Science.gov

Sample records for polycrystalline si thin

  1. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    SciTech Connect

    Do, Woori; Jin, Won-Beom; Choi, Jungwan; Bae, Seung-Muk; Kim, Hyoung-June; Kim, Byung-Kuk; Park, Seungho; Hwang, Jin-Ha

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in the electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.

  2. Interfacial reactions between amorphous W-Si thin films and polycrystalline overlayers

    SciTech Connect

    Thomas, R.E.; Perepezko, J.H.; Wiley, J.D.

    1985-01-01

    Interactions between amorphous metal thin films and either a substrate or an overlayer can limit their effectiveness as diffusion barriers. We have found in previous studies that Au and Al polycrystalline thin films in contact with amorphous W-Si lowers the crystallization temperature of the a-(W-Si) by at least 100C. In contrast Cu and Mo have no apparent effect on the stability of the amorphous layer. The mechanisms leading to premature crystallization are not well understood. Amorphous W/sub .72/Si/sub .28/ was deposited by dc sputtering onto single crystal Si substrates. Overlayers of Al were then evaporated onto the W-Si. Using Auger electron spectroscopy depth profiling coupled with cross-section TEM, we have studied interfacial reactions between the amorphous layer and polycrystalline Al. Auger profiling results show that in the case of Al overlayers, W and Si diffuse out of the a-(W-Si) into the Al where WAl/sub 12/ forms. These results can be explained in the context of three binary diffusion couples, W-Si, W-Al, Al-Si, and the individual interactions associated with these couples.

  3. Polycrystalline Mg{sub 2}Si thin films: A theoretical investigation of their electronic transport properties

    SciTech Connect

    Balout, H.; Boulet, P.; Record, M.-C.

    2015-05-15

    The electronic structures and thermoelectric properties of a polycrystalline Mg{sub 2}Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the S{sub yy} component of the tensor amounts to about ±1000 μV K{sup −1}, depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure–property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg{sub 2}Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses. - Graphical abstract: Structure of the polycrystalline thin film of Mg{sub 2}Si. - Author-Highlights: • Polycrystalline Mg{sub 2}Si film has been modelled by DFT approach. • Thermoelectric properties have been evaluated by semi-classical Boltzmann theory. • The structure was found to be slightly disordered after relaxation. • The highest

  4. Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer

    SciTech Connect

    Yue, Naili; Zhang, Yong; Tsu, Raphael

    2013-02-18

    We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding {approx}1 {mu}m graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

  5. Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer

    NASA Astrophysics Data System (ADS)

    Yue, Naili; Zhang, Yong; Tsu, Raphael

    2013-02-01

    We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding ˜1 μm graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

  6. Magnetoresistance in polycrystalline and epitaxial Fe1-xCoxSi thin films

    NASA Astrophysics Data System (ADS)

    Porter, N. A.; Creeth, G. L.; Marrows, C. H.

    2012-08-01

    Thin films of Fe1-xCoxSi were grown using molecular beam epitaxy on Si(111). These 20-nm-thick films, with compositions x=0 or 0.5, were produced by two methods: the first produced large (111)-textured crystallites of the B20 phase; the second produced phase-pure B20 (111) epilayers. The lattice mismatch with the substrate causes biaxial tensile strain in the layers, greater in the epilayers, that distorts the (111)-oriented material to a rhombohedral form. Magnetotransport measurements show that a combination of additional scattering arising from crystal grain boundaries and strain-free polycrystalline films results in a higher resistivity than for the epitaxial films. Magnetometry for x=0.5 suggests an increase in the ordering temperature in strained films relative to the polycrystalline films of 15±4 K. Moreover, the characteristic linear magnetoresistance, typical of bulk single-crystal material of this composition, is retained in the polycrystalline film but reduced in the epitaxial film. While the bulk properties of these materials are reproduced qualitatively, there are small quantitative modifications, due to the strain, to properties such as band gap, Curie temperature, and magnetoresistance.

  7. Transient and End Silicide Phase Formation in Thin Film Ni/polycrystalline-Si Reactions for Fully Silicided Gate Applications

    SciTech Connect

    Kittl,J.; Pawlak, M.; Torregiani, C.; Lauwers, A.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S.; Coia, C.; et. al

    2007-01-01

    The Ni/polycrystalline-Si thin film reaction was monitored by in situ x-ray diffraction during ramp annealings, obtaining a detailed view of the formation and evolution of silicide phases in stacks of interest for fully silicided gate applications. Samples consisted of Ni (30-170 nm)/polycrystalline-Si (100 nm)/SiO2 (10-30 nm) stacks deposited on (100) Si. The dominant end phase (after full silicidation) was found to be well controlled by the deposited Ni to polycrystalline-Si thickness ratio (tNi/tSi), with formation of NiSi2 ( {approx} 600 C), NiSi ( {approx} 400 C), Ni3Si2 ( {approx} 500 C), Ni2Si, Ni31Si12 ( {approx} 420 C), and Ni3Si ( {approx} 600 C) in stacks with tNi/tSi of 0.3, 0.6, 0.9, 1.2, 1.4, and 1.7, respectively. NiSi and Ni31Si12 were observed to precede formation of NiSi2 and Ni3Si, respectively, as expected for the phase sequence conventionally reported. Formation of Ni2Si was observed at early stages of the reaction. These studies revealed, in addition, the formation of transient phases that appeared and disappeared in narrow temperature ranges, competing with formation of the phases expected in the conventional phase sequence. These included the transient formation of NiSi and Ni31Si12 in stacks in which these phases are not expected to form (e.g., tNi/tSi of 1.7 and 0.9, respectively), at temperatures similar to those in which these phases normally grow.

  8. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications

    SciTech Connect

    Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver

    2015-06-01

    Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.

  9. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    NASA Astrophysics Data System (ADS)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  10. Polycrystalline Ni thin films on nanopatterned Si substrates: From highly conformal to nonconformal anisotropic growth

    NASA Astrophysics Data System (ADS)

    Keller, Adrian; Peverini, Luca; Grenzer, Jörg; Kovacs, György J.; Mücklich, Arndt; Facsko, Stefan

    2011-07-01

    The growth of polycrystalline Ni thin films on nanorippled Si templates is investigated in situ by grazing incidence small angle x-ray scattering as well as ex situ by atomic force microscopy and cross-sectional transmission electron microscopy. The templates have been fabricated by low-energy ion sputtering which leads to the spontaneous formation of a periodic ripple pattern with about 35 nm periodicity and about 3 nm peak-to-peak height. Highly conformal growth of the Ni film is observed under normal incidence deposition with the film surface perfectly replicating the substrate morphology up to a film thickness of at least 120 nm. Grazing incidence deposition perpendicular to the ripple orientation leads to the formation of one-dimensional nanowires on one side of the ripples due to geometrical shadowing. At a film thickness of about 10 nm, a transition to anisotropic columnar growth with rapidly decreasing conformity is observed. In this regime, the nanowires act as growth seeds for the columns and further geometrical shadowing leads to a film consisting of rows of tilted columns.

  11. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-01-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  12. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-04-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  13. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  14. Microstructure imaging of C54-TiSi2 polycrystalline thin films by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Meinardi, F.; Quilici, S.; Borghesi, A.; Artioli, G.

    1999-11-01

    The morphology of C54-TiSi2 polycrystalline films has been revealed by the micro-Raman imaging technique. This was based on the calculation of the symmetries of the Raman active vibrations of the C54-TiSi2 single crystal and subsequent polarized Raman measurements to detect and unambiguously label all the expected peaks. The relative intensity of two suitable peaks was monitored and mapped on C54-TiSi2 blanket films. Grains with different orientation are clearly detectable, and the microstructure properties of the film can be analyzed.

  15. Formation of nanocrystalline SiGe in Polycrystalline-Ge/Si thin film without any metal induced crystallization

    NASA Astrophysics Data System (ADS)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Polaki, S. R.; Ilango, S.; David, C.; Dash, S.; Panigrahi, B. K.

    2017-05-01

    The formation of nanocrystalline SiGe without the aid of metal induced crystallization is reported. Re-crystallization of the as-deposited poly-Ge film (deposited at 450 °C) leads to development of regions with depleted Ge concentration upon annealing at 500 °C. Clusters with crystalline facet containing both nanocrystalline SiGe and crystalline Ge phase starts appearing at 600 °C. The structural phase characteristics were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The stoichiometry of the SiGe phase was estimated from the positions of the Raman spectral peaks.

  16. Solution-derived SiO2 gate insulator formed by CO2 laser annealing for polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hishitani, Daisuke; Horita, Masahiro; Ishikawa, Yasuaki; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2017-05-01

    The formation of perhydropolysilazane (PHPS)-based SiO2 films by CO2 laser annealing is proposed. Irradiation with a CO2 laser with optimum fluence transformed a prebaked PHPS film into a SiO2 film with uniform composition in the thickness direction. Polycrystalline silicon thin-film transistors (poly-Si TFTs) with a SiO2 film as the gate insulator were fabricated. When the SiO2 film was formed by CO2 laser annealing (CO2LA) at the optimum fluence of 20 mJ/cm2, the film had fewer OH groups which was one-twentieth that of the furnace annealed PHPS film and one-hundredth that of the SiO2 film deposited by plasma-enhanced chemical vapor deposition (PECVD) using tetraethyl orthosilicate (TEOS). The resulting TFTs using PHPS showed a clear transistor operation with a field-effect mobility of 37.9 ± 1.2 cm2 V-1 s-1, a threshold voltage of 9.8 ± 0.2 V, and a subthreshold swing of 0.76 ± 0.02 V/decade. The characteristics of such TFTs were as good as those of a poly-Si TFT with a SiO2 gate insulator prepared by PECVD using TEOS.

  17. Raman scattering studies of polycrystalline 3C-SiC deposited on SiO 2 and AlN thin films

    NASA Astrophysics Data System (ADS)

    Jeong, Junho; Jang, Kiwan; Lee, Ho Sueb; Chung, Gwiy-Sang; Kim, Gwi-yeol

    2009-01-01

    This paper describes the Raman scattering characteristics of the Raman spectra of 0.4- and 2.0-μm-thick polycrystalline (poly) 3C-SiC on AlN /Si and SiO 2/Si by using atmosphere pressure chemical vapor deposition (APCVD) with hexamethyldisilane (HMDS) and carrier gases (Ar+H 2). In the Raman spectra for all growth temperatures, the D and G peaks of nanocrystalline graphite were measured. The C/Si rate of poly 3C-SiC deposited in (Ar+H 2) atmosphere was higher than that in H 2 gas, although HMDS C/Si rate is 3. The biaxial stresses of 2.0-μm-thick 3C-SiC on SiO 2 and AlN, which was deposited at the growth temperature of 1180 °C after annealing AlN at 800 and 1100 °C, were calculated as 428 and 896 MPa, respectively. Therefore, poly 3C-SiC should admix with nanocrystalline graphite due to the addition of Ar gas and poly 3C-SiC on SiO 2 should be better than on AlN for harsh environmental MEMS applications.

  18. Preparation of translucent Gd2Si2O7:Ce polycrystalline thin plates and their scintillation performance for α-particles

    NASA Astrophysics Data System (ADS)

    Nishikata, Mami; Ueda, Aki; Higuchi, Mikio; Kaneko, Junichi H.; Tsubota, Youichi; Ishibashi, Hiroyuki

    2015-07-01

    Translucent Gd2Si2O7:Ce (GPS:Ce) polycrystalline plates were prepared via liquid-phase sintering using SiO2 as a self-flux, and their scintillation performances for α-particles were investigated. Dense sintered compacts comprising large grains, some of which were larger than 100 μm in diameter, were successfully prepared by sintering at 1690 °C for 100 h. The best result was obtained with the powder comprising only <40 μm particles. Any combination of powders of <40 μm and <15 μm resulted in inhomogeneous structures with smaller grains of about 50 μm. A translucent GPS:Ce thin plate was fabricated by grinding the sintered compact that contained excess SiO2 of 8 mol%. Since the plate was composed of large grains, scattering at the grain boundaries was effectively suppressed and many of the grains virtually act as single crystals when the plate thickness was less than 100 μm. Therefore, the decrease in the plate thickness brought increase in the total transmission, and light yield and energy resolution were consequently improved. When the plate thickness was 50 μm, light yield was 82% as compared with that of a GPS:Ce single crystal as a reference, and energy resolution attained to 13%.

  19. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  20. Surface Engineering of Polycrystalline Silicon for Long-Term Mechanical Stress Endurance Enhancement in Flexible Low-Temperature Poly-Si Thin-Film Transistors.

    PubMed

    Chen, Bo-Wei; Chang, Ting-Chang; Chang, Kuan-Chang; Hung, Yu-Ju; Huang, Shin-Ping; Chen, Hua-Mao; Liao, Po-Yung; Lin, Yu-Ho; Huang, Hui-Chun; Chiang, Hsiao-Cheng; Yang, Chung-I; Zheng, Yu-Zhe; Chu, Ann-Kuo; Li, Hung-Wei; Tsai, Chih-Hung; Lu, Hsueh-Hsing; Wang, Terry Tai-Jui; Chang, Tsu-Chiang

    2017-04-05

    The surface morphology in polycrystalline silicon (poly-Si) film is an issue regardless of whether conventional excimer laser annealing (ELA) or the newer metal-induced lateral crystallization (MILC) process is used. This paper investigates the stress distribution while undergoing long-term mechanical stress and the influence of stress on electrical characteristics. Our simulated results show that the nonuniform stress in the gate insulator is more pronounced near the polysilicon/gate insulator edge and at the two sides of the polysilicon protrusion. This stress results in defects in the gate insulator and leads to a nonuniform degradation phenomenon, which affects both the performance and the reliability in thin-film transistors (TFTs). The degree of degradation is similar regardless of bending axis (channel-length axis, channel-width axis) or bending type (compression, tension), which means that the degradation is dominated by the protrusion effects. Furthermore, by utilizing long-term electrical bias stresses after undergoing long-tern bending stress, it is apparent that the carrier injection is severe in the subchannel region, which confirms that the influence of protrusions is crucial. To eliminate the influence of surface morphology in poly-Si, three kinds of laser energy density were used during crystallization to control the protrusion height. The device with the lowest protrusions demonstrates the smallest degradation after undergoing long-term bending.

  1. Polycrystalline silicon conductivity modulated thin film transistors

    NASA Astrophysics Data System (ADS)

    Anish, Kumar K. P.

    1997-09-01

    Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on glass has received significant attention for use in large area microelectronic applications. These applications include both niche and large volume applications such as printer drivers, image scanners, active-matrix liquid crystal displays (AMLCDs), electro-luminescent displays, plasma assisted displays, etc. Currently, the leading technology for these applications is amorphous-Si (a-Si) TFT. However, as the information content increases, a-Si technology encounters severe challenges due to its inherent low mobility, high parasitic capacitance, low aperture ratio, and non-compatibility to CMOS process. On the other hand, poly-Si technology offers high mobility, low parasitic capacitance, small size, CMOS compatibility, good stability, and uses the infrastructure of silicon science and technology. Thus, a simple low temperature poly-Si technology which allows large area system integration on panel will be in great demand for future high definition displays. However, it was found that poly-Si material properties vary with its method of preparation, its grain size, its surface roughness, and the nature and distribution of the inter-granular and bulk defects. Therefore, extensive studies are needed to optimize the key parameters such as the off-current, on-current, and breakdown voltage of the devices. These parameters can be optimized by means of material preparation as well as innovative device designs. In this thesis, three TFT structures were invented and fabricated using a simple low temperature poly-Si technology. With these novel structures, pixels, pixel drivers, and analog and digital peripheral circuits can all be built on the same glass substrate. This allows the ultimate goal of display systems on glass to be much more closer to reality. First, a high voltage transistor called the Conductivity Modulated Thin Film Transistor (CMTFT) is presented. Using this structure, the fundamental current

  2. Effect of growth parameters on the structure and magnetic properties of thin polycrystalline Fe films fabricated on Si<1 0 0> substrates

    NASA Astrophysics Data System (ADS)

    Javed, A.; Morley, N. A.; Gibbs, M. R. J.

    2011-04-01

    This paper deals with the experimental investigation of the structure and magnetic properties of thin polycrystalline Fe films. Two sets of 50 ± 2 nm thick Fe films were fabricated on Si<1 0 0> substrates with native oxides in place by varying (i) the sputter pressure pAr and (ii) the Fe sputter power PFe. X-ray diffraction (XRD) study revealed that all films grew with strong <1 1 0> texture normal to the film plane. No higher order peaks were observed in any of the films studied. For both film sets, the lattice constant (a) was less than the bulk Fe lattice constant (a0 = 2.866 Å), which suggested the existence of compressive strain in all films. Two regions of homogeneous strain were observed over the range of pAr studied. Magneto-optical Kerr effect (MOKE) measurements showed that all films exhibited magnetically isotropic behaviour. The magnetic properties were observed to be influenced strongly by pAr. The film grown at pAr = 4 μbar was the most softest (Hs = 100 ± 8 kA m-1, Mr/Ms = 0.87 ± 0.02) film among all the films studied. The magnetic properties were found to be independent of PFe. The effective saturation magnetostriction constant λeff determined (using the Villari method) was positive (4 ± 1 ppm) and observed to vary within the calculated error.

  3. Polycrystalline Thin-Film Photovoltaic Technologies: Progress and Technical Issues

    SciTech Connect

    Ullal, H. S.

    2004-08-01

    Polycrystalline thin-film materials based on copper indium diselenide (CuInSe2, CIS) and cadmium telluride (CdTe) are promising thin-film solar cells for various power and specialty applications. Impressive results have been obtained in the past few years for both thin-film copper indium gallium diselenide (CIGS) solar cells and thin-film CdTe solar cells. NCPV/NREL scientists have achieved world-record, total-area efficiencies of 19.3% for a thin-film CIGS solar cell and 16.5% for thin-film CdTe solar cell. A number of technical R&D issues related to CIS and CdTe have been identified. Thin-film power module efficiencies up to 13.4% has been achieved thus far. Tremendous progress has been made in the technology development for module fabrication, and multi-megawatt manufacturing facilities are coming on line with expansion plans in the next few years. Several 40-480 kW polycrystalline thin-film, grid-connected PV arrays have been deployed worldwide. Hot and humid testing is also under way to validate the long-term reliability of these emerging thin-film power products. The U.S. thin-film production (amorphous silicon[a-Si], CIS, CdTe) is expected to exceed 50 MW by the end of 2005.

  4. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  5. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  6. Chemical vapor deposition of thin-film polycrystalline Si for low-cost solar cells. Second quarterly technical progress report for period November 3, 1979 through February 1, 1980

    SciTech Connect

    Ruth, R.P.; Simpson, W.I.; Yang, J.J.J.; Moudy, L.A.; Johnson, R.E.

    1980-02-01

    A research program is in progress for the development of thin-film polycrystalline Si solar cells on low-cost substrate material. The results of the second quarter of work are described. The main emphasis has been on investigation of the transport properties of p-type polycrystalline Si films (formed by SiH/sub 4/ pyrolysis in H/sub 2/) as functions of grain size and acceptor doping concentration. The study has involved preparation of sets of polycrystalline films grown simultaneously on polycrystalline high-purity alumina substrates in a range of average grain sizes (approx. 1 ..mu..m to approx. 125 ..mu..m) and with a range of impurity doping concentrations from approx. 10/sup 15/ to >10/sup 20/ cm/sup -3/, primarily at approx. 985/sup 0/C. The doping concentrations are deduced from measurements of free carrier concentrations in simultaneously grown and identically doped single-crystal films on single-crystal alumina (i.e., sapphire) substrates. In addition to room-temperature measurements of resistivity and carrier concentration (and thus Hall mobility) made routinely on all of the films, selected sets of films have been characterized in detail by measurements as a function of sample temperature in the range 77 to 420/sup 0/K. The results to date confirm many of the features of the grain-boundary trapping model for conduction in polycrystalline Si, including the existence of a mobility minimum for an impurity doping concentration the magnitude of which varies with the average grain size in the film, the existence of barriers in the grain boundaries with heights that also are a function of doping concentration, and a strong dependence of free carrier concentration on the impurity doping concentration for values below that for which the mobility is a minimum. There are some pronounced differences in detail between the experimental results and the model, however, including that for the apparent area density of traps in the grain boundaries.

  7. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  8. Si nanotubes and nanospheres with two-dimensional polycrystalline walls.

    PubMed

    Castrucci, Paola; Diociaiuti, Marco; Tank, Chiti Manohar; Casciardi, Stefano; Tombolini, Francesca; Scarselli, Manuela; De Crescenzi, Maurizio; Mathe, Vikas Laxman; Bhoraskar, Sudha Vasant

    2012-08-21

    We report on the characteristics of a new class of Si-based nanotubes and spherical nanoparticles synthesized by the dc-arc plasma method in a mixture of argon and hydrogen. These two nanostructures share common properties: they are hollow and possess very thin, highly polycrystalline and mainly oxidized walls. In particular, we get several hints indicating that their walls could constitute only one single Si oxidized layer. Moreover, we find that only the less oxidized nanotubes exhibit locally atomic ordered, snakeskin-like areas which possess a hexagonal arrangement which can be interpreted either as an sp(2) or sp(3) hybridized Si or Si-H layer. Their ability to not react with oxygen seems to suggest the presence of sp(2) configuration or the formation of silicon-hydrogen bonding.

  9. Polycrystalline thin-film technology: Recent progress in photovoltaics

    NASA Astrophysics Data System (ADS)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1991-12-01

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe2), cadmium telluride (CdTe), and thin film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin film CuInSe2, has made some rapid advances in terms of high efficiency and long term reliability. For CuInSe2 power modules, a world record has been reported on a 0.4 sq m module with an aperture-area efficiency of 10.4 pct. and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe2 modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 sq cm. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10 pct.; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  10. Modeling of polycrystalline thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fahrenbruch, Alan L.

    1999-03-01

    This paper describes modeling polycrystalline thin-film solar cells using the program AMPS-1D1 to visualize the relationships between the many variables involved. These simulations are steps toward two dimensional modeling the effects of grain boundaries in polycrystalline cells. Although this paper describes results for the CdS/CdTe cell, the ideas presented here are applicable to copper-indium-gallium selenide (CIGS) cells as well as other types of cells. Results of these one-dimensional simulations are presented: (a) the duplication of experimentally observed cell parameters, (b) the effects of back-contact potential barrier height and its relation to stressing the cell, (c) the effects of the depletion layer width in the CdTe layer on cell parameters, and (d) the effects of CdS layer thickness on the cell parameters. Experience using the software is also described.

  11. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  12. Hydrogen passivation of polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.

    2012-09-01

    The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.

  13. Progress in polycrystalline thin-film solar cells

    SciTech Connect

    Zweibel, K; Hermann, A; Mitchell, R

    1983-07-01

    Photovoltaic devices based on several polycrystalline thin-film materials have reached near and above 10% sunlight-to-electricity conversion efficiencies. This paper examines the various polycrystalline thin-film PV materials including CuInSe/sub 2/ and CdTe in terms of their material properties, fabrication techniques, problems, and potentials.

  14. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  15. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  16. Formation of porous grain boundaries in polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Kageyama, Yasuyuki; Murase, Yoshie; Tsuchiya, Toshiyuki; Funabashi, Hirofumi; Sakata, Jiro

    2002-06-01

    Unique polycrystalline silicon (poly-Si) thin films, which were permeable to a concentrated hydrofluoric acid solution through their porous grain boundaries, were investigated to elucidate the formation mechanism of their microstructure. 0.1-μm-thick permeable poly-Si thin films were made through processes of amorphous silicon film formation by low pressure chemical vapor deposition, successive postannealing for crystallization, and excess phosphorus diffusion by a phosphorus oxichloride predeposition. At the grain boundaries, porous microstructures were formed after the films were cleaned in an SC1 solution (a 1:1:5 mixture of NH4OH:H2O2:H2O at 80 °C for 10 min), whereas segregated soluble precipitates observed by a field emission secondary electron microscope were present before the SC1 cleaning. Auger electron microscope revealed that the surface of the precipitates mainly consist of silicon (˜80 at. %) and oxygen (˜20 at. %). As a result of transmission electron microscope observation, it is concluded that enhancement of silicon atom mobility by the phosphorus doping process induced consequent segregation of the soluble precipitates at the grain boundaries.

  17. Polycrystalline thin film materials and devices

    NASA Astrophysics Data System (ADS)

    Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

    1991-11-01

    Results and conclusions of Phase 1 of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe2 and CdTe solar cells. The kinetics of the formation of CuInSe2 by selenization with hydrogen selenide was investigated and a CuInSe2/Cds solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe2 films and a cell efficiency of 7 percent. Detailed investigations of the open circuit voltage of CuInSe2 solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe2 thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe2 is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10 percent can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm(exp 2) are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  18. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting

    NASA Astrophysics Data System (ADS)

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-01-01

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ~20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  19. Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO2 dewetting.

    PubMed

    Naffouti, Meher; David, Thomas; Benkouider, Abdelmalek; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle; Bidault, Sebastien; Bonod, Nicolas; Abbarchi, Marco

    2016-02-07

    We report the fabrication of Si-based dielectric Mie resonators via a low cost process based on solid-state dewetting of ultra-thin amorphous Si on SiO2. We investigate the dewetting dynamics of a few nanometer sized layers annealed at high temperature to form submicrometric Si-particles. Morphological and structural characterization reveal the polycrystalline nature of the semiconductor matrix as well as rather irregular morphologies of the dewetted islands. Optical dark field imaging and spectroscopy measurements of the single islands reveal pronounced resonant scattering at visible frequencies. The linewidth of the low-order modes can be ∼20 nm in full width at half maximum, leading to a quality factor Q exceeding 25. These values reach the state-of-the-art ones obtained for monocrystalline Mie resonators. The simplicity of the dewetting process and its cost-effectiveness opens the route to exploiting it over large scales for applications in silicon-based photonics.

  20. RESEARCH ON THIN FILM POLYCRYSTALLINE SOLAR CELLS.

    DTIC Science & Technology

    Studies of factors affecting the properties of polycrystalline CdTe film grown by the vapor reaction process are discussed and a variety of...molybdenum substrates are compared. No real differences are found. Rough measures of temperature effects and tellurium flow rate on film growth rate are

  1. Improved transport properties of polycrystalline YBCO thin-films

    NASA Astrophysics Data System (ADS)

    Azoulay, J.; Verdyan, A.; Lapsker, I.

    1994-12-01

    Resistive evaporation technique was used to fabricate polycrystalline YBaCuO and YBaNaCuO thin films on MgO substrates. Heat treatment was carried out in a low oxygen partial pressure. Polycrystalline YBCO and Na doped YBCO thin films samples were thus obtained using the same technique and conditions. The critical current density of Na doped YBCO sample was measured to be significantly higher than that of the undoped YBCO one. The results are discussed in terms of the Na contribution to the intragrain conductivity.

  2. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  3. Polycrystalline Thin Film Device Degradation Studies

    SciTech Connect

    Albin, D. S.; McMahon, T. J.; Pankow, J. W.; Noufi, R.; Demtsu, S. H.; Davies, A.

    2005-11-01

    Oxygen during vapor CdCl2 (VCC) treatments significantly reduced resistive shunts observed in CdS/CdTe polycrystalline devices using thinner CdS layers during 100 deg C, open-circuit, 1-sun accelerated stress testing. Cu oxidation resulting from the reduction of various trace oxides present in as-grown and VCC treated films is the proposed mechanism by which Cu diffusion, and subsequent shunts are controlled. Graphite paste layers between metallization and CdTe behave like diffusion barriers and similarly benefit device stability. Ni-based contacts form a protective Ni2Te3 intermetallic layer that reduces metal diffusion but degrades performance through increased series resistance.

  4. Dynamical electrophotoconductivity in polycrystalline thin films

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.

    1982-01-01

    Polycrystalline cadmium sulfide (CdS) films were deposited on lithium niobate (LiNbO3) substrates by vacuum evaporation and annealed to obtain high photosensitivity. The change in photoconductivity of these films due to the penetration of electric fields associated with elastic waves propagating on their substrates was demonstrated and studied. The relationship between the acoustic electric field and the induced change in film conductivity was found to be a nonlinear one. The fractional change in conductivity is strongly dependent on the light intensity and the film temperature, showing a prominent maximum as a function of these quantities. The largest recorded fractional change in conductivity was about 25% at electric fields of the order of 1,000 volts per centimeter. A phenomological model was developed based on the interaction between the space charge created by the electric field and the electron trapping states in the photoconductor.

  5. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  6. Directed vapor deposition of amorphous and polycrystalline electronic materials: Nonhydrogenated a-Si

    SciTech Connect

    Groves, J.F.; Jones, S.H.; Globus, T.; Hsiung, L.M.; Wadley, H.

    1995-10-01

    A novel directed vapor deposition (DVD) process for creating amorphous and polycrystalline electronic materials is reported. Initial experimental results for DVD of nonhydrogenated a-Si indicate that growth rates at least between 0.02 and 1.0 {micro}m/min can be achieved. In this process, evaporated silicon is efficiently entrained in a previously formed low pressure supersonic He jet. The silicon is evaporated using a high energy, high voltage, electron beam. The collimated jet of He entrained with silicon is used to deposit thin films of a-Si at room temperature on glass substrates. Initial TEM microstructure analysis and optical absorption analysis is presented.

  7. Phase transitions from semiconductive amorphous to conductive polycrystalline in indium silicon oxide thin films

    NASA Astrophysics Data System (ADS)

    Mitoma, Nobuhiko; Da, Bo; Yoshikawa, Hideki; Nabatame, Toshihide; Takahashi, Makoto; Ito, Kazuhiro; Kizu, Takio; Fujiwara, Akihiko; Tsukagoshi, Kazuhito

    2016-11-01

    The enhancement in electrical conductivity and optical transparency induced by a phase transition from amorphous to polycrystalline in lightly silicon-doped indium oxide (InSiO) thin films is studied. The phase transition caused by simple thermal annealing transforms the InSiO thin films from semiconductors to conductors. Silicon atoms form SiO4 tetrahedra in InSiO, which enhances the overlap of In 5s orbitals as a result of the distortion of InO6 octahedral networks. Desorption of weakly bonded oxygen releases electrons from deep subgap states and enhances the electrical conductivity and optical transparency of the films. Optical absorption and X-ray photoelectron spectroscopy measurements reveal that the phase transition causes a Fermi energy shift of ˜0.2 eV.

  8. Structural and magnetic properties of polycrystalline La2NiMnO6 thin films

    NASA Astrophysics Data System (ADS)

    Suresh, Pittala; Laxmi, K. Vijaya; Bhat, Shwetha G.; Kumar, P. S. Anil

    2017-07-01

    Polycrystalline thin films of La2NiMnO6 (LNMO) are deposited successfully on SiO2/Si substrates using pulsed laser deposition technique. Structural characterization using X-ray diffraction confirms the formation of a single phase with P21/n space group. Cross-sectional FE-SEM shows the film thickness ˜195 nm. The deposition temperature and the oxygen pressure played a crucial role determining the crystallization behavior and the magnetic transition temperatures. The ferromagnetic transition temperature is achieved to be ˜277 K by optimizing the deposition conditions.

  9. Recent progress in Si thin film technology for solar cells

    NASA Astrophysics Data System (ADS)

    Kuwano, Yukinori; Nakano, Shoichi; Tsuda, Shinya

    1991-11-01

    Progress in Si thin film technology 'specifically amorphous Si (a-Si) and polycrystalline Si (poly-Si) thin film' for solar cells is summarized here from fabrication method, material, and structural viewpoints. In addition to a-Si, primary results on poly-Si thin film research are discussed. Various applications for a-Si solar cells are mentioned, and consumer applications and a-Si solar cell photovoltaic systems are introduced. New product developments include see-through solar cells, solar cell roofing tiles, and ultra-light flexible solar cells. As for new systems, air conditioning equipment powered by solar cells is described. Looking to the future, the proposed GENESIS project is discussed.

  10. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  11. GaAs nanowire growth on polycrystalline silicon thin films using selective-area MOVPE.

    PubMed

    Ikejiri, Keitaro; Ishizaka, Fumiya; Tomioka, Katsuhiro; Fukui, Takashi

    2013-03-22

    The growth mechanism of GaAs nanowires (NWs) grown on polycrystalline silicon (poly-Si) thin films using selective-area metalorganic vapor-phase epitaxy was investigated. Wire structures were selectively grown in the mask openings on a poly-Si substrate. The appearance ratio of wire structures strongly depended on the growth conditions and deposition temperature of the poly-Si substrate. Evaluation of the grown shapes and growth characteristics revealed that GaAs NWs grown on a poly-Si substrate have the same growth mechanism as conventional GaAs NWs grown on a single-crystalline GaAs or Si substrate. Experiments showed that the wire structure yield can be improved by increasing the Si grain size and/or increasing the Si deposition temperature. The growth model proposed for understanding NW growth on poly-Si is based on the mask opening size, the Si grain size, and the growth conditions. The ability to control the growth mode is promising for the formation of NWs with complex structures on poly-Si thin layers.

  12. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, Fred; Truher, Joel B.; Kaschmitter, James L.; Colella, Nicholas J.

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  13. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  14. Progress and issues in polycrystalline thin-film PV technologies

    SciTech Connect

    Zweibel, K.; Ullal, H.S.; Roedern, B. von

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  15. Thin film polycrystalline silicon nanowire biosensors.

    PubMed

    Hakim, Mohammad M A; Lombardini, Marta; Sun, Kai; Giustiniano, Francesco; Roach, Peter L; Davies, Donna E; Howarth, Peter H; de Planque, Maurits R R; Morgan, Hywel; Ashburn, Peter

    2012-04-11

    Polysilicon nanowire biosensors have been fabricated using a top-down process and were used to determine the binding constant of two inflammatory biomarkers. A very low cost nanofabrication process was developed, based on simple and mature photolithography, thin film technology, and plasma etching, enabling an easy route to mass manufacture. Antibody-functionalized nanowire sensors were used to detect the proteins interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) over a wide range of concentrations, demonstrating excellent sensitivity and selectivity, exemplified by a detection sensitivity of 10 fM in the presence of a 100,000-fold excess of a nontarget protein. Nanowire titration curves gave antibody-antigen dissociation constants in good agreement with low-salt enzyme-linked immunosorbent assays (ELISAs). This fabrication process produces high-quality nanowires that are suitable for low-cost mass production, providing a realistic route to the realization of disposable nanoelectronic point-of-care (PoC) devices.

  16. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect

    Girault, B.; Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O.; Sauvage, T.

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  17. Advances in polycrystalline thin-film photovoltaics for space applications

    SciTech Connect

    Lanning, B.R.; Armstrong, J.H.; Misra, M.S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 eV and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not `reactor-specific` and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a `substrate configuration` by physical vapor deposition techniques and CdTe cells/modules are fabricated in a `superstrate configuration` by wet chemical methods.

  18. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  19. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  20. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  1. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  2. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    SciTech Connect

    Tiwari, A.; Boussois, K.; Nait-Ali, B.; Smith, D. S.; Blanchart, P.

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  3. Boron- and phosphorus-doped polycrystalline silicon thin films prepared by silver-induced layer exchange

    SciTech Connect

    Antesberger, T.; Wassner, T. A.; Jaeger, C.; Algasinger, M.; Kashani, M.; Scholz, M.; Matich, S.; Stutzmann, M.

    2013-05-27

    Intentional boron and phosphorus doping of polycrystalline silicon thin films on glass prepared by the silver-induced layer exchange is presented. A silver/(titanium) oxide/amorphous silicon stack is annealed at temperatures below the eutectic temperature of the Ag/Si system, leading to a complete layer exchange and simultaneous crystallization of the amorphous silicon. Intentional doping of the amorphous silicon prior to the exchange process results in boron- or phosphorus-doped polycrystalline silicon. Hall effect measurements show carrier concentrations between 2 Multiplication-Sign 10{sup 17} cm{sup -3} and 3 Multiplication-Sign 10{sup 20} cm{sup -3} for phosphorus and 4 Multiplication-Sign 10{sup 18} cm{sup -3} to 3 Multiplication-Sign 10{sup 19} cm{sup -3} for boron-doped layers, with carrier mobilities up to 90 cm{sup 2}/V s.

  4. Properties of boron-doped thin films of polycrystalline silicon

    SciTech Connect

    Merabet, Souad

    2013-12-16

    The properties of polycrystalline-silicon films deposited by low pressure chemical vapor deposition and doped heavily in situ boron-doped with concentration level of around 2×10{sup 20}cm{sup −3} has been studied. Their properties are analyzed using electrical and structural characterization means by four points probe resistivity measurements and X-ray diffraction spectra. The thermal-oxidation process are performed on sub-micron layers of 200nm/c-Si and 200nm/SiO{sub 2} deposited at temperatures T{sub d} ranged between 520°C and 605°C and thermally-oxidized in dry oxygen ambient at 945°C. Compared to the as-grown resistivity with silicon wafers is known to be in the following sequence <ρ{sub 200nm/c−Si}> < <ρ{sub 200nm/SiO2}> and <ρ{sub 520}> < <ρ{sub 605}>. The measure X-ray spectra is shown, that the Bragg peaks are marked according to the crystal orientation in the film deposited on bare substrates (poly/c-Si), for the second series of films deposited on bare oxidized substrates (poly/SiO{sub 2}) are clearly different.

  5. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  6. Ferroelectric and structural properties of stress-constrained and stress-relaxed polycrystalline BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Nakashima, Seiji; Ricinschi, Dan; Park, Jung Min; Kanashima, Takeshi; Fujisawa, Hironori; Shimizu, Masaru; Okuyama, Masanori

    2009-03-01

    The stress influence of the structural and ferroelectric properties of polycrystalline BiFeO3 (BFO) thin films has been investigated using a membrane substrate for relaxing stress. Reciprocal space mapping (RSM) measurement has been performed to confirm the stress dependence of the crystal structure of polycrystalline BFO thin films on the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (625 μm) substrate (stress-constrained BFO film) and the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (15 μm) membrane substrate (stress-relaxed BFO film). The BFO thin films prepared by pulsed laser deposition were polycrystalline and mainly exhibit a texture with (001) and (110) plane orientations. From the RSM results, the crystal structure of the (001)-oriented domain changes from Pm monoclinic to Cm monoclinic or to R3c rhombohedral due to stress relaxation. Moreover, at room temperature as well as at 150 K, remanent polarization (Pr) increases and double coercive field (2Ec) decreases (in the latter case from 88 to 94 μC/cm2 and from 532 to 457 kV/cm, respectively) due to relaxing stress. The enhancement of ferroelectricity is attributed to the crystal structural deformation and/or transition and angle change between the polarization direction and film plane.

  7. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-11-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO3 (BFO) thin films have been deposited on Pt/TiO2/SiO2/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d33) ~94 pm/V at 0.6 MV/cm. High dielectric constant ~900 and low dielectric loss ~0.25 were observed at room temperature. M-H loops have shown relatively high saturation magnetization ~35 emu/cm3 at a maximum field of H ~20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films.

  8. Activation of ion-implanted polycrystalline silicon thin films prepared on glass substrates

    SciTech Connect

    So, Byoung-Soo; Bae, Seung-Muk; You, Yil-Hwan; Kim, Young-Hwan; Hwang, Jin-Ha

    2012-10-15

    Phosphorous-implanted polycrystalline Si thin films were subjected to thermal annealing between 300 °C and 650 °C. The thermal activation was monitored electrically and structurally using Hall measurements, Raman spectroscopy, UV–visible spectrophotometry, and transmission electron microscopy. Charge transport information was correlated to the corresponding structural evolution in thermal activation. Phosphorous-implanted activation is divided into short-range ordering at low temperatures and long-range ordering at high temperatures, with the boundary between low and high temperatures set at 425 °C. Short-range ordering allows for significant increase in electronic concentration through substitution of P for Si. Higher temperatures are attributed to long-range ordering, thereby increasing electronic mobility.

  9. Suppression of Self-Heating in Low-Temperature Polycrystalline Silicon Thin-Film Transitors

    NASA Astrophysics Data System (ADS)

    Hashimoto, Shinichiro; Uraoka, Yukiharu; Fuyuki, Takashi; Morita, Yukihiro

    2007-04-01

    We investigated the structure of low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs) focusing on their immunity against thermal degradation. Their operating temperature was simply dependent on input power and independent of bias voltage, such as drain or gate bias voltage. As for the structures, self-heating was suppressed by increasing the number of splitting gates and the interval between poly-Si layers owing to effective heat diffusion along the gate width. For multi gate-type TFTs, increasing the number of splitting gates was effective in suppressing self-heating; however, increasing the interval between gates was not effective. We proposed a new offset-type structure. Using this new structure, we were able to demonstrate the effective suppression of degradation caused by self-heating.

  10. Different spin relaxation mechanisms between epitaxial and polycrystalline Ta thin films

    NASA Astrophysics Data System (ADS)

    Gamou, Hiromu; Ryu, Jeongchun; Kohda, Makoto; Nitta, Junsaku

    2017-02-01

    We demonstrate that spin relaxation mechanisms are different between epitaxial Ta and disordered polycrystalline Ta thin films by determining the relationship between spin relaxation time and diffusion constant. To control the diffusion constant, epitaxial Ta and polycrystalline Ta thin films are prepared by sputtering on different substrates and at different growth temperatures. The spin relaxation time is extracted from the results of weak antilocalization analysis including the superconducting fluctuation effect. The dominant spin relaxation mechanism for polycrystalline Ta thin films is the Elliot–Yafet mechanism, as is expected for centrosymmetric metal films. In contrast, the D’yakonov–Perel’ mechanism plays a role in epitaxial Ta thin films.

  11. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures.

    PubMed

    Antonuk, L E; Koniczek, M; McDonald, J; El-Mohri, Y; Zhao, Q; Behravan, M

    2008-01-01

    An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors.

  12. Superconductor—Insulator Transitions in Pure Polycrystalline Nb Thin Films

    NASA Astrophysics Data System (ADS)

    Couedo, F.; Crauste, O.; Bergé, L.; Dolgorouky, Y.; Marrache-Kikuchi, C.; Dumoulin, L.

    2012-12-01

    We report on a study of the transport properties of Nb thin films. By varying the thickness of the films from 263 Å to 25 Å, we observed a depression of the superconductivity. Magnetic field was also applied up to 6 T, inducing the disappearance of the superconductivity and the onset of an insulating behavior. The results were compared to those we have already obtained on a highly disordered system, a-NbxSi1-x, to understand whether the same mechanisms for the disappearance of the superconductivity could be at play in pure metallic thin films and in highly disordered systems.

  13. Applications of Polycrystalline Silicon-Germanium Thin Films in Metal-Oxide Technologies.

    NASA Astrophysics Data System (ADS)

    King, Tsu-Jae

    Polycrystalline silicon (poly-Si) is an important component of silicon integrated-circuit (IC) technology and is currently used in a wide range of device applications. The fundamental properties of silicon-germanium (Si _{rm 1-x}Ge_ {rm x}) indicate that poly-Si _{rm 1-x}Ge_ {rm x} can be a favorable alternative to poly-Si in many of these applications. Since the melting point of Si_{rm 1-x}Ge _{rm x} is lower than that of Si, physical phenomena controlling fabrication processes such as deposition, crystallization, and dopant activation occur at lower temperatures for Si_ {rm 1-x}Ge_{ rm x} than for Si. Thus, lower process temperatures can be used for poly-Si_{ rm 1-x}Ge_{rm x}, so that it is preferable to poly-Si for various applications in technologies which have limited thermal-budget allowances. In this work, a deposition technology for poly-Si_{rm 1 -x}Ge_{rm x} films has been developed, and the physical and electrical properties of these films have been characterized. Two important potential applications of poly-Si_ {rm 1-x}Ge_{ rm x} films in metal-oxide-semiconductor (MOS) technologies have been investigated: first, the application as a gate-electrode material; second, the application as a thin-film transistor (TFT) channel material. The resistivity of heavily doped p-type (p^+) poly -Si_{rm 1-x}Ge _{rm x} is lower than that of comparably doped poly-Si, and its work function can be easily modified by adjusting its germanium content. These properties make p^+ poly-Si _{rm 1-x}Ge_ {rm x} a very attractive candidate for the gate-electrode material in submicrometer complementary MOS (CMOS) technologies. p-channel TFTs fabricated in poly-Si_{rm 1-x}Ge _{rm x} exhibit well -behaved device characteristics and may be suitable for high-density static memory (SRAM) and three-dimensionally integrated circuit applications. n- and p-channel poly -Si_{rm 1-x}Ge _{rm x} TFTs have been successfully fabricated using conventional microelectronic fabrication techniques

  14. Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB₂ thin films

    DOE PAGES

    Tan, Teng; Wolak, M. A.; Acharya, Narendra; ...

    2015-04-01

    For potential applications in superconducting RF cavities, we have investigated the properties of polycrystalline MgB₂ films, including the thickness dependence of the lower critical field Hc₁. MgB₂ thin films were fabricated by hybrid physical-chemical vapor deposition on (0001) SiC substrate either directly (for epitaxial films) or with a MgO buffer layer (for polycrystalline films). When the film thickness decreased from 300 nm to 100 nm, Hc₁ at 5 K increased from around 600 Oe to 1880 Oe in epitaxial films and to 1520 Oe in polycrystalline films. The result is promising for using MgB₂/MgO multilayers to enhance the vortex penetrationmore » field.« less

  15. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    NASA Astrophysics Data System (ADS)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  16. Compressive creep of polycrystalline ZrSiO{sub 4}.

    SciTech Connect

    Goretta, K. C.; Cruse, T. A.; Koritala, R. E.; Routbort, J. L.; Melendez-Martinez, J. J.; de Arellano-Lopez, A. R.; Univ. de Sevilla

    2001-08-01

    Polycrystalline ZrSiO{sub 4} ceramics were prepared from commercial powder. Silicate-based glass phase was observed at multiple-grain junctions. compressive creep tests were conducted in Ar at 1197-1400{sup o}C. For stresses of {approx}1-120 MPa, steady-state creep occurred by diffusional flow. For stresses of >3 MPa, the steady-state strain rate {dot {var_epsilon}} could be expressed as {dot {var_epsilon}} = A{sigma}{sup 1.1{+-}0.1}exp - [(470 {+-} 40 kJ/mol)/RT], where A is a constant, {sigma} the steady-state stress, R the gas constant, and T the absolute temperature. At 1400{sup o}C and 1 MPa, an increase in the value of n was observed. Electron microscopy revealed no deformation-induced change in the microstructures of any of the specimens, which is consistent with creep by diffusion-controlled grain-boundary sliding. Comparison with literature data indicated that volume diffusion of oxygen controlled the creep rate.

  17. Wetting of polycrystalline SiC by molten Al and Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Cong, Xiao-Shuang; Shen, Ping; Wang, Yi; Jiang, Qichuan

    2014-10-01

    The wetting of α-SiC by molten Al and Al-Si alloys was investigated using a dispensed sessile drop method in a high vacuum. In the Al-SiC system, representative wetting stages were identified. The liquid spreading was initially controlled by the deoxidation of the SiC surface and then by the formation of Al4C3 at the interface. The intrinsic contact angle for molten Al on the polycrystalline α-SiC surface was suggested to be lower than 90̊ provided that the oxide films covering the Al and SiC surfaces were removed, i.e., the system is partial wetting in nature. An increase in the Si concentration in liquid Al weakened the interfacial reaction but improved the final wettability. The role of the Si addition on the wetting was presumably attributed to its segregation at the interface and the formation of strong chemical bonds with the SiC surface.

  18. Microstructural and Magnetic Properties of Polycrystalline and Epitaxial Permalloy (NICKEL(80) IRON(20) Multilayered Thin Films.

    NASA Astrophysics Data System (ADS)

    Hashim, Imran

    Permalloy rm (Ni_{80 }Fe_{20}) thin films are of great scientific and technological interest because of their unique soft magnetic properties, and applications to magnetic recording. Chapter 1 provides an introduction to magnetic and magnetotransport properties of rm Ni_{80}Fe_{20} thin films, and how the film microstructure affects these properties. Chapter 2 discusses the instrumentation used for thin film fabrication, and for magnetic and structural characterization. Further details of instrumentation are discussed in Appendix A. Typically, the rm Ni_{80 }Fe_{20} films for magnetoresistive applications are capped with a refractory metal thin film such as Ta to prevent its oxidation and corrosion. We investigated the interdiffusion kinetics of polycrystalline Ta/rm Ni_{80}Fe_ {20} thin films and found that for 400 <= T <= 600 ^circC, there was significant grain-boundary interdiffusion which drastically affected soft magnetic properties of rm Ni_ {80}Fe_{20}. In Chapter 3, we present details of the microstructural evolution of these multilayers and the subsequent effects on their magnetic properties. An alternate method for reducing grain-boundary scattering would be to fabricate grain-boundary free epitaxial rm Ni_{80}Fe_{20 } films. The epitaxy of rm Ni _{80}Fe_{20} on MgO, NaCl and Cu had been demonstrated by investigators as early as the 60s. However, none of these substrates are available with as good atomic flatness as Si wafers. Following reports of epitaxial growth of Cu on Si, we proposed using it as a seed layer for growing rm Ni_ {80}Fe_{20} epitaxially on Si. However, there were conflicting reports of Cu epitaxy on Si, as some investigators claimed that Cu epitaxy on Si in UHV was not possible. We were able to resolve some of these controversies (see Chapter 4 for details) and thus fabricate epitaxial rm Ni_{80 }Fe_{20} films on Cu/Si. Chapter 5 examines the effect of the lattice mismatch between Cu and rm Ni_{80}Fe _{20} and the subsequent strain, on

  19. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  20. Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide that includes scope, core competencies and capabilities, and contact/web information.

  1. Fundamentals of polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1991-01-01

    This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.

  2. Broadening of optical transitions in polycrystalline CdS and CdTe thin films

    SciTech Connect

    Li Jian; Chen Jie; Collins, R. W.

    2010-11-01

    The dielectric functions {epsilon} of polycrystalline CdS and CdTe thin films sputter deposited onto Si wafers were measured from 0.75 to 6.5 eV by in situ spectroscopic ellipsometry. Differences in {epsilon} due to processing variations are well understood using an excited carrier scattering model. For each sample, a carrier mean free path {lambda} is defined that is found to be inversely proportional to the broadening of each of the band structure critical points (CPs) deduced from {epsilon}. The rate at which broadening occurs with {lambda}{sup -1} is different for each CP, enabling a carrier group speed {upsilon}{sub g} to be identified for the CP. With the database for {upsilon}{sub g}, {epsilon} can be analyzed to evaluate the quality of materials used in CdS/CdTe photovoltaic heterojunctions.

  3. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  4. Polycrystalline silicon thin films by metal-induced growth: Formation mechanisms, characterization and applications

    NASA Astrophysics Data System (ADS)

    Guliants, Elena A.

    2000-10-01

    A method of producing a polycrystalline silicon thin film on a foreign substrate without subsequent annealing has been developed. Thermally evaporated 5--100nm thick Ni films served as prelayers for magnetron sputtered 0.5--2mum thick Si films. A continuous, uniform film was obtained as a result of metal induced growth (MIG) of polysilicon during low temperature (below 600°C) deposition. The interaction of a fine-grained metallic Ni with an atomic Si provided by a sputtering gun results in the formation of NiSi2 at the Ni-Si interface. The Ni disilicide provides the nucleation sites for the epitaxial Si crystal growth due to only 0.4% lattice mismatch with Si. As a result, the polycrystalline silicon film exhibits a columnar structure with length of the grains equal to the film thickness and cross-sectional diameter of up to 600nm. The Ni prelayer thickness is found to appreciably influence both the Si grain size and resistivity. The best results were obtained for the films deposited on a 25nm thick Ni prelayer. These films show the resistivity values of 2--3 x 103O-cm and an activation energy of 0.02--0.03eV. The carrier concentrations are 5 x 1015 cm-3 and 3 x 1016 cm-3 for n-type and p-type films, respectively. The carrier mobility computed for n and p-type polysilicon films has respective values of 0.4 cm2/V-s and 1.6 cm2/V-s. The carrier lifetime of ˜11mus and the diffusion length of ˜3.4 mum indicated good electrical properties which make the film potentially applicable to fabrication of various microelectronic devices, where Ni silicide at the bottom of the film provides a satisfactory back ohmic contact. The Schottky diodes fabricated on the basis of the MIG-Si films of both n and p-types show a rectifying ratio of up to 107. A 1mum thick p-n junction diode reveals the dark IF/IR ratio of 104 and a reasonable value of photocurrent. In addition, the polysilicon properties are not strongly affected by a substrate when the latter is relatively smooth and

  5. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper

  6. Low temperature grown polycrystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films on amorphous SiO{sub 2} substrates by rf magnetron sputtering

    SciTech Connect

    Choi, Sun Gyu; Sivasankar Reddy, A.; Park, Hyung-Ho; Yang, Woo Seok; Ryu, Hojun; Yu, Byoung-Gon

    2009-07-15

    The La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films have been prepared on amorphous SiO{sub 2} substrates by a rf magnetron sputtering technique under various oxygen flow rates and rf powers at a relatively low substrate temperature of 350 deg. C. The effects of oxygen flow rate and rf power on their physical properties were systematically investigated. X-ray diffraction results show that the growth orientation and crystallinity of the films were affected by rf power and oxygen flow rate. The electrical resistivity of the films was reduced with increasing oxygen flow rate and rf power due to enhanced {l_brace}100{r_brace} growth plane orientation and enlarged grain size of the films. In addition, a relatively high temperature coefficient of resistance value of -2.4% was obtained in the present investigation even with low deposition temperature.

  7. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  8. Fabrication and characterization of low temperature polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Krishnan, Anand Thiruvengadathan

    2000-10-01

    The proliferation of devices with built-in displays, such as personal digital assistants and cellular phones has created a demand for rugged light-weight displays. Polymeric substrates could be suited for these applications, and they offer the possibility of flexible displays also. However, driver circuitry needs to be integrated in the display if the cost is to be reduced. Low temperature (<350°C) polycrystalline silicon (poly-Si) thin film transistors, if developed, offer driver circuitry integration during pixel transistor fabrication on top of flexible substrates. This thesis addresses several issues related to the fabrication of thin film transistors at low temperatures on glass substrates. A high-density plasma (electron cyclotron resonance (ECR)) based approach was adopted for deposition of thin films. A process for deposition of n-type doped silicon (n-type doped Si) at T < 350°C and having resistivity <1 ohm/cm has been developed. Intrinsic poly-Si was deposited under different conditions of microwave power, RF bias and deposition times. The properties of n-type doped Si and intrinsic poly-Si were correlated with the structure and the deposition conditions. A novel TFT structure has been proposed and implemented in this work. This top gate TFT structure uses n-type doped Si and utilizes only two masks and one alignment step. There are no critical etch steps and good interface quality could be obtained even without post-processing hydrogenation as the poly-Si surface was not exposed to air before deposition of the gate dielectric. TFTs using this top gate structure were fabricated with no process step exceeding 340°C electrode temperature (surface temperature <300°C). These TFTs show ON/OFF ratios in excess of 105. Their sub-threshold swing is ˜0.5 V/decade and mobility is 1--10 cm2/V-s. Several TFTs were also fabricated using alternative dielectrics such as oxide deposited from tetramethyl silane in an RFPECVD chamber and silicon nitride deposited in

  9. Role of critical size of nuclei for liquid-phase epitaxy on polycrystalline Si films

    NASA Astrophysics Data System (ADS)

    Kühnle, Jürgen; Bergmann, Ralf B.; Werner, Jürgen H.

    1997-03-01

    Liquid-phase epitaxy of Si on fine-grained polycrystalline Si seeding films reveals the effect of a critical size of nuclei. As a consequence, during deposition appreciable parts of fine-grained polycrystalline Si films dissolve in the initially supersaturated growth solution. The observed dependences of the nucleation density on supersaturation and saturation temperature are in agreement with the concept of the critical size of nuclei as predicted by thermodynamic considerations. A comparison of nucleation densities obtained in liquid-phase epitaxy experiments and grain size distributions in seeding films allows to confirm the theoretically predicted critical grain size of about 500 nm.

  10. On-Current Modeling of Polycrystalline Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Navneet; Tyagi, B. P.

    2005-01-01

    We propose an on-current (above threshold voltage) model of polycrystalline silicon thin-film transistors (poly-Si TFTs). The model includes the study of the effect of trap state density, poly-Si inversion layer thickness and temperature on the TFT characteristics. Effective carrier mobility and I-V characteristics are described by considering the mechanism of capture and release of carriers at grain boundary trap states and the thermionic emission theory. It is found that at low as well as at high doping concentrations, the effective carrier mobility (µeff) increases with increasing temperature whereas a dip is observed at intermediate doping concentration. At very high and very low doping concentration the effect of temperature on the mobility is found to be almost negligible. Calculations reveal that effective carrier mobility and drain current increase as the gate bias increases and are larger for a lower trap state density. The calculated value of activation energy decreases as the gate bias increases and is larger for a larger poly-Si inversion layer thickness. A comparison between the present predictions and the experimental results shows reasonably good agreement.

  11. Buffer layers for deposition of superconducting YBaCuO thin film on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Beetz, Charles P.; Cui, G. J.; Lincoln, B. A.; Kirlin, Peter S.

    1992-09-01

    In an attempt to combine the properties of high temperature superconductors with the high thermal conductivity and low specific heat of diamond, we have explored the deposition of in- situ YBa(subscript 2)Cu(subscript 3)O(subscript 7-(delta) ) (YBCO) superconducting films on polycrystalline diamond thin films. We demonstrate for the first time superconducting YBCO films on diamond employing multiple layer buffer layer systems. Three different composite buffer layer systems were explored for this purpose: (1) Diamond/Zr/YSZ/YBCO, (2) Diamond/Si(subscript 3)N(subscript 4)/YSZ/YBCO, and (3) Diamond/SiO(subscript 2)/YSZ/YBCO. Adherent thin Zr films were deposited by dc sputtering on the diamond films at 450 to 820 degree(s)C. The yttria stabilized zirconia (YSZ) was deposited by reactive RF sputtering at 680 to 750 degree(s)C. The Si(subscript 3)N(subscript 4) and SiO(subscript 2) were also deposited by on-axis RF sputtering at 400 to 700 degree(s)C. YBCO films were grown on the buffer layers by off-axis RF sputtering at substrate temperatures between 690 degree(s)C and 750 degree(s)C. In all cases, the as-deposited YBCO films were superconducting above 77 K. This demonstration enables the fabrication of low heat capacity, fast response time bolometric far IR detectors and paves the way for the use of HTSC as a high frequency interconnect metallization on thick diamond film based multichip modules.

  12. Structural and electrical properties of polycrystalline Bi(Fe0.6Mn0.4)O3 thin films

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Kim, W. J.; Lee, M. H.; Song, T. K.; Do, D.

    2013-12-01

    A 40% Mn-substituted BiFeO3 (BFMO) thin film was deposited on a Pt(111)/Ti/SiO2/Si(100) substrate by using a pulsed laser deposition method. The coexistence of rhombohedral and orthorhombic structures in the BFMO thin film was confirmed by using X-ray diffraction and Raman spectra investigation. The leakage current density of the BFMO thin film was larger than that of a pure polycrystalline BiFeO3 (BFO) thin film. In order to understand the leakage current behaviors, was investigated the leakage current mechanisms. The leakage current mechanism of the BFO thin film was found to be space-charge-limited conduction (SCLC), followed by trap-filled conduction causal by the increasing electric field strength. On the other hand, trap-filled conduction was not observed in the BFMO thin film. A leaky ferroelectric hysteresis loop was observed in the BFMO thin film, but not in the BFO thin film.

  13. Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings.

    PubMed

    Oh, Seung Jae; Chhajed, Sameer; Poxson, David J; Cho, Jaehee; Schubert, E Fred; Tark, Sung Ju; Kim, Donghwan; Kim, Jong Kyu

    2013-01-14

    The performance enhancement of polycrystalline Si solar cells by using an optimized discrete multilayer anti-reflection (AR) coating with broadband and omni-directional characteristics is presented. Discrete multilayer AR coatings are optimized by a genetic algorithm, and experimentally demonstrated by refractive-index tunable SiO₂ nano-helix arrays and co-sputtered (SiO₂)x(TiO₂)₁₋x thin film layers. The optimized multilayer AR coating shows a reduced total reflection, leading to the high incident-photon-to-electron conversion efficiency over a correspondingly wide range of wavelengths and incident angles, offering a very promising way to harvest more solar energy by virtually any type of solar cells for a longer time of a day.

  14. Comparative study of mobility extraction methods in p-type polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Liu, Yuan; Liu, Yu-Rong; En, Yun-Fei; Li, Bin

    2017-07-01

    Channel mobility in the p-type polycrystalline silicon thin film transistors (poly-Si TFTs) is extracted using Hoffman method, linear region transconductance method and multi-frequency C-V method. Due to the non-negligible errors when neglecting the dependence of gate-source voltage on the effective mobility, the extracted mobility results are overestimated using linear region transconductance method and Hoffman method, especially in the lower gate-source voltage region. By considering of the distribution of localized states in the band-gap, the frequency independent capacitance due to localized charges in the sub-gap states and due to channel free electron charges in the conduction band were extracted using multi-frequency C-V method. Therefore, channel mobility was extracted accurately based on the charge transport theory. In addition, the effect of electrical field dependent mobility degradation was also considered in the higher gate-source voltage region. In the end, the extracted mobility results in the poly-Si TFTs using these three methods are compared and analyzed.

  15. Beta-to-alpha transformation in polycrystalline SiC. II - Interfacial energetics

    NASA Technical Reports Server (NTRS)

    Mitchell, T. E.; Ogbuji, L. U.; Heuer, A. H.

    1978-01-01

    A phenomenological analysis of the energetics of the beta-to-alpha transformation in polycrystalline SiC is presented. It is found that the extreme anisotropy of the interfacial energy between alpha- and beta-SiC can account for the rapid growth of composite grains into the beta matrix during conventional sintering or hot-pressing processes. The composite grains consist of alpha-SiC plates 'sandwiched' between well-oriented and recrystallized beta-SiC 'envelopes'. The interfaces involving the 111 plane type of beta and (0001) of alpha have much lower energies than random beta/alpha interfaces.

  16. Beta-to-alpha transformation in polycrystalline SiC. II - Interfacial energetics

    NASA Technical Reports Server (NTRS)

    Mitchell, T. E.; Ogbuji, L. U.; Heuer, A. H.

    1978-01-01

    A phenomenological analysis of the energetics of the beta-to-alpha transformation in polycrystalline SiC is presented. It is found that the extreme anisotropy of the interfacial energy between alpha- and beta-SiC can account for the rapid growth of composite grains into the beta matrix during conventional sintering or hot-pressing processes. The composite grains consist of alpha-SiC plates 'sandwiched' between well-oriented and recrystallized beta-SiC 'envelopes'. The interfaces involving the 111 plane type of beta and (0001) of alpha have much lower energies than random beta/alpha interfaces.

  17. Switchable diode effect in polycrystalline Bi3.15Nd0.85Ti3O12 thin films for resistive memories

    NASA Astrophysics Data System (ADS)

    Song, H. J.; Wang, J. B.; Zhong, X. L.; Cheng, J. J.; Jia, L. H.; Wang, F.; Li, B.

    2013-12-01

    The switchable diode effect is found in the Bi3.15Nd0.85Ti3O12 (BNT) polycrystalline thin films with a residual polarization (2Pr) of 55 μC/cm2 fabricated on Pt/Ti/SiO2/Si substrates by chemical solution deposition. The consistencies of P-V and I-V curves demonstrate that the switchable diode effect is mainly triggered by polarization modulated Schottky-like barriers. The ON/OFF ratio of resistive switching based on these switchable diodes is more than 3 orders during the retention capacity measurement, which indicates that the polycrystalline BNT thin films are promising for the resistive memories applications.

  18. Improvement in pH sensitivity of low-temperature polycrystalline-silicon thin-film transistor sensors using H2 sintering.

    PubMed

    Yen, Li-Chen; Tang, Ming-Tsyr; Chang, Fang-Yu; Pan, Tung-Ming; Chao, Tien-Sheng; Lee, Chiang-Hsuan

    2014-02-25

    In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si) thin-film transistor (TFT) sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS) TFT sensor with H2 sintering exhibited a high sensitivity than that without H2 sintering. This result may be due to the resulting increase in the number of Si-OH2(+) and Si-O(-) bonds due to the incorporation of H in the gate oxide to reduce the dangling silicon bonds and hence create the surface active sites and the resulting increase in the number of chemical reactions at these surface active sites. Moreover, the LTPS TFT sensor device not only offers low cost and a simple fabrication processes, but the technique also can be extended to integrate the sensor into other systems.

  19. Technique for measuring irradiation creep in polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Hamilton, M.L.; Jones, R.H.

    1996-10-01

    A bend stress relaxation (BSR) test has been designed to examine irradiation enhanced creep in polycrystalline SiC fibers being considered for fiber reinforcement in SiC/SiC composite. Thermal creep results on Nicalon-CG and Hi-Nicalon were shown to be consistent with previously published data with Hi-Nicalon showing about a 100{degrees}C improvement in creep resistance. Preliminary data was also obtained on Nicalon-S that demonstrated that its creep resistance is greater than that of Hi-Nicalon.

  20. X-ray microbeam diffraction study of strain in polycrystalline aluminum thin films

    NASA Astrophysics Data System (ADS)

    Moyer, Laura E.

    Thermally induced strains in polycrystalline Al films on glass and single crystal Si substrates have been examined on a grain-by-grain basis by x-ray microbeam diffraction. The crystallographic orientation and the deviatoric strain tensor, epsilon*ij, were determined for each measurement location by white beam Laue diffraction. From grain orientation mapping and strain tensor measurements, information was obtained about the distributions of strains for similarly oriented grains and about strain variations within single grains. Grain size, texture, and misorientation correlations with residual strains were also examined. Strains during thermal cycling and strain relaxation at room temperature were compared to model calculations. The mechanisms involved in these calculations during thermal cycling and during room temperature relaxation were studied. The grain boundary diffusivity for Coble creep used in the model calculations was also studied and recalculations were made that provide a better fit of the model calculations to the experimental data. The type of information gathered in this study may be useful in developing and testing theories for intergrain effects in strain evolution in polycrystals. It was concluded from this study that many factors affect the mechanical behavior of thin films during thermal cycling and during room temperature relaxation, including grain size, texture, and grain orientation. The nature of the film-substrate interface may also affect the behavior of the films. The model calculations and parameters used in this study were not successful in predicting quantitatively thin film mechanical behavior. Microdiffraction measurements reveal that the strains on the inter- and intra-granular level are very different than the average strain in a film.

  1. Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Kamakura, Ryosuke; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2017-01-01

    We have synthesized polycrystalline thin film composed of a single phase of metastable bismuth iron garnet, Bi3Fe5O12, on a fused silica substrate, one of the most widely utilized substrates in the solid-state electronics, by using mist chemical vapor deposition (mist CVD) method. The phase purity and stoichiometry are confirmed by X-ray diffraction and Rutherford backscattering spectrometry. The resultant thin film shows a small surface roughness of 3.251 nm. The saturation magnetization at room temperature is 1200 G, and the Faraday rotation angle at 633 nm reaches -5.2 deg/μm. Both the magnetization and the Faraday rotation angles are somewhat higher than those of polycrystalline BIG thin films prepared by other methods.

  2. Insights into microstructural evolution and polycrystalline compounds formation from Pd Ge thin films

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwen; Shek, C. H.; Lai, J. K. L.

    2005-04-01

    Polycrystalline Pd-Ge thin films, prepared on freshly cleaved single crystal NaCl (1 0 0) substrate by evaporation techniques, were characterized for their composition, morphologies, and crystalline structure by transmission electron microscopy (TEM). The experimental results indicated that the formation of Pd 2Ge and PdGe compounds dominated at low annealing temperatures, and it also affected the crystallization of amorphous Ge. The reactions of Pd and Ge are sensitively dependent on the annealing temperatures and the thickness ratio of Pd and Ge films. The crystallization of amorphous Ge and the reactions of Pd and Ge are mutually competitive in polycrystalline Pd-Ge thin films. The grain nucleation, growth, and aggregation in Pd-Ge thin films during processing are discussed in terms of the fundamental kinetic processes.

  3. Polycrystalline SiC fibers from organosilicon polymers

    NASA Technical Reports Server (NTRS)

    Lipowitz, Jonathan; Rabe, James A.; Zank, Gregg A.

    1991-01-01

    Various organosilicon polymers have been converted into small diameter, fine-grained silicon carbide fibers by melt spinning, crosslinking, and pyrolyzing to greater than 1600 C. The high pyrolysis temperature densifies the fiber and causes CO evolution which removes nearly all oxygen. An additive prevents the loss of strength normally associated with such treatments. Silicon carbide fibres with up to 2.6 GPa (380 ksi) tensile strength, greater than 420 GPa (greater than 60 Msi) elastic modulus, and 3.1-3.2 mg/cu m density have been prepared via this process. Their microstructure consists of greater than 95 wt pct B-SiC crystallites averaging 30-40 nm diameter, with varying amounts of graphitic carbon between the SiC grains. Under inert conditions, the fibers can be thermally aged at least 12 h/1800 C with minimal change in properties.

  4. Near-infrared light absorption by polycrystalline SiSn alloys grown on insulating layers

    SciTech Connect

    Kurosawa, Masashi; Kato, Motohiro; Yamaha, Takashi; Taoka, Noriyuki; Nakatsuka, Osamu; Zaima, Shigeaki

    2015-04-27

    High-Sn-content SiSn alloys are strongly desired for the next-generation near-infrared optoelectronics. A polycrystalline growth study has been conducted on amorphous SiSn layers with a Sn-content of 2%–30% deposited on either a substrate of SiO{sub 2} or SiN. Incorporating 30% Sn into Si permits the crystallization of the amorphous layers at annealing temperatures below the melting point of Sn (231.9 °C). Composition analyses indicate that approximately 20% of the Sn atoms are substituted into the Si lattice after solid-phase crystallization at 150–220 °C for 5 h. Correspondingly, the optical absorption edge is red-shifted from 1.12 eV (Si) to 0.83 eV (Si{sub 1−x}Sn{sub x} (x ≈ 0.18 ± 0.04)), and the difference between the indirect and direct band gap is significantly reduced from 3.1 eV (Si) to 0.22 eV (Si{sub 1−x}Sn{sub x} (x ≈ 0.18 ± 0.04)). These results suggest that with higher substitutional Sn content the SiSn alloys could become a direct band-gap material, which would provide benefits for Si photonics.

  5. Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993

    SciTech Connect

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.; Yokimcus, T.A.

    1993-08-01

    This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.

  6. Electronic Transport Properties of Thin Film Inhomogeneous Composites: Silver/gold Copper Indium Diselenide and Silver Amorphous/polycrystalline Silicon

    NASA Astrophysics Data System (ADS)

    Ndlela, Zolili U.

    1990-08-01

    This work investigated a two component inhomogeneous thin film composite consisting of metal particles dispersed in a semiconductor matrix. The systems studied were silver (Ag) or gold (Au) dispersed in copper indium diselenide (CuInSe_2) and silver dispersed in amorphous silicon (alpha-Si) or polycrystalline-silicon. Their transport properties were measured from 20 to 400 K, and it was observed that the films were not adversely affected by the incorporation of metal particles into the semiconducting matrix. This study also provides a mechanism to explain the transport behavior which involves the concepts of localization, mobility edges, and hopping conduction. Evidence strongly indicates that conduction occurs in these composites by hopping and/or by tunneling between localized states or between metallic grains and that their behavior is characterized by a T^ {-1/4} or a T^{-1/2 } temperature dependence.

  7. Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang

    2008-07-01

    Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.

  8. Simulation of electrical conduction in thin polycrystalline metallic films: Impact of microstructure

    SciTech Connect

    Rickman, J. M.; Barmak, K.

    2013-10-07

    We examine the impact of microstructural features on the electrical conductivity of a thin metallic film using Monte Carlo simulation. In particular, we obtain the dependence of the conductivity (in the absence of surface scattering) on average grain size and electron scattering mechanisms, the latter parametrized by a transmission coefficient, for a model polycrystal generated by a Voronoi tessellation. We find that the conductivity can be described in limiting cases in terms of either a simplified hopping model or a trapping model. Finally, we compare our results with the Mayadas-Shatzkes model of grain-boundary scattering and with experimental resistivity measurements for polycrystalline copper thin films.

  9. Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping

    PubMed Central

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-01-01

    conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only. Introduction Light-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection (Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested. Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing

  10. High-performance poly-Si thin film transistors with highly biaxially oriented poly-Si thin films using double line beam continuous-wave laser lateral crystallization

    NASA Astrophysics Data System (ADS)

    Yamano, Masayuki; Kuroki, Shin-Ichiro; Sato, Tadashi; Kotani, Koji

    2014-01-01

    Highly biaxially oriented poly-Si thin films were formed by double-line beam continuous-wave laser lateral crystallization (DLB-CLC). The crystallinities of the DLB-CLC poly-Si thin films were (110), (111), and (211) for the laser scan, transverse, and surface directions, respectively, and an energetically stable Σ3 grain boundary was observed to be dominant. All silicon grains were elongated in the laser scan direction and one-dimensionally very large silicon grains with lengths of more than 100 µm were fabricated. Using these biaxially oriented polycrystalline silicon (poly-Si) films, low-temperature poly-Si TFTs (LTPS-TFTs) were fabricated at low temperatures (≦550 °C) by a metal gate self-aligned process. As a result, a TFT with a high electron field effect mobility of μFE = 450 cm2 V-1 s-1 in a linear region was realized.

  11. Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound

    NASA Astrophysics Data System (ADS)

    Zhang, Hu; Li, Yawei; Liu, Enke; Ke, Yajiao; Jin, Jinling; Long, Yi; Shen, Baogen

    2015-07-01

    Large rotating magnetocaloric effect (MCE) has been observed in some single crystals due to strong magnetocrystalline anisotropy. By utilizing the rotating MCE, a new type of rotary magnetic refrigerator can be constructed, which could be more simplified and efficient than the conventional one. However, compared with polycrystalline materials, the high cost and complexity of preparation for single crystals hinder the development of this novel magnetic refrigeration technology. For the first time, here we observe giant rotating MCE in textured DyNiSi polycrystalline material, which is larger than those of most rotating magnetic refrigerants reported so far. This result suggests that DyNiSi compound could be attractive candidate of magnetic refrigerants for novel rotary magnetic refrigerator. By considering the influence of demagnetization effect on MCE, the origin of large rotating MCE in textured DyNiSi is attributed to the coexistence of strong magnetocrystalline anisotropy and highly preferred orientation. Our study on textured DyNiSi not only provides a new magnetic refrigerant with large rotating MCE for low temperature magnetic refrigeration, but also opens a new way to exploit magnetic refrigeration materials with large rotating MCE, which will be highly beneficial to the development of rotating magnetic refrigeration technology.

  12. Giant rotating magnetocaloric effect induced by highly texturing in polycrystalline DyNiSi compound.

    PubMed

    Zhang, Hu; Li, YaWei; Liu, Enke; Ke, YaJiao; Jin, JinLing; Long, Yi; Shen, BaoGen

    2015-07-10

    Large rotating magnetocaloric effect (MCE) has been observed in some single crystals due to strong magnetocrystalline anisotropy. By utilizing the rotating MCE, a new type of rotary magnetic refrigerator can be constructed, which could be more simplified and efficient than the conventional one. However, compared with polycrystalline materials, the high cost and complexity of preparation for single crystals hinder the development of this novel magnetic refrigeration technology. For the first time, here we observe giant rotating MCE in textured DyNiSi polycrystalline material, which is larger than those of most rotating magnetic refrigerants reported so far. This result suggests that DyNiSi compound could be attractive candidate of magnetic refrigerants for novel rotary magnetic refrigerator. By considering the influence of demagnetization effect on MCE, the origin of large rotating MCE in textured DyNiSi is attributed to the coexistence of strong magnetocrystalline anisotropy and highly preferred orientation. Our study on textured DyNiSi not only provides a new magnetic refrigerant with large rotating MCE for low temperature magnetic refrigeration, but also opens a new way to exploit magnetic refrigeration materials with large rotating MCE, which will be highly beneficial to the development of rotating magnetic refrigeration technology.

  13. Influence of carbon content on cold rolling and recrystallization texture in polycrystalline 3% Si-Fe

    NASA Astrophysics Data System (ADS)

    Takenaka, M.; Shingaki, Y.; Imamura, T.; Hayakawa, Y.

    2015-04-01

    The influence of carbon content on cold rolling and recrystallization texture in polycrystalline 3%Si-Fe under the relatively high rolling reduction condition has been investigated. The main component of recrystallization texture was {554}<225> orientation in ultra low carbon (ULC) 3%Si-Fe and {411}<148> orientation in low carbon (LC) 3%Si-Fe. The origin of {411}<148> recrystallization texture development in LC 3%Si-Fe is discussed in terms of the rotation of deformation twin from {100}<011> to {411}<148> orientation with the generation of the slip bands inside the neighboring matrix grain {111}<011>. The rotation axis of this crystal rotation was estimated <112> axis. Assuming the single slip system activation in BCC metal, crystal rotation around <112> axis indicates an activation of {110}<111> slip system. In terms of Schmid factor, {112}<111> slip system must be activated in {100}<011> matrix. This is not in agreement with the estimation of {110}<111> slip system activation. Detailed observation on the cold rolled sample revealed that common slip plane passed through the deformation twin and surrounding deformed matrix grains. It is considered that slip plane matching (SPM) with neighboring grains activates the lower Schmid factor slip system in deformation twin. These results suggest that not only Schmid factor but also SPM with neighboring grains should be considered to decide the active slip systems in polycrystalline metals.

  14. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing.

    PubMed

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 μm, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  15. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  16. Study of microstructural and optical properties of a-Si:H thin films

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Müllerová, Jarmila

    2010-12-01

    Undoped amorphous silicon thin films pasivated by hydrogen (a-Si:H) are important for a number of industrial and research applications, especially for optoelectronics, photovoltaics, optical communications, senzorics, laser technology and so on. We experimentally studied properties of the a-Si:H thin films prepared by the plasma-enhanced chemical vapour deposition (PECVD) method. Sample microstructure properties and the effect of the microstructure on optical properties of the a-Si:H thin films deposited by PECVD on glass were analysed. The spectral refractive index, extinction coefficient, and surface morphology were analysed for the series of a-Si:H samples prepared in different technological conditions from H diluted silane plasma. Surface morphology of studied samples was described by the atomic force microscopy (AFM) method. Optical properties of a-Si:H thin films were analysed by numerical optimization of the microstructural and dispersion model of optical parameters relative to the experimental spectral reflectance. The results show that at dilution between 20 and 30 the transition between amorphous and polycrystalline phase occurs. The sample becomes a mixture of amorphous and polycrystalline phase with nano-sized grains and voids with decreasing hydrogen concentration.

  17. () preferential orientation of polycrystalline AlN grown on SiO2/Si wafers by reactive sputter magnetron technique

    NASA Astrophysics Data System (ADS)

    Bürgi, Juan; García Molleja, Javier; Bolmaro, Raúl; Piccoli, Mattia; Bemporad, Edoardo; Craievich, Aldo; Feugeas, Jorge

    2016-04-01

    Aluminum nitride (AlN) is a ceramic compound that could be used as a processing material for semiconductor industry. However, the AlN crystalline structure plays a crucial role in its performance. In this paper, polycrystalline AlN films have been grown onto Si(1 1 1) and Si(1 0 0) (with an oxide native coverage of SiO2) wafers by RSM (reactive sputter magnetron) technique using a small (5 L) reactor. The development of polycrystalline AlN films with a good texture along () planes, i.e., semi-polar structure, was shown. Analyses were done using X-ray diffraction in the Bragg-Brentano mode and in the GIXRD (grazing incidence X-ray diffraction) one, and the texture was determined through pole figures. The structure and composition of these films were also studied by TEM and EDS techniques. Nevertheless, the mapping of the magnetic field between the magnetron and the substrate has shown a lack of symmetry at the region near the substrate. This lack of symmetry can be attributable to the small dimensions of the chamber, and the present paper suggests that this phenomenon is the responsible for the unusual () texture developed.

  18. High-performance polycrystalline silicon thin-film transistors with two-dimensional location control of the grain boundary via excimer laser crystallization.

    PubMed

    Wang, Chao-Lung; Lee, I-Che; Wu, Chun-Yu; Liao, Chan-Yu; Cheng, Yu-Ting; Cheng, Huang-Chung

    2012-07-01

    High-performance low-temperature polycrystalline silicon (Poly-Si) thin-film transistors (TFTs) have been fabricated with two-dimensional (2-D) location-controlled grain boundaries using excimer laser crystallization (ELC). By locally increased thickness of the amorphous silicon (a-Si) film that was served as the seed crystals with a partial-melting crystallization scheme, the cross-shaped grain boundary structures were produced between the thicker a-Si grids. The Poly-Si TFTs with one parallel and one perpendicular grain boundary along the channel direction could therefore be fabricated to reach excellent field-effect mobility of 530 cm2/V-s while the conventional ones exhibited field-effect mobility of 198 cm2/V-s. Furthermore, the proposed TFTs achieved not only superior electric properties but also improved uniformity as compared with the conventional ones owing to the artificially controlled locations of grain boundaries.

  19. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2016-01-01

    Polycrystalline Nb thin films are extensively used for microwave kinetic inductance detectors (MKIDs) and superconducting transmission line applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the X-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  20. An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.

    1985-01-01

    A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.

  1. An inert marker study for palladium silicide formation - Si moves in polycrystalline Pd2Si

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Shreter, U.; Nicolet, M.-A.

    1985-01-01

    A novel use of Ti marker is introduced to investigate the moving species during Pd2Si formation on 111 and 100 line-type Si substrates. Silicide formed from amorphous Si is also studied using a W marker. Although these markers are observed to alter the silicide formation in the initial stage, the moving species can be identified once a normal growth rate is resumed. It is found that Si is the dominant moving species for all three types of Si crystallinity. However, Pd will participate in mass transport when Si motion becomes obstructed.

  2. Preparation of nano-polycrystalline WO3 thin films and their solid-state electrochromic display devices.

    PubMed

    Luo, Jianyi; Zeng, Qingguang; Long, Yongbing; Wang, Yi

    2013-02-01

    In this paper, nano-polycrystalline WO3 thin films with the thickness in the range of 100-200 nm have been uniformly prepared on the designed regions of ITO (indium tin oxide) glass substrates by thermal evaporation deposition. Their crystal structures, surface morphologies and uniformities are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The solid-state electrochromic display (ECD) devices based on these nano-polycrystalline WO3 thin films have been also fabricated and have demonstrated to have better performance than normal thin films, including shorter response time, higher contrast, and furthermore, higher stability to keep the colored state without power consumption. These results demonstrate nano-polycrystalline WO3 thin films can be applied to improve the performance of ECD devices, especially suitable to static display.

  3. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1991--15 January 1992

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  4. Charge transport in polycrystalline silicon thin-films on glass substrates

    NASA Astrophysics Data System (ADS)

    Scheller, L.-P.; Nickel, N. H.

    2012-07-01

    Charge carrier transport in solid-phase crystallized polycrystalline silicon (poly-Si) was investigated as a function of the deposition temperature, Td, the amorphous starting material and the used substrates. The samples were characterized using temperature dependent transport measurements to determine the carrier concentration, mobility, and conductivity. Samples prepared on a-SiN:H covered borofloat glass exhibit a low carrier concentration that is independent of Td. In these samples, charge transport is dominated by intra-grain scattering mechanisms. In contrast, when poly-Si is prepared on corning glass, the carrier concentration shows an inverted U-shape behavior with increasing deposition temperature. The Hall mobility is thermally activated, which is consistent with thermionic carrier emission over potential energy barriers. The change of the activation energy with experimental parameters is accompanied by a large change of the exponential prefactor by more than 4 orders of magnitude. This is indicative of a Meyer-Neldel behavior. Moreover, at low temperatures, the conductivity deviates from an activated behavior indicating hopping transport with a mean hopping distance of ≈140 Å and an energy difference of ≈82 meV between the participating states. To derive insight into the underlying transport mechanisms and to determine information on barrier energy heights and grain-boundary defect-densities, the experimental data were analyzed employing transport models for polycrystalline materials.

  5. Selective assembling of calixarenes and pseudorotaxanes on Si(100) and polycrystalline copper.

    PubMed

    Boccia, Alice; Lanzilotto, Valeria; Di Castro, Valeria; Zanoni, Robertino; Arduini, Arturo; Pescatori, Luca; Secchi, Andrea

    2011-10-01

    We report the first compared study of the anchoring mode of calix[6]arene derivatives and pseudorotaxanes on Si(100) and polycrystalline Cu. Calixarenes have been chosen for their flexibility as linkers, being, i.a., efficient building blocks for the constructing of molecular devices based on pseudorotaxanes and rotaxanes. A covalent functionalization on Si or Cu surfaces requires the molecules to be differently modified: thiol (-SH) or C double bond C terminations are respectively suitable for Cu or H-Si(100). Anchoring on Cu was reached by dipping a clean substrate in a calix[6]arene-SH solution, while a wet-chemistry recipe was followed for Si(100), combined with an extra-mild photochemical activation via visible light. Molecular adhesion onto either surfaces has been demonstrated by the presence of XPS signals from specific elements in the molecules: calix[6]arene designed for H-Si were derivatized with NO2 groups on the upper rim of the calix, while the S atom was used as the molecular identifier on Cu. A further extension is represented by the anchoring reaction of rotaxanes on Si(100) and Cu surfaces. A pseudorotaxane species was first formed in solution by reacting a calix[6]arene "wheel," bearing three N-phenylureido groups on the upper rim, with viologen (4,4'-bipyridinium) containing axle. The resulting species has then been anchored on either Cu and Si via its distinct termination of the axle. This two-step reaction has produced a threaded pseudorotaxane covalently bound to either surfaces, as shown by XPS results. These species are ready to respond to external stimuli. We also cross-checked the two different anchoring groups for their reactivity on Cu and Si surfaces. No molecular uptake was observed when two solutions, containing calixarenes with the anchoring arms intended either for Si or Cu surfaces, were exchanged.

  6. High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cell

    NASA Astrophysics Data System (ADS)

    Mickelsen, R. A.; Chen, W. S.

    1980-03-01

    A polycrystalline thin-film CdS/CuInSe2 heterojunction solar cell with an efficiency of 5.7% has been prepared using a simultaneous elemental evaporation technique to deposit the CuInSe2 film. The cell's short-circuit current of 31 mA/sq cm under 100 mW/sq cm is the highest ever reported for a 1-sq-cm cell. Heat treatments have been found to improve cell efficiency and to also change the cell I-V and C-V characteristics.

  7. X-ray Microbeam Diffraction Measurements in Polycrystalline Aluminum and Copper Thin Films

    SciTech Connect

    Moyer, L.E.; Cargill, G.S.; Yang, W.; Larson, B.C.; Ice, G.E.

    2010-11-16

    Thermally induced residual strains in polycrystalline Cu and Al films on single crystal Si and glass substrates, respectively, have been examined on a grain-by-grain basis by x-ray microbeam diffraction. The crystallographic orientation and the deviatoric strain tensor, {var_epsilon}{sub ij}*, are determined for each grain by white beam Laue diffraction. From grain orientation mapping and strain tensor measurements, information is obtained about the distributions of strains for similarly oriented grains, about strain variations within single grains, and about grain-to-grain correlations of strains. This type of information may be useful in developing and testing theories for intergrain effects in strain evolution in polycrystals.

  8. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    NASA Astrophysics Data System (ADS)

    Canulescu, S.; Borca, C. N.; Rechendorff, K.; Davidsdóttir, S.; Pagh Almtoft, K.; Nielsen, L. P.; Schou, J.

    2016-04-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti content. X-ray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as anti-site effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller than k allows us to explore the parameter space for the free-electron behavior in transition metal-Al alloys. The free electron model, applied for the polycrystalline Al-Ti films with Ti content up to 20%, leads to an optical reflectance at near infrared wavelengths that scales linearly with the square root of the electrical resistivity.

  9. Surface oxidation of polycrystalline cadmium telluride thin films for Schottky barrier junction solar cells

    NASA Astrophysics Data System (ADS)

    Yi, X.; Liou, J. J.

    1995-06-01

    Polycrystalline CdTe thin films grown on graphite or tungsten-coated graphite substrates by chemical vapor deposition (CVD) were exposed to the air at room temperature in a natural atmosphere of about 60% air humidity for 6 months. X-ray photoemission spectroscopy (XPS) and Auger electron spectroscopy (AES) of the films indicate that a tellurium dioxide (TeO 2) overlayer has formed from this process. The effects of such an overlayer on the electrical property of polycrystalline CdTe-based Schottky barrier junction solar cells have also been discussed for the first time. It is shown that a solar cell formed on a CdTe film with TeO 2 overlayer has considerably higher open-circuit voltage and fill factor than that formed on a CdTe film without TeO 2 overlayer. Our study further indicates that using a polycrystalline CdTe film which is thermally oxidized at above room temperature (100-400°C) does not provide any improvement on the solar cell efficiency.

  10. Thermal boundary resistance between the polycrystalline graphene and the amorphous SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Li, Ting; Tang, Zhenan; Huang, Zhengxing; Yu, Jun

    2017-10-01

    The interface between graphene and substrate plays a very important role in graphene-based advanced devices. We examine the thermal boundary resistance R of the graphene/silicon dioxide (Gr/SiO2) interface by using molecular dynamics simulations. R decreases monotonically with the increase of temperature and exhibits a strong dependence on the substrate coupling strength. Due to the polycrystalline nature of graphene, we show that the presence of periodic 5-7, 5-8-5 and 5-7-5-7 grain boundaries in graphene enhances phonon transmission across the Gr/SiO2 interface, which are attributed to both the increased overlap in the phonon spectra and more inelastic scattering at the interface.

  11. Structural characterization and optical properties of Sol-gel-derived polycrystalline Pb(Zr0.35Ti0.65)O3 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Rong Jun; Wang, Zi Yi; Zheng, Yu Xiang; Wang, Song You; Zhao, Hai Bin; Chen, Liang Yao; Liu, Xiao Bin; Jiang, An Quan

    2013-07-01

    Polycrystalline Pb(Zr0.35Ti0.65)O3 thin films prepared on Pt/Ti/SiO2/Si substrate by using solgel technique were characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM). The optical properties of the films were investigated by using spectroscopic ellipsometry (SE) with a four-phase optical model, air/roughness layer/PZT layer/Pt layer in the spectral range of 300-800 nm. The optical band gap of the films calculated following the Tauc's Law was smaller than that of an amorphous PZT thin film with some microcrystals existing on the surface. The result indicates that the quantum-size effect leads to an increase in band gap when the crystalline dimensions become very small.

  12. Evaluation of Electrical Characteristics and Trap-State Density in Bottom-Gate Polycrystalline Thin Film Transistors Processed with High-Pressure Water Vapor Annealing

    NASA Astrophysics Data System (ADS)

    Kunii, Masafumi

    2006-02-01

    This paper discusses electrical characteristics and trap-state density in polycrystalline silicon (poly-Si) used in bottom-gate poly-Si thin film transistors (TFTs) processed with high-pressure water vapor annealing (HWA). The threshold voltage uniformity of the HWA-processed TFTs is improved by 42% for N-channel and 38% for P-channel TFTs in terms of standard deviation, and carrier mobility is enhanced by 10% or greater for both N- and P-channel TFTs than those TFTs processed conventionally. Subthreshold swing is also improved by HWA, showing that HWA postannealing is effective for improving the Si/SiO2 interface of the bottom-gate TFTs. Two types of TFTs having different poly-Si crystallinities are examined to investigate carrier transport in poly-Si processed by HWA postannealing. The evaluation of trap-state density for the two types of poly-Si reveals that HWA postannealing is more efficient for N-channel than for P-channel TFTs. Furthermore, HWA postannealing is more effective for poly-Si with high crystallinity to improve TFT characteristics. The analysis of the trap-state distributions and the activation energy of TFT drain current indicate that HWA deactivates dangling bonds highly localized at poly-Si grain boundaries (GBs). Thus, HWA postannealing effects can be interpreted by a GB barrier potential model similar to that applied to conventional hydrogenation.

  13. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  14. Impact of universal mobility law on polycrystalline organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Raja, Munira; Donaghy, David; Myers, Robert; Eccleston, Bill

    2012-10-01

    We have developed novel analytical models for polycrystalline organic thin-film transistor (OTFT) by employing new concepts on the charge carrier injection to polysilicon thin-films. The models, also incorporate the effect of contact resistance associated with the poor ohmic nature of the contacts. The drain current equations of the OTFT, both in the quasi-diffusion and quasi-drift regimes, predict temperature dependencies on essential material and device parameters. Interestingly, under the drift regime, the polycrystalline OTFT model reveals similar power dependencies on the applied voltages, to those of purely disordered model developed by utilizing the universal mobility law (UML). Such similarities are not thought to be coincidental since the effect of gate voltage on surface potential is influenced by the Fermi level pinning in the grain boundary. Nonetheless, the best fits on the data of 6,13-bis(tri-isopropylsilylethynyl) OTFTs are attained with the proposed polycrystalline rather than the disordered model, particularly at low gate voltages where the diffusive component is dominant. Moreover, in order to understand the effect of grain boundaries, we devise a relationship for the dependency of the effective mobility on carrier concentration, assuming a crystalline region to be in direct contact with a disordered region. Interestingly, we find a similar dependency as the UML in purely disordered materials, which further signifies the conduction to be limited by the grain boundaries. Subsequently, an analytical model for the variation of the effective mobility with gate voltage is established. Such models are vital in assisting the development of more accurate designs of the novel organic circuits.

  15. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Magnfält, D.; Fillon, A.; Boyd, R. D.; Helmersson, U.; Sarakinos, K.; Abadias, G.

    2016-02-01

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  16. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    SciTech Connect

    Magnfält, D. Sarakinos, K.; Fillon, A.; Abadias, G.; Boyd, R. D.; Helmersson, U.

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  17. Schottky Barrier Thin Film Transistor (SB-TFT) on low-temperature polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    De Iacovo, A.; Ferrone, A.; Colace, L.; Minotti, A.; Maiolo, L.; Pecora, A.

    2016-12-01

    We report on the fabrication and characterization of Schottky barrier transistors on polycrystalline silicon. The transistors were realized exploiting Cr-Si and Ti-Si Schottky barrier with a low thermal budget process, compatible with polymeric, ultraflexible substrates. We obtained devices with threshold voltages as low as 1.7 V (for n channel) and 4 V (for p channel) with channel lengths ranging from 2 to 40 μm. Resulting on/off ratios are as high as 5 · 103. The devices showed threshold voltages and subthreshold slopes comparable with already published N- and P-MOS devices realized with the same process on polyimide substrates thus representing a cheaper and scalable alternative to ultraflexible transistors with doped source and drain.

  18. Thermal characterization of polycrystalline diamond thin film heat spreaders grown on GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ramaneti, Rajesh; Anaya, Julian; Korneychuk, Svetlana; Derluyn, Joff; Sun, Huarui; Pomeroy, James; Verbeeck, Johan; Haenen, Ken; Kuball, Martin

    2017-07-01

    Polycrystalline diamond (PCD) was grown onto high-k dielectric passivated AlGaN/GaN-on-Si high electron mobility transistor (HEMT) structures, with film thicknesses ranging from 155 to 1000 nm. Transient thermoreflectance results were combined with device thermal simulations to investigate the heat spreading benefit of the diamond layer. The observed thermal conductivity (κDia) of PCD films is one-to-two orders of magnitude lower than that of bulk PCD and exhibits a strong layer thickness dependence, which is attributed to the grain size evolution. The films exhibit a weak temperature dependence of κDia in the measured 25-225 °C range. Device simulation using the experimental κDia and thermal boundary resistance values predicts at best a 15% reduction in peak temperature when the source-drain opening of a passivated AlGaN/GaN-on-Si HEMT is overgrown with PCD.

  19. Mixed Al and Si doping in ferroelectric HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Moghaddam, Saeed; Jones, Jacob L.; Nishida, Toshikazu

    2015-12-01

    Ferroelectric HfO2 thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO2 greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ˜20 μC/cm2 and a coercive field strength of ˜1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO2 thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO2 thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO2 thin films exhibit a remanent polarization greater than 15 μC/cm2 up to 108 cycles.

  20. Mixed Al and Si doping in ferroelectric HfO{sub 2} thin films

    SciTech Connect

    Lomenzo, Patrick D.; Nishida, Toshikazu; Takmeel, Qanit; Zhou, Chuanzhen; Chung, Ching-Chang; Jones, Jacob L.; Moghaddam, Saeed

    2015-12-14

    Ferroelectric HfO{sub 2} thin films 10 nm thick are simultaneously doped with Al and Si. The arrangement of the Al and Si dopant layers within the HfO{sub 2} greatly influences the resulting ferroelectric properties of the polycrystalline thin films. Optimizing the order of the Si and Al dopant layers led to a remanent polarization of ∼20 μC/cm{sup 2} and a coercive field strength of ∼1.2 MV/cm. Post-metallization anneal temperatures from 700 °C to 900 °C were used to crystallize the Al and Si doped HfO{sub 2} thin films. Grazing incidence x-ray diffraction detected differences in peak broadening between the mixed Al and Si doped HfO{sub 2} thin films, indicating that strain may influence the formation of the ferroelectric phase with variations in the dopant layering. Endurance characteristics show that the mixed Al and Si doped HfO{sub 2} thin films exhibit a remanent polarization greater than 15 μC/cm{sup 2} up to 10{sup 8} cycles.

  1. Femtosecond laser heat affected zones profiled in Co/Si multilayer thin films

    SciTech Connect

    Picard, Yoosuf N.; Yalisove, Steven M.

    2008-01-07

    In this letter, we describe an approach for assessing collateral thermal damage resulting from high intensity, femtosecond laser irradiation. Polycrystalline Co thin films deposited on Si (100) substrates and buried under an amorphous Si film were prepared for plan-view transmission electron microscopy (TEM) prior to laser irradiation by femtosecond laser pulses. A heat affected zone (HAZ) resulting from single pulse irradiation at a fluence of 0.9 J/cm{sup 2} was determined by TEM imaging and point-wise selected area diffraction. The spatially Gaussian laser pulse generated a HAZ extending up to 3 {mu}m radially from the femtosecond laser irradiated region.

  2. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg1-xCdxTe, Pb1-xCdxTe, Hg1-xZnxTe, and Pb1-xZnxS cover the region of interest of 0.50-0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50-0.75 eV range are Pb1-xZnxTe, Sn1-xCd2xTe2, Pb1-xCdxSe, Pb1-xZnxSe, and Pb1-xCdxS. Hg1-xCdxTe (with x~0.21) has been studied extensively for infrared detectors. PbTe and Pb1-xSnxTe have also been studied for infrared detectors. Not much work has been carried out on Hg1-xZnxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg1-xCdxTe thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg1-xCdxTe is to provide excess mercury incidence rate, to optimize the deposition parameters for enhanced mercury incorporation, and to achieve the requisite stoichiometry, grain size, and doping. MBE and MOCVD

  3. Effects of gate insulator using high pressure annealing on the characteristics of solid phase crystallized polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Moojin; Jin, GuangHai

    2009-04-01

    The oxidizing ambient was built using high pressure H2O vapor at 550 °C. For the solid phase crystallization (SPC) polycrystalline silicon (poly-Si) that is annealed for 1 h at 2 MPa, the oxide thickness is about 150 Å. The oxide layer is approximately 90 Å above the original surface of the poly-Si and 60 Å below the original surface. The oxide layer is used as the first gate insulator layer of thin-film transistors (TFTs). The heating at 550 °C with 2 MPa H2O vapor increased the carrier mobility from 17.6 cm2/V s of the conventional SPC process to 30.4 cm2/V s, and it reduced the absolute value of the threshold voltage (Vth) from 4.13 to 3.62 V. The subthreshold swing also decreased from 0.72 to 0.60 V/decade. This improvement is attributed mainly to the reduction in defect density at the oxide/poly-Si interface and in the poly-Si film by the high pressure annealing (HPA) process. Since the realization of excellent performance at the oxide/poly-Si interface and in poly-Si depends on the defect density, the poly-Si having the thermal oxide formed by a combined process of SPC and HPA may be well suited for fabrication of poly-Si TFTs for flat panel displays such as active matrix organic light emitting diodes.

  4. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.

    PubMed

    Zhou, Yanguang; Hu, Ming

    2016-10-12

    Thermoelectrics offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Nanoengineering existing low-dimensional thermoelectric materials pertaining to realizing fundamentally low thermal conductivity has emerged as an efficient route to achieve high energy conversion performance for advanced thermoelectrics. In this paper, by performing nonequilibrium and Green-Kubo equilibrium molecular dynamics simulations we report that the thermal conductivity of Si nanowires (NWs) in polycrystalline form can reach a record low value substantially below the Casimir limit, a theory of diffusive boundary limit that regards the direction-averaged mean free path is limited by the characteristic size of the nanostructures. The astonishingly low thermal conductivity of polycrystalline Si NW is 269 and 77 times lower with respect to that of bulk Si and pristine Si NW, respectively, and is even only about one-third of the value of the purely amorphous Si NW at room temperature. By examining the mode level phonon behaviors including phonon group velocities, lifetime, and so forth, we identify the mechanism of breaking the Casimir limit as the strong localization of the middle and high frequency phonon modes, which leads to a prominent decrease of effective mean free path of the heat carriers including both propagons and diffusons. The contribution of the propagons to the overall thermal transport is further quantitatively characterized and is found to be dramatically suppressed in polycrystalline Si NW form as compared with bulk Si, perfect Si NW, and pure amorphous Si NW. Consequently, the diffusons, which transport the heat through overlap with other vibrations, carry the majority of the heat in polycrystalline Si NWs. We also proposed approach of introducing "disorder" in the polycrystalline Si NWs that could eradicate the contribution of propagons to achieve an even lower thermal conductivity than that ever thought possible

  5. Mechanical behavior of polycrystalline ceramics: Brittle fracture of SiC-Si3N4 materials

    NASA Technical Reports Server (NTRS)

    Ceipold, M. H.; Kapadia, C. M.; Kelkar, A. H.

    1972-01-01

    Research on the fracture behavior of silicon nitride and silicon carbide is reported along with the role of anion impurities in the fabrication and behavior of magnesium oxide. The results of a survey of crack propagation in SiC and Si3N4 are presented. Studies in the following areas are reported: development of a fracture toughness testing technique, constant moment beam, microcrack examination, and etching techniques.

  6. Large exchange-bias in Ni55Mn19Al24Si2 polycrystalline ribbons

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Ingale, Babita; Varga, Lajos K.; Khovaylo, Vladimir V.; Chatterjee, Ratnamala

    2014-09-01

    The crystal structure, phase transition and exchange bias effect in induction melted polycrystalline ribbons of Ni55Mn19Al24Si2 have been studied using room temperature x-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The sample was found to show structural transformation temperatures such as austenite start (As)=306 K, austenite finish (Af)=316 K, martensite start (Ms)=305 K and martensite finish (Mf)=294 K all above room temperature. The room temperature structure evaluated as orthorhombic 14 M with lattice parameters a=4.14 Å, b=29.84 Å, and c=5.72 Å. Importantly at 2 K, the sample showed a large exchange bias field of about 2520 Oe, which is the maximum value ever reported among the Heusler alloy samples.

  7. Magnetic anisotropy of polycrystalline high-temperature ferromagnetic MnxSi1-x (x ≈ 0.5) alloy films

    NASA Astrophysics Data System (ADS)

    Drovosekov, A. B.; Kreines, N. M.; Savitsky, A. O.; Kapelnitsky, S. V.; Rylkov, V. V.; Tugushev, V. V.; Prutskov, G. V.; Novodvorskii, O. A.; Shorokhova, A. V.; Wang, Y.; Zhou, S.

    2017-05-01

    A set of thin film MnxSi1-x alloy samples with different manganese concentration x ≈ 0.44 - 0.63 grown by the pulsed laser deposition (PLD) method onto the Al2O3 (0001) substrate was investigated in the temperature range 4-300 K using ferromagnetic resonance (FMR) measurements in the wide range of frequencies (f = 7 - 60 GHz) and magnetic fields (H = 0 - 30 kOe). For samples with x ≈ 0.52 - 0.55 , FMR data show clear evidence of ferromagnetism with high Curie temperatures TC ∼ 300 K . These samples demonstrate a complex magnetic anisotropy described phenomenologically as a combination of the essential second order easy plane anisotropy contribution and the additional fourth order uniaxial anisotropy contribution with easy direction normal to the film plane. The observed anisotropy is attributed to a polycrystalline (mosaic) structure of the films caused by the film-substrate lattice mismatch. The existence of extra strains at the crystallite boundaries initiates a random distribution of local in-plane anisotropy axes in the samples. As a result, the symmetry of the net magnetic anisotropy is axial with the symmetry axis normal to the film plane. The principal features of the observed anisotropy are explained qualitatively within the proposed microscopic model.

  8. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    NASA Astrophysics Data System (ADS)

    Kumar, Dileep; Singh, Sadhana; Vishawakarma, Pramod; Dev, Arun Singh; Reddy, V. R.; Gupta, Ajay

    2016-11-01

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress.

  9. Abnormal Threshold Voltage Shifts in P-Channel Low-Temperature Polycrystalline Silicon Thin Film Transistors Under Negative Bias Temperature Stress.

    PubMed

    Kim, Sang Sub; Choi, Pyung Ho; Baek, Do Hyun; Lee, Jae Hyeong; Choi, Byoung Deog

    2015-10-01

    In this research, we have investigated the instability of P-channel low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS TFTs) with double-layer SiO2/SiNx dielectrics. A negative gate bias temperature instability (NBTI) stress was applied and a turn-around behavior phenomenon was observed in the Threshold Voltage Shift (Vth). A positive threshold voltage shift occurs in the first stage, resulting from the negative charge trapping at the SiNx/SiO2 dielectric interface being dominant over the positive charge trapping at dielectric/Poly-Si interface. Following a stress time of 7000 s, the Vth switches to the negative voltage direction, which is "turn-around" behavior. In the second stage, the Vth moves from -1.63 V to -2 V, overwhelming the NBTI effect that results in the trapping of positive charges at the dielectric/Poly-Si interface states and generating grain-boundary trap states and oxide traps.

  10. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  11. Inducing conductivity in polycrystalline ZnO1-x thin films through space charge doping

    NASA Astrophysics Data System (ADS)

    Paradisi, Andrea; Biscaras, Johan; Shukla, Abhay

    2017-09-01

    We induce ultra-high carrier charge density in polycrystalline zinc oxide thin films on glass with a thickness of few tens of nm, achieving carrier concentrations as high as 2.2 ×1014 cm-2, well beyond the Ioffe-Regel limit for an insulator-metal transition in two dimensions. The sheet resistance is consequently lowered by up to 5 orders of magnitude to about 2 k Ω/◻ without alteration of transparency thanks to our space charge doping technique. Electrostatic doping of such a large band-gap semiconductor is quite challenging, and a high surface potential is required in order to induce conductivity at the interface. Through magneto-transport measurements performed at low temperature on the doped films, we show that both weak localization and weak anti-localization of charge carriers can be observed and that these quantum interference phenomena can be modulated by the carrier concentration and temperature.

  12. Metastable electrical characteristics of polycrystalline thin-film photovoltaic modules upon exposure and stabilization

    NASA Astrophysics Data System (ADS)

    Deline, Chris A.; del Cueto, Joseph A.; Albin, David S.; Rummel, Steve R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65°C exposed in the dark under forward bias at 65°C and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  13. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    SciTech Connect

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  14. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    NASA Technical Reports Server (NTRS)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2011-01-01

    Polycrystalline superconducting Nb thin films are extensively used for submillimeter and millimeter transmission line applications and, less commonly, used in microwave kinetic inductance detector (MKID) applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the x-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  15. Charge retention characteristics of silicide-induced crystallized polycrystalline silicon floating gate thin-film transistors for active matrix organic light-emitting diode.

    PubMed

    Park, Jae Hyo; Son, Se Wan; Byun, Chang Woo; Kim, Hyung Yoon; Joo, So Na; Lee, Yong Woo; Yun, Seung Jae; Joo, Seung Ki

    2013-10-01

    In this work, non-volatile memory thin-film transistor (NVM-TFT) was fabricated by nickel silicide-induced laterally crystallized (SILC) polycrystalline silicon (poly-Si) as the active layer. The nickel seed silicide-induced crystallized (SIC) poly-Si was used as storage layer which is embedded in the gate insulator. The novel unit pixel of active matrix organic light-emitting diode (AMOLED) using NVM-TFT is proposed and investigated the electrical and optical performance. The threshold voltage shift showed 17.2 V and the high reliability of retention characteristic was demonstrated until 10 years. The retention time can modulate the recharge refresh time of the unit pixel of AMOLED up to 5000 sec.

  16. Controllability of self-aligned four-terminal planar embedded metal double-gate low-temperature polycrystalline-silicon thin-film transistors on a glass substrate

    NASA Astrophysics Data System (ADS)

    Ohsawa, Hiroki; Sasaki, Shun; Hara, Akito

    2016-03-01

    Self-aligned four-terminal n-channel (n-ch) and p-channel (p-ch) planar embedded metal double-gate polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) were fabricated on a glass substrate at a low temperature of 550 °C. This device includes a metal top gate (TG) and a metal bottom gate (BG), which are used as the drive and control gates or vice versa. The BG was embedded in a glass substrate, and a poly-Si channel with large lateral grains was fabricated by continuous-wave laser lateral crystallization. The threshold voltage modulation factors under various control gate voltages (γ = ΔVth/ΔVCG) were nearly equal to the theoretical predictions in both the n- and p-ch TFTs. By exploiting this high controllability, an enhancement depletion (ED) inverter was fabricated, and successful operation at 2.0 V was confirmed.

  17. Impact of the n+ emitter layer on the structural and electrical properties of p-type polycrystalline silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Hidayat, H.; Ke, C.; Chakraborty, S.; Dalapati, G. K.; Widenborg, P. I.; Tan, C. C.; Dolmanan, S.; Aberle, A. G.

    2013-10-01

    The effect of the phosphine (PH3) flow rate on the doping profile, in particular the peak doping concentration of the n+ emitter layer, of solid phase crystallised polycrystalline silicon thin-film solar cells on glass is investigated by electrochemical capacitance-voltage profiling. The peak n+ layer doping is found to increase with increasing PH3 gas flow, resulting in a shift of the p-n junction location towards the centre of the diode. The impact of the PH3 flow rate on the crystal quality of the poly-Si films is analysed using ultraviolet (UV) reflectance and UV/visible Raman spectroscopy. The impact of the PH3 flow rate on the efficiency of poly-Si thin-film solar cells is investigated using electrical measurements. An improvement in the efficiency by 46% and a pseudo energy conversion efficiency of 5% was obtained through precise control of the flow rate at an intermediate n+ emitter layer doping concentration of 1.0 × 1019 cm-3. The best fabricated poly-Si thin-film solar cell is also found to have the highest crystal quality factor, based on both Raman and UV reflectance measurements.

  18. A multiscale coupled finite-element and phase-field framework to modeling stressed grain growth in polycrystalline thin films

    SciTech Connect

    Jamshidian, M.; Thamburaja, P.; Rabczuk, T.

    2016-12-15

    A previously-developed finite-deformation- and crystal-elasticity-based constitutive theory for stressed grain growth in cubic polycrystalline bodies has been augmented to include a description of excess surface energy and grain-growth stagnation mechanisms through the use of surface effect state variables in a thermodynamically-consistent manner. The constitutive theory was also implemented into a multiscale coupled finite-element and phase-field computational framework. With the material parameters in the constitutive theory suitably calibrated, our three-dimensional numerical simulations show that the constitutive model is able to accurately predict the experimentally-determined evolution of crystallographic texture and grain size statistics in polycrystalline copper thin films deposited on polyimide substrate and annealed at high-homologous temperatures. In particular, our numerical analyses show that the broad texture transition observed in the annealing experiments of polycrystalline thin films is caused by grain growth stagnation mechanisms. - Graphical abstract: - Highlights: • Developing a theory for stressed grain growth in polycrystalline thin films. • Implementation into a multiscale coupled finite-element and phase-field framework. • Quantitative reproduction of the experimental grain growth data by simulations. • Revealing the cause of texture transition to be due to the stagnation mechanisms.

  19. Thin film transistors with wurtzite ZnO channels grown on Si3N4/SiO2/Si (111) substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Sandana, V. E.; Teherani, F. Hosseini; Razeghi, M.

    2010-03-01

    Thin Film Transistors (TFT) were made by growing ZnO on Si3N4/SiO2/Si (111) substrates by pulsed laser deposition. X-ray diffraction and scanning electron microscope studies revealed the ZnO to have a polycrystalline wurtzite structure with a smooth surface, good crystallographic quality and a strong preferential c-axis orientation. Transmission studies in similar ZnO layers on glass substrates showed high transmission over the whole visible spectrum. Electrical measurements of a back gate geometry FET showed an enhancement-mode response with hard saturation, mA range Id and a VON ~ 0V. When scaled down, such TFTs may be of interest for high frequency applications.

  20. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

    NASA Astrophysics Data System (ADS)

    Wang, Tianyue; Chen, Jiewei; Wu, Gaoxiang; Song, Dandan; Li, Meicheng

    2017-01-01

    Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures: sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells. Project supported by the National High-Tech R&D Program of China (No. 2015AA034601), the National Natural Science Foundation of China (Nos. 91333122, 61204064, 51202067, 51372082, 51402106, 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20120036120006, 20130036110012), the Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.

  1. Chemical speciation at buried interfaces in high-temperature processed polycrystalline silicon thin-film solar cells on ZnO:Al

    NASA Astrophysics Data System (ADS)

    Becker, Christiane; Pagels, Marcel; Zachäus, Carolin; Pollakowski, Beatrix; Beckhoff, Burkhard; Kanngießer, Birgit; Rech, Bernd

    2013-01-01

    The combination of polycrystalline silicon (poly-Si) thin films with aluminum doped zinc oxide layers (ZnO:Al) as transparent conductive oxide enables the design of appealing optoelectronic devices at low costs, namely in the field of photovoltaics. The fabrication of both thin-film materials requires high-temperature treatments, which are highly desired for obtaining a high electrical material quality. Annealing procedures are typically applied during crystallization and defect-healing processes for silicon and can boost the carrier mobility and conductivity of ZnO:Al layers. In a combined poly-Si/ZnO:Al layer system, an in-depth knowledge of the interaction of both layers and the control of interface reactions upon thermal treatments is crucial. Therefore, we analyze the influence of rapid thermal treatments up to 1050 °C on solid phase crystallized poly-Si thin-film solar cells on ZnO:Al-coated glass, focusing on chemical interface reactions and modifications of the poly-Si absorber material quality. The presence of a ZnO:Al layer in the solar cell stack was found to limit the poly-Si solar cell performance with open circuit voltages only below 390 mV (compared to 435 mV without ZnO film), even if a silicon nitride (SiN) diffusion barrier was included. A considerable amount of diffused zinc inside the silicon was observed. By grazing-incidence X-ray fluorescence spectrometry, a depth-resolving analysis of the elemental composition close to the poly-Si/(SiN)/ZnO:Al interface was carried out. Temperatures above 1000 °C were found to promote the formation of new chemical compounds within about 10 nm of interface, such as zinc silicates (Zn2SiO4) and aluminium oxide (AlxOy). These results give valuable insights about the temperature-limitations of Si/ZnO thin-film solar cell fabrication and the formation of high-mobility ZnO-layers by thermal anneal.

  2. Strain evolution of each type of grains in poly-crystalline (Ba,Sr)TiO3 thin films grown by sputtering

    PubMed Central

    Park, Woo Young; Park, Min Hyuk; Lee, Jong Ho; Yoon, Jung Ho; Han, Jeong Hwan; Choi, Jung-Hae; Hwang, Cheol Seong

    2012-01-01

    The strain states of [111]-, [110]-, and [002]-oriented grains in poly-crystalline sputtered (Ba,Sr)TiO3 thin films on highly [111]-oriented Pt electrode/Si substrates were carefully examined by X-ray diffraction techniques. Remarkably, [002]-oriented grains respond more while [110]- and [111]-oriented grains do less than the theoretically estimated responses, which is understandable from the arrangement of the TiO6 octahedra with respect to the stress direction. Furthermore, such mechanical responses are completely independent of the degree of crystallization and film thickness. The transition growth temperature between the positive and negative strains was also different depending on the grain orientation. The unstrained lattice parameter for each type of grain was different suggesting that the oxygen vacancy concentration for each type of grain is different, too. The results reveal that polycrystalline (Ba,Sr)TiO3 thin films are not an aggregation of differently oriented grains which simply follow the mechanical behavior of single crystal with different orientations. PMID:23230505

  3. BiSI Micro-Rod Thin Films: Efficient Solar Absorber Electrodes?

    PubMed

    Hahn, Nathan T; Self, Jeffrey L; Mullins, C Buddie

    2012-06-07

    The development of improved solar energy conversion materials is critical to the growth of a sustainable energy infrastructure in the coming years. We report the deposition of polycrystalline BiSI thin films exhibiting promising photoelectrochemical properties on both metal foils and fluorine-doped tin-oxide-coated glass slides using a single-source chemical spray pyrolysis technique. Their strong light absorption in the visible range and well-crystallized layered structure give rise to their excellent photoelectrochemical performance through improved electron-hole generation and separation. The structure and surface composition of the films are dependent on deposition temperature, resulting in dramatic differences in performance over the temperature range studied. These results reveal the potential of n-BiSI as an alternative thin film solar energy conversion material and may stimulate further investigation into V-VI-VII compounds for these applications.

  4. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  5. Synthesis and characterization of polycrystalline semiconductor Caesium-Tin tri-Iodide thin-films

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo

    This thesis deals with a virtually unexplored semiconductor material CsSnI3 from material synthesis, structural, optical, and electrical characterization to the fabrication and validation of CsSnI3 thin-film solar cells. We started with synthesizing CsSnI3 thin films based on CsI and SnCl2 (or SnI2) by using an apparatus which consists of e-beam and thermal evaporators. The quality of polycrystalline CsSnI3 thin-films were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Experimental data on XRD and electron diffraction patterns taking from the synthesized thin-films match very well to the theoretically calculated ones based the first principles calculations, confirming that the synthesized CsSnI3 thin-films have an orthorhombic crystal structure. With the well-defined crystal structure, we theoretically studied the electronic band structure of CsSnI3. Extensive optical characterizations of CsSnI3 thin-films were then carried out revealing many extraordinary properties such as 1) direct band gap energy of 1.32 eV at 300 K with its abnormal temperature dependence, 2) extremely high photoluminescence quantum yield, 3) large exciton binding energy, and 4) strong two-phonon assisted excitonic absorption near band edge. These properties are interpreted in terms of the unique electronic and structural properties of CsSnI3. The value of 1.3 eV for the energy band gap of CsSnI3 suggests a unique application of CsSnI3 thin-films on solar cells. This is because this value is right in the small range of the optimal band gaps for the Shockley-Queisser maximum efficiency limit of a single-junction solar cell. A prototype Schottky solar cell was designed, fabricated, and validated. The measured power conversion efficiency (PCE) is 0.9 % which is presently limited by the series and shunt resistance. The improvement strategy on PCE is given at the end of my thesis. In order to make the CsSnI3 thin-film solar cells

  6. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    SciTech Connect

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    III-V photovoltaics have exhibited efficiencies above 40%, but have found only a limited use because of the high cost of single crystal substrates. At the other end of the spectrum, polycrystalline and amorphous thin film solar cells offer the advantage of low-cost fabrication, but have not yielded high efficiencies. Our program is based on single-crystalline-like thin film photovoltaics on polycrystalline substrates using biaxially-textured templates made by Ion Beam-Assisted Deposition (IBAD). MgO templates made by IBAD on flexible metal substrate have been successfully used for epitaxial growth of germanium films. In spite of a 4.5% lattice mismatch, heteroepitaxial growth of Ge was achieved on CeO2 that was grown on IBAD MgO template. Room temperature optical bandgap of the Ge films was identified at 0.67 eV indicating minimal residual strain. Refraction index and extinction coefficient values of the Ge films were found to match well with that measured from a reference Ge single crystal. GaAs has been successfully grown epitaxially on Ge on metal substrate by molecular beam epitaxy. RHEED patterns indicate self annihilation of antiphase boundaries and the growth of a single domain GaAs. The GaAs is found to exhibit strong photoluminescence signal and, an existence of a relatively narrow (FWHM~20 meV) band-edge excitons measured in this film indicates a good optoelectronic quality of deposited GaAs. While excellent epitaxial growth has been achieved in GaAs on flexible metal substrates, the defect density of the films as measured by High Resolution X-ray Diffraction and etch pit experiments showed a high value of 5 * 10^8 per cm^2. Cross sectional transmission electron microscopy of the multilayer architecture showed concentration of threading dislocations near the germanium-ceria interface. The defect density was found decrease as the Ge films were made thicker. The defects appear to originate from the MgO layer presumably because of large lattice mismatches

  7. Thickness dependence of structure and piezoelectric properties at nanoscale of polycrystalline lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Araújo, E. B.; Lima, E. C.; Bdikin, I. K.; Kholkin, A. L.

    2013-05-01

    Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films.

  8. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films

    SciTech Connect

    Wang, Qi; Chen, Bo; Liu, Ye; Deng, Yehao; Bai, Yang; Dong, Qingfeng; Huang, Jinsong

    2017-01-01

    The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH3NH3PbI3 films. The degradation rates of CH3NH3PbI3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the films were formed by five different deposition methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH3NH3PbI3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.

  9. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films

    DOE PAGES

    Wang, Qi; Chen, Bo; Liu, Ye; ...

    2017-01-01

    The stability of perovskite solar cells has shown a huge variation with respect to the film process and film morphology, while the underlining mechanism for the morphology-dependent degradation of the perovskite film has remained elusive. Herein, we report a scaling behavior of moisture-induced grain degradation in polycrystalline CH3NH3PbI3 films. The degradation rates of CH3NH3PbI3 films in moisture were shown to be sensitive to the grain sizes. The duration that was needed for different films to degrade by the same percent showed a linear relationship with the grain size, despite the fact that the films were formed by five different depositionmore » methods. This scaling behavior can be explained by the degradation along the in-plane direction, which is initiated at the grain boundary (GB). The GBs of CH3NH3PbI3 films consist of an amorphous intergranular layer, which allows quick diffusion of moisture into the perovskite films. It was found that thermal annealing induced surface self-passivation plays a critical role in stabilizing the surfaces of thin films and single crystals by reducing the moisture-sensitive methylammonium ions at the surface. Finally, the determination of the scaling behavior of grain degradation highlights the importance of stabilizing the GBs to improve the stability of perovskite solar cells.« less

  10. POLYCRYSTALLINE THIN FILM SOLAR CELLS:Present Status and Future Potential

    NASA Astrophysics Data System (ADS)

    Birkmire, Robert W.; Eser, Erten

    1997-08-01

    Polycrystalline thin film solar cells on copper indium diselenide (CulnSe2) and its alloys and cadmium telluride (CdTe) appear to be the most promising candidates for large-scale application of photovoltaic energy conversion because they have shown laboratory-efficiences in excess of 15%. Heterojunction devices with n-type cadmium sulfide (CdS) films show very low minority carrier recombination at the absorber grain boundaries and at the metallurgical interface, which results in high quantum efficiences. Open circuit voltages of these devices are relatively low owing to the recombination in the space charge region in the absorber. Further improvements in efficiency can be achieved by reducing the recombination current, especially in devices based on CulnSe2 and its alloys. Low-cost manufacturing of modules requires better resolution of a number of other technical issues. For modules based on CulnSe2 and its alloys, the role of Na and higher deposition rates on device performance need to be better understood. In addition, replacing the chemical bath deposition method for CdS film deposition with an equally effective, but more environmentally acceptable process is needed. For modules based on CdTe, more fundamental understanding of the effect of chloride/oxygen treatment and the development of more reproducible and manufacturable CdTe contacting schemes are necessary.

  11. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  12. Reactive sputtering of YBaCuO thin films on polycrystalline zirconia substrates: optimization results

    NASA Astrophysics Data System (ADS)

    Degardin, A.; Bodin, C.; Dolin, C.; Kreisler, A.

    1998-01-01

    In situ elaboration of YBaCuO thin films, on polycrystalline yttria doped zirconia substrates, has been optimized. A reactive sputtering model has been developed and the electrical conductivity of the substrate has been studied as a function of temperature and doping. The J_c value of ≈ 3× 10^4~A/cm^2 at 77 K, measured on microbridges, is among the best reported in the literature for this substrate type. L'élaboration in situ de films minces d'YBaCuO, sur substrats de zircone polycristalline dopée à l'oxyde d'yttrium, a été optimisée en développant un modèle de pulvérisation réactive et en étudiant la conductivité électrique du substrat en fonction du dopage et de la température. La valeur de J_c ≈ 3× 10^4 ~A/cm^2 à 77 K, mesurée sur microponts, se situe parmi les meilleures citées dans la littérature pour ce type de substrat.

  13. Local impedance imaging of boron-doped polycrystalline diamond thin films

    NASA Astrophysics Data System (ADS)

    Zieliński, A.; Bogdanowicz, R.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-01

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 1016 to 2 × 1021 atoms cm-3. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp2 regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  14. Local electrical conduction in polycrystalline La-doped BiFeO₃ thin films.

    PubMed

    Zhou, Ming-Xiu; Chen, Bo; Sun, Hai-Bin; Wan, Jian-Guo; Li, Zi-Wei; Liu, Jun-Ming; Song, Feng-Qi; Wang, Guang-Hou

    2013-06-07

    Local electrical conduction behaviors of polycrystalline La-doped BiFeO3 thin films have been investigated by combining conductive atomic force microscopy and piezoelectric force microscopy. Nanoscale current measurements were performed as a function of bias voltage for different crystal grains. Completely distinct conducting processes and resistive switching effects were observed in the grain boundary and grain interior. We have revealed that local electric conduction in a grain is dominated by both the grain boundary and ferroelectric domain, and is closely related to the applied electric field and the as-grown state of the grain. At lower voltages the electrical conduction is dominated by the grain boundary and is associated with the redistribution of oxygen vacancies in the grain boundary under external electric fields. At higher voltages both the grain boundary and ferroelectric domain are responsible for the electrical conduction of grains, and the electrical conduction gradually extends from the grain boundary into the grain interior due to the extension of the ferroelectric domain towards the grain interior. We have also demonstrated that the conduction dominated by the grain boundary exhibits a much small switching voltage, while the conduction of the ferroelectric domain causes a much high switching voltage in the grain interior.

  15. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    PubMed

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-07-02

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  16. 4H-SiC Schottky barrier diodes with semi-insulating polycrystalline silicon field plate termination

    NASA Astrophysics Data System (ADS)

    Yuan, Hao; Tang, Xiao-Yan; Zhang, Yi-Men; Zhang, Yu-Ming; Song, Qing-Wen; Yang, Fei; Wu, Hao

    2014-05-01

    Based on the theoretical analysis of the 4H-SiC Schottky-barrier diodes (SBDs) with field plate termination, 4H-SiC SBD with semi-insulating polycrystalline silicon (SIPOS) FP termination has been fabricated. The relative dielectric constant of the SIPOS dielectric first used in 4H-SiC devices is 10.4, which is much higher than that of the SiO2 dielectric, leading to benefitting the performance of devices. The breakdown voltage of the fabricated SBD could reach 1200 V at leakage current 20 μA, about 70% of the theoretical breakdown voltage. Meanwhile, both of the simulation and experimental results show that the length of the SIPOS FP termination is an important factor for structure design.

  17. Interconnected Si nanocrystals forming thin films with controlled bandgap values

    SciTech Connect

    Nychyporuk, T.; Zakharko, Yu.; Lysenko, V.; Lemiti, M.

    2009-08-24

    Interconnected Si nanocrystals forming homogeneous thin films with controlled bandgap values from 1.2 to 2.9 eV were formed by pulsed plasma enhanced chemical vapor deposition technique under dusty plasma conditions. The chosen values of plasma duration time correspond to specific phases of the dust nanoparticle growth. Structural and optical properties of the deposited nanostructured films are described in details. These nanocrystalline Si thin films seem to be promising candidates for all-Si tandem solar cell applications.

  18. Characterization of polycrystalline VO2 thin film with low phase transition temperature fabricated by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-04-01

    VO2 is a unique material that undergoes a reversible phase transformation around 68∘C. Currently, applications of VO2 on smart windows are limited by its high transition temperature. In order to reduce the temperature, VO2 thin film was fabricated on quartz glass substrate by high power impulse magnetron sputtering with a modulated pulsed power. The phase transition temperature has been reduced to as low as 32∘C. In addition, the VO2 film possesses a typical metal-insulator transition. X-ray diffraction and selected area electron diffraction patterns reveal that an obvious lattice distortion has been formed in the as-deposited polycrystalline VO2 thin film. X-ray photoelectron spectroscopy proves that oxygen vacancies have been formed in the as-deposited thin film, which will induce a lattice distortion in the VO2 thin film.

  19. High Energy Effects on Thermoelectric and Optical Properties of Si/Si+Sb Nanolayered Thin Films

    DTIC Science & Technology

    2013-04-01

    REPORT High Energy Effects on Thermoelectric and Optical Properties of Si/Si+Sb Nanolayered Thin Films 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We...Energy Effects on Thermoelectric and Optical Properties of Si/Si+Sb Nanolayered Thin Films Report Title ABSTRACT We have prepared thermoelectric...the cross plane Seebeck coefficient and increase the cross plane electrical conductivity to increase the figure of merit. Some optical

  20. Effect of Gallium Doping on the Characteristic Properties of Polycrystalline Cadmium Telluride Thin Film

    NASA Astrophysics Data System (ADS)

    Ojo, A. A.; Dharmadasa, I. M.

    2017-08-01

    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2·4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using x-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and the appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe. Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this paper.

  1. Height-resolved quantification of microstructure and texture in polycrystalline thin films using TEM orientation mapping.

    PubMed

    Aebersold, A Brian; Alexander, Duncan T L; Hébert, Cécile

    2015-12-01

    A method is presented for the quantitative investigation of microstructure and texture evolution in polycrystalline thin films based on in-plane automated crystal orientation mapping in transmission electron microscopy, from the substrate up. To demonstrate the method we apply it to the example of low pressure metal-organic chemical vapor deposited ZnO layers. First, orientation mapping is applied to standard cross-section and plan-view transmission electron microscopy samples of films, illustrating how plan-view samples both reduce the occurrence of grain overlap that is detrimental to reliable orientation mapping and also improve sampling statistics compared to cross-sections. Motivated by this, orientation mapping has been combined with a double-wedge method for specimen preparation developed by Spiecker et al. (2007) [1], which creates a large area plan-view sample that traverses the film thickness. By measuring >10,000 grains in the film, the resulting data give access to grain size, orientation and misorientation distributions in function of height above the substrate within the film, which are, in turn, the inputs necessary for quantitative assessment of growth models and simulations. The orientation data are directly related to microstructural images, allowing correlation of orientations with in-plane and out-of-plane grain sizes and shapes. The spatial correlation of the entire data set gives insights into previously unnoticed growth mechanisms such as the presence of renucleation or preferred misorientations. Finally, the data set can be used to guide targeted, local studies by other transmission electron microscopy techniques. This is demonstrated by the site-specific application of nano-beam diffraction to validate the presence of coherent [21̄1̄0]/(011̄3) twin boundaries first suggested by the orientation mapping.

  2. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  3. Organic solar cells based on liquid crystalline and polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Yoo, Seunghyup

    This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors. Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements. In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7% under broadband illumination (350--900 nm) with a peak external quantum efficiency of 58% have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using

  4. The Seebeck coefficient of monocrystalline α-SiC and polycrystalline β-SiC measured at 300-533 K

    NASA Astrophysics Data System (ADS)

    Abu-Ageel, N.; Aslam, M.; Ager, R.; Rimai, L.

    2000-01-01

    The temperature dependence of the Seebeck coefficient of polycrystalline icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> -SiC films deposited on quartz substrates by laser ablation and of commercially available icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> -SiC wafers is reported in a temperature range of 300-533 K for the first time. The Seebeck emf of icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> -SiC substrates and icons/Journals/Common/beta" ALT="beta" ALIGN="TOP"/> -SiC samples ranges between -9 µV °C-1 and -108 µV °C-1 which is higher than that of commercial Pt thermocouples.

  5. Synthesis of (SiC){sub 3}N{sub 4} thin films by ion implantation

    SciTech Connect

    Uslu, C.; Lee, D.H.; Berta, Y.; Park, B.; Thadhani, N.N.; Poker, D.B.

    1993-12-31

    We have investigated the synthesis of carbon-silicon-nitride compounds by ion implantation. In these experiments, 100 keV nitrogen ions were implanted into polycrystalline {beta}-SiC (cubic phase) at various substrate temperatures and ion doses. These thin films were characterized by x-ray diffraction with a position-sensitive detector, transmission electron microscopy with chemical analysis, and Rutherford backscattering spectroscopy. The as-implanted samples show a buried amorphous layer at a depth of 170 nm. Peak concentration of nitrogen saturates at approximately 45 at. % with doses above {approximately} 9.0 {times} 10{sup 17} N/cm{sup 2} at 860{degree}C. These results suggest formation of a new phase by nitrogen implantation into {beta}-SiC.

  6. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  7. Mechanical properties of free-standing polycrystalline metallic thin films and multilayers

    NASA Astrophysics Data System (ADS)

    Huang, Haibo

    1998-11-01

    A laser-diffraction tensile tester and a balance-beam creep apparatus were improved and applied to the study of free standing polycrystalline thin films with a strong $ texture. Studied are electron beam deposited Ag, Cu, Al films, and Ag/Cu multilayers consisting of alternating Ag and Cu layers with 1:1 thickness ratio. All films have a total thickness around 3 mum. In tensile testing, a thin polymeric two-dimensional diffraction grid was deposited on the film surface by microlithographic techniques. Local strains were measured from the relative displacements of two diffracted laser spots. This allows determination of Young's modulus, Poisson's ratio and, since large strains can be measured, the yield stress, ultimate tensile strength and fracture strain. The average values of the Young moduli and Poisson ratios, determined from hundreds of measurements, are 63 GPa and 0.42 for Ag, 102 GPa and 0.37 for Cu, 57 GPa and 0.41 for Al, and 87.5 GPa and 0.38 for Ag/Cu multilayers. In all cases, the Young moduli are about 20% lower than the values calculated from the literature data and are independent of the bilayer repeat length, λ , in the Ag/Cu multilayers. No "supermodulus" effect was observed at small values of λ . An anelastic model was proposed to explain the low Young moduli, the hysteresis loops on the stress-strain curves, and a 4.3 pm 0.2 GPa/decade strain rate dependence of the Young modulus in Al. The ductility of the Ag/Cu multilayers decreases when λ is reduced. For λ 80 nm, the yield stress increases linearly with λsp{{-}alpha} where alpha = 0.244. The results are compared to the predictions of Hall-Petch-type models. In creep testing, steady-state creep rates were measured on Cu films as a function of stress and temperature. In the high temperature-low stress region (100-650spcircC, 5-90 MPa), the creep rate is described by dot\\varepsilon =A{\\cdot}sigmasp{n} exp\\{{-}Q/kT\\}. A core-diffusion controlled dislocation climb model was proposed to

  8. Carrier mobility measurement across a single grain boundary in polycrystalline silicon using an organic gate thin-film transistor

    SciTech Connect

    Hashimoto, Masaki; Kanomata, Kensaku; Momiyama, Katsuaki; Kubota, Shigeru; Hirose, Fumihiko

    2012-01-09

    In this study, we developed a measurement method for field-effect-carrier mobility across a single grain boundary in polycrystalline Si (poly Si) used for solar cell production by using an organic gate field-effect transistor (FET). To prevent precipitation and the diffusion of impurities affecting the electronic characteristics of the grain boundary, all the processing temperatures during FET fabrication were held below 150 deg. C. From the grain boundary, the field-effect mobility was measured at around 21.4 cm{sup 2}/Vs at 297 K, and the temperature dependence of the field-effect mobility suggested the presence of a potential barrier of 0.22 eV at the boundary. The technique presented here is applicable for the monitoring of carrier conduction characteristics at the grain boundary in poly Si used for the production of solar cells.

  9. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  10. High-efficiency heterojunction crystalline Si solar cell and optical splitting structure fabricated by applying thin-film Si technology

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kenji; Adachi, Daisuke; Uzu, Hisashi; Ichikawa, Mitsuru; Terashita, Toru; Meguro, Tomomi; Nakanishi, Naoaki; Yoshimi, Masashi; Hernández, José Luis

    2015-08-01

    Thin-film Si technology for solar cells has been developed for over 40 years. Improvements in the conversion efficiency and industrialization of thin-film Si solar cells have been realized through continuous research and development of the thin-film Si technology. The thin-film Si technology covers a wide range of fields such as fundamental understanding of the nature of thin-film Si, cell/module production, simulation, and reliability technologies. These technologies are also significant for solar cells other than the thin-film Si solar cells. Utilizing the highly developed thin-film Si solar cell technology, we have achieved ∼24% efficiency heterojunction crystalline Si solar cells using 6-in. wafers and >26% efficiency solar cells with an optical splitting structure. These results indicate that further improvement of thin-film Si technology and its synergy with crystalline Si solar cell technology will enable further improvement of solar cells with efficiencies above 26%.

  11. Impact of annealing on physical properties of e-beam evaporated polycrystalline CdO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Purohit, Anuradha; Chander, S.; Dhaka, M. S.

    2017-04-01

    An impact of annealing on the physical properties of polycrystalline CdO thin films is carried out in this study. CdO thin films of thickness 650 nm were fabricated on glass and indium tin oxide (ITO) substrates employing e-beam evaporation technique. The pristine thin films were annealed in air atmosphere at 250 °C, 400 °C and 550 °C for one hour followed by investigation of structural, optical, electrical and morphological properties along with elemental composition using X-ray diffraction (XRD), UV-Vis spectrophotometer, Fourier transform infrared (FTIR) spectrometer, source meter, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), respectively. XRD patterns confirmed the polycrystalline nature and cubic structure (with space group Fm 3 bar m) of the films. The crystallographic parameters are calculated and found to be influenced by the post-air annealing treatment. The optical study shows that direct band gap is ranging from 1.98 eV to 2.18 eV and found to be decreased with post-annealing. The refractive index and optical conductivity are also increased with annealing temperature. The current-voltage characteristics show ohmic behaviour of the annealed films. The surface morphology is observed to be improved with annealing and grain-size is increased as well as EDS spectrum confirmed the presence of cadmium (Cd) and oxygen (O) in the deposited films.

  12. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1990--15 January 1991

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.

    1991-11-01

    Results and conclusion of Phase I of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe{sub 2} and CdTe solar cells. The kinetics of the formation of CuInSe{sub 2} by selenization with hydrogen selenide was investigated and a CuInSe{sub 2}/CdS solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe{sub 2} films and a cell efficiency of 7%. Detailed investigations of the open circuit voltage of CuInSe{sub 2} solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe{sub 2} thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe{sub 2} is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10% can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm{sup 2} are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  13. Transition between Efros–Shklovskii and Mott variable-range hopping conduction in polycrystalline germanium thin films

    NASA Astrophysics Data System (ADS)

    Li, Zhaoguo; Peng, Liping; Zhang, Jicheng; Li, Jia; Zeng, Yong; Luo, Yuechuan; Zhan, Zhiqiang; Meng, Lingbiao; Zhou, Minjie; Wu, Weidong

    2017-03-01

    We report on the electrical transport properties of polycrystalline germanium thin films which are grown by the DC magnetron sputtering method. The temperature dependent resistance of seven devices are measured from 290 K down to 10 K. The thermal excitation model dominating the transport properties at the high temperature regime (above ∼60 K) is demonstrated and the low temperature electron transport is governed by the variable-range hopping (VRH) mechanism. Moreover, we observed a transition from Efros–Shklovskii to Mott VRH at ∼25 K over the entire VRH conduction regime, which is well described by a universal scaling law.

  14. Selective Growth of Nanocrystalline 3C-SiC Thin Films on Si

    NASA Astrophysics Data System (ADS)

    Beke, D.; Pongrácz, A.; Battistig, G.; Josepovits, K.; Pécz, B.

    2010-11-01

    Epitaxial formation of SiC nanocrystals has been investigated on single crystal silicon surfaces. A simple and cheap method using reactive annealing in CO has been developed and patented by our group (BME AFT and MTA MFA). By this technique epitaxial 3C-SiC nanocrystals can be grown at the Si side of a SiO2/Si interface without void formation at the SiC/Si interface. CO diffusion and SiC nanocrystal formation on different silicon based systems (SiO2/Si, Si3N4/3Si and SiO2/LPCVD poly-Si) after CO treatment at 105 Pa at elevated temperatures (T>1000° C) will be presented. By optimizing the annealing time a thin continuous nanocrystalline SiC layer has been formed. Applying a patterned Si3N4 capping layer as a barrier layer against CO diffusion, SiC nanocrystal formation at the Si3N4/Si interface is inhibited. We will present the selective growth of SiC nanocrystals using the before mentioned technique.

  15. PbFe 12O 19 thin films prepared by pulsed laser deposition on Si/SiO 2 substrates

    NASA Astrophysics Data System (ADS)

    Díaz-Castañón, S.; Leccabue, F.; Watts, B. E.; Yapp, R.

    2000-10-01

    Pulsed laser ablation deposition has been used to grow polycrystalline PbFe 12O 19 thin films with high coercivity on Si/SiO 2 substrates. The influence of the substrate temperature (550-775°C) and the oxygen pressure (1.0-3.0 mbar) on the magnetic properties during the deposition is reported. The crystallisation of PbFe 12O 19 thin films occurs in the temperature range of 600-750°C, which is somewhat lower than that for the Sr and Ba hexaferrites, which crystallise in the range of 750-850°C. M-type lead hexaferrite films with high saturation magnetisation (280 emu/cm 3) and high coercive field (3.8 kOe) were grown using a substrate temperature of 700°C and a pressure of 3.0 mbar of oxygen. These films were observed to be isotropic, with an Mr/ Ms ratio of ˜0.5.

  16. Characterization and optimization of polycrystalline Si70%Ge30% for surface micromachined thermopiles in human body applications

    NASA Astrophysics Data System (ADS)

    Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris

    2009-09-01

    This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.

  17. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics

    NASA Astrophysics Data System (ADS)

    Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan

    2017-02-01

    Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.

  18. Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics.

    PubMed

    Kormondy, Kristy J; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A; Fompeyrine, Jean; Abel, Stefan

    2017-02-17

    Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V(-1), it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V(-1)). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.

  19. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  20. X-ray diffraction, atomic force microscopy and raman spectroscopy studies of microstructure of BiFeO3 thin films on Pt/Ti/SiO2/Si (111) substrates

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Luo, Bingcheng; Duan, Mengmeng; Chen, Changle

    2013-07-01

    A set of BiFeO3 (BFO) thin films with different thicknesses deposited on Pt/Ti/SiO2/Si (111) substrates and LaNiO3 (LNO)-buffered Pt/Ti/SiO2/Si (111) substrates using a radio-frequency magnetron sputtering technique was studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and Raman spectroscopy. The XRD patterns demostrated that all BFO thin films were polycrystalline with a distorted rhombohedral structure even though there were distinct changes in the main peak positions and intensities. The AFM topography images also clearly illustrated the different surface profiles of these thin films. The grain size of thin films deposited on LNO-buffered subtrates was greatly decreased compared to that of thin films deposited directly on Pt/Ti/SiO2/Si (111) substrates. Raman-active modes, which can be classified as 4 A 1 and 9E modes, have been observed in the Raman spectra of the BFO thin films. Variations in the Raman shift and bandwidth of different BFO thin films reveal the influence of the thin film and buffer layer thicknesses on the film microsturcture.

  1. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.

    PubMed

    Li, H; Liu, X X; Lin, Y S; Yang, B; Du, Z M

    2015-05-07

    The effect of grain boundaries (GBs), in particular twin boundaries (TBs), on CdTe polycrystalline thin films is studied by conductive atomic force microscopy (C-AFM), electron-beam-induced current (EBIC), scanning Kelvin probe microscopy (SKPM), electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM). Four types of CdTe grains with various densities of {111} Σ3 twin boundaries (TBs) are found in Cl-treated CdTe polycrystalline thin films: (1) grains having multiple {111} Σ3 TBs with a low angle to the film surface; (2) grains having multiple {111} Σ3 TBs parallel to the film surfaces; (3) small grains on a scale of not more than 500 nm, composed of Cd, Cl, Te, and O; and (4) CdTe grains with not more than two {111} Σ3 TBs. Grain boundaries (including TBs) exhibit enhanced current transport phenomena. However, the {111} Σ3 TB is much more beneficial to micro-current transport. The enhanced current transport can be explained by the lower electron potential at GBs (including TBs) than the grain interiors (GIs). Our results open new opportunities for enhancing solar cell performances by controlling the grain boundaries, and in particular TBs.

  2. Measurement of the elastic constants of a columnar SiC thin film.

    PubMed

    Pestka, K A; Maynard, J D; Gao, D; Carraro, C

    2008-02-08

    The technique of resonant ultrasound spectroscopy was used to measure the elastic properties of a polycrystalline cubic silicon carbide (3C-SiC) thin film. The film, grown on a silicon (100) substrate, was 1.69 microns thick with columnar crystalline grains and a (111) texture. The substrate with the film was placed between two transducers and the resonant frequencies were measured; measurements were repeated after selective, timed dry etching of the film, allowing a determination of the elastic constants of the film alone. The film elastic constants, c(11)=371 and c(12)=146 GPa, were within a few percent of the literature values (c(11)=386, c(12)=136 GPa) of crystalline 3C-SiC. However, the film elastic constant c(44), 111 GPa, was significantly smaller than the bulk literature value, 254 GPa. For the film, c44 approximately (c(11)-c(12))/2, indicating that, quite unlike a bulk 3C-SiC crystal, the thin film is elastically isotropic.

  3. Structure and magnetic properties of polycrystalline iron-platium and cobalt-platinum thin films for high density recording media

    NASA Astrophysics Data System (ADS)

    Jeong, Sangki

    2002-09-01

    The goal of this project was to investigate and increase the feasibility of use of FePt and CoPt polycrystalline thin films as high-density recording media, with a focus on targeting perpendicular recording. Understanding the atomic ordering process, developing the proper texture and small grains, lowering the processing temperature and optimizing magnetic properties were the main subjects of this thesis work. In this thesis, nano-structured polycrystalline high anisotropy thin films have been fabricated and characterized. Polycrystalline CoPt and FePt films exhibit perpendicular anisotropy after an annealing process only when their thickness is less than 5 nm. High temperature annealing is still required to obtain an atomically ordered phase with nearly full ordering. The ordering phase transformation is a discontinuous transformation that yields an inhomogeneous microstructure where significant amount of FCC phase remains, unless a long time annealing process is performed. To lower the atomic ordering temperature, an in-situ ordering process has been performed and the various underlayer structures with an MgO seed layer, have been deposited and investigated. Thin films with thicknesses below 10 nm exhibit perpendicular anisotropy with an average grain size in the range of 10--15 nm in this film. FePt [001] textured films using Pt/Ag seeding layer exhibit lower annealing temperature than FePt/MgO films, while other Ag or Cr seedlayers do not produce faster ordering kinetics. Based on the detailed analysis of nanostructure of FePt thin films, it has been learned that FCC disordered nanoclusters remains in the ordered grains. Detailed observation of magnetic properties and nanostructure by HRTEM suggests that, though a thermally activated component of the switching is observed, the low value of coercivity can be attributed predominantly to reversal processes associated with defect related domain nucleation. We postulate that the nucleation occurs in less ordered

  4. Ferroelectric properties of Bi2VO5.5 thin films on LaAlO3 and SiO2/Si substrates with LaNiO3 base electrode

    NASA Astrophysics Data System (ADS)

    Satyalakshmi, K. M.; Varma, K. B. R.; Hegde, M. S.

    1995-07-01

    Ferroelectric bismuth vanadate Bi2VO5.5 (BVO) thin films have been grown on LaAlO3 (LAO) and SiO2/Si substrates with LaNiO3 (LNO) base electrodes by the pulsed laser deposition technique. The effect of substrate temperature on the ferroelectric properties of BVO thin films, has been studied by depositing the thin films at different temperatures. The BVO thin films grown on LNO/LAO were textured whereas the thin films grown on LNO/SiO2/Si were polycrystalline. The BVO thin films grown at 450 °C exhibited good ferroelectric properties indicating that LNO acts as a good electrode material. The remanent polarization Pr and coercive field Ec obtained for the BVO thin films grown at 450 °C on LNO/LAO and LNO/SiO2/Si were 2.5 μC/cm2, 37 kV/cm and 4.6μC/cm2, 93 kV/cm, respectively.

  5. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    SciTech Connect

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M. E-mail: perialangulam@gmail.com; Raja, M. Manivel; Pandi, R. Senthur

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  6. Formation, optical properties, and electronic structure of thin Yb silicide films on Si(111)

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Maslov, A. M.; Polyarnyi, V. O.

    2005-06-01

    Continuous very thin (2.5-3.0 nm) and thin (16-18 nm) ytterbium suicide films with some pinhole density (3×107- 1×108 cm-2) have been formed on Si(111) by solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE) growth methods on templates. The stoichiometric ytterbium suicide (YbSi2) formation has shown in SPE grown films by AES and EELS data. Very thin Yb suicide films grown by RDE method had the silicon enrichment in YbSi2 suicide composition. The analysis of LEED data and AFM imaging has shown that ytterbium suicide films had non-oriented blocks with the polycrystalline structure. The analysis of scanning region length dependencies of the root mean square roughness deviation (σR(L)) for grown suicide films has shown that the formation of ytterbium suicide in SPE and RDE growth methods is determined by the surface diffusion of Yb atoms during the three-dimensional growth process. Optical functions (n, k, α, ɛ1, ɛ2, Im ɛ1-1, neff, ɛeff) of ytterbium silicide films grown on Si(1 1 1) have been calculated from transmittance and reflectance spectra in the energy range of 0.1-6.2 eV. Two nearly discrete absorption bands have been observed in the electronic structure of Yb silicide films with different composition, which connected with interband transitions on divalent and trivalent Yb states. It was established that the reflection coefficient minimum in R-spectra at energies higher 4.2 eV corresponds to the state density minimum in Yb suicide between divalent and trivalent Yb states. It was shown from optical data that Yb silicide films have the semi-metallic properties with low state densities at energies less 0.4 eV and high state densities at 0.5-2.5 eV.

  7. Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5

    NASA Astrophysics Data System (ADS)

    Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.

    2015-12-01

    The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ∼300 nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV-vis-spectrophotometer in the wavelength range of 200-1100 nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.

  8. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  9. Enhanced in-plane thermoelectric figure of merit in p-type SiGe thin films by nanograin boundaries

    NASA Astrophysics Data System (ADS)

    Lu, Jianbiao; Guo, Ruiqiang; Dai, Weijing; Huang, Baoling

    2015-04-01

    P-Type polycrystalline silicon-germanium (SiGe) thin films are grown by low-pressure chemical vapor deposition (LPCVD) and their thermoelectric properties are characterized from 120 K to 300 K for potential application in integrated microscale cooling. The naturally formed grain boundaries are found to play a crucial role in determining both the charge and thermal transport properties of the films. Particularly, the grain boundaries create energy barriers for charge transport which lead to different dependences of charge mobility on doping concentration and temperature from the bulk counterparts. Meanwhile, the unique columnar grain structures result in remarkable thermal conductivity anisotropy with the in-plane thermal conductivities of SiGe films about 50% lower than the cross-plane values. By optimizing the growth conditions and doping level, a high in-plane figure of merit (ZT) of 0.2 for SiGe films is achieved at 300 K, which is about 100% higher than the previous record for p-type SiGe alloys, mainly due to the significant reduction in the in-plane thermal conductivity caused by nanograin boundaries. The low cost and excellent scalability of LPCVD render these high-performance SiGe films ideal candidates for thin-film thermoelectric applications.P-Type polycrystalline silicon-germanium (SiGe) thin films are grown by low-pressure chemical vapor deposition (LPCVD) and their thermoelectric properties are characterized from 120 K to 300 K for potential application in integrated microscale cooling. The naturally formed grain boundaries are found to play a crucial role in determining both the charge and thermal transport properties of the films. Particularly, the grain boundaries create energy barriers for charge transport which lead to different dependences of charge mobility on doping concentration and temperature from the bulk counterparts. Meanwhile, the unique columnar grain structures result in remarkable thermal conductivity anisotropy with the in

  10. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  11. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  12. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  13. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-01

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  14. Impact of Surface Chemistry on Grain Boundary Induced Intrinsic Stress Evolution during Polycrystalline Thin Film Growth

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Sheldon, B. W.; Guo, H.; Xiao, X.; Kothari, A. K.

    2009-02-01

    First principles calculations were integrated with cohesive zone and growth chemistry models to demonstrate that adsorbed species can significantly alter stresses associated with grain boundary formation during polycrystalline film growth. Using diamond growth as an example, the results show that lower substrate temperatures increase the hydrogen content at the surface, which reduces tensile stress, widens the grain boundary separations, and permits additional atom insertions that can induce compressive stress. More generally, this work demonstrates that surface heteroatoms can lead to behavior which is not readily described by existing models of intrinsic stress evolution.

  15. CNx/Si thin heterostructures for miniaturized temperature sensors

    NASA Astrophysics Data System (ADS)

    Simeonov, S.; Szekeres, A.; György, E.; Mihailescu, I. N.; Perrone, A.

    2004-05-01

    CNx/Si thin heterostructures were synthesized on Si <111> substrates by XeCl* excimer laser (λ=308 nm, τFWHM≅30 ns) ablation of nuclear grade graphite targets in 5 Pa nitrogen at room temperature. We investigated the current-voltage and capacitance-voltage characteristics of heterostructures obtained at 77 and 300 K. We monitored their conductance and capacitance as a function of the bias voltage applied, in the 100 Hz-1 MHz frequency range. Our results revealed the formation of deep localized electron states both inside the thin CNx films and at the CNx/Si substrate interface. The investigations evidenced that conduction through the CNx/Si thin heterostructure is of trap-assisted tunneling type. The experimental studies show quite a large decrease in capacitance and increase in conductance with the increase of applied frequency. The capacitance of the CNx/Si thin heterostructures increases with a decrease of the temperature. All the results support the potential development of new types of high sensitivity temperature sensors.

  16. Chemical surface modification of polycrystalline platinum thin-films to promote preferential chemisorption of n-hexane, piperidine, and cyclohexane

    SciTech Connect

    Thomas, V.; Schwank, J.; Gland, J.

    1994-12-31

    In this study, hard/soft Lewis acid-base (HSAB) principles are used to modify a thin-polycrystalline platinum film to promote preferential chemisorption of molecules such as piperidine, n-hexane, and cyclohexane. Specifically, the particle size and electron density distribution of the platinum surface is modified using thermal treatment and co-adsorption of electro-positive and negative species. These studies are conducted in an ultra-high vacuum chamber. The platinum surface is characterized, before and after modification protocols, using a variety of in-situ and ex-situ techniques. These include temperature programmed desorption (TPD), both resistance change and work function measurements, and both X-ray photoelectron spectroscopy and diffraction.

  17. Formation of (111) nanotwin lamellae hillocks in polycrystalline silicon thin films caused by deposition of silicon dioxide layer

    SciTech Connect

    Imai, Shigeki; Fujimoto, Masayuki

    2006-01-09

    Plasma-enhanced chemical vapor deposition was used to deposit layers of tetraethylorthosilicate at different temperatures. In the case of low-temperature deposition (300 deg. C), the deposited film surface was smooth and the major surface defects of the polycrystalline silicon (poly-silicon) film surface were grooves of grain boundaries. In contrast, in the case of high-temperature deposition (500 deg. C), the deposited silicon oxide surface exhibited hillocks, and these hillocks were derived from the top end of inclined silicon (111) where protruding nanotwin lamellae penetrated the poly-silicon thin film. The observed hillocks stemming from nanotwin lamellae could have been formed by compressive stress during high-temperature silicon dioxide deposition.

  18. Temperature- and doping-concentration-dependent characteristics of junctionless gate-all-around polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tso, Chia-Tsung; Liu, Tung-Yu; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2017-04-01

    The temperature effects of both gate-all-around polycrystalline silicon nanowire (GAA poly-Si NW) junctionless (JL) and inversion mode (IM) transistor devices at various temperatures (77–410 K) were investigated. The electrical characteristics of these devices, such as subthreshold swing (SS), threshold voltage (V th), and drain-induced barrier lowering (DIBL), were also characterized and compared in this study. Moreover, JL devices with different doping concentrations at various temperatures were also discussed. Both V th and I on showed significant doping concentration dependences for JL devices with doping concentrations of 1 × 1019 and 5 × 1019 cm‑3. However, the electrical characteristics of JL devices showed less thermal sensitivity when the doping concentration reached 1020 cm‑3.

  19. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    SciTech Connect

    Chebil, W.; Fouzri, A.; Fargi, A.; Azeza, B.; Zaaboub, Z.; and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  20. New ripple patterns observed in excimer-laser irradiated SiO{sub 2}/polycrystalline silicon/SiO{sub 2} structures

    SciTech Connect

    Giust, G.K.; Sigmon, T.W.

    1997-06-01

    A new ripple formation mechanism is observed in excimer-laser irradiated polycrystalline silicon (polysilicon) films on oxidized silicon wafers. The ripples form for polysilicon films capped with a thin oxide, and for laser fluences that completely melt the buried polysilicon. The resulting ripples are unlike those previously reported in that (1) their wavelength cannot be predicted by Rayleigh{close_quote}s diffraction condition, (2) their wave fronts are arranged in chaotic patterns, rather than parallel lines, and (3) the wave fronts can be manipulated by changing the polysilicon surface topology. The characteristics of these ripples are investigated in the context of understanding the underlying physics. {copyright} {ital 1997 American Institute of Physics.}

  1. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  2. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  3. Metastability of a-SiOx:H thin films for c-Si surface passivation

    NASA Astrophysics Data System (ADS)

    Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.

    2017-01-01

    The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution

  4. Estimation of steady-state leakage current in polycrystalline PZT thin films

    NASA Astrophysics Data System (ADS)

    Podgorny, Yury; Vorotilov, Konstantin; Sigov, Alexander

    2016-09-01

    Estimation of the steady state (or "true") leakage current Js in polycrystalline ferroelectric PZT films with the use of the voltage-step technique is discussed. Curie-von Schweidler (CvS) and sum of exponents (Σ exp ) models are studied for current-time J (t) data fitting. Σ exp model (sum of three or two exponents) gives better fitting characteristics and provides good accuracy of Js estimation at reduced measurement time thus making possible to avoid film degradation, whereas CvS model is very sensitive to both start and finish time points and give in many cases incorrect results. The results give rise to suggest an existence of low-frequency relaxation processes in PZT films with characteristic duration of tens and hundreds of seconds.

  5. Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films

    SciTech Connect

    Guo, Senli; Ovchinnikov, Oleg S; Curtis, Mark E; Johnson, Matthew B; Jesse, Stephen; Kalinin, Sergei V

    2010-01-01

    Applications of the ferroelectric materials for the information storage necessitate the understanding of local switching behavior on the level of individual grains and microstructural elements. In particular, implementation of multilevel neuromorphic elements requires the understanding of history-dependent polarization responses. Here, we introduce the spatially resolved approach for mapping local Preisach densities in polycrystalline ferroelectrics based on first-order reversal curve (FORC) measurements over spatially resolved grid by piezoresponse force spectroscopy using tip-electrode. The band excitation approach allowed effective use of cantilever resonances to amplify weak piezoelectric signal and also provided insight in position-, voltage-, and voltage history-dependent mechanical properties of the tip-surface contact. Several approaches for visualization and comparison of the multidimensional data sets formed by FORC families or Preisach densities at each point are introduced and compared. The relationship between switching behavior and microstructure is analyzed.

  6. Polycrystalline ZnTe thin film on silicon synthesized by pulsed laser deposition and subsequent pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Xu, Menglei; Gao, Kun; Wu, Jiada; Cai, Hua; Yuan, Ye; Prucnal, S.; Hübner, R.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-03-01

    ZnTe thin films on Si substrates have been prepared by pulsed laser deposition and subsequent pulsed laser melting (PLM) treatment. The crystallization during PLM is confirmed by Raman scattering, x-ray diffraction and room temperature photoluminescence (PL) measurements. The PL results show a broad peak at 574 nm (2.16 eV), which can be assigned to the transitions from the conduction band to the acceptor level located at 0.145 eV above the valence band induced by zinc-vacancy ionization. Our work provides an applicable approach to low temperature preparation of crystalline ZnTe thin films.

  7. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  8. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-04-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  9. Cu2+1O coated polycrystalline Si nanoparticles as anode for lithium-ion battery.

    PubMed

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Liu, Zhi; Zheng, Jun; Zuo, Yuhua; Xue, Chunlai; Li, Chuanbo; Cheng, Buwen

    2016-12-01

    Cu2+1O coated Si nanoparticles were prepared by simple hydrolysis and were investigated as an anode material for lithium-ion battery. The coating of Cu2+1O on the surface of Si particles remarkably improves the cycle performance of the battery than that made by the pristine Si. The battery exhibits an initial reversible capacity of 3063 mAh/g and an initial coulombic efficiency (CE) of 82.9 %. With a current density of 300 mA/g, its reversible capacity can remains 1060 mAh/g after 350 cycles, corresponding to a CE ≥ 99.8 %. It is believed that the Cu2+1O coating enhances the electrical conductivity, and the elasticity of Cu2+1O further helps buffer the volume changes during lithiation/delithiation processes. Experiment results indicate that the electrode maintained a highly integrated structure after 100 cycles and it is in favour of the formation of stable solid electrolyte interface (SEI) on the Si surface to keep the extremely high CE during long charge and discharge cycles.

  10. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping

    2009-01-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill

  11. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping

    2009-07-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in

  12. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    SciTech Connect

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao Qihua; Li Yixin; Street, Robert A.; Lu Jengping

    2009-07-15

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of {approx}10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical

  13. Characterization of the “native” surface thin film on pure polycrystalline iron: A high resolution XPS and TEM study

    NASA Astrophysics Data System (ADS)

    Bhargava, G.; Gouzman, I.; Chun, C. M.; Ramanarayanan, T. A.; Bernasek, S. L.

    2007-02-01

    The characterization of the "native" surface thin film on pure polycrystalline iron has been studied by high resolution X-ray photoelectron (XP) spectroscopy of Fe 2p and O 1s regions. The film was allowed to form by exposing the sample to atmosphere at ambient conditions for a period of 1 h. The systematic approach used here includes the determination of curve fitting parameters from external standards and their use in fitting the raw data for the surface thin film. The quantitative high resolution XPS analysis involved an angle resolved study of the surface to determine the chemical composition and thickness of this native film. The film was found to be a mixture of Fe 3O 4 and Fe(OH) 2 with a thickness of 1.2 ± 0.3 nm. This conclusion is consistent with thermodynamics as indicated by the Pourbaix diagram for the Fe-H 2O system and the phase diagram for the Fe-oxygen system. A detailed TEM study of the native surface film also supports this conclusion.

  14. Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing

    NASA Astrophysics Data System (ADS)

    Chen, Z. W.; Lai, J. K. L.; Shek, C. H.

    2006-11-01

    Microstructural changes and fractal Ge nanocrystallites in polycrystalline Au/amorphous Ge thin bilayer films upon annealing have been investigated by scanning electron microscopy, transmission electron microscopy observations and x-ray energy-dispersive spectroscopy (EDS). Experimental results indicated that the microstructure of the metal Au film plays an important role in metal-induced crystallization for Au/Ge thin bilayer films upon annealing. Interestingly, we found the position exchange of Au and Ge films and the formation of the fractal Ge nanocrystallites induced by annealing. EDS microanalysis indicated that although there is lateral interdiffusion of Au and Ge atoms, the thickness of the fractal region and the matrix remain nearly the same. At the same time, EDS shows that there are also Au aggregates extending out of the films. It is suggested that, besides the preferred nucleation at the Au/Ge interface, the breaking of Ge-Ge bonds may stimulate the crystallization of amorphous Ge, so that the crystallization temperature of Au/Ge system is much lower than that of the isolated amorphous Ge system.

  15. Low loss (approximately 6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler.

    PubMed

    Fang, Q; Song, J F; Tao, S H; Yu, M B; Lo, G Q; Kwong, D L

    2008-04-28

    In this communication, the sub-micron size polycrystalline silicon (poly- Si) single mode waveguides are fabricated and integrated with SiON waveguide coupler by deep UV lithography. The propagation loss of poly-Si waveguide and coupling loss with optical flat polarization-maintaining fiber (PMF) are measured. For whole C-band (i.e., lambda approximately 1520-1565nm), the propagation loss of TE mode is measured to approximately 6.45+/-0.3dB/cm. The coupling loss with optical flat PMF is approximately 3.4dB/facet for TE mode. To the best of our knowledge, the propagation loss is among the best reported results. This communication discusses the factors reducing the propagation loss, especially the effect of the refractive index contrast. Compared to the SiO(2) cladding, poly-Si waveguide with SiON cladding exhibits lower propagation loss.

  16. Resistance behavior of Cr-Si-O thin films

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Musket, R.; Cosandey, F.; Gorla, C.E.; Besser, R.S.; Westerlind, V.; Cobai, G.

    1996-10-23

    Thin coatings of Cr-Si-O are assessed for use as a resistor. The submicron thick films are sputter deposited using a (l-x)Ar-(x)O{sub 2} working gas. Several compacts of metal and oxide powders are commercially prepared for use as the sputter targets. The deposition process yields film compositions which range from 2 to 30 at.% Cr and 20 to 45 at.% Si as measured using Rutherford backscattering. A broad range of resistivities from 10{sup 1} to 10{sup 14}{Omega} cm are found as measured through the film thickness between metal pads deposited onto the Cr-Si-O surface. The film structure and morphology are characterized using transmission electron microscopy from which the resistance behavior can be correlated to the distribution of metallic particles. Thermal aging reveals the metastability of the Cr- Si-O film morphology and resistance behavior.

  17. Engineering helimagnetism in MnSi thin films

    SciTech Connect

    Zhang, S. L.; Hesjedal, T.; Chalasani, R.; Kohn, A.; Baker, A. A.; Steinke, N.-J.; Figueroa, A. I.; Laan, G. van der

    2016-01-15

    Magnetic skyrmion materials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transition temperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transition temperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmion thin-film systems, thereby opening the door to device applications.

  18. Thermoelectric Properties of Epitaxial β-FeSi2 Thin Films on Si(111) and Approach for Their Enhancement

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-10-01

    We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.

  19. Thermoelectric Properties of Epitaxial β-FeSi2 Thin Films on Si(111) and Approach for Their Enhancement

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki

    2017-05-01

    We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.

  20. Progress Toward a Stabilization and Preconditioning Protocol for Polycrystalline Thin-Film Photovoltaic Modules

    SciTech Connect

    del Cueto, J. A.; Deline, C. A.; Rummel, S. R.; Anderberg, A.

    2010-08-01

    Cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules can exhibit substantial variation in measured performance depending on prior exposure history. This study examines the metastable performance changes in these PV modules with the goal of establishing standard preconditioning or stabilization exposure procedures to mitigate measured variations prior to current-voltage (IV) measurements.

  1. Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films

    Treesearch

    K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa

    2011-01-01

    Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO

  2. Controlled tuning of thin film deposition of IrO{sub 2} on Si using pulsed laser ablation technique

    SciTech Connect

    Koshy, Abraham M. Bhat, Shwetha G. Kumar, P. S. Anil

    2016-05-06

    We have successfully grown a stable phase of polycrystalline IrO{sub 2} on Si (100) substrate. We have found that the phase of IrO{sub 2} can be controllably tuned to obtain either Ir or IrO{sub 2} using pulsed laser ablation technique. O{sub 2} conditions during the deposition influences the phase directly and drastically whereas annealing conditions do not show any variation in the phase of thin film. X-ray diffraction and X-ray photoemission experiments confirm both Ir and IrO{sub 2} can be successively grown on Si using IrO{sub 2} target. Also, the morphology is found to be influenced by the O{sub 2} conditions.

  3. Surface structure of thin pseudomorphous GeSi layers

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. I.; Timofeev, V. F.; Pchelyakov, O. P.

    2015-11-01

    Reflection high-energy electron diffraction (RHEED) was used to study the evolution of thin GexSi1-x film surface superstructures s in the course of molecular beam epitaxy. The (2 × N) superstructure of the epitaxial film surface at periodicity N from 14 to 8, the latter being characteristic of pure germanium at the Si(1 0 0) surface. The epitaxial film thickness that is required for the formation of the (2 × 8) superstructure depends on the deposition temperature and germanium content in the solid solution. The germanium segregation on the growing film surface is shown to be responsible for the observed superstructural changes.

  4. Bend stress relaxation and tensile primary creep of a polycrystalline alpha-SiC fiber

    NASA Technical Reports Server (NTRS)

    Hee Man, Yun; Goldsby, Jon C.; Morscher, Gregory N.

    1995-01-01

    Understanding the thermomechanical behavior (creep and stress relaxation) of ceramic fibers is of both practical and basic interest. On the practical level, ceramic fibers are the reinforcement for ceramic matrix composites which are being developed for use in high temperature applications. It is important to understand and model the total creep of fibers at low strain levels where creep is predominantly in the primary stage. In addition, there are many applications where the component will only be subjected to thermal strains. Therefore, the stress relaxation of composite consituents in such circumstances will be an important factor in composite design and performance. The objective of this paper is to compare and analyze bend stress relaxation and tensile creep data for alpha-SiC fibers produced by the Carborundum Co. (Niagara Falls, NY). This fiber is of current technical interest and is similar in composition to bulk alpha-SiC which has been studied under compressive creep conditions. The temperature, time, and stress dependences will be discussed for the stress relaxation and creep results. In addition, some creep and relaxation recovery experiments were performed in order to understand the complete viscoelastic behavior, i.e. both recoverable and nonrecoverable creep components of these materials. The data will be presented in order to model the deformation behavior and compare relaxation and/or creep behavior for relatively low deformation strain conditions of practical concern. Where applicable, the tensile creep results will be compared to bend stress relaxation data.

  5. Tunnel Magnetoresistance and Spin-Transfer-Torque Switching in Polycrystalline Co2FeAl Full-Heusler-Alloy Magnetic Tunnel Junctions on Amorphous Si /SiO2 Substrates

    NASA Astrophysics Data System (ADS)

    Wen, Zhenchao; Sukegawa, Hiroaki; Kasai, Shinya; Inomata, Koichiro; Mitani, Seiji

    2014-08-01

    We study polycrystalline B2-type Co2FeAl (CFA) full-Heusler-alloy-based magnetic tunnel junctions (MTJs) fabricated on a Si /SiO2 amorphous substrate. Polycrystalline CFA films with a (001) orientation, a high B2 ordering, and a flat surface are achieved by using a MgO buffer layer. A tunnel magnetoresistance ratio up to 175% is obtained for a MTJ with a CFA /MgO/CoFe structure on a 7.5-nm-thick MgO buffer. Spin-transfer-torque-induced magnetization switching is achieved in the MTJs with a 2-nm-thick polycrystalline CFA film as a switching layer. By using a thermal activation model, the intrinsic critical current density (Jc0) is determined to be 8.2×106 A /cm2, which is lower than 2.9×107 A /cm2, the value for epitaxial CFA MTJs [Appl. Phys. Lett. 100, 182403 (2012), 10.1063/1.4710521]. We find that the Gilbert damping constant (α) evaluated by using ferromagnetic resonance measurements for the polycrystalline CFA film is approximately 0.015 and is almost independent of the CFA thickness (2-18 nm). The low Jc0 for the polycrystalline MTJ is mainly attributed to the low α of the CFA layer compared with the value in the epitaxial one (approximately 0.04).

  6. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Sood, Aditya; Cho, Jungwan; Hobart, Karl D.; Feygelson, Tatyana I.; Pate, Bradford B.; Asheghi, Mehdi; Cahill, David G.; Goodson, Kenneth E.

    2016-05-01

    While there is a great wealth of data for thermal transport in synthetic diamond, there remains much to be learned about the impacts of grain structure and associated defects and impurities within a few microns of the nucleation region in films grown using chemical vapor deposition. Measurements of the inhomogeneous and anisotropic thermal conductivity in films thinner than 10 μm have previously been complicated by the presence of the substrate thermal boundary resistance. Here, we study thermal conduction in suspended films of polycrystalline diamond, with thicknesses ranging between 0.5 and 5.6 μm, using time-domain thermoreflectance. Measurements on both sides of the films facilitate extraction of the thickness-dependent in-plane ( κ r ) and through-plane ( κ z ) thermal conductivities in the vicinity of the coalescence and high-quality regions. The columnar grain structure makes the conductivity highly anisotropic, with κ z being nearly three to five times as large as κ r , a contrast higher than that reported previously for thicker films. In the vicinity of the high-quality region, κ r and κ z range from 77 ± 10 W/m-K and 210 ± 50 W/m-K for the 1 μm thick film to 130 ± 20 W/m-K and 710 ± 120 W/m-K for the 5.6 μm thick film, respectively. The data are interpreted using a model relating the anisotropy to the scattering on the boundaries of columnar grains and the evolution of the grain size considering their nucleation density and spatial rate of growth. This study aids in the reduction in the near-interfacial resistance of diamond films and efforts to fabricate diamond composites with silicon and GaN for power electronics.

  7. Twin domains in epitaxial thin MnSi layers on Si(111)

    NASA Astrophysics Data System (ADS)

    Trabel, M.; Tarakina, N. V.; Pohl, C.; Constantino, J. A.; Gould, C.; Brunner, K.; Molenkamp, L. W.

    2017-06-01

    Thin layers of MnSi, the first discovered host material of a skyrmion lattice, are epitaxially grown on Si(111) and their crystal properties are investigated by X-ray diffraction and transmission electron microscopy (TEM) measurements. Azimuthal ϕ -scans of asymmetric X-ray reflections reveal the formation of twinned domains with their unit cell rotated ±30 ° in plane with respect to the Si unit cell. The intensities of corresponding reflections indicate the same volume fractions for both domain types. Cross-sectional TEM confirms the presence of these domains and reveals a typical domain size of about 200 nm.

  8. Si-Doping Effects in Cu(In,Ga)Se2 Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells.

    PubMed

    Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime

    2017-09-13

    We found that elemental Si-doped Cu(In,Ga)Se2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.

  9. Epitaxial ternary RexMo1 - xSi2 thin films on Si(100)

    NASA Astrophysics Data System (ADS)

    Vantomme, André; Nicolet, Marc-A.; Long, Robert G.; Mahan, John E.

    1994-04-01

    Reactive deposition epitaxy was used to synthesize thin layers of RexMo1-xSi2 on Si(100). In the case of x=1, ReSi2 layers of excellent crystalline quality have been reported previously [J. E. Mahan, K. M. Geib, G. Y. Robinson, R. G. Long, Y. Xinghua, G. Bai, and M.-A. Nicolet, Appl. Phys. Lett. 56, 2439 (1990)]. In the case of x=0, however, virtually no alignment of the MoSi2 and the substrate is found, although this silicide is nearly isomorphic to ReSi2. For intermediate values of x, highly epitaxial ternary silicides are obtained, at least for a Mo fraction up to 1/3.

  10. Epitaxial graphene formation on 3C-SiC/Si thin films

    NASA Astrophysics Data System (ADS)

    Suemitsu, Maki; Jiao, Sai; Fukidome, Hirokazu; Tateno, Yasunori; Makabe, Isao; Nakabayashi, Takashi

    2014-03-01

    By forming a thin 3C-SiC film on Si substrates and by annealing it at ˜1500 K in vacuo, few-layer graphene is formed epitaxially on Si substrates. In this graphene-on-silicon (GOS) technology, graphene grows at least on three major low-index Si surfaces: (1 1 1), (1 0 0) and (1 1 0), which allows tuning of structural and electronic properties of epitaxial graphene by simply controlling the crystallographic orientation of the surface. A typical example can be found in the two types of graphene formed on 3C-SiC(1 1 1) surfaces; the one on 3C-SiC(1 1 1)/Si(1 1 1) shows a Bernal stacking with an interfacial buffer layer, while the one on 3C-SiC(1 1 1)/Si(1 1 0) shows a non-Bernal stacking without an interfacial buffer layer. Inserting an AlN interlayer between Si and 3C-SiC significantly contributes to improvement of the GOS quality. Moreover, thanks to the sealing effect of the AlN layer against Si out-diffusion, we can apply chemomechanical polishing of SiC surface to reduce the surface roughness, which can further accentuate the effect of H2 annealing of the surface. As a result, a D to G band intensity ratio as low as 0.4 is obtained.

  11. Hot Extruded Polycrystalline Mg2Si with Embedded XS2 Nano-particles (X: Mo, W)

    NASA Astrophysics Data System (ADS)

    Bercegol, A.; Christophe, V.; Keshavarz, M. K.; Vasilevskiy, D.; Turenne, S.; Masut, R. A.

    2016-08-01

    Due to their abundant, inexpensive and non-toxic constituent elements, magnesium silicide and related alloys are attractive for large-scale thermoelectric (TE) applications in the 500-800 K temperature range, in particular for energy conversion. In this work, we propose a hot extrusion method favorable for large-scale production, where the starting materials (Mg2Si and XS2, X: W, Mo) are milled together in a sealed vial. The MoS2 nano-particles (0.5-2 at.%) act as solid lubricant during the extrusion process, thus facilitating material densification, as confirmed by density measurements based on Archimedes' method. Scanning electron microscopy images of bulk extruded specimens show a wide distribution of grain size, covering the range from 0.1 μm to 10 μm, and energy dispersive spectroscopy shows oxygen preferentially distributed at the grain boundaries. X-ray diffraction analysis shows that the major phase is the expected cubic structure of Mg2Si. The TE properties of these extruded alloys have been measured by the Harman method between 300 K and 700 K. Resistivity values at 700 K vary between 370 μΩ m and 530 μΩ m. The ZT value reaches a maximum of 0.26 for a sample with 2 at.% MoS2. Heat conductivity is reduced for extruded samples containing MoS2, which most likely behave as scattering centers for phonons. The reason why the WS2 particles do not bring any enhancement, for either densification or heat transfer reduction, might be linked to their tendency to agglomerate. These results open the way for further investigation to optimize the processing parameters for this family of TE alloys.

  12. Hot Extruded Polycrystalline Mg2Si with Embedded XS2 Nano-particles (X: Mo, W)

    NASA Astrophysics Data System (ADS)

    Bercegol, A.; Christophe, V.; Keshavarz, M. K.; Vasilevskiy, D.; Turenne, S.; Masut, R. A.

    2017-05-01

    Due to their abundant, inexpensive and non-toxic constituent elements, magnesium silicide and related alloys are attractive for large-scale thermoelectric (TE) applications in the 500-800 K temperature range, in particular for energy conversion. In this work, we propose a hot extrusion method favorable for large-scale production, where the starting materials (Mg2Si and XS2, X: W, Mo) are milled together in a sealed vial. The MoS2 nano-particles (0.5-2 at.%) act as solid lubricant during the extrusion process, thus facilitating material densification, as confirmed by density measurements based on Archimedes' method. Scanning electron microscopy images of bulk extruded specimens show a wide distribution of grain size, covering the range from 0.1 μm to 10 μm, and energy dispersive spectroscopy shows oxygen preferentially distributed at the grain boundaries. X-ray diffraction analysis shows that the major phase is the expected cubic structure of Mg2Si. The TE properties of these extruded alloys have been measured by the Harman method between 300 K and 700 K. Resistivity values at 700 K vary between 370 μΩ m and 530 μΩ m. The ZT value reaches a maximum of 0.26 for a sample with 2 at.% MoS2. Heat conductivity is reduced for extruded samples containing MoS2, which most likely behave as scattering centers for phonons. The reason why the WS2 particles do not bring any enhancement, for either densification or heat transfer reduction, might be linked to their tendency to agglomerate. These results open the way for further investigation to optimize the processing parameters for this family of TE alloys.

  13. Analysis of poly-Si thin film p^+-n-n+ homojunction solar cell and heterojunction solar cell with and without a thin μc-Si layer at the interface of a-Si and poly-Si layers

    NASA Astrophysics Data System (ADS)

    Letha, A. J.; Hwang, H. L.

    2009-05-01

    In this study, new possibilities for higher efficiency poly-Si thin film solar cells are investigated using MEDICI^TM device simulator. The poly-Si p^+-n-n+ thin film solar cell with a thin a-Si p+ layer is found to have higher efficiency than the homojunction p^+-n-n+ cell. Further improvement in efficiency of the heterojunction p^+-n-n+ cell is achieved by introducing a thin μc-Si layer at the interface of a-Si emitter and poly-Si absorber layers. The μc-Si layer at the interface is found to reduce the recombination losses at the interface and improved the fill factor and efficiency of the cell. The photovoltaic parameters of the cell and the absorber layer thickness for optimum efficiency are highly influenced by grain size and passivation at the grain boundary.

  14. Cu-dependent phase transition in polycrystalline CuGaSe2 thin films grown by three-stage process

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Yamada, A.; Sakurai, T.; Kubota, M.; Ishizuka, S.; Matsubara, K.; Niki, S.; Akimoto, K.

    2011-07-01

    The Cu-dependent phase transition in polycrystalline CuGaSe2 thin films has been studied by an electron probe micro-analyzer (EPMA) and the synchrotron x-ray diffraction method. A Cu-deficiency parameter, Z, defined as (1 - Cu/Ga) was used to study the phase transition. Upon increasing the Z-value, the composition of the films on the Cu2Se-Ga2Se3 pseudo binary tie line was found to shift from the stoichiometric CuGaSe2 (1:1:2) (Z = 0) to the Ga-rich composition through the formation of several ordered defect compounds.The structural modification in the Cu-poor CuGaSe2 film has been investigated by the synchrotron x-ray diffraction method. The existence of the Cu-poor surface phase over the near-stoichiometric bulk CuGaSe2 film was confirmed by the fitting of the accelerated voltage dependent EPMA data.

  15. Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys

    SciTech Connect

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-06-14

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  16. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.

    PubMed

    Jaramillo-Fernandez, J; Ordonez-Miranda, J; Ollier, E; Volz, S

    2015-03-28

    The effect of the structural inhomogeneity and oxygen defects on the thermal conductivity of polycrystalline aluminum nitride (AlN) thin films deposited on single-crystal silicon substrates is experimentally and theoretically investigated. The influence of the evolution of crystal structure, grain size, and out-of plane disorientation along the cross plane of the films on their thermal conductivity is analyzed. The impact of oxygen-related defects on thermal conduction is studied in AlN/AlN multilayered samples. Microstructure, texture, and grain size of the films were characterized by X-ray diffraction and scanning and transmission electron microscopy. The measured thermal conductivity obtained with the 3-omega technique for a single and multiple layers of AlN is in fairly good agreement with the theoretical predictions of our model, which is developed by considering a serial assembly of grain distributions. An effective thermal conductivity of 5.92 W m(-1) K(-1) is measured for a 1107.5 nm-thick multilayer structure, which represents a reduction of 20% of the thermal conductivity of an AlN monolayer with approximately the same thickness, due to oxygen impurities at the interface of AlN layers. Our results show that the reduction of the thermal conductivity as the film thickness is scaled down, is strongly determined by the structural inhomogeneities inside the sputtered films. The origin of this non-homogeneity and the effect on phonon scattering are also discussed.

  17. Effects of mechanical stresses on the reliability of low-temperature polycrystalline silicon thin film transistors for foldable displays

    NASA Astrophysics Data System (ADS)

    Bae, Min Soo; Park, Chuntaek; Shin, Dongseok; Lee, Sang Myung; Yun, Ilgu

    2017-07-01

    This paper investigates the mechanical reliability of low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) for foldable display. Both compressive and tensile directions of mechanical stresses were applied for different types of mechanical stresses, such as dynamic and static mechanical stresses. The electrical characteristics of tested n-channel TFTs under mechanical stress conditions were analyzed based on several key parameters, including the threshold voltage (Vth), field effect mobility (μFE), maximum drain current (ID.MAX) and subthreshold swing (Ssub). For both cases of dynamic and static mechanical stresses, increase of Vth and decrease of μFE and ID.MAX were observed in the compressive direction. This trend was inversed when tensile stress was applied. The degradation of electrical characteristics originates from the change of lattice constant after mechanical stress. However, Ssub increases under dynamic tensile stress while it remains unchanged within 5% under static tensile stress. Transient analysis while bent condition was conducted to investigate the change of parameters in time.

  18. Ferroelectric properties of lead-free polycrystalline CaBi{sub 2}Nb{sub 2}O{sub 9} thin films on glass substrates

    SciTech Connect

    Ahn, Yoonho Son, Jong Yeog; Jang, Joonkyung

    2016-03-15

    CaBi{sub 2}Nb{sub 2}O{sub 9} (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm{sup 2} (2P{sub r} ∼9.6 μC/cm{sup 2}), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  19. Development of tandem cells consisting of GaAs single crystal and CuInSe2/CdZnS polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Kim, Namsoo P.; Stanbery, Billy J.; Gale, Ronald P.; McClelland, Robert W.

    1989-04-01

    The tandem cells consisting of GaAs single crystal and CuInSe2 polycrystalline thin films are being developed under the joint program of the Boeing Co. and Kopin Corp. to meet the increasing power needs for future spacecraft. The updated status of this program is presented along with experimental results such as cell performance, and radiation resistance. Other cell characteristics including the specific power of and the interconnect options for this tandem cell approach are also discussed.

  20. Development of tandem cells consisting of GaAs single crystal and CuInSe2/CdZnS polycrystalline thin films

    NASA Technical Reports Server (NTRS)

    Kim, Namsoo P.; Stanbery, Billy J.; Gale, Ronald P.; Mcclelland, Robert W.

    1989-01-01

    The tandem cells consisting of GaAs single crystal and CuInSe2 polycrystalline thin films are being developed under the joint program of the Boeing Co. and Kopin Corp. to meet the increasing power needs for future spacecraft. The updated status of this program is presented along with experimental results such as cell performance, and radiation resistance. Other cell characteristics including the specific power of and the interconnect options for this tandem cell approach are also discussed.

  1. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  2. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  3. Wear resistance of TiAlSiN thin coatings.

    PubMed

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions.

  4. Mechanistic analysis of temperature-dependent current conduction through thin tunnel oxide in n+-polySi/SiO2/n+-Si structures

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-09-01

    We present a detailed investigation on temperature-dependent current conduction through thin tunnel oxides grown on degenerately doped n-type silicon (n+-Si) under positive bias ( VG ) on heavily doped n-type polycrystalline silicon (n+-polySi) gate in metal-oxide-semiconductor devices. The leakage current measured between 298 and 573 K and at oxide fields ranging from 6 to 10 MV/cm is primarily attributed to Poole-Frenkel (PF) emission of trapped electrons from the neutral electron traps located in the silicon dioxide (SiO2) band gap in addition to Fowler-Nordheim (FN) tunneling of electrons from n+-Si acting as the drain node in FLOating gate Tunnel OXide Electrically Erasable Programmable Read-Only Memory devices. Process-induced neutral electron traps are located at 0.18 eV and 0.9 eV below the SiO2 conduction band. Throughout the temperature range studied here, PF emission current IPF dominates FN electron tunneling current IFN at oxide electric fields Eox between 6 and 10 MV/cm. A physics based new analytical formula has been developed for FN tunneling of electrons from the accumulation layer of degenerate semiconductors at a wide range of temperatures incorporating the image force barrier rounding effect. FN tunneling has been formulated in the framework of Wentzel-Kramers-Brilloiun taking into account the correction factor due to abrupt variation of the energy barrier at the cathode/oxide interface. The effect of interfacial and near-interfacial trapped-oxide charges on FN tunneling has also been investigated in detail at positive VG . The mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown of the memory devices and to precisely predict the normal operating field or applied floating gate (FG) voltage for lifetime projection of the devices. In addition, we present theoretical results showing the effect of drain doping concentration on the FG leakage current.

  5. Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Guduru, Pradeep R.

    2016-05-01

    Residual stress is a long-standing issue in thin film growth. Better understanding and control of film stress would lead to enhanced performance and reduced failures. In this work, we review how thin film stress is measured and interpreted. The results are used to describe a comprehensive picture that is emerging of what controls stress evolution. Examples from multiple studies are discussed to illustrate how the stress depends on key parameters (e.g., growth rate, material type, temperature, grain size, morphology, etc.). The corresponding stress-generating mechanisms that have been proposed to explain the data are also described. To develop a fuller understanding, we consider the kinetic factors that determine how much each of these processes contributes to the overall stress under different conditions. This leads to a kinetic model that can predict the dependence of the stress on multiple parameters. The model results are compared with the experiments to show how this approach can explain many features of stress evolution.

  6. polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Cai, Yunqi; Ma, Ji; Cui, Qi; Wang, Wenzhang; Zhang, Hui; Chen, Qingming

    2014-12-01

    La2/3Ca1/3MnO3 polycrystalline ceramics were synthesized by sol-gel method. Sharp temperature coefficient of resistance (TCR) variation (with peak value up to 22 %) has been observed near the metal-insulator transition temperature T MI (273 K) for the sample sintered at 1,450 °C. This TCR value is much higher than the previously reported values for the undoped and Ag-doped La0.67Ca0.33MnO3 samples and is comparable to the optimized thin films. It was concluded that the improved physical properties of the La0.67Ca0.33MnO3 material are due to its improved microstructure and homogeneity.

  7. μc-Si thin film transistors with very thin active layer

    NASA Astrophysics Data System (ADS)

    Samb, M. L.; Jacques, E.; Belarbi, K.; Coulon, N.; Mohammed-Brahim, T.

    2013-11-01

    N-type microcrystalline silicon (μc-Si) top-gate Thin Film Transistors (TFTs) are fabricated at a maximum temperature of 180 °C using different thicknesses of undoped μc-Si active layers. The effect of the thickness on the TFT performance is experimentally studied and then modeled using Silvaco software tools. The experimental high improvement of the subthreshold swing and the limitation of the rear channel effect, when using very thin active layer, are shown to be due to the increase of the lateral electrical field between the source or drain and the active layer. This increase of the lateral field is shown to be much more important for defected active layer as the microcrystalline silicon one compared to single crystalline silicon active layer. The importance of the use of very thin active layer for amorphous or ploy-micro-nano-crystalline silicon based TFTs is then demonstrated.

  8. Electrochemical photovoltaic and photoelectrochemical storage cells based on II-VI polycrystalline thin film materials

    SciTech Connect

    Wallace, W.L.

    1983-06-01

    Research on electrochemical photovoltaic cells incorporating thin film CdSe and CdSe /SUB x/ Te /SUB 1-x/ photoanodes has progressed to the point where efficiencies of up to 7% can be achieved on small area electrodes using a polysulfide electrolyte. Higher efficiencies can be obtained in alternate electrolytes in significantly less stable systems. The major limitations on cell efficiency are associated with the open circuit voltage and fill factor. At present, the most promising photoelectrochemical storage system is an in situ three electrode cell which consists of an n-CdSe /SUB x/ Te /SUB 1-x/ photoanode and CoS counterelectrode in a sulfide/polysulfide electrolyte and a Sn/SnS storage electrode isolated in an aqueous sulfide electrolyte.

  9. Research on polycrystalline thin-film CuGaInSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Stanbery, B. J.; Chen, W. S.; Devaney, W. E.; Stewart, J. W.

    1992-11-01

    This report describes research to fabricate high-efficiency CdZnS/CuInGaSe2 (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13 percent efficient, 1-sq cm total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO / Cd(0.82)Zn(0.18)S / CuIn(0.80)Ga(0.20)Se2 cell that was verified at NREL under standard testing conditions at 13.1 percent efficiency with V(sub oc) = 0.581 V, J(sub sc) = 34.8 mA/sq cm, FF = 0.728, and a cell area of 0.979 sq cm.

  10. Research on polycrystalline thin-film CuInGaSe2 solar cells

    NASA Astrophysics Data System (ADS)

    Chen, W. S.; Stewart, J. M.; Mickelsen, R. A.; Devaney, W. E.; Stanbery, B. J.

    1993-10-01

    This report describes work to fabricate high-efficiency CdZnS/CuInGaSe2, thin-film solar cells and to develop improved transparent conductor window layers such as ZnO. The specific technical milestone for Phase 1 was to demonstrate an air mass (AM) 1.5 global 13% , 1-cm(exp 2) total-area CuInGaSe2 (CIGS) thin-film solar cell. For Phase 2, the objective was to demonstrate an AM1.5 global 13.5%, 1-cm(exp 2) total-area efficiency. We focused our activities on three areas. First, we modified the CIGS deposition system to double its substrate capacity. Second, we developed new tooling to enable investigation of a modified aqueous CdZnS process in which the goal was to improve the yield of this critical step in the device fabrication process. Third, we upgraded the ZnO sputtering system to improve its reliability and reproducibility. A dual rotatable cathode metallic source was installed, and the sputtering parameters were further optimized to improve ZnO's properties as a transparent conducting oxide (TCO). Combining the refined CdZnS process with CIGS from the newly fixtured deposition system enable us to fabricate and deliver a ZnO/Cd(0.08)Zn(0.20)S/CuIn(0.74)Ga(0.26)Se2 cell on alumina with I-V characteristics, as measured by NREL under standard test conditions, of 13.7% efficiency with V(proportional to) = 0.5458 V, J(sub sc) = 35.48 mA/cm(exp 2), FF = 0.688, and efficiency = 14.6%.

  11. Research on polycrystalline thin-film CuGaInSe[sub 2] solar cells

    SciTech Connect

    Stanbery, B.J.; Chen, W.S.; Devaney, W.E.; Stewart, J.W. . Defense and Space Systems Group)

    1992-11-01

    This report describes research to fabricate high-efficiency CdZnS/CuInGaSe[sub 2] (CIGS) thin-film solar cells, and to develop improved transparent conductor window layers such as ZnO. A specific technical milestone was the demonstration of an air mass (AM) 1.5 global, 13% efficient, 1-cm[sup 2]-total-area CIGS thin-film solar cell. Our activities focused on three areas. First, a CIGS deposition: system was modified to double its substrate capacity, thus increasing throughput, which is critical to speeding the process development by providing multiple substrates from the same CIGS run. Second, new tooling was developed to enable an investigation of a modified aqueous CdZnS process. The goal was to improve the yield of this critical step in the device fabrication process. Third, our ZnO sputtering system was upgraded to improve its reliability, and the sputtering parameters were further optimized to improve its properties as a transparent conducting oxide. The characterization of the new CIGS deposition system substrate fixturing was completed, and we produced good thermal uniformity and adequately high temperatures for device-quality CIGS deposition. Both the CIGS and ZnO deposition processes were refined to yield a ZnO//Cd[sub 0.82]Zn[sub 0.18]S/CuIn[sub 0.80]Ga[sub 0.20]Se[sub 2] cell that was verified at NREL under standard testing conditions at 13.1% efficiency with V[sub oc] = 0.581 V, J[sub sc] = 34.8 mA/cm[sup 2], FF = 0.728, and a cell area of 0.979 cm[sup 2].

  12. Thermally Stimulated Luminescence of hbox {Y}2{Si}{O}5{:} {Ce}^{3+} Commercial Phosphor Powder and Thin Films

    NASA Astrophysics Data System (ADS)

    Debelo, N. G.; Dejene, F. B.; Roro, Kittessa

    2016-07-01

    We report on the thermoluminescence (TL) properties of hbox {Y}2{Si}{O}5{:} {Ce}^{3+} phosphor powder and thin films. For the phosphor powder, the TL intensity increases with an increase in UV dose for up to 20 min and then decreases. The TL intensity peak shifts slightly to higher-temperature region at relatively high heating rates, but with reduced peak intensity. Important TL kinetic parameters, such as the activation energy ( E) and the frequency factor ( s), were calculated from the glow curves using a variable heating rate method, and it was found that the glow peaks obey first-order kinetics. For the films, broad TL emissions over a wide temperature range with reduced intensity relative to that of the powder were observed. The maxima of the TL glow peaks of the films deposited in oxygen ambient and vacuum shift toward higher temperature relative to the TL peak position of the film deposited in an argon environment. Vacuum environment resulted in the formation of a deep trap relative to oxygen and argon environments. Furthermore, the structure of hbox {Y}2{Si}{O}5{:} {Ce}^{3+} phosphor powder transformed from {x}2-monoclinic polycrystalline phase to {x}1-monoclinic polycrystalline phase, for deposition at low substrate temperature.

  13. Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C

    SciTech Connect

    Gwanmesia,G.; Zhang, J.; Darling, K.; Kung, J.; Li, B.; Wang, L.; Neuville, D.; Liebermann, R.

    2006-01-01

    Acoustic wave velocities for synthetic polycrystalline pyrope (Mg3Al2Si3O12) were measured to 9 GPa and temperatures up to 1000 C by ultrasonic interferometry combined with energy-dispersive synchrotron X-ray diffraction in a cubic-anvil DIA-type apparatus (SAM-85). Specimen lengths at high pressures (P) and temperatures (T) are directly measured by X-radiographic methods. Elastic wave travel times and X-ray diffraction data were collected after heating and cooling at high pressures to minimize effect of non-hydrostatic stress on the measurements. A linear fit to the high P and T data set yields the elastic bulk and shear moduli [KS = 175 (2) GPa; G = 91 (1) GPa] and their pressure and temperature derivatives [K'S=3.9{+-}0.3; G' = 1.7 {+-} 0.2 and ({partial_derivative}KS/{partial_derivative}T)P = -18 (2) MPa/K; ({partial_derivative}G/{partial_derivative}T)P = -10 (1) MPa/K]. In a separate analysis, the pressure-volume-temperature data collected during these acoustic experiments were fit to a high temperature Birch-Murnaghan (HTBM) equation [with K' fixed at 3.9] and to each isothermal P-V-T data yielding ({partial_derivative}KT/{partial_derivative}T)P = -22 (2) MPa/K and ({partial_derivative}KT/{partial_derivative}T)P = -20 (5) MPa/K, respectively. Comparison of Py100 data with those other Py-Mj compositions indicates that the thermo elastic properties are insensitive to majorite content in the garnet along the pyrope-majorite join.

  14. Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000 degrees C

    SciTech Connect

    Gwanmesia,G.; Zhang, J.; Darling, K.; Kung, J.; Li, B.; Wang, L.; Neuville, D.; Liebermann, R.

    2006-01-01

    Acoustic wave velocities for synthetic polycrystalline pyrope (Mg{sub 3}Al{sub 2}Si{sub 3}O{sub 12}) were measured to 9 GPa and temperatures up to 1000 degrees C by ultrasonic interferometry combined with energy-dispersive synchrotron X-ray diffraction in a cubic-anvil DIA-type apparatus (SAM-85). Specimen lengths at high pressures (P) and temperatures (T) are directly measured by X-radiographic methods. Elastic wave travel times and X-ray diffraction data were collected after heating and cooling at high pressures to minimize effect of non-hydrostatic stress on the measurements. A linear fit to the high P and T data set yields the elastic bulk and shear moduli [K{sub S} = 175 (2) GPa; G = 91 (1) GPa] and their pressure and temperature derivatives [K{prime}{sub S}=3.9{+-}0.3; G{prime} = 1.7 {+-} 0.2 and ({partial_derivative}K{sub S}/{partial_derivative}T){sub P} = -18 (2) MPa/K; ({partial_derivative}G/{partial_derivative}T){sub P} = -10 (1) MPa/K]. In a separate analysis, the pressure-volume-temperature data collected during these acoustic experiments were fit to a high temperature Birch-Murnaghan (HTBM) equation [with K{prime} fixed at 3.9] and to each isothermal P-V-T data yielding ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -22 (2) MPa/K and ({partial_derivative}K{sub T}/{partial_derivative}T){sub P} = -20 (5) MPa/K, respectively. Comparison of Py{sub 100} data with those other Py-Mj compositions indicates that the thermo elastic properties are insensitive to majorite content in the garnet along the pyrope-majorite join.

  15. Influence of the microstructure on the resulting 18R martensitic transformation of polycrystalline Cu−Al−Zn thin films obtained by sputtering and reactive annealing

    SciTech Connect

    Domenichini, P.; Condó, A.M.; Soldera, F.; Sirena, M.; Haberkorn, N.

    2016-04-15

    We report the influence of the microstructure on the martensitic transformation in polycrystalline Cu−Zn−Al thin films with 18R structure. The films are grown in two steps. First, Cu−Al thin films are obtained by DC sputtering. Second, the Zn is introduced in the Cu−Al thin films by the annealing them together with a bulk Cu−Zn−Al reference. The crystalline structure of the films was analyzed by X-ray diffraction and transmission electron microscopy. The martensitic transformation temperature was measured by electrical transport using conventional four probe geometry. It was observed that temperatures above 973 K are necessary for zincification of the samples to occur. The resulting martensitic transformation and its hysteresis (barrier for the transformation) depend on the grain size, topology and films thickness. - Highlights: • Polycrystalline Cu−Al−Zn thin films with nanometric grain size are sintered. • Influence of thermal annealing process on the microstructure is analyzed. • Martensitic transformation of Cu−Al−Zn thin films is strongly affected by the microstructure.

  16. Influence of sputtering power on structural, mechanical and photoluminescence properties of nanocrystalline SiC thin films

    SciTech Connect

    Singh, Narendra; Kaur, Davinder

    2016-05-06

    In the present study, SiC thin films were deposited on Si (100) substrate by magnetron sputtering using a 4N purity commercial SiC target in argon atmosphere. The effect of sputtering RF power (140-170W) on structural, mechanical and photoluminescence properties were systematically studied by X-ray diffraction, field emission scanning electron microscopy, Nanoindentation and Spectrophotometer respectively. X-ray diffraction shows polycrystalline 4H-SiC phase with (105) preferred orientation and an enhancement in crystallite size with increasing power was also observed. The decrement in hardness and Young’s modulus with increment in RF power was ascribed to Hall-Petch relation. The maximum hardness and Young’s modulus were found to be 32 GPa and 232 GPa respectively. The photoluminescence spectra show peaks at 384 nm (3.22 eV) which corresponds to bandgap of 4H-SiC (phonon assisted band to band recombination) and 416 nm (2.99 eV) may be attributed to defect states and intensity of both peaks decreases as power increases.

  17. Recrystallization of Ge thin film on SiO2 substrates using a two-step annealing process

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Lee, Jaejun; Park, Youn Ho; Park, Jeong Min; Do, Hong Kyeong; Kim, Yeon Joo; Choi, Heon-Jin

    2017-01-01

    The fabrication of high-quality crystalline germanium thin films (GeTF) on an amorphous SiO2 layer is crucial for the realization of high performance-, low cost III-V solar cells used in many applications. Herein, we report the growth of a high-quality crystalline GeTF on SiO2/Si substrates using an ultra-vacuum chemical vapor deposition (UHV-CVD) method. GeTF was grown on the SiO2 layer using a two-step growth and multi-annealing processes. The fabrication method involved the deposition of a 1st seeding layer, annealing, and deposition of a 2nd main layer followed by three times of cyclic annealing. The crystallization of the seeding layer having a thickness of less than 10 nm could be ascribed to the evolution of polycrystalline structures in the main layer. The cyclic annealing performed after the deposition of the main layer is also found to be crucial for the formation of single crystalline, high-quality Ge films on SiO2 substrates with <311> direction. The cyclic annealing results in a further reduction of the defects, thereby threading dislocations significantly to a density of 5.311 × 107 cm-2. Electrical measurements using the van der Pauw method revealed that the GeTF exhibits p-type characteristics and a high mobility of 360.10 cm2/Vs at room temperature. [Figure not available: see fulltext.

  18. Elastic properties determination of CuInSe2 polycrystalline thin films via a dynamic method

    NASA Astrophysics Data System (ADS)

    Hadjoub, Z.; Merdes, S.; Hadjoub, I.; Doghmane, A.

    2010-11-01

    Developing and using a simulation program based on the spectrum angular model, we first determine reflectance functions and acoustic signatures for bulk as well as for different thickness of CuInSe2 films. For bulk material, it is found that the longitudinal and Rayleigh modes are excited at incidence angles of 23.4° and 47°, respectively. This result reveals the great difficulties to characterize CuInSe2 with a conventional scanning acoustic microscope that uses a lens half- opening angle of 50° and water as a coupling liquid. Hence, Freon is used as alternative coupling liquid. Consequently, the effect of thickness on reflection coefficient and acoustic signature variations are quantified for both bulk and thin material. It is shown that as the thickness increases: (i) the critical angle of mode excitation increases, (ii) the periods of acoustic signature curves decrease and (iii) the Rayleigh velocity, VR, mode shifts towards lower values. Hence, a velocity dispersion curve is established in terms of VR as a function of film thickness; it decreases initially from the velocity value of the glass substrate then saturates when it reaches that of CuInSe2. The importance of such curve lies in the possibility of velocity determination by just knowing the thickness, and vice versa. Moreover, elastic constants are straight forward deduced from such a velocity.

  19. Thin film polycrystalline silicon solar cells: first technical progress report, April 15, 1980-July 15, 1980

    SciTech Connect

    1980-07-01

    The objectives of this contract are to fabricate large area thin film silicon solar cells with AM1 efficiency of 10% or greater with good reproducibility and good yield and to assess the feasibility of implementing this process for manufacturing solar cells at a cost of $300/kWe. Efforts during the past quarter have been directed to the purification of metallurgical silicon, the preparation of substrates, and the fabrication and characterization of solar cells. The partial purification of metallurgical silicon by extraction with aqua regia has been investigated in detail, and the resulting silicon was analyzed by the atomic absorption technique. The unidirectional solidification of aqua regia-extracted metallurgical silicon on graphite was used for the preparation of substrates, and the impurity distribution in the substrate was also determined. Large area (> 30 cm/sup 2/) solar cells have been prepared from aqua regia-extracted metallurgical silicon substrates by the thermal reduction of trichlorosilane containing appropriate dopants. Chemically deposited tin-dioxide films were used as antireflection coatings. Solar cells with AM1 efficiencies of about 8.5% have been obtained. Their spectral response, minority carrier diffusion length, and I/sub sc/-V/sub oc/ relation have been measured.

  20. Electrochemical characterisation of copper thin-film formation on polycrystalline platinum.

    PubMed

    Berkes, Balázs B; Henry, John B; Huang, Minghua; Bondarenko, Alexander S

    2012-09-17

    Electrochemically formed thin films are vital for a broad range of applications in virtually every field of modern science and technology. Understanding the film formation process could provide a means to aid the characterisation and control of film properties. Herein, we present a fundamental approach that combines two well-established analytical techniques (namely, electrochemical impedance spectroscopy and electrogravimetry) with a theoretical approach to provide physico-chemical information on the electrode/electrolyte interface during film formation. This approach allows the monitoring of local and overall surface kinetic parameters with time to enable an evaluation of the different modes of film formation. This monitoring is independent of surface area and surface concentrations of electroactive species and so may allow current computational methods to calculate these parameters and provide a deeper physical understanding of the electrodeposition of new bulk phases. The ability of this method to characterise 3D phase growth in situ in more detail than that obtained by conventional approaches is demonstrated through the study of a model system, namely, Cu bulk-phase deposition on a Pt electrode covered with a Cu atomic layer (Cu(ad)/Pt).

  1. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    SciTech Connect

    Yun, J. Varalmov, S.; Huang, J.; Green, M. A.; Kim, K.

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  2. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    SciTech Connect

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  3. Composite Yb:YAG/SiC-prism thin disk laser.

    PubMed

    Newburgh, G A; Michael, A; Dubinskii, M

    2010-08-02

    We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster's angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster's angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with approximately 38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M(2) = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

  4. Super-high density Si quantum dot thin film utilizing a gradient Si-rich oxide multilayer structure.

    PubMed

    Kuo, Kuang-Yang; Huang, Pin-Ruei; Lee, Po-Tsung

    2013-05-17

    A gradient Si-rich oxide multilayer (GSRO-ML) deposition structure is proposed to achieve super-high density Si quantum dot (QD) thin film formation while preserving QD size controllability for better photovoltaic properties. Our results indicate that the Si QD thin film using a GSRO-ML structure can efficiently increase the QD density and control the QD size. Its optical properties clearly promise the capability of effective bandgap engineering even though these QDs are closely formed. The Si QD thin film using a GSRO-ML structure obviously reveals better electro-optical properties than those using a [silicon dioxide/silicon-rich oxide] multilayer ([SiO2/SRO]-ML) structure owing to the better optical absorption and carrier transport properties. Therefore, we successfully demonstrate that our proposed GSRO-ML structure has great potential for application in solar cells integrating Si QD thin films.

  5. Mossbauer study of FeSi2 and FeSe thin films

    NASA Technical Reports Server (NTRS)

    Aggarwal, K.; Escue, W. T.; Mendiratta, R. G.

    1980-01-01

    Structural studies of FeSi2 and FeSe thin films have been conducted via Mossbauer spectroscopy as continuation of earlier investigation of FeTe films. Results discuss structures of bulk and thin-film FeSi2 and bulk and thin-film FeSe.

  6. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyu; Pham, Vuong-Hung; Kim, Chong-Hyun

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  7. Self-aligned metal double-gate junctionless p-channel low-temperature polycrystalline-germanium thin-film transistor with thin germanium film on glass substrate

    NASA Astrophysics Data System (ADS)

    Hara, Akito; Nishimura, Yuya; Ohsawa, Hiroki

    2017-03-01

    Low-temperature (LT) polycrystalline-germanium (poly-Ge) thin-film transistors (TFTs) are viable contenders for use in the backplanes of flat-panel displays and in systems-on-glass because of their superior electrical properties compared with silicon and oxide semiconductors. However, LT poly-Ge shows strong p-type characteristics. Therefore, it is not easy to reduce the leakage current using a single-gate structure such as a top-gate or bottom-gate structure. In this study, self-aligned planar metal double-gate p-channel junctionless LT poly-Ge TFTs are fabricated on a glass substrate using a 15-nm-thick solid-phase crystallized poly-Ge film and aluminum-induced lateral metallization source-drain regions (Al-LM-SD). A nominal field-effect mobility of 19 cm2 V-1 s-1 and an on/off ratio of 2 × 103 were obtained by optimizing the Al-LM-SD on a glass substrate through a simple, inexpensive LT process.

  8. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N-H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  9. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors

    NASA Astrophysics Data System (ADS)

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-01

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm2 V-1 s-1, a current on/off ratio of 2 × 105, a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec-1. Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  10. Synergistic effects of water addition and step heating on the formation of solution-processed zinc tin oxide thin films: towards high-mobility polycrystalline transistors.

    PubMed

    Huang, Genmao; Duan, Lian; Zhao, Yunlong; Zhang, Yunge; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2016-11-18

    Thin-film transistors (TFTs) with high mobility and good uniformity are attractive for next-generation flat panel displays. In this work, solution-processed polycrystalline zinc tin oxide (ZTO) thin film with well-ordered microstructure is prepared, thanks to the synergistic effect of water addition and step heating. The step heating treatment other than direct annealing induces crystallization, while adequate water added to precursor solution further facilitates alloying and densification process. The optimal polycrystalline ZTO film is free of hierarchical sublayers, and featured with an increased amount of ternary phases, as well as a decreased fraction of oxygen vacancies and hydroxides. TFT devices based on such an active layer exhibit a remarkable field-effect mobility of 52.5 cm(2) V(-1) s(-1), a current on/off ratio of 2 × 10(5), a threshold voltage of 2.32 V, and a subthreshold swing of 0.36 V dec(-1). Our work offers a facile method towards high-performance solution-processed polycrystalline metal oxide TFTs.

  11. Structural Characterization of Polycrystalline 3C-SiC Films Prepared at High Rates by Atmospheric Pressure Plasma Chemical Vapor Deposition Using Monomethylsilane

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Hiroaki; Ohmi, Hiromasa; Nakamura, Ryota; Aketa, Masatoshi; Yasutake, Kiyoshi

    2006-10-01

    Polycrystalline cubic silicon carbide (3C-SiC) films were deposited at a relatively low temperature of 1070 K on Si(001) substrates by atmospheric pressure plasma chemical vapor deposition. Monomethylsilane (CH3SiH3) was used as the single source. CH4 and SiH4 dual sources were also used to compare deposition characteristics. Under the present deposition conditions, very high deposition rates of more than 3 nm/s were obtained. The structure of the SiC films was evaluated by reflection high-energy electron diffraction, Fourier transform infrared absorption spectroscopy and cross-sectional transmission electron microscopy. In addition, optical emission spectroscopy was employed to study the chemical reactions in the CH4/SiH4 and CH3SiH3 plasmas. The results showed that increasing H2 concentration is essential in forming a high quality 3C-SiC film by enhancing the hydrogen elimination reaction at the film-growing surface. From the optical emission spectra, it was found that atomic hydrogen generated by adding H2 in the plasma increase the amount of principal precursors for the film growth. The utilization of CH3SiH3 also led to a higher concentration of principal precursors in the plasma, enhancing the incorporation of Si-C bonds into the film. As a consequence of simultaneously using a high H2 concentration and the CH3SiH3 single source, the columnar growth of 3C-SiC crystallites was achieved.

  12. Ion-Assisted Laser Deposition of Intermediate Layers for Yttrium BARIUM(2) COPPER(3) OXYGEN(7-DELTA) Thin Film Growth on Polycrystalline and Amorphous Substrates.

    NASA Astrophysics Data System (ADS)

    Reade, Ronald Paul

    The growth of YB_2Cu _3O_{7-delta} (YBCO) high-temperature superconductor thin films has largely been limited to deposition on single-crystal substrates to date. In order to expand the range of potential applications, growth on polycrystalline and amorphous substrates is desirable. In particular, the deposition of YBCO thin films with high critical current densities on polycrystalline metal alloys would allow the manufacture of superconducting tapes. However, it is shown that it is not possible to grow YBCO thin films directly on this type of substrate due to chemical and structural incompatibility. This work investigates the use of a yttria-stabilized zirconia (YSZ) intermediate layer to address this problem. An ion-assisted pulsed-laser deposition process is developed to provide control of orientation during the growth of the YSZ layers. The important properties of YBCO and YSZ are summarized and the status of research on thin film growth of these materials is reviewed. An overview of the pulsed-laser deposition (PLD) technique is presented. The use of ion -assisted deposition techniques to control thin film properties is discussed. Using an ion-assisted PLD process, the growth of (001) YSZ layers with controlled alignment of the in -plane crystal axes is achieved on polycrystalline metal and other polycrystalline and amorphous substrates. Studies of the important process parameters are presented. These layers are demonstrated to be appropriate for the subsequent deposition of c-axis YBCO thin films with alignment of the in-plane axes. A critical temperature of 92K and critical current densities (at 77K) of 6times 10^5 and 5times 10^4 A/cm ^2 without and with a 0.4T magnetic field, have been achieved. These critical current densities are higher than those demonstrated for competing technologies. The applicability of the developed technology is discussed. The control of film orientation using the ion-assisted PLD process is compared to the existing theory and

  13. A comparison of scattering and non-scattering anti-reflection designs for back contacted polycrystalline thin film silicon solar cells in superstrate configuration

    NASA Astrophysics Data System (ADS)

    Lockau, Daniel; Hammerschmidt, M.; Haschke, Jan; Blome, Mark; Ruske, F.; Schmidt, F.; Rech, B.

    2014-05-01

    A new generation of polycrystalline silicon thin film solar cells is currently being developed in laboratories, employing a combination of novel laser or electron beam based liquid phase crystallization (LPC) techniques and single side contacting systems. The lateral grain size of these polycrystalline cells is in the millimeter range at an absorber thickness of up to 10 μm. In this contribution we present a comparative simulation study of several 1D, 2D and 3D nano-optical designs for the substrate / illumination side interface to the several micrometer thick back contacted LPC silicon absorber material. The compared geometries comprise multilayer coatings, gratings with step and continuous profiles as well as combinations thereof. Using the transfer matrix method and a finite element method implementation to rigorously solve Maxwell's equations, we discuss anti-reflection and scattering properties of the different front interface designs in view of the angular distribution of incident light.

  14. Auger electron spectroscopy of super-doped Si:Mn thin films

    NASA Astrophysics Data System (ADS)

    Abe, S.; Nakasima, Y.; Okubo, S.; Nakayama, H.; Nishino, T.; Yanagi, H.; Ohta, H.; Iida, S.

    1999-04-01

    Thin films of Si heavily doped with Mn impurities at nonequilibrium doping levels have been successfully prepared by Laser-Ablation MBE. The electronic structure of Mn-doped Si thin films have been investigated by Auger Valence Electron Spectroscopy (AVES). The peak positions of Mn[3p,V,V] (V=3d) Auger spectra of Si:Mn thin films were located at the higher energy region than those of pure Mn and Mn 5Si 3 compound. For the Si:Mn thin film grown on SiO 2/Si(001) substrate, the new Auger peak was observed around 50 eV. The changes of the line shape were observed in Mn[L,M,M] (L=2s,2p; M=3s,3p,3d) Auger spectra of Si:Mn thin films compared with those of pure Mn and Mn 5Si 3 compounds. In the Mn[2s,M,V] (M=3s,3p,V=3d) spectra for Si:Mn thin films, the new peaks were appeared around 700 eV. These new peaks were considered to arise from the new split of the 3d electron states due to the formation of the Mn-Si bonds in Si:Mn thin films.

  15. Secondary electron emission characteristics of a thermally grown SiO2 thin layer on Si

    NASA Astrophysics Data System (ADS)

    Jeong, Taewon; Yu, Segi; Jin, S. H.; Lee, Jeonghee; Yi, Whikun; Choi, Y. S.; Kim, J. M.; Jeon, D.

    2000-03-01

    The secondary electron emissions of thin SiO2 layers prepared by dry thermal oxidation of doped Si substrates were measured as a function of the oxide layer thickness and the dopant element. The oxide layer thickness was varied between 200 A and 1150 A by changing the oxidation time at 930 C. We found that secondary electron emission yield curves for the samples with a relatively thick oxide layer revealed two local maxima (one near 300 - 500 eV, the other near 1000 eV) regardless of the dopant type, while those for the samples with a relatively thin layer showed one maximum like many other previous results. When the oxide layer was formed by vapor deposition, the two peaks were not observed. This leads us to interpret the secondary electron emission data for the thermally oxidized samples in terms of the dopant accumulation and the electron tunneling through the narrow barrier at the Si/SiO2 interface. Sample characterization data and a simple phenomenological model will be presented. This work was supported by the Korean Ministry of Science and Technology through the Creative Research Initiative program.

  16. Excitation dependent photoluminescence study of Si-rich a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Kumar Bommali, Ravi; Preet Singh, Sarab; Rai, Sanjay; Mishra, P.; Sekhar, B. R.; Vijaya Prakash, G.; Srivastava, P.

    2012-12-01

    We report photoluminescence (PL) investigations on Si-rich amorphous hydrogenated silicon nitride (a-SiNx:H) thin films of different compositions, using three different excitation lasers, viz., 325 nm, 410 nm, and 532 nm. The as-deposited films contain amorphous Si quantum dots (QDs) as evidenced in high resolution transmission electron microscopy images. The PL spectral shape is in general seen to change with the excitation used, thus emphasizing the presence of multiple luminescence centres in these films. It is found that all the spectra so obtained can be deconvoluted assuming Gaussian contributions from defects and quantum confinement effect. Further strength to this assignment is provided by low temperature (300 °C) hydrogen plasma annealing of these samples, wherein a preferential enhancement of the QD luminescence over defect luminescence is observed.

  17. Rectifying properties of sol-gel synthesized Al:ZnO/Si (N-n) thin film heterojunctions

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Patra, S.; Bera, S. K.; Paul, G. K.; Ghosh, R.

    2012-09-01

    We report on the rectifying behavior of sol-gel synthesized Al (1 and 3 at%):ZnO/Si (N-n) thin film isotype heterojunctions. The films were dense and uniform over the substrate and show polycrystalline morphology with defined grain boundaries. The current-voltage (I-V) characteristics of the junctions at room temperature and high temperature in air ambient were found to be asymmetric with an increase in rectification ratio (If/Ir) from 1.29 to 3.70 for 1 at% and from 0.60 to 2.54 for 3 at% of Al (at a bias voltage of 5 V) for increase in temperature upto 150 °C. The I-V characteristics of the junctions were explained on the basis of high temperature carrier injection and single carrier dynamics.

  18. In situ study of dislocation behavior in columnar Al thin film on Si substrate during thermal cycling

    SciTech Connect

    Allen, C. W.; Schroeder, H.; Hiller, J. M.

    1999-12-13

    In situ transmission electron microscopy (150 kV) has been employed to study the evolution of dislocation microstructure during relatively rapid thermal cycling of a 200 nm Al thin film on Si substrate. After a few thermal cycles between 150 and 500 C, nearly stable Al columnar grain structure is established with average grain less than a {micro}m. On rapid cooling (3--30+ C/s) from 500 C, dislocations first appear at a nominal temperature of 360--380 C, quickly multiplying and forming planar glide plane arrays on further cooling. From a large number of such experiments the authors have attempted to deduce the dislocation evolution during thermal cycling in these polycrystalline Al films and to account qualitatively for the results on a simple dislocation model.

  19. Electronic transport in highly conducting Si-doped ZnO thin films prepared by pulsed laser deposition

    SciTech Connect

    Kuznetsov, Vladimir L.; Vai, Alex T.; Edwards, Peter P.; Al-Mamouri, Malek; Stuart Abell, J.; Pepper, Michael

    2015-12-07

    Highly conducting (ρ = 3.9 × 10{sup −4} Ωcm) and transparent (83%) polycrystalline Si-doped ZnO (SiZO) thin films have been deposited onto borosilicate glass substrates by pulsed laser deposition from (ZnO){sub 1−x}(SiO{sub 2}){sub x} (0 ≤ x ≤ 0.05) ceramic targets prepared using a sol-gel technique. Along with their structural, chemical, and optical properties, the electronic transport within these SiZO samples has been investigated as a function of silicon doping level and temperature. Measurements made between 80 and 350 K reveal an almost temperature-independent carrier concentration consistent with degenerate metallic conduction in all of these samples. The temperature-dependent Hall mobility has been modeled by considering the varying contribution of grain boundary and electron-phonon scattering in samples with different nominal silicon concentrations.

  20. THz pulse generation using a contact grating device composed of TiO2/SiO2 thin films on LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Yoshida, Fumiko; Nagashima, Keisuke; Tsubouchi, Masaaki; Maruyama, Momoko; Ochi, Yoshihiro

    2016-11-01

    We developed a new contact grating device for terahertz (THz) pulse generation by optical rectification. The device was made from polycrystalline rutile TiO2 thin film in the grating region and an amorphous SiO2 layer deposited on a Mg-doped LiNbO3 crystal. Our calculations indicated that the TiO2 grating on the SiO2 layer would yield an increase in diffraction efficiency of up to 0.69. The prepared TiO2 thin film had a sufficient laser induced damage threshold (140 GW/cm2) to enable effective THz pulse generation. Using a prototype device, we demonstrated THz pulse generation and investigated the phase-matching conditions experimentally.

  1. Hydrogen-induced crystallization of amorphous Si thin films. II. Mechanisms and energetics of hydrogen insertion into Si-Si bonds

    SciTech Connect

    Valipa, Mayur S.; Sriraman, Saravanapriyan; Aydil, Eray S.; Maroudas, Dimitrios

    2006-09-01

    We report a detailed study of the mechanisms and energetics of hydrogen (H) insertion into strained Si-Si bonds during H-induced crystallization of hydrogenated amorphous Si (a-Si:H) thin films. Our analysis is based on molecular-dynamics (MD) simulations of exposure of a-Si:H films to H atoms from a H{sub 2} plasma through repeated impingement of H atoms. Hydrogen atoms insert into Si-Si bonds as they diffuse through the a-Si:H film. Detailed analyses of the evolution of Si-Si and Si-H bond lengths from the MD trajectories show that diffusing H atoms bond to one of the Si atoms of the strained Si-Si bond prior to insertion; upon insertion, a bridging configuration is formed with the H atom bonded to both Si atoms, which remain bonded to each other. After the H atom leaves the bridging configuration, the Si-Si bond is either further strained, or broken, or relaxed, restoring the Si-Si bond length closer to the equilibrium bond length in crystalline Si. In some cases, during its diffusion in the a-Si:H film, the H atom occupies a bond-center position between two Si atoms that are not bonded to each other; after the H diffuses away from this bond-center position, a Si-Si bond is formed between these previously nonbonded Si atoms. The activation energy barrier for the H insertion reaction depends linearly on both the initial strain in the corresponding Si-Si bond and a strain factor that takes into account the additional stretching of the Si-Si bond in the transition-state configuration. The role of the H insertion reactions in the structural relaxation of the a-Si:H network that results in disorder-to-order transitions is discussed.

  2. CdSiAs/sub 2/ thin films for solar cell applications. Final report, April 9, 1979-April 8, 1980

    SciTech Connect

    Burton, L.C.; Slack, L.H.

    1980-06-01

    Compounds of Cd-Si-As required for sputtering targets and evaporation charges were synthesized by direct fusion. These include CdSiAs/sub 2/, Cd/sub 3/As/sub 2/, CdAs/sub 2/ and SiAs. Polycrystalline ingots of CdSiAs/sub 2/ were found to be porous, with the chalcopyrite structure, and with minor amounts of other phases such as CdAs/sub 2/, SiAs,As and Cd/sub 3/As/sub 2/. Sputtered films were formed in a single target RF system. A homogeneous CdSiAs/sub 2/ target was initially used, followed by composite targets consisting of CdAs/sub 2/ + Si. Films from the latter targets were superior to the others and were more extensively studied. As deposited films were amorphous, off stoichiometry, with resistivities over 10/sup 8/..cap omega..-cm and band gaps of approx. 1.4 eV. Subsequent reactive heat treatments in the 515/sup 0/ to 615/sup 0/C range resulted in crystalline films, resistivities of 1 to 10 ..cap omega.. cm, CdSiAs/sub 2/ compositions within 1% of stoichiometry, energy gap of approx. 1.55 eV, absorption coefficient of 2 x 10/sup 4/cm/sup -1/ at 0.6 ..mu..m, but with poor mechanical properties (mainly cracking). A Ta/Si0/sub 2/ substrate proved to be the best for these films. Thermal evaporation studies of CdSiAs/sub 2/ established that effusion is preferential toward Cd between 570 and 710/sup 0/C, and toward As in the 710 to 1010/sup 0/C range. All films resulting from CdAs/sub 2/ charges were found to be Cd deficient. For these reasons, over the last 6 months of the program, only sputtered films were studied further. Preliminary CdSiAs/sub 2//CdS junctions were formed on bulk and sputtered CdSiAs/sub 2/. The bulk junctions produced photoresponse up to 0.25V and several ..mu..A. The thin film junctions were rectifying, but generated insignificant photoresponse, apparently due to the poor properties of the CdSiAs/sub 2/ films.

  3. The effects of layering in ferroelectric Si-doped HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Lomenzo, Patrick D.; Takmeel, Qanit; Zhou, Chuanzhen; Liu, Yang; Fancher, Chris M.; Jones, Jacob L.; Moghaddam, Saeed; Nishida, Toshikazu

    2014-08-01

    Atomic layer deposited Si-doped HfO2 thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO2 thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  4. Well-aligned polycrystalline lanthanum silicate oxyapatite grown by reactive diffusion between solid La{sub 2}SiO{sub 5} and gases [SiO+1/2O{sub 2}

    SciTech Connect

    Fukuda, Koichiro; Hasegawa, Ryo; Kitagawa, Takuya; Nakamori, Hiroshi; Asaka, Toru; Berghout, Abid; Béchade, Emilie; Masson, Olivier; Jouin, Jenny; Thomas, Philippe

    2016-03-15

    The c-axis-oriented polycrystalline lanthanum silicate oxyapatite, La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} (□ denotes a vacancy in the Si site), was successfully prepared by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO+1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The polycrystal was characterized using optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, X-ray diffractometry, and impedance spectroscopy. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site at ca. 1.9%. The bulk oxide-ion conductivity along the grain-alignment direction steadily increased from 9.2 × 10{sup −3} to 1.17 × 10{sup −2} S/cm with increasing temperature from 923 to 1073 K. The activation energy of conduction was 0.23(2) eV. - Graphical abstract: We have successfully prepared the highly c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} by the reactive diffusion between randomly grain-oriented La{sub 2}SiO{sub 5} polycrystal and [SiO + 1/2O{sub 2}] gases at 1873 K in Ar atmosphere. The crystal structure (space group P6{sub 3}/m) showed the deficiency of Si site of ca. 1.9%. - Highlights: • The c-axis-oriented polycrystalline La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is successfully prepared. • Crystal structure of La{sub 9.48}(Si{sub 5.89}□{sub 0.11})O{sub 26} is determined by single-crystal XRD. • The polycrystal shows relatively high oxide ion conductivity along the common c-axis. • Reactive diffusion is successfully used for the preparation of grain-aligned ceramics.

  5. n +-Microcrystalline-Silicon Tunnel Layer in Tandem Si-Based Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Lee, Hsin-Ying; Chen, Kuan-Hao

    2016-10-01

    In this study, the p-SiC/ i-Si/ n-Si cell and the p-SiC/ i-SiGe/ n-Si cell deposited using plasma-enhanced chemical vapor deposition were cascaded for forming the tandem Si-based thin film solar cells to absorb the wide solar spectrum. To further improve the performances of the tandem Si-based thin film solar cells, a 5-nm-thick n +-microcrystalline-Si ( n +-μc-Si) tunnel layer deposited using the laser-assisted plasma-enhanced chemical vapor deposition was inserted between the p-SiC/ i-Si/ n-Si cell and the p-SiC/ i-SiGe/ n-Si cell. Since both the plasma and the CO2 laser were simultaneously utilized to efficiently decompose the reactant and doping gases, the carrier concentration and the carrier mobility of the n +-μc-Si tunnel layer were significantly improved. The ohmic contact formed between the p-SiC layer and the n +-μc-Si tunnel layer with low resistance was beneficial to the generated current transportation and the carrier recombination rate. Therefore, the conversion efficiency of the tandem solar cells was promoted from 8.57% and 8.82% to 9.91% compared to that without tunnel layer and with 5-nm-thick n +-amorphous-Si tunnel layer.

  6. Bioactivity of polycrystalline silicon layers.

    PubMed

    Pramatarova, Lilyana; Pecheva, Emilia; Montgomery, Paul; Dimova-Malinovska, Doriana; Petrov, Todor; Toth, Attila L; Dimitrova, Magdalena

    2008-02-01

    After oxygen, silicon is the second most abundant element in the environment and is present as an impurity in most materials. The widespread occurrence of siliceous biominerals as structural elements in lower plants and animals suggests that Si plays a role in the production and maintenance of connective tissue in higher organisms. It has been shown that the presence of Si is necessary in bones, cartilage and in the formation of connective tissue, as well as in some important metabolic processes. In this work, polycrystalline silicon layers are tested in terms of bioactivity, i.e., their ability to induce hydroxyapatite formation from simulated body fluid. Hydroxyapatite is a biologically compatible material with chemical similarity to the inorganic part of bones and teeth. Polycrystalline silicon layers are obtained by aluminum induced crystallization of Al and amorphous Si thin films deposited sequentially on glass substrates by radio-frequency magnetron sputtering and subsequently annealed in different atmospheres. The hydroxyapatite formation is induced by applying a method of laser-liquid-solid interaction. The method consists of irradiating the samples with laser light while immersed in a solution that is supersaturated with respect to Ca and P. As a result, heterogeneous porous sponge-like carbonate-containing hydroxyapatite is grown on the polysilicon surfaces. Crystals that are spherical in shape, containing Ca, P and O, Na, Cl, Mg, Al, Si and S, as well as well-faceted NaCl crystals are embedded in the hydroxyapatite layer. Enhancement of the hydroxyapatite growth and increased crystallinity is observed due to the applied laser-liquid-solid interaction.

  7. Polycrystalline silicon availability for photovoltaic and semiconductor industries

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.; Costogue, E. N.; Pellin, R.

    1982-01-01

    Markets, applications, and production techniques for Siemens process-produced polycrystalline silicon are surveyed. It is noted that as of 1982 a total of six Si materials suppliers were servicing a worldwide total of over 1000 manufacturers of Si-based devices. Besides solar cells, the Si wafers are employed for thyristors, rectifiers, bipolar power transistors, and discrete components for control systems. An estimated 3890 metric tons of semiconductor-grade polycrystalline Si will be used in 1982, and 6200 metric tons by 1985. Although the amount is expected to nearly triple between 1982-89, research is being carried out on the formation of thin films and ribbons for solar cells, thereby eliminating the waste produced in slicing Czolchralski-grown crystals. The free-world Si production in 1982 is estimated to be 3050 metric tons. Various new technologies for the formation of polycrystalline Si at lower costs and with less waste are considered. New entries into the industrial Si formation field are projected to produce a 2000 metric ton excess by 1988.

  8. Flexible carbon nanotube/mono-crystalline Si thin-film solar cells

    PubMed Central

    2014-01-01

    Flexible heterojunction solar cells were fabricated from carbon nanotubes (CNTs) and mono-crystalline Si thin films at room temperature. The Si thin films with thickness less than 50 μm are prepared by chemically etching Si wafer in a KOH solution. The initial efficiency of the thin-film solar cell varies from approximately 3% to 5%. After doping with a few drops of 1 M HNO3, the efficiency increases to 6% with a short-circuit current density of 16.8 mA/cm2 and a fill factor of 71.5%. The performance of the solar cells depends on the surface state and thickness of Si thin films, as well as the interface of CNT/Si. The flexible CNT/Si thin-film solar cells exhibit good stability in bending-recovery cycles. PMID:25258617

  9. Impact of solid-phase crystallization of amorphous silicon on the chemical structure of the buried Si/ZnO thin film solar cell interface

    SciTech Connect

    Bar, M.; Wimmer, M.; Wilks, R. G.; Roczen, M.; Gerlach, D.; Ruske, F.; Lips, K.; Rech, B.; Weinhardt, L.; Blum, M.; Pookpanratana, S.; Krause, S.; Zhang, Y.; Heske, C.; Yang, W.; Denlinger, J. D.

    2010-04-30

    The chemical interface structure between phosphorus-doped hydrogenated amorphous silicon and aluminum-doped zinc oxide thin films is investigated with soft x-ray emission spectroscopy (XES) before and after solid-phase crystallization (SPC) at 600C. In addition to the expected SPC-induced phase transition from amorphous to polycrystalline silicon, our XES data indicates a pronounced chemical interaction at the buried Si/ZnO interface. In particular, we find an SPC-enhanced formation of Si-O bonds and the accumulation of Zn in close proximity to the interface. For an assumed closed and homogeneous SiO2 interlayer, an effective thickness of (5+2)nm after SPC could be estimated.

  10. Bottom-gate poly-Si thin-film transistors by nickel silicide seed-induced lateral crystallization with self-aligned lightly doped layer

    NASA Astrophysics Data System (ADS)

    Lee, Sol Kyu; Seok, Ki Hwan; Chae, Hee Jae; Lee, Yong Hee; Han, Ji Su; Jo, Hyeon Ah; Joo, Seung Ki

    2017-03-01

    We report a novel method to reduce source and drain (S/D) resistances, and to form a lightly doped layer (LDL) of bottom-gate polycrystalline silicon (poly-Si) thin-film transistors (TFTs). For application in driving TFTs, which operate under high drain voltage condition, poly-Si TFTs are needed in order to attain reliability against hot-carriers as well as high field-effect mobility (μFE). With an additional doping on the p+ Si layer, sheet resistance on S/D was reduced by 37.5% and an LDL was introduced between the channel and drain. These results contributed to not only a lower leakage current and gate-induced drain leakage, but also high immunity of kink-effect and hot-carrier stress. Furthermore, the measured electrical characteristics exhibited a steep subthreshold slope of 190 mV/dec and high μFE of 263 cm2/Vs.

  11. Measured temperature and pressure dependence of V-p and V-s in compacted, polycrystalline sI methane and sII methane-ethane hydrate

    NASA Astrophysics Data System (ADS)

    Helgerud, M. B.; Waite, W. F.; Kirby, S. H.; Nur, A.

    2003-01-01

    We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17degreesC in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15degreesC and 0 to 105 MPa applied piston pressure.

  12. Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline sI methane and sII methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2003-01-01

    We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17??C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15??C and 0 to 105 MPa applied piston pressure.

  13. Development of transparent polycrystalline beta-silicon carbide

    NASA Astrophysics Data System (ADS)

    Bayya, Shyam S.; Villalobos, Guillermo R.; Hunt, Michael P.; Sanghera, Jasbinder S.; Sadowski, Bryan M.; Aggarwal, Ishwar D.; Cinibulk, Michael; Carney, Carmen; Keller, Kristin

    2013-09-01

    Transparent beta-SiC is of great interest because its high strength, low coefficient of thermal expansion, very high thermal conductivity, and cubic crystal structure give it a very high thermal shock resistance. A transparent, polycrystalline beta-SiC window will find applications in armor, hypersonic missiles, and thermal control for thin disc lasers. SiC is currently available as either small transparent vapor grown disks or larger opaque shapes. Neither of which are useful in window applications. We are developing sintering technology to enable transparent SiC ceramics. This involves developing procedures to make high purity powders and studying their densification behavior. We have been successful in demonstrating transparency in thin sections using Field Assisted Sintering Technology (FAST). This paper will discuss the reaction mechanisms in the formation of beta-SiC powder and its sintering behavior in producing transparent ceramics.

  14. Studies on VOx thin films deposited over Si3N4 coated Si substrates

    NASA Astrophysics Data System (ADS)

    Raj, P. Deepak; Gupta, Sudha; Sridharan, M.

    2015-06-01

    Vanadium oxide (VOx) thin films were deposited on to the silicon nitride (Si3N4) coated silicon (Si) substrate using reactive direct current magnetron sputtering at different substrate temperatures (Ts). The deposited films were characterized for their structural, morphological, optical and electrical properties. The average grain size of the deposited films was in the range of 95 to 178 nm and the strain varied from 0.071 to 0.054 %. The optical bandgap values of the films were evaluated using UV-Vis spectroscopy and lies in the range of 2.46 to 3.88 eV. The temperature coefficient of resistance (TCR) for the film deposited at 125 °C was -1.23%/°C with the sheet resistivity of 2.7 Ω.cm.

  15. Electrical properties of SrTiO3 thin films on Si deposited by magnetron sputtering at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Zhongchun; Kugler, Veronika; Helmersson, Ulf; Konofaos, N.; Evangelou, E. K.; Nakao, Setsuo; Jin, Ping

    2001-09-01

    Deposition of SrTiO3 (STO) thin films by radio-frequency magnetron sputtering in an ultrahigh vacuum system at a low substrate temperature (˜200 °C) was performed in order to produce high-quality STO/p-Si (100) interfaces and STO insulator layers with dielectric constants of high magnitude. The STO films were identified as polycrystalline by x-ray diffraction, and were approximated with a layered structure according to the best fitting results of raw data from both Rutherford backscattering spectroscopy and variable angle spectroscopic ellipsometry. Room-temperature current-voltage and capacitance-voltage (C-V) measurements on Al/STO/p-Si diodes clearly revealed metal-insulator-semiconductor behavior, and the STO/p-Si interface state densities were of the order of 1011eV-1 cm-2. The dielectric constant of the STO film was 65, and the dielectric loss factor varied between 0.05 and 0.55 for a frequency range of 1 kHz-10 MHz. For a 387 nm thick STO film, the dielectric breakdown field was 0.31 MV cm-1, and the charge storage capacity was 2.1 μC cm-2. These results indicate that STO films are suitable for applications as insulator layers in dynamic random access memories or as cladding layers in electroluminescent devices.

  16. Atomic-resolution characterization of the effects of CdCl{sub 2} treatment on poly-crystalline CdTe thin films

    SciTech Connect

    Paulauskas, T. Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Klie, R. F.

    2014-08-18

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl{sub 2} environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl{sub 2}, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  17. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  18. Quantitative analysis of the magnetic domain structure in polycrystalline La(0.7)Sr(0.3)MnO3 thin films by magnetic force microscopy.

    PubMed

    Li, Zhenghua; Wei, Fulin; Yoshimura, Satoru; Li, Guoqing; Asano, Hidefumi; Saito, Hitoshi

    2013-01-14

    The nanoscale magnetic domain structure of the polycrystalline La(0.7)Sr(0.3)MnO(3) granular thin films was imaged with a developed magnetic force microscopy technique by simultaneously detecting both the perpendicular and in-plane components of magnetic field gradients during the same scan of the tip oscillation. The characteristics of both the perpendicular and in-plane magnetic field gradient at the grain edges or the nonmagnetic grain boundary phase for LSMO films were demonstrated and can be used to evaluate the magnetic domain structure and magnetic isolation between neighboring grains. A two dimensional signal transformation algorithm to reconstruct the in-plane magnetization distribution of the polycrystalline LSMO thin films from the measured raw MFM images with the aid of the deconvolution technique was presented. The comparison between the experimental and simulated MFM images indicates that the magnetic grains or clusters are in the single domain (SD) or multi-domain (MD) state with the magnetic moments parallel or anti-parallel to the effective magnetic field of each grain, possibly due to the need for minimizing the total energy. The quantitative interpretation of the magnetic domain structure indicates that the large magnetoresistance in the studied LSMO films is mainly due to tunnel effect and scattering of conducted electrons at the nonmagnetic grain boundary phase related to the different configurations of magnetic domain states between neighboring grains.

  19. [Spectral analyzing effects of atmosphere states on the structure and characteristics of CdTe polycrystalline thin films made by close-spaced sublimation].

    PubMed

    Zheng, Hua-jing; Zheng, Jia-gui; Feng, Liang-huan; Zhang, Jing-quan; Xie, Er-qing

    2005-07-01

    The structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured. The dependence of preliminary nucleus creation on the atmosphere states (involving component and pressure) was studied. Transparencies were measured and optic energy gaps were calculated. The results show that: (1) The CdTe films deposited in different atmospheres are cubic structure. With increasing oxygen concentration, a increases and reaches the maximum at 6% oxygen concentration, then reduces, and increases again after passing the point at 12% oxygen concentration. Among them, the sample depositing at 9% oxygen concentration is the best. The optic energy gaps are 1.50-1.51 eV for all CdTe films. (2) The samples depositing at different pressures at 9% oxygen concentration are all cubical structure of CdTe, and the diffraction peaks of CdS and SnO2:F still appear. With the gas pressure increasing, the crystal size of CdTe minishes, the transparency of the thin film goes down, and the absorption side shifts to the short-wave direction. (3) The polycrystalline thin films with high quality deposit in 4 minutes under the depositing condition that the substrate temperature is 550 degrees C, and source temperature is 620 degrees C at 9% oxygen concentration.

  20. Raman scattering and photoluminescence from Si nanoparticles in annealed SiOx thin films

    NASA Astrophysics Data System (ADS)

    Nesheva, D.; Raptis, C.; Perakis, A.; Bineva, I.; Aneva, Z.; Levi, Z.; Alexandrova, S.; Hofmeister, H.

    2002-10-01

    Silicon-rich silicon oxide thin films have been prepared by thermal evaporation of silicon monoxide in vacuum. The SiOx film composition (1.1⩽ x ⩽1.7) has been controlled by varying the deposition rate and residual pressure in the chamber. Long time stability of all films has been ensured by a postdeposition annealing at 523 K for 30 min in Ar atmosphere. Some films were further annealed at 973 K and some others at 1303 K. Raman scattering measurements have implied the formation of amorphous silicon nanoparticles in films annealed at 973 K and Si nanocrystals in films annealed at 1303 K. The latter conclusion is strongly supported by high resolution electron microscopy studies which show a high density of Si nanocrystals in these films. Photoluminescence has been observed from both amorphous and crystalline nanoparticles and interpreted in terms of band-to-band recombination in the nanoparticles having average size greater than 2.5 nm and carrier recombination through defect states in smaller nanoparticles.

  1. Thermally Processed High-Mobility MOS Thin-Film Transistors on Transferable Single-Crystal Elastically Strain-Sharing Si/SiGe/Si Nanomembranes

    SciTech Connect

    Yuan, H.-C.; Kelly, M. M.; Savage, D. E.; Lagally, M. G.; Celler, G. K.; Zhenqiang, M.

    2008-03-01

    Demonstration of high-performance MOS thin-film transistors (TFTs) on elastically strain-sharing single-crystal Si/SiGe/Si nanomembranes (SiNMs) that are transferred to foreign substrates is reported. The transferable SiNMs are realized by first growing pseudomorphic SiGe and Si layers on silicon-on-insulator (SOI) substrates, and then, selectively removing the buried oxide (BOX) layer from the SOI. Before the release, only the SiGe layer is compressively strained. Upon release, part of the compressive strain in the SiGe layer is transferred to the thin Si layers, and the Si layers, thus, become tensile strained. Both the initial compressive strain state in the SiGe layer and the final strain sharing state between the SiGe and the Si layers are verified with X-ray diffraction measurements. The TFTs are fabricated employing the conventional high-temperature MOS process on the strain-shared SiNMs that are transferred to an oxidized Si substrate. The transferred strained-sharing SiNMs show outstanding thermal stability and can withstand the high-temperature TFT process on the new host substrate. The strained-channel TFTs fabricated on the new host substrate show high current drive capability and an average electron effective mobility of 270 cm{sup 2}/V ldr s. The results suggest that transferable and thermally stable single-crystal elastically strain- sharing SiNMs can serve as excellent active material for high-speed device application with a simple and scalable transfer method. The demonstration of MOS TFTs on the transferable nanomembranes may create the opportunity for future high-speed Si CMOS heterogeneous integration on any substrate.

  2. Enhanced electrochemical performance of Si-Cu-Ti thin films by surface covered with Cu3Si nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Kaiqi; He, Yu; Ben, Liubin; Li, Hong; Huang, Xuejie

    2015-05-01

    Si-Cu-Ti thin films with Cu3Si nanowires on the surface and voids in the Cu layer are fabricated for the first time by magnetron sputtering combined with atomic layer deposition (ALD) of alumina. The formation of the surface Cu3Si nanowires is strongly dependent on the thickness of the coated alumina and cooling rate of the thin films during annealing. The maximum coverage of the surface Cu3Si nanowires is obtained with an alumina thickness of 2 nm and a cooling rate of 1 °C min-1. The electrode based on this thin film shows an excellent capacity retention of more than 900 mAh g-1 and a high columbic efficiency of more than 99% after 100 cycles. The improvement of the electrochemical performance of Si-Cu-Ti thin film electrode is attributed to the surface Cu3Si nanowires which reduce the polarization and inhomogeneous lithiation by formation of a surface conductive network, in addition to the alleviation of volume expansion of Si by voids in the Cu layer during cycling.

  3. Polarization Manipulation via Orientation Control in Polycrystalline BiFeO3 Thin Films on Biaxially Textured, Flexible Metallic Tapes

    NASA Astrophysics Data System (ADS)

    Shin, Junsoo; Goyal, Amit; Jesse, Stephen; Heatherly, Lee

    2011-02-01

    (111)-, (101)-, and (001)-oriented polycrystalline BiFeO3 films were fabricated on rolling-assisted biaxially textured substrates (RABiTS) with appropriate engineering of heteroepitaxially grown buffer multilayers on RABiTS. The crystallographic orientation and polarization direction were confirmed using X-ray diffraction and piezoresponse force microscopy (PFM), respectively. All the films exhibited excellent piezoelectric properties. Switching spectroscopy PFM demonstrated that the switching polarization in (111)-oriented polycrystalline BiFeO3 films is higher than that in (101)- or (001)-oriented films. These BiFeO3 films on low-cost, flexible, biaxially textured metallic tapes with controllable orientation and polarization are attractive for application in flexible piezoelectric devices.

  4. White light emission and optical gains from a Si nanocrystal thin film.

    PubMed

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-27

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  5. White light emission and optical gains from a Si nanocrystal thin film

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-01

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  6. Potential-induced degradation of thin-film Si photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Masuda, Atsushi; Hara, Yukiko

    2017-04-01

    Potential-induced degradation (PID) of thin-film Si photovoltaic (PV) modules was investigated. The characteristics of PID phenomena of thin-film Si PV modules are markedly different from those of crystalline Si PV modules. Not only performance loss but also linear-shape and spot-shape delamination was observed after negative voltage application. Recovery from PID was also observed after positive voltage application. However, rapid progression of PID was found after the second negative voltage application after recovery from the initial PID. The root cause of PID of thin-film Si PV modules is thought to be the delamination between a transparent conductive oxide film and a glass substrate. Such degradation accompanied by delamination was also observed in thin-film Si PV modules exposed outside for about 5 years.

  7. Defect engineering by ultrasound treatment in polycrystalline silicon

    SciTech Connect

    Ostapenko, S.; Jastrzebski, L.

    1995-08-01

    By applying ultrasound treatment (UST) to bulk and thin film polycrystalline Si (poly-Si) we have found a dramatic improvement of recombination and transport properties. The increasing of minority carrier lifetime by as much as one order of magnitude was found in short diffusion length regions, while exhibiting a strong dispersion for entire solar-grade poly-Si wafer. Relevant mechanisms are attributed to ultrasound processing on crystallographic defects, as well as UST stimulated dissociation of Fe-B pairs followed by Fe{sub i} gettering. A spectacular improvement of hydrogenation efficiency in poly-Si thin-films on glass substrate is demonstrated by resistivity study and confirmed using spatially resolved photoluminescence and nanoscale contact potential difference mapping. By applying UST to commercial solar cells we found the increasing of cell efficiency at low light excitation.

  8. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    NASA Astrophysics Data System (ADS)

    Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.

    2013-05-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  9. Investigation of the vertical electrical transport in a-Si:H/nc-Si:H superlattice thin films.

    PubMed

    Das, Debajyoti; Kar, Debjit

    2015-07-14

    Tuning the size of silicon nano-crystallites (Si-ncs) has been realized simply by controlling the thickness of the nc-Si:H sub-layer (tnc) in the a-Si:H/nc-Si:H superlattice thin films grown by low temperature plasma processing in PE-CVD. The vertical electrical transport phenomena accomplished in superlattice films have been investigated in order to identify their effective utilization in practical device configuration. The reduced size of the Si-ncs at thinner tnc and the associated band gap widening due to quantum confinement effects generates the Coulomb potential barrier at the a-Si/nc-Si interface which in turn obstructs the transport of charge carriers to the allowed energy states in Si-ncs, leading to the Poole-Frenkel tunneling as the prevailing charge transport mechanism in force. The advantages of the conduction process governed by the Poole-Frenkel mechanism are two-fold. The lower barrier height caused by the a-Si:H sub-layer in the superlattice than the silicon oxide sub-layer in conventional structures enhances the conduction current. Moreover, increasing trapped charges in the a-Si:H sub-layer can arbitrarily increase the current conduction. Accordingly, a-Si:H/nc-Si:H superlattice structures could provide superior electrical transport in stacked layer devices e.g., multi-junction all silicon solar cells.

  10. Terahertz conductivity of MnSi thin films

    NASA Astrophysics Data System (ADS)

    Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore

    2013-03-01

    We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.

  11. Plasmonic light trapping in thin-film Si solar cells

    NASA Astrophysics Data System (ADS)

    Spinelli, P.; Ferry, V. E.; van de Groep, J.; van Lare, M.; Verschuuren, M. A.; Schropp, R. E. I.; Atwater, H. A.; Polman, A.

    2012-02-01

    Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in which light is trapped in the active layer and efficiently absorbed. In this paper we review some of our recent work in the field of plasmonics for improved solar cells. We have investigated two possible ways of integrating metal nanoparticles in a solar cell. First, a layer of Ag nanoparticles that improves the standard antireflection coating used for crystalline and amorphous silicon solar cells has been designed and fabricated. Second, regular and random arrays of metal nanostructures have been designed to couple light in waveguide modes of thin semiconductor layers. Using a large-scale, relative inexpensive nano-imprint technique, we have designed a back-contact light trapping surface for a-Si:H solar cells which show enhanced efficiency over standard randomly textured cells.

  12. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    PubMed Central

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at −0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  13. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor.

    PubMed

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-21

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at -0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm(2)/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  14. Absorption enhancement in thin film a-Si solar cells with double-sided SiO2 particle layers

    NASA Astrophysics Data System (ADS)

    Chen, Le; Wang, Qing-Kang; Shen, Xiang-Qian; Chen, Wen; Huang, Kun; Liu, Dai-Ming

    2015-10-01

    Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain (FDTD) simulation; finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm-800 nm, and the ultimate efficiency increases more than 22% compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances. Project supported by the National High-Tech Research and Development Program of China (Grant No. 2011AA050518), the University Research Program of Guangxi Education Department, China (Grant No. LX2014288), and the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2013GXNSBA019014).

  15. Study of post annealing effects on structural and optical properties of sol-gel derived ZnO thin films grown on n-Si substrate

    NASA Astrophysics Data System (ADS)

    Bahadur Yadav, Aniruddh; Periasamy, C.; Jit, S.

    2015-02-01

    Zinc oxide (ZnO) thin films were grown on n-type silicon (100) substrates by sol- gel spin coating technique. The prepared thin films were annealed in the presence of Ar at three different temperatures (at 450°C, 550°C and 650°C) to study the impact of annealing temperature on the structural and optical properties of the ZnO thin films. The structural, surface morphology and optical properties of the thin film were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) measurements respectively. The grown ZnO thin films are polycrystalline in nature with wurtzite hexagonal structure as evident from the XRD and SEM analyses. It further indicates that the crystalline size increases with increasing annealing temperature. The post annealing is also found to influence the optical properties in the terms of band gap energy of the ZnO thin films. The optical energy band gap was found to be decreased from 3.205 to 3.13eV as the annealing temperature is increased from 450°C to 650°C. However, our results concerning the growth of ZnO thin films on Si substrates suggest that there is an intermediate growth temperature allowing for the optimization of the ZnO film growth. The results of the study can be used as a guideline for growing ZnO thin films on n-Si substrates with a homogenous surface morphology, high surface to volume ratio and desired particle size, which are suited for optoelectronic/ gas sensing applications.

  16. Low-temperature MOCVD growth of oriented PbZr{sub x}Ti{sub 1-x}O{sub 3} thin films on Si substrates.

    SciTech Connect

    Chen, N.

    1998-05-08

    Polycrystalline Pb(Zr{sub 0.6}Ti{sub 0.4})O{sub 3} (PZT) thin films, 3000-6000 {angstrom} thick, have been grown by metal-organic chemical vapor deposition (MOCVD) on (111)Pt/Ti/SiO{sub 2}/Si substrates at temperatures as low as 450-525 C. Random and (111)-oriented, or occasionally (100)-oriented, PZT films can be deposited directly on (111)Pt/Ti/SiO{sub 2}/Si. In addition, highly (100)-oriented films can be deposited consistently by using 150-250 {angstrom} thick (100)-oriented PbTiO{sub 3} (PT) or TiO{sub 2} as a template. Films were characterized by X-ray diffraction, electron microscopy, and electrical measurements. The as-grown (100)-oriented films on (111)Pt/TiSiO{sub 2}/Si substrates exhibited dielectric constants ({var_epsilon}{sub r}) of up to 600, remnant polarization (P{sub r}) of 40 {micro}C/cm{sup 2}, coercive field of 55 kV/cm, and breakdown field of 2-6 x 10{sub 7} V/m.

  17. Low temperature production of large-grain polycrystalline semiconductors

    DOEpatents

    Naseem, Hameed A.; Albarghouti, Marwan

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  18. Evaluation on residual stress in Bi3.15(Eu0.7Nd0.15)Ti3O12 polycrystalline ferroelectric thin film by using the orientation average method

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Cheng, H. B.; Wang, X. Y.; Zheng, X. J.

    2012-12-01

    We propose an orientation average method to evaluate residual stresses in polycrystalline thin films. Bi3.15(Eu0.7Nd0.15)Ti3O12 was used to verify our approach, with films prepared by metal organic decomposition at various annealing temperatures. The mechanical properties and microstructure were characterized by nanoindentation and X-ray diffraction. The thin film annealed at 600 °C has the largest residual compressive stress of 771 MPa among all thin films. The residual stresses are evaluated by the proposed method and traditional sin2ψ method, and the maximum distinction is less than 6.43%, demonstrating that the proposed method is reliable and convenient to evaluate residual stress in polycrystalline thin films.

  19. Fabrication of Si(111) crystalline thin film on graphene by aluminum-induced crystallization

    SciTech Connect

    Høiaas, I. M.; Kim, D. C. E-mail: helge.weman@ntnu.no; Weman, H. E-mail: helge.weman@ntnu.no

    2016-04-18

    We report the fabrication of a Si(111) crystalline thin film on graphene by the aluminum-induced crystallization (AIC) process. The AIC process of Si(111) on graphene is shown to be enhanced compared to that on an amorphous SiO{sub 2} substrate, resulting in a more homogeneous Si(111) thin film structure as revealed by X-ray diffraction and atomic force microscopy measurements. Raman measurements confirm that the graphene is intact throughout the process, retaining its characteristic phonon spectrum without any appearance of the D peak. A red-shift of Raman peaks, which is more pronounced for the 2D peak, is observed in graphene after the crystallization process. It is found to correlate with the red-shift of the Si Raman peak, suggesting an epitaxial relationship between graphene and the adsorbed AIC Si(111) film with both the graphene and Si under tensile strain.

  20. Fabrication and characterization of magnetostrictive amorphous FeGaSiB thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Qayes A.; Morley, Nicola A.

    2017-10-01

    In this work, amorphous FeSiB and FeGaSiB thin films have been fabricated on silicon substrates using a co-sputtering-evaporation deposition technique. The effect of adding gallium into FeSiB (Metglas) thin films on the structure, magnetic properties and magnetostriction have been studied. From X-ray diffraction (XRD), all the films were amorphous and the observed peaks were for the Si substrate. X-ray Photoelectron Spectroscopy (XPS) measurements were carried out to determine the film's composition, which was found to be Fe83Ga11Si5.2 B0.8. Atomic force microscopy (AFM) images were taken to measure the film thickness along with studying the surface topography. It was found that the film surface had an average roughness of 0.461 nm. For both FeSiB and FeGaSiB thin films, the effect of the thickness of the films on the magnetic properties and magnetostriction were investigated. The results showed that adding Ga into the FeSiB films changed the magnetic properties by reducing the saturation induction along with changing the magnetic anisotropy from uniaxial to isotropic. For the FeGaSiB films, the coercive field decreased and the saturation field (Hs) increased with film thickness. The magnetostriction constants of the FeGaSiB films were all larger than the FeSiB films for thicknesses greater than 40 nm.

  1. Structural, optical and Raman scattering studies on polycrystalline Cd 0.8Zn 0.2Te thin films prepared by vacuum evaporation

    NASA Astrophysics Data System (ADS)

    Prabakar, K.; Narayandass, Sa. K.; Mangalaraj, D.

    2003-05-01

    Cd 0.8Zn 0.2Te polycrystalline thin films were grown onto well-cleaned corning glass substrates at room temperature by vacuum evaporation. The optical response of vacuum-evaporated Cd 0.8Zn 0.2Te films in the 1.5-5.5 eV photon energy range at room temperature has been studied by spectroscopic ellipsometry. The measured dielectric-function spectra reveal distinct structures at critical point energies E1, E1+ Δ1 and E2 corresponding to the interband transitions. X-ray diffraction pattern showed that the incorporation of zinc favours the growth of films preferentially oriented parallel to the (1 1 1) planes of cubic CdTe. Due to the film's sensitivity to the local atomic order, the samples were studied by Raman spectroscopy. The transverse and longitudinal optic modes regularly found in CdTe were also observed in Cd 0.8Zn 0.2Te thin films. It was observed that the incorporation of Zn could not avoid the formation of Te precipitates, which are commonly detected in CdTe thin films and bulk samples. From the optical transmittance and absorption coefficient, the band gap of the films is found to be direct allowed and the energy is estimated as 1.6 eV.

  2. Well-aligned polycrystalline lanthanum silicate oxyapatite grown by reactive diffusion between solid La2SiO5 and gases [SiO+1/2O2

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichiro; Hasegawa, Ryo; Kitagawa, Takuya; Nakamori, Hiroshi; Asaka, Toru; Berghout, Abid; Béchade, Emilie; Masson, Olivier; Jouin, Jenny; Thomas, Philippe

    2016-03-01

    The c-axis-oriented polycrystalline lanthanum silicate oxyapatite, La9.48(Si5.89□0.11)O26 (□ denotes a vacancy in the Si site), was successfully prepared by the reactive diffusion between randomly grain-oriented La2SiO5 polycrystal and [SiO+1/2O2] gases at 1873 K in Ar atmosphere. The polycrystal was characterized using optical microscopy, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, micro-Raman spectroscopy, X-ray diffractometry, and impedance spectroscopy. The crystal structure (space group P63/m) showed the deficiency of Si site at ca. 1.9%. The bulk oxide-ion conductivity along the grain-alignment direction steadily increased from 9.2 × 10-3 to 1.17 × 10-2 S/cm with increasing temperature from 923 to 1073 K. The activation energy of conduction was 0.23(2) eV.

  3. Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate

    DOEpatents

    Findikoglu, Alp T.; Jia, Quanxi; Arendt, Paul N.; Matias, Vladimir; Choi, Woong

    2009-10-27

    A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

  4. Recent trends of patents on front TCOs for highly efficient thin-film Si photovoltaic devices.

    PubMed

    Myong, Seung Y

    2014-01-01

    The recent trends of US patents on the front transparent electrode of thin-film silicon (Si) photovoltaic (PV) devices are reviewed. The various transparent conductive oxide (TCO) materials have been invented to satisfy a multifunctional prerequisite for the front electrode: high electrical conductivity, high optical transparency, effective light trapping, anti-reflection effect, and diffusion barrier. The recent surge of filed patents reflects the great importance of the front TCO technology for high efficiency thin-film Si PV devices. Among the TCO materials, properties of commercially available F-doped tin oxide (SnO2:F)-coated glass substrates are compared. SnO2:F-coated glass substrates share 20-30% of the cost for production of thin-film Si PV modules - evaluated values from mass production at KISCO. Therefore, the cost and technological innovation must be established for cost-effective mass production of large-area thin-film Si multijunction PV modules.

  5. Fabrication of multiple Si nanohole thin films from bulk wafer by controlling metal-assisted etching direction

    NASA Astrophysics Data System (ADS)

    Shiu, Shu-Chia; Lin, Tzu-Ching; Pun, Keng-Lam; Syu, Hong-Jhang; Hung, Shih-Che; Lin, Ching-Fuh

    2011-10-01

    Crystalline Si photovoltaic modules still have high production cost due to significant consumption of the Si wafer. Reducing the large amount of Si material consumption is thus a critical issue. Here we develop a two-step metal-assisted etching technique for forming vertically-aligned Si nanohole thin films from bulk Si wafers. The formation of Si nanohole thin films includes a series of solution processes: deposition of Ag nanoparticles in an AgNO3/ HF aqueous solution, formation of Si nanohole arrays at the first-step metal-assisted etching, and side etching of the roots of the nanohole structure at the second-step metal-assisted etching. All the processes can proceed at around room temperature. A Si nanohole thin film with an average hole-size of 100 nm and a thickness of 5ìm-20ìm was hence formed at the top of the wafer. Afterwards, the Si nanohole thin film was transferred onto alien substrates. The Si nanohole thin film has the crystal quality similar to the bulk Si wafer. The above bulk Si substrate can be reused. With similar processes, other Si nanohole thin films can be formed from the above recycled Si wafer. The hole size and thickness are similar. The Si wafers recycled will significantly reduce the material consumption of Si. Thus, such technique is promising for lowering the cost of Si solar cells.m.

  6. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  7. The reduction of the change of secondary ions yield in the thin SiON/Si system

    NASA Astrophysics Data System (ADS)

    Sameshima, J.; Yamamoto, H.; Hasegawa, T.; Nishina, T.; Nishitani, T.; Yoshikawa, K.; Karen, A.

    2006-07-01

    For the analyses of gate insulating materials of thin silicon oxy-nitride (SiON) and dielectric films, SIMS is one of the available tool along with TEM and ESCA, etc. Especially, to investigate the distribution of dopant in the thin films, SIMS is appreciably effective in these techniques because of its depth profiling capability and high sensitivity. One of the problem occurring in this SIMS measurement is the change of secondary ion yield at the interface as well as in the layers with different chemical composition. To solve this problem, some groups have researched the phenomenon for SiO 2/Si interface [W. Vandervorst, T. Janssens, R. Loo, M. Caymax, I. Peytier, R. Lindsay, J. Fruhauf, A. Bergmaier, G. Dollinger, Appl. Surf. Sci. 203-204 (2003) 371-376; S. Hayashi, K.Yanagihara, Appl. Surf. Sci. 203-204 (2003) 339-342; M. Barozzi, D. Giubertoni, M.Anderle, M. Bersani, Appl. Surf. Sci. 231-232 (2004) 632-635; T.H. Buyuklimanli, J.W. Marino, S.W. Novak, Appl. Surf. Sci. 231-232 (2004) 636-639]. In the present study, profiles of boron and matrix elements in the Si/SiON layers on Si substrate have been investigated. The sensitivity change of Si and B profiles in SiON layer become smaller by using oxygen flood than those without oxygen flood for both O 2+ and Cs + beam. At the range of 0-25 at.% of N composition, 11B dosimetry in SiON layer implanted through amorphous Si depends on N composition. This trend could be caused by the sensitivity change of 11B, or it indicates real 11B concentration change in SiON lyaer. N areal density determined by Cs + SIMS with oxygen flooding also shows linear relationship with N composition estimated by XPS.

  8. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  9. Ag Nanodots Emitters Embedded in a Nanocrystalline Thin Film Deposited on Crystalline Si Solar Cells.

    PubMed

    Park, Seungil; Ryu, Sel Gi; Ji, HyungYong; Kim, Myeong Jun; Peck, Jong Hyeon; Kim, Keunjoo

    2016-06-01

    We fabricated crystalline Si solar cells with the inclusion of various Ag nanodots into the additional emitters of nanocrystallite Si thin films. The fabricated process was carried out on the emitter surface of p-n junction for the textured p-type wafer. The Ag thin films were deposited on emitter surfaces and annealed at various temperatures. The amorphous Si layers were also deposited on the Ag annealed surfaces by hot-wire chemical vapor deposition and then the deposited layers were doped by the second n-type doping process to form an additional emitter. From the characterization, both the Ag nanodots and the deposited amorphous Si thin films strongly reduce photo-reflectances in a spectral region between 200-400 nm. After embedding Ag nanodots in nanocrystallite Si thin films, a conversion efficiency of the sample with added emitter was achieved to 15.1%, which is higher than the 14.1% of the reference sample and the 14.7% of the de-posited sample with a-Si:H thin film after the Ag annealing process. The additional nanocrystallite emitter on crystalline Si with Ag nanodots enhances cell properties.

  10. Calculating Optical Absorption Spectra of Thin Polycrystalline Organic Films: Structural Disorder and Site-Dependent van der Waals Interaction

    PubMed Central

    2015-01-01

    We propose a new approach for calculating the change of the absorption spectrum of a molecule when moved from the gas phase to a crystalline morphology. The so-called gas-to-crystal shift Δm is mainly caused by dispersion effects and depends sensitively on the molecule’s specific position in the nanoscopic setting. Using an extended dipole approximation, we are able to divide Δm= −QWm in two factors, where Q depends only on the molecular species and accounts for all nonresonant electronic transitions contributing to the dispersion while Wm is a geometry factor expressing the site dependence of the shift in a given molecular structure. The ability of our approach to predict absorption spectra is demonstrated using the example of polycrystalline films of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI). PMID:25834658

  11. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Quarterly technical progress report No. 1, July 30-October 31, 1980

    SciTech Connect

    Sopori, B.

    1980-07-30

    Major accomplishments during the first quarter of the contract period are reported. Small area diode fabrication and analysis has been continued. This technique has further been applied to many RTR ribbons. An optical technique for determination of crystallite orientations has been placed in operation. This technique has many distinct advantages. These are: (1) rapid; (2) can be set-up very inexpensively; (3) well suited for polycrystalline substrates of small grain size; and (4) can easily characterize twins. Accuracies obtained with this technique are about the same as that of the Laue technique. A technique to qualitatively evaluate grain boundary activity in unprocessed substrates has been used and valuable results obtained. Further analysis is being done to use this technique for quantitative evaluation. A major study of G.B. orientation effects is underway. Initial results on RTR ribbons have shown a good correlation of G.B. barrier height with misorientation (tilt boundaries).

  12. Calculating Optical Absorption Spectra of Thin Polycrystalline Organic Films: Structural Disorder and Site-Dependent van der Waals Interaction.

    PubMed

    Megow, Jörg; Körzdörfer, Thomas; Renger, Thomas; Sparenberg, Mino; Blumstengel, Sylke; Henneberger, Fritz; May, Volkhard

    2015-03-12

    We propose a new approach for calculating the change of the absorption spectrum of a molecule when moved from the gas phase to a crystalline morphology. The so-called gas-to-crystal shift Δ[Formula: see text] m is mainly caused by dispersion effects and depends sensitively on the molecule's specific position in the nanoscopic setting. Using an extended dipole approximation, we are able to divide Δ[Formula: see text] m = -QWm in two factors, where Q depends only on the molecular species and accounts for all nonresonant electronic transitions contributing to the dispersion while Wm is a geometry factor expressing the site dependence of the shift in a given molecular structure. The ability of our approach to predict absorption spectra is demonstrated using the example of polycrystalline films of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI).

  13. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980

    SciTech Connect

    Sopori, B.L.

    1980-11-01

    The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

  14. Moessbauer study in thin films of FeSi2 and FeSe systems

    NASA Technical Reports Server (NTRS)

    Escue, W. J.; Aggarwal, K.; Mendiratta, R. G.

    1978-01-01

    Thin films of FeSi2 and FeSe were studied using Moessbauer spectroscopy information regarding dangling bond configuration and nature of crystal structure in thin films was derived. A significant influence of crystalline aluminum substrate on film structure was observed.

  15. Low Loss, Finite Width Ground Plane, Thin Film Microstrip Lines on Si Wafers

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Margomenos, Alexandros; Katehi, Linda P. B.

    1999-01-01

    Si RFICs on standard, 2 Omega-cm. Si wafers require novel transmission lines to reduce the loss caused by the resistive substrate. One such transmission line is commonly called Thin Film Microstrip (TFMS), which is created by depositing a metallic ground plane, thin insulating layers, and the microstrip lines on the Si wafer. Thus, the electric fields are isolated from the Si wafer. In this paper, it is shown through experimental results that the ground plane of TFMS may be finite width and comparable to the strip width in size while still achieving low loss on 2 Omega-cm Si. Measured effective permittivity shows that the field interaction with the Si wafer is small.

  16. Characterization of the visible photoluminescence from porous a-Si:H and porous a-Si:C:H thin films

    SciTech Connect

    Estes, M.J.; Hirsch, L.R.; Wichart, S.; Moddel, G.

    1996-12-31

    The authors report on the influence of doping, temperature, porosity, and bandgap on the visible photoluminescence properties of anodically-etched porous a-Si:H and a-Si:C:H thin films. Only boron-doped, p-type a-Si:H or a-Si:C:H samples exhibited any visible photoluminescence. The authors see evidence of discrete defect or impurity levels in temperature-dependent luminescence measurements. Unlike in porous crystalline silicon, they see no correlation of luminescence energy with porosity. The authors do, though, observe a correlation of luminescence energy with bandgap of the starting a-Si:C:H films. They discuss the implication of these observations on the nature of the luminescence mechanism.

  17. Time-Domain Thermoreflectance Measurements of Thermal Transport in Amorphous SiC Thin Films

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Hondongwa, Donald; King, Sean

    2010-03-01

    We present ultrafast optical pump-probe measurements of thermal transport in a series of amorphous SiC samples. The samples were grown on Si wafers by plasma enhanced chemical vapor deposition utilizing various combinations of methylsilanes and H2 and He diluent gases. The sample films were well characterized and found to have densities (1.3 -- 2.3 g cm-3) and dielectric constants (4.0 -- 7.2) that spanned a wide range of values. Prior to their measurement, the samples were coated with 40-70 nm of polycrystalline Al. The pump-probe measurements were performed at room temperature using a modelocked Ti:sapphire laser that produced sub-picosecond pulses of a few nJ. The pulses heat the Al coating, causing a transient reflectivity change. As the Al film cools into the SiC film, the reflectivity change can be measured, giving a measure of the thermal effusivity of the SiC film. We then extract values for the thermal conductivity of the SiC films and find that it varies from less than half of the thermal conductivity of amorphous SiO2 for the lower density materials to somewhat larger than amorphous SiO2 for the highest density films.

  18. The electro-optical behavior of liquid crystal molecules on the surface of SiO2 inorganic thin films.

    PubMed

    Sung, Shi-Joon; Yang, Kee-Jeong; Kim, Dae-Hwan; Do, Yun Seon; Kang, Jin-Kyu; Choi, Byeong-Dae

    2009-12-01

    Inorganic thin films are well known for the liquid crystal alignment layers for LCoS application due to the higher thermal and photochemical stability of inorganic materials. The switching time of liquid crystals is the important factor for the projection application and the faster switching time is required for the high quality display. The switching behavior of liquid crystal molecules on inorganic thin films might be closely related with the surface properties of the inorganic thin films. Therefore the understanding of surface properties of the inorganic thin films is required for the enhancement of the switching time of liquid crystals of LCoS devices. In this work, we prepared the SiO2 inorganic thin films and the electro-optical behavior of liquid crystal molecules on SiO2 thin film was investigated. The sputtering condition of SiO2 thin film was closely related with the thickness and the surface morphology of SiO2 thin film. The switching time of liquid crystals with negative dielectric constant on SiO2 inorganic thin films was dominantly affected by the size of protrusion on the surface of SiO2 thin film and the surface roughness of SiO2 thin film was also related with the switching time of liquid crystals. From these results, it is possible to prepare the SiO2 inorganic thin film suitable for the liquid crystal alignment layer for VAN LC mode.

  19. Strain engineering effects on electrical properties of lead-free piezoelectric thin films on Si wafers.

    PubMed

    Ohno, Tomoya; Kamai, Yuto; Oda, Yuutaro; Sakamoto, Naonori; Matsuda, Takeshi; Wakiya, Naoki; Suzuki, Hisao

    2014-01-01

    Using radio frequency - magnetron sputtering, calcium-doped barium zirconate titanate ((Ba(0.85)Ca(0.15))(Zr(0.1)Ti(0.9))O(3), BCZT) thin films were deposited on Si wafers with different bottom electrodes. The obtained BCZT thin film on a lanthanum nickel oxide (LNO) electrode had a highly c-axis preferred orientation, while the BCZT thin film on a Pt bottom electrode had (111) preferred orientation. Furthermore, the out-of-plane lattice constant of the BCZT on LNO/Si was 3.4% larger than that of the reported bulk material because of the compressive thermal stress from LNO with a large thermal expansion coefficient. This compressive thermal stress engenders an increase of the Curie temperature. The local piezoelectric response of the BCZT thin film on a LNO/Si structure was measured by piezoresponse force microscope.

  20. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  1. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal-metalloid FeCoNbB/Si (100) alloy thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal-metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ˜200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ˜1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ˜75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  2. Planar-orientation polycrystalline thin film of liquid-crystalline organic semiconductor by template-directed self-assembly

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Fei; Iino, Hiroaki; Hanna, Jun-ichi

    2017-10-01

    We fabricated planar-orientation crystalline thin films of organic semiconductors, in which molecules sit parallel, i.e., “face-on”, on the substrate and favor vertical charge transport. Thanks to molecular orientation that is sensitive to surface properties and the self-organization of liquid crystals, planar-orientation crystalline thin films can be prepared by simply cooling a smectic liquid-crystalline organic semiconductor from isotropic temperature with the aid of a poly(vinyl alcohol) (PVA) microtemplate. The molecular orientation of crystalline thin films was investigated by polarized optical microscopy (POM) and X-ray diffraction (XRD) analysis, and the current–voltage characteristics of the films were studied in a diode configuration. The results showed high potential for device applications.

  3. Quasi-ideal Nonlinear Electrical Behavior of Polycrystalline SnO2 Ceramic Varistors Doped with SiO2

    NASA Astrophysics Data System (ADS)

    Metz, R.; Hassanzadeh, M.; Mahesh, K. V.; Ananthakumar, S.

    2014-05-01

    The influence of SiO2 doping on the microstructure and electrical behavior of SnO2 varistors has been studied. The varistor effect was studied over a wide range from 10âˆ'9 A to 104 A. It is shown that the J( E) characteristic of SnO2 ceramics exhibits a nonlinear coefficient >100. The SiO2 doping also resulted in a sharp-abrupt upturn region in the Iâ€" V characteristic, indicating a single semiconductor junction behavior. The leakage current of the varistors is rather low, on the order of 10âˆ'10 S mâˆ'1. In the upturn region of operation where the curve departs from the nonlinear relation and approaches the value of the bulk resistivity of the material, the ceramic is characterized by a current density almost independent of the applied voltage. A very small amount of SiO2 causes large perturbations of the conventional thermionic emission observed in varistor ceramic materials.

  4. Structural and optical characterization of pure Si-rich nitride thin films

    PubMed Central

    2013-01-01

    The specific dependence of the Si content on the structural and optical properties of O- and H-free Si-rich nitride (SiNx>1.33) thin films deposited by magnetron sputtering is investigated. A semiempirical relation between the composition and the refractive index was found. In the absence of Si-H, N-H, and Si-O vibration modes in the FTIR spectra, the transverse and longitudinal optical (TO-LO) Si-N stretching pair modes could be unambiguously identified using the Berreman effect. With increasing Si content, the LO and the TO bands shifted to lower wavenumbers, and the LO band intensity dropped suggesting that the films became more disordered. Besides, the LO and the TO bands shifted to higher wavenumbers with increasing annealing temperature which may result from the phase separation between Si nanoparticles (Si-np) and the host medium. Indeed, XRD and Raman measurements showed that crystalline Si-np formed upon 1100°C annealing but only for SiNx<0.8. Besides, quantum confinement effects on the Raman peaks of crystalline Si-np, which were observed by HRTEM, were evidenced for Si-np average sizes between 3 and 6 nm. A contrario, visible photoluminescence (PL) was only observed for SiNx>0.9, demonstrating that this PL is not originating from confined states in crystalline Si-np. As an additional proof, the PL was quenched while crystalline Si-np could be formed by laser annealing. Besides, the PL cannot be explained neither by defect states in the bandgap nor by tail to tail recombination. The PL properties of SiNx>0.9 could be then due to a size effect of Si-np but having an amorphous phase. PMID:23324447

  5. Barrier properties and failure mechanism of Ta-Si-N thin films for Cu interconnection

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Jik; Suh, Bong-Seok; Kwon, Myoung Seok; Park, Chong-Ook

    1999-02-01

    Cosputtered Ta-Si-N amorphous films of ten different compositions were investigated as a barrier material for Cu interconnection. The films of relatively low nitrogen content (<47 at. %) undergo an abrupt failure with the formation of tantalum silicides and copper silicide between Si and Cu during annealing. Ta43Si4N53 thin film is readily crystallized into TaNx in spite of a remarkable chemical stability with Cu. The films containing nitrogen more than 51 at. % are sacrificial barriers which show the formation of Cu3Si phase at Ta-Si-N/Cu interface even before the films crystallize to form tantalum silicide. According to electrical tests, the barriers which show the sacrificial characteristics are most effective and show no electrical degradation even after annealing at 500 °C for an hour in Si/Cu and 525 °C for an hour in SiO2/Cu metallization.

  6. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    NASA Astrophysics Data System (ADS)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  7. MOCVD of ZnO thin films for potential use as compliant layers for GaN on Si

    NASA Astrophysics Data System (ADS)

    Black, Kate; Jones, Anthony C.; Chalker, Paul R.; Gaskell, Jeffrey M.; Murray, Robert T.; Joyce, Tim B.; Rushworth, Simon A.

    2008-03-01

    This paper explores the use of nanostructured zinc oxide (ZnO) films as a compliant buffer layer for the growth of gallium nitride (GaN) on silicon substrates. Thin films of ZnO have been deposited on silicon (1 1 1) substrates by liquid injection metalorganic chemical vapour deposition (MOCVD) using dimethyl zinc-tetrahydrofuran adduct and oxygen. The use of the adduct complex avoids pre-reaction between the dialkyl zinc complex and oxygen which has been observed elsewhere. ZnO films deposited by this method were stoichiometric and of high purity, with no detectable carbon contamination. Films were deposited over a temperature range 350-550 °C, and exhibited a nanowire-like morphology. Subsequent deposition of GaN layers grown by molecular beam epitaxy (MBE) on the ZnO film resulted in the transformation of the nanowires to gallium oxide, accompanied by virtually complete removal of zinc from the layer. A heteroepitaxially oriented ( c-axis) GaN/gallium oxide/silicon structure was produced after the nitride deposition which consisted of characteristic columnar GaN with the GaN[0 0 0 1]||Si [1 1 1]. Selective area electron diffraction of the by-product oxide interlayer showed a polycrystalline-like behaviour that gave rise to a random azimuthal distribution of the GaN grains.

  8. EXAFS Analysis of the Local Structure of GexSi1-x Thin Film Alloys

    SciTech Connect

    Sung, Narkeon; Yoo, Yong-Goo; Yang, Dong-Seok

    2007-02-02

    In this work we analyzed the local structure of GexSi1-x (x = 0.5 and 0.8) ultra thin film alloys deposited on silicon substrate. The local structural parameters for the thin films were compared to the values for a bulk sample. The coordination numbers for the thin films were similar to the value of a bulk sample but the interatomic distances were different. Also, the use of a germanium solid state detector was important for EXAFS analysis of ultra thin film alloys.

  9. High efficiency polycrystalline silicon solar cells using low temperature PECVD process

    SciTech Connect

    Elgamel, H.E.A.

    1998-10-01

    Conventionally directionally solidified (DS) and silicon film (SF) polycrystalline silicon solar cells are fabricated using gettering and low temperature plasma enhanced chemical vapor deposition (PECVD) passivation. Thin layer ({approximately}10 nm) of PECVD SiO{sub 2} is used to passivate the emitter of the solar cell, while direct hydrogen rf plasma and PECVD silicon nitride (Si{sub 3}N{sub 4}) are implemented to provide emitter and bulk passivation. It is found in this work that hydrogen rf plasma can significantly improve the solar cell blue and long wavelength responses when it is performed through a thin layer of PECVD Si{sub 3}N{sub 4}. High efficiency DS and SF polycrystalline silicon solar cells have been achieved using a simple solar cell process with uniform emitter, Al/POCL{sub 3} gettering, hydrogen rf plasma/PECVD Si{sub 3}N{sub 4} and PECVD SiO{sub 2} passivation. On the other hand, a comprehensive experimental study of the characteristics of the PECVD Si{sub 3}N{sub 4} layer and its role in improving the efficiency of polycrystalline silicon solar cells is carried out in this paper. For the polycrystalline silicon used in this investigation, it is found that the PECVD Si{sub 3}N{sub 4} layer doesn`t provide a sufficient cap for the out diffusion of hydrogen at temperatures higher than 500 C. Low temperature ({le}400 C) annealing of the PECVD Si{sub 3}N{sub 4} provides efficient hydrogen bulk passivation, while higher temperature annealing relaxes the deposition induced stress and improves mainly the short wavelength (blue) response of the solar cells.

  10. Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Avila, A.; Montero, I.; Galán, L.; Ripalda, J. M.; Levy, R.

    2001-01-01

    Thin silicon carbide films have been deposited by chemical vapor deposition on p-type (100) silicon substrates. The composition and bonds formed in these films have been analyzed by x-ray photoelectron spectroscopy (XPS) and infrared spectroscopy. The native surface oxide on the silicon carbide surface induced by air exposure has also been studied. Several phases are detected in the near-surface region: elemental Si, Si oxides (mainly SiO2), Si carbide (SiC) and Si oxicarbides (SiOxCy). Quantitative XPS analysis results indicate that, for atomic oxygen fractions <0.15, the Si-C phases are dominant in the films. Above this value no silicon oxicarbide is observed, but a multiphase material formed by elemental Si, Si oxides and Si carbides is observed. In spite of the film being a complex phase mixture, a simple relationship is found between the overall carbon and oxygen compositions. The carbon atomic fraction in the film decreases quasilinearly as the oxygen content increases, with a slope of about -1. An overall composition of SiOxC3-x in the 0.5

  11. Computational Study of In-Plane Phonon Transport in Si Thin Films

    PubMed Central

    Wang, Xinjiang; Huang, Baoling

    2014-01-01

    We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061

  12. Laboratory Measurement of Compressional and Shear Wave Speed in Polycrystalline sI and sII Gas Hydrates and Ice as Functions of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Helgerud, M. B.; Waite, W. F.; Kirby, S. H.; Nur, A.

    2001-12-01

    We report on laboratory measurements of compressional and shear wave speeds in compacted, polycrystalline sI methane and sII methane-ethane hydrates and ice Ih. The hydrate samples were made from granulated ice warmed to 290 K in the presence of methane or methane-ethane gas at high pressure. The resulting porous gas hydrate samples were uniaxially compacted within the synthesis pressure vessel using a hydraulic ram with a moving piston and fixed end plug fitted with shear transducers. Once the samples were fully compacted, the temperature was cycled in steps from 258 to 288 K while the uniaxial pressure was held constant at 60 MPa. After temperature cycling was completed, the uniaxial pressure was varied between 30 and 90 MPa at 283, 273, 263 and 253 K. At the end of each experiment, the uniaxial pressure was slowly decreased to 1 atm at 253 K. Shear and compressional wave speed measurements were made throughout each experiment. For ice Ih, the sample was evacuated before compaction, the measurement temperature range was 253 to 268 K and the applied uniaxial pressure did not exceed 42 MPa. Analysis of the data produces several interesting observations. Among them are: 1) sI and sII gas hydrate resist compaction much more than ice. A pressure of 42 MPa fully compacted the ice sample at 268 K, but a pressure of 105 MPa had to be applied for several days (at temperatures of 253, 278 and 288 K) to fully compact the hydrate samples. 2) Wave speed increases at constant sample length strongly suggest grain to grain bonds form between adjacent ice or gas hydrate grains. The relative wave speed increases with time show this process is more efficient in ice samples, perhaps due to the higher mobility of water in ice's crystal lattice. 3) Within the pressure and temperature conditions studied, the wave speed based calculations of Poisson's ratio are 5 to 6% smaller in sI and sII gas hydrate than in ice. 4) Shear wave speed decreases with increasing uniaxial pressure in Ice

  13. Effect of substrates on structural, optical, electrical and morphological properties of evaporated polycrystalline CdZnTe thin films

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Purohit, A.; Patel, S. L.; Dhaka, M. S.

    2017-05-01

    It is well known fact that the physical properties of a thin film could be tuned by substrate during deposition process. Therefore, a study on the effect of substrates on structural and opto-electrical properties and surface morphology of CdZnTe thin films (400 nm) deposited by electron beam evaporation onto commercial glass, indium tin oxide (ITO) and silicon wafer, has been undertaken. The films exhibited zinc-blende structure and grain size as well as other structural parameters (i.e. internal strain, dislocation density, lattice constant) were found to be affected by the nature of substrates. The optical band gap was found in the range 2.06-2.33 eV and depended on the substrates while the electrical conductivity was observed maximum for films on ITO substrate. The surface morphology of films was also found to be uniform and homogeneous.

  14. Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications

    NASA Astrophysics Data System (ADS)

    Suemasu, Takashi; Usami, Noritaka

    2017-01-01

    Semiconducting barium disilicide (BaSi2), which is composed of earth-abundant elements, has attractive features for thin-film solar cell applications. Both a large absorption coefficient comparable to copper indium gallium diselenide and a minority-carrier diffusion length much larger than the grain size of BaSi2 can be used to improve solar cell properties. In this review article, we explore the potential of semiconducting BaSi2 film for thin-film solar cell applications. We start by describing its crystal and energy band structure, followed by discussing thin-film growth techniques and the optical and electrical properties of BaSi2 films. We use a first-principles calculation based on density-functional theory to calculate the position of the Fermi level to predict the carrier type of impurity-doped BaSi2 films using either a group 13 or 15 element, and compare the calculated results with the experimental ones. Special attention was paid to the minority-carrier properties, such as minority-carrier lifetime, minority-carrier diffusion length, and surface passivation. The potential variations across the grain boundaries measured by Kelvin-probe force microscopy allowed us to detect a larger minority-carrier diffusion length in BaSi2 on Si(1 1 1) compared with BaSi2 on Si(0 0 1). Finally, we demonstrate the operation of p-BaSi2/n-Si heterojunction solar cells and discuss prospects for future development.

  15. Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se{sub 2} thin films

    SciTech Connect

    Dietrich, J.; Abou-Ras, D. Schmidt, S. S.; Rissom, T.; Unold, T.; Cojocaru-Mirédin, O.; Niermann, T.; Lehmann, M.; Koch, C. T.; Boit, C.

    2014-03-14

    Thin-film solar cells based on Cu(In,Ga)Se{sub 2} (CIGSe) reach high power-conversion efficiencies in spite of large dislocation densities of up to 10{sup 10}–10{sup 11} cm{sup −2}. The present work gives insight into the structural and compositional properties of dislocations in CIGSe thin films, which are embedded in a complete solar cell stack. These properties are related to the average electrical potential distributions obtained by means of inline electron holography. At a part of the dislocations studied, the average electrostatic potential shows local minima, all with depths of about −1.4 V. The measured average electrostatic potential distributions were modeled in order to reveal possible influences from strain fields, excess charge, and also compositional changes at the dislocation core. Cu depletion around the dislocation core, as evidenced by atom-probe tomography, explains best the measured potential wells. Their influences of the strain field around the dislocation core and of excess charge at the dislocation core are small. A structural model of dislocations in CIGSe thin films is provided which includes a Cu-depleted region around the dislocation core and gives a possible explanation for why decent photovoltaic performances are possible in the presence of rather large dislocation densities.

  16. Origins of electrostatic potential wells at dislocations in polycrystalline Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Dietrich, J.; Abou-Ras, D.; Schmidt, S. S.; Rissom, T.; Unold, T.; Cojocaru-Mirédin, O.; Niermann, T.; Lehmann, M.; Koch, C. T.; Boit, C.

    2014-03-01

    Thin-film solar cells based on Cu(In,Ga)Se2 (CIGSe) reach high power-conversion efficiencies in spite of large dislocation densities of up to 1010-1011 cm-2. The present work gives insight into the structural and compositional properties of dislocations in CIGSe thin films, which are embedded in a complete solar cell stack. These properties are related to the average electrical potential distributions obtained by means of inline electron holography. At a part of the dislocations studied, the average electrostatic potential shows local minima, all with depths of about -1.4 V. The measured average electrostatic potential distributions were modeled in order to reveal possible influences from strain fields, excess charge, and also compositional changes at the dislocation core. Cu depletion around the dislocation core, as evidenced by atom-probe tomography, explains best the measured potential wells. Their influences of the strain field around the dislocation core and of excess charge at the dislocation core are small. A structural model of dislocations in CIGSe thin films is provided which includes a Cu-depleted region around the dislocation core and gives a possible explanation for why decent photovoltaic performances are possible in the presence of rather large dislocation densities.

  17. Biaxial Stress-Induced Domain Wall Motion at Room Temperature in Polycrystalline Lead Zirconium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Zednik, Ricardo; McIntyre, Paul

    2007-03-01

    Wafer curvature methods can be used to impose pure biaxial tensile and compressive stresses on thin-films. This makes it possible to study the isolated effects of biaxial stress on the ferroelastic domains in ultra-fine grained PZT. Electrical measurements, such as capacitance-voltage and polarization-field hysteresis, were conducted as a function of applied stress and complemented with in-situ high resolution synchrotron X-ray diffraction measurements performed at the Stanford Synchrotron Radiation Laboratory. Systematic correlation of synchrotron scattering data with the electrical properties of the films shows that applied biaxial stress results in a marked change in the film's ferroelastic domain populations at room temperature. The large magnitude changes in ferroelectric and dielectric properties of thin film capacitors are consistent with the observed changes in relative volume fractions of the in-plane (a-axis) and out-of-plane (c-axis) oriented tetragonal PZT domains. This fully-reversible effect is symmetric in both tensile and compressive stress states. Our results, obtained from columnar-structure, fiber-textured PZT thin films, will be compared to reported data for ferroelastic domain wall motion in bulk and epitaxial specimens to assess the influence of PZT crystallite size and sample geometry on this phenomenon.

  18. Strain relaxation mechanisms in compressively strained thin SiGe-on-insulator films grown by selective Si oxidation

    NASA Astrophysics Data System (ADS)

    Gunji, Marika; Marshall, Ann F.; McIntyre, Paul C.

    2011-01-01

    We report on strain relaxation mechanisms in highly compressive-strained (0.67%-2.33% biaxial strain), thin SiGe-on-insulator (SGOI) structures with Ge atomic fraction ranging from 0.18 to 0.81. SGOI layers (8.7-75 nm thickness) were fabricated by selective oxidization of Si from compressively strained SiGe films epitaxially grown on single crystalline Si-on-insulator (SOI) layers. During high temperature oxidation annealing, strain relaxation occurred due to both intrinsic stacking fault (SF) formation and biaxial stress-driven buckling of the SiGe layers through viscous flow of the overlying and underlying SiO2 layers. Transmission electron microscopy (TEM) and x-ray diffraction were performed to confirm the simultaneous occurrence of these two strain relaxation mechanisms. The results indicate that ˜30 % of the observed strain relaxation can be attributed to formation of intrinsic SFs and the remaining strain relaxation to stress-driven buckling of the SiGe layers. In addition, cross-sectional TEM images show that some of the SFs and layer buckling roughness appears to be spatially correlated.

  19. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film.

    PubMed

    Chien, Heng-Chieh; Yao, Da-Jeng; Huang, Mei-Jiau; Chang, Tien-Yao

    2008-05-01

    In this paper, we describe an easy-to-use method to measure the thermal conductivity of thin films based on an electrical heating/sensing mechanism and a steady-state technique. The method used relative commonly used instruments, and without any signal processing circuit, is easy to be used in such thin-film thermal conductivity measurement. The SiO2 thin-film samples, prepared by thermal oxidation, plasma enhanced chemical vapor deposition (PECVD), and E-beam evaporator, were deposited on a silicon substrate. The apparent thermal conductivity, the intrinsic thermal conductivity of SiO2 films, and the total interface thermal resistance of the heater/SiO2/silicon system were evaluated. Our data showed agreement with those data obtained from previous literatures and from the 3 omega method. Furthermore, by using a sandwiched structure, the interface thermal resistance of Cr/PECVD SiO2 and PECVD SiO2/silicon were also separately evaluated in this work. The data showed that the interface thermal resistance of Cr/PECVD SiO2 (metal/dielectric) is about one order of magnitude larger than that of PECVD SiO2/silicon (dielectric/dielectric).

  20. Full potential of radial junction Si thin film solar cells with advanced junction materials and design

    NASA Astrophysics Data System (ADS)

    Qian, Shengyi; Misra, Soumyadeep; Lu, Jiawen; Yu, Zhongwei; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Xu, Ling; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2015-07-01

    Combining advanced materials and junction design in nanowire-based thin film solar cells requires a different thinking of the optimization strategy, which is critical to fulfill the potential of nano-structured photovoltaics. Based on a comprehensive knowledge of the junction materials involved in the multilayer stack, we demonstrate here, in both experimental and theoretical manners, the potential of hydrogenated amorphous Si (a-Si:H) thin film solar cells in a radial junction (RJ) configuration. Resting upon a solid experimental basis, we also assess a more advanced tandem RJ structure with radially stacking a-Si:H/nanocrystalline Si (nc-Si:H) PIN junctions, and show that a balanced photo-current generation with a short circuit current density of Jsc = 14.2 mA/cm2 can be achieved in a tandem RJ cell, while reducing the expensive nc-Si:H absorber thickness from 1-3 μ m (in planar tandem cells) to only 120 nm. These results provide a clearly charted route towards a high performance Si thin film photovoltaics.

  1. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics.

    PubMed

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-10-09

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics.

  2. Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics

    PubMed Central

    Nishiyama, Norimasa; Wakai, Fumihiro; Ohfuji, Hiroaki; Tamenori, Yusuke; Murata, Hidenobu; Taniguchi, Takashi; Matsushita, Masafumi; Takahashi, Manabu; Kulik, Eleonora; Yoshida, Kimiko; Wada, Kouhei; Bednarcik, Jozef; Irifune, Tetsuo

    2014-01-01

    Silicon dioxide has eight stable crystalline phases at conditions of the Earth's rocky parts. Many metastable phases including amorphous phases have been known, which indicates the presence of large kinetic barriers. As a consequence, some crystalline silica phases transform to amorphous phases by bypassing the liquid via two different pathways. Here we show a new pathway, a fracture-induced amorphization of stishovite that is a high-pressure polymorph. The amorphization accompanies a huge volume expansion of ~100% and occurs in a thin layer whose thickness from the fracture surface is several tens of nanometers. Amorphous silica materials that look like strings or worms were observed on the fracture surfaces. The amount of amorphous silica near the fracture surfaces is positively correlated with indentation fracture toughness. This result indicates that the fracture-induced amorphization causes toughening of stishovite polycrystals. The fracture-induced solid-state amorphization may provide a potential platform for toughening in ceramics. PMID:25297473

  3. Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet

    NASA Astrophysics Data System (ADS)

    Zu, Guoqing; Zhang, Xiaoming; Zhao, Jingwei; Wang, Yuqian; Yan, Yi; Li, Chengang; Cao, Guangming; Jiang, Zhengyi

    2017-02-01

    Three 4.5 wt% Si steel thin sheets with different thicknesses were efficiently fabricated by twin-roll strip casting, warm rolling and cold rolling followed by final annealing. A comprehensive investigation from the workability of the as-cast strip to the magnetic property of the produces was performed to illustrate the superiority of the new materials. The results show that the as-cast strip, which has a much lower Vickers hardness than that of the 6.5 wt% Si steel, is suitable for rolling processing. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirm that no ordering phase exists in the as-cast strip. The cold-rolled thin sheets exhibit good surface quality without edge cracks. Furthermore, all the three 4.5 wt% Si steel thin sheets possess relative strong <100>//ND texture and present high magnetic inductions and low iron losses after finial annealing.

  4. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  5. Examination of a polycrystalline thin-film model to explore the relation between probe size and structural correlation length in fluctuation electron microscopy.

    PubMed

    Treacy, M M J; Gibson, J M

    2012-02-01

    We examine simulated electron microdiffraction patterns from models of thin polycrystalline silicon. The models are made by a Voronoi tessellation of random points in a box. The Voronoi domains are randomly selected to contain either a randomly-oriented cubic crystalline grain or a region of continuous random network material. The microdiffraction simulations from coherent probes of different widths are computed at the ideal kinematical limit, ignoring inelastic and multiple scattering. By examining the normalized intensity variance that is obtained in fluctuation electron microscopy experiments, we confirm that intensity fluctuations increase monotonically with the percentage of crystalline grains in the material. However, anomalously high variance is observed for models that have 100% crystalline grains with no imperfections. We confirm that the reduced normalized variance, V(k,R) - 1, that is associated with four-body correlations at scattering vector k, varies inversely with specimen thickness. Further, for probe sizes R larger than the mean grain size, we confirm that the reduced normalized variance obeys the predicted form given by Gibson et al. [Ultramicroscopy, 83, 169-178 (2000)] for the kinematical coherent scattering limit.

  6. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  7. Development of active matrix flat panel imagers incorporating thin layers of polycrystalline HgI(2) for mammographic x-ray imaging.

    PubMed

    Jiang, Hao; Zhao, Qihua; Antonuk, Larry E; El-Mohri, Youcef; Gupta, Tapan

    2013-02-07

    Active matrix flat-panel imagers (AMFPIs) offer many advantages and have become ubiquitous across a wide variety of medical x-ray imaging applications. However, for mammography, the imaging performance of conventional AMFPIs incorporating CsI:Tl scintillators or a-Se photoconductors is limited by their relatively modest signal-to-noise ratio (SNR), particularly at low x-ray exposures or high spatial resolution. One strategy for overcoming this limitation involves the use of a high gain photoconductor such as mercuric iodide (HgI(2)) which has the potential to improve the SNR by virtue of its low effective work function (W(EFF)). In this study, the performance of direct-detection AMFPI prototypes employing relatively thin layers of polycrystalline HgI(2) operated under mammographic irradiation conditions over a range of 0.5 to 16.0 mR is presented. High x-ray sensitivity (corresponding to W(EFF) values of ∼19 eV), low dark current (<0.1 pA mm(-2)) and good spatial resolution, largely limited by the size of the pixel pitch, were observed. For one prototype, a detective quantum efficiency of ∼70% was observed at an x-ray exposure of ∼0.5 mR at 26 kVp.

  8. Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films on polycrystalline ferrite for magnetically tunable microwave components

    SciTech Connect

    Jia, Q.X.; Findikoglu, A.T.; Arendt, P.; Foltyn, S.R.; Roper, J.M.; Groves, J.R.; Coulter, J.Y.; Li, Y.Q.; Dionne, G.F.

    1998-04-01

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films with a surface resistance of 0.86 m{Omega} at 10 GHz and 76 K have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. The chemical and structural mismatches between YBCO and YIG are solved by using a double buffer layer of biaxially oriented yttria-stabilized zirconia (YSZ) and CeO{sub 2}, where YSZ is deposited by an ion-beam-assisted-deposition technique. The YBCO films are {ital c} axis oriented with an in-plane mosaic spread [full width at half maximum of an x-ray {phi}-scan on (103) reflection] of less than 8{degree}. The films have a superconductive transition temperature above 88 K with a transition width less than 0.3 K, giving a critical current density above 10{sup 6}A/cm{sup 2} in self field at 75 K. At 75 K in an external magnetic field of 1 T perpendicular to the film surface, the films maintain a critical current density over 2{times}10{sup 5}A/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  9. Development of Nanosphere Lithography Technique with Enhanced Lithographical Accuracy on Periodic Si Nanostructure for Thin Si Solar Cell Application

    NASA Astrophysics Data System (ADS)

    Choi, Jeayoung

    In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction with dry etching process, using SNS for lithography provides a highly effective nano-lithography approach for periodically arrayed nano-/micro-scale surface patterns with a desired dimension and period. Various Si nanostructures ( i.e., nanopillar, nanotip, inverted pyramid, nanohole) are successfully fabricated with the SNS nano-lithography technique by using different etching technique like anisotropic alkaline solution (i.e., KOH) etching, reactive-ion etching (RIE), and metal-assisted chemical etching (MaCE). In this research, computational optical modeling is also introduced to design the Si nanostructure, specifically nanopillars (NPs) with a desired period and dimension. The optical properties of Si NP are calculated with two different optical modeling techniques, which are the rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. By using these two different optical modeling techniques, the optical properties of Si NPs with different periods and dimensions have been investigated to design ideal Si NP which can be potentially used for thin c-Si solar cell applications. From the results of the computational and experimental work, it was observed that low aspect ratio Si NPs fabricated in a periodic hexagonal array can provide highly enhanced light absorption

  10. CBED and FE Study of Thin Foil Relaxation in Cross-Section Samples of Si /Si1-xGex and Si /Si1-xGex /Si Heterostructures

    NASA Astrophysics Data System (ADS)

    Alexandre, L.; Jurczak, G.; Alfonso, C.; Saikly, W.; Grosjean, C.; Charai, A.; Thibault, J.

    In order to determine residual stress/strain fields in CMOS devices and validate tools used to quantify the strain field, we first studied residual strains in Si/Si1-xGex and Si/Si1-xGex/Si TEM samples. Because of sample thinning for TEM observations, elastic relaxation occurs and modifies the initial stress present in the bulk sample. Nevertheless, if the main parameters which play a role on the elastic relaxation process can be determined, we show that it is possible to reproduce from FE and diffraction simulations the complex profile of the HOLZ lines observed on experimental CBED patterns which makes possible the determination of the initial stress state.

  11. Spalling of a Thin Si Layer by Electrodeposit-Assisted Stripping

    NASA Astrophysics Data System (ADS)

    Kwon, Youngim; Yang, Changyol; Yoon, Sang-Hwa; Um, Han-Don; Lee, Jung-Ho; Yoo, Bongyoung

    2013-11-01

    A major goal in solar cell research is to reduce the cost of the final module. Reducing the thickness of the crystalline silicon substrate to several tens of micrometers can reduce material costs. In this work, we describe the electrodeposition of a Ni-P alloy, which induces high stress in the silicon substrate at room temperature. The induced stress enables lift-off of the thin-film silicon substrate. After lift-off of the thin Si film, the mother substrate can be reused, reducing material costs. Moreover, the low-temperature process expected to be improved Si substrate quality.

  12. High efficiency thin-film crystalline Si/Ge tandem solar cell.

    PubMed

    Sun, G; Chang, F; Soref, R A

    2010-02-15

    We propose and simulate a photovoltaic solar cell comprised of Si and Ge pn junctions in tandem. With an anti-reflection film at the front surface, we have shown that optimal solar cells favor a thin Si layer and a thick Ge layer with a thin tunnel hetero-diode placed in between. We predict efficiency ranging from 19% to 28% for AM1.5G solar irradiance concentrated from 1 approximately 1000 Suns for a cell with a total thickness approximately 100 microm.

  13. Hopping conduction in polycrystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Shukla, A. K.; Kapoor, A. K.; Srivastava, R.; Mathur, P. C.

    1985-03-01

    Measurements of dc conductivity (sigma) on polycrystalline semiconductors, viz., InSb, Si, and CdTe, have been reported in the temperature range 77-300 K. The conduction mechanism near liquid-nitrogen temperature has been identified as the hopping of charge carriers from the charged trap centers to empty traps near the Fermi level.

  14. Solution growth of Si on reorganized porous Si foils and on glass substrates

    NASA Astrophysics Data System (ADS)

    Ehlers, C.; Bansen, R.; Markurt, T.; Uebel, D.; Teubner, Th.; Boeck, T.

    2017-06-01

    We have developed a thin film growth process, which allows for the deposition of closed layers of crystalline Si onto inexpensive substrates in a continuous fashion. Deposition is performed by steady-state solution growth on either reorganized porous Si foils, or on glass substrates with a thin amorphous Si seed layer. The respective monocrystalline and polycrystalline Si films are grown up to a thickness of several ten micrometers, making them suitable for an efficient absorption of sunlight in a photovoltaic device. The structural properties of the Si films have been investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The determined real structure of the polycrystalline layers with grains in the dimension of several 10 μm offers good prospects to utilize the material as an absorber layer for solar cells.

  15. Epitaxial Cu{sub 2}ZnSnS{sub 4} thin film on Si (111) 4° substrate

    SciTech Connect

    Song, Ning; Liu, Fangyang; Huang, Yidan; Hao, Xiaojing E-mail: xj.hao@unsw.edu.au; Green, Martin A.; Young, Matthew; Erslev, Pete; Harvey, Steven P.; Teeter, Glenn E-mail: xj.hao@unsw.edu.au; Wilson, Samual

    2015-06-22

    To explore the possibility of Cu{sub 2}ZnSnS{sub 4} (CZTS)/Si based tandem solar cells, the heteroepitaxy of tetragonal Cu{sub 2}ZnSnS{sub 4} thin films on single crystalline cubic Si (111) wafers with 4° miscut is obtained by molecular beam epitaxy. The X-ray θ-2θ scan and selected area diffraction patterns of the CZTS thin films and Si substrates, and the high resolution transmission electron microscopy image of the CZTS/Si interface region demonstrate that the CZTS thin films are epitaxially grown on the Si substrates. A CZTS/Si P-N junction is formed and shows photovoltaic responses, indicating the promising application of epitaxial CZTS thin films on Si.

  16. Nanoscale control of Si nanoparticles within a 2D hexagonal array embedded in SiO2 thin films

    NASA Astrophysics Data System (ADS)

    Castro, Celia; BenAssayag, Gérard; Pecassou, Béatrice; Andreozzi, Andrea; Seguini, Gabriele; Perego, Michele; Schamm-Chardon, Sylvie

    2017-01-01

    In this work, we investigate the ability to control Si nanoparticles (NPs) spatially arranged in a hexagonal network of 20 nm wide nanovolumes at controlled depth within SiO2 thin films. To achieve this goal an unconventional lithographic technique was implemented based on a bottom-up approach, that is fully compatible with the existing semiconductor technology. The method combines ultra-low energy ion beam synthesis with nanostructured block-copolymer thin films that are self-assembled on the SiO2 substrates to form a nanoporous template with hexagonally packed pores. A systematic analytical investigation using time of flight-secondary ion mass spectroscopy and low-loss energy filtered transmission electron microscopy demonstrates that by adjusting few fabrication parameters, it is possible to narrow the size distribution of the NPs and to control the number of NPs per nanovolume. Experimental results are critically discussed on the basis of literature data, providing a description of the mechanism involved in the formation of Si NPs.

  17. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Xu, Ke; Jiang, Weilin; Droubay, Timothy; Ramuhalli, Pradeep; Edwards, Danny; Johnson, Bradley R.; McCloy, John

    2015-12-01

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversal curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.

  18. Surface Modification of Polycrystalline Cu(In,Ga)Se2 Thin-Film Solar Cell Absorber Surfaces for PEEM Measurements

    SciTech Connect

    Wilks, R. G.; Contreras, M. A.; Lehmann, S.; Herrero-Albillos, J.; Bismaths, L. T.; Kronast, F.; Noufi, R.; Bar, M.

    2011-01-01

    We present a thorough examination of the {micro}m-scale topography of Cu(In, Ga)Se{sub 2} ('CIGSe') thin-film solar cell absorbers using different microscopy techniques. We specifically focus on the efficacy of preparing smooth sample surfaces - by etching in aqueous bromine solution - for a spatially resolved study of their chemical and electronic structures using photoelectron emission microscopy (PEEM). The etching procedure is shown to reduce the CIGSe surface roughness from ca. 40 to 25 nm after 40s etching, resulting in an increase in the quality of the obtained PEEM images. Furthermore we find that the average observed grain size at the etched surfaces appears larger than at the unetched surfaces. Using a liftoff procedure, it is additionally shown that the backside of the absorber is flat but finely patterned, likely due to being grown on the finely-structured Mo back contact.

  19. The effect of Ta doping in polycrystalline TiO{sub x} and the associated thin film transistor properties

    SciTech Connect

    Ok, Kyung-Chul Park, Yoseb Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Chung, Kwun-Bum E-mail: jsparklime@hanyang.ac.kr

    2013-11-18

    Tantalum (Ta) is suggested to act as an electron donor and crystal phase stabilizer in titanium oxide (TiO{sub x}). A transition occurs from an amorphous state to a crystalline phase at an annealing temperature above 300 °C in a vacuum ambient. As the annealing temperature increases from 300 °C to 450 °C, the mobility increases drastically from 0.07 cm{sup 2}/Vs to 0.61 cm{sup 2}/Vs. The remarkable enhancement of thin film transistor performance is suggested to be due to the splitting of Ti 3d band orbitals as well as the increase in Ta{sup 5+} ions that can act as electron donors.

  20. Symmetry dependent optoelectronic properties of grain boundaries in polycrystalline Cu(In,Ga)Se{sub 2} thin films

    SciTech Connect

    Müller, Mathias; Bertram, Frank; Christen, Jürgen; Abou-Ras, Daniel Rissom, Thorsten

    2014-01-14

    In a correlative study applying electron backscatter diffraction as well as spatially and spectrally resolved cathodoluminescence spectroscopy at low temperatures of about 5 K, the symmetry-dependent optoelectronic properties of grain boundaries in Cu(In,Ga)Se{sub 2} thin films have been investigated. We find that grain boundaries with lower symmetries tend to show a distinct spectral red shift of about 10 meV and a weak influence on the emission intensity. These behaviors are not detected at high-symmetry Σ3 grain boundaries, or at least in a strongly reduced way. The investigations in the present work help to clarify the ambivalent properties reported for grain boundaries in Cu(In,Ga)Se{sub 2}.

  1. Hysteresis in single and polycrystalline iron thin films: Major and minor loops, first order reversal curves, and Preisach modeling

    DOE PAGES

    Cao, Yue; Xu, Ke; Jiang, Weilin; ...

    2015-07-03

    Hysteretic behavior was studied in a series of Fe thin films, grown by molecular beam epitaxy, having different grain sizes and grown on different substrates. Major and minor loops and first order reversal curves (FORCs) were collected to investigate magnetization mechanisms and domain behavior under different magnetic histories. The minor loop coefficient and major loop coercivity increase with decreasing grain size due to higher defect concentration resisting domain wall movement. First order reversal curves allowed estimation of the contribution of irreversible and reversible susceptibilities and switching field distribution. The differences in shape of the major loops and first order reversalmore » curves are described using a classical Preisach model with distributions of hysterons of different switching fields, providing a powerful visualization tool to help understand the magnetization switching behavior of Fe films as manifested in various experimental magnetization measurements.« less

  2. Perpendicular Magnetic Anisotropy in Amorphous Ferromagnetic CoSiB/Pd Thin-Film Layered Structures.

    PubMed

    Jung, Sol; Yim, Haein

    2015-10-01

    Spin transfer torque (STT) induced switching of magnetization has led to intriguing and practical possibilities for magnetic random access memory (MRAM). This form of memory, called STT-MRAM, is a strong candidate for future memory applications. This application usually requires a large perpendicular magnetic anisotropy (PMA), large coercivity, and low saturation magnetization. Therefore, we propose an amorphous ferromagnetic CoSiB alloy and investigate CoSiB/Pd multilayer thin films, which have a large PMA, large coercivity, and low saturation magnetization. In this research, we propose a remarkable layered structure that could be a candidate for future applications and try to address a few factors that might affect the variation of PMA, coercivity, and saturation magnetization in the CoSiB/Pd multilayers. We investigate the magnetic properties of the CoSiB/Pd multilayers with various thicknesses of the CoSiB layer. The coercivity was obtained with a maximum of 228 Oe and a minimum value of 91 Oe in the [CoSiB 7 Å/Pd 14 Å], and [CoSiB 9 Å/Pd 14 Å], multilayers, respectively. The PMA arises from tCoSiB = 3 Å to tCoSiB = 9 Å and disappears after tCoSiB = 9 Å.

  3. Persistent photoconductivity studies in a-Si:H/nc-Si:H thin film superlattices

    NASA Astrophysics Data System (ADS)

    Yadav, Asha; Agarwal, Pratima

    2015-09-01

    The electronic properties of undoped a-Si:H/nc-Si:H superlattice structures have been investigated by photoconductivity measurements. Multilayer structures having alternate layers of a-Si:H and nc-Si:H were deposited on corning 1737 glass substrate by Hot wire chemical vapor deposition technique, keeping the total thickness of films constant at 700 nm. Dark and photo conductivity along with persistent photoconductivity (PPC) are measured in coplanar geometry using Ag paste as electrodes. Quite interestingly room temperature PPC has been observed in these undoped a-Si:H/nc-Si:H superlattice structures. PPC decay time constant, its dependence on exposure time, electric field, number of periods and annealing temperature have been studied in detail. The origin of PPC is understood in terms of competition between carriers transport in the lateral direction due to external field and along the depth due to band bending at a-Si:H/nc-Si:H interfaces. Carriers trapped in the interfaces states or the separation of carriers due to band bending are likely to be responsible for observed PPC.

  4. Ion-assisted laser deposition of intermediate layers for YBa2Cu3O7-δ thin film growth on polycrystalline and amorphous substrates

    SciTech Connect

    Reade, Ronald P.

    1993-11-01

    The growth of YBa2Cu3O7-δ (YBCO) high-temperature superconductor thin films has largely been limited to deposition on single-crystal substrates to date. In order to expand the range of potential applications, growth on polycrystalline and amorphous substrates is desirable. In particular, the deposition of YBCO thin films with high critical current densities on polycrystalline metal alloys would allow the manufacture of superconducting tapes. However, it is shown that it is not possible to grow YBCO thin films directly on this type of substrate due to chemical and structural incompatibility. This work investigates the use of a yttria-stabilized zirconia (YSZ) intermediate layer to address this problem. An ion-assisted pulsed-laser deposition process is developed to provide control of orientation during the growth of the YSZ layers. The important properties of YBCO and YSZ are summarized and the status of research on thin film growth of these materials is reviewed. An overview of the pulsed-laser deposition (PLD) technique is presented. The use of ion-assisted deposition techniques to control thin film properties is discussed.

  5. Optoelectronic characterization of wide-bandgap (AgCu)(InGa)Se 2 thin-film polycrystalline solar cells including the role of the intrinsic zinc oxide layer

    NASA Astrophysics Data System (ADS)

    Obahiagbon, Uwadiae

    Experiments and simulations were conducted to vary the thickness and the sheet resistance of the high resistance (HR) ZnO layer in polycrystalline thin film (AgCu)(GaIn)Se2 (ACIGS) solar cells. The effect of varying these parameters on the electric field distribution, depletion width and hence capacitance were studied by SCAPS simulation. Devices were then fabricated and characterized by a number of optoelectronic techniques. Thin film CIGS has received a lot of attention, for its use as an absorber layer for thin film solar cells. However, the addition of Silver (Ag) to the CIGS alloy system increases the band gap as indicated from optical transmission measurements and thus higher open circuit voltage (Voc) could be obtained. Furthermore, addition of Ag lowers the melting temperature of the alloy and it is expected that this lowers the defect densities in the absorber and thus leads to higher performance. Transient photocapacitance analysis on ACIGS devices shows sharper band edge indicating lower disorder than CIGS. Presently there is a lack of fundamental knowledge relating film characteristics to device properties and performance. This is due to the fact that some features in the present solar cell structure have been optimized empirically. The goal of this research effort was to develop a fundamental and detailed understanding of the device operation as well as the loss mechanism(s) limiting these devices. Recombination mechanisms in finished ACIGS solar cell devices was studied using advanced admittance techniques (AS, DLCP, CV) to identify electronically active defect state(s) and to study their impact on electronic properties and device performance. Analysis of various optoelectronic measurements of ACIGS solar cells provided useful feedback regarding the impact on device performance of the HR ZnO layer. It was found that thickness between 10-100 nm had negligible impact on performance but reducing the thickness to 0 nm resulted in huge variability in all

  6. Measurement of Transient Tool Internal Temperature Fields by Novel Micro Thin Film Sensors Embedded in Polycrystalline Cubic Boron Nitride Cutting Inserts

    NASA Astrophysics Data System (ADS)

    Werschmoeller, Dirk

    Monitoring and control of thermomechanical phenomena in tooling are imperative for advancing fundamental understanding, enhancing reliability, and improving workpiece quality in material removal processes. Polycrystalline cubic boron nitride (PCBN) tools are being used heavily in numerous machining processes, e.g., machining of hardened low carbon steel and superalloys. These processes are very sensitive to variations in local cutting conditions at, or close to, the tool-workpiece interface, but lack a thorough understanding of fundamental transient thermo-mechanical phenomena present. As a result, abrupt catastrophic tool failures and degraded machined surfaces frequently occur. Existing sensors are not suitable for process control and monitoring, as they are either destructively embedded and/or do not possess the necessary spatial and temporal resolution to provide relevant data during machining. This research presents a novel approach for obtaining thermomechanical data from the close vicinity (i.e., 10s of micrometers) of the tool-workpiece interface. Arrays of micro thin film thermocouples with junction size 5 x 5 mum were fabricated by standard microfabrication methods and have been successfully embedded into PCBN using diffusion bonding. Electron microscopy and X-ray spectroscopy were employed to examine material interactions at the bonding interface and to determine optimal bonding parameters. Static and dynamic sensor performances have been characterized. The sensors exhibit excellent linearity up to 1300 °C, fast rise time of 150 ns, and possess good sensitivity. The inserts instrumented with embedded thin film C-type thermocouples were successfully applied to measure internal tool temperatures as close as 70 mum to the cutting edge while machining aluminum and hardened steel workpieces at industrially relevant cutting parameters. Acquired temperature data follow theoretical trends very well. Correlations between temperature and cutting parameters have

  7. PIXE detection limit for aluminium thin film deposited on Si-based matrix

    NASA Astrophysics Data System (ADS)

    Soueidan, M.; Roumié, M.; Nsouli, B.

    2017-09-01

    The aim of this work is to show the capability of the PIXE technique as a rapid, non-destructive and accurate quantification method on silicon (Si) and in Si-based matrix. For this purpose, an aluminium (Al) thin film (2.5 nm) deposition on silicon and silicon carbide substrates was carried out using effect joule evaporation. In order to improve the sensitivity for Al determination, a systematic study was undertaken using proton ion beam at different energies (from 0.2 to 3 MeV) with a different incident angles (0°, 60°, and 80°). Proton beam energy of 0.3 MeV and 80° tilting angle permits a more accurate determination of Al/Si with high sensitivity within few minutes of acquisition time and with a LOD less than 1.2 × 1015 at/cm2. However, the LOD of Al decreases by one order of magnitude when SiC substrate is used instead of Si. Hence, these optimal parameters were used to determine the concentration of Al doping in thin homoepitaxial SiC layer. It was found that the Al/Si ratio was varied from 0.066 to 0.36 when the incident angle varied from 0 to 80°.

  8. Photoinduced current transient spectroscopy technique applied to the study of point defects in polycrystalline CdS thin films

    NASA Astrophysics Data System (ADS)

    El Akkad, Fikry; Ashour, Habib

    2009-05-01

    CdS thin films of variable thickness (between 160 and 1200 nm) were prepared using rf magnetron sputtering. X-ray diffraction measurements showed that the films have hexagonal structure and that the crystallites are preferentially oriented with the ⟨002⟩ axis perpendicular to the substrate surface. The results of electrical conductivity measurements as a function of film thickness and of temperature provide evidence that the conductivity is controlled by a thermally activated mobility in the presence of an intergrain barrier. The room temperature barrier height ϕ decreases with the increase in film thickness. Values of ϕ between 0 and 0.25 eV were determined. Photoinduced current transient spectroscopy performed on five samples having different thicknesses showed the presence of 11 traps with activation energies in the range 0.08-1.06 eV; deeper traps being observed on thinner films. By comparison with literature results, seven traps are attributed to native defects and foreign impurities (mainly Cu, Au, and Ag). Four other traps, not previously observed, are attributed to residual defects. The observation that deeper traps are detected in samples with larger barrier heights has been discussed and interpreted in terms of the energy band profile near the grain boundary.

  9. The structural, optical, and electrical properties of vacuum evaporated Cu-doped ZnTe polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Feng, L.; Mao, D.; Tang, J.; Collins, R. T.; Trefny, J. U.

    1996-09-01

    We have studied the structural, optical, and electrical properties of thermally evaporated, Cu-doped, ZnTe thin films as a function of Cu concentration and post-deposition annealing temperature. X-ray diffraction measurements showed that the ZnTe films evaporated on room temperature substrates were characterized by an average grain size of 300Å with a (111) preferred orientation. Optical absorption measurements yielded a bandgap of 2.21 eV for undoped ZnTe. A bandgap shrinkage was observed for the Cu-doped films. The dark resistivity of the as-deposited ZnTe decreased by more than three orders of magnitude as the Cu concentration was increased from 4 to 8 at.% and decreased to less than 1 ohm-cm after annealing at 260°C. For films doped with 6 7 at.% Cu, an increase of resistivity was also observed during annealing at 150 200°C. The activation energy of the dark conductivity was measured as a function of Cu concentration and annealing temperature. Hall measurements yielded hole mobility values in the range between 0.1 and 1 cm2/V·s for both as-deposited and annealed films. Solar cells with a CdS/CdTe/ZnTe/metal structure were fabricated using Cudoped ZnTe as a back contact layer on electrodeposited CdTe. Fill factors approaching 0.75 and energy conversion efficiencies as high as 12.1% were obtained.

  10. Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO(3) thin films.

    PubMed

    Kharel, P; Talebi, S; Ramachandran, B; Dixit, A; Naik, V M; Sahana, M B; Sudakar, C; Naik, R; Rao, M S R; Lawes, G

    2009-01-21

    We have synthesized a range of transition-metal-doped BiFeO(3) thin films on conducting silicon substrates using a spin-coating technique from metal-organic precursor solutions. Bismuth, iron and transition-metal-organic solutions were mixed in the appropriate ratios to produce 3% transition-metal-doped samples. X-ray diffraction studies show that the samples annealed in a nitrogen atmosphere crystallize in a rhombohedrally distorted BiFeO(3) structure with no evidence for any ferromagnetic secondary phase formation. We find evidence for the disappearance of the 404 cm(-1) Raman mode for certain dopants indicative of structural distortions. The saturation magnetization of these BiFeO(3) films has been found to increase on doping with transition metal ions, reaching a maximum value of 8.5 emu cm(-3) for the Cr-doped samples. However, leakage current measurements find that the resistivity of the films typically decreases with transition metal doping. We find no evidence for any systematic variation of the electric or magnetic properties of BiFeO(3) depending on the transition metal dopant, suggesting that these properties are determined mainly by extrinsic effects arising from defects or grain boundaries.

  11. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  12. Investigations of ultra-thin single layer a-Si:H films

    SciTech Connect

    Koehler, S.A.

    1997-07-01

    Measurements are presented as direct evidence of tail states in ultra-thin a-Si:H single layer films. Including tail states in computer simulations completely removes the staircase structure in the differential optical spectra, previously associated with the quantum confinement of carriers.

  13. Combinatorial investigation of the effects of sodium on Cu 2ZnSnSe4 polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Gibbs, Alex Hilton

    Cu2ZnSnSe4 (CZTSe) possess highly suitable optical and electronic properties for use as an absorber layer in thin film solar cells. CZTSe also has potential to achieve terawatt level solar energy production due to its inexpensive and abundant material constituents. Currently, fabricating CZTSe devices with the expected theoretical performance has not been achieved, making the growth and formation of CZTSe an interesting topic of research. In this work, a two-step vacuum fabrication process consisting of RF co-sputtering followed by reactive annealing was explored as a viable technique for synthesizing CZTSe thin films. Furthermore, the enhancement of the fabrication process by the incorporation of sodium during annealing was studied using a combinatorial approach. Film composition was analyzed using electron dispersive spectroscopy. Structure, phase morphology, and formation were determined using scanning electron microscopy, x-ray diffraction, atomic force microscopy and raman spectroscopy. Optical and electronic properties were characterized using UV-Vis and Voc were measurements under a one sun solar simulator. RF co-sputtering CuSe, ZnSe, and SnSe precursors produced films with good thickness uniformity, adhesion and stoichiometry control over 3 x 3 in 2 substrates. Composition measurements showed that the precursor films maintained stability during an annealing process of 580° C for 20 minutes producing near stoichiometric CZTSe. However, grain size was small with an average diameter of 350 nm. The CZTSe film produced by this process exhibited a suitable absorption coefficient of > 104 cm-1 and aband gap near 1.0 eV. The film also produced an XRD pattern consistent with tetragonal CZTSe with no secondary phase formation with the exception of approximately 12.5 nm of interfacial MoSe2 formation at the back contact. The combinatorial investigation of the influence of sodium on CZTSe growth and morphology was achieved using a custom built constant withdraw

  14. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  15. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  16. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  17. Comparison of the annealing behavior of thin Ta films deposited onto Si and SiO2 substrates.

    PubMed

    Hübner, R; Hecker, M; Mattern, N; Hoffmann, V; Wetzig, K; Engelmann, H-J; Zschech, E

    2004-06-01

    Structural changes at annealing temperatures (T(an)) of 500-1,100 degrees C were investigated for thin Ta films which were sputter-deposited onto pure Si substrates and onto thermally oxidized Si. In the as-deposited state, the Ta layers predominantly consist of metastable tetragonal beta-Ta, whereby the [001] texture is independent of the substrate material. At lower annealing temperatures, the microstructural evolution is essentially the same for both Ta films. Incorporation of O atoms causes an increase of the intrinsic compressive stress, and diffusion of C atoms into the Ta layer leads to the formation of Ta(2)C. Additionally, a partial transformation of the original beta-Ta phase into a second phase with tetragonal unit cell (denoted as beta'-Ta) occurs. For the Ta/Si system, the formation of a Ta-Si intermixing layer is initiated at T(an)=550 degrees C, and nucleation of crystalline TaSi(2) occurs at T(an)=620 degrees C. The formation of a second Ta silicide was not detected up to T(an)=900 degrees C. In the case of the Ta film deposited onto the SiO(2) substrate, the metastable beta-Ta and the beta'-Ta transform completely into the thermodynamically stable cubic alpha-Ta at T(an)=750 degrees C. A marked reaction with the substrate indicated by the formation of Ta(2)O(5) and Ta(5)Si(3) occurs at T(an)=1,000 degrees C.

  18. Thin films of SiO2 and hydroxyapatite on titanium deposited by spray pyrolysis.

    PubMed

    Jokanovic, V; Jokanovic, B; Izvonar, D; Dacic, B

    2008-05-01

    Wet spray pyrolysis of fine, well-dispersed a SiO2 sol was used for the deposition of thin films of silicon dioxide. The sol was obtained by hydrothermal precipitation of silicon acid from a solution at pH = 10. The morphology, roughness, phase composition, chemical homogeneity and the mechanism of the films were investigated by SEM, EDS and IR spectroscopy. The obtained results show a complete covering of the titanium substrate with SiO2 after 3 h of deposition. It was observed that the film thickness increased from 3 to 19 microm, the roughness of the film decreased from 12 to 3 microm, while the morphology of the deposit changed considerably. A hydroxyapatite film was prepared on the so-obtained SiO2 thin film by spray pyrolysis deposition and its morphology and phase composition were investigated.

  19. Growth of YBa sub 2 Cu sub 3 O sub 7 minus x thin films on Si with a CoSi sub 2 buffer layer

    SciTech Connect

    Luo, L.; Muenchausen, R.E.; Maggiore, C.J. ); Jimenez, J.R.; Schowalter, L.J. )

    1991-01-28

    By using the pulsed laser deposition technique, high-temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO) films were grown on Si(001) with a 36 nm single-crystal {l angle}001{r angle} oriented CoSi{sub 2} buffer layer. The films, grown at a substrate temperature of {similar to}700 {degree}C, have a metallic resistive temperature dependence with zero resistance at 85 K. X-ray diffraction, scanning electron microscopy, and ion channeling studies show that the YBCO films are polycrystalline but are strongly {ital c}-axis oriented normal to the Si substrate. Diffusion at the interface between the YBCO film and silicide buffer layer was minimized. This is essential to the growth of high-temperature superconducting films on Si substrates.

  20. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Hultman, L.

    2016-11-01

    We present first self-consistent modelling of x-ray photoelectron spectroscopy (XPS) Ti 2p, N 1s, O 1s, and C 1s core level spectra with a cross-peak quantitative agreement for a series of TiN thin films grown by dc magnetron sputtering and oxidized to different extent by varying the venting temperature Tv of the vacuum chamber before removing the deposited samples. So-obtained film series constitute a model case for XPS application studies, where certain degree of atmosphere exposure during sample transfer to the XPS instrument is unavoidable. The challenge is to extract information about surface chemistry without invoking destructive pre-cleaning with noble gas ions. All TiN surfaces are thus analyzed in the as-received state by XPS using monochromatic Al Kα radiation (hν = 1486.6 eV). Details of line shapes and relative peak areas obtained from deconvolution of the reference Ti 2p and N 1 s spectra representative of a native TiN surface serve as an input to model complex core level signals from air-exposed surfaces, where contributions from oxides and oxynitrides make the task very challenging considering the influence of the whole deposition process at hand. The essential part of the presented approach is that the deconvolution process is not only guided by the comparison to the reference binding energy values that often show large spread, but in order to increase reliability of the extracted chemical information the requirement for both qualitative and quantitative self-consistency between component peaks belonging to the same chemical species is imposed across all core-level spectra (including often neglected O 1s and C 1s signals). The relative ratios between contributions from different chemical species vary as a function of Tv presenting a self-consistency check for our model. We propose that the cross-peak self-consistency should be a prerequisite for reliable XPS peak modelling as it enhances credibility of obtained chemical information, while relying

  1. Preparation of photocatalytic TiO2-SiO2 thin film by sol-gel coating

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Han; Choi, Se-Young

    2004-07-01

    TiO2-SiO2 composite thin films for photocatalysis were fabricated on window glass with sol-gel technology. By measuring the contact angle of the film surface and the degradation of methylene blue, the super-hydrophilicity and photocatalytic activity of the composite thin films were studied. The results indicate that the TiO2-SiO2 composite thin film can yield various glass self-cleaning effects with low maintenance expenses.

  2. Investigation of solar cell performance using multilayer thin film structure (SiO2/Si3N4) and grating

    NASA Astrophysics Data System (ADS)

    Dubey, R. S.; Jhansirani, K.; Singh, Shyam

    Thin film silicon solar cells are the better choice due to their low cost as compared to the crystalline solar cells. However, thin film silicon solar cells are suffering from a problem of weak absorption of incident light and hence, light trapping mechanism is essential for the harvesting of maximum solar radiation. In this paper, we present the performance of solar cell using an efficient back reflector composed of multilayer thin film (SiO2/Si3N4) and a diffraction grating. The use of a back reflector showed enhanced light absorption due to the folding of unabsorbed light coming to it after crossing the active region in a wide wavelength range. Further, the effect of active layer thickness and grating height were also discussed for the optimal performance of the solar cell. In the case of magnetic transverse mode, a relative enhancement in cell efficiency about 79 and 21% respectively have been observed with respect to a planar and SC4 solar cells.

  3. Designing a standard for strain mapping: HR-EBSD analysis of SiGe thin film structures on Si.

    PubMed

    Vaudin, M D; Osborn, W A; Friedman, L H; Gorham, J M; Vartanian, V; Cook, R F

    2015-01-01

    Patterned SiGe thin film structures, heteroepitaxially deposited on Si substrates, are investigated as potential reference standards to establish the accuracy of high resolution electron backscattered diffraction (HR-EBSD) strain measurement methods. The proposed standards incorporate thin films of tetragonally distorted epitaxial Si₁-xGex adjacent to strain-free Si. Six films of three different nominal compositions (x=0.2, 0.3, and 0.4) and various thicknesses were studied. Film composition and out-of-plane lattice spacing measurements, by x-ray photoelectron spectroscopy and x-ray diffraction, respectively, provided independent determinations of film epitaxy and predictions of tetragonal strain for direct comparison with HR-EBSD strain measurements. Films assessed to be coherent with the substrate exhibited tetragonal strain values measured by HR-EBSD identical to those predicted from the composition and x-ray diffraction measurements, within experimental relative uncertainties of order 2%. Such films thus provide suitable prototypes for designing a strain reference standard. Published by Elsevier B.V.

  4. Electromigration failure in Al-Si-1% thin film

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Wander L.; Mansur, Herman S.

    The electromigration failure mechanism of sputtered deposited Al-Si-1% metal films was studied using an integrated circuit device designed according to CMOS technology. The tests were conducted employing current densities in the range of 1.0-2.0 × 106 A/cm2 and temperatures of 100-200°C. The failure mechanism showed a lognormal distribution and an activation energy of 0.54 ± 0.15 eV was obtained. SEM analysis showed void regions and material depletion, which were responsible for the current flow interruption. An exponential reduction of the median-time-to-failure (T50) was observed with the increasing of the metal strip temperature. We found an inverse dependence of T50 and current density on the power of `n', which presented an average value of 1.1. Samples of the Al-Si-1% film submitted to XRD analysis showed a preferred orientation on the (111) direction, compared to the (200), indicating a columnar texture of the film.

  5. In-situ low temperature growth and orientation control in MOCVD PZT/RuO{sub 2} thin film heterostructures on SiO{sub 2}/Si substrates.

    SciTech Connect

    Bai, G.-R.; Wang, A.; Tsu, I.-F.; Foster, C. M.; Auciello, O.; Materials Science Division

    1998-01-01

    Pb(Zr{sub 0.5}Ti{sub 0.5})O{sub 3}/RuO{sub 2} (PZT/RuO{sub 2}) thin film heterostructures with controlled PZT and RuO{sub 2} orientation were successfully grown in-situ on SiO{sub 2}/(001)Si substrates at 525 C, using metal-organic chemical vapor deposition (MOCVD). XRD analysis revealed that the textured orientation of the PZT films is strongly dependent on the orientation of RuO{sub 2} bottom electrode layers. PZT layers grown on (101)-textured RuO{sub 2} exhibit a predominant (001) orientation, while those grown on (110)-textured RuO{sub 2} present a mixed (001)-(111)-(110) polycrystalline structure. Highly (110)-oriented RuO{sub 2} layers were grown using relatively high deposition temperatures and low rates ({approx}350 C and < 3 nm/min, respectively), while (101)-textured RuO{sub 2} layers were grown at slightly lower temperatures and higher deposition rates than those for (110) layers (i.e., {approx}300 C and > 3 nm/min, respectively). The RuO{sub 2} layers exhibited resistivities of 34-40 {micro}{Omega}-cm, average grain size of 65{+-}15 nm, and surface roughness of 3-10 nm (rms), while the PZT layers were dense with average grain size of 150-250 nm. Ag/PZT (001)/RuO{sub 2}(101) capacitors exhibited remanent polarization, saturation polarization, and coercive field of 49.7 {micro}C/cm{sup 2}, 82.5 {micro}C/cm{sup 2}, and 35.0 kv/cm, respectively, while the values for Ag/PZT (001-111-110)/RuO{sub 2} (110) capacitors were 21.5 {micro}C/cm{sup 2}, 35.4 {micro}C/cm{sup 2}, and 39.0 kv/cm, respectively.

  6. Electrical and optical properties of Ta-Si-N thin films deposited by reactive magnetron sputtering

    SciTech Connect

    Oezer, D.; Sanjines, R.; Ramirez, G.; Rodil, S. E.

    2012-12-01

    The electrical and optical properties of Ta{sub x}Si{sub y}N{sub z} thin films deposited by reactive magnetron sputtering from individual Ta and Si targets were studied in order to investigate the effects of nitrogen and silicon contents on both properties and their correlation to the film microstructure. Three sets of fcc-Ta{sub x}Si{sub y}N{sub z} thin films were prepared: sub-stoichiometric Ta{sub x}Si{sub y}N{sub 0.44}, nearly stoichiometric Ta{sub x}Si{sub y}N{sub 0.5}, and over-stoichiometric Ta{sub x}Si{sub y}N{sub 0.56}. The optical properties were investigated by near-normal-incidence reflectivity and ellipsometric measurements in the optical energy range from 0.375 eV to 6.8 eV, while the d.c. electrical resistivity was measured in the van der Pauw configuration from 20 K to 300 K. The optical and electrical measurements were interpreted using the standard Drude-Lorentz model and the so-called grain boundary scattering model, respectively. The electronic properties were closely correlated with the compositional and structural modifications of the Ta{sub x}Si{sub y}N{sub z} films due to variations in the stoichiometry of the fcc-TaN{sub z} system and the addition of Si atoms. According to the nitrogen and silicon contents, fcc-Ta{sub x}Si{sub y}N{sub z} films can exhibit room temperature resistivity values ranging from 10{sup 2} {mu}{Omega} cm to about 6 Multiplication-Sign 10{sup 4} {mu}{Omega} cm. The interpretation of the experimental temperature-dependent resistivity data within the Grain Boundary Scattering model, combined with the results from optical investigations, showed that the mean electron transmission probability G and the free carriers concentration, N, are the main parameters that control the transport properties of these films. The results indicated that the correlation between electrical and optical measurements with the chemical composition and the nanostructure of the Ta{sub x}Si{sub y}N{sub z} thin films provides a pertinent and

  7. H2-Ar dilution for improved c-Si quantum dots in P-doped SiNx:H thin film matrix

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Zhang, Weijia; Liu, Shengzhong (Frank)

    2017-02-01

    Phosphorus-doped hydrogenated silicon nitride (SiNx:H) thin films containing crystalline silicon quantum dot (c-Si QD) was prepared by plasma enhanced chemical vapor deposition (PECVD) using hydrogen-argon mixed dilution. The effects of H2/Ar flow ratio on the structural, electrical and optical characteristics of as-grown P-doped SiNx:H thin films were systematically investigated. Experimental results show that crystallization is promoted by increasing the H2/Ar flow ratio in dilution, while the N/Si atomic ratio is higher for thin film deposited with argon-rich dilution. As the H2/Ar flow ratio varies from 100/100 to 200/0, the samples exhibit excellent conductivity owing to the large volume fraction of c-Si QDs and effective P-doping. By adjusting the H2/Ar ratio to 100/100, P-doped SiNx:H thin film containing tiny and densely distributed c-Si QDs can be obtained. It simultaneously possesses wide optical band gap and high dark conductivity. Finally, detailed discussion has been made to analyze the influence of H2-Ar mixed dilution on the properties of P-doped SiNx:H thin films.

  8. Elaboration and characterization of luminescent porous SiC microparticles/poly vinyl alcohol thin films

    NASA Astrophysics Data System (ADS)

    Kaci, S.; Mansouri, H.; Bozetine, I.; Keffous, A.; Guerbous, L.; Siahmed, Y.; Aissiou, S.

    2017-02-01

    In this study, Morphological, optical and photoluminescence characterizations of nanostructured SiC micropowder embedded in PVA matrix and deposited as thin films on glass substrates are reported. we prepared the porous SiC microparticles/PVA thin films by spin coating method. The average size of SiC microparticles were 7 μm. An electroless method was used for producing porous silicon carbide powder under UV irradiation. Silver nanoparticles coated SiC powder was formed by polyol process. The etchant was composed of aqueous HF and different oxidants. Various porous morphologies were obtained and studied as a function of oxidant type, etching time, and wavelength of irradiation. We concluded that the chemical etching conditions of SiC powder seems to have a large impact on the resulting properties. We noticed that the best photoluminescence property was achieved when SiC powder was etched in HF/K2S2O8 at reaction temperature of 80 °C for t = 40min and under UV light of 254 nm.

  9. Low temperature Ti-Si-C thin film deposition by ion beam assisted methods

    NASA Astrophysics Data System (ADS)

    Twardowska, Agnieszka; Rajchel, Boguslaw; Jaworska, Lucyna

    2010-11-01

    Thin, multiphase Ti-Si-C coatings were formed by IBSD or by IBAD methods on AISI 316L steel substrates in room temperature, using single Ti3SiC2 target. In those methods the TiXSiCY coatings were formed from the flux of energetic atoms and ions obtained by ion sputtering of the Ti3SiC2 compound sample. As sputtering beam the beam of Ar+ ions at energy of 15keV was applied. In the IBAD method the dynamically formed coatings were additionally bombarded by beam of Ar+ ions at energy of 15keV. The ion beams parameters were obtained by using Monte Carlo computer simulations. The morphology (SEM, TEM), chemical (EDS/EDX) and phase composition (XRD) examinations of formed coatings were provided as well as confocal Raman microspectroscopy. Analyzed coatings were relatively thin (150nm-1μm), flat and dense. XRD analysis indicated in amorphous TiSi, the traces of Ti5Si3 and other phases from Ti-Si-C system (TiSi, TiSi2,Ti3SiC2). For chemical bonds investigation, the laser beam with length of 532nm was used. Those analyses were performed in the low (LR) or in high (HR) resolution modes in room temperature and in 4000C. In the HR mode the spectral resolution was close to 2 cm-1. In Raman spectra peaks at: 152cm-1, 216cm-1, 278cm-1, 311 cm-1, 608cm-1, 691cm-1 were recorded. Nanoindentation tests were done on coated and uncoated substrates with diamond, Berkovich-type indenter. Vickers hardness HIT and reduced elastic modulus EIT were calculated using Olivier& Pharr method. HIT for coated substrates was in the range 2.7 to 5.3 GPa, EIT was 160 GPa.

  10. The effects of annealing temperature on structure and photoluminescence of SiC/AlN bilayer thin film

    NASA Astrophysics Data System (ADS)

    He, Xiao-xiong; Li, He-qin; Fan, Wen-bin; Do, Zhi

    2010-10-01

    The SiC/AlN bilayer thin films were grown by RF magnetron sputtering on the silicon(100)substrate, then were annealed from 500°C to 1000°C through the nitrogen gas. The optimum synthetic process was obtained, that is, the gas pressure was 0.5Pa, the flux of Ar was 60sccm, the sputtering power of SiC target was 150W for 1.5hr, while the sputtering power of pure Al target was 100W for 1hr, and the ratio of Ar to N2 was 2:1. Next the XRD, AFM and photoluminescence (PL) spectra of these films were measured with D/Max-γB X-ray diffraction and FL-4500 Fluorometric meter. Two PL emission peaks were observed respectively around 381nm and 400nm, and they came from the SiC particles and the carbon clusters respectively. The intensity of PL emission rises with the increasing of annealing temperature. The PL emission intensity of SiC/AlN bilayer thin film at 381nm is superior to SiC monolayer thin film while the that of SiC/AlN bilayer at 400 nm is inferior to SiC monolayer thin film. In addition to, the grain size of SiC/AlN bilayer thin film is finer than that of SiC monolayer thin film resulting from AFM morphology.

  11. Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure.

    PubMed

    Zhao, Yongxiang; Chen, Fei; Shen, Qiang; Zhang, Lianmeng

    2012-05-07

    In this paper, a graded SiNx and SiOxNy structure is proposed as antireflection coatings deposited on top of amorphous silicon (α-Si) thin-film solar cell. The structural parameters are optimized by differential evolution in order to enhance the optical absorption of solar cells to the greatest degree. The optimal design result demonstrates that the nonlinear profile of dielectric constant is superior to the linear profile, and discrete multilayer graded antireflection coatings can outperform near continuously graded antireflection coatings. What's more, the electric field intensity distributions clearly demonstrate the proposed graded SiNx and SiOxNy structure can remarkably increase the magnitude of electric field of a-Si:H layer and hence, enhance the light trapping of a-Si:H thin-film solar cells in the whole visible and near-infrared spectrum. Finally, we have compared the optical absorption enhancements of proposed graded SiNx and SiOxNy structure with nanoparticles structure, and demonstrated that it can result in higher enhancements compared to the dielectric SiC and TiO2 nanoparticles. We have shown that the optimal graded SiNx and SiOxNy structure optimized by differential evolution can reach 33.31% enhancement which has exceeded the ideal limit of 32% of nanoparticles structure including plasmonic Ag nanoparticles, dielectric SiC and TiO2 nanoparticles.

  12. Bi4Si3O12 thin films for scintillator applications

    NASA Astrophysics Data System (ADS)

    Rincón-López, J. A.; Fernández-Benavides, D. A.; Giraldo-Betancur, A. L.; Cruz-Muñoz, B.; Riascos, H.; Muñoz-Saldaña, J.

    2016-04-01

    Bismuth silicate Bi4Si3O12 or BSO thin films were synthesized by pulsed laser deposition and a subsequent annealing treatment from a Bi-Fe-O and compared with films obtained with a pure Bi2O3 target. Bi-Fe-O amorphous thin films of different thicknesses were deposited on silicon substrates at room temperature and subsequently heat treated at 800 °C at different times to study the phase transformations, keeping in all steps a constant oxygen atmosphere. After annealing, Bi-Si-O crystalline phases are formed in all cases with different synthesis kinetics. The Bi-Fe-O target clearly increases the synthesis kinetic of a textured BSO phase having a dissociation and precipitation of homogeneously distributed Fe2O3 particles in the BSO matrix. The key aspects to obtain the Bi4Si3O12 stoichiometric phase are both the film thickness and the heat treatment time to allow the reaction between the Bi2O3 from the target and the SiO2 obtained after the oxidation of the substrate. A deposition time of Bi-Fe-O for 120 and 30 min annealing fulfills the conditions to obtain the Bi4Si3O12 stoichiometric composition and thus scintillation performance. The scintillation properties were measured by a fluorescence spectrophotometry. The stoichiometric Bi4Si3O12 samples show that under 260 nm excitation the material exhibits a peak emission at 466.6 nm. These Bi4Si3O12 thin films crystallize in eulytite phase with cubic structure (a = b = c = 10.291 Å). The phase content was obtained by Rietveld analysis of X-ray diffraction patterns.

  13. Bondability of Al-Si thin film in thermosonic gold wire bonding. [integrated circuits

    NASA Technical Reports Server (NTRS)

    Nakagawa, K.; Miyata, K.; Banjo, T.; Shimada, W.

    1985-01-01

    The bondability of two kinds of Al-Si thin films in thermosonic Au wire bonding was examined by means of microshear tests. One type of film was formed by sputtering an Al-2% Si alloy, and the other was formed by depositing an 0.05 micrometer-thick polysilicon layer on SiO2 by chemical vapor deposition (CVD) and then depositing a 1.2 micrometer-thick Al layer on them by evaporation. After heat-treatment at 450 deg for 30 min., Si in the Al-Si film crystallized. The grain size of the crystallized Si affects the thermosonic wire bondability, i.e., for Al-2% Si sputtered films, good bondability was obtained under relatively small (1.0 micrometer) grain size conditions. In the successive layer process, on the other hand, the grain size of crystallized Si varies with the polysilicon CVD temperature. The optimum CVD temp. was determined from the standpoint of bondability with respect to grain size.

  14. Co{sub 2}FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    SciTech Connect

    Belmeguenai, M. Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S. Petrisor, T.; Tiusan, C.

    2014-01-28

    10 nm and 50 nm Co{sub 2}FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T{sub a}), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T{sub a}, while the uniaxial anisotropy field is nearly unaffected by T{sub a} within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T{sub a}. Finally, the FMR linewidth decreases when increasing T{sub a}, due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10{sup −3} and 1.3×10{sup −3} for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  15. Tin induced a-Si crystallization in thin films of Si-Sn alloys

    SciTech Connect

    Neimash, V. E-mail: oleks.goushcha@nuportsoft.com; Poroshin, V.; Goushcha, A. O. E-mail: oleks.goushcha@nuportsoft.com; Shepeliavyi, P.; Yukhymchuk, V.; Melnyk, V.; Kuzmich, A.; Makara, V.

    2013-12-07

    Effects of tin doping on crystallization of amorphous silicon were studied using Raman scattering, Auger spectroscopy, scanning electron microscopy, and X-ray fluorescence techniques. Formation of silicon nanocrystals (2–4 nm in size) in the amorphous matrix of Si{sub 1−x}Sn{sub x}, obtained by physical vapor deposition of the components in vacuum, was observed at temperatures around 300 °C. The aggregate volume of nanocrystals in the deposited film of Si{sub 1−x}Sn{sub x} exceeded 60% of the total film volume and correlated well with the tin content. Formation of structures with ∼80% partial volume of the nanocrystalline phase was also demonstrated. Tin-induced crystallization of amorphous silicon occurred only around the clusters of metallic tin, which suggested the crystallization mechanism involving an interfacial molten Si:Sn layer.

  16. Influence of the preparation conditions on the morphology of perylene thin films on Si(111) and Si(100)

    SciTech Connect

    Casu, M. B.; Yu, X.; Schmitt, S.; Heske, C.; Umbach, E.

    2008-12-28

    Thin films of perylene on Si(111) and Si(100) substrates have been investigated using a variety of experimental techniques. We find that the structural and morphological properties as well as the growth modes strongly depend on the preparation parameters. In general, we observe the existence of a relatively weak coupling between perylene and the two single crystal substrates. However, under special preparation conditions, it is possible to obtain a multilayer phase on the Si(111) substrate that is characterized by flat-lying, parallel-oriented molecules, and strong coupling with the substrate in the first layer. This phase has different structural, electronic, and intermolecular bonding properties as compared to the known crystalline phases. On Si(100), by varying the deposition rate between 0.1 and 10 nm/min, it is possible to observe a transition from island growth mode, with large and isolated crystallites, to homogeneous film growth. These findings contribute to the basic knowledge for film engineering. Thus, the film morphology could be designed ranging from the growth of very large single grains suitable for a complete nanodevice to homogenous films for application in large displays.

  17. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    SciTech Connect

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-02-17

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi{sub 2} phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi{sub 2} grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni{sub 3}Si{sub 2}. Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization.

  18. Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Zhou, Liwei; Liang, Jiran; Hu, Ming; Li, Peng; Song, Xiaolong; Zhao, Yirui; Qiang, Xiaoyong

    2017-05-01

    In this study, an ordered SiO2 nanosphere array coated with vanadium dioxide (VO2) has been fabricated to enhance transmittance with the potential application as an energy-efficient coating in the field of smart windows. SiO2 arrays were formed using the methods of self-assembly, and VO2 thin films were prepared by rapid thermal annealing (RTA) of sputtered vanadium films. VO2@SiO2 arrays were characterized by scanning electron microscopy, X-ray diffraction, a four-point probe, and UV-vis-NIR spectrophotometry. Compared with the planar films, the films deposited on 300 nm diameter SiO2 nanospheres can offer approximately 18% enhancement of luminous transmission (Tlum) because the diameter is smaller than the given wavelength and the protuberance of the surface array behaves as a gradation of refractive index producing antireflection. The solar regulation efficiency was not much deteriorated.

  19. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  20. Enhancement in visible luminescence from nanocomposite ZnO-SiOx thin films due to annealing

    NASA Astrophysics Data System (ADS)

    Kumar, V. V. Siva; Kanjilal, D.

    2014-01-01

    The annealing induced enhancement in visible photoluminescence (PL) from nanocomposite (nc) ZnO-SiOx thin films was investigated. Nc ZnO-SiOx thin films consisting of ZnO nanocrystals in silica matrix were grown by depositing the films using radio frequency (rf) reactive co-sputtering and post-annealing them at temperatures of 350°C and 500°C in high vacuum and air. These films were characterized by Fourier transform infrared (FTIR), (PL) spectroscopy and UV-Vis spectrophotometry measurements. Thin films were also deposited on transmission electron microscopy (TEM) grids in almost identical conditions. The TEM measurement of the thin film deposited on TEM grid shows the formation of ZnO nanocrystals with a size distribution from 3.0 nm to 6.8 nm (+/-0.2 nm) in silica matrix. The UV-Vis spectra of the films show absorption features of ZnO and Zn2SiO4 phases in the films. The visible PL emission intensity and peak width increased in the annealed films. The results suggest increase in the number and size distribution of the ZnO nanocrystals in silica matrix due to the annealing resulting in increase in visible PL emission. The results of vacuum annealed films indicate that these films can be useful in the development of wide band visible light emitting devices using this material.

  1. Study and Simulation of the Heterojunction Thin Film Solar Cell a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)

    NASA Astrophysics Data System (ADS)

    Toufik, Zarede; Hamza, Lidjici; Mohamed, Fathi; Achour, Mahrane

    2016-08-01

    In this article, we present a study based on numerical simulation of the electrical characteristics of a thin-film heterojunction solar cell (a-Si( n)/a-Si( i)/c-Si( p)/a-Si( i)/a-Si( p)), using the automat for simulation of hetero-structures (AFORS-Het) software. This cell is composed of four main layers of silicon (Si): (i) 5 nm amorphous silicon doped n, (ii) 100 μm crystalline silicon (substrate) doped p, (iii) 5 nm amorphous silicon doped p, and (iv) 3 nm amorphous silicon intrinsic. This cell has a front and rear metal contact of aluminum and zinc oxide (ZnO) front layer transparent conductive oxide of 80 nm thickness. The simulations were performed at conditions of "One Sun" irradiation with air mass 1.5 (AM1.5), and under absolute temperature T = 300 K. The simulation results have shown a high electrical conversion efficiency of about 30.29% and high values of open circuit voltage V oc = 779 mV. This study has also shown that the studied cell has good quality light absorption on a very broad spectrum.

  2. Spectroscopic and microscopic studies of self-assembled nc-Si/a-SiC thin films grown by low pressure high density spontaneous plasma processing.

    PubMed

    Das, Debajyoti; Kar, Debjit

    2014-12-14

    In view of suitable applications in the window layer of nc-Si p-i-n solar cells in superstrate configuration, the growth of nc-Si/a-SiC composite films was studied, considering the trade-off relation between individual characteristics of its a-SiC component to provide a wide optical-gap and electrically conducting nc-Si component to simultaneously retain enough crystalline linkages to facilitate proper crystallization to the i-nc-Si absorber-layer during its subsequent growth. Self-assembled nc-Si/a-SiC thin films were spontaneously grown by low-pressure planar inductively coupled plasma CVD, operating in electromagnetic mode, providing high atomic-H density. Spectroscopic simulations of ellipsometry and Raman data, and systematic chemical and structural analysis by XPS, TEM, SEM and AFM were performed. Corresponding to optimized inclusion of C essentially incorporated as Si-C bonds in the network, the optical-gap of the a-SiC component widened, void fraction including the incubation layer thickness reduced. While the bulk crystallinity decreased only marginally, Si-ncs diminished in size with narrower distribution and increased number density. With enhanced C-incorporation, formation of C-C bonds in abundance deteriorates the Si continuous bonding network and persuades growth of an amorphous dominated silicon-carbon heterostructure containing high-density tiny Si-ncs. Stimulated nanocrystallization identified in the Si-network, induced by a limited amount of carbon incorporation, makes the material most suitable for applications in nc-Si solar cells. The novelty of the present work is to enable spontaneous growth of self-assembled superior quality nc-Si/a-SiC thin films and simultaneous spectroscopic simulation-based optimization of properties for utilization in devices.

  3. Perpendicular Magnetic Anisotropy in CoSiB/Pd/CoSiB Trilayer Thin Films with Varying Pd-Layer Thicknesses.

    PubMed

    Jung, Sol; Kim, Taewan; Yim, Haein

    2015-11-01

    We investigate the magnetic properties of CoSiB (1 5-Å-thickness)/Pd (Pd thickness = 8, 11, 14, 17, 20, 24, 27, 29 and 33 Å)/CoSiB (15-Å-thickness) trilayer thin films. The CoSiB-layer thickness was fixed to 15 Å, while the Pd-layer thickness was varied from 8-33 Å. In this paper, we present a new type of thin film containing amorphous Co75Si15B10 and Pd. We investigate the magnetic properties of a fabricated CoSiB/Pd/CoSiB trilayer thin film with perpendicular magnetic anisotropy, and determine the correlation between the magnetic properties and the nonmagnetic Pd-layer thickness. With increasing Pd-layer thickness, both the coercivity and the saturation magnetization decreased. Furthermore, the maximum values of the magnetic anisotropy were calculated as 0.3 x 10(6) erg/cc. In order to examine the difference between the in-plane magnetic anisotropy and perpendicular magnetic anisotropy, magnetic force microscopy images of the CoSiB (15-Å-thickness)/Pd (Pd thickness = 8 and 14 Å)/CoSiB (15-Å-thickness) trilayer thin films were obtained.

  4. Impacts of SiO2 planarization on optical thin film properties and laser damage resistance

    NASA Astrophysics Data System (ADS)

    Day, T.; Wang, H.; Jankowska, E.; Reagan, B. A.; Rocca, J. J.; Stolz, C. J.; Mirkarimi, P.; Folta, J.; Roehling, J.; Markosyan, A.; Route, R. R.; Fejer, M. M.; Menoni, C. S.

    2016-12-01

    Lawrence Livermore National Laboratory (LLNL) and Colorado State University (CSU) have co-developed a planarization process to smooth nodular defects. This process consists of individually depositing then etching tens of nanometers of SiO2 with a ratio of 2:1, respectively. Previous work shows incorporating the angular dependent ion surface etching and unidirectional deposition reduces substrate defect cross-sectional area by 90%. This work investigates the micro-structural and optical modifications of planarized SiO2 films deposited by ion beam sputtering (IBS). It is shown the planarized SiO2 thin films have 3x increase in absorption and 18% reduction in thin film stress as compared to control (as deposited) SiO2. Planarized SiO2 films exhibit 13% increase in RMS surface roughness with respect to the control and super polished fused silica substrates. Laser-induced damage threshold (LIDT) results indicate the planarization process has no effect on the onset fluence but alters the shape of the probability vs fluence trace.

  5. Oxidation behavior of arc evaporated Al-Cr-Si-N thin films

    SciTech Connect

    Tritremmel, Christian; Daniel, Rostislav; Mitterer, Christian; Mayrhofer, Paul H.; Lechthaler, Markus; Polcik, Peter

    2012-11-15

    The impact of Al and Si on the oxidation behavior of Al-Cr-(Si)-N thin films synthesized by arc evaporation of powder metallurgically prepared Al{sub x}Cr{sub 1-x} targets with x = Al/(Al + Cr) of 0.5, 0.6, and 0.7 and (Al{sub 0.5}Cr{sub 0.5}){sub 1-z}Si{sub z} targets with Si contents of z = 0.05, 0.1, and 0.2 in N{sub 2} atmosphere was studied in detail by means of differential scanning calorimetry, thermogravimetric analysis (TGA), x-ray diffraction, and Raman spectroscopy. Dynamical measurements in synthetic air (up to 1440 Degree-Sign C) revealed the highest onset temperature of pronounced oxidation for nitride coatings prepared from the Al{sub 0.4}Cr{sub 0.4}Si{sub 0.2} target. Isothermal TGA at 1100, 1200, 1250, and 1300 Degree-Sign C highlight the pronounced improvement of the oxidation resistance of Al{sub x}Cr{sub 1-x}N coatings by the addition of Si. The results show that Si promotes the formation of a dense coating morphology as well as a dense oxide scale when exposed to air.

  6. Erbium oxide thin films on Si(100) obtained by laser ablation and electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Queralt, X.; Ferrater, C.; Sánchez, F.; Aguiar, R.; Palau, J.; Varela, M.

    1995-02-01

    Erbium oxide thin films have been obtained by laser ablation and electron beam evaporation techniques on Si(100) substrates. The samples were grown under different conditions of oxygen atmosphere and substrate temperature without any oxidation process after deposition. The crystal structure has been studied by X-ray diffraction. Films obtained by laser ablation are highly textured in the [ hhh] direction, although this depends on the conditions of oxygen pressure and substrate temperature. In order to study the depth composition profile of the thin films and the interdiffusion of erbium metal and oxygen towards the silicon substrates, X-ray photoelectron spectroscopy analyses have been carried out.

  7. Fabrication of high-quality superconductor-insulator-superconductor junctions on thin SiN membranes

    NASA Technical Reports Server (NTRS)

    Garcia, Edouard; Jacobson, Brian R.; Hu, Qing

    1993-01-01

    We have successfully fabricated high-quality and high-current density superconductor-insulator-superconductor (SIS) junctions on freestanding thin silicon nitride (SIN) membranes. These devices can be used in a novel millimeter-wave and THz receiver system which is made using micromachining. The SIS junctions with planar antennas were fabricated first on a silicon wafer covered with a SiN membrane, the Si wafer underneath was then etched away using an anisotropic KOH etchant. The current-voltage characteristics of the SIS junctions remained unchanged after the whole process, and the junctions and the membrane survived thermal cycling.

  8. Measurement of Thin Film Integrated Passive Devices on SiC through 500 C

    NASA Technical Reports Server (NTRS)

    Schwartz, Zachary D.; Ponchak, George E.; Alterovitz, Samuel A.; Downey, Alan N.; Chevalier, Christine T.

    2004-01-01

    Wireless communication in jet engines and high temperature industrial applications requires FD integrated circuits (RFICs) on wide bandgap semiconductors such as Silicon Carbide (SiC). In this paper, thin-film NiCr resistors, MIM capacitors, and spiral inductors are fabricated on a high purity semi-insulating 4H-SiC substrate. The devices are experimentally characterized through 50 GHz at temperatures of up to 500 C and the equivalent circuits are deembedded from the measured data. It is shown that the NiCr resistors are stable within 10% to 300 C while the capacitors have a value stable within 10% through 500 C.

  9. Surface roughness evolution in the growth of a-Si: H thin films studied by ellipsometry

    NASA Astrophysics Data System (ADS)

    Canillas, A.; Campmany, J.; Andújar, J. L.; Bertran, E.; Morenza, J. L.

    1991-07-01

    In situ real time ellipsometry at 3.4 eV photon energy has been used to analyze the deposition of hydrogenated amorphous silicon (a-Si:H) thin films obtained by RF glow discharge decomposition of silane gas. The study is focused on the evolution of the microstructure during the films growth. The results are explained considering a theoretical model which assumes a homogeneous growth of the a-Si:H below a surface roughness layer which increases 0.5-0.7 nm in thickness during the first 400 nm of film growth. The bulk layer microstructure appears to be homogeneous within 1% of density variations.

  10. Thermally induced Zr incorporation into Si from zirconium silicate thin films

    NASA Astrophysics Data System (ADS)

    Quevedo-Lopez, M.; El-Bouanani, M.; Addepalli, S.; Duggan, J. L.; Gnade, B. E.; Wallace, R. M.; Visokay, M. R.; Douglas, M.; Bevan, M. J.; Colombo, L.

    2001-10-01

    Monochromatic x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Rutherford backscattering spectrometry are used to study the outdiffusion of Zr from the alternate gate dielectric candidate ZrSixOy thin films deposited on Si(100). We find that Zr incorporation into Si from ZrSixOy appears to occur at annealing temperatures higher than 1000 °C. Incorporation of Zr to depths of up to 23 nm into the silicon substrate is observed. A diffusion coefficient of D0˜2×10-15cm2/s is estimated from the associated depth profiles.

  11. Epitaxial growth of Ti{sub 3}SiC{sub 2} thin films with basal planes parallel or orthogonal to the surface on {alpha}-SiC

    SciTech Connect

    Drevin-Bazin, A.; Barbot, J. F.; Alkazaz, M.; Cabioch, T.; Beaufort, M. F.

    2012-07-09

    The growth of Ti{sub 3}SiC{sub 2} thin films were studied onto {alpha}-SiC substrates differently oriented by thermal annealing of TiAl layers deposited by magnetron sputtering. For any substrate's orientation, transmission electron microscopy coupled with x-ray diffraction showed the coherent epitaxial growth of Ti{sub 3}SiC{sub 2} films along basal planes of SiC. Specifically for the (1120) 4H-SiC, Ti{sub 3}SiC{sub 2} basal planes are found to be orthogonal to the surface. The continuous or textured nature of Ti{sub 3}SiC{sub 2} films does not depend of the SiC stacking sequence and is explained by a step-flow mechanism of growth mode. The ohmic character of the contact was confirmed by current-voltage measurements.

  12. Impact of the epilayer doping on the performance of thin metal film Ni2Si/4H-SiC Schottky photodiodes

    NASA Astrophysics Data System (ADS)

    Mazzillo, M.; Sciuto, A.; Marchese, S.

    2014-12-01

    In the last few years silicon carbide (SiC) has emerged as a suitable material for the fabrication of ultraviolet light detectors due to lower leakage current, intrinsic visible blindness and mature process technology. In this paper we report on the electro-optical characteristics of continuous thin metal film Ni2Si/4H-SiC photodiodes with very low surface epilayer doping properly designed for ultraviolet (UV) sunlight monitoring.

  13. Formation mechanisms of metallic Zn nanodots by using ZnO thin films deposited on n-Si substrates

    SciTech Connect

    Yuk, J. M.; Lee, J. Y.; Kim, Y.; No, Y. S.; Kim, T. W.; Choi, W. K.

    2010-08-09

    High-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy results showed that metallic Zn nanodots (NDs) were fabricated through transformation of ZnO thin films by deposition of SiO{sub x} on ZnO/n-Si (100) heterostructures. The Zn NDs with various sizes and densities were formed due to the occurrence of the mass diffusion of atoms along the grain boundaries in the ZnO thin films. The fabrication mechanisms of metallic Zn NDs through transformation of ZnO thin films deposited on n-Si substrates are described on the basis of the experimental results.

  14. Stress evaluation in thin strained-Si film by polarized Raman spectroscopy using localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Hiroki; Takei, Munehisa; Kosemura, Daisuke; Ogura, Atsushi

    2012-10-01

    We evaluated the stress in a thin strained-Si film on relaxed SiGe on a surface-oxidized Si substrate using surface enhanced Raman scattering (SERS). The strained-Si peak was enhanced by the SERS technique. However, the strained-Si peak shifted toward a higher wavenumber while the peaks from the Si substrate were unchanged. We performed Raman measurement under the optical geometry in LO and TO phonon active conditions. From these measurements, it was clarified that the peak shift was attributed to the TO phonon peak that appeared, which was caused by the excitation of the z polar component in the near-field light.

  15. Progress of p-channel bottom-gate poly-Si thin-film transistor by nickel silicide seed-induced lateral crystallization

    NASA Astrophysics Data System (ADS)

    Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki

    2016-06-01

    Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.

  16. Metal Induced Growth of Si Thin Films and NiSi Nanowires

    DTIC Science & Technology

    2010-02-25

    electron microscopy (SEM) and Auger electron spectroscopy (AES). The films have a predominant (220) orientation. Schottky photovoltaic diodes were...using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), transmission...produced. II. Experimental The MIG process began with a substrate of either oxide-coated Si or tungsten . The oxide coating was to prevent

  17. Structured SiCu thin films in LiB as anodes

    SciTech Connect

    Polat, Billur Deniz; Eryilmaz, Osman Levent; Erck, Robert; Keles, O.; Erdemir, A.; Amine, Khalil

    2014-09-16

    Both helical and inclined columnar Si–10 at.% Cu structured thin films were deposited on Cu substrates using glancing angle deposition (GLAD) technique. In order to deposit Cu and Si two evaporation sources were used. Ion assistance was utilized in the first 5 min of the GLAD to enhance the adhesion and the density of the films. These films were characterized by thin film XRD, GDOES, SEM, and EDS. Electrochemical characterizations were made by testing the thin films as anodes in half-cells for 100 cycles. The results showed that the columnar SiCu thin film delivered 2200 mAh g-1, where the helical one exhibited 2600 mAh g-1, and, their initial coulombic efficiencies were found to be 38%–50% respectively. For the columnar and the helical thin film anodes, sustainable 520 and 800 mAh g-1 with 90% and 99% coulombic efficiencies were achieved for 100 cycles. These sustainable capacities showed the importance of the thin film structure having nano-sized crystals and amorphous particles. The higher surface area of the helices increases the capacity of the electrode because the contact area of the thin film anode with Li ions is increased, and the polarization which otherwise forms on the anode surface due to SEI formation is decreased. In addition, because of larger interspaces between the helices the ability of the anode to accommodate the volumetric changes is improved, which results in a higher coulombic efficiency and capacity retention during cycling test.

  18. Ultrathin films of polycrystalline MnGa alloy with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ono, Atsuo; Suzuki, Kazuya Z.; Ranjbar, Reza; Sugihara, Atsushi; Mizukami, Shigemi

    2017-02-01

    Room temperature growth of textured polycrystalline films of MnGa alloys using a CoGa buffer layer on a thermally oxidized Si substrate is demonstrated. MnGa thin films with a thickness of 2 nm exhibit out-of-plane rectangular hysteresis loops. A small saturation magnetization of about 200 emu/cm3 and a large perpendicular magnetic anisotropy of up to 3–5 Merg/cm3 were achieved for 2- and 3-nm-thick MnGa ultrathin films; such values have never been reported before, and they provide a pathway for integration with conventional Si technology.

  19. STM studies of GeSi thin layers epitaxially grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  20. Thermal phonon transport in Si thin film with dog-leg shaped asymmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Kage, Yuta; Hagino, Harutoshi; Yanagisawa, Ryoto; Maire, Jeremie; Miyazaki, Koji; Nomura, Masahiro

    2016-08-01

    Thermal phonon transport in single-crystalline Si thin films with dog-leg shaped nanostructures was investigated. Thermal conductivities for the forward and backward directions were measured and compared at 5 and 295 K by micro thermoreflectance. The Si thin film with dog-leg shaped nanostructures showed lower thermal conductivities than those of nanowires and two-dimensional phononic crystals with circular holes at the same surface-to-volume ratio. However, asymmetric thermal conductivity was not observed at small temperature gradient condition in spite of the highly asymmetric shape though the size of the pattern is within thermal phonon mean free path range. We conclude that strong temperature dependent thermal conductivity is required to observe the asymmetric thermal phonon conduction in monolithic materials with asymmetric nanostructures.

  1. Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using rf sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Laughlin, David E.; Kryder, Mark H.

    2007-04-01

    Epitaxial lead zirconium titanate (PZT) (001) thin films with a Pt bottom electrode were deposited by rf sputtering onto Si(001) single crystal substrates with a Ag buffer layer. Both PZT(20/80) and PZT(53/47) samples were shown to consist of a single perovskite phase and to have the (001) orientation. The orientation relationship was determined to be PZT(001)[110]‖Pt(001)[110]‖Ag(001)[110]‖Si(001)[110]. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer. The measured remanent polarization Pr and coercive field Ec of the PZT(20/80) thin film were 26μC /cm2 and 110kV/cm, respectively. For PZT(53/47), Pr was 10μC /cm2 and Ec was 80kV/cm.

  2. Excitation of Thin Cyanine Films via Energy Transfer from Si Substrate

    NASA Astrophysics Data System (ADS)

    Ito, Yukako; Kojima, Osamu; Kita, Takashi; Shim, YongGu

    2017-09-01

    Energy transfer from an inorganic substrate to a cyanine molecule thin film has been investigated as an excitation method for organic luminescent devices. Cyanine molecule thin films were fabricated on a Si substrate by layer-by-layer assembly and were excited from the back side of the substrate to observe the luminescence. The luminescence intensity depends on the excitation power and excitation energy. Moreover, the dependence of the luminescence intensity on the excitation energy clearly shows a profile similar to the absorption spectrum of Si. These results indicate that luminescence is not due to the direct optical excitation of cyanine by the light transmitted through the substrate but due to the energy transfer from the photoexcited carriers in the substrate. Our results demonstrate that such energy transfer can be used to excite organic molecules on inorganic substrates without energy matching between the electrodes and luminescent materials.

  3. Recent advances in the transparent conducting ZnO for thin-film Si solar cells

    NASA Astrophysics Data System (ADS)

    Moon, Taeho; Shin, Gwang Su; Park, Byungwoo

    2015-11-01

    The key challenge for solar-cell development lies in the improvement of power-conversion efficiency and the reduction of fabrication cost. For thin-film Si solar cells, researches have been especially focused on the light trapping for the breakthrough in the saturated efficiencies. The ZnO-based transparent conducting oxides (TCOs) have therefore received strong attention because of their excellent light-scattering capability by the texture-etched surface and cost effectiveness through in-house fabrication. Here, we have highlighted our recent studies on the transparent conducting ZnO for thin-film Si solar cells. From the electrical properties and their degradation mechanisms, bilayer deposition and organic-acid texturing approaches for enhancing the light trapping, and finally the relation between textured ZnO and electrical cell performances are sequentially introduced in this review article. [Figure not available: see fulltext.

  4. Characterization of thin-film adhesion and phonon lifetimes in Al/Si membranes by picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Grossmann, Martin; Schubert, Martin; He, Chuan; Brick, Delia; Scheer, Elke; Hettich, Mike; Gusev, Vitalyi; Dekorsy, Thomas

    2017-05-01

    We quantitatively study interfacial adhesion in a two-layer membrane system consisting of Al and Si with femtosecond time-resolved laser spectroscopy. High-frequency acoustic pulses in the sub-THz regime are utilized to characterize the membrane system. In order to explain the distinct features of the measured data, a spring model for the Al/Si interface is employed. We show that acoustic dissipation in this system needs to be included for accurate modeling of the interface adhesion over a broad frequency range. This modeling approach yields a spring constant of {η }{Al-{Si}}=17 {kg} {{nm}}-2 {{{s}}}-2, an acoustic phonon lifetime of {τ }{Al}=68 ps at 240 GHz in polycrystalline Al and a frequency dependence of the lifetime in Si \\propto {ω }-1 in the frequency range from 50-800 GHz.

  5. Using SiOx nano-films to enhance GZO Thin films properties as front electrodes of a-Si solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Kow-Ming; Ho, Po-Ching; Yu, Shu-Hung; Hsu, Jui-Mei; Yang, Kuo-Hui; Wu, Chin-Jyi; Chang, Chia-Chiang

    2013-07-01

    One of the essential applications of transparent conductive oxides is as front electrodes for superstrate silicon thin-film solar cells. Textured TCO thin films can improve absorption of sunlight for an a-Si:H absorber during a single optical path. In this study, high-haze and low-resistivity bilayer GZO/SiOx thin films prepared using an atmospheric pressure plasma jet (APPJ) deposition technique and dc magnetron sputtering. The silicon subdioxide nano-film plays an important role in controlling the haze value of subsequent deposited GZO thin films. The bilayer GZO/SiOx (90 sccm) sample has the highest haze value (22.30%), the lowest resistivity (8.98 × 10-4 Ω cm), and reaches a maximum cell efficiency of 6.85% (enhanced by approximately 19% compared to a sample of non-textured GZO).

  6. Decoupled front/back dielectric textures for flat ultra-thin c-Si solar cells.

    PubMed

    Isabella, Olindo; Vismara, Robin; Ingenito, Andrea; Rezaei, Nasim; Zeman, M

    2016-03-21

    The optical analysis of optically-textured and electrically-flat ultra-thin crystalline silicon (c-Si) slabs is presented. These slabs were endowed with decoupled front titanium-dioxide (TiO2) / back silicon-dioxide (SiO2) dielectric textures and were studied as function of two types of back reflectors: standard silver (Ag) and dielectric modulated distributed Bragg reflector (MDBR). The optical performance of such systems was compared to that of state-of-the-art flat c-Si slabs endowed with so-called front Mie resonators and to those of similar optical systems still endowed with the same back reflectors and decoupled front/back texturing but based on textured c-Si and dielectric coatings (front TiO2 and back SiO2). Our optimized front dielectric textured design on 2-µm thick flat c-Si slab with MDBR resulted in more photo-generated current density in c-Si with respect to the same optical system but featuring state-of-the-art Mie resonators ( + 6.4%), mainly due to an improved light in-coupling between 400 and 700 nm and light scattering between 700 and 1050 nm. On the other hand, the adoption of textured dielectric layers resulted in less photo-generated current density in c-Si up to -20.6% with respect to textured c-Si, depending on the type of back reflector taken into account.

  7. The hybrid photocatalyst of TiO2-SiO2 thin film prepared from rice husk silica

    NASA Astrophysics Data System (ADS)

    Klankaw, P.; Chawengkijwanich, C.; Grisdanurak, N.; Chiarakorn, Siriluk

    2012-03-01

    The TiO2-SiO2 thin film was prepared by self-assembly method by mixing SiO2 precursor with titanium precursor solution and aged to obtain a co-precipitation of silica and titanium crystals. Dip coating method was applied for thin film preparation on glass slide. The X-ray diffraction (XRD) of the self-assembly thin film had no characteristic property of SiO2 and even anatase TiO2 but indicated new crystal structure which was determined from the Fourier Transform Infrared Spectrophotometer (FTIR) as a hybridized Ti-O-Si bonding. The surface area and surface volume of the self-assembly sample were increased when SiO2 was incorporated into the film. The self-assembly TiO2-SiO2 thin film exhibited the enhanced photocatalytic decolorization of methylene blue (MB) dye. The advantages of SiO2 are; (1) to increase the adsorbability of the film and (2) to provide the hydroxyl radical to promote the photocatalytic reaction. The self-assembly thin film with the optimum molar ratio (SiO2:TiO2) as 20:80 gave the best performance for photocatalytic decolorization of MB dye with the overall efficiency of 81%.

  8. The challenge of crystalline thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Werner, J. H.; Bergmann, R.; Brendel, R.

    The high production costs of thick high-efficiency crystalline Si solar cells are inhibiting widespread application of photovoltaic devices, amorphous Si suffers from inherent instability. Thus, crystalline thin film Si may offer a chance for low cost and high efficiency cells. The present contribution reviews the status of thin film Si photovoltaics, which have reached efficiencies of above 17 % with single crystalline films of 50 μm thickness using high-efficiency techniques. We discuss the basic problems which have to be solved in the development of a polycrystalline thin film Si cell. The most challenging problem is to control the nucleation and growth of crystalline Si on foreign substrates. While there are some promising results, mainly based on recrystallization techniques for Si deposition on high temperature substrates such as graphite, deposition at low temperatures is still in a very early stage of investigation. Thin film cells need light trapping; we discuss here the principles and compare experiments with results from our simulation program SUNRAYS. Polycrystalline cells contain grain boundaries which have to be passivated in order to achieve high efficiencies. It seems that liquid phase epitaxy opens a new road to intrinsic physical grain boundary passivation. In the last part of our paper, we demonstrate that the technologies of amorphous Si may be useful for the formation of low-temperature charge separating junctions as well as for surface passivation for efficient cells based on thin film crystalline Si.

  9. Epitaxial Growth of Silicon Films on SiO2 Patterned Si(100) Substrates by Atmospheric Pressure Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Duan, Chunyan; Deng, Youjun; Ai, Bin; Liu, Chao; Zhuang, Lin; Shen, Hui

    2012-09-01

    In order to investigate the effect of selective area nucleation on epitaxial growth of silicon (Si) films, 35 µm thick Si films were deposited by atmospheric pressure chemical vapor deposition (APCVD) under the standard condition on two kinds of SiO2 patterned Si(100) wafers. One was circular patterns, and the other was striated patterns. Then, the structural properties of the as-deposited silicon thin films were investigated by metallurgical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM). The results show that normal epitaxial growth occurs on the exposed Si(100) regions, while just polycrystalline Si deposition happens on the SiO2 regions. Moreover, for the substrates with circular patterns, the as-deposited Si thin films possess pyramid surface morphology thus excellent light trapping performance being spontaneously formed, and the sizes of the pyramid grains approximately equal to the sum of the diameter and spacing of the round exposed Si regions.

  10. Surfactant-mediated epitaxy of thin germanium films on SiGe(001) virtual substrates

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Tetzlaff, D.; Bugiel, E.; Wietler, T. F.

    2017-01-01

    We report on the impact of a surfactant on the growth mode and strain relaxation of thin Ge films on Si0.21Ge0.79 virtual substrates grown by surfactant mediated epitaxy on Si(001) wafers. Ge epitaxy without surfactant results in island formation after deposition of only 5 nm Ge. A certain part of the strain in the Ge islands is relaxed via interfacial misfit dislocations, which are located within the core part of the islands. We discuss the possibilities for the occurrence of three-dimensional growth at low Ge layer thickness. The use of Sb as a surfactant suppresses three-dimensional islanding and enables the growth of smooth pseudomorphically strained Ge films on Si0.21Ge0.79(001) virtual substrates up to a thickness of 10 nm. At thicknesses higher than 20 nm, the films relax via the formation of a misfit dislocation network at the Ge/ Si1-xGex interface. The surface roughness of up to 30 nm thick layers is below 1.6 nm. Our experimental results corroborate the calculated thickness for plastic relaxation of Ge on Si1-xGex. The effect of the surfactant on the growth of the virtual substrate and on the subsequent growth of Ge on Si0.21Ge0.79 is discussed.

  11. The structure of a-Si 1-xSn x:H thin films

    NASA Astrophysics Data System (ADS)

    Edwards, A. M.; Fairbanks, M. C.; Newport, R. J.

    1990-12-01

    The doping of a-Si:H with Sn is known to modify the electrical and optical properties of the material. The optical band gap decreases as the doping level is increased, however, there is no insulator-metal transition of the type observed, for example, when transition metals are used as dopants. In order to increase the understanding of the conductivity processes that occur in a-Si:metal:H alloys we have measured the atomic scale structure of a series of a-Si 1- xSn x:H thin-films using EXAFS. Samples were prepared by RF reactive co-sputtering and both Si and Sn K-edge EXAFS examined. The results indicate that the Sn atoms are substituted randomly into the a-Si tetrahedral random network. Both Si and Sn atoms retain fourfold co-ordination over the composition range studied (0⩽ x⩽0.18). In contrast to results obtained using transition metal dopants there is no local modification of the tetrahedral random network.

  12. Hydrogen plasma induced modification of photoluminescence from a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Bommali, R. K.; Ghosh, S.; Vijaya Prakash, G.; Gao, K.; Zhou, S.; Khan, S. A.; Srivastava, P.

    2014-02-01

    Low temperature (250-350 °C) hydrogen plasma annealing (HPA) treatments have been performed on amorphous hydrogenated silicon nitride (a-SiNx:H) thin films having a range of compositions and subsequent modification of photoluminescence (PL) is investigated. The PL spectral shape and peak positions for the as deposited films could be tuned with composition and excitation energies. HPA induced modification of PL of these films is found to depend on the N/Si ratio (x). Upon HPA, the PL spectra show an emergence of a red emission band for x ≤ 1, whereas an overall increase of intensity without change in the spectral shape is observed for x > 1. The emission observed in the Si rich films is attributed to nanoscale a-Si:H inclusions. The enhancement is maximum for off-stoichiometric films (x ˜ 1) and decreases as the compositions of a-Si (x = 0) and a-Si3N4 (x = 1.33) are approached, implying high density of non-radiative defects around x = 1. The diffusion of hydrogen in these films is also analyzed by Elastic Recoil Detection Analysis technique.

  13. Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures.

    PubMed

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Umeda, Takami; Kawamoto, Yosuke; Noda, Susumu

    2015-09-21

    We investigate the improvement of the conversion efficiency of ultra-thin (~500nm-thick) microcrystalline silicon (μc-Si) solar cells incorporating photonic-crystal structures, where light absorption is strongly enhanced by the multiple resonant modes in the photonic crystal. We focus on the quality of the intrinsic μc-Si layer deposited on the substrate, which is structured to form a photonic crystal at its upper surface with a period of several hundred nanometers. We first study the crystalline quality from the viewpoint of the crystalline fraction and show that the efficiency can be improved when the deposition conditions for the μc-Si layer are tuned to give an almost constant crystalline fraction of ~50% across the entire film. We then study the influence of the photonic-crystal structure on the crystalline quality. From transmission-electron microscope images, we show that the collision of μc-Si grains growing at different angles occurs when a photonic-crystal structure with an angular surface is used; this can be suppressed by introducing a rounded surface structure. As a result, we demonstrate an efficiency of 8.7% in a ~500-nm thick, homo-junction μc-Si solar cell, which has only ~1/4 the thickness of typical μc-Si solar cells. We also discuss the possibility of further improving the efficiency by performing calculations that focus on the absorption characteristics of the fabricated cell structure.

  14. Cobalt-free polycrystalline Ba0.95La0.05FeO3-δ thin films as cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Dengjie; Chen, Chi; Dong, Feifei; Shao, Zongping; Ciucci, Francesco

    2014-03-01

    Ba0.95La0.05FeO3-δ (BLF) thin films as electrodes for intermediate-temperature solid oxide fuel cells are prepared on single-crystal yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. The phase structure, surface morphology and roughness of the BLF thin films are characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy is used to analyze the compositions of the deposited thin film and the chemical state of transition metal. The dense thin film exhibits a polycrystalline perovskite structure with a low surface roughness and a high oxygen vacancy concentration on the surface. Ag (paste or strip) and Au (strip) are applied on both surfaces of the symmetric cells as current collectors to evaluate electrochemical performance of the thin films. The electrode polarization resistances of the symmetric cells are found to be lower than those of most cobalt-free thin-film electrodes, e.g., 0.437 Ω cm2 at 700 °C and 0.21 atm. The oxygen reduction reaction mechanism of the BLF cathode in symmetric cells is studied by electrochemical impedance spectroscopy thanks to the equivalent fitting analysis. Both the oxygen surface exchange reaction and charge transfer are shown to determine the overall oxygen reduction reaction.

  15. Patterning polycrystalline thin films by defocused ion beam: The influence of initial morphology on the evolution of self-organized nanostructures

    SciTech Connect

    Toma, A.; Chiappe, D.; Boragno, C.; Buatier de Mongeot, F.; Batic, B. Setina; Godec, M.; Jenko, M.; Valbusa, U.

    2008-11-15

    We report on self-organized patterning of polycrystalline noble metal films, supported on dielectric substrates, by defocused Ar{sup +} ion beam irradiation. The initial surface morphology affects the formation of nanostructures, forcing the growth of ripples with a lateral periodicity imposed by the pristine polycrystalline grain distribution. At the early stages, the self-organization process is dominated by the shadowing of taller grains, while a crossover to the conventional erosive regime, observed for single crystals, sets in at longer sputtering times. The grain boundaries, although providing an additional bias for diffusion of mobile defects, do not affect the propagation of nanoscale ripples across individual grains.

  16. Thermochromic properties of VO2 thin film on SiNx buffered glass substrate

    NASA Astrophysics Data System (ADS)

    Koo, Hyun; You, HyunWoo; Ko, Kyeong-Eun; Kwon, O.-Jong; Chang, Se-Hong; Park, Chan

    2013-07-01

    VO2 thin films were deposited on soda lime glass substrates with silicon nitride sodium-diffusion barrier layer as diffusion barrier, in order to investigate the effect of sodium ion diffusion on the formation of VO2. SiNx layers with thicknesses over 30 nm were found to successfully prevent sodium ion diffusion in VO2 thin film and also contribute to the formation of VO2 thin film, which was confirmed by XRD spectra and XPS measurements. The change of infrared transmittance at 2500 nm wavelength with temperature change from room temperature to 80 °C was increased significantly, and the optical hysteresis width of the sample decreased by almost 6 K as well. The results suggest that applying diffusion barrier can improve the thermochromic properties of the VO2 films for energy-saving smart coatings, and silicon nitride can be one of the effective materials to prevent sodium ion diffusion.

  17. Interdiffusion Processes in High-Coercivity RF-Sputtered Alnico Thin Films on Si Substrates

    NASA Astrophysics Data System (ADS)

    Mohseni, F.; Baghizadeh, A.; Lourenço, A. A. C. S.; Pereira, M. J.; Amaral, V. S.; Vieira, J. M.; Amaral, J. S.

    2017-08-01

    Alnico V thin film samples with the thickness of 100 nm were prepared by radio-frequency sputtering on Si substrates with and without a SiO2 layer. Heat treatment of the as-deposited thin films in above ambient pressure in an Ar atmosphere at a temperature range of 600-900°C, followed by quenching and/or slow cooling, leads to higher coercivity values compared to bulk Alnico magnets. Annealing at 800°C followed by quenching results in the highest coercivity reported here of 1.8 kOe. The formation of several triangular-shaped features along the interface between the substrate and the film were observed. A high-resolution transmission electron microscope analysis showed these to be formed via interdiffusion of Fe, Co and Ni atoms into the Si substrate. These features show a large difference in lattice parameters compared with the magnetically soft bulk Fe-Co-Si alloys, and a heterogeneous or layered magnetic ion distribution inside these features could be the origin of the high coercivity observed in the heat-treated films.

  18. Growth temperature effect on a-Si:H thin films studied by constant photocurrent method

    NASA Astrophysics Data System (ADS)

    Wadibhasme, N. A.; Dusane, R. O.

    2013-02-01

    Hydrogenated amorphous silicon (a-Si:H) thin films are synthesized by tuning different process parameters among which substrate temperature of film growth plays an important role in monitoring the device quality of the film. In this paper we have used the constant photocurrent method (CPM) to study the effect of growth temperature on the electronic and optical parameters of a-Si:H films at different photon energies. This technique primarily measures the absorption coefficient which is a result of different electronic transitions that contribute to the photocurrent. The nature of absorption coefficient changes with growth temperature that explicitly provides the information about the density of defect states present in the mid gap of a-Si:H.

  19. Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching.

    PubMed

    Ghazaryan, Lilit; Kley, E-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2016-06-24

    A new route to prepare nanoporous SiO2 films by mixing atomic-layer-deposited alumina and silica in an Å-scale is presented. The selective removal of Al2O3 from the composites using wet chemical etching with phosphoric acid resulted in nanoporous thin SiO2 layers. A diffusion-controlled dissolution mechanism is identified whereby an interesting reorganization of the residual SiO2 is observed. The atomic scale oxide mixing is decisive in attaining and tailoring the film porosity. The porosity and the refractive index of nanoporous silica films were tailored from 9% to 69% and from 1.40 to 1.13, respectively. The nanoporous silica was successfully employed as antireflection coatings and as diffusion membranes to encapsulate nanostructures.

  20. Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Lilit; Kley, E.-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2016-06-01

    A new route to prepare nanoporous SiO2 films by mixing atomic-layer-deposited alumina and silica in an Å-scale is presented. The selective removal of Al2O3 from the composites using wet chemical etching with phosphoric acid resulted in nanoporous thin SiO2 layers. A diffusion-controlled dissolution mechanism is identified whereby an interesting reorganization of the residual SiO2 is observed. The atomic scale oxide mixing is decisive in attaining and tailoring the film porosity. The porosity and the refractive index of nanoporous silica films were tailored from 9% to 69% and from 1.40 to 1.13, respectively. The nanoporous silica was successfully employed as antireflection coatings and as diffusion membranes to encapsulate nanostructures.

  1. Thermally activated electron capture by mobile protons in SiO{sub 2} thin films

    SciTech Connect

    Vanheusden, K.; Karna, S.P.; Pugh, R.D.; Warren, W.L.; Fleetwood, D.M.; Devine, R.A.

    1998-01-01

    The annihilation of mobile protons in thin SiO{sub 2} films by capture of ultraviolet-excited electrons has been analyzed for temperatures between 77 and 500 K. We observe a strong increase in proton annihilation with increasing temperature, and derive an activation energy for electron capture of about 0.2 eV. Based on quantum chemical [(OH){sub 3}Si]{sub 2}{endash}O{endash}H{sup +} cluster calculations, we suggest photoexcitation of electrons from excited vibrational states of the ground electronic (valence band) state to a nearby excited electronic (SiO{sub 2} gap) state. It is argued that the latter excitation can result in H{sup 0} formation at elevated temperatures. {copyright} {ital 1998 American Institute of Physics.}

  2. Transparent polycrystalline cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  3. Transparent polycrystalline cubic silicon nitride.

    PubMed

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-17

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  4. Transparent polycrystalline cubic silicon nitride

    PubMed Central

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  5. Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu

    2010-03-01

    Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).

  6. [Study on the Properties of the Pc-Si Films Prepared by Magnetron Co-Sputtering at Low Temperature].

    PubMed

    Duan, Liang-fei; Yang, Wen; Zhang, Li-yuan; Li, Xue-ming; Chen, Xiao-bo; Yang, Pei-zhi

    2016-03-01

    The polycrystalline silicon thin films play an important role in the field of electronics. In the paper, α-SiAl composite membranes on glass substrates was prepared by magnetron co-sputtering. The contents of Al radicals encapsulated-in the α-Si film can be adjusted by changing the Al to Si sputtering power ratios. The as-prepared α-Si films were converted into polycrystalline films by using a rapid thermal annealing (RTP) at low temperature of 350 degrees C for 10 minutes in N2 atmosphere. An X-ray diffractometer, and Raman scattering and UV-Visible-NIR Spectrometers were used to characterize the properties of the Pc-Si films. The influences of Al content on the properties of the Pc-Si films were studied. The results showed that the polycrystalline silicon films were obtained from α-SiAl composite films which were prepared by magnetron co-sputtering at a low temperature following by a rapid thermal annealing. The grain size and the degree of crystallization of the Pc-Si films increased with the increase of Al content, while the optical band gap was reduced. The nc-Si films were prepared when the Al to Si sputtering power ratio was 0.1. And a higher Crystallization rate (≥ 85%) of polycrystalline silicon films were obtained when the ratio was 0.3. The band gaps of the polycrystalline silicon films can be controlled by changing the aluminum content in the films.

  7. On the way to enhance the optical absorption of a-Si in NIR by embedding Mg{sub 2}Si thin film

    SciTech Connect

    Chernev, I. M. Shevlyagin, A. V.; Galkin, K. N.; Stuchlik, J.; Fajgar, R.; Galkin, N. G.

    2016-07-25

    Mg{sub 2}Si thin film was embedded in amorphous silicon matrix by solid phase epitaxy. The structure and optical properties were investigated by electron energy loss, X-ray photoelectron, Raman, and photo thermal deflection spectroscopy measurements. It was found that in the photon energy range of 0.8–1.7 eV, the light absorption of the structure with magnesium silicide (Mg{sub 2}Si) film embedded in a-Si(i) matrix is 1.5 times higher than that for the same structure without Mg{sub 2}Si.

  8. Varying stress of SiOxCy thin films deposited by plasma polymerization.

    PubMed

    Liao, Wei-Bo; Chang, Ya-Chen; Jaing, Cheng-Chung; Cheng, Ching-Long; Lee, Cheng-Chung; Wei, Hung-Sen; Kuo, Chien-Cheng

    2017-02-01

    SiOxCy thin films were deposited by plasma polymerization. The stress of the deposited SiOxCy thin films can be modified by adjusting the beam current, the anode voltage, and the flow rate of hexamethyldisiloxane (HMDSO) gas and oxygen. Reducing the beam current or increasing the flow rate of HMDSO gas increased the linear/cage structure ratio and turned the stress of the SiOxCy thin films from compressive to tensile. The linear/cage structure ratio can be adjusted by changing the composite parameter, W[FM]c/[FM]m, to control the stress of the deposited plasma polymer films. Multilayers of TiO2/SiO2/TiO2 were coated on a SiOxCy plasma polymer film herein, reducing their stress by 70% from 0.06 to 0.018 GPa. The refractive index is 1.55, and the absorption coefficient is less than 10-4 at 550 nm of the SiOxCy films. Superior optical performances of SiOxCy thin films make their use in optical thin films.

  9. Recombination and thin film properties of silicon nitride and amorphous silicon passivated c-Si following ammonia plasma exposure

    SciTech Connect

    Wan, Yimao; Thomson, Andrew F.; Cuevas, Andres; McIntosh, Keith R.

    2015-01-26

    Recombination at silicon nitride (SiN{sub x}) and amorphous silicon (a-Si) passivated crystalline silicon (c-Si) surfaces is shown to increase significantly following an ammonia (NH{sub 3}) plasma exposure at room temperature. The effect of plasma exposure on chemical structure, refractive index, permittivity, and electronic properties of the thin films is also investigated. It is found that the NH{sub 3} plasma exposure causes (i) an increase in the density of Si≡N{sub 3} groups in both SiN{sub x} and a-Si films, (ii) a reduction in refractive index and permittivity, (iii) an increase in the density of defects at the SiN{sub x}/c-Si interface, and (iv) a reduction in the density of positive charge in SiN{sub x}. The changes in recombination and thin film properties are likely due to an insertion of N–H radicals into the bulk of SiN{sub x} or a-Si. It is therefore important for device performance to minimize NH{sub 3} plasma exposure of SiN{sub x} or a-Si passivating films during subsequent fabrication steps.

  10. Recombination and thin film properties of silicon nitride and amorphous silicon passivated c-Si following ammonia plasma exposure

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; McIntosh, Keith R.; Thomson, Andrew F.; Cuevas, Andres

    2015-01-01

    Recombination at silicon nitride (SiNx) and amorphous silicon (a-Si) passivated crystalline silicon (c-Si) surfaces is shown to increase significantly following an ammonia (NH3) plasma exposure at room temperature. The effect of plasma exposure on chemical structure, refractive index, permittivity, and electronic properties of the thin films is also investigated. It is found that the NH3 plasma exposure causes (i) an increase in the density of Si≡N3 groups in both SiNx and a-Si films, (ii) a reduction in refractive index and permittivity, (iii) an increase in the density of defects at the SiNx/c-Si interface, and (iv) a reduction in the density of positive charge in SiNx. The changes in recombination and thin film properties are likely due to an insertion of N-H radicals into the bulk of SiNx or a-Si. It is therefore important for device performance to minimize NH3 plasma exposure of SiNx or a-Si passivating films during subsequent fabrication steps.

  11. Enlargement of Step-Free SiC Surfaces by Homoepitaxial Web-Growth of Thin SiC Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Beheim, Glenn M.; Benavage, Emye L.; Abel, Phillip B.; Trunek, Andrew J.; Spry, David J.; Dudley, Michael; Vetter, William M.

    2002-01-01

    Lateral homoepitaxial growth of thin cantilevers emanating from mesa patterns that were reactive ion etched into on-axis commercial SiC substrates prior to growth is reported. The thin cantilevers form after pure stepflow growth removes almost all atomic steps from the top surface of a mesa, after which additional adatoms collected by the large step-free surface migrate to the mesa sidewall where they rapidly incorporate into the crystal near the top of the mesa sidewall. The lateral propagation of the step-free cantilevered surface is significantly affected by pregrowth mesa shape and orientation, with the highest lateral expansion rates observed at the inside concave comers of V-shaped pregrowth mesas with arms lengthwise oriented along the {1100} direction. Complete spanning of the interiors of V's and other mesa shapes with concave comers by webbed cantilevers was accomplished. Optical microscopy, synchrotron white beam x-ray topography and atomic force microscopy analysis of webbed regions formed over a micropipe and closed-core screw dislocations show that c-axis propagation of these defects is terminated by the webbing. Despite the nonoptimized process employed in this initial study, webbed surfaces as large as 1.4 x 10(exp -3) square centimeters, more than four times the pregrowth mesa area, were grown. However, the largest webbed surfaces were not completely free of bilayer steps, due to unintentional growth of 3C-SiC that occurred in the nonoptimized process. Further process optimization should enable larger step-free webs to be realized.

  12. Enlargement of Step-Free SiC Surfaces by Homoepitaxial Web-Growth of Thin SiC Cantilevers

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Powell, J. Anthony; Beheim, Glenn M.; Benavage, Emye L.; Abel, Phillip B.; Trunek, Andrew J.; Spry, David J.; Dudley, Michael; Vetter, William M.

    2002-01-01

    Lateral homoepitaxial growth of thin cantilevers emanating from mesa patterns that were reactive ion etched into on-axis commercial SiC substrates prior to growth is reported. The thin cantilevers form after pure stepflow growth removes almost all atomic steps from the top surface of a mesa, after which additional adatoms collected by the large step-free surface migrate to the mesa sidewall where they rapidly incorporate into the crystal near the top of the mesa sidewall. The lateral propagation of the step-free cantilevered surface is significantly affected by pregrowth mesa shape and orientation, with the highest lateral expansion rates observed at the inside concave comers of V-shaped pregrowth mesas with arms lengthwise oriented along the {1100} direction. Complete spanning of the interiors of V's and other mesa shapes with concave comers by webbed cantilevers was accomplished. Optical microscopy, synchrotron white beam x-ray topography and atomic force microscopy analysis of webbed regions formed over a micropipe and closed-core screw dislocations show that c-axis propagation of these defects is terminated by the webbing. Despite the nonoptimized process employed in this initial study, webbed surfaces as large as 1.4 x 10(exp -3) square centimeters, more than four times the pregrowth mesa area, were grown. However, the largest webbed surfaces were not completely free of bilayer steps, due to unintentional growth of 3C-SiC that occurred in the nonoptimized process. Further process optimization should enable larger step-free webs to be realized.

  13. Design of Sequential Lateral Solidification Crystallization Method for Low Temperature Poly-Si Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yong; Park, Hye-Hyang; Lee, Ki-Yong; Chung, Ho-Kyoon

    2004-04-01

    Sequential lateral solidification (SLS) is known as a promising method for making low-temperature poly-Si thin film transistors (LTPS TFT) with superior performance for the fabrication of highly circuit-integrated flat panel displays such as TFT liquid crystal display (LCD) and TFT organic light Emitting diode (OLED). In this work we studied the dependence of TFT characteristics on SLS poly-Si grain width and suggested the methods of designing SLS mask pattern to achieve uniform TFT performance. We varied the width of the poly-Si grain by employing the 2-shot SLS mask pattern with different overlaps between the 1st and 2nd laser pulses. The width of the poly-Si grain decreased with decreasing the overlap. However, the measured TFT characteristics revealed that the width of the poly-Si grain negligibly influences the device properties. We could achieve the TFT mobility of approximately 350 cm2/V\\cdots for the overlap of not less than 1 μm. We suggested that the SLS mask pattern (x, y) should be designed such that 2+y≤ x<2 (C-SLG distance) and y > (optical resolution), where x is the spacing of the laser-absorbed region and y is the spacing of the laser-nonabsorbed region on the substrate.

  14. Electronic sputtering of thin SiO 2 films by MeV heavy ions

    NASA Astrophysics Data System (ADS)

    Arnoldbik, W. M.; Tomozeiu, N.; Habraken, F. H. P. M.

    2003-04-01

    The rate of removal of material from SiO 2 as a result of heavy ion irradiation, with energies in which energy loss via excitation and ionization of the solid predominates, depends strongly on the stopping power and angle of incidence of the incoming ions. There appears to be a threshold stopping power for SiO 2 of 500 eV/(10 15 at/cm 2) (or 3.5 keV/nm). This electronic sputter yield has been found to reach values as large as 10 4 atoms/incoming ion for 66 MeV Ag ions at an angle of incidence of 7° with the plane of the surface. Strikingly, the electronic sputter yield is very small for thin SiO 2 layers of a thickness ⩽1 nm when grown on c-Si, but it is appreciable for such layers deposited on the insulator silicon nitride. The data are discussed in the light of existing models for electronic sputtering invoking also models for potential sputtering of SiO 2 by low-energy, highly charged ions.

  15. Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films

    NASA Astrophysics Data System (ADS)

    Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi

    2015-04-01

    To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.

  16. Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures

    PubMed Central

    Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B.

    2010-01-01

    Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 μm) and thick (about 2–3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated. PMID:22205871

  17. Characterization of thick and thin film SiCN for pressure sensing at high temperatures.

    PubMed

    Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B

    2010-01-01

    Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40-60 μm) and thick (about 2-3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated.

  18. Coupling of quantum well states and phonons in thin multilayer Pb films on Si(111)

    NASA Astrophysics Data System (ADS)

    Zahedifar, Maedeh; Kratzer, Peter

    2017-09-01

    Density functional theory calculations for the electronic and phononic band structures of Pb/Si(111) thin films with a thickness of 4 and 5 monolayers (ML) are performed. We employ a Si(111)(√{3 }×√{3 }) unit cell to model the Pb films including the Si substrate, and identify quantum well (QW) states for film thicknesses between 3 and 6 ML. The calculations show that the quantum-confined state closest to the Si band gap acquires the character of a quantum well resonance with a major part of its wave function extending into the Si(111) substrate. This finding explains the unusually low dispersion of this state and its lacking sensitivity to phonons in the 5 ML Pb film. Moreover, several unoccupied QW states are identified in the calculations and are assigned to previously observed features in structurally simpler freestanding Pb films. The calculated phonon band structures of the Pb/Si(111)(√{3 }×√{3 }) films display stiff surface phonon modes in the 2.3-2.5 THz range. The electron-phonon coupling strength in the quantum-confined states is addressed by means of deformation-potential theory using the calculated atomic displacements of Γ -point phonons. It is found that both the acoustic shear deformation potential as well as the optical deformation potentials of unoccupied QW states are sizable. Comparing the results for 4 and 5 ML Pb films, we conclude that the optical deformation potentials are generally larger for the 4 ML film. The occupied QW resonance in the 5 ML Pb film shows weak electron-phonon coupling, in qualitative agreement with the small experimentally observed lifetime broadening of this state. Our results form the basis for addressing the role of electron-phonon scattering for the lifetime of unoccupied QWs acting as intermediate states in two-photon photoemission from Pb/Si(111) films.

  19. Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate.

    PubMed

    Jin, Zhenyu; Shin, Seokhee; Kwon, Do Hyun; Han, Seung-Joo; Min, Yo-Sep

    2014-11-06

    Recently MoS₂ with a two-dimensional layered structure has attracted great attention as an emerging material for electronics and catalysis applications. Although atomic layer deposition (ALD) is well-known as a special modification of chemical vapor deposition in order to grow a thin film in a manner of layer-by-layer, there is little literature on ALD of MoS₂ due to a lack of suitable chemistry. Here we report MoS₂ growth by ALD using molybdenum hexacarbonyl and dimethyldisulfide as Mo and S precursors, respectively. MoS₂ can be directly grown on a SiO₂/Si substrate at 100 °C via the novel chemical route. Although the as-grown films are shown to be amorphous in X-ray diffraction analysis, they clearly show characteristic Raman modes (E(1)₂g and A₁g) of 2H-MoS₂ with a trigonal prismatic arrangement of S-Mo-S units. After annealing at 900 °C for 5 min under Ar atmosphere, the film is crystallized for MoS₂ layers to be aligned with its basal plane parallel to the substrate.

  20. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.