This allows surface analysis of Auger electron spectroscopy, which detected SiCl{sub x} on reacted surfaces. These SiCl{sub x} sites, which appear necessary for methylchlorosilane formation, are apparently formed during activation by HSiCl{sub 3}.« less
System for characterizing semiconductor materials and photovoltaic device
Sopori, B.L.
1996-12-03
Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device. 22 figs.
System for characterizing semiconductor materials and photovoltaic device
Sopori, Bhushan L.
1996-01-01
Apparatus for detecting and mapping defects in the surfaces of polycrystalline material in a manner that distinguishes dislocation pits from grain boundaries includes a first laser of a first wavelength for illuminating a wide spot on the surface of the material, a second laser of a second relatively shorter wavelength for illuminating a relatively narrower spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate raster mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. A reflectance measurement of the piece of material is obtained by adding together the signals from the optical detection devices. In the case where the piece of material includes a photovoltaic device, the current induced in the device by the illuminating light can be measured with a current sensing amplifier after the light integrating sphere is moved away from the device.
Spray deposition of highly transparent fluorine doped cadmium oxide thin films
NASA Astrophysics Data System (ADS)
Deokate, R. J.; Pawar, S. M.; Moholkar, A. V.; Sawant, V. S.; Pawar, C. A.; Bhosale, C. H.; Rajpure, K. Y.
2008-01-01
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.
Effect of annealing atmosphere on properties of Cu2ZnSn(S,Se)4 thin films
NASA Astrophysics Data System (ADS)
Xue, Yuming; Yu, Bingbing; Li, Wei; Feng, Shaojun; Wang, Yukun; Huang, Shengming; Zhang, Chao; Qiao, Zaixiang
2017-12-01
Earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) thin film photovoltaic absorber layers were fabricated by co-evaporated Cu, ZnS, SnS and Se sources in a vacuum chamber followed by annealing at tubular furnace for 30 min at 550 °C. In this paper, we investigated the metal elements with stoichiometric ratio film to study the effect of annealing conditions of Se, SnS + Se, S and SnS + S atmosphere on the structure, surface morphological, optical and electrical properties of Cu2ZnSn(S,Se)4 thin films respectively. These films were characterized by Inductively Coupled Plasma-Mass Spectrometer, scanning electron microscopy, X-ray diffraction to investigate the composition, morphological and crystal structural properties. The grain size of samples were found to increase after annealing. XRD patterns confirmed the formation of pure polycrystalline CZTSSe thin films at S atmosphere, the optical band gaps are 1.02, 1.05, 1.23, 1.35 eV for Se, SnS + Se, SnS + S and S atmosphere respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, P.; Ghose, D.
The sputter ripple formation in polycrystalline metal thin films of Al, Co, Cu, and Ag has been studied by 16.7 keV Ar{sup +} and O{sub 2}{sup +} ion bombardment as a function of angle of ion incidence. The experimental results show the existence of a critical angle of ion incidence ({theta}{sub c}) beyond which the ripples of wave vectors perpendicular to the projected ion beam direction appear. Monte Carlo simulation (SRIM) is carried out to calculate the depth, longitudinal and lateral straggling widths of energy deposition as these values are crucial in determining the critical angle {theta}{sub c}. It ismore » found that the radial energy distribution of the damage cascade has the maximum slightly away from the ion path in contradiction to the Gaussian distribution and the distribution is better characterized by an exponential function. The lower values of lateral straggling widths as those extracted from the measured critical angles using the Bradley and Harper theory indicate a highly anisotropic deposited-energy distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.
Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array,more » without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.« less
Development and testing of a Mudjet-augmented PDC bit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Alan; Chahine, Georges; Raymond, David Wayne
2006-01-01
This report describes a project to develop technology to integrate passively pulsating, cavitating nozzles within Polycrystalline Diamond Compact (PDC) bits for use with conventional rig pressures to improve the rock-cutting process in geothermal formations. The hydraulic horsepower on a conventional drill rig is significantly greater than that delivered to the rock through bit rotation. This project seeks to leverage this hydraulic resource to extend PDC bits to geothermal drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev, E-mail: rajeevgiitk@gmail.com; Mall, Ashish Kumar; Gupta, Rajeev
2016-05-23
Polycrystalline ceramic samples of Zirconium (Zr)-doped GaFeO{sub 3} (GaFe{sub 1-x}Zr{sub x}O{sub 3}) were studied using powder X-ray diffraction, complex impedance spectroscopy and Raman spectroscopic measurements to understand the effect of Zr doping on the structural and dielectric properties. The samples with varying Zr content were prepared by Sol-Gel method. X-ray data analysis confirmed the formation of single phase material without formation of any secondary phases and all are crystallized in Pc2{sub 1}n orthorhombic symmetry. Rietveld refinement of the X-ray data suggested an increase in the lattice constants due to size effect and decreases on x = 0.15 due to themore » effect of change in interplanner spacing. Impedance studies on the samples showed that the dielectric constant increases while loss tangent decrease as the Zr content increases. Raman scattering on GaFe{sub 1-x}Zr{sub x}O{sub 3} (x = 0, 0.05, 0.10, & 0.15) used to understand the composition dependence on phonon modes at room temperature. On Zr doping, Raman modes frequencies shifts to lower energies consistent with the X-ray data.« less
NASA Astrophysics Data System (ADS)
Horita, Ryohei; Ohtani, Kyosuke; Kai, Takahiro; Murao, Yusuke; Nishida, Hiroya; Toya, Taku; Seo, Kentaro; Sakai, Mio; Okuda, Tetsuji
2013-11-01
We have fabricated anatase-TiO2 polycrystalline-thin-film field-effect transistors (FETs) with poly(vinyl alcohol) (PVA), ion-liquid (IL), and ion-gel (IG) gate layers, and have tried to improve the response to gate voltage by varying the concentration of mobile ions in these electrolyte gate layers. The increase in the concentration of mobile ions by doping NaOH into the PVA gate layer or reducing the gelator in the IG gate layer markedly increases the drain-source current and reduces the driving gate voltage, which show that the mobile ions in the PVA, IL, and IG gate layers cause the formation of electric double layers (EDLs), which act as nanogap capacitors. In these TiO2-EDL-FETs, the slow formation of EDLs and the oxidation reaction at the interface between the surface of the TiO2 film and the electrolytes cause unideal FET properties. In the optimized IL and IG TiO2-EDL-FETs, the driving gate voltage is less than 1 V and the ON/OFF ratios of the transfer characteristics are about 1×104 at RT, and the nearly metallic state is realized at the interface purely by applying a gate voltage.
Process for utilizing low-cost graphite substrates for polycrystalline solar cells
NASA Technical Reports Server (NTRS)
Chu, T. L. (Inventor)
1978-01-01
Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.
Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B
2017-11-01
The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ohdaira, Keisuke; Matsumura, Hideki
2013-01-01
We succeed in the formation of micrometer-order-thick polycrystalline silicon (poly-Si) films through the flash-lamp-induced liquid-phase explosive crystallization (EC) of precursor a-Si films prepared by electron-beam (EB) evaporation. The velocity of the explosive crystallization (vEC) is estimated to be ˜14 m/s, which is close to the velocity of the liquid-phase epitaxy (LPE) of Si at a temperature around the melting point of a-Si of 1418 K. Poly-Si films formed have micrometer-order-long grains stretched along a lateral crystallization direction, and X-ray diffraction (XRD) and electron diffraction pattern measurements reveal that grains in poly-Si films tend to have a particular orientation. These features are significantly different from our previous results: the formation of poly-Si films containing randomly-oriented 10-nm-sized fine grains formed from a-Si films prepared by catalytic chemical vapor deposition (Cat-CVD) or sputtering. One possible reason for the emergence of a different EC mode in EB-evaporated a-Si films is the suppression of solid-phase nucleation (SPN) during Flash Lamp Annealing (FLA) due to tensile stress which precursor a-Si films originally hold. Poly-Si films formed from EB-evaporated a-Si films would contribute to the realization of high-efficiency thin-film poly-Si solar cells because of large and oriented grains.
Encapsulation and stabilization of β-carotene by amylose inclusion complexes.
Kong, Lingyan; Bhosale, Rajesh; Ziegler, Gregory R
2018-03-01
In the present study, we report a novel composition based on amylose (or starch) inclusion complex with an amphiphilic material as an effective encapsulation platform technology to incorporate guests of interest. Specifically, the encapsulation of β-carotene in amylose-surfactant and amylose/starch-ascorbyl palmitate (AscP) inclusion complexes was investigated. Surfactants of different hydrophilicity/lipophilicity were selected to cover a broad range of HLB values. The formation of the inclusion complexes was characterized by X-ray diffraction and differential scanning calorimetry. The ability of amylose-surfactant system to encapsulate β-carotene was dependent on the HLB value of the surfactants, instead of their ability to induce inclusion complexation. The incorporation of β-carotene hindered amylose-surfactant inclusion complex formation, whereas no significant effect was observed on structural and thermal properties of starch-AscP inclusion complex in the presence of β-carotene. The X-ray diffraction pattern of amylose-AscP-β-carotene showed that β-carotene molecules did not crystallize into a separated phase and thus were suggested to be homogeneously immobilized within the polycrystalline amylose-AscP inclusion complexes. During a storage period of six weeks at 20 and 30°C, the stability of β-carotene was improved by encapsulation in starch-AscP inclusion complexes compared with that in physical mixtures of the three components. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass
NASA Astrophysics Data System (ADS)
Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva
2012-10-01
Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.
Structural control of In2Se3 polycrystalline thin films by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Okamoto, T.; Nakada, Y.; Aoki, T.; Takaba, Y.; Yamada, A.; Konagai, M.
2006-09-01
Structural control of In2Se3 polycrystalline thin films was attempted by molecular beam epitaxy (MBE) technique. In2Se3 polycrystalline films were obtained on glass substrates at substrate temperatures above 400 °C. VI/III ratio greatly affected crystal structure of In2Se3 polycrystalline films. Mixtures of -In2Se3 and γ-In2Se3 were obtained at VI/III ratios greater than 20, and layered InSe polycrystalline films were formed at VI/III ratios below 1. γ-In2Se3 polycrystalline thin films without α-phase were successfully deposited with VI/III ratios in a range of 2 to 4. Photocurrent spectra of the γ-In2Se3 polycrystalline films showed an abrupt increase at approximately 1.9 eV, which almost corresponds with the reported bandgap of γ-In2Se3. Dark conductivity and photoconductivity measured under solar simulator light (AM 1.5, 100 mW/cm2) were approximately 10-9 and 10-5 S/cm in the γ-In2Se3 polycrystalline thin films, respectively.
NASA Astrophysics Data System (ADS)
Purohit, Anuradha; Chander, S.; Dhaka, M. S.
2017-04-01
An impact of annealing on the physical properties of polycrystalline CdO thin films is carried out in this study. CdO thin films of thickness 650 nm were fabricated on glass and indium tin oxide (ITO) substrates employing e-beam evaporation technique. The pristine thin films were annealed in air atmosphere at 250 °C, 400 °C and 550 °C for one hour followed by investigation of structural, optical, electrical and morphological properties along with elemental composition using X-ray diffraction (XRD), UV-Vis spectrophotometer, Fourier transform infrared (FTIR) spectrometer, source meter, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. XRD patterns confirmed the polycrystalline nature and cubic structure (with space group Fm 3 bar m) of the films. The crystallographic parameters are calculated and found to be influenced by the post-air annealing treatment. The optical study shows that direct band gap is ranging from 1.98 eV to 2.18 eV and found to be decreased with post-annealing. The refractive index and optical conductivity are also increased with annealing temperature. The current-voltage characteristics show ohmic behaviour of the annealed films. The surface morphology is observed to be improved with annealing and grain-size is increased as well as EDS spectrum confirmed the presence of cadmium (Cd) and oxygen (O) in the deposited films.
Li, Shihong; Wang, Zheng Jim; Chang, Ting-Tung
2014-01-01
Intriguing patterns of periodic, concentric, layered, mineral microstructure are present in nature and organisms, yet they have elusive geneses. We hypothesize temperature oscillation can be an independent factor that causes the self-assembly of such patterns in mineral phases synthesized in solution. Static experiments verify that rhythmic concentric multi-layered magnesium carbonate microhemispheres can be synthesized from bicarbonate solution by temperature oscillation, without use of a chemical template, additive or gel-diffusion system. Appropriate reactant concentration and initial pH value can restrain the competitive growth of other mineral generations. Polarized light microscopy images indicate the microhemispheres are crystalline and the crystallinity increases with incubation time. The thickness of a single mineral layer of microhemisphere in microscale is precisely controlled by the waveform parameters of the temperature oscillation, while the layer number, which can reach tens to about one hundred, is constrained by the temperature oscillation period number. FT-IR spectra show that these microhemispheres synthesized under different conditions can be identified as the basic form of magnesium carbonate, hydromagnesite (Mg5(CO3)4(OH)2⋅4H2O). SEM images exhibit the characteristic microscopic texture of the alternating dark and light rings of these microhemispheres. TEM images and ED patterns suggest the nanoflakes of microhemispheres are present in polycrystalline form with some degree of oriented assembly. The temperature oscillation modulated self-assembly may offer a new mechanism to understand the formation of layered microstructure of minerals in solution, and provide a non-invasive and programmable means to synthesize hierarchically ordered materials. PMID:24520410
NASA Astrophysics Data System (ADS)
Braunstein, G.; Paz-Pujalt, G. R.; Mason, M. G.; Blanton, T.; Barnes, C. L.; Margevich, D.
1993-01-01
The processes of formation and crystallization of thin films of SrTiO3 prepared by the method of metallo-organic decomposition have been studied with particular emphasis on the relationship between the thermal decomposition of the metallo-organic precursors and the eventual epitaxial alignment of the crystallized films. The films are deposited by spin coating onto single-crystalline silicon and SrTiO3 substrates, pyrolyzed on a hot plate at temperatures ranging from 200 to 450 °C, and subsequently heat treated in a quartz tube furnace at temperatures ranging from 300 to 1200 °C. Heat treatment at temperatures up to 450-500 °C results in the evaporation of solvents and other organic addenda, thermal decomposition of the metallo-organic (primarily metal-carboxylates) precursors, and formation of a carbonate species. This carbonate appears to be an intermediate phase in the reaction of SrCO3 and TiO2 to form SrTiO3. Relevant to this work is the fact that the carbonate species exhibits diffraction lines, indicating the formation of grains that can serve as seeds for the nucleation and growth of randomly oriented SrTiO3 crystallites, thereby leading to a polycrystalline film. Deposition on silicon substrates indeed results in the formation of polycrystalline SrTiO3. However, when the precursor solution is deposited on single-crystalline SrTiO3 substrates, the crystallization process involves a competition between two mechanisms: the random nucleation and growth of crystallites just described, and layer-by-layer solid phase epitaxy. Epitaxial alignment on SrTiO3 substrates can be achieved when the samples are heat treated at temperatures of 1100-1200 °C or at temperatures as low as 600-650 °C when the substrate is heated to about 1100 °C before spin coating.
Modelling heat conduction in polycrystalline hexagonal boron-nitride films
Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon
2015-01-01
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820
Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum
Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole
2015-01-01
Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062
NASA Astrophysics Data System (ADS)
Dubrovinskaia, Natalia; Solozhenko, Vladimir L.; Miyajima, Nobuyoshi; Dmitriev, Vladimir; Kurakevych, Oleksandr O.; Dubrovinsky, Leonid
2007-03-01
The authors report a synthesis of unique superhard aggregated boron nitride nanocomposites (ABNNCs) showing the enhancement of hardness up to 100% in comparison with single crystal c-BN. Such a great hardness increase is due to the combination of the Hall-Petch and the quantum confinement effects. The decrease of the grain size down to 14nm and the simultaneous formation of the two dense BN phases with hexagonal and cubic structures within the grains at nano- and subnanolevel result in enormous mechanical property enhancement with maximum hardness of 85(5)GPa. Thus, ABNNC is the first non-carbon-based bulk material with the value of hard-ness approaching that of single crystal and polycrystalline diamond and aggregated diamond nanorods. ABNNC also has an unusually high fracture toughness for superhard materials (K1C=15MPam0.5) and wear resistance (WH=11; compare, for industrial polycrystalline diamond, WH=3-4), in combination with high thermal stability (above 1600K in air), making it an exceptional superabrasive.
Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics
Kephart, Jason M.; Kindvall, Anna; Williams, Desiree; ...
2018-01-18
Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less
He, Zhiyang; Liu, Qiao; Hou, Huilin; Gao, Fengmei; Tang, Bin; Yang, Weiyou
2015-05-27
In this work, polycrystalline WO3 nanobelts were fabricated via an electrospinning process combined with subsequent air calcination. The resultant products were characterized by X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy in regard to the structures. It has been found that the applied voltage during the electrospinning process played the determined role in the formation of the WO3 nanobelts, allowing the controlled growth of the nanobelts. The ultraviolet (UV) photodetector assembled by an individual WO3 nanobelt exhibits a high sensitivity and a precise selectivity to the different wavelength lights, with a very low dark current and typical photo-dark current ratio up to 1000, which was the highest for any WO3 photodectectors ever reported. This work could not only push forward the facile preparation of WO3 nanobelts but also represent, for the first time, the possibility that the polycrystalline WO3 nanobelts could be a promising building block for the highly efficient UV photodetectors.
Kim, Yong Seung; Joo, Kisu; Jerng, Sahng-Kyoon; Lee, Jae Hong; Moon, Daeyoung; Kim, Jonghak; Yoon, Euijoon; Chun, Seung-Hyun
2014-03-25
The integration of graphene into devices is a challenging task because the preparation of a graphene-based device usually includes graphene growth on a metal surface at elevated temperatures (∼1000 °C) and a complicated postgrowth transfer process of graphene from the metal catalyst. Here we report a direct integration approach for incorporating polycrystalline graphene into light emitting diodes (LEDs) at low temperature by plasma-assisted metal-catalyst-free synthesis. Thermal degradation of the active layer in LEDs is negligible at our growth temperature, and LEDs could be fabricated without a transfer process. Moreover, in situ ohmic contact formation is observed between DG and p-GaN resulting from carbon diffusion into the p-GaN surface during the growth process. As a result, the contact resistance is reduced and the electrical properties of directly integrated LEDs outperform those of LEDs with transferred graphene electrodes. This relatively simple method of graphene integration will be easily adoptable in the industrialization of graphene-based devices.
Uranium passivation by C + implantation: A photoemission and secondary ion mass spectrometry study
NASA Astrophysics Data System (ADS)
Nelson, A. J.; Felter, T. E.; Wu, K. J.; Evans, C.; Ferreira, J. L.; Siekhaus, W. J.; McLean, W.
2006-03-01
Implantation of 33 keV C + ions into polycrystalline U 238 with a dose of 4.3 × 10 17 cm -2 produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C + ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun
2007-09-01
Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin films.
Woo, Sungmin; Lee, Sang A; Mun, Hyeona; Choi, Young Gwan; Zhung, Chan June; Shin, Soohyeon; Lacotte, Morgane; David, Adrian; Prellier, Wilfrid; Park, Tuson; Kang, Won Nam; Lee, Jong Seok; Kim, Sung Wng; Choi, Woo Seok
2018-03-01
Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO 3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO 3 substrate, an epitaxial polycrystalline SrRuO 3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.
Turbodrills and innovative PDC bits economically drilled hard formations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, R.C.; Massey, K.
1994-03-28
The use of turbodrills and polycrystalline diamond compact (PDC) bits with an innovative, tracking cutting structure has improved drilling economics in medium and hard formations in the Gulf of Mexico. Field results have confirmed that turbodrilling with trackset PDC bits reduced drilling costs, compared to offset wells. The combination of turbodrills and trackset bits has been used successfully in a broad range of applications and with various drilling parameters. Formations ranging from medium shales to hard, abrasive sands have been successfully and economically drilled. The tools have been used in both water-based and oil-based muds. Additionally, the turbo-drill and tracksetmore » PDC bit combination has been stable on directional drilling applications. The locking effect of the cutting structure helps keep the bit on course.« less
Process Research On Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.; Wohlgemuth, J. H.
1982-01-01
Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.
Tunable growth of TiO2 nanostructures on Ti substrates
NASA Astrophysics Data System (ADS)
Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng
2005-10-01
A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.
NASA Astrophysics Data System (ADS)
Luscher, Darby
2017-06-01
The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.
Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode
2012-09-01
Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode by Sol Gilman ARL-TR-6165 September 2012...6165 September 2012 Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode Sol Gilman Sensors and...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Coulometric Study of Rates of Oxalic Acid Adsorption at a Polycrystalline Platinum Electrode
Surface properties of atomically flat poly-crystalline SrTiO3
Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok
2015-01-01
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275
Synthesis and in vitro bioactivity of bredigite powders.
Wu, Chengtie; Chang, Jiang
2007-01-01
Pure bredigite (Ca7MgSi4O16) powders are synthesized by the sol-gel method. The bredigite powders are composed of polycrystalline particles with dimensions of 1-10 micro m. The in vitro bioactivity of the bredigite powders are examined by evaluation of hydroxyapatite (HAp) formation ability in simulated body fluid (SBF) and the effect of ionic products from bredigite dissolution on osteoblast proliferation. The results showed that bredigite induced the formation of nanocrystalline HAp after soaking in SBF for 10 days. The Ca, Si, and Mg ions from bredigite dissolution at a certain concentration range stimulates osteoblast proliferation. Our study indicates that bredigite is bioactive and might be used for preparation of new biomaterials.
Structural Transformations in Metallic Materials During Plastic Deformation
NASA Astrophysics Data System (ADS)
Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.
2017-03-01
In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.
Method to fabricate micro and nano diamond devices
Morales, Alfredo M.; Anderson, Richard J.; Yang, Nancy Y. C.; Skinner, Jack L.; Rye, Michael J.
2017-04-11
A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.
Method to fabricate micro and nano diamond devices
Morales, Alfredo M; Anderson, Richard J; Yang, Nancy Y. C.; Skinner, Jack L; Rye, Michael J
2014-10-07
A method including forming a diamond material on the surface of a substrate; forming a first contact and a separate second contact; and patterning the diamond material to form a nanowire between the first contact and the second contact. An apparatus including a first contact and a separate second contact on a substrate; and a nanowire including a single crystalline or polycrystalline diamond material on the substrate and connected to each of the first contact and the second contact.
Mechanisms limiting the performance of large grain polycrystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.
1984-01-01
The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.
Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Dhanekar, Saakshi; Das, Samaresh
2016-11-01
Synthesis of orthorhombic (α) MoO3 nano-flakes by dry oxidation of RF sputtered Mo thin film is presented. The influence of Mo thickness variation, oxidation temperature and time on the crystallographic structure, surface morphology and roughness of MoO3 thin films was studied using SEM, AFM, XRD and Raman spectroscopy. A structural study shows that MoO3 is polycrystalline in nature with an α phase. It was noticed that oxidation temperature plays an important role in the formation of nano-flakes. The synthesis technique proposed is simple and suitable for large scale productions. The synthesis parameters were optimized for the fabrication of sensors. Chrome gold-based IDE (interdigitated electrodes) structures were patterned for the electrical detection of organic vapors. Sensors were exposed to wide range 5-100 ppm of organic vapors like ethanol, acetone, IPA (isopropanol alcohol) and water vapors. α-MoO3 nano-flakes have demonstrated selective sensing to acetone in the range of 10-100 ppm at 150 °C. The morphology of such nanostructures has potential in applications such as sensor devices due to their high surface area and thermal stability.
NASA Astrophysics Data System (ADS)
Pervaiz, Erum; Syam Azhar Virk, Muhammad; Tareen, Ayesha Khan; Zhang, Bingxue; Zhao, Qiuyan; Wang, Zhenzhen; Yang, Minghui
2018-05-01
The fabrication of functional materials in patterned morphology is focused to obtain remarkable physiognomies of the materials for certain applications. Instead of randomly distributed agglomerated nanoparticles, it is highly desirable to arrange them in a motif, as this directed formation of nanomaterials can have a substantial influence on their performance and activity in various applications. With this perspective, MOF derived hollow cubes of nickel cobalt ferrites have been synthesized via a facile process using sacrificial templates at 600 °C. Microcubes, composed of tiny grains in a size range from 10 nm ± 2 nm were obtained in pure form as a polycrystalline material. The high specific surface area (1185 m2 g‑1) and mesoporous nature of hollow cubic ferrites were found to be excellent adsorbents for nitrophenol at room temperature. The equilibrium quantity of adsorbed nitrophenol was calculated as 47 mg g‑1 ferrite, accomplished in 7 min. Their large surface area, mesopores and hollow nature, in combination with controlled size distribution of grains, have enabled this remarkable utilization of nanoferrites for removal of nitrophenol from water.
Pervaiz, Erum; Virk, Muhammad Syam Azhar; Tareen, Ayesha Khan; Zhang, Bingxue; Zhao, Qiuyan; Wang, Zhenzhen; Yang, Minghui
2018-05-25
The fabrication of functional materials in patterned morphology is focused to obtain remarkable physiognomies of the materials for certain applications. Instead of randomly distributed agglomerated nanoparticles, it is highly desirable to arrange them in a motif, as this directed formation of nanomaterials can have a substantial influence on their performance and activity in various applications. With this perspective, MOF derived hollow cubes of nickel cobalt ferrites have been synthesized via a facile process using sacrificial templates at 600 °C. Microcubes, composed of tiny grains in a size range from 10 nm ± 2 nm were obtained in pure form as a polycrystalline material. The high specific surface area (1185 m 2 g -1 ) and mesoporous nature of hollow cubic ferrites were found to be excellent adsorbents for nitrophenol at room temperature. The equilibrium quantity of adsorbed nitrophenol was calculated as 47 mg g -1 ferrite, accomplished in 7 min. Their large surface area, mesopores and hollow nature, in combination with controlled size distribution of grains, have enabled this remarkable utilization of nanoferrites for removal of nitrophenol from water.
Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures.
Pateras, Anastasios; Park, Joonkyu; Ahn, Youngjun; Tilka, Jack A; Holt, Martin V; Reichl, Christian; Wegscheider, Werner; Baart, Timothy A; Dehollain, Juan Pablo; Mukhopadhyay, Uditendu; Vandersypen, Lieven M K; Evans, Paul G
2018-05-09
Quantum devices formed in high-electron-mobility semiconductor heterostructures provide a route through which quantum mechanical effects can be exploited on length scales accessible to lithography and integrated electronics. The electrostatic definition of quantum dots in semiconductor heterostructure devices intrinsically involves the lithographic fabrication of intricate patterns of metallic electrodes. The formation of metal/semiconductor interfaces, growth processes associated with polycrystalline metallic layers, and differential thermal expansion produce elastic distortion in the active areas of quantum devices. Understanding and controlling these distortions present a significant challenge in quantum device development. We report synchrotron X-ray nanodiffraction measurements combined with dynamical X-ray diffraction modeling that reveal lattice tilts with a depth-averaged value up to 0.04° and strain on the order of 10 -4 in the two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure. Elastic distortions in GaAs/AlGaAs heterostructures modify the potential energy landscape in the 2DEG due to the generation of a deformation potential and an electric field through the piezoelectric effect. The stress induced by metal electrodes directly impacts the ability to control the positions of the potential minima where quantum dots form and the coupling between neighboring quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katona, T.; Guczi, L.; Somorjai, G.A.
1992-06-01
The reaction system of nitric oxide, ammonia, and oxygen was studied using batch-mode measurements in partial pressure ranges of 65-1000 Pa (0.5-7.6 Torr) on polycrystalline Pt foils over the temperature range 423-598 K. Under these conditions the oxidation of nitric oxide was not detectable. The ammonia oxidation reaction, using dioxygen, occurred in the temperature range 423-493 K, producing nitrogen and water as the only products. The activation energy of the nitrogen formation was found to be 86 kJ/mol. Above this temperature range, flow-mode measurements showed the formation of both nitrous oxide and nitric oxide. The reaction rate between ammonia andmore » oxygen was greatly decreased (about a factor of 10) by nitric oxide, while the reaction rate between nitric oxide and ammonia was accelerated (about 10-fold) due to the presence of oxygen. Nitric oxide reduction by ammonia in the presence of oxygen occurred in the temperature range 423-598 K. The products of the reaction were nitrogen, oxygen nitrous oxide, and water. The Arrhenius plot of the reaction showed a break near 523 K. Below this temperature the activation energy of the reaction was 13 kJ/mol, and in the higher-temperature range it was 62 kJ/mol. At 473 K, the N[sub 2]/N[sub 2]O ratio was about 0.6 and O[sub 2] formation was also monitored. At 573 K, the N[sub 2]N[sub 2]O ratio was approximately 2 and oxygen was consumed in the course of the reaction as well.« less
NASA Technical Reports Server (NTRS)
Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.
1992-01-01
The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.
Microstructural study of the polymorphic transformation in pentacene thin films.
Murakami, Yosuke; Tomiya, Shigetaka; Koshitani, Naoki; Kudo, Yoshihiro; Satori, Kotaro; Itabashi, Masao; Kobayashi, Norihito; Nomoto, Kazumasa
2009-10-02
We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacotte, M.; David, A.; Pravarthana, D.
2014-12-28
The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew inmore » a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.« less
Polysilicon photoconductor for integrated circuits
Hammond, Robert B.; Bowman, Douglas R.
1989-01-01
A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response.
Polysilicon photoconductor for integrated circuits
Hammond, Robert B.; Bowman, Douglas R.
1990-01-01
A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response.
Polysilicon photoconductor for integrated circuits
Hammond, R.B.; Bowman, D.R.
1989-04-11
A photoconductive element of polycrystalline silicon is provided with intrinsic response time which does not limit overall circuit response. An undoped polycrystalline silicon layer is deposited by LPCVD to a selected thickness on silicon dioxide. The deposited polycrystalline silicon is then annealed at a selected temperature and for a time effective to obtain crystal sizes effective to produce an enhanced current output. The annealed polycrystalline layer is subsequently exposed and damaged by ion implantation to a damage factor effective to obtain a fast photoconductive response. 6 figs.
Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon
2018-05-01
In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.
On the failure load and mechanism of polycrystalline graphene by nanoindentation
Sha, Z. D.; Wan, Q.; Pei, Q. X.; Quek, S. S.; Liu, Z. S.; Zhang, Y. W.; Shenoy, V. B.
2014-01-01
Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation. PMID:25500732
Salzman, Sivan; Romanofsky, Henry J; Giannechini, Lucca J; Jacobs, Stephen D; Lambropoulos, John C
2016-02-20
We describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS). We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6 MR fluids, variations were found in the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.
Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project
NASA Technical Reports Server (NTRS)
Culik, J. S.
1983-01-01
The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.
Carpenter, Donald A.
1995-01-01
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.
Carpenter, D.A.
1995-05-23
A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.
Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo
Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit
2013-01-01
The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815
Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS{sub 2} domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Song; Yang, Bingchu, E-mail: bingchuyang@csu.edu.cn; Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha 410012
The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS{sub 2} domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS{sub 2} domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS{sub 2} crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS{sub 2} single crystals. The thickness of triangle and polygon shape MoS{sub 2} crystalsmore » is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS{sub 2} crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS{sub 2}-based devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-12-15
Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystallinemore » nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.« less
Investigation of nucleation and growth processes of diamond films by atomic force microscopy
NASA Technical Reports Server (NTRS)
George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.
1994-01-01
The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.
NASA Astrophysics Data System (ADS)
Sahoo, Kishor Kumar; Singh Rajput, Shailendra; Gupta, Rajeev; Roy, Amritendu; Garg, Ashish
2018-02-01
We report the ferroelectric properties of pulsed laser deposited thin films of Nd and Ru co-doped bismuth titanate (Bi4-x Nd x Ti3-y Ru y O12). Structural analysis of the as-grown films, using x-ray diffraction, showed a single-phase formation with a polycrystalline structure. In comparison to un-doped and Nd-doped films, ferroelectric measurements on co-doped films demonstrated improved properties with remnant polarization (P r) ~ 12.5 µC cm-2 and an enhanced electrical fatigue life for Bi3.25Nd0.75Ti2.8Ru0.20O12 films. The enhancement in remanent polarization is attributed to microscopic changes, such as local structural distortion and the modification of the dynamical/effective charges on constituent ions due to chemical strain upon simultaneous Bi- (A) and Ti- (B) site doping with Nd and Ru, which has a far stronger effect than only A-site doping with Nd. Piezoresponse force microscopy further confirmed the polar structure and domain switching at nanoscale. The films exhibit small yet finite magnetization at 10 K resulting from strain.
Time Resolved Microscopy of Charge Trapping in Polycrystalline Pentacene
NASA Astrophysics Data System (ADS)
Jaquith, Michael; Muller, Erik; Marohn, John
2007-03-01
The microscopic mechanisms by which charges trap in organic electronic materials are poorly understood. Muller and Marohn recently showed that electric force microscopy (EFM) can be used to image trapped charge in working pentacene thin-film transistors [E. M. Muller et al., Adv. Mater. 17 1410 (2005)]. We have made a new discovery by imaging trapped charge in pentacene films with much larger grains. In contrast to the previous study in which charge was found to trap inhomogeneously throughout the transistor gap, we find microscopic evidence for a new trapping mechanism in which charges trap predominantly at the pentacene/metal interface in large-grained devices. We conclude that at least two charge trapping mechanisms are at play in polycrystalline pentacene. We have made localized measurements of the trap growth over time by performing pulsed-gate EFM experiments. Trap formation is not instantaneous, taking up to a second to complete. Furthermore, the charge-trapping rate depends strongly on gate voltage (or hole concentration). This kinetics data is consistent with the hypothesis that traps form by chemical reaction.
Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity
NASA Astrophysics Data System (ADS)
Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong
2011-09-01
We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO nanostructure synthesized from the reaction without l(+)-ascorbic acid at the 85 °C time point (Fig. S1). See DOI: 10.1039/c1nr10609k
Method for formation of thin film transistors on plastic substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
1998-10-06
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.
NASA Astrophysics Data System (ADS)
Noakes, T. C. Q.; Bailey, P.; Draxler, M.; McConville, C. F.; Ross, A. R.; Lograsso, T. A.; Leung, L.; Smerdon, J. A.; McGrath, R.
2006-06-01
The room temperature deposition of 7 ML of Au onto the fivefold symmetric surface of icosahedral Al-Pd-Mn leads to the formation of a several monolayers thick Au-Al alloy film. An AlAu film with 1:1 stoichiometry is formed, which shows no evidence of ordered structure, being either amorphous or polycrystalline. Annealing to 325 °C causes more Al to diffuse into the film, producing Al2Au but still with no indication of structure. Experiments using 0.5 ML of pre-deposited In demonstrated a surfactant effect as the In 'floated' on the surface during growth and produced a reduction in film roughness. However, contrary to previous findings the film was still either amorphous or polycrystalline, with no evidence of quasi-crystalline or aperiodic structure. Experiments were also conducted using smaller doses of Au to look for the formation of an epitaxial layer and, if formed, determine the registry with the substrate. However, no change in the Pd blocking curves for the surface could be seen, suggesting that the Au does not adsorb in well defined sites. This result is not surprising when considering that even for these low doses Al is drawn into the film, changing the composition and probably the structure of the topmost layers of the substrate, so that the potential adsorption sites on the clean surface may no longer exist.
Bright Eu2+-activated polycrystalline ceramic neutron scintillators
NASA Astrophysics Data System (ADS)
Wang, C. L.; Paranthaman, M. P.; Riedel, R. A.; Hodges, J. P.; Karlic, J. J.; Veatch, R. A.; Li, L.; Bridges, C. A.
2018-03-01
Scintillation properties of Eu2+-doped CaF2-AlF3-6LiF (Eu:CALF) polycrystalline ceramic thermal-neutron scintillators as a function of AlF3 concentration have been studied. The emission band peaked at a wavelength of 425-431 nm is due to the presence of Eu:CaF2 micro-crystallites. The highest light output from these samples is approximately 20,000 photons per thermal neutron, which is 3 times that of a GS20 6Li-glass scintillator. The pulse-decay lifetime and light output vs. AlF3 concentration may be understood using a radiation trapping model and the formation of a Li3AlF6 phase. At lower AlF3 concentration, Al3+ ions in Eu:CaF2 passivate the hole-trapping defects and enhance the light output; whereas at higher AlF3 concentration, Al3+ ions lead to the formation of electron trapping centers in Eu:CaF2 and the Li3AlF6 phase is formed, which reduces the light output. A neutron-gamma-discrimination (NGD) ratio of 9 × 108 was obtained from Principal Component Analysis (PCA) of digital waveforms, while Fisher Linear Discriminant Analysis (FLDA) can completely separate the thermal neutrons from 60Co gamma rays within the limit of gamma event statistics used in this work. Our results suggest that Eu:CALF scintillators can potentially replace the GS20 scintillator used for thermal and cold neutron detection systems.
NASA Astrophysics Data System (ADS)
Gafarov, Ozarfar; Martyshkin, Dmitriy; Fedorov, Vladimir; Mirov, Sergey
2018-02-01
Middle-infrared (mid-IR) lasers enabling a wide range of scientific, medical, technological, and defense related applications continue to enjoy a strong demand. Transition metal (TM) doped II-VI chalcogenides are appealing mid-IR gain medial providing direct access to 1.8-6 μm spectral range. . II-VI chalcogenides are available in single crystal and in polycrystalline forms. With respect to single crystals, polycrystalline gain elements fabricated by postgrowth thermal diffusion of TM impurities in II-VI hosts feature better optical quality and enable superior laser characteristics. Despite significant progress in post-growth thermal diffusion technology, there are still some difficulties associated with the diffusion of certain TM ions in certain II-VI hosts. Specifically, the diffusion length Fe in ZnS during 1 month annealing at 950°C is of the order of 0.1 mm. In this work, enhancement of diffusion coefficient under Hot Isostatic Pressing, at temperature and pressure of 1350°C and 2000 atm, and effect of these extreme conditions on the overall optical quality of the crystal were studied. The high temperature was applied to increase the diffusion rate, and the high pressure was needed to suppress strong sublimation and sphalerite - wurtzite phase transition at elevated temperatures. Under these conditions, the diffusion coefficient Fe in ZnS was enhanced by 5500 times as compared to standard diffusion processes carried out at 950°C. It was also demonstrated that the grain size had grown from 30μm to 5.5mm, which is believed to be another reason for efficient diffusion besides the elevation of temperature. The XRD patterns were measured such that the X-ray beam falls on a single grain. The XRD patterns showed only peaks characteristic to single crystals with zinc blende structure. Lasing characterization was performed to investigate the optical quality of the crystal. Slope efficiencies of 23.2% and 15.4% were obtained for TM11 and TM00 modes of operation, respectively. The emission of the laser was demonstrated to be in the 3840-3920 nm.
Pixel switching of epitaxial Pd/YHx/CaF2 switchable mirrors
Kerssemakers; van der Molen SJ; Koeman; Gunther; Griessen
2000-08-03
Exposure of rare-earth films to hydrogen can induce a metal-insulator transition, accompanied by pronounced optical changes. This 'switchable mirror' effect has received considerable attention from theoretical, experimental and technological points of view. Most systems use polycrystalline films, but the synthesis of yttrium-based epitaxial switchable mirrors has also been reported. The latter form an extended self-organized ridge network during initial hydrogen loading, which results in the creation of micrometre-sized triangular domains. Here we observe homogeneous and essentially independent optical switching of individual domains in epitaxial switchable mirrors during hydrogen absorption. The optical switching is accompanied by topographical changes as the domains sequentially expand and contract; the ridges block lateral hydrogen diffusion and serve as a microscopic lubricant for the domain oscillations. We observe the correlated changes in topology and optical properties using in situ atomic force and optical microscopy. Single-domain phase switching is not observed in polycrystalline films, which are optically homogeneous. The ability to generate a tunable, dense pattern of switchable pixels is of technological relevance for solid-state displays based on switchable mirrors.
Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen
2017-01-01
To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990
Toet, Daniel; Sigmon, Thomas W.
2004-12-07
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2005-08-23
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2003-01-01
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development
Wilts, Bodo D.; Apeleo Zubiri, Benjamin; Klatt, Michael A.; Butz, Benjamin; Fischer, Michael G.; Kelly, Stephen T.; Spiecker, Erdmann; Steiner, Ullrich; Schröder-Turk, Gerd E.
2017-01-01
The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template. PMID:28508050
NASA Astrophysics Data System (ADS)
Wilts, Bodo; Winter, Benjamin; Klatt, Michael; Butz, Benjamin; Fischer, Michael; Kelly, Stephen; Spieker, Erdmann; Steiner, Ullrich; Schroeder-Turk, Gerd
The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. Previous work hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. In vivo imaging however cannot yet elucidate this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or subsequent processes. Here we show an unusual hierarchical ultrastructure in a Hairstreak butterfly that allows high-resolution 3D microscopy. Rather than the conventional polycrystalline space-filling arrangement, the gyroid occurs in isolated facetted crystallites with a pronounced size-gradient. This arrangement is interpreted as a sequence of time-frozen snapshots of the morphogenesis. This provides insight into the formation mechanisms of the nanoporous gyroid material, especially when compared among other butterflies with different arrangements. Financially supported through DFG, the NCCR Bio-inspired Mateirals and the SNF Ambizione programme.
Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells.
Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong
2017-03-01
Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device's open-circuit voltage ( V OC ) that is much larger than the bandgap of OIHPs. The persistent V OC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable V OC without being limited by the materials' bandgap.
Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells
Yuan, Yongbo; Li, Tao; Wang, Qi; Xing, Jie; Gruverman, Alexei; Huang, Jinsong
2017-01-01
Organic-inorganic hybrid perovskites (OIHPs) have been demonstrated to be highly successful photovoltaic materials yielding very-high-efficiency solar cells. We report the room temperature observation of an anomalous photovoltaic (APV) effect in lateral structure OIHP devices manifested by the device’s open-circuit voltage (VOC) that is much larger than the bandgap of OIHPs. The persistent VOC is proportional to the electrode spacing, resembling that of ferroelectric photovoltaic devices. However, the APV effect in OIHP devices is not caused by ferroelectricity. The APV effect can be explained by the formation of tunneling junctions randomly dispersed in the polycrystalline films, which allows the accumulation of photovoltage at a macroscopic level. The formation of internal tunneling junctions as a result of ion migration is visualized with Kelvin probe force microscopy scanning. This observation points out a new avenue for the formation of large and continuously tunable VOC without being limited by the materials’ bandgap. PMID:28345043
NASA Astrophysics Data System (ADS)
Piccinini, M.; Ambrosini, F.; Ampollini, A.; Bonfigli, F.; Libera, S.; Picardi, L.; Ronsivalle, C.; Vincenti, M. A.; Montereali, R. M.
2015-04-01
Proton beams of 3 MeV energy, produced by the injector of a linear accelerator for proton therapy, were used to irradiate at room temperature lithium fluoride crystals and polycrystalline thin films grown by thermal evaporation. The irradiation fluence range was 1011-1015 protons/cm2. The proton irradiation induced the stable formation of primary and aggregate color centers. Their formation was investigated by optical absorption and photoluminescence spectroscopy. The F2 and F3+ photoluminescence intensities, carefully measured in LiF crystals and thin films, show linear behaviours up to different maximum values of the irradiation fluence, after which a quenching is observed, depending on the nature of the samples (crystals and films). The Principal Component Analysis, applied to the absorption spectra of colored crystals, allowed to clearly identify the formation of more complex aggregate defects in samples irradiated at highest fluences.
El-Sayed, Hany A; Horwood, Corie A; Abhayawardhana, Anusha D; Birss, Viola I
2013-02-21
Ta oxide nanotubes (NTs) were formed by the anodization of Ta at 15 V in a solution of concentrated sulfuric acid containing 0.8-1.0 M hydrofluoric acid. To study the initial stages of NT formation, FESEM images of samples anodized for very short times were obtained. The results contradict the existing explanation of the current-time data collected during anodization, which has persisted in the literature for more than two decades. In addition to providing a first-time morphological study of Ta oxide NT formation at very early stages of anodization, we also propose a new interpretation of the i-t response, showing that pores are already present in the first few milliseconds of anodization and that NTs are formed well before present models predict. This behaviour may also extend to the anodization of other valve metals, such as Al, Ti, Zr, W, and Nb.
Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.
Morgan, Dane V; Macy, Don; Stevens, Gerald
2008-11-01
A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.
Salzman, Sivan; Romanofsky, Henry J.; Giannechini, Lucca J.; ...
2016-02-19
In this study, we describe the anisotropy in the material removal rate (MRR) of the polycrystalline, chemical-vapor deposited zinc sulfide (ZnS).We define the polycrystalline anisotropy via microhardness and chemical erosion tests for four crystallographic orientations of ZnS: (100), (110), (111), and (311). Anisotropy in the MRR was studied under magnetorheological finishing (MRF) conditions. Three chemically and mechanically modified magnetorheological (MR) fluids at pH values of 4, 5, and 6 were used to test the MRR variations among the four single-crystal planes. When polishing the single-crystal planes and the polycrystalline with pH 5 and pH 6MR fluids, variations were found inmore » the MRR among the four single-crystal planes and surface artifacts were observed on the polycrystalline material. When polishing the single-crystal planes and the polycrystalline with the modified MR fluid at pH 4, however, minimal variation was observed in the MRR among the four orientations and a reduction in surface artifacts was achieved on the polycrystalline material.« less
A Dictionary Approach to Electron Backscatter Diffraction Indexing.
Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O
2015-06-01
We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei
2014-08-15
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming
2014-08-01
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.
Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)
NASA Astrophysics Data System (ADS)
Britton, T. B.; Hickey, J. L. R.
2018-01-01
High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.
Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2
NASA Astrophysics Data System (ADS)
Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.
2016-07-01
Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.
Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Senli; Jesse, Stephen; Kalnaus, Sergiy
2011-01-01
The strong coupling between the molar volume and mobile ion concentration in ionically-conductive solids is used for spatially-resolved studies of ionic transport on the polycrystalline LiCoO2 surface by time-resolved spectroscopy. Strong variability between ionic transport at the grain boundaries and within the grains is observed, and the relationship between relaxation and hysteresis loop formation is established. The use of the strain measurements allows ionic transport be probed on the nanoscale, and suggests enormous potential for probing ionic materials and devices.
XPS studies of water and oxygen on iron-sputtered natural ilmenite
NASA Technical Reports Server (NTRS)
Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.
1985-01-01
The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomai, S.; Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 6300192; Terai, K.
We have developed a high-mobility and high-uniform oxide semiconductor using poly-crystalline semiconductor material composed of indium and zinc (p-IZO). A typical conduction mechanism of p-IZO film was demonstrated by the grain boundary scattering model as in polycrystalline silicon. The grain boundary potential of the 2-h-annealed IZO film was calculated to be 100 meV, which was comparable to that of the polycrystalline silicon. However, the p-IZO thin film transistor (TFT) measurement shows rather uniform characteristics. It denotes that the mobility deterioration around the grain boundaries is lower than the case for low-temperature polycrystalline silicon. This assertion was made based on the differencemore » of the mobility between the polycrystalline and amorphous IZO film being much smaller than is the case for silicon transistors. Therefore, we conclude that the p-IZO is a promising material for a TFT channel, which realizes high drift mobility and uniformity simultaneously.« less
Process Research on Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1983-01-01
The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Amit; Shin, Junsoo
A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
Atomistic modeling of mechanical properties of polycrystalline graphene.
Mortazavi, Bohayra; Cuniberti, Gianaurelio
2014-05-30
We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.
Synthesis and optical properties of polycrystalline Li2Al2B2O7 (LABO)
NASA Astrophysics Data System (ADS)
Dagdale, S. R.; Muley, G. G.
2016-05-01
A polycrystalline lithium aluminum borate (Li2Al2B2O7, LABO) has been synthesized by using simple solid-state technique. The obtained LABO polycrystalline was characterized by powder X-ray diffraction; Fourier transform infrared (FT-IR) spectroscopy and second harmonic generation (SHG) efficiency measurement. The functional groups were identified using the FT-IR spectroscopic data. The SHG efficiency of the polycrystalline material was obtained by the classic Kurtz powder technique using a fundamental wavelength 1064 nm of Nd:YAG laser and it is found to be 1.4 times that of potassium dihydrogen phosphate (KDP).
Effect of grain size on optical transmittance of birefringent polycrystalline ceramics
NASA Astrophysics Data System (ADS)
Wen, Tzu-Chien
Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light transmission properties of polycrystalline Al 2O3 using theories of wave propagation in random media. Fully dense polycrystalline Al2O3 was fabricated using a pressure filtration method. By obtaining the Delta n2 measured from EBSD, the wave retardation theories of Raman and Viswanathan and Kahan et al. provided upper and lower bounds for the theoretical predictions of light transmittance as a function of mean intercept length.
All diamond self-aligned thin film transistor
Gerbi, Jennifer [Champaign, IL
2008-07-01
A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.
Sizes of X-ray radiation coherent domains in thin SmS films and their visualization
NASA Astrophysics Data System (ADS)
Sharenkova, N. V.; Kaminskii, V. V.; Petrov, S. N.
2011-09-01
The size of X-ray radiation coherent domains (250 ± 20 Å) is determined in a thin polycrystalline SmS film using X-ray diffraction patterns (θ-2θ scanning, DRON-2 diffractometer, Cu K α radiation) and the Selyakov-Scherrer formula with allowance for the effect of microstrains. An image of this film is taken with a transmission electron microscope, and regions with a characteristic size of 240 Å are clearly visible in it. It is concluded that X-ray radiation coherent domains are visualized.
Method for formation of thin film transistors on plastic substrates
Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.
1998-10-06
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.
Solid-state synthesis, structural and magnetic properties of CoPd films
NASA Astrophysics Data System (ADS)
Myagkov, V. G.; Bykova, L. E.; Zhigalov, V. S.; Tambasov, I. A.; Bondarenko, G. N.; Matsynin, A. A.; Rybakova, A. N.
2015-05-01
The results of the investigation of the structural and magnetic properties of CoPd films with equiatomic composition have been presented. The films have been synthesized by vacuum annealing of polycrystalline Pd/Co and epitaxial Pd/α-Co(110) and Pd/β-Co(001) bilayer samples. It has been shown that, for all samples, the annealing to 400°C does not lead to the mixing of layers and the formation of compounds. A further increase in the annealing temperature results in the formation of a disordered CoPd phase at the Pd/Co interface, which is fully completed after annealing at 650°C. The epitaxial relationships between the disordered CoPd phase and the MgO(001) substrate are determined as follows: CoPd(110)<
Single-crystal and textured polycrystalline Nd2Fe14B flakes with a submicron or nanosize thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, BZ; Zheng, LY; Li, WF
2012-02-01
This paper reports on the fabrication, structure and magnetic property optimization of Nd2Fe14B single-crystal and [0 0 1] textured poly-nanocrystalline flakes prepared by surfactant-assisted high-energy ball milling (HEBM). Single-crystal Nd2Fe14B flakes first with micron and then with submicron thicknesses were formed via continuous basal cleavage along the (1 1 0) planes of the irregularly shaped single-crystal microparticles during the early stage of HEBM. With further milling, [0 0 1] textured polycrystalline submicron Nd2Fe14B flakes were formed. Finally, crystallographically anisotropic polycrystalline Nd2Fe14B nanoflakes were formed after milling for 5-6 h. Anisotropic magnetic behavior was found in all of the flake samples.more » Nd2Fe14B flakes prepared with either oleic acid (OA) or oleylamine (OY) as the surfactant exhibited similar morphology, structure and magnetic properties. Both the addition of some low-melting-point eutectic Nd70Cu30 alloy and an appropriate post-annealing can increase the coercivity of the Nd2Fe14B flakes. The coercivity of Nd2Fe14B nanoflakes with an addition of 16.7 wt.% Nd70Cu30 by milling for 5 h in heptane with 20 wt.% OY increased from 3.7 to 6.8 kOe after annealing at 450 degrees C for 0.5 h. The mechanism for formation and coercivity enhancement of Nd2Fe14B single-crystal and textured poly-nanocrystalline flakes with a submicron or nanosize thickness was discussed. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Kim, Jeong Dong; Kim, Munho; Kong, Lingyu; Mohseni, Parsian K; Ranganathan, Srikanth; Pachamuthu, Jayavel; Chim, Wai Kin; Chiam, Sing Yang; Coleman, James J; Li, Xiuling
2018-03-14
Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self-anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO 2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO 2 which is readily removed by HF alone with no anisotropy. In addition, 320 μm square through-Si-via (TSV) arrays in 550 μm thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.
Edge-defined contact heater apparatus and method for floating zone crystal growth
NASA Technical Reports Server (NTRS)
Kou, Sindo (Inventor)
1992-01-01
An apparatus for growing a monocrystalline body (30) from a polycrystalline feed rod (22) includes a heater (20) that is positioned to heat a short section of the polycrystalline rod (22) to create a molten zone (34). The heater (20) is formed to include a shaper (40) that contacts the polycrystalline rod (22) in the molten zone (34) and has a hole (46) to allow flow in the molten zone (34) between the polycrystalline rod (22) side and the monocrystalline body (30) side of the shaper. The shaper (40) has an edge (42) that defines the boundary of the cross-section of the monocrystalline body (30) that is formed as the molten material solidifies.
Tin Dioxide Electrolyte-Gated Transistors Working in Depletion and Enhancement Modes.
Valitova, Irina; Natile, Marta Maria; Soavi, Francesca; Santato, Clara; Cicoira, Fabio
2017-10-25
Metal oxide semiconductors are interesting for next-generation flexible and transparent electronics because of their performance and reliability. Tin dioxide (SnO 2 ) is a very promising material that has already found applications in sensing, photovoltaics, optoelectronics, and batteries. In this work, we report on electrolyte-gated, solution-processed polycrystalline SnO 2 transistors on both rigid and flexible substrates. For the transistor channel, we used both unpatterned and patterned SnO 2 films. Since decreasing the SnO 2 area in contact with the electrolyte increases the charge-carrier density, patterned transistors operate in the depletion mode, whereas unpatterned ones operate in the enhancement mode. We also fabricated flexible SnO 2 transistors that operate in the enhancement mode that can withstand moderate mechanical bending.
Synthesis of sub-millimeter calcite from aqueous solution
NASA Astrophysics Data System (ADS)
Reimi, M. A.; Morrison, J. M.; Burns, P. C.
2011-12-01
A novel aqueous synthesis that leads to the formation of calcite (CaCO3) crystals, up to 500μm in diameter, will be used to facilitate the study of contaminant transport in aqueous environmental systems. Existing processes tend to be complicated and often yield nanometer-sized or amorphous CaCO3. The synthesis method presented here, which involves slow mixing of concentrated solutions of CaCl2 ¬and (NH4)2CO3, produces single crystals of rhombohedral calcite in 2 to 4 days. Variations on the experimental method, including changes in pH and solution concentration, were explored to optimize the synthesis. Scanning Electron Microscope images show the differences in size and purity observed when the crystals are grown at pH values ranging from 2 to 6. The crystals grown from solutions of pH 2 were large (up to 500 micrometers in diameter) with minimal polycrystalline calcium carbonate, while crystals grown from solutions with pH values beyond 4 were smaller (up to 100 micrometers in diameter) with significant polycrystalline calcium carbonate. The synthesis method, materials characterization, and use in future actinide contaminant studies will be discussed.
NASA Technical Reports Server (NTRS)
Ritzert, Frank; Arenas, David; Keller, Dennis; Vasudevan, Vijay
1998-01-01
An investigation was conducted to describe topologically close packed (TCP) phase instability as a function of composition in the advanced Ni-base superalloy Rene N6. TCP phases are detrimental to overall high-temperature performance of Ni-base superalloys because of their brittle nature and because they deplete the Ni-rich matrix of potent solid solution strengthening elements. Thirty-four variations of polycrystalline Rene N6 determined from a design-of-experiments approach were cast and homogenized at 1315"C for 80 hours followed by exposure at 10930C for 400 hours to promote TCP formation. The alloys had the following composition ranges in atomic percent: Co 10.61 to 16.73%, Mo 0.32 to 1.34%, W 1.85 to 2.52%, Re 1.80 to 2.1 1 %, Ta 2.36 to 3.02%, Al 11.90 to 14.75%, and Cr 3.57 to 6.23%. Physical and chemical characteristics of all n-ticrostructures obtained were described using various analytical techniques. From these observations, a mathematical description of TCP occurrence (omega and P phase) was generated for polycrystalline Rene N6.
NASA Astrophysics Data System (ADS)
Lebyodkin, M. A.; Lebedkina, T. A.; Shashkov, I. V.; Gornakov, V. S.
2017-07-01
Magnetization reversal of polycrystalline NiFe/NiO bilayers was investigated using magneto-optical indicator film imaging and acoustic emission techniques. Sporadic acoustic signals were detected in a constant magnetic field after the magnetization reversal. It is suggested that they are related to elastic waves excited by sharp shocks in the NiO layer with strong magnetostriction. Their probability depends on the history and number of repetitions of the field cycling, thus testifying the thermal-activation nature of the long-time relaxation of an antiferromagnetic order. These results provide evidence of spontaneous thermally activated switching of the antiferromagnetic order in NiO grains during magnetization reversal in ferromagnet/antiferromagnet (FM/AFM) heterostructures. The respective deformation modes are discussed in terms of the thermal fluctuation aftereffect in the Fulcomer and Charap model which predicts that irreversible breakdown of the original spin orientation can take place in some antiferromagnetic grains with disordered anisotropy axes during magnetization reversal of exchange-coupled FM/AFM structures. The spin reorientation in the saturated state may induce abrupt distortion of isolated metastable grains because of the NiO magnetostriction, leading to excitation of shock waves and formation of plate (or Lamb) waves.
Adaptive multi-time-domain subcycling for crystal plasticity FE modeling of discrete twin evolution
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Cheng, Jiahao
2018-02-01
Crystal plasticity finite element (CPFE) models that accounts for discrete micro-twin nucleation-propagation have been recently developed for studying complex deformation behavior of hexagonal close-packed (HCP) materials (Cheng and Ghosh in Int J Plast 67:148-170, 2015, J Mech Phys Solids 99:512-538, 2016). A major difficulty with conducting high fidelity, image-based CPFE simulations of polycrystalline microstructures with explicit twin formation is the prohibitively high demands on computing time. High strain localization within fast propagating twin bands requires very fine simulation time steps and leads to enormous computational cost. To mitigate this shortcoming and improve the simulation efficiency, this paper proposes a multi-time-domain subcycling algorithm. It is based on adaptive partitioning of the evolving computational domain into twinned and untwinned domains. Based on the local deformation-rate, the algorithm accelerates simulations by adopting different time steps for each sub-domain. The sub-domains are coupled back after coarse time increments using a predictor-corrector algorithm at the interface. The subcycling-augmented CPFEM is validated with a comprehensive set of numerical tests. Significant speed-up is observed with this novel algorithm without any loss of accuracy that is advantageous for predicting twinning in polycrystalline microstructures.
Anisotropy and Asymmetry of Yield in Magnesium Alloys at Room Temperature
NASA Astrophysics Data System (ADS)
Robson, Joseph
2014-10-01
Mechanical anisotropy and asymmetry are often pronounced in wrought magnesium alloys and are detrimental to formability and service performance. Single crystals of magnesium are highly anisotropic due to the large difference in critical resolved shear stress between the softest and hardest deformation modes. Polycrystalline magnesium alloys exhibit lower anisotropy, influenced by texture, solute level, and precipitates. In this work, a fundamental study of the effects of alloying, precipitate formation, and texture on the change in anisotropy and asymmetry from the pure magnesium single crystal case to polycrystalline alloys has been performed. It is demonstrated that much of the reduction in anisotropy and asymmetry arises from overall strengthening as solute, precipitates, and grain boundary effects are accounted for. Precipitates are predicted to be more effective than solute in reducing anisotropy and asymmetry, but shape and habit are critical since precipitates produce highly anisotropic strengthening. A small deviation from an ideal basal texture (15 deg spread) has a very strong effect in reducing anisotropy and asymmetry, similar in magnitude to the maximum effect produced by precipitation. Elasto-plastic modeling suggests that this is due to a contribution from basal slip to initial plastic deformation, even when global yield is not controlled by this mode.
Self-passivation rule and structure of CdTe Σ3 (112) grain boundaries
NASA Astrophysics Data System (ADS)
Liu, Cheng-yan; Zhang, Yue-yu; Hou, Yu-sheng; Chen, Shi-you; Xiang, Hong-jun; Gong, Xin-gao
2016-05-01
The theoretical study of grain boundaries (GBs) in polycrystalline semiconductors is currently stalemated by their complicated nature, which is difficult to extract from any direct experimental characterization. Usually, coincidence-site-lattice models are constructed simply by aligning two symmetric planes ignoring various possible reconstructions. Here, we propose a general self-passivation rule to determine the low-energy GB reconstruction and find new configurations for the CdTe Σ3 (112) GBs. First-principles calculations show that it has lower formation energies than the prototype GBs adopted widely in previous studies. Surprisingly, the reconstructed GBs show self-passivated electronic properties without deep-level states in the band gap. Based on the reconstructed configurations, we revisited the influence of CdC l2 post-treatment on the CdTe GBs and found that the addition of both Cd and Cl atoms in the GB improves the photovoltaic properties by promoting self-passivation and inducing n -type levels, respectively. The present study provides a new route for further studies of GBs in covalent polycrystalline semiconductors and highlights that previous studies on the GBs of multinary semiconductors, which are based on the unreconstructed prototype GB models, should be revisited.
Electrospinning of nickel oxide nanofibers: Process parameters and morphology control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Abdullah, E-mail: akhalil@masdar.ac.ae; Hashaikeh, Raed, E-mail: rhashaikeh@masdar.ac.ae
2014-09-15
In the present work, nickel oxide nanofibers with varying morphology (diameter and roughness) were fabricated via electrospinning technique using a precursor composed of nickel acetate and polyvinyl alcohol. It was found that the diameter and surface roughness of individual nickel oxide nanofibers are strongly dependent upon nickel acetate concentration in the precursor. With increasing nickel acetate concentration, the diameter of nanofibers increased and the roughness decreased. An optimum concentration of nickel acetate in the precursor resulted in the formation of smooth and continuous nickel oxide nanofibers whose diameter can be further controlled via electrospinning voltage. Beyond an optimum concentration ofmore » nickel acetate, the resulting nanofibers were found to be ‘flattened’ and ‘wavy’ with occasional cracking across their length. Transmission electron microscopy analysis revealed that the obtained nanofibers are polycrystalline in nature. These nickel oxide nanofibers with varying morphology have potential applications in various engineering domains. - Highlights: • Nickel oxide nanofibers were synthesized via electrospinning. • Fiber diameter and roughness depend on nickel acetate concentration used. • With increasing nickel acetate concentration the roughness of nanofibers decreased. • XRD and TEM revealed a polycrystalline structure of the nanofibers.« less
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Macroscopic damping model for structural dynamics with random polycrystalline configurations
NASA Astrophysics Data System (ADS)
Yang, Yantao; Cui, Junzhi; Yu, Yifan; Xiang, Meizhen
2018-06-01
In this paper the macroscopic damping model for dynamical behavior of the structures with random polycrystalline configurations at micro-nano scales is established. First, the global motion equation of a crystal is decomposed into a set of motion equations with independent single degree of freedom (SDOF) along normal discrete modes, and then damping behavior is introduced into each SDOF motion. Through the interpolation of discrete modes, the continuous representation of damping effects for the crystal is obtained. Second, from energy conservation law the expression of the damping coefficient is derived, and the approximate formula of damping coefficient is given. Next, the continuous damping coefficient for polycrystalline cluster is expressed, the continuous dynamical equation with damping term is obtained, and then the concrete damping coefficients for a polycrystalline Cu sample are shown. Finally, by using statistical two-scale homogenization method, the macroscopic homogenized dynamical equation containing damping term for the structures with random polycrystalline configurations at micro-nano scales is set up.
Montazerian, Maziar; Yekta, Bijan Eftekhari; Marghussian, Vahak Kaspari; Bellani, Caroline Faria; Siqueira, Renato Luiz; Zanotto, Edgar Dutra
2015-10-01
In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Deposition Of Cubic BN On Diamond Interlayers
NASA Technical Reports Server (NTRS)
Ong, Tiong P.; Shing, Yuh-Han
1994-01-01
Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.
CdTe devices and method of manufacturing same
Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew
2015-09-29
A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.
Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment
NASA Astrophysics Data System (ADS)
Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.
2013-05-01
In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.
NASA Astrophysics Data System (ADS)
Chhetri, Nikita; Chatterjee, Somenath
2018-01-01
Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.
A new computer-aided simulation model for polycrystalline silicon film resistors
NASA Astrophysics Data System (ADS)
Ching-Yuan Wu; Weng-Dah Ken
1983-07-01
A general transport theory for the I-V characteristics of a polycrystalline film resistor has been derived by including the effects of carrier degeneracy, majority-carrier thermionic-diffusion across the space charge regions produced by carrier trapping in the grain boundaries, and quantum mechanical tunneling through the grain boundaries. Based on the derived transport theory, a new conduction model for the electrical resistivity of polycrystalline film resitors has been developed by incorporating the effects of carrier trapping and dopant segregation in the grain boundaries. Moreover, an empirical formula for the coefficient of the dopant-segregation effects has been proposed, which enables us to predict the dependence of the electrical resistivity of phosphorus-and arsenic-doped polycrystalline silicon films on thermal annealing temperature. Phosphorus-doped polycrystalline silicon resistors have been fabricated by using ion-implantation with doses ranged from 1.6 × 10 11 to 5 × 10 15/cm 2. The dependence of the electrical resistivity on doping concentration and temperature have been measured and shown to be in good agreement with the results of computer simulations. In addition, computer simulations for boron-and arsenic-doped polycrystalline silicon resistors have also been performed and shown to be consistent with the experimental results published by previous authors.
Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metaferia, Wondwosen; Sun, Yan-Ting, E-mail: yasun@kth.se; Lourdudoss, Sebastian
2014-07-21
Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. Itmore » is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.« less
NASA Astrophysics Data System (ADS)
Budai, J. D.; Yang, W.; Tischler, J. Z.; Liu, W.; Larson, B. C.; Ice, G. E.
2004-03-01
We describe a new polychromatic x-ray microdiffraction technique providing 3D measurements of lattice structure, orientation and strain with submicron point-to-point spatial resolution. The instrument is located on the UNI-CAT II undulator beamline at the Advanced Photon Source and uses Kirkpatrick-Baez focusing mirrors, differential aperture CCD measurements and automated analysis of spatially-resolved Laue patterns. 3D x-ray structural microscopy is applicable to a wide range of materials investigations and here we describe 3D thermal grain growth studies in polycrystalline aluminum ( ˜1% Fe,Si) from Alcoa. The morphology and orientations of the grains in a hot-rolled aluminum sample were initially mapped. The sample was then annealed to induce grain growth, cooled to room temperature, and the same volume region was re-mapped to determine the thermal migration of all grain boundaries. Significant grain growth was observed after annealing above ˜350^oC where both low-angle and high-angle boundaries were mobile. These measurements will provide the detailed 3D experimental input needed for testing theories and computer models of 3D grain growth in bulk materials.
Laser marking on microcrystalline silicon film.
Park, Min Gyu; Choi, Se-Bum; Ruh, Hyun; Hwang, Hae-Sook; Yu, Hyunung
2012-07-01
We present a compact dot marker using a CW laser on a microcrystalline silicon (Si) thin film. A laser annealing shows a continuous crystallization transformation from nano to a large domain (> 200 nm) of Si nanocrystals. This microscale patterning is quite useful since we can manipulate a two-dimentional (2-D) process of Si structural forms for better and efficient thin-film transistor (TFT) devices as well as for photovoltaic application with uniform electron mobility. A Raman scattering microscope is adopted to draw a 2-D mapping of crystal Si film with the intensity of optical-phonon mode at 520 cm(-1). At a 300-nm spatial resolution, the position resolved the Raman scattering spectra measurements carried out to observe distribution of various Si species (e.g., large crystalline, polycrystalline and amorphous phase). The population of polycrystalline (poly-Si) species in the thin film can be analyzed with the frequency shift (delta omega) from the optical-phonon line since poly-Si distribution varies widely with conditions, such as an irradiated-laser power. Solid-phase crystallization with CW laser irradiation improves conductivity of poly-Si with micropatterning to develop the potential of the device application.
Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures
NASA Astrophysics Data System (ADS)
Abderrafi, Kamal; García-Calzada, Raúl; Sanchez-Royo, Juan F.; Chirvony, Vladimir S.; Agouram, Saïd; Abargues, Rafael; Ibáñez, Rafael; Martínez-Pastor, Juan P.
2013-04-01
With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50-80 nm core-shell nanoparticles with a polycrystalline core composed of small (5-10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implemented in carbon tetrachloride (CCl4), where only bare (uncoated) Si nanoparticles are produced, we suggest that a chemical (solvent decomposition giving rise to highly reactive CH-containing radicals) rather than a physical (solvent atomization followed by carbon nanostructure formation) mechanism is responsible for the formation of graphitic shells. The silicon carbonization process found for the case of laser ablation in chloroform may be promising for silicon surface protection and functionalization.
The effect of heat treatment on the resistivity of polycrystalline silicon films
NASA Technical Reports Server (NTRS)
Fripp, A. L., Jr.
1975-01-01
The resistivity of doped polycrystalline silicon films has been studied as a function of post deposition heat treatments in an oxidizing atmosphere. It was found that a short oxidation cycle may produce a resistivity increase as large as three orders of magnitude in the polycrystalline films. The extent of change was dependent on the initial resistivity and the films' doping level and was independent of the total oxidation time.
NASA Technical Reports Server (NTRS)
Dewitt, D. P.
1972-01-01
The design data for six polycrystalline dielectric materials are presented to describe the optical, thermal, and mechanical properties. The materials are aluminum oxide, calcium fluoride, magnesium fluoride, magnesium oxide, silicon dioxide, and titanium dioxide. The primary interest is in the polycrystalline state, although single crystal data are included when appropriate. The temperature range is room temperature to melting point. The wavelength range is from near ultraviolet to near infrared.
The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Inoue, N.; Wilmsen, C. W.; Jones, K. A.
1981-02-01
Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.
Tan, Teng; Wolak, M. A.; Acharya, Narendra; ...
2015-04-01
For potential applications in superconducting RF cavities, we have investigated the properties of polycrystalline MgB₂ films, including the thickness dependence of the lower critical field Hc₁. MgB₂ thin films were fabricated by hybrid physical-chemical vapor deposition on (0001) SiC substrate either directly (for epitaxial films) or with a MgO buffer layer (for polycrystalline films). When the film thickness decreased from 300 nm to 100 nm, Hc₁ at 5 K increased from around 600 Oe to 1880 Oe in epitaxial films and to 1520 Oe in polycrystalline films. The result is promising for using MgB₂/MgO multilayers to enhance the vortex penetrationmore » field.« less
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-04-27
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys.
NASA Astrophysics Data System (ADS)
Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji
2016-07-01
The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.
Adiabatic shear mechanisms for the hard cutting process
NASA Astrophysics Data System (ADS)
Yue, Caixu; Wang, Bo; Liu, Xianli; Feng, Huize; Cai, Chunbin
2015-05-01
The most important consequence of adiabatic shear phenomenon is formation of sawtooth chip. Lots of scholars focused on the formation mechanism of sawtooth, and the research often depended on experimental approach. For the present, the mechanism of sawtooth chip formation still remains some ambiguous aspects. This study develops a combined numerical and experimental approach to get deeper understanding of sawtooth chip formation mechanism for Polycrystalline Cubic Boron Nitride (PCBN) tools orthogonal cutting hard steel GCr15. By adopting the Johnson-Cook material constitutive equations, the FEM simulation model established in this research effectively overcomes serious element distortions and cell singularity in high strain domain caused by large material deformation, and the adiabatic shear phenomenon is simulated successfully. Both the formation mechanism and process of sawtooth are simulated. Also, the change features regarding the cutting force as well as its effects on temperature are studied. More specifically, the contact of sawtooth formation frequency with cutting force fluctuation frequency is established. The cutting force and effect of cutting temperature on mechanism of adiabatic shear are investigated. Furthermore, the effects of the cutting condition on sawtooth chip formation are researched. The researching results show that cutting feed has the most important effect on sawtooth chip formation compared with cutting depth and speed. This research contributes a better understanding of mechanism, feature of chip formation in hard turning process, and supplies theoretical basis for the optimization of hard cutting process parameters.
Matizamhuka, Wallace R; Sigalas, Iakovos; Herrmann, Mathias; Dubronvinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Mera, Gabriela; Riedel, Ralf
2011-11-29
Bulk B-C-N materials were synthesized under static high thermobaric conditions (20 GPa and 2,000 °C) in a multianvil apparatus from a polymer derived t-BC 1.97 N ceramic. The bulk samples were characterised using X-ray synchrotron radiation and analytical transmission electron microscopy in combination with electron energy loss spectroscopy. Polycrystalline B-C-N materials with a cubic type structure were formed under the applied reaction conditions, but the formation of a ternary cubic diamond-like c-BC₂N compound, could not be unambiguously confirmed.
Adhesion, friction, and wear of a copper bicrystal with (111) and (210) grains
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1973-01-01
Sliding friction experiments were conducted in air with polycrystalline copper and ruby riders sliding against a copper bicrystal. Friction coefficient was measured across the bicrystal surface, and the initiation of adhesive wear was examined with scanning electron microscopy. Results indicate a marked increase in friction coefficient as the copper rider crossed the grain boundary from the (111) plane to the (210) plane of the bicrystal. Adhesion, friction, and initiation of adhesive wear was notably different in the adjacent grains of differing orientation. A slip-band adhesion-generated fracture mechanism for wear particle formation is proposed.
Colegrove, Eric; Harvey, Steven P.; Yang, Ji -Hui; ...
2017-02-08
Group V dopants may be used for next-generation high-voltage cadmium telluride (CdTe) solar photovoltaics, but fundamental defect energetics and kinetics need to be understood. Here, antimony (Sb) diffusion is studied in single-crystal and polycrystalline CdTe under Cd-rich conditions. Diffusion profiles are determined by dynamic secondary ion mass spectroscopy and analyzed with analytical bulk and grain-boundary diffusion models. Slow bulk and fast grain-boundary diffusion are found. Density functional theory is used to understand formation energy and mechanisms. Lastly, the theory and experimental results create new understanding of group V defect kinetics in CdTe.
Investigation into the effects of surface stripping ZnO nanosheets.
Barnett, Chris J; Jackson, Georgina; Jones, Daniel R; Lewis, Aled R; Welsby, Kathryn; Evans, Jon E; McGettrick, James D; Watson, Trystan; Maffeis, Thierry G G; Dunstan, Peter R; Barron, Andrew R; Cobley, Richard J
2018-04-20
ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.
Investigation into the effects of surface stripping ZnO nanosheets
NASA Astrophysics Data System (ADS)
Barnett, Chris J.; Jackson, Georgina; Jones, Daniel R.; Lewis, Aled R.; Welsby, Kathryn; Evans, Jon E.; McGettrick, James D.; Watson, Trystan; Maffeis, Thierry G. G.; Dunstan, Peter R.; Barron, Andrew R.; Cobley, Richard J.
2018-04-01
ZnO nanosheets are polycrystalline nanostructures that are used in devices including solar cells and gas sensors. However, for efficient and reproducible device operation and contact behaviour the conductivity characteristics must be controlled and surface contaminants removed. Here we use low doses of argon bombardment to remove surface contamination and make reproducible lower resistance contacts. Higher doses strip the surface of the nanosheets altering the contact type from near-ohmic to rectifying by removing the donor-type defects, which photoluminescence shows to be concentrated in the near-surface. Controlled doses of argon treatments allow nanosheets to be customised for device formation.
Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
Kraus, D.; Ravasio, A.; Gauthier, M.; ...
2016-03-14
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less
Formation of self-assembled monolayer of curcuminoid molecules on gold surfaces
NASA Astrophysics Data System (ADS)
Berlanga, Isadora; Etcheverry-Berríos, Álvaro; Mella, Andy; Jullian, Domingo; Gómez, Victoria Alejandra; Aliaga-Alcalde, Núria; Fuenzalida, Victor; Flores, Marcos; Soler, Monica
2017-01-01
We investigated the formation of self-assembled monolayers of two thiophene curcuminoid molecules, 2-thphCCM (1) and 3-thphCCM (2), on polycrystalline gold substrates prepared by immersion of the surfaces in a solution of the molecules during 24 h. The functionalized surfaces were studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Despite the fact that both molecules have the same composition and almost the same structure, these molecules exhibit different behavior on the gold surface, which can be explained by the different positions of the sulfur atoms in the terminal aromatic rings. In the case of molecule 1, the complete formation of a SAM can be observed after 24 h of immersion. In the case of molecule 2, the transition from flat-lying to upright configuration on the surface is still in process after 24 h of immersion. This is attributed to the fact that molecule 2 have the sulfur atoms more exposed than molecule 1.
Ferri-magnetic order in Mn induced spinel Co3-xMnxO4 (0.1≤x≤1.0) ceramic compositions
NASA Astrophysics Data System (ADS)
Meena, P. L.; Sreenivas, K.; Singh, M. R.; Kumar, Ashok; Singh, S. P.; Kumar, Ravi
2016-04-01
We report structural and magnetic properties of spinel Co3-xMnxO4 (x=0.1-1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co3-xMnxO4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.1
Cobalt Modification of Thin Rutile Films Magnetron-Sputtered in Vacuum
NASA Astrophysics Data System (ADS)
Afonin, N. N.; Logacheva, V. A.
2018-04-01
Using X-ray phase analysis, atomic force microscopy, and secondary ion mass-spectrometry, the phase formation and component distribution in a Co-TiO2 film system have been investigated during magnetron sputtering of the metal on the oxide and subsequent vacuum annealing. It has been found that cobalt diffuses deep into titanium oxide to form complex oxides CoTi2O5 and CoTiO3. A mechanism behind their formation at grain boundaries throughout the thickness of the TiO2 film is suggested. It assumes the reactive diffusion of cobalt along grain boundaries in the oxide. A quantitative model of reactive interdiffusion in a bilayer polycrystalline metal-oxide film system with limited solubility of components has been developed. The individual diffusion coefficients of cobalt and titanium have been determined in the temperature interval 923-1073 K.
Influence of oxygen on the carbide formation on tungsten
NASA Astrophysics Data System (ADS)
Luthin, J.; Linsmeier, Ch.
2001-03-01
As a first wall material in nuclear fusion devices, tungsten will interact with carbon and oxygen from the plasma. In this study, we report on the process of thermally induced carbide formation of thin carbon films on polycrystalline tungsten and the influence of oxygen on this process. All investigations are performed using X-ray photoelectron spectroscopy (XPS). Carbon films are supplied through electron beam evaporation of graphite. The carbidization process, monitored during increased substrate temperature, can be divided into four phases. In phase I disordered carbon converts into graphite-like carbon. In phase II significant diffusion and the reaction to W 2C is observed, followed by phase III which is dominated by the presence of W 2C and the beginning reaction to WC. Finally in phase IV only WC is present, but the total carbon amount has strongly decreased. Different mechanisms of oxygen influence on the carbide formation are proposed and measurements of the reaction of carbon on tungsten with intermediate oxide layers are presented in detail. A WO 2+ x intermediate layer completely inhibits the carbide formation, while a WO 2 layer leads to WC formation at temperatures above 1270 K.
Method for production of free-standing polycrystalline boron phosphide film
Baughman, Richard J.; Ginley, David S.
1985-01-01
A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx
2013-12-16
By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation processmore » between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.« less
NASA Astrophysics Data System (ADS)
Muñoz-Andrade, Juan D.
2013-12-01
By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Küchemann, Stefan; Mahn, Carsten; Samwer, Konrad
The investigation of short time dynamics using X-ray scattering techniques is commonly limited either by the read out frequency of the detector or by a low intensity. In this paper, we present a chopper system, which can increase the temporal resolution of 2D X-ray detectors by a factor of 13. This technique only applies to amorphous or polycrystalline samples due to their circular diffraction patterns. Using the chopper, we successfully increased the temporal resolution up to 5.1 ms during synchrotron experiments. For the construction, we provide a mathematical formalism, which, in principle, allows an even higher increase of the temporalmore » resolution.« less
Investigation on V2O5 Thin Films Prepared by Spray Pyrolysis Technique
NASA Astrophysics Data System (ADS)
Anasthasiya, A. Nancy Anna; Gowtham, K.; Shruthi, R.; Pandeeswari, R.; Jeyaprakash, B. G.
The spray pyrolysis technique was employed to deposit V2O5 thin films on a glass substrate. By varying the precursor solution volume from 10mL to 50mL in steps of 10mL, films of various thicknesses were prepared. Orthorhombic polycrystalline V2O5 films were inferred from the XRD pattern irrespective of precursor solution volume. The micro-Raman studies suggested that annealed V2O5 thin film has good crystallinity. The effect of precursor solution volume on morphological and optical properties were analysed and reported.
Thin film diamond temperature sensor array for harsh aerospace environment
NASA Technical Reports Server (NTRS)
Aslam, M.; Masood, A.; Fredricks, R. J.; Tamor, M. A.
1992-01-01
The feasibility of using polycrystalline CVD diamond films as temperature sensors in harsh aerospace environment associated with hypersonic flights was tested using patterned diamond resistors, fabricated on flat or curved oxidized Si surfaces, as temperature sensors at temperatures between 20 and 1000 C. In this temperature range, the measured resistance was found to vary over 3 orders of magnitude and the temperature coefficient of resistance to change from 0.017/K to 0.003/K. After an annealing treatment, the resistance change was reproducible within 1 percent on the entire temperature range for short measuring times.
GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code.
E, J C; Wang, L; Chen, S; Zhang, Y Y; Luo, S N
2018-03-01
GAPD, a graphics-processing-unit (GPU)-accelerated atom-based polychromatic diffraction simulation code for direct, kinematics-based, simulations of X-ray/electron diffraction of large-scale atomic systems with mono-/polychromatic beams and arbitrary plane detector geometries, is presented. This code implements GPU parallel computation via both real- and reciprocal-space decompositions. With GAPD, direct simulations are performed of the reciprocal lattice node of ultralarge systems (∼5 billion atoms) and diffraction patterns of single-crystal and polycrystalline configurations with mono- and polychromatic X-ray beams (including synchrotron undulator sources), and validation, benchmark and application cases are presented.
Local texture and strongly linked conduction in spray-pyrolyzed TlBa2Ca2Cu3O(8+x) deposits
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.
Local texture in polycrystalline TlBa2Ca2 Cu3O(8+x) deposits has been determined from transmission electron microscopy, electron backscatter diffraction patterns and x-ray diffraction. The small-grained deposits had excellent c-axis alignment and contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range conduction utilizes a percolative network of small angle grain boundaries at colony intersections.
van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J
2010-12-31
We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.
Thermal fatigue resistance of NASA WAZ-20 alloy with three commercial coatings
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Oldrieve, R. E.
1975-01-01
Screening tests using three commercial coatings (Jocoat, HI-15, and RT-1A) on the nickel-base alloy NASA WAZ-20 were performed by cyclic exposure in a Mach 1 burner facility. These tests showed Jocoated WAZ-20 to have the best cracking resistance. The thermal fatigue resistance of Jocoated WAZ-20 in both the random polycrystalline and directionally solidified polycrystalline forms relative to that of other superalloys was then evaluated in a fluidized-bed facility. This investigation showed that Jocoated random polycrystalline WAZ-20 ranked approximately in midrange in thermal fatigue life. The thermal fatigue life of directionally solidified Jocoated WAZ-20 was shorter than that of other directionally solidified alloys but still longer than that of all alloys in the random polycrystalline form.
NASA Astrophysics Data System (ADS)
Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe
2007-12-01
A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.
Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi
2017-05-05
A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.
Li, Zongbin; Yang, Bo; Zou, Naifu; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zhao, Xiang; Zuo, Liang
2017-01-01
Heusler type Ni-Mn-Ga ferromagnetic shape memory alloys can demonstrate excellent magnetic shape memory effect in single crystals. However, such effect in polycrystalline alloys is greatly weakened due to the random distribution of crystallographic orientation. Microstructure optimization and texture control are of great significance and challenge to improve the functional behaviors of polycrystalline alloys. In this paper, we summarize our recent progress on the microstructure control in polycrystalline Ni-Mn-Ga alloys in the form of bulk alloys, melt-spun ribbons and thin films, based on the detailed crystallographic characterizations through neutron diffraction, X-ray diffraction and electron backscatter diffraction. The presented results are expected to offer some guidelines for the microstructure modification and functional performance control of ferromagnetic shape memory alloys. PMID:28772826
Process Research of Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1984-01-01
A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.
Time and metamorphic petrology: Calcite to aragonite experiments
Hacker, B.R.; Kirby, S.H.; Bohlen, S.R.
1992-01-01
Although the equilibrium phase relations of many mineral systems are generally well established, the rates of transformations, particularly in polycrystalline rocks, are not. The results of experiments on the calcite to aragonite transformation in polycrystalline marble are different from those for earlier experiments on powdered and single-crystal calcite. The transformation in the polycrystalline samples occurs by different mechanisms, with a different temperature dependence, and at a markedly slower rate. This work demonstrates the importance of kinetic studies on fully dense polycrystalline aggregates for understanding mineralogic phase changes in nature. Extrapolation of these results to geological time scales suggests that transformation of calcite to aragonite does not occur in the absence of volatiles at temperatures below 200??C. Kinetic hindrance is likely to extend to higher temperatures in more complex transformations.
Laser-induced porous graphene films from commercial polymers
NASA Astrophysics Data System (ADS)
Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L. G.; Yacaman, Miguel Jose; Yakobson, Boris I.; Tour, James M.
2014-12-01
The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm-2 and power densities of ~9 mW cm-2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices.
Laser-induced porous graphene films from commercial polymers
Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L. G.; Yacaman, Miguel Jose; Yakobson, Boris I.; Tour, James M.
2014-01-01
Synthesis and patterning of carbon nanomaterials cost effectively is a challenge in electronic and energy storage devices. Here report a one-step, scalable approach for producing and patterning porous graphene films with 3-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF·cm−2 and power densities of ~9 mW·cm−2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446
NASA Astrophysics Data System (ADS)
Yamaki, K.; Kitagawa, N.; Funahashi, S.; Bamba, Y.; Irie, A.
2018-07-01
In this study, fine single crystals of the magnetic superconductor EuSr2RuCu2O8-δ (RuEu-1212) were successfully prepared using the partial melting technique. The obtained single crystals had a cubic shape, which coincides with the results of previous studies of RuGd-1212 single crystals. The single crystals had a typical length of 20-30 μm and the diffraction pattern observed from a sample prepared by partial melting was consistent with patterns of previously reported polycrystalline RuEu-1212 samples. A sample subjected to prolonged sintering, which consisted of a large number of combined micro single crystals prepared by partial melting, exhibited a superconducting transition with Tc-onset of 30.9 K and Tc-zero of 10.5 K.
Shock induced spall fracture in polycrystalline copper
NASA Astrophysics Data System (ADS)
Mukherjee, D.; Rav, Amit; Sur, Amit; Joshi, K. D.; Gupta, Satish C.
2014-04-01
The plate impact experiments have been conducted on commercially available 99.99% pure polycrystalline samples of copper using single stage gas gun facility. The free surface velocity history of the sample plate measured using VISAR instrument is utilized to determine the dynamic yield strength and spall strength of copper. The dynamic yield strength and spall strength of polycrystalline copper sample has been determined to be 0.14 GPa and 1.32 GPa, respectively with corresponding strain rates of the order of 104/s.
Free-standing polycrystalline boron phosphide film and method for production thereof
Baughman, R.J.; Ginley, D.S.
1982-09-09
A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.
Synthesis of Few-Layer, Large Area Hexagonal-Boron Nitride by Pulsed Laser Deposition (POSTPRINT)
2014-09-01
methods. Analysis of the as-deposited films reveals epitaxial- like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline ɦ...epitaxial like growth on the nearly lattice matched HOPG substrate, resulting in a polycrystalline h BN film, and amorphous BN (a BN) on the sapphire...BNxOy observed as a shoulder on the B 1s spectra is seen in other polycrystalline h BN films [16], and is most likely due to exposure to ambient
Charge carrier transport in polycrystalline organic thin film based field effect transistors
NASA Astrophysics Data System (ADS)
Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis
2016-05-01
The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.
Recrystallization of polycrystalline silicon
NASA Technical Reports Server (NTRS)
Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.
1981-01-01
Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.
Polycrystalline silicon semiconducting material by nuclear transmutation doping
Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.
1978-01-01
A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.; ...
2017-04-19
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
Patterned solid state growth of barium titanate crystals
NASA Astrophysics Data System (ADS)
Ugorek, Michael Stephen
An understanding of microstructure evolution in ceramic materials, including single crystal development and abnormal/enhanced grain growth should enable more controlled final ceramic element structures. In this study, two different approaches were used to control single crystal development in a patterned array. These two methods are: (1) patterned solid state growth in BaTiO 3 ceramics, and (2) metal-mediated single crystal growth in BaTiO 3. With the patterned solid state growth technique, optical photolithography was used to pattern dopants as well as [001] and [110] BaTiO3 single crystal template arrays with a 1000 microm line pattern array with 1000 microm spacings. These patterns were subsequently used to control the matrix grain growth evolution and single crystal development in BaTiO3. It was shown that the growth kinetics can be controlled by a small initial grain size, atmosphere conditions, and the introduction of a dopant at selective areas/interfaces. By using a PO2 of 1x10-5 atm during high temperature heat treatment, the matrix coarsening has been limited (to roughly 2 times the initial grain size), while retaining single crystal boundary motion up to 0.5 mm during growth for dwell times up to 9 h at 1300°C. The longitudinal and lateral growth rates were optimized at 10--15 microm/h at 1300°C in a PO2 of 1x10 -5 atm for single crystal growth with limited matrix coarsening. Using these conditions, a patterned microstructure in BaTiO3 was obtained. With the metal-mediated single crystal growth technique, a novel approach for fabricating 2-2 single crystal/polymer composites with a kerf < 5 microns was demonstrated. Surface templated grain growth was used to propagate a single crystal interface into a polycrystalline BaTiO3 or Ba(Zr0.05 Ti0.95)O3 matrix with lamellar nickel layers. The grain growth evolution and texture development were studied using both [001] and [110] BaTiO3 single crystals templates. By using a PO 2 of 1x10-11 atm during high temperature heat treatment, matrix coarsening was limited while enabling single crystal boundary motion up to 0.35 mm during growth between 1250°C and 1300°C with growth rates ˜ 3--4 microm/h for both single crystal orientations. By removing the inner electrodes, 2-2 single crystal (or ceramic) composites were prepared. The piezoelectric and dielectric properties of the composites of the two compositions were measured. The d33 and d31 of the composites were similar to the polycrystalline ceramic of the same composition.
Nearest pattern interaction and global pattern formation
NASA Astrophysics Data System (ADS)
Jeong, Seong-Ok; Moon, Hie-Tae; Ko, Tae-Wook
2000-12-01
We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space, where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration.
Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films
NASA Astrophysics Data System (ADS)
Yau, Allison; Cha, Wonsuk; Kanan, Matthew W.; Stephenson, G. Brian; Ulvestad, Andrew
2017-05-01
Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensional detail with 10-nanometer spatial and subangstrom displacement field resolution. These results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.
The electrical resistance of gold-capped chromium thin films
NASA Astrophysics Data System (ADS)
Ohashi, Masashi; Sawabu, Masaki; Ohashi, Kohei; Miyagawa, Masahiro; Maeta, Kae; Kubota, Takahide; Takanashi, Koki
2018-03-01
We studied the electrical resistance of polycrystalline chromium films capped by a gold layer. No anomaly was detected by resistance measurements of 10 nm thick film around room temperature, indicating that the antiferromagnetic interaction may be suppressed as decreasing the thickness of the chromium film. The sheet resistance Rs (T) curves differ from polycrystalline chromium films in previous studies because of the electrical current flows through a gold capping layer. On the other hand, the resistance drop is observed at T C = 1.15±0.05 K as that of polycrystalline chromium films in the previous report. It means that such resistance drop is not related to the chromium oxide layer on a polycrystalline chromium films. However, it is difficult to conclude that superconducting transition occurs because of the large residual resistance below the temperature where the resistance drop is observed.
NASA Astrophysics Data System (ADS)
Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.
1992-04-01
Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.
Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films
Yau, Allison; Cha, Wonsuk; Kanan, Matthew W.; ...
2017-05-19
Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensionalmore » detail with 10-nanometer spatial and subangstrom displacement field resolution. Finally, these results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.« less
Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region
NASA Astrophysics Data System (ADS)
Sun, P.; Liu, W.; Zou, Y.; Jia, Qiong Z.; Li, Jia Y.
2015-03-01
We utilized terahertz time-domain spectroscopy (THz-TDS) to investigate the complex dielectric properties of solid polycrystalline material of anhydrous glucose (D-(+)-glucose with purity >99.9%). THz transmission spectra of samples were measured from 0.2 to 2.2 THz. The samples were prepared into tablets with thicknesses of 0.362, 0.447, 0.504, 0.522 and 0.626 mm, respectively. The imaginary part of the complex dielectric function of polycrystalline glucose showed that there were multiple characteristic absorption peaks at 1.232, 1.445, 1.522, 1.608, 1.811 and 1.987 THz, respectively. Moreover, for a given characteristic absorption peak, the real part of the complex dielectric function showed anomalous dispersion within the full width half maximum (FWHM) of the absorption peak. Both finite difference time-domain (FDTD) numerical simulations and experimental results showed that the complex dielectric function of anhydrous polycrystalline glucose fits well with the Lorentz dielectric mode. The plasma oscillation frequency was below the frequency of the light waves suggesting that the light waves passed through the polycrystalline glucose tablets. Calculations based on density functional theory (DFT) showed that the characteristic absorption peaks of polycrystalline glucose originated mainly from collective intermolecular vibrations such as hydrogen bonds and crystal phonon modes. The THz radiation can excite the vibrational or rotational energy levels of the biological macromolecules. This leads to changes in their spatial configuration or interactions. This study showed that THz-TDS has potential applications in biological and pharmaceutical research and food industry.
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold
NASA Astrophysics Data System (ADS)
Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland
2018-03-01
The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabain, R.T.
1994-05-16
A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less
Toward single-mode active crystal fibers for next-generation high-power fiber devices.
Lai, Chien-Chih; Gao, Wan-Ting; Nguyen, Duc Huy; Ma, Yuan-Ron; Cheng, Nai-Chia; Wang, Shih-Chang; Tjiu, Jeng-Wei; Huang, Chun-Ming
2014-08-27
We report what we believe to be the first demonstration of a facile approach with controlled geometry for the production of crystal-core ceramic-clad hybrid fibers for scaling fiber devices to high average powers. The process consists of dip coating a solution of polycrystalline alumina onto a high-crystallinity 40-μm-diameter Ti:sapphire single-crystalline core followed by thermal treatments. Comparison of the measured refractive index with high-resolution transmission electron microscopy reveals that a Ca/Si-rich intragranular layer is precipitated at grain boundaries by impurity segregation and liquid-phase formation due to the relief of misfit strain energy in the Al2O3 matrix, slightly perturbing the refractive index and hence the optical properties. Additionally, electron backscatter diffractions supply further evidence that the Ti:sapphire single-crystalline core provides the template for growth into a sacrificial polycrystalline cladding, bringing the core and cladding into a direct bond. The thus-prepared doped crystal core with the undoped crystal cladding was achieved through the abnormal grain-growth process. The presented results provide a general guideline both for controlling crystal growth and for the performance of hybrid materials and provides insights into how one might design single-mode high-power crystal fiber devices.
Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi
2016-04-01
Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.
NASA Astrophysics Data System (ADS)
Hishitani, Daisuke; Horita, Masahiro; Ishikawa, Yasuaki; Ikenoue, Hiroshi; Uraoka, Yukiharu
2017-05-01
The formation of perhydropolysilazane (PHPS)-based SiO2 films by CO2 laser annealing is proposed. Irradiation with a CO2 laser with optimum fluence transformed a prebaked PHPS film into a SiO2 film with uniform composition in the thickness direction. Polycrystalline silicon thin-film transistors (poly-Si TFTs) with a SiO2 film as the gate insulator were fabricated. When the SiO2 film was formed by CO2 laser annealing (CO2LA) at the optimum fluence of 20 mJ/cm2, the film had fewer OH groups which was one-twentieth that of the furnace annealed PHPS film and one-hundredth that of the SiO2 film deposited by plasma-enhanced chemical vapor deposition (PECVD) using tetraethyl orthosilicate (TEOS). The resulting TFTs using PHPS showed a clear transistor operation with a field-effect mobility of 37.9 ± 1.2 cm2 V-1 s-1, a threshold voltage of 9.8 ± 0.2 V, and a subthreshold swing of 0.76 ± 0.02 V/decade. The characteristics of such TFTs were as good as those of a poly-Si TFT with a SiO2 gate insulator prepared by PECVD using TEOS.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.
1984-01-01
Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.
Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture
NASA Astrophysics Data System (ADS)
van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.
2017-11-01
The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.
Formation of Si grains from a NaSi melt prepared by reaction of SiO2 and Na
NASA Astrophysics Data System (ADS)
Yamane, Hisanori; Morito, Haruhiko; Uchikoshi, Masahito
2013-08-01
A mixture of Na2SiO3 and NaSi was found to be formed by reaction of SiO2 and Na at 650 °C as follows: 5Na+3SiO2→2Na2SiO3+NaSi. Single crystals of NaSi were grown by cooling the mixture of Na2SiO3 and NaSi with an excess amount of Na from 850 °C, and polycrystalline Si was obtained by vaporization of Na from the crystals. Coarse grains of Si were also crystallized by Na evaporation after the formation of Na2SiO3 and Si-dissolved liquid Na at 830 °C. The Si grains were collected by washing the product with water. The yield of the Si grains was 85% of the ideal amount expected from the reaction.
Ahn, Cheol Hyoun; Lee, Ju Ho; Lee, Jeong Yong; Cho, Hyung Koun
2014-12-01
Binary ZnO active layers possessing a polycrystalline structure were deposited with various argon/oxygen flow ratios at 250 degrees C via sputtering. Then ZnO thin-film-transistors (TFTs) were fabricated without additional thermal treatments. As the oxygen content increased during the deposition, the preferred orientation along the (0002) was weakened and the rotation of the grains increased, and furthermore, less conducting films were observed. On the other hand, the reduced oxygen flow rate induced the formation of amorphous-like transition layers during the initial growth due to a high growth rate and high energetic bombardment of the adatoms. As a result, the amorphous phases at the gate dielectric/channel interface were responsible for the formation of a hump shape in the subthreshold region of the TFT transfer curve. In addition, the relationship between the crystal properties and the shift in the threshold voltage was experimentally confirmed by a hysteresis test.
Biogenic formation of photoactive arsenic-sulfide nanotubes by Shewanella sp. strain HN-41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ji-Hoon; Kim, Min-Gyu; Yoo, Bongyoung
2007-12-18
Microorganisms facilitate the formation of a wide range of minerals that have unique physical and chemical properties as well as morphologies that are not produced by abiotic processes. Here, we report the production of an extensive extracellular network of filamentous, arsenic-sulfide (As-S) nanotubes (20–100 nm in diameter by 30 µm in length) by the dissimilatory metal-reducing bacterium Shewanella sp. HN-41. The As-S nanotubes, formed via the reduction of As(V) and S2O, were initially amorphous As2S3 but evolved with increasing incubation time toward polycrystalline phases of the chalcogenide minerals realgar (AsS) and duranusite (As4S). Upon maturation, the As-S nanotubes behaved asmore » metals and semiconductors in terms of their electrical and photoconductive properties, respectively. The As-S nanotubes produced by Shewanella may provide useful materials for novel nano- and opto-electronic devices.« less
Ductile flow of methane hydrate
Durham, W.B.; Stern, L.A.; Kirby, S.H.
2003-01-01
Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.
NASA Astrophysics Data System (ADS)
Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.
2014-01-01
Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.
Thin-Film Photovoltaics: Status and Applications to Space Power
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Hepp, Aloysius F.
1991-01-01
The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.
Single crystal and polycrystalline GaAs solar cells using AMOS technology
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y. C. M.
1976-01-01
A description is given of current technology for fabricating single AMOS (antireflection-coated metal oxide semiconductor) solar cells, with attention given to thermal, plasma, and anodic oxidation, native oxide stripping, and X-ray photoelectron spectroscopy results. Some preliminary results are presented on the chemistry and electrical characterization of such cells, and the characteristics of cells fabricated on sliced polycrystalline GaAs wafers are examined. Consideration is also given to the recrystallization of evaporated Ge films for use as low-cost substrates for polycrystalline GaAs solar cells.
NASA Astrophysics Data System (ADS)
Yethiraj, Anand
2010-03-01
External fields affect self-organization in Brownian colloidal suspensions in many different ways [1]. High-frequency time varying a.c. electric fields can induce effectively quasi-static dipolar inter-particle interactions. While dipolar interactions can provide access to multiple open equilibrium crystal structures [2] whose origin is now reasonably well understood, they can also give rise to competing interactions on short and long length scales that produce unexpected low-density ordered phases [3]. Farther from equilibrium, competing external fields are active in colloid spincoating. Drying colloidal suspensions on a spinning substrate produces a ``perfect polycrystal'' - tiny polycrystalline domains that exhibit long-range inter-domain orientational order [4] with resultant spectacular optical effects that are decoupled from single-crystallinity. High-speed movies of drying crystals yield insights into mechanisms of structure formation. Phenomena arising from multiple spatially- and temporally-varying external fields can give rise to further control of order and disorder, with potential application as patterned (photonic and magnetic) materials. [4pt] [1] A. Yethiraj, Soft Matter 3, 1099 (2007). [2] A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003). [3] A.K. Agarwal, A. Yethiraj, Phys. Rev. Lett ,102, 198301 (2009). [4] C. Arcos, K. Kumar, W. Gonz'alez-Viñas, R. Sirera, K. Poduska, A. Yethiraj, Phys. Rev. E ,77, 050402(R) (2008).
Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz
2010-01-01
We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657
Matizamhuka, Wallace R.; Sigalas, Iakovos; Herrmann, Mathias; Dubronvinsky, Leonid; Dubrovinskaia, Natalia; Miyajima, Nobuyoshi; Mera, Gabriela; Riedel, Ralf
2011-01-01
Bulk B-C-N materials were synthesized under static high thermobaric conditions (20 GPa and 2,000 °C) in a multianvil apparatus from a polymer derived t-BC1.97N ceramic. The bulk samples were characterised using X-ray synchrotron radiation and analytical transmission electron microscopy in combination with electron energy loss spectroscopy. Polycrystalline B-C-N materials with a cubic type structure were formed under the applied reaction conditions, but the formation of a ternary cubic diamond-like c-BC2N compound, could not be unambiguously confirmed. PMID:28824124
Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor; ...
2017-11-10
For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.
Spray deposited gallium doped tin oxide thinfilm for acetone sensor application
NASA Astrophysics Data System (ADS)
Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.
2018-04-01
Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.
Method to produce alumina aerogels having porosities greater than 80 percent
Poco, John F.; Hrubesh, Lawrence W.
2003-09-16
A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.
Ion induced millimetre-scale structures growth on metal surfaces
NASA Astrophysics Data System (ADS)
Girka, O.; Bizyukov, O.; Balkova, Y.; Myroshnyk, M.; Bizyukov, I.; Bogatyrenko, S.
2018-04-01
Polished polycrystalline Plansee tungsten (W) sample with purity 99.99 wt% and 0.75 mm thickness has been exposed to intense argon (Ar) ion beam with average energy of 2 keV and etched through in the centre. As a result, castle-like structures with strong asymmetry and with the height of >200 μm have been formed. Structures can be observed by naked eyes and with scanning-electron microscopy (SEM). It has been revealed, that the structures have been formed not immediately, but at the later stages of irradiation. Primary factors favouring the formation for the structures are relaxation of the surface stresses and activated surface mobility of atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvajal-Nunez, Ursula; Saleh, Tarik A.; White, Joshua Taylor
For this research, the elastic properties of U 3Si 2 at room temperature have been measured via resonant ultrasound spectroscopy. Results show that the average value of Young's and the bulk modulus for U 3Si 2 are 130.4±0.5 and 68.3±0.5 GPa, respectively. Further, a numerical model to assess thermal stress in an operating fuel is evaluated. Lastly, the thermal stress evolved in U 3Si 2 is compared to UO 2 to facilitate an estimation of the probability of crack formation in U 3Si 2 under representative light water reactor operating conditions.
NASA Astrophysics Data System (ADS)
Aydogdu, Yildirim; Turabi, Ali Sadi; Kok, Mediha; Aydogdu, Ayse; Tobe, Hirobumi; Karaca, Haluk Ersin
2014-12-01
The effects of the substitution of gallium with boron on the physical, mechanical and magnetic shape memory properties of Ni51Mn28.5Ga20.5- xBx (at.%) ( x = 0, 1, 2, 3) polycrystalline alloys are investigated. It has been found that transformation temperatures are decreasing while hardness is increasing with boron addition. B-doping of NiMnGa alloys results in the formation of a second phase that increases its ductility and strength in compression. Moreover, saturation magnetization of austenite is decreasing, while Curie temperature of austenite is increasing with B-doping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponchel, F., E-mail: freddy.ponchel@univ-valenciennes.fr; Rémiens, D.; Sama, N.
2014-12-28
350 nm-thick Perovskite PbZr{sub 0.54}Ti{sub 0.46}O{sub 3} (PZT) thin films were deposited on Al{sub 2}O{sub 3} substrates by sputtering with and without an additional 10-nm-thick TiO{sub x} buffer layer. X-ray diffraction patterns showed that in presence of TiO{sub x} buffer layer, PZT film was highly oriented along the (111) direction film, whereas the unbuffered, counterpart was polycrystalline. A full wave electromagnetic analysis using a vector finite element method was performed to determine the tunability and the complex permittivity up to 67 GHz. A comparison between the electromagnetic analysis and Cole-Cole relaxation model was proposed. Through an original study of the relaxation timemore » as a function of the electric field, values, such as 2 ps and 0.6 ps, were estimated for E{sub DC} = 0 kV/cm and 235 kV/cm, respectively, and in both cases (111)-PZT and polycrystalline-PZT. The distribution of relaxation times is found to be larger for (111)-PZT film, which is probably related to the film microstructure.« less
Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.
2014-06-14
The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, andmore » Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.« less
Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H
2010-07-19
A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.
Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene
NASA Astrophysics Data System (ADS)
Tsubokawa, Y.; Ishikawa, M.
2017-12-01
Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of < 500 nm, respectively. Our experiments demonstrate future measurements of ultrafine-grained mineral aggregates on its physical properties of Earth's mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahangir, S.; Cheng, Xuan; Huang, H. H.
2014-10-28
Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less
Mono or polycrystalline alumina-modified hybrid ceramics.
Kaizer, Marina R; Gonçalves, Ana Paula R; Soares, Priscilla B F; Zhang, Yu; Cesar, Paulo F; Cava, Sergio S; Moraes, Rafael R
2016-03-01
This study evaluated the effect of addition of alumina particles (polycrystalline or monocrystalline), with or without silica coating, on the optical and mechanical properties of a porcelain. Groups tested were: control (C), polycrystalline alumina (PA), polycrystalline alumina-silica (PAS), monocrystalline alumina (MA), monocrystalline alumina-silica (MAS). Polycrystalline alumina powder was synthesized using a polymeric precursor method; a commercially available monocrystalline alumina powder (sapphire) was acquired. Silica coating was obtained by immersing alumina powders in a tetraethylorthosilicate solution, followed by heat-treatment. Electrostatic stable suspension method was used to ensure homogenous dispersion of the alumina particles within the porcelain powder. The ceramic specimens were obtained by heat-pressing. Microstructure, translucency parameter, contrast ratio, opalescence index, porosity, biaxial flexural strength, roughness, and elastic constants were characterized. A better interaction between glass matrix and silica coated crystalline particles is suggested in some analyses, yet further investigation is needed to confirm it. The materials did not present significant differences in biaxial flexural strength, due to the presence of higher porosity in the groups with alumina addition. Elastic modulus was higher for MA and MAS groups. Also, these were the groups with optical qualities and roughness closer to control. The PA and PAS groups were considerably more opaque as well as rougher. Porcelains with addition of monocrystalline particles presented superior esthetic qualities compared to those with polycrystalline particles. In order to eliminate the porosity in the ceramic materials investigated herein, processing parameters need to be optimized as well as different glass frites should be tested. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowrie, R.
1963-10-31
The development and properties of refractory materials are described. Corrosion of zirconium carbide, niobium carbide, and niobium carbide-zirconium carbide systems by carbon dioxide and hydrochloric acid at 2250 deg C is reported. Corrosion of silver-tungsten alloys by carbon dioxide and oxygen at 2150 to 2440 deg K is summarized. Measurements of pyrolytic and ZTA graphite corrosion by carbon dioxide and oxygen at 2100 to 2800 deg K are shown. At 2300 deg C the rate of formation of methane from graphite and hydrogen is greatly reduced by the addition of helium, at constant hydrogen pressure. Up to 2000 deg Cmore » the effect of helium is small. The pyrolysis of methane on graphite at 2000 deg C is tabulated. Oxidation of tungsten to form WO/sub 2/ and WO/sub 3/ is reported. Vaporization of hafnium borides at 2297 to 2538 deg K is analyzed. The lattice parameters of ZrB/sub 2/ at of TiN/sub 0.6/ and TiN/sub 0.75/ are discussed. Powder metallurgical techniques are used to prepare TiB/sub 2/, ZrB/sub 2/, HfB/ sub 2/, NbB/sub 2/, a nd TaB/sub 2/ for detailed x-ray characterization. The electric conductivity of NbC-ZrC systems is reported. General descriptions are given of analytical techniques for free carbon in carbides and spectrographic methods for metallic impurities in carbides and borides. Preliminary roomtemperature measurements are reported of the elastic properties of polycrystalline ZrB/sub 2/. Titanium carbide is brazed to tungsten with a platinum-boron system. A largegrained polycrystalline specimen of ZrC is plastically deformed in creep at 2134 deg C. Metallographic and x-ray examinations of polycrystalline TiC specimens deformed in creep reveal an increasing development with deformation of subgrains having preferred orientation. (N.W.R.)« less
Dependence of critical current density on microstructure and processing of high-T(c) superconductors
NASA Astrophysics Data System (ADS)
Goyal, A.; Specht, E. D.; Wang, Z. L.; Kroeger, D. M.; Sutliff, J. A.; Tkaczyk, J. E.; Deluca, J. A.; Masur, L.; Riley, G. N., Jr.
Microstructural origins for reduced weak-link behavior in high-J(sup c) melt-processed YBCO, spray pyrolyzed thick films of Tl-1223, metallic precursor Y-124 polycrystalline powder-in-tube (PIT) wires and PIT Bi-2212/2223 are discussed. Since the materials studied are the highest J(sub c), polycrystalline, high-T(sub c) superconductors fabricated worldwide, the results provide important guidelines for further improvements in superconducting properties, thereby enabling practical applications of these materials. It is found that strongly linked current flow within domains of melt-processed 123 occurs effectively through a single crystal path. In c-axis oriented, polycrystalline Tl-1223 thick films, local in-plane texture has been found to play a crucial role in the reduced weak-link behavior. Formation of 'colonies' of grains with a common c-axis and modest in-plane misorientation was observed. Furthermore, a colony boundary in general has a varying misorientation along the boundary. Large regions comprised primarily of low angle boundaries were observed. Percolative transport through a network of such small angle boundaries appears to provide the non-weak-linked current path. Although powder-in-tube BSCCO 2212 and 2223 also appear to have a 'colony' microstructure, there are some important differences. Colonies in BSCCO consist of stacks of grains with similar c-axis orientation in contrast to colonies in Tl-1223 films where few grains are stacked on top of one another. In the case of Y-124 wires, weak macroscopic in-plane texture is found. Additional measurements are underway to determine if a sharper, local in-plane texture also exists. It is found that in three of the four types of superconductors studied, reduced weak-link behavior can be ascribed to some degree of biaxial alignment between grains, either on a 'local' or a 'global' scale.
She, Zhe; Difalco, Andrea; Hähner, Georg; Buck, Manfred
2012-01-01
Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around -0.7 V versus Cu(2+)/Cu and a growth phase at around -0.35 V versus Cu(2+)/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off.
Directional pair distribution function for diffraction line profile analysis of atomistic models
Leonardi, Alberto; Leoni, Matteo; Scardi, Paolo
2013-01-01
The concept of the directional pair distribution function is proposed to describe line broadening effects in powder patterns calculated from atomistic models of nano-polycrystalline microstructures. The approach provides at the same time a description of the size effect for domains of any shape and a detailed explanation of the strain effect caused by the local atomic displacement. The latter is discussed in terms of different strain types, also accounting for strain field anisotropy and grain boundary effects. The results can in addition be directly read in terms of traditional line profile analysis, such as that based on the Warren–Averbach method. PMID:23396818
Mathis, Kristian; Capek, J.; Clausen, Bjorn; ...
2015-04-20
Influence of aluminium content on the deformation mechanisms in Mg–Al binary alloys has been studied using in-situ neutron diffraction and acoustic emission technique. Here, it is shown that the addition of the solute increases the critical resolved shear stress for twinning. Further, the role of aluminium on the solid solution hardening of the basal plane and softening of non-basal planes are discussed using results of the convolutional multiple peak profile analysis of diffraction patterns. In conclusion, the results indicate that the density of both prismatic and pyramidal dislocations increases with increasing alloying content.
NASA Astrophysics Data System (ADS)
Preetha, K. C.
2017-06-01
Incorporation of Chromium ions into Lead Sulphide thin films have been achieved by CBD technique. Effects of doping were investigated as a function of Pb/Cr ratio from o to 2 at %. X-ray diffraction patterns showed that films were polycrystalline in nature with increase in crystallite size up to an optimum doping concentration. Scanning electron microscopic study revealed excellent morphology with doping concentration. The low transmittance in the UV-VIS region offered the suitability of the samples as solar control coatings. The thin films were found to be P type and electrical conductivity enhanced on doping.
Wang, Hui; Lan, Yucheng; Zhang, Jiaming; Crimp, Martin A; Ren, Zhifeng
2012-04-01
Long beta-Ga2O3 crystalline nanowires are synthesized on patterned silicon substrates using chemical vapor deposition technique. Advanced electron microscopy indicates that the as-grown beta-Ga2O3 nanowires are consisted of poly-crystalline (Co, Ga)O tips and straight crystalline beta-Ga2O3 stems. The catalytic cobalt not only locates at the nanowire tips but diffuses into beta-Ga2O3 nanowire stems several ten nanometers. A solid diffusion growth mechanism is proposed based on the spatial elemental distribution along the beta-Ga2O3 nanowires at nanoscale.
Thermal defect annealing of swift heavy ion irradiated ThO 2
Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; ...
2017-05-19
Neutron total scattering and Raman spectroscopy were used to characterize the structural recovery of irradiated polycrystalline ThO 2 (2.2 GeV Au, = 1 x 10 13 ions/cm 2) during isochronal annealing. Here, neutron diffraction patterns showed that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275$-$425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.
Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry
NASA Astrophysics Data System (ADS)
Schmittberger, Bonnie; Gauthier, Daniel
2013-05-01
The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
Ascorbic-acid-assisted growth of high quality M@ZnO: a growth mechanism and kinetics study.
Yang, Yun; Han, Shuhua; Zhou, Guangju; Zhang, Lijie; Li, Xingliang; Zou, Chao; Huang, Shaoming
2013-12-07
We present a general route for synthesizing M@ZnO nanoparticles (NPs) by using ascorbic acid (AA) to induce deposition of ZnO on various shaped and structured cationic-surfactant-capped NP surfaces (noble, magnetic, semiconductor, rod-like, spherical, cubic, dendrite, alloy, core@shell). The results show that the complexing (AA and Zn(2+)) and cooperative effects (AA and CTAB) play important roles in the formation of polycrystalline ZnO shells. Besides, the growth kinetics of M@ZnO was systematically studied. It was found that the slow growth rate favors the successful formation of uniform core@ZnO NPs with relatively loose shells. An appropriate growth rate allows achieving high quality M@ZnO NPs with dense shells. However, very fast growth causes significant additional nucleation and the formation of pure ZnO NPs. This general method is suitable for preparing M@ZnO using seed NPs prepared in both water and organic phases. It might be an alternative route for functionalizing NPs for bioapplications (ZnO is biocompatible), modulating material properties as designed, or synthesizing template materials for building other nanostructures.
NASA Astrophysics Data System (ADS)
Singh, Divya; Parashar, Avinash
2018-07-01
In this article, molecular-dynamics-based simulations were used to study the effect of grain boundaries (GBs) on the formation and spatial distribution of radiation-induced point defects. In order to perform this study, two sets of symmetrical and asymmetrical tilt grain boundaries were constructed along [0 0 0 1] and [0 ‑1 1 0] as the tilt axis, respectively. Vacancy, interstitial and Frenkel pair formation energies were estimated as a function of the distance from the GB core for both symmetrical as well as asymmetrical tilt GBs. The trend obtained between GB energies and point defect formation energies helps explain the biased absorption of interstitials over vacancies in most cases, as well as the equal absorption of both kinds of point defects in a few of them. It has already been reported from the experimental work that [0 0 0 1] GB structures closely resemble the polycrystalline texture of hcp materials, which motivates us to study the effect of irradiation on these GBs.
Magnetic charges suppress effects of anisotropy in polycrystalline soft ferromagnetic materials
NASA Astrophysics Data System (ADS)
Arrott, Anthony S.; Williams, Conrad M.; Negusse, Ezana
2018-05-01
Micromagnetic simulations of polycrystalline iron washers show that grain boundary charges, ρ = -div M, suppress bad effects of magnetocrystalline anisotropy. A single domain wall divides the washer into two domains with opposite magnetization; M is almost = ± Ms ϕ, where ϕ circulates about the hole in the washer. There is a ripple structure. M tilts back and forth toward the inner and outer surfaces. Magnetic charge densities, σm = n.M, on the surfaces keep M at the surfaces very close to lying in the surfaces. The exchange ɛx and magnetostatic ɛd energy densities try to keep M parallel to the surfaces throughout the washer, except at the domain wall. An anisotropy energy in each grain is reduced linearly in the angle of rotation away from the circulating pattern towards the nearest anisotropy axis. Both ɛx and ɛd near grain boundaries increase as the square of these angles. Anisotropy wins for small rotations. However, the coefficients of the positive quadratic terms are so much larger than the coefficients of the negative linear terms that the rotations are quite small. If the height of the washer is sufficiently greater than 300 nm, M in the washer no longer acts as it would in a thin film. If 300 nm washers are stacked with a spacing of 4 nm, the ripple structure is not lost. The stacked washers can then be used as the core of a transformer. The most remarkable effect is that starting with M = Ms ϕ everywhere, the reversal of M by the field from a current along the z-axis produces a single domain wall. It is stable even in zero field because the wall has Néel caps that act as springs against the surfaces. The suppression of crystalline anisotropy in polycrystalline iron also occurs for geometries other than the toroid; some might be better for creating transformers.
Lasing of surface-polished polycrystalline Ho: YAG (yttrium aluminum garnet) fiber.
Kim, Hyunjun; Hay, Randall S; McDaniel, Sean A; Cook, Gary; Usechak, Nicholas G; Urbas, Augustine M; Shugart, Kathleen N; Lee, HeeDong; Kadhim, Ali H; Brown, Dean P; Griffin, Benjamin; Fair, Geoff E; Corns, Randall G; Potticary, Santeri A; Hopkins, Frank K; Averett, Kent L; Zelmon, David E; Parthasarathy, Triplicane A; Keller, Kristin A
2017-03-20
A polycrystalline 1.5% Ho: YAG fiber with a diameter of 31 µm was prepared. Surface roughness from grain boundary grooving was reduced by polishing, which decreased the fiber scattering coefficient from 76 m-1 to 35 m-1. Lasing tests were done on this fiber with a SF57 Schott glass cladding. Lasing was confirmed by spectrum narrowing with threshold pump power lower than 500 mW and a slope efficiency of 7%. To our knowledge, this is the first lasing demonstration from a small diameter polycrystalline ceramic fiber.
Ultrafast lattice dynamics of single crystal and polycrystalline gold nanofilms☆
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Karam, Tony E.; Blake, Geoffrey A.; Zewail, Ahmed H.
2017-09-01
Ultrafast electron diffraction is employed to spatiotemporally visualize the lattice dynamics of 11 nm-thick single-crystal and 2 nm-thick polycrystalline gold nanofilms. Surprisingly, the electron-phonon coupling rates derived from two temperature simulations of the data reveal a faster interaction between electrons and the lattice in the case of the single-crystal sample. We interpret this unexpected behavior as arising from quantum confinement of the electrons in the 2 nm-thick gold nanofilm, as supported by absorption spectra, an effect that counteracts the expected increase in the electron scattering off surfaces and grain boundaries in the polycrystalline materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamshidian, M., E-mail: jamshidian@cc.iut.ac.ir; Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstrasse 15, 99423 Weimar; Thamburaja, P., E-mail: prakash.thamburaja@gmail.com
A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substratemore » and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yau, Allison; Harder, Ross J.; Kanan, Matthew W.
Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325more » nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Q.R.; Zhang, J., E-mail: zhangjian@xmu.edu.cn; Dong, X.N.
Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} at room temperature and 723 K to a fluence of 4×10{sup 15} ions/cm{sup 2}, corresponding to an average ballistic damage dose of 10 displacements per atom in the peak damage region. Irradiation-induced microstructural evolution was examined by grazing incidence X-ray diffraction, and cross-sectional transmission electron microscopy. Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal which has the identical structure of pyrochlore, and the formation of nano-crystal is attributed to the mechanism of epitaxial recrystallization. However, an orderedmore » pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Graphical Abstract: Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} to a fluence of 4×10{sup 15} ions/cm{sup 2} at room temperature and 723 K, Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal. However, an ordered pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Highlights: Pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated by heavy ions at RT and 723 K. At RT irradiation, ~75% of amorphization was achieved. The nano-crystals were formed in the damage layer at RT irradiation. The formed nano-crystals enhanced the radiation tolerance of Lu{sub 2}Ti{sub 2}O{sub 7}. A pyrochlore to fluorite phase transformation was observed at 723 K irradiation.« less
Characteristics of pattern formation and evolution in approximations of Physarum transport networks.
Jones, Jeff
2010-01-01
Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.
Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition
NASA Astrophysics Data System (ADS)
Khare, C.; Gerlach, J. W.; Höche, T.; Fuhrmann, B.; Leipner, H. S.; Rauschenbach, B.
2012-10-01
Post-deposition thermal annealing of glancing angle deposited Ge nanocolumn arrays was carried out in a continuous Ar-flow at temperatures ranging from TA = 300 to 800 °C for different annealing durations. Morphological alterations and the recrystallization process induced by the thermal annealing treatment were investigated for the Ge nanocolumns deposited on planar and pre-patterned Si substrates. From X-ray diffraction (XRD) measurements, the films annealed at TA ≥ 500 °C were found to be polycrystalline. On planar Si substrates, at TA = 600 °C nanocolumns exhibited strong coarsening and merging, while a complete disintegration of the nanocolumns was detected at TA = 700 °C. The morphology of nanostructures deposited on pre-patterned substrates differs substantially, where the merging or column-disintegration effect was absent at elevated annealing temperatures. The two-arm-chevron nanostructures grown on pre-patterned substrates retained their complex shape and morphology, after extended annealing intervals. Investigations by transmission electron microscopy revealed nanocrystalline domains of the order of 5-30 nm (in diameter) present within the chevron structures after the annealing treatment.
NASA Astrophysics Data System (ADS)
Abuzaid, Wael Z. M.
In this study, high resolution ex situ digital image correlation (DIC) was used to measure plastic strain accumulation in polycrystalline Hastelloy X, a nickel-based superalloy, subjected to monotonic and cyclic loading conditions. In addition, the underlying microstructure was characterized with similar spatial resolution using electron backscatter diffraction (EBSD). The experimental results were utilized to investigate the localization of plastic strains in the vicinity of grain boundaries (GBs). Particularly we address the interaction of slip with GBs which can result in slip blockage or slip transmission and investigate how these two possible outcomes of slip-GB interaction influence the plastic strain magnitudes and fatigue crack formation in GB regions. In the first part of this work, we focus on slip transmission across GBs. Strain measurements with sub-grain level spatial resolution were acquired for Hastelloy X deformed plastically in uniaxial tension. The full field DIC measurements show a high level of heterogeneity in the plastic response with large variations in strain magnitudes within grains and across GBs. We used the experimental results to study these variations in strains, focusing specifically on the role of slip transmission across GBs in the development of strain heterogeneities. For every GB in the polycrystalline aggregate, we have established the most likely dislocation reaction and used that information to calculate the residual Burgers vector and plastic strain magnitudes due to slip transmission across each interface. From our analysis, we show an inverse relation between the magnitudes of the residual Burgers vector and the plastic strains across GBs. We therefore emphasize the importance of considering the magnitude of the residual Burgers vector to obtain a better description of the GB resistance to slip transmission, which in turn influences the local plastic strains in the vicinity of grain boundaries. In the second part of this work, we consider fatigue micro-crack formation. It is widely accepted that the localization in plastic strains is a necessary condition and a precursor for the nucleation of fatigue cracks. However a clear and quantitative assessment of the correlation between strain localization and fatigue micro-crack lengths requires further investigation. To address this point, high resolution deformation measurements using DIC were conducted on polycrystalline Hastelloy X subjected to fatigue loading. The sub-grain level strain measurements were made prior to the formation of micro-cracks. The correlation between the localization of plastic strains, very early on during the loading (e.g., less than 1,000 cycles), and the micro-cracks which were detected later in the life of the sample ( e.g., around 10,000 cycles) is discussed in this thesis. Particular focus is given to the difference in grain boundary response, either blocking or transmitting slip, and the associated fatigue micro-crack lengths generated in the vicinity of these boundaries. The results show a clear correlation between both the locations and lengths of fatigue micro-cracks and the localization of plastic strains very early in the loading process. In addition, we observed that for the same number of cycles, the transmission of slip across grain boundaries resulted in longer transgranular cracks compared to cracks near grains surrounded by blocking grain boundaries which were shorter cracks and confined within single grains. In the last part of this study, experiments were conducted on Hastelloy X subjected to fatigue loading. The purpose of the experiments was to investigate the scatter in fatigue lives under similar loading conditions. We also used a recent novel fatigue model based on persistent slip band (PSB) -- GB interaction to investigate the scatter in fatigue lives and shed light into the critical types of GBs which nucleate cracks. The implementation of this model provides simulation results of the scatter in fatigue life, which are consistent with the scatter observed from experiments. Finally, with the use of high resolution strain measurements, we provide a critical evaluation of some aspects of the modeling approach, for example the formation of grain clusters and their influence on fatigue life. Also the role of special GBs, mainly annealing twin boundaries (Sigma3 GBs), was evaluated.
Process Research On Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Wohlgemuth, J. H.; Culik, J. S.
1982-01-01
The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yanhong, E-mail: tianyh@hit.edu.cn; Zhang, Rui; Hang, Chunjin
2014-02-15
The morphologies and orientations of Cu{sub 6}Sn{sub 5} intermetallic compounds in the Sn3.0Ag0.5Cu solder joints both on polycrystalline and single crystal Cu pads under different peak reflow temperatures and times above liquids were investigated. The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified. At the interface of Sn3.0Ag0.5Cu/polycrystalline Cu pad, scalloped Cu{sub 6}Sn{sub 5} intermetallic compounds formed at 250 °C and roof shape Cu{sub 6}Sn{sub 5} formed at 300 °C. Both scalloped Cu{sub 6}Sn{sub 5} and roof shape Cu{sub 6}Sn{sub 5} had a preferred orientation of (0001) plane being parallel to polycrystalline Cu pad surface. Besides, themore » percentage of large angle grain boundaries increased as the peak reflow temperature rose. At the interface of Sn3.0Ag0.5Cu/(111) single crystal Cu pad, the Cu{sub 6}Sn{sub 5} intermetallic compounds were mainly scallop-type at 250 °C and were prism type at 300 °C. The prismatic Cu{sub 6}Sn{sub 5} grains grew along the three preferred directions with the inter-angles of 60° on (111) single crystal Cu pad while along two perpendicular directions on (100) single crystal Cu pad. The orientation relationship between Cu{sub 6}Sn{sub 5} grains and the single crystal Cu pads was investigated by electron backscatter diffraction technology. In addition, two types of hollowed Cu{sub 6}Sn{sub 5} intermetallic compounds were found inside the joints of polycrystalline Cu pads. The long hexagonal Cu{sub 6}Sn{sub 5} strips were observed in the joints reflowing at 250 °C while the hollowed Cu{sub 6}Sn{sub 5} strips with the ‘▪’ shape cross-sections appeared at 300 °C, which was attributed to the different grain growth rates of different Cu{sub 6}Sn{sub 5} crystal faces. - Highlights: • The orientation of interfacial Cu{sub 6}Sn{sub 5} grains was obtained by EBSD technology. • Two types of hollowed Cu{sub 6}Sn{sub 5} strips were found at different temperatures. • The formation mechanism of hollowed Cu{sub 6}Sn{sub 5} was elaborated based on Bravais law. • The relationship between Cu{sub 6}Sn{sub 5} grain orientations and morphologies was clarified.« less
Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
Barrios-Vargas, José Eduardo; Mortazavi, Bohayra; Cummings, Aron W; Martinez-Gordillo, Rafael; Pruneda, Miguel; Colombo, Luciano; Rabczuk, Timon; Roche, Stephan
2017-03-08
We present a theoretical study of electronic and thermal transport in polycrystalline heterostructures combining graphene (G) and hexagonal boron nitride (hBN) grains of varying size and distribution. By increasing the hBN grain density from a few percent to 100%, the system evolves from a good conductor to an insulator, with the mobility dropping by orders of magnitude and the sheet resistance reaching the MΩ regime. The Seebeck coefficient is suppressed above 40% mixing, while the thermal conductivity of polycrystalline hBN is found to be on the order of 30-120 Wm -1 K -1 . These results, agreeing with available experimental data, provide guidelines for tuning G-hBN properties in the context of two-dimensional materials engineering. In particular, while we proved that both electrical and thermal properties are largely affected by morphological features (e.g., by the grain size and composition), we find in all cases that nanometer-sized polycrystalline G-hBN heterostructures are not good thermoelectric materials.
NASA Astrophysics Data System (ADS)
Li, Jinhua; Yuan, Ningyi; Jiang, Meiping; Kun, Li
2011-08-01
Vanadium Dioxide Polycrystalline Films with High Temperature Coefficient of Resistance(TCR) were fabricated by modified Ion Beam Enhanced Deposition(IBED) method. The TCR of the Un-doping VO2 was about -4%/K at room temperature after appropriate thermal annealing. The XRD results clearly showed that IBED polycrystalline VO2 films had a single [002] orientation of VO2(M). The TCR of 5at.%W and 7at.% Ta doped Vanadium Dioxide Polycrystalline Films were high up to -18%/K and -12%/K at room temperature, respectively. Using 7at.% Ta and 2at.% Ti co-doping, the TCR of the co-doped vanadium oxide film was -7%/K and without hysteresis during temperature increasing and decresing from 0-80°C. It should indicate that the W-doped vanadium dioxide films colud be used for high sensing IR detect and the Ta/Ti co-doped film without hysteresis is suitable for infrarid imaging application.
NASA Astrophysics Data System (ADS)
Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.
2017-09-01
The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.
Processing and characterization of polycrystalline YAG (Yttrium Aluminum Garnet) core-clad fibers
NASA Astrophysics Data System (ADS)
Kim, Hyun Jun; Fair, Geoff E.; Potticary, Santeri A.; O'Malley, Matthew J.; Usechak, Nicholas G.
2014-06-01
Polycrystalline YAG fiber has recently attracted considerable attention for the role it could play as a fiber-laser gain media. This primarily due to its large surface-to-volume ratio, high stimulated Brillouin scattering threshold, and its high thermal conductivity; all of which are superior to that of silica-glass fibers. As a consequence, techniques which enable the fabrication of poly- and single-crystalline YAG fibers have recently been the focus of a number of efforts. In this work we have endeavored to reduce the scattering loss of polycrystalline-YAG-core fibers while simultaneously demonstrating optical gain by enhancing our processing techniques using feedback from mechanical testing and through the development of a technique to encase doped YAG-core fibers with un-doped YAG claddings. To this end we have recently fabricated fibers with both core and claddings made up of polycrystalline YAG and subsequently confirmed that they indeed guide light. In this paper, the processes leading to the fabrication of these fibers will be discussed along with their characterization.
NASA Astrophysics Data System (ADS)
Yang, Weiguang; Nie, Lei; Li, Dongmei; Wang, Yali; Zhou, Jie; Ma, Lei; Wang, Zhenhua; Shi, Weimin
2011-06-01
Polycrystalline α-HgI 2 thick films have been grown on ITO-coated glass substrates using ultrasonic-wave-assisted vapor phase deposition (UWAVPD) with the different source temperatures and ultrasonic frequencies. The influence of the assisted ultrasonic wave and source temperature on the structural and electrical properties of the polycrystalline α-HgI 2 films is investigated. It is found that the assisted ultrasonic wave plays an important role in the improvement of the structural and electrical properties. An uniformly oriented polycrystalline α-HgI 2 film with clear facets and narrow size distribution can be obtained at the source temperature of 80 °C under the assistance of 59 KHz ultrasonic frequency with the ultrasonic power of 200 W, which has the lowest value of ρ=2.2×10 12 Ω cm for E-field parallel to c-axis, approaching to that of high quality α-HgI 2 single crystals (4.0×10 12 Ω cm).
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.
1987-01-01
An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in the SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.
1989-01-01
An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates.
Chen, Jianyi; Wen, Yugeng; Guo, Yunlong; Wu, Bin; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Wang, Dong; Yu, Gui; Liu, Yunqi
2011-11-09
We report the metal-catalyst-free synthesis of high-quality polycrystalline graphene on dielectric substrates [silicon dioxide (SiO(2)) or quartz] using an oxygen-aided chemical vapor deposition (CVD) process. The growth was carried out using a CVD system at atmospheric pressure. After high-temperature activation of the growth substrates in air, high-quality polycrystalline graphene is subsequently grown on SiO(2) by utilizing the oxygen-based nucleation sites. The growth mechanism is analogous to that of growth for single-walled carbon nanotubes. Graphene-modified SiO(2) substrates can be directly used in transparent conducting films and field-effect devices. The carrier mobilities are about 531 cm(2) V(-1) s(-1) in air and 472 cm(2) V(-1) s(-1) in N(2), which are close to that of metal-catalyzed polycrystalline graphene. The method avoids the need for either a metal catalyst or a complicated and skilled postgrowth transfer process and is compatible with current silicon processing techniques.
Alberi, K.; Fluegel, B.; Moutinho, H.; Dhere, R. G.; Li, J. V.; Mascarenhas, A.
2013-01-01
Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 μm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction. PMID:24158163
Critical experiments of the self-consistent model for polycrystalline Hastelloy-X
NASA Technical Reports Server (NTRS)
Shi, Shixiang; Walker, Kevin P.; Jordan, Eric H.
1991-01-01
A viscoplastic constitutive model is presented for the estimation of the overall mechanical response of Hastelloy-X polycrystalline metals from a knowledge of single crystal behavior. The behavior of polycrystal is derived from that of single crystals using a self-consistent formulation. The single crystal behavior which has been used was developed by summing postulated slip on crystallographic slip systems. The plasticity and creep are treated coupledly using unified viscoplastic model which includes the interaction effects between rapid and slow deformation at elevated temperature. The validity of the model is directly tested by experiments on Hastelloy-X in both single crystal and polycrystalline versions.
Material electronic quality specifications for polycrystalline silicon wafers
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-06-01
As the use of polycrystalline silicon wafers has expanded in the photovoltaic industry, the need grows for monitoring and qualification techniques for as-grown material that can be used to optimize crystal growth and help predict solar cell performance. Particular needs are for obtaining quantitative measures over full wafer areas of the effects of lifetime limiting defects and of the lifetime upgrading taking place during solar cell processing. We review here the approaches being pursued in programs under way to develop material quality specifications for thin Edge-defined Film-fed Growth (EFG) polycrystalline silicon as-grown wafers. These studies involve collaborations between Mobil Solar, and NREL and university-based laboratories.
Lin, Liqiang; Zeng, Xiaowei
2015-01-01
The focus of this work is to investigate spall fracture in polycrystalline materials under high-speed impact loading by using an atomistic-based interfacial zone model. We illustrate that for polycrystalline materials, increases in the potential energy ratio between grain boundaries and grains could cause a fracture transition from intergranular to transgranular mode. We also found out that the spall strength increases when there is a fracture transition from intergranular to transgranular. In addition, analysis of grain size, crystal lattice orientation and impact speed reveals that the spall strength increases as grain size or impact speed increases. PMID:26435546
Perovskite Solar Cells | Photovoltaic Research | NREL
& Devices pages: High-Efficiency Crystalline PV Polycrystalline Thin-Film PV Perovskite and Organic -Defect Hybrid Organic/Inorganic Perovskite Films as PV Absorbers. (FY 2015FY 2016). In collaboration with organic metal halide perovskite (see article). Ultrahigh-Efficiency and Low-Cost Polycrystalline Halide
NASA Astrophysics Data System (ADS)
Dudarev, E. F.; Pochivalova, G. P.; Proskurovskii, D. I.; Rotshtein, V. P.; Markov, A. B.
1996-03-01
A technique for determination of residual stresses at various distances from the irradiated surface is proposed. It is established for iron and molybdenum that compressive stresses are set up under irradiation by low-energy high-current electron beams and that their values decrease sharply with increasing distance from the surface. The residual stresses are much smaller in absolute magnitude than those operating during irradiation. It is shown that the change in resistance to microplastic deformation on irradiation with low-energy high-current electron beams is governed not only by formation of a gradient dislocation substructure in the surface layer, but also by the residual stresses and the appearance of the Bauschinger effect.
Effect of the fabrication conditions of SiGe LEDs on their luminescence and electrical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyadin, A. E.; Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Strel’chuk, A. M.
2016-02-15
SiGe-based n{sup +}–p–p{sup +} light-emitting diodes (LEDs) with heavily doped layers fabricated by the diffusion (of boron and phosphorus) and CVD (chemical-vapor deposition of polycrystalline silicon layers doped with boron and phosphorus) techniques are studied. The electroluminescence spectra of both kinds of LEDs are identical, but the emission intensity of CVD diodes is ∼20 times lower. The reverse and forward currents in the CVD diodes are substantially higher than those in diffusion-grown diodes. The poorer luminescence and electrical properties of the CVD diodes are due to the formation of defects at the interface between the emitter and base layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aireddy, H.; Das, A. K., E-mail: amal@phy.iitkgp.ernet.in
2016-05-06
Fe{sub 2.5}Mn{sub 0.5}O{sub 4}/p-Si heterojunction was fabricated using a pulsed laser deposition technique and investigated it’s structural and electrical transport properties. The high-resolution transmission electron microscopy results reveal the formation of a polycrystalline film on silicon substrate. The heterojunction shows good rectifying property and giant negative junction magnetoresistance especially in reverse bias condition at room temperature. The origin of this giant negative junction magnetoresistance may be attributing to the injection of electrons to the majority spin-up band of the Fe{sub 2.5}Mn{sub 0.5}O{sub 4} film.
Electrical properties of Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} ceramic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nath, K. Amar, E-mail: karn190@gmail.com; Chandra, K. P., E-mail: kpchandra23@gmail.com; Dubey, K., E-mail: kirandubey45@yahoo.com
2016-05-06
Polycrystalline Ba(Dy{sub 1/2}Nb{sub 1/2})O{sub 3} was prepared using a high-temperature solid-state reaction method. X-ray diffraction analysis indicated the formation of a single-phase cubic structure having space group Pm3m. AC impedance plots as a function of frequency at different temperatures were used to analyse the electrical behaviour of the sample, which indicated the negative temperature coefficient of resistance character. Complex impedance analysis targeted non-Debye type dielectric relaxation. Frequency dependent ac conductivity data obeyed Jonscher’s power law. The apparent activation energy was estimated to be 0.97 eV at 1 kHz.
The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation
Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark
2012-01-01
Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053
Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A.; Politi, Yael; Addadi, Lia; Gilbert, P. U. P. A.; Weiner, Steve
2009-01-01
The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools. PMID:19332795
NASA Astrophysics Data System (ADS)
Takahashi, Kouta; Kurosawa, Masashi; Ikenoue, Hiroshi; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki
2018-04-01
A low-temperature process for the formation of heavily doped polycrystalline Ge (poly-Ge) layers on insulators is required to realize next-generation electronic devices. In this study, we have systematically investigated pulsed laser annealing (PLA) in flowing water for heavily doped amorphous Ge1- x Sn x layers (x ≈ 0.02) with various dopants such as B, Al, Ga, In, P, As, and Sb on SiO2. It is found that the dopant density after PLA with a high laser energy is reduced when the oxidized dopant has a lower oxygen chemical potential than H2O. As a result, for the p-type doping of B, Al, Ga, and In, we obtained a high Hall hole density of 5 × 1019 cm-3 for PLA with a low energy. Consequently, the Hall hole mobility is limited to as low as 10 cm2 V-1 s-1. In contrast, for As and Sb doping, because the density of substitutional dopants does not decrease even after PLA with a high energy, we achieved a high Hall electron density of 6 × 1019 cm-3 and a high Hall electron mobility simultaneously. These results indicate that preventing the oxidation of dopant atoms by water is an important factor for achieving heavy doping using PLA in water.
Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong
2016-01-01
Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463
Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A; Politi, Yael; Addadi, Lia; Gilbert, P U P A; Weiner, Steve
2009-04-14
The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools.
Solution-processed polycrystalline silicon on paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trifunovic, M.; Ishihara, R., E-mail: r.ishihara@tudelft.nl; Shimoda, T.
Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been mademore » when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.« less
Self-organization principles of intracellular pattern formation.
Halatek, J; Brauns, F; Frey, E
2018-05-26
Dynamic patterning of specific proteins is essential for the spatio-temporal regulation of many important intracellular processes in prokaryotes, eukaryotes and multicellular organisms. The emergence of patterns generated by interactions of diffusing proteins is a paradigmatic example for self-organization. In this article, we review quantitative models for intracellular Min protein patterns in Escherichia coli , Cdc42 polarization in Saccharomyces cerevisiae and the bipolar PAR protein patterns found in Caenorhabditis elegans By analysing the molecular processes driving these systems we derive a theoretical perspective on general principles underlying self-organized pattern formation. We argue that intracellular pattern formation is not captured by concepts such as 'activators', 'inhibitors' or 'substrate depletion'. Instead, intracellular pattern formation is based on the redistribution of proteins by cytosolic diffusion, and the cycling of proteins between distinct conformational states. Therefore, mass-conserving reaction-diffusion equations provide the most appropriate framework to study intracellular pattern formation. We conclude that directed transport, e.g. cytosolic diffusion along an actively maintained cytosolic gradient, is the key process underlying pattern formation. Thus the basic principle of self-organization is the establishment and maintenance of directed transport by intracellular protein dynamics.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Authors.
1994-09-01
free-space and waveguide interconnects is investigated through the fabrication, testing and modeling of polycrystalline PLZT/ITO ceramic electro - optic phase...only gratings. PLZT Diffraction grating, Electro - optic diffraction grating, Optical switching, Optical interconnects, Reconfigurable interconnect
Silicon materials outlook study for 1980-1985 calendar years
NASA Technical Reports Server (NTRS)
Costogue, E.; Ferber, R.; Hasbach, W.; Pellin, R.; Yaws, C.
1979-01-01
The polycrystalline silicon industry was studied in relation to future market needs. Analysis of the data obtained indicates that there is a high probability of polycrystalline silicon shortage by the end of 1982 and a strong seller's market after 1981 which will foster price competition for available silicon.
A High Strain-Rate Investigation of a Zr-Based Bulk Metallic Glass and an HTPB Polymer Composite
2011-03-01
95 8. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791-796. 9...Letters 45, 615-616. 59. Lankford J. (1977) Compressive strength and microplasticity in polycrystalline alumina. Journal of Materials Science 12, 791
NASA Technical Reports Server (NTRS)
Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.
2005-01-01
This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.
Luria, Justin L; Schwarz, Kathleen A; Jaquith, Michael J; Hennig, Richard G; Marohn, John A
2011-02-01
Spatial maps of topography and trapped charge are acquired for polycrystalline pentacene thin-film transistors using electric and atomic force microscopy. In regions of trapped charge, the rate of trap clearing is studied as a function of the wavelength of incident radiation.
2012-03-07
signal processing with smaller sizes and unique properties Nanoelectronics: NTs, graphene, diamond, SiC for sensing, logic & memory storage 3...synthesized i-n graphene heterojunctions 19 DISTRIBUTION A: Approved for public release; distribution is unlimited. Electrical Properties of...boundaries in polycrystalline samples Polycrystalline graphene can have similar (as much as 90%) electrical properties (conductance and mobility
NASA Astrophysics Data System (ADS)
Brown, Delilah A.; Morgan, Sean; Peldzinski, Vera; Brüning, Ralf
2017-11-01
Copper films for printed circuit board applications have to be fine-grained to achieve even filling of vias. Electroplated Cu films on roll annealed Cu substrates may have unacceptably large epitaxial crystals. Here galvanic films were plated on oriented single-crystal Cu substrates from an additive-free electrolyte, as well as DC plating and pulse reverse (PR) plating with additives. The distribution of crystallite orientations was mapped with XRD and compared with the microstructure determined by SEM. For the additive-free bath on [1 1 1] and [1 0 0] oriented surfaces a gradual transition from epitaxial to polycrystalline is seen, while films on [1 1 0] substrates are persistently epitaxial. Without bath additives, twinning is the main mechanism for the transition to polycrystalline texture. For DC plating, additives (carriers, accelerators and levelers) promote fine-grained films with isotropic grain orientations, with films on [1 1 0] substrates being partially isotropic. Plating with carriers and accelerators (no leveler) yields films with many distinct crystallite orientations. These orientations result from up to five steps of recursive twinning. PR plating produces isotropic films with no or very few twins (〈1 1 1〉 and 〈1 0 0〉 substrates, respectively), while on 〈1 1 0〉 oriented surfaces the deposits are about 20% epitaxial.
In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum
NASA Astrophysics Data System (ADS)
Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.
2016-06-01
In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).
Luis-Raya, Gilgamesh; Ramírez-Cardona, Màrius; Luna-Bárcenas, Gabriel; Hernández-Landaverde, Martín A; Jiménez-Nieto, Adair; García-Rivas, Jose Luis; España-Sánchez, Beatriz Liliana; Sanchez, Isaac C
2017-06-08
Differences on herringbone molecular arrangement in two forms of long-chain 1,ω-alkanediols (C n H 2 n +2 O₂ with n = 10, 11, 12, 13) are explained from the analysis of O-H···O hydrogen-bond sequences in infinite chains and the role of a C-H···O intramolecular hydrogen-bond in stabilization of a gauche defect, as well as the inter-grooving effectiveness on molecular packing. GIXD (Glancing Incidence X-ray Diffraction) experiments were conducted on polycrystalline monophasic samples. Diffracted intensities were treated with the multi-axial March-Dollase method to correlate energetic and geometrical features of molecular interactions with the crystalline morphology and textural pattern of samples. The monoclinic (P 2 ₁/ c , Z = 2) crystals of the even-numbered members ( n = 10, 12; DEDOL and DODOL, respectively) are diametrical prisms with combined form {104}/{-104}/{001} and present a two-fold platelet-like preferred orientation, whereas orthorhombic (P 2 ₁ 2 ₁ 2 ₁, Z = 4) odd-numbered members ( n = 11, 13; UNDOL and TRDOL, respectively) present a dominant needle-like orientation on direction [101] (fiber texture). We show that crystalline structures of medium complexity and their microstructures can be determined from rapid GIXD experiments from standard radiation, combined with molecular replacement procedure using crystal structures of compounds with higher chain lengths as reference data.
NASA Astrophysics Data System (ADS)
Lim, Edmund H. H.; Liew, Josephine Y. C.; Awang Kechik, M. M.; Halim, S. A.; Chen, S. K.; Tan, K. B.; Qi, X.
2017-06-01
Polycrystalline samples with nominal composition FeTe1- x S x ( x = 0.00-0.30) were synthesized via solid state reaction method with intermittent grinding in argon gas flow. X-ray diffraction (XRD) patterns revealed the tetragonal structure (space group P4/nmm) of the samples with the presence of impurities Fe3O4 and FeTe2. By substitution with S, the a and c lattice parameters shrink probably due to the smaller ionic radius of S2- compared to Te2-. Scanning electron microscopy images showed that the samples developed plate-like grains with increasing S substitution. Substitution of Te with S suppresses the structural transition of the parent compound FeTe as shown by both the temperature dependence of resistance and magnetic moment measurements. All of the S-substituted samples showed a rapid drop of resistance at around 9-10 K but zero resistance down to 4 K was not observed. In addition, negative magnetic moment corresponds to diamagnetism was detected in the samples for x = 0.25 and 0.30 suggesting the coexistence of magnetic and superconducting phase in these samples. The magnetization hysteresis loops measured at room temperature showed ferromagnetic behavior for the pure and S substituted samples. However, the magnetization, rentivity and coercivity decreased with S content.
Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5
NASA Astrophysics Data System (ADS)
Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.
2015-12-01
The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ∼300 nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV-vis-spectrophotometer in the wavelength range of 200-1100 nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.
Thermal defect annealing of swift heavy ion irradiated ThO2
NASA Astrophysics Data System (ADS)
Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik
2017-08-01
Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.
NASA Astrophysics Data System (ADS)
Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin
2018-06-01
In this study, electrodeposition technique was applied to deposit un-, lead (Pb), and zinc (Zn)-doped SnSe films. X-ray diffraction (XRD) patterns of the films showed a polycrystalline SnSe phase with orthorhombic crystalline lattice. SEM images revealed ball-shaped, rod-shaped, and wire-shaped morphologies for SnSe films. Moreover, optical measurements indicated incorporation of dopant in the crystalline lattice of films by varying the optical energy band gap. Electrical characterization of Pb- and Zn-doped SnSe films showed their p-type nature. Finally, the solar cell device fabricated using the Zn-doped SnSe films reveal a higher efficiency because of their higher carrier concentration.
Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials
NASA Astrophysics Data System (ADS)
Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang
2018-04-01
The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.
Magnetism in La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ashutosh, E-mail: ashutosh.pph13@iitp.ac.in; Sharma, Himanshu; Tomy, C. V.
2016-05-23
We study the structural and magnetic properties of La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Co{sub x}O{sub 3} (0 ≤ x ≤ 1). Rietveld refinement of X-ray Diffraction (XRD) pattern suggests phase purity of the polycrystalline samples with R-3c space group. Interplay of Ferromagnetic (FM) and Antiferromagnetic (AFM) interaction upon Co substitution at Mn site in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} is evident from magnetic measurements. There is an optimal cobalt substitution at which the coercive field is maximum.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2017-11-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2018-06-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr
2015-11-09
Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shownmore » the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.« less
Multilevel model of polycrystalline materials: grain boundary sliding description
NASA Astrophysics Data System (ADS)
Sharifullina, E.; Shveykin, A.; Trusov, P.
2017-12-01
Material behavior description in a wide range of thermomechanical effects is one of the topical areas in mathematical modeling. Inclusion of grain boundary sliding as an important mechanism of polycrystalline material deformation at elevated temperatures and predominant deformation mechanism of metals and alloys in structural superplasticity allows to simulate various deformation regimes and their transitions (including superplasticity regime with switch-on and switch-off regimes). The paper is devoted to description of grain boundary sliding in structure of two-level model, based on crystal plasticity, and relations for determination the contribution of this mechanism to inelastic deformation. Some results are presented concerning computational experiments of polycrystalline representative volume deformation using developed model.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Noebe, R. D.; Kumar, K. S.; Mannan, S. K.; Cullers, C. L.
1991-01-01
The 1000-K and 1200-K time-dependent deformation of 100-line-oriented and non-100-line-oriented single crystals of Ni-40Al (made by a modified Bridgman technique) was examined over a large range of strain rates (from 0.1 to 10 to the -7th per sec). The results were compared with those for polycrystalline Ni-40Al made by hot pressing XD synthesized powder. The results from measurements of slow-plastic-strain-rate properties of the two materials show that single crystals offer no strength advantage over polycrystalline material. Both forms were found to deform via a dislocation climb mechanism.
Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism
NASA Astrophysics Data System (ADS)
Ushenko, Vladimir A.; Dubolazov, Alexander V.; Pidkamin, Leonid Y.; Sakchnovsky, Michael Yu; Bodnar, Anna B.; Ushenko, Yuriy A.; Ushenko, Alexander G.; Bykov, Alexander; Meglinski, Igor
2018-02-01
Utilizing a polarized light approach, we reconstruct the spatial distribution of birefringence and optical activity in polycrystalline films of biological fluids. The Jones-matrix formalism is used for an accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline films of biological fluids can be performed based on a statistical analysis of the distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. Finally, practical operational characteristics, such as sensitivity, specificity and accuracy of the Jones-matrix reconstruction of optical anisotropy, were identified with special emphasis on biomedical application, specifically for differentiation of bile films taken from healthy donors and from patients with cholelithiasis.
Anisotropic magnetocaloric effect in HoAlGa polycrystalline compound
NASA Astrophysics Data System (ADS)
Yan, Zhang; Xinqi, Zheng; JieFu, Xiong; Shulan, Zuo; Qiaoyan, Dong; Tongyun, Zhao; Baogen, Shen
2018-05-01
In this work, a nonnegligible anisotropic magnetocaloric effect (MCE) in HoAlGa polycrystalline compounds has been observed. With temperature increasing, the HoAlGa compound undergoes two kinds of magnetic transitions at 19 K and 31 K, respectively, the later has been recognized as an ordinary antiferromagnetic to paramagnetic (AFM-PM) transition. The -ΔS peak of HoAGa reaches 5.4 J/kg K and 1.5 J/kg K at 35 K along parallel and perpendicular texture directions respectively, for a field change of 0-5 T. The result indicates that the HoAlGa polycrystalline compounds with excellent anisotropic MCE can be expected to have effective magnetic refrigeration applications in low temperature range.
Electrical transport properties in indium tin oxide films prepared by electron-beam evaporation
NASA Astrophysics Data System (ADS)
Liu, X. D.; Jiang, E. Y.; Zhang, D. X.
2008-10-01
Amorphous and polycrystalline indium tin oxide films have been prepared by electron-beam evaporation method. The amorphous films exhibit semiconductor behavior, while metallic conductivity is observed in the polycrystalline samples. The magnetoconductivities of the polycrystalline films are positive at low temperatures and can be well described by the theory of three-dimensional weak-localization effect. In addition, the electron phase-breaking rate is proportional to T3/2. Comparing the experimental results with theory, we find that the electron-electron scattering is the dominant destroyer of the constructive interference in the films. In addition, the Coulomb interaction is the main contribution to the nontrivial corrections for the electrical conductivity at low temperatures.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, J.L.; Sigmon, T.W.
1995-10-10
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, James L.; Sigmon, Thomas W.
1995-01-01
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Xie, S. H.; Jin, G.; Li, J. Y.
2009-04-01
Magnetoelectric annealing is necessary to remove antiferromagnetic domains and induce macroscopic magnetoelectric effect in polycrystalline magnetoelectric materials, and in this paper, we study the effective magnetoelectric properties of perpendicularly annealed polycrystalline Cr2O3 using effective medium approximation. The effect of temperatures, grain aspect ratios, and two different types of orientation distribution function have been analyzed, and unusual material symmetry is observed when the orientation distribution function only depends on Euler angle ψ. Optimal grain aspect ratio and texture coefficient are also identified. The approach can be applied to analyze the microstructural field distribution and macroscopic properties of a wide range of magnetoelectric polycrystals.
NASA Astrophysics Data System (ADS)
Bretos, I.; Ricote, J.; Jiménez-Riobóo, R. J.; Pardo, L.; Calzada, M. L.
2007-12-01
A novel method to investigate the early formation stages of polycrystalline (Pb1-xCax)TiO3 (PCT) perovskite films by means of traditional Brillouin and micro-Brillouin spectroscopy (BS, mBS) is described in the present work. The films were prepared by chemical solution deposition (CSD) onto oxidized (100)Si substrates and treated at temperatures between 350 650 °C by rapid thermal processing (RTP). The elastic instability observed by Brillouin spectroscopy at the nano-structured state of the PCT films was used here to determine their crystallization temperatures. Coexistence of different nanocrystalline phases (e.g., pyrochlore, perovskite) in the films could also be detected by this technique. The reliability of these results is demonstrated by complementary information obtained by X-ray diffraction (XRD) and scanning force microscopy (SFM). The effects of the annealing temperature and of the Ca2+ content on the crystallization process of these films are also discussed.
Effect of trivalent iron substitution on structure and properties of PLZT ceramics
NASA Astrophysics Data System (ADS)
Dutta, S.; Choudhary, R. N. P.
2008-02-01
Polycrystalline samples of Fe-modified PLZT (lead lanthanum zirconate titanate) are prepared by a mixed-oxide reaction technique. The formation of the compound has been confirmed by X-ray powder diffraction studies. The unit cell structure of the material has been found to be rhombohedral. Fourier-transform infrared reflection (FTIR) spectra have been recorded to correspond the structural changes associated with the phase formation. The effects of Fe concentration on the microstructure and dielectric constant of PLZT materials have been investigated. The ferroelectric phase transition of PLFZT materials is studied using dielectric measurements, which shows a shift in the transition temperature towards the higher-temperature side with increased Fe ion concentration. The piezoelectric constants of this system are investigated by the same way of changed contents of Fe ion in the main PLZT compound. The optimum values of Qm, kp, and d33 are 73, 0.32 and 406. The electrical conductivity increases with the increase in Fe ion concentration.
Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels
NASA Astrophysics Data System (ADS)
Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa
2009-03-01
The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).
High-pressure minerals in shocked meteorites
NASA Astrophysics Data System (ADS)
Tomioka, Naotaka; Miyahara, Masaaki
2017-09-01
Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.
Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain
Steven Knudsen
2012-01-01
Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.
Polycrystalline silicon on tungsten substrates
NASA Technical Reports Server (NTRS)
Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.
1979-01-01
Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.
Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2
NASA Astrophysics Data System (ADS)
Marx, M.; Grundmann, A.; Lin, Y.-R.; Andrzejewski, D.; Kümmell, T.; Bacher, G.; Heuken, M.; Kalisch, H.; Vescan, A.
2018-02-01
The influence of the main growth parameters on the growth mechanism and film formation processes during metalorganic vapor-phase epitaxy (MOVPE) of two-dimensional MoS2 on sapphire (0001) have been investigated. Deposition was performed using molybdenum hexacarbonyl and di- tert-butyl sulfide as metalorganic precursors in a horizontal hot-wall MOVPE reactor from AIXTRON. The structural properties of the MoS2 films were analyzed by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. It was found that a substrate prebake step prior to growth reduced the nucleation density of the polycrystalline film. Simultaneously, the size of the MoS2 domains increased and the formation of parasitic carbonaceous film was suppressed. Additionally, the influence of growth parameters such as reactor pressure and surface temperature is discussed. An upper limit for these parameters was found, beyond which strong parasitic deposition or incorporation of carbon into MoS2 took place. This carbon contamination became significant at reactor pressure above 100 hPa and temperature above 900°C.
Hovden, Robert; Wolf, Stephan E.; Holtz, Megan E.; Marin, Frédéric; Muller, David A.; Estroff, Lara A.
2015-01-01
Intricate biomineralization processes in molluscs engineer hierarchical structures with meso-, nano- and atomic architectures that give the final composite material exceptional mechanical strength and optical iridescence on the macroscale. This multiscale biological assembly inspires new synthetic routes to complex materials. Our investigation of the prism–nacre interface reveals nanoscale details governing the onset of nacre formation using high-resolution scanning transmission electron microscopy. A wedge-polishing technique provides unprecedented, large-area specimens required to span the entire interface. Within this region, we find a transition from nanofibrillar aggregation to irregular early-nacre layers, to well-ordered mature nacre suggesting the assembly process is driven by aggregation of nanoparticles (∼50–80 nm) within an organic matrix that arrange in fibre-like polycrystalline configurations. The particle number increases successively and, when critical packing is reached, they merge into early-nacre platelets. These results give new insights into nacre formation and particle-accretion mechanisms that may be common to many calcareous biominerals. PMID:26631940
Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y.
2015-01-01
An improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10−8–10−7 mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr+1, Zr+2 and Zr+3) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage. The sole suboxide layer has been observed for the first time at very early states of the oxidation (oxygen exposure ≤4 L). The Ne+ FIM observations are in accord with a two stage process of Zr oxide formation. PMID:25766998
In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films.
Schlipf, Johannes; Bießmann, Lorenz; Oesinghaus, Lukas; Berger, Edith; Metwalli, Ezzeldin; Lercher, Johannes A; Porcar, Lionel; Müller-Buschbaum, Peter
2018-04-19
Solution-processed hybrid perovskites are of great interest for use in photovoltaics. However, polycrystalline perovskite thin films show strong degradation in humid atmospheres, which poses an important challenge for large-scale market introduction. With in situ grazing incidence neutron scattering (GISANS) we analyzed water content, degradation products, and morphological changes during prolonged exposure to several humidity levels. In high humidity, the formation of metastable hydrate phases is accompanied by domain swelling, which transforms the faceted crystals to a round-washed, pebble-like form. The films incorporate much more water than is integrated into the hydrates, with smaller crystals being more affected, making the degradation strongly dependent on film morphology. Even at low humidity, water is adsorbed on the crystal surfaces without the formation of crystalline degradation products. Thus, although production in an ambient atmosphere is of interest for industrial production it might lead to long-term degradation without appropriate countermeasures like postproduction drying below 30% RH.
Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro
2016-09-19
The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High temperature surface effects of He + implantation in ICF fusion first wall materials
NASA Astrophysics Data System (ADS)
Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.
2009-06-01
The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavini, Francesco; Calò, Annalisa; Gao, Yang
We report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS 2 films for an odd and even number of atomic layers, related to the different in-plane polarization of crystalline grains and different capability of absorbing charged molecules.
Polycrystalline Thin-Film Photovoltaics | Photovoltaic Research | NREL
(CdTe) We develop processes and a range of materials for CdTe photovoltaic (PV) devices. Our work partners. Our objectives are to improve CdTe PV performance, reduce costs, and advance fundamental processes and materials related to thin-film polycrystalline PV devices, and our measurements and
Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide
2014-07-14
Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n
Lavini, Francesco; Calò, Annalisa; Gao, Yang; ...
2018-01-01
We report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS 2 films for an odd and even number of atomic layers, related to the different in-plane polarization of crystalline grains and different capability of absorbing charged molecules.
A method for polycrystalline silicon delineation applicable to a double-diffused MOS transistor
NASA Technical Reports Server (NTRS)
Halsor, J. L.; Lin, H. C.
1974-01-01
Method is simple and eliminates requirement for unreliable special etchants. Structure is graded in resistivity to prevent punch-through and has very narrow channel length to increase frequency response. Contacts are on top to permit planar integrated circuit structure. Polycrystalline shield will prevent creation of inversion layer in isolated region.
Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.
Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei
2013-04-07
We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.
Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal
NASA Astrophysics Data System (ADS)
Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong
2018-02-01
The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.
Song, Yongli; Wang, Xianjie; Sui, Yu; ...
2016-02-12
Here in this article, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO 2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10 4, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In+Nb) co-doped rutile TiO 2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, andmore » that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.« less
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-01-01
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles. PMID:26869187
NASA Astrophysics Data System (ADS)
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-01
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 104, dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke
2016-02-12
In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costogue, E.; Ferber, R.; Hasbach, W.
Photovoltaic solar cell arrays converting solar energy into electrical energy can become a cost-effective, alternative energy source provided that an adequate supply of low-priced solar cell materials and automated fabrication techniques are available. Presently, the photovoltaic industry is dependent upon polycrystalline silicon which is produced primarily for the discrete semiconductor device industry. This dependency is expected to continue until DOE-sponsored new technology developments mature. Recent industry forecasts have predicted a limited supply of polycrystalline silicon material and a shortage could occur in the early 80's. The Jet Propulsion Laboratory's Technology Development and Application Lead Center formed an ad hoc committeemore » at JPL, SERI and consultant personnel to conduct interviews with key polycrystalline manufacturers and a large cross-section of single crystal ingot growers and wafer manufacturers. Industry consensus and conclusions reached from the analysis of the data obtained by the committee are reported. The highlight of the study is that there is a high probability of polycrystalline silicon shortage by the end of CY 1982 and a strong seller's market after CY 1981 which will foster price competition for available silicon.« less
NASA Astrophysics Data System (ADS)
Nasri, Mohamed Aziz; Robert, Camille; Ammar, Amine; El Arem, Saber; Morel, Franck
2018-02-01
The numerical modelling of the behaviour of materials at the microstructural scale has been greatly developed over the last two decades. Unfortunately, conventional resolution methods cannot simulate polycrystalline aggregates beyond tens of loading cycles, and they do not remain quantitative due to the plasticity behaviour. This work presents the development of a numerical solver for the resolution of the Finite Element modelling of polycrystalline aggregates subjected to cyclic mechanical loading. The method is based on two concepts. The first one consists in maintaining a constant stiffness matrix. The second uses a time/space model reduction method. In order to analyse the applicability and the performance of the use of a space-time separated representation, the simulations are carried out on a three-dimensional polycrystalline aggregate under cyclic loading. Different numbers of elements per grain and two time increments per cycle are investigated. The results show a significant CPU time saving while maintaining good precision. Moreover, increasing the number of elements and the number of time increments per cycle, the model reduction method is faster than the standard solver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Woori; Jin, Won-Beom; Choi, Jungwan
2014-10-15
Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less
Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menasce, D.; et al.
2013-06-01
We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was aboutmore » 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke $-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.« less
Studies of silicon quantum dots prepared at different substrate temperatures
NASA Astrophysics Data System (ADS)
Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.
2017-03-01
In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.
NASA Astrophysics Data System (ADS)
Pattanayak, Ranjit; Raut, Subhajit; Dash, Tapan; Mohapatra, Soumyaranjan; Muduli, Rakesh; Panigrahi, Simanchala
2017-05-01
Polycrystalline [50 wt% BaFe12O19 (BaM)-50 wt% Na0.5Bi0.5TiO3 (NBT)] particulate novel magnetoelectric nanocomposite system was successfully fabricated by solid state reaction technique. The Rietveld refinement of X-ray diffraction pattern was provided the evidence about the pure phase formation of desired nanocomposite system as well as the presence of both ferrimagnetic (FM) BaM & ferroelectric (FE) NBT phases separately. The Field Scanning Electron Micrograph (FESEM) and Scanning Tunneling Electron Micrograph (STEM) explored the information about grain size and connectivity of the composite system. The XPS study was helped to examine the presence of oxygen vacancy (Ov) as well as multi oxidation states of transition metal ions for nanocomposite system. In this report we have systematically examined the conduction mechanism of different interfaces (BaM-BaM, BaM-NBT and NBT-NBT) by the help of complex impedance spectroscopy technique. From our investigation it was observed that, different interfaces activates at different temperature ranges. Due to absence of OV, BaM-NBT interfaces conduction dominants over BaM-BaM interfaces conduction even at room temperature (RT). The mechanism behind the appeared high dielectric loss (tanδ) at RT which was reduced when NBT-NBT interfaces were activates at higher temperature was explained by Maxwell-Wagner type interfacial polarization concept.
Crystallization induced ordering of hard magnetic L1{sub 0} phase in melt-spun FeNi-based ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kazuhisa, E-mail: sato@uhvem.osaka-u.ac.jp; Sharma, Parmanand; Zhang, Yan
2016-05-15
The microstructure of newly developed hard magnetic Fe{sub 42}Ni{sub 41.3}Si{sub x}B{sub 12-x}P{sub 4}Cu{sub 0.7} (x = 2 to 8 at%) nanocrystalline alloy ribbons has been studied by transmission electron microscopy (TEM) and electron diffraction. A high-density polycrystalline grains, ∼30 nm in size, were formed in a ribbon after annealing at 673 K for 288 hours. Elemental mapping of the annealed specimen revealed the coexistence of three regions, Fe-rich, Ni-rich, and nearly equiatomic Fe-Ni, with areal fractions of 37%, 40%, and 23 %, respectively. The equiatomic L1{sub 0}-type ordered phase of FeNi was detected in between the Fe and Ni-rich phases.more » The presence of superlattice reflections in nanobeam electron diffraction patterns confirmed the formation of the hard magnetic L1{sub 0} phase beyond any doubt. The L1{sub 0} phase of FeNi was detected in alloys annealed in the temperature range of 673 to 813 K. The present results suggest that the order-disorder transition temperature of L1{sub 0} FeNi is higher than the previously reported value (593 K). The high diffusion rates of the constituent elements induced by the crystallization of an amorphous phase at relatively low temperature (∼673 K) are responsible for the development of atomic ordering in FeNi.« less
Study on four polymorphs of bifendate based on X-ray crystallography.
Nie, Jinju; Yang, Dezhi; Hu, Kun; Lu, Yang
2016-05-01
Bifendate, a synthetic anti-hepatitis drug, exhibits polycrystalline mode phenomena with 2 polymorphs reported (forms A and B). Single crystals of the known crystalline form B and 3 new crystallosolvates involving bifendate solvated with tetrahydrofuran (C), dioxane (D), and pyridine (E) in a stoichiometric ratio of 1:1 were obtained and characterized by X-ray crystallography, thermal analysis, and Fourier transform infrared (FT-IR) spectroscopy. The differences in molecular conformation, intermolecular interaction and crystal packing arrangement for the four polymorphs were determined and the basis for the polymorphisms was investigated. The rotation of single bonds resulted in different orientations for the biphenyl, methyl ester and methoxyl groups. All guest solvent molecules interacted with the host molecule via an interesting intercalative mode along the [1 0 0] direction in the channel formed by the host molecules through weak aromatic stacking interactions or non-classical hydrogen bonds, of which the volume and planarity played an important role in the intercalation of the host with the guest. The incorporation of solvent-augmented rotation of the C-C bond of the biphenyl group had a striking effect on the host molecular conformation and contributed to the formation of bifendate polymorphs. Moreover, the simulated powder X-ray diffraction (PXRD) patterns for each form were calculated on the basis of the single-crystal data and proved to be unique. The single-crystal structures of the four crystalline forms are reported in this paper.
NASA Technical Reports Server (NTRS)
Noever, David A.
1990-01-01
With and without bioconvective pattern formation, a theoretical model predicts growth in light-limited cultures of motile algae. At the critical density for pattern formation, the resulting doubly exponential population curves show an inflection. Such growth corresponds quantitatively to experiments in mechanically unstirred cultures. This attaches survival value to synchronized pattern formation.
NASA Astrophysics Data System (ADS)
Matsuoka, Satoshi; Tsutsumi, Jun'ya; Kamata, Toshihide; Hasegawa, Tatsuo
2018-04-01
In this work, a high-resolution microscopic gate-modulation imaging (μ-GMI) technique is successfully developed to visualize inhomogeneous charge and electric field distributions in operating organic thin-film transistors (TFTs). We conduct highly sensitive and diffraction-limit gate-modulation sensing for acquiring difference images of semiconducting channels between at gate-on and gate-off states that are biased at an alternate frequency of 15 Hz. As a result, we observe unexpectedly inhomogeneous distribution of positive and negative local gate-modulation (GM) signals at a probe photon energy of 1.85 eV in polycrystalline pentacene TFTs. Spectroscopic analyses based on a series of μ-GMI at various photon energies reveal that two distinct effects appear, simultaneously, within the polycrystalline pentacene channel layers: Negative GM signals at 1.85 eV originate from the second-derivative-like GM spectrum which is caused by the effect of charge accumulation, whereas positive GM signals originate from the first-derivative-like GM spectrum caused by the effect of leaked gate fields. Comparisons with polycrystalline morphologies indicate that grain centers are predominated by areas with high leaked gate fields due to the low charge density, whereas grain edges are predominantly high-charge-density areas with a certain spatial extension as associated with the concentrated carrier traps. Consequently, it is reasonably understood that larger grains lead to higher device mobility, but with greater inhomogeneity in charge distribution. These findings provide a clue to understand and improve device characteristics of polycrystalline TFTs.
Terbium Ion Doping in Ca3Co4O9: A Step towards High-Performance Thermoelectric Materials
Saini, Shrikant; Yaddanapudi, Haritha Sree; Tian, Kun; Yin, Yinong; Magginetti, David; Tiwari, Ashutosh
2017-01-01
The potential of thermoelectric materials to generate electricity from the waste heat can play a key role in achieving a global sustainable energy future. In order to proceed in this direction, it is essential to have thermoelectric materials that are environmentally friendly and exhibit high figure of merit, ZT. Oxide thermoelectric materials are considered ideal for such applications. High thermoelectric performance has been reported in single crystals of Ca3Co4O9. However, for large scale applications single crystals are not suitable and it is essential to develop high-performance polycrystalline thermoelectric materials. In polycrystalline form, Ca3Co4O9 is known to exhibit much weaker thermoelectric response than in single crystal form. Here, we report the observation of enhanced thermoelectric response in polycrystalline Ca3Co4O9 on doping Tb ions in the material. Polycrystalline Ca3−xTbxCo4O9 (x = 0.0–0.7) samples were prepared by a solid-state reaction technique. Samples were thoroughly characterized using several state of the art techniques including XRD, TEM, SEM and XPS. Temperature dependent Seebeck coefficient, electrical resistivity and thermal conductivity measurements were performed. A record ZT of 0.74 at 800 K was observed for Tb doped Ca3Co4O9 which is the highest value observed till date in any polycrystalline sample of this system. PMID:28317853
Microinclusions in polycrystalline diamonds: insights into processes of diamond formation
NASA Astrophysics Data System (ADS)
Jacob, D. E.; Wirth, R.; Enzmann, F.; Schwarz, J. O.; Kronz, A.
2009-04-01
Polycrystalline diamond aggregates (framesites) contain silicates of eclogitic and peridotitic affinity (e.g. Kurat and Dobosi, 2000). The minerals occur mostly in interstices and are intimately intergrown with the diamonds, indicating contemporaneous crystallization within the diamond stability field in the Earth's mantle. In addition to silicates, rarer phases such as Fe-carbide can sometimes be found in framesites that record unusually low local oxygen fugacity at the time of their formation (Jacob et al., 2004). Furthermore, while most gem-sized diamonds have old, often Archaean formation ages, some polycrystalline diamond aggregates have been shown to form directly preceding the kimberlite eruption (Jacob et al., 2000). Thus, these samples may provide a unique source of information on the nature and timing of small scale processes that lead to diamond formation and complement evidence from gem-sized diamonds. Here, we present a study of micro- and nano-inclusions in diamonds from a polycrystalline diamond aggregate (framesite) from the Orapa Mine (Botswana) and combine results from TEM/FIB analyses with high-resolution computerized micro-tomography (HR-µCT) and electron microprobe analyses to further constrain the formation of diamond in the Earth's mantle. Results In total, 14 microinclusions from fifteen FIB foils were investigated. Micro- and nano-inclusions identified by TEM were smaller than 1µm down to ca. 50nm in size, and are both monomineralic and multi-phase. The cavities are often lath-shaped and oriented parallel to each other; many show lattice dislocations in the surrounding diamond. In addition, inclusions are found along open cracks within the diamond single crystals. Mineral phases in the microinclusions comprise rutile, omphacite and a FeS phase (pyrrhotite). The multiphase inclusions most often consist of cavities that are only partly occupied (less than 50% of the total space), suggesting that the empty space was originally filled by a fluid. One multiphase inclusion was found to be still fluid-bearing, showing characteristic continuous changes in diffraction contrast due to density fluctuations caused by the electron beam. No other elements than carbon were detected during AEM of this area which suggests that the fluid consists of relatively pure C-H-O species. In addition to the fluid, this inclusion contained fine-grained FeS, a silicate phase rich in Fe, P, Mg, Al, Ca and K and a quench phase, rich in Fe, P and Si. Macroinclusions (>5µm) are magnetite, often surrounded by hematite, FeS, low-Cr garnet (Py50Alm39Grs11) and omphacite (Jd23). Garnet and cpx were found as non-touching inclusions and yield 1256°C at 5 GPa. Most of the magnetite inclusions are single crystals and some are strongly deformed with signs of recrystallization. Hematite occurs as porous aggregates of nano-granules of ca. 5-7 nm sizes. High Resolution µ-Computer Tomography (HR-µCT) shows pores in the sample and the included mineral phases as areas of differing grey-values. These are a direct function of the specific x-ray density of the specific phase and can be used to differentiate oxides and silicates. Based on the 3D tomogram, the amount of pores per total volume of the diamond plus inclusion matrix is calculated to be 0.65 vol%, while magnetite inclusions amount to 3.16 vol%. The average equivalent radius of the magnetite grains (radius of a sphere with the same volume as the grain) is 17.8 µm, while that of the pores is 12.6µm. Discussion The occurrence of omphacite, rutile and FeS as microinclusions within the diamond crystals clearly shows that these phases are cogenetic to the diamonds. However, magnetite and hematite were only encountered as large inclusions in cavities that appear to be interstitial porosity. Moreover, analysis of the equivalent radius distribution of the pores and the magnetite inclusions derived from HR-µCT shows a complete overlap of the mode, indicating that magnetite preferentially fills the porosity in the sample. Furthermore, hematite occurs exclusively along the outer rim of the magnetite crystals and textural features suggest that this phase is a late replacement product of magnetite. This shows that the magnetite-bearing cavities were not shielded from the outside by the host diamond and may indicate that magnetite itself was introduced after diamond formation or during a secondary event that may still, however, have taken place at PT conditions of the diamond stability field. The microinclusion suite described here is distinct from that found in fibrous (e.g. Klein-BenDavid et al., 2007) and in microdiamonds (Kvasnytsya et al., 2006). Carbonates, halides and phosphates, that are typical for fibrous and microdiamonds were not encountered in our study. Instead, the microinclusion suite found in the framesite consists of the typical eclogitic minerals (rutile, garnet, omphacite, sulphide) plus a C-H-O fluid. Jacob et al., 2004. Contrib. Mineral. Petrol., 146, 566-576. Jacob et al., 2000. Science, 289, 1182-1185. Klein-BenDavid et al., 2007. Amer. Mineral. 91, 353-365. Kurat and Dobosi, 2000. Mineral. Petrol. 69, 143-159. Kvasnytsya et al., 2006. Ukrainian Geologist 2, 25-36.
NASA Astrophysics Data System (ADS)
Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.
2016-02-01
For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation therapy.
Pattern formation in rotating Bénard convection
NASA Astrophysics Data System (ADS)
Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.
1992-12-01
Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.
Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off
She, Zhe; DiFalco, Andrea; Hähner, Georg
2012-01-01
Summary Self-assembled monolayers (SAMs) of 4'-methylbiphenyl-4-thiol (MBP0) adsorbed on polycrystalline gold substrates served as templates to control electrochemical deposition of Cu structures from acidic solution, and enabled the subsequent lift-off of the metal structures by attachment to epoxy glue. By exploiting the negative-resist behaviour of MBP0, the SAM was patterned by means of electron-beam lithography. For high deposition contrast a two-step procedure was employed involving a nucleation phase around −0.7 V versus Cu2+/Cu and a growth phase at around −0.35 V versus Cu2+/Cu. Structures with features down to 100 nm were deposited and transferred with high fidelity. By using substrates with different surface morphologies, AFM measurements revealed that the roughness of the substrate is a crucial factor but not the only one determining the roughness of the copper surface that is exposed after lift-off. PMID:22428101
Suga, Hiroshi; Sumiya, Touru; Furuta, Shigeo; Ueki, Ryuichi; Miyazawa, Yosuke; Nishijima, Takuya; Fujita, Jun-ichi; Tsukagoshi, Kazuhito; Shimizu, Tetsuo; Naitoh, Yasuhisa
2012-10-24
A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.
Acoustoelectric current saturation in c-axis fiber-textured polycrystalline zinc oxide films
NASA Astrophysics Data System (ADS)
Pompe, T.; Srikant, V.; Clarke, D. R.
1996-12-01
Acoustoelectric current saturation, which until now has only been observed in piezoelectric single crystals, is observed in thin polycrystalline zinc oxide films. Epitaxial ZnO films on c-plane sapphire and textured ZnO polycrystalline films on fused silica both exhibit current saturation phenomenon. The values of the saturation current densities are in the range 105-106 A/cm2, depending on the carrier concentration in the film, with corresponding saturation electric fields of 3-5×103 V/cm. In addition to the current saturation, the electrical properties of the films degraded with the onset of the acoustoelectric effect but could be restored by annealing at 250 °C in a vacuum for 30 min.
Impedance study of undoped, polycrystalline diamond layers obtained by HF CVD
NASA Astrophysics Data System (ADS)
Paprocki, Kazimierz; Fabisiak, Kazimerz; Dychalska, Anna; Szybowicz, Mirosław; Dudkowiak, Alina; Iskaliyeva, Aizhan
2017-04-01
In this paper, we report results of impedance measurements in polycrystalline diamond films deposited on n-Si using HF CVD method. The temperature was changed from 170 K up to RT and the scan frequency from 42 Hz to 5 MHz. The results of impedance measurement of the real and imaginary parts were presented in the form of a Cole-Cole plot in the complex plane. In the temperatures below RT, the observed impedance response of polycrystalline diamond was in the form of a single semicircular form. In order to interpret the observed response, a double resistor-capacitor parallel circuit model was used which allow for interpretation physical mechanisms responsible for such behavior. The impedance results were correlated with Raman spectroscopy measurements.
NASA Astrophysics Data System (ADS)
Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.
2016-09-01
The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.
NASA Technical Reports Server (NTRS)
Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor)
1999-01-01
The present invention relates to a low electronic conductivity polymer composition having well dispersed metal granules, a stable powder made from photosensitive polycrystalline complexes of pyrrole, or its substituted derivatives and silver cations for making the polymer composition, and methods of forming the stable powder and polymer composition, respectively. A polycrystalline complex of silver and a monomer, such as pyrrole, its substituted derivatives or combinations thereof, is precipitated in the form of a stable photosensitive powder upon addition of the monomer to a solvent solution, such as toluene containing an electron acceptor. The photosensitive powder can be stored in the dark until needed. The powder may be dissolved in a solvent, cast onto a substrate and photopolymerized.
NASA Astrophysics Data System (ADS)
Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya
2016-10-01
Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.
NASA Astrophysics Data System (ADS)
Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.
2004-02-01
Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
Deuterium trapping in tungsten
NASA Astrophysics Data System (ADS)
Poon, Michael
Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D irradiation. Deuterium trapping could be characterized by three regimes: (i) enhanced D retention in a graphitic film formed by the C+ irradiation; (ii) decreased D retention in a modified tungsten-carbon layer; and (iii) D retention in pure tungsten.
Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy
NASA Astrophysics Data System (ADS)
Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.
2013-09-01
Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.
NASA Astrophysics Data System (ADS)
Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas
2017-11-01
γ/ γ' eutectics' nucleation behavior during the solidification of a single-crystal superalloy with additional carbon was investigated by using directional solidification quenching method. The results show that the nucleation of the γ/ γ' eutectics can directly occur on the existing γ dendrites, directly in the remaining liquid, or on the primary MC-type carbides. The γ/γ' eutectics formed through the latter two mechanisms have different crystal orientations than that of the γ matrix. This suggests that the conventional Ni-based single-crystal superalloy castings with additional carbon only guarantee the monocrystallinity of the γ matrix and some γ/ γ' eutectics and, in addition to the carbides, there are other misoriented polycrystalline microstructures existing in macroscopically considered "single-crystal" superalloy castings.
Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A
2013-01-07
Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.
Effect of annealing temperature on titania nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.
2014-04-24
Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less
Area laser crystallized LTPS TFTs with implanted contacts for active matrix OLED displays
NASA Astrophysics Data System (ADS)
Persidis, Efstathios; Baur, Holger; Pieralisi, Fabio; Schalberger, Patrick; Fruehauf, Norbert
2008-03-01
We have developed a four mask low temperature poly-Si (LTPS) TFT process for p- and n-channel devices. Our PECVD deposited amorphous silicon is recrystallized to polycrystalline silicon with single area excimer laser crystallization while formation of drain and source is carried out with self aligned ion beam implantation. We have investigated implantation parameters, suitability of various metallizations as well as laser activation and annealing procedures. To prove the potential capability of our devices, which are suitable for conventional and inverted OLEDs alike, we have produced several functional active matrix backplanes implementing different pixel circuits. Our active matrix backplane process has been customized to drive small molecules as well as polymers, regardless if top or bottom emitting.
Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.
Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa
2018-06-06
Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.
Engineered ZnO nanowire arrays using different nanopatterning techniques
NASA Astrophysics Data System (ADS)
Volk, János; Szabó, Zoltán; Erdélyi, Róbert; Khánh, Nguyen Q.
2012-02-01
The impact of various masking patterns and template layers on the wet chemically grown vertical ZnO nanowire arrays was investigated. The nanowires/nanorods were seeded at nucleation windows which were patterned in a mask layer using various techniques such as electron beam lithography, nanosphere photolithography, and atomic force microscope type nanolithography. The compared ZnO templates included single crystals, epitaxial layer, and textured polycrystalline films. Scanning electron microscopy revealed that the alignment and crystal orientation of the nanowires were dictated by the underlying seed layer, while their geometry can be tuned by the parameters of the certain nanopatterning technique and of the wet chemical process. The comparison of the alternative nanolithography techniques showed that using direct writing methods the diameter of the ordered ZnO nanowires can be as low as 30-40 nm at a density of 100- 1000 NW/μm2 in a very limited area (10 μm2-1 mm2). Nanosphere photolithography assisted growth, on the other hand, favors thicker nanopillars (~400 nm) and enables large-area, low-cost patterning (1-100 cm2). These alternative lowtemperature fabrication routes can be used for different novel optoelectronic devices, such as nanorod based ultraviolet photodiode, light emitting device, and waveguide laser.
Robust reconstruction of time-resolved diffraction from ultrafast streak cameras
Badali, Daniel S.; Dwayne Miller, R. J.
2017-01-01
In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data. PMID:28653022
Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites
Chanana, Ashish; Liu, Xiaojie; Vardeny, Zeev Valy
2018-01-01
The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices. PMID:29736416
Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites.
Chanana, Ashish; Liu, Xiaojie; Zhang, Chuang; Vardeny, Zeev Valy; Nahata, Ajay
2018-05-01
The ability to control the response of metamaterial structures can facilitate the development of new terahertz devices, with applications in spectroscopy and communications. We demonstrate ultrafast frequency-agile terahertz metamaterial devices that enable such a capability, in which multiple perovskites can be patterned in each unit cell with micrometer-scale precision. To accomplish this, we developed a fabrication technique that shields already deposited perovskites from organic solvents, allowing for multiple perovskites to be patterned in close proximity. By doing so, we demonstrate tuning of the terahertz resonant response that is based not only on the optical pump fluence but also on the optical wavelength. Because polycrystalline perovskites have subnanosecond photocarrier recombination lifetimes, switching between resonances can occur on an ultrafast time scale. The use of multiple perovskites allows for new functionalities that are not possible using a single semiconducting material. For example, by patterning one perovskite in the gaps of split-ring resonators and bringing a uniform thin film of a second perovskite in close proximity, we demonstrate tuning of the resonant response using one optical wavelength and suppression of the resonance using a different optical wavelength. This general approach offers new capabilities for creating tunable terahertz devices.
Study of the Micro-Nonuniformity of the Plastic Deformation of Steel
NASA Technical Reports Server (NTRS)
Chechulin, B. B.
1957-01-01
The plastic flow during deformation of real polycrystalline metals has specific characteristics which distinguish the plastic deformation of metals from the deformation of ordinary isotropic bodies. One of these characteristics is the marked micro-nonuniformity of the plastic deformation of metals. P.O. Pashkov demonstrated the presence of a considerable micro-nonuniformity of the plastic deformation of coarse-grained steel wit medium or low carbon content. Analogous results in the case of tension of coarse-grained aluminum were obtained by W. Boas, who paid particular attention to the role of the grain boundaries in plastic flow. The nonuniformit of the plastic deformation in microvolumes was also recorded by T.N. Gudkova and others, on the alloy KhN80T. N.F. Lashko pointed out the nonuniformity of the plastic deformation for a series of pure polycrystalline metals and one-phase alloys. In his later reports, P.O. Pashkov arrives at he conclusion that the nonuniformity of the distribution of the deformation along the individual grains has a significant effect on the strength and plastic characteristics of polycrystalline metals in the process of plastic flow. However, until now there has not existed any systematic investigation of the general rules of the microscopic nonuniformit of plastic deformation even though the real polycrystalline metals are extremely simple with regard to structure. In the present report, an attempt is made to study the micrononuniformity of the flow of polycrystalline metals by the method of statistical analysis of the variation of the frequency diagrams of the nonuniformity of the grains in the process of plastic deformation.
Electrical conductivity of high-purity germanium crystals at low temperature
NASA Astrophysics Data System (ADS)
Yang, Gang; Kooi, Kyler; Wang, Guojian; Mei, Hao; Li, Yangyang; Mei, Dongming
2018-05-01
The temperature dependence of electrical conductivity of single-crystal and polycrystalline high-purity germanium (HPGe) samples has been investigated in the temperature range from 7 to 100 K. The conductivity versus inverse of temperature curves for three single-crystal samples consist of two distinct temperature ranges: a high-temperature range where the conductivity increases to a maximum with decreasing temperature, and a low-temperature range where the conductivity continues decreasing slowly with decreasing temperature. In contrast, the conductivity versus inverse of temperature curves for three polycrystalline samples, in addition to a high- and a low-temperature range where a similar conductive behavior is shown, have a medium-temperature range where the conductivity decreases dramatically with decreasing temperature. The turning point temperature ({Tm}) which corresponds to the maximum values of the conductivity on the conductivity versus inverse of temperature curves are higher for the polycrystalline samples than for the single-crystal samples. Additionally, the net carrier concentrations of all samples have been calculated based on measured conductivity in the whole measurement temperature range. The calculated results show that the ionized carrier concentration increases with increasing temperature due to thermal excitation, but it reaches saturation around 40 K for the single-crystal samples and 70 K for the polycrystalline samples. All these differences between the single-crystal samples and the polycrystalline samples could be attributed to trapping and scattering effects of the grain boundaries on the charge carriers. The relevant physical models have been proposed to explain these differences in the conductive behaviors between two kinds of samples.
Raman Microscopic Characterization of Proton-Irradiated Polycrystalline Diamond Films
NASA Technical Reports Server (NTRS)
Newton, R. L.; Davidson, J. L.; Lance, M. J.
2004-01-01
The microstructural effects of irradiating polycrystalline diamond films with proton dosages ranging from 10(exp 15) to 10(exp 17) H(+) per square centimeter was examined. Scanning Electron Microscopy and Raman microscopy were used to examine the changes in the diamond crystalline lattice as a function of depth. Results indicate that the diamond lattice is retained, even at maximum irradiation levels.
2006-08-01
carbon would be highly oriented pyrolytic graphite ( HOPG ), which is formed by depositing one atom at a time on a surface utilizing the pyrolysis of a... of the crystallites, and baking to 2800 K produces a polycrystalline graphite part that has high strength and conductivity. To make isotropic...pitch fibers) or flexible (Graphoil®), as well as anisotropic ( HOPG ) or isotropic ( polycrystalline graphite ). In addition, porosity, lubricity
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Anwar, Shahid; Lalla, N. P.; Patil, S. I.
2006-11-01
In the present study we report the precise resistivity measurements for the polycrystalline bulk sample as well as highly oriented thin-films of La 0.8Ca 0.2MnO 3. The poly crystalline sample was prepared by standard solid-state reaction route and the oriented thin film was prepared by pulsed laser deposition (PLD). The phase purity of these samples was confirmed by X-ray diffraction and the back-scattered electron imaging using scanning electron microscopy (SEM). The oxygen stoichiometry analysis was done by iodimetry titration. The resistivities of these samples were carried out with four-probe resistivity measurement setup. The observed temperature dependence of resistivity data for both the samples was fitted using the polaron model. We have found that polaronic model fits well with the experimental data of both polycrystalline and single crystal samples. A new phenomenological model is proposed and used to estimate contribution to the resistivity due to grain boundary in the ferromagnetic state of polycrystalline manganites and it has been shown that the scattering of electrons from the grain boundary (grain surface) is a function of temperature and controlled by the effective grain resistance at that temperature.
Optical parametric oscillation in a random poly-crystalline medium: ZnSe ceramic
NASA Astrophysics Data System (ADS)
Ru, Qitian; Kawamori, Taiki; Lee, Nathaniel; Chen, Xuan; Zhong, Kai; Mirov, Mike; Vasilyev, Sergey; Mirov, Sergey B.; Vodopyanov, Konstantin L.
2018-02-01
We demonstrate an optical parametric oscillator (OPO) based on random phase matching in a polycrystalline χ(2) material, ZnSe. The subharmonic OPO utilized a 1.5-mm-long polished ZnSe ceramic sample placed at the Brewster's angle and was synchronously pumped by a Kerr-lens mode-locked Cr:ZnS laser with a central wavelength of 2.35 μm, a pulse duration of 62 fs, and a repetition frequency of 79 MHz. The OPO had a 90-mW pump threshold, and produced an ultrabroadband spectrum spanning 3-7.5 μm. The observed pump depletion was as high as 79%. The key to success in achieving the OPO action was choosing the average grain size of the ZnSe ceramic to be close to the coherence length ( 100 μm) for our 3-wave interaction. This is the first OPO that uses random polycrystalline material with quadratic nonlinearity and the first OPO based on ZnSe. Very likely, random phase matching in ZnSe and similar random polycrystalline materials (ZnS, CdS, CdSe, GaP) represents a viable route for generating few-cycle pulses and multi-octave frequency combs, thanks to a very broadband nonlinear response.
Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films
NASA Astrophysics Data System (ADS)
Canulescu, S.; Borca, C. N.; Rechendorff, K.; Davidsdóttir, S.; Pagh Almtoft, K.; Nielsen, L. P.; Schou, J.
2016-04-01
The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti content. X-ray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as anti-site effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller than k allows us to explore the parameter space for the free-electron behavior in transition metal-Al alloys. The free electron model, applied for the polycrystalline Al-Ti films with Ti content up to 20%, leads to an optical reflectance at near infrared wavelengths that scales linearly with the square root of the electrical resistivity.
NASA Astrophysics Data System (ADS)
Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Basun, S. A.; Evans, D. R.; Garay, J. E.
2016-01-01
Light scattering due to birefringence has prevented the use of polycrystalline ceramics with anisotropic optical properties in applications such as laser gain media. However, continued development of processing technology has allowed for very low porosity and fine grains, significantly improving transparency and is paving the way for polycrystalline ceramics to be used in demanding optical applications. We present a method for producing highly transparent Cr3+ doped Al2O3 (ruby) using current activated pressure assisted densification. The one-step doping/densification process produces fine grained ceramics with well integrated (doped) Cr, resulting in good absorption and emission. In order to explain the light transmission properties, we extend the analytical model based on the Rayleigh-Gans-Debye approximation that has been previously used for undoped alumina to include absorption. The model presented captures reflection, scattering, and absorption phenomena in the ceramics. Comparison with measured transmission confirms that the model adequately describes the properties of polycrystalline ruby. In addition the measured emission spectra and emission lifetime are found to be similar to single crystals, confirming the high optical quality of the ceramics.
Temperature dependent elastic properties of γ-phase U – 8 wt% Mo
Steiner, M. A.; Garlea, E.; Creasy, J.; ...
2017-12-28
Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less
Temperature dependent elastic properties of γ-phase U – 8 wt% Mo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, M. A.; Garlea, E.; Creasy, J.
Polycrystalline elastic moduli and stiffness tensor components of γ-phase U – 8 wt% Mo have been determined by resonant ultrasound spectroscopy in the temperature range of 25-650°C. The ambient temperature elastic properties are compared to results measured via other experimental methods and show reasonable agreement, though there is considerable variation of these properties within the literature at both the U – 8 wt% Mo composition and as a function of Mo concentration. The Young’s modulus of U – 8 wt% Mo measured in this study decreases steadily with temperature at a rate that is slower than trends previously observed atmore » similar Mo concentrations, though the difference is not statistically significant. This first measurement of the temperature dependent elastic stiffness tensor of a polycrystalline U-Mo alloy clarifies that the behavior of the Young’s modulus is due to a strongly weakening C 11 polycrystalline stiffness tensor component, along with milder decreases in C 12 and C 44. The unique partially auxetic properties recently predicted for singlecrystalline U-Mo are discussed in regard to their possible impact on the polycrystalline behavior of the alloy.« less
Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films
NASA Astrophysics Data System (ADS)
Gervacio-Arciniega, J. J.; Flores-Ruiz, F. J.; Diliegros-Godines, C. J.; Broitman, E.; Enriquez-Flores, C. I.; Espinoza-Beltrán, F. J.; Siqueiros, J.; Cruz, M. P.
2016-08-01
Differences in friction coefficients (μ) of ferroelectric YCrO3, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB® software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO3 film deposited on a Pt(150 nm)/TiO2(30 nm)/SiO2/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO3 (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO3 films seem to be the best candidates due to their lower μ.
In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils
2016-01-01
The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narducci, Dario, E-mail: dario.narducci@unimib.it; Consorzio DeltaTi Research; Selezneva, Ekaterina
2012-09-15
Energy filtering has been widely considered as a suitable tool to increase the thermoelectric performances of several classes of materials. In its essence, energy filtering provides a way to increase the Seebeck coefficient by introducing a strongly energy-dependent scattering mechanism. Under certain conditions, however, potential barriers may lead to carrier localization, that may also affect the thermoelectric properties of a material. A model is proposed, actually showing that randomly distributed potential barriers (as those found, e.g., in polycrystalline films) may lead to the simultaneous occurrence of energy filtering and carrier localization. Localization is shown to cause a decrease of themore » actual carrier density that, along with the quantum tunneling of carriers, may result in an unexpected increase of the power factor with the doping level. The model is corroborated toward experimental data gathered by several authors on degenerate polycrystalline silicon and lead telluride. - Graphical abstract: In heavily doped semiconductors potential barriers may lead to both carrier energy filtering and localization. This may lead to an enhancement of the thermoelectric properties of the material, resulting in an unexpected increase of the power factor with the doping level. Highlights: Black-Right-Pointing-Pointer Potential barriers are shown to lead to carrier localization in thermoelectric materials. Black-Right-Pointing-Pointer Evidence is put forward of the formation of a mobility edge. Black-Right-Pointing-Pointer Energy filtering and localization may explain the enhancement of power factor in degenerate semiconductors.« less
NASA Astrophysics Data System (ADS)
Ojo, A. A.; Dharmadasa, I. M.
2017-08-01
Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2·4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using x-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and the appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe. Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this paper.
Morphology-Induced Collective Behaviors: Dynamic Pattern Formation in Water-Floating Elements
Nakajima, Kohei; Ngouabeu, Aubery Marchel Tientcheu; Miyashita, Shuhei; Göldi, Maurice; Füchslin, Rudolf Marcel; Pfeifer, Rolf
2012-01-01
Complex systems involving many interacting elements often organize into patterns. Two types of pattern formation can be distinguished, static and dynamic. Static pattern formation means that the resulting structure constitutes a thermodynamic equilibrium whose pattern formation can be understood in terms of the minimization of free energy, while dynamic pattern formation indicates that the system is permanently dissipating energy and not in equilibrium. In this paper, we report experimental results showing that the morphology of elements plays a significant role in dynamic pattern formation. We prepared three different shapes of elements (circles, squares, and triangles) floating in a water-filled container, in which each of the shapes has two types: active elements that were capable of self-agitation with vibration motors, and passive elements that were mere floating tiles. The system was purely decentralized: that is, elements interacted locally, and subsequently elicited global patterns in a process called self-organized segregation. We showed that, according to the morphology of the selected elements, a different type of segregation occurs. Also, we quantitatively characterized both the local interaction regime and the resulting global behavior for each type of segregation by means of information theoretic quantities, and showed the difference for each case in detail, while offering speculation on the mechanism causing this phenomenon. PMID:22715370
NASA Astrophysics Data System (ADS)
Das, M. R.; Mukherjee, A.; Mitra, P.
2017-05-01
Nano crystalline CuO thin films were synthesize on glass substrate using SILAR technique. The structural, optical and electrical properties of the films were carried out for as deposited as well as for films post annealed in the temperature range 300 - 500° C. The X-ray diffraction pattern shows all the films are polycrystalline in nature with monoclinic phase. The crystallite size increase and lattice strain decreases with increase of annealing temperature indicating high quality of the films for annealed films. The value of band gap decreases with increases of annealing temperature of the film. The effect of annealing temperature on ionic conductivity and activation energy to electrical conduction process are discussed.
Surface-micromachined chain for use in microelectromechanical structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Sr., George E.
2001-01-01
A surface-micromachined chain and a microelectromechanical (MEM) structure incorporating such a chain are disclosed. The surface-micromachined chain can be fabricated in place on a substrate (e.g. a silicon substrate) by depositing and patterning a plurality of alternating layers of a chain-forming material (e.g. polycrystalline silicon) and a sacrificial material (e.g. silicon dioxide or a silicate glass). The sacrificial material is then removed by etching to release the chain for movement. The chain has applications for forming various types of MEM devices which include a microengine (e.g. an electrostatic motor) connected to rotate a drive sprocket, with the surface-micromachined chain beingmore » connected between the drive sprocket and one or more driven sprockets.« less
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2017-02-01
CaCu3Ti4O12 (CCTO) thin films have been deposited by RF magnetron sputtering on silicon substrates at room temperature. As-deposited thin films were subjected to rapid thermal annealing (RTA) at different temperatures ranging from 850°C to 1000°C. XRD and capacitance - voltage studies indicate that the structural and electrical properties of CCTO thin film strongly depend upon the annealing temperature. XRD pattern of CCTO thin film annealed at 950°C revealed the polycrystalline nature with evolutions of microstructures. Electrical properties of the dielectric films were investigated by fabricating Al/CCTO/Si metal oxide semiconductor structure. Electrical properties were found to be deteriorated with increasing in annealing temperature.
Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system
NASA Astrophysics Data System (ADS)
Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.
2013-05-01
A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
Mathematical study on robust tissue pattern formation in growing epididymal tubule.
Hirashima, Tsuyoshi
2016-10-21
Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microscopic studies of polycrystalline nanoparticle growth in free space
NASA Astrophysics Data System (ADS)
Mohan, A.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.
2017-06-01
We have extensively studied by multiple microscopic techniques the growth and crystallization of silicon nanoparticles in pulsed SiH4/Ar plasmas. We observe that the crystallinity of the particles can be tuned from amorphous to crystalline by altering the plasma ON time, tON. Three phases can be identified as a function of tON. Microscopic studies reveal that, in the initial gas phase (phase I) single particles of polycrystalline nature are formed which according to our hypothesis grow out of a single nucleus. The individual crystallites of the polycrystalline particles become bigger crystalline regions which marks the onset of cauliflower shaped particles (phase II). At longer tON (phase III) distinct cauliflower particles are formed by the growth of these crystalline regions by local epitaxy.
Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory.
Yan, Yanfa; Noufi, R; Al-Jassim, M M
2006-05-26
Current studies have attributed the remarkable performance of polycrystalline CuInSe2 (CIS) to anomalous grain-boundary (GB) physics in CIS. The recent theory predicts that GBs in CIS are hole barriers, which prevent GB electrons from recombining. We examine the atomic structure and chemical composition of (112) GBs in Cu(In,Ga)Se2 (CIGS) using high-resolution Z-contrast imaging and nanoprobe x-ray energy-dispersive spectroscopy. We show that the theoretically predicted Cu-vacancy rows are not observed in (112) GBs in CIGS. Our first-principles modeling further reveals that the (112) GBs in CIS do not act as hole barriers. Our results suggest that the superior performance of polycrystalline CIS should not be explained solely by the GB behaviors.
High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline
NASA Astrophysics Data System (ADS)
Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren
2018-06-01
The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.
X-ray diffraction from shock-loaded polycrystals.
Swift, Damian C
2008-01-01
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.
NASA Technical Reports Server (NTRS)
1979-01-01
The potentials and requirements of advanced photovoltaic technologies still in their early developmental stages were evaluated and compared to the present day single crystal silicon wafer technology and to each other. The major areas of consideration include polycrystalline and amorphous silicon, single crystal and polycrystalline gallium arsenide, and single crystal and polycrystalline cadmium sulfide. A rank ordering of the advanced technologies is provided. The various ranking schemes were based upon present-day efficiency levels, their stability and long-term reliability prospects, material availability, capital investments both at the laboratory and production level, and associated variable costs. An estimate of the timing of the possible readiness of these advanced technologies for technology development programs and industrialization is presented along with a set of recommended government actions concerning the various advanced technologies.
Radiation effects on beta /10.6/ of pure and europium doped KCl
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Maisel, J. E.; Hartford, R. H.
1975-01-01
Changes in the optical absorption coefficient as the result of X-ray and electron bombardment of pure monocrystalline and polycrystalline KCl and of divalent europium doped polycrystalline KCl were determined. A constant heat flow calorimetric method was used to measure the optical absorption coefficients. Both 300 kV X-ray irradiation and 2 MeV electron irradiation produced increases in the optical absorption coefficient at room temperature. X-ray irradiation produced more significant changes in pure monocrystalline KCl than equivalent amounts of electron irradiation. Electron irradiation of pure and Eu-doped polycrystalline KCl produced increases in the absorption by as much as a factor of 20 over untreated material. Bleaching of the electron-irradiated doped KCl with 649 millimicron light produced a further increase.
Effects of high optical injection levels in polycrystalline Si wafers on carrier transport
NASA Astrophysics Data System (ADS)
Steele, Doneisha; Semichaevsky, Andrey
High levels of carrier injection in polycrystalline Si may arise, for example, in solar cells under concentrated sunlight. Mechanisms for non-radiative carrier recombination include trap-mediated SRH and higher-order processes, e.g., Auger recombination. In this paper we present our experimental results for intensity-dependent carrier lifetimes and conduction currents in polycrystalline Si wafers illuminated with pulses of up to 50 Sun intensity. We also use a computational model for carrier transport that includes both SRH and Auger recombination mechanisms, in order to explain our experiments. The model allows quantifying recombination rate dependence on carrier concentration. Our goal is to relate the recombination rates to Si microstructure and defect densities that are revealed by IR PL images. We acknowledge the NSF support through Grant 1505377.
Annealing Effects on Creep and Rupture of Polycrystalline Alumina-Based Fibers
NASA Technical Reports Server (NTRS)
Goldsby, J. C.; Yun, H. M.; Morscher, G. N.; DiCarlo, J. A.
1998-01-01
Continuous-length polycrystalline aluminum-oxide-based fibers are being considered as reinforcements for advanced high-temperature composite materials. For these fine-grained fibers, basic issues arise concerning grain growth and microstructural instability during composite fabrication and the resulting effects on the fiber's thermo-mechanical properties. To examine these issues, commercially available Nextel 610 (alumina) and Altex (alumina-silica) fibers were annealed at 1100 and 1300 C for up to 100 hr in air. Changes in fiber microstructure, fiber tensile creep, stress rupture, and bend stress relaxation (BSR) that occurred with annealing were then determined. BSR tests were also used to compare as-received and annealed fibers to other polycrystalline oxide fibers. Annealing was shown to have a significant effect, particularly on the Altex fiber, and caused it to have increased creep resistance.
Further development and application of polycrystalline metal whiskers
NASA Technical Reports Server (NTRS)
Schladitz, H. J.
1979-01-01
High strength metal whiskers have a larger versatile field of application than monocrystalline whiskers. Although polycrystalline metal whiskers can be used for composites, preferably by extrusion in thermoplastics or by infiltration of resins or metals into whisker networks, the chief application at present may be the production and various use of whisker networks. Such networks can be produced up to high degrees of porosity and besides high mechanical strength, they have high inside surfaces and high electric conductivity. There are for instance, applications concerning construction of electrodes for batteries and fuel cells, catalysts and also new heat-exchanger material, capable of preparing fuel oil and gasoline in order to assist a high-efficiency combustion. The technical application of polycrystalline metal whiskers require their modification as well as the construction of a pilot production unit.
Autofluorescent polarimetry of bile films in the liver pathology differentiation
NASA Astrophysics Data System (ADS)
Prysyazhnyuk, V. P.; Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, A. G.; Savich, V. O.; Karachevtsev, A. O.
2015-09-01
A new information optical technique of diagnostics of the structure of the polycrystalline bile films is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of the polycrystalline bile films taken from patients with fatty degeneration (group 1) chronic hepatitis (group 2) of the liver were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of bile were found and its efficiency in diagnostics of pathological changes was demonstrated.
Process Research on Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1982-01-01
The investigation of the performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was continued by fabricating a set of minicell wafers on a selection of 10 cm x 10 cm wafers. A minicell wafer consists of an array of small (approximately 0.2 sq cm in area) photodiodes which are isolated from one another by a mesa structure. The junction capacitance of each minicell was used to obtain the dopant concentration, and therefore the resistivity, as a function of position across each wafer. The results indicate that there is no significant variation in resistivity with position for any of the polycrystalline wafers, whether Semix or Wacker. However, the resistivity of Semix brick 71-01E did decrease slightly from bottom to top.
NASA Astrophysics Data System (ADS)
Najafi, Navid; Rozati, S. M.
2018-03-01
Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.