Science.gov

Sample records for polycrystalline thin film

  1. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  2. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  3. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  4. US polycrystalline thin film solar cells program

    SciTech Connect

    Ullal, H S; Zweibel, K; Mitchell, R L

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  5. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  6. Modeling of polycrystalline thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fahrenbruch, Alan L.

    1999-03-01

    This paper describes modeling polycrystalline thin-film solar cells using the program AMPS-1D1 to visualize the relationships between the many variables involved. These simulations are steps toward two dimensional modeling the effects of grain boundaries in polycrystalline cells. Although this paper describes results for the CdS/CdTe cell, the ideas presented here are applicable to copper-indium-gallium selenide (CIGS) cells as well as other types of cells. Results of these one-dimensional simulations are presented: (a) the duplication of experimentally observed cell parameters, (b) the effects of back-contact potential barrier height and its relation to stressing the cell, (c) the effects of the depletion layer width in the CdTe layer on cell parameters, and (d) the effects of CdS layer thickness on the cell parameters. Experience using the software is also described.

  7. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  8. Progress in polycrystalline thin-film solar cells

    SciTech Connect

    Zweibel, K; Hermann, A; Mitchell, R

    1983-07-01

    Photovoltaic devices based on several polycrystalline thin-film materials have reached near and above 10% sunlight-to-electricity conversion efficiencies. This paper examines the various polycrystalline thin-film PV materials including CuInSe/sub 2/ and CdTe in terms of their material properties, fabrication techniques, problems, and potentials.

  9. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  10. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  11. Dynamical electrophotoconductivity in polycrystalline thin films

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.

    1982-01-01

    Polycrystalline cadmium sulfide (CdS) films were deposited on lithium niobate (LiNbO3) substrates by vacuum evaporation and annealed to obtain high photosensitivity. The change in photoconductivity of these films due to the penetration of electric fields associated with elastic waves propagating on their substrates was demonstrated and studied. The relationship between the acoustic electric field and the induced change in film conductivity was found to be a nonlinear one. The fractional change in conductivity is strongly dependent on the light intensity and the film temperature, showing a prominent maximum as a function of these quantities. The largest recorded fractional change in conductivity was about 25% at electric fields of the order of 1,000 volts per centimeter. A phenomological model was developed based on the interaction between the space charge created by the electric field and the electron trapping states in the photoconductor.

  12. Polycrystalline thin film materials and devices

    NASA Astrophysics Data System (ADS)

    Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

    1991-11-01

    Results and conclusions of Phase 1 of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe2 and CdTe solar cells. The kinetics of the formation of CuInSe2 by selenization with hydrogen selenide was investigated and a CuInSe2/Cds solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe2 films and a cell efficiency of 7 percent. Detailed investigations of the open circuit voltage of CuInSe2 solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe2 thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe2 is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10 percent can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm(exp 2) are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  13. Research on polycrystalline thin-film materials, cells, and modules

    SciTech Connect

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1990-11-01

    The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

  14. Polycrystalline Thin Film Device Degradation Studies

    SciTech Connect

    Albin, D. S.; McMahon, T. J.; Pankow, J. W.; Noufi, R.; Demtsu, S. H.; Davies, A.

    2005-11-01

    Oxygen during vapor CdCl2 (VCC) treatments significantly reduced resistive shunts observed in CdS/CdTe polycrystalline devices using thinner CdS layers during 100 deg C, open-circuit, 1-sun accelerated stress testing. Cu oxidation resulting from the reduction of various trace oxides present in as-grown and VCC treated films is the proposed mechanism by which Cu diffusion, and subsequent shunts are controlled. Graphite paste layers between metallization and CdTe behave like diffusion barriers and similarly benefit device stability. Ni-based contacts form a protective Ni2Te3 intermetallic layer that reduces metal diffusion but degrades performance through increased series resistance.

  15. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  16. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  17. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  18. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-05-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  19. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect

    Girault, B.; Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O.; Sauvage, T.

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  20. Polycrystalline thin-film technology: Recent progress in photovoltaics

    SciTech Connect

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1991-12-01

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  1. Photoluminescence from stain-etched polycrystalline Si thin films

    NASA Astrophysics Data System (ADS)

    Steckl, A. J.; Xu, J.; Mogul, H. C.

    1993-04-01

    Visible room-temperature photoluminescence has been observed from stain-etched polycrystalline Si thin films. Poly-Si thin films deposited on oxidized Si and quartz substrates became porous (PoSi) after stain-etching in a 1:3:5 solution of HF:HNO3:H2O. Under UV excitation, the stain-etched doped and undoped poly-Si films produce uniform orange-red (about 650 nm) luminescence very similar to that obtained from stain-etched crystalline Si substrates. Stained amorphous thin films did not exhibit photoluminescence. Luminescent patterns with sub-micrometer (about 0.6 micron) dimensions have been obtained for the first time from PoSi produced from poly-Si films.

  2. Progress and issues in polycrystalline thin-film PV technologies

    SciTech Connect

    Zweibel, K.; Ullal, H.S.; Roedern, B. von

    1996-05-01

    Substantial progress has occurred in polycrystalline thin-film photovoltaic technologies in the past 18 months. However, the transition to first-time manufacturing is still under way, and technical problems continue. This paper focuses on the promise and the problems of the copper indium diselenide and cadmium telluride technologies, with an emphasis on continued R&D needs for the near-term transition to manufacturing and for next-generation improvements. In addition, it highlights the joint R&D efforts being performed in the U.S. Department of Energy/National Renewable Energy Laboratory Thin-Film Photovoltaic Partnership Program.

  3. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, Fred; Truher, Joel B.; Kaschmitter, James L.; Colella, Nicholas J.

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  4. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

    1998-02-03

    A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

  5. DOE/SERI polycrystalline thin-film photovoltaic research

    SciTech Connect

    Hermann, A; Zweibel, K; Mitchell, R

    1984-05-01

    This paper presents recent results, status, and future prospects for the US Department of Energy's (DOE's) Polycrystalline Thin Film Photovoltaic program, managed by the Solar Energy Research Institute (SERI). The devices being studied most intensively are heterojunctions based on CuInSe/sub 2/ and on CdTe. Both materials have attained over 10% efficiency in polycrystalline form. The main emphasis is on CuInSe/sub 2/, for which Boeing has reported an 11%-efficient device (AMl ELH simulation). Important work is being done on studies of the composition/electronic properties of CuInSe/sub 2/ and its response to post-deposition annealing. In the CdTe research, ohmic, stable back-contacting and control of p-type doping are being investigated. New efforts to study polycrystalline two-junction stacked cells are underway with two-terminal cells (at IEC) and with four-terminal cells (at SMU). This preliminary work is expected to be expanded, with emphasis on CdTe and other top-cell (high-bandgap) materials. These efforts introduce a number of new research areas (e.g., transparent ohmic contacts to p-CdTe and sub-bandgap light-losses in polycrystalline materials). The aim of the program is to produce stable, high-efficiency (15%), thin-film cells that can be deposited inexpensively by techniques that are scalable to large areas.

  6. Advances in polycrystalline thin-film photovoltaics for space applications

    SciTech Connect

    Lanning, B.R.; Armstrong, J.H.; Misra, M.S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 eV and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not `reactor-specific` and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a `substrate configuration` by physical vapor deposition techniques and CdTe cells/modules are fabricated in a `superstrate configuration` by wet chemical methods.

  7. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  8. Advances in polycrystalline thin-film photovoltaics for space applications

    NASA Astrophysics Data System (ADS)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  9. Magnetoelastic properties of thin polycrystalline Terfenol-D films

    NASA Astrophysics Data System (ADS)

    Bailly, Cecile; Su, Quanmin; Wuttig, Manfred R.

    1998-07-01

    In this paper we report on polycrystalline thin films sputter- deposited at elevated temperatures. The grain size of the films was changed by controlling the film thickness. A series of 4 samples with thicknesses ranging from 0.1 μm to 1 μm was studied. The magnetic properties of the films were characterized by vibrating sample magnetometer measurement technique. The magneto-mechanical properties of the films were determined by dynamic magneto-mechanical measurements. The coercivity of the films was found to increase linearly with decreasing film thickness. A sharp transition occurred for film thickness below 0.3 μm and the coercivity decreased to 100 Oe as the film thickness reached 0.1 μm. The saturation magnetization of the films was calculated from the magneto-mechanical measurements. The values were found to agree with those determined from the VSM measurements for all the samples but the thinnest film for which VSM and magneto-mechanical values diffracted by one order of magnitude. It is suggested that the low coercivity of the 0.1 μm film can be associated with the onset of superparamagnetism in the nanograins of the film.

  10. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    SciTech Connect

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  11. Polycrystalline silicon on glass for thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2009-07-01

    Although most solar cell modules to date have been based on crystalline or polycrystalline wafers, these may be too material intensive and hence always too expensive to reach the very low costs required for large-scale impact of photovoltaics on the energy scene. Polycrystalline silicon on glass (CSG) solar cell technology was developed to address this difficulty as well as perceived fundamental difficulties with other thin-film technologies. The aim was to combine the advantages of standard silicon wafer-based technology, namely ruggedness, durability, good electronic properties and environmental soundness with the advantages of thin-films, specifically low material use, large monolithic construction and a desirable glass superstrate configuration. The challenge has been to match the different preferred processing temperatures of silicon and glass and to obtain strong solar absorption in notoriously weakly-absorbing silicon of only 1-2 micron thickness. A rugged, durable silicon thin-film technology has been developed with amongst the lowest manufacturing cost of these contenders and confirmed efficiency for small pilot line modules already in the 10-11% energy conversion efficiency range, on the path to 12-13%.

  12. Polycrystalline silicon thin films crystallized by green laser

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijun; Lou, Qihong; Zhou, Jun; Liu, Xia; Wang, Wei; Su, Zhouping

    2008-12-01

    A top hat beam of frequency-doubled Nd: YAG laser is obtained from our beam shaping optical system. With this beam, amorphous silicon thin films deposited on glass by plasma-enhanced chemical vapor deposition (PECVD) are successfully crystallized. The surface morphology of the laser-crystallized materials is studied by atomic force microscopy (AFM). Pronounced increase in surface roughness after the laser treatment could be observed from the Microscope Photos. Raman spectra of the Si films are measured to confirm the phase transition from amorphous to polycrystalline and to investigate the silicon structural properties. Crystalline fraction evaluated from the Raman spectra are found to increase almost linearly with the laser fluence. There exists the optimized laser fluence to produce the best crystallization in the range of 400 ~1000mJ/cm2.

  13. Fundamentals of polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1991-01-01

    This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.

  14. Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide that includes scope, core competencies and capabilities, and contact/web information.

  15. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  16. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  17. Research on polycrystalline thin-film photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Hermann, A. M.; Fabick, L.

    1983-05-01

    Recent results from the United States Department of Energy Polycrystalline Thin-Film Photovoltaic Device Program are presented. The program which is managed by the solar Energy Research Institute encompasses materials and device research on a variety of compound semiconductors with emphasis on II-VI compounds and II-VI ternary analogs. This paper covers preparation (emphasizing thin-film deposition) and characterization of semiconducting materials such as Cu 2- xS, Cu 2- xSe, CdTe and CuInSe 2. Photovoltaic device characteristics of these absorbers with heterojunction partners such as CdS are discussed. Excitement in the program has been generated by recent progress in the (Cd, Zn/S)/CuInSe 2 device area. An AM1 efficiency of 9.93% for a 5 μm thick 1 cm 2 cell has been verified at SERI. Unencapsulated (Cd, Zn)S/CuInSe 2 cells have been subjected to more than 6000 h of accelerated stability testing with no measureable degradation in photovoltaic performance. Other program highlights include fabrication of a hybrid CdS/Cu 2S device (evaporated CdS, sputtered Cu 2S) with a 7.2% AM1 efficiency, and a 3.9% AM1 efficiency all-sputtered CdS/Cu 2S cell. Preliminary data are presented on the achievement of intrinsically stable high-efficiency (>9%) wet-processed CdS/Cu 2S cells. Progress in the less mature research areas is outlined. A 5.3% (AM1) CVD Au/n-CdTe Schottky barrier cell is described, and AM1 cell efficiencies exceeding 4% for vacuum evaporated CdS/Cu 2Se and chemically sprayed CdS/CdTe cells are reported. Future research emphasis is discussed. One of the important technical issues which is being addressed in an increase in the open-circuit voltage of (Cd,Zn)S/CuInSe 2 cells. Technical issues being addressed in other areas include film growth and doping studies in CdTe and improvement in the doping profile of CdS/Cu 2Se junctions.

  18. Multiscale modelling framework for the fracture of thin brittle polycrystalline films: application to polysilicon

    NASA Astrophysics Data System (ADS)

    Mulay, Shantanu S.; Becker, Gauthier; Vayrette, Renaud; Raskin, Jean-Pierre; Pardoen, Thomas; Galceran, Montserrat; Godet, Stéphane; Noels, Ludovic

    2015-01-01

    Micro-electro-mechanical systems (MEMS) made of polycrystalline silicon are widely used in several engineering fields. The fracture properties of polycrystalline silicon directly affect their reliability. The effect of the orientation of grains on the fracture behaviour of polycrystalline silicon is investigated out of the several factors. This is achieved, firstly, by identifying the statistical variation of the fracture strength and critical strain energy release rate, at the nanoscopic scale, over a thin freestanding polycrystalline silicon film having mesoscopic scale dimensions. The fracture stress and strain at the mesoscopic level are found to be closely matching with uniaxial tension experimental results. Secondly, the polycrystalline silicon film is considered at the continuum MEMS scale, and its fracture behaviour is studied by incorporating the nanoscopic scale effect of grain orientation. The entire modelling and simulation of the thin film is achieved by combining the discontinuous Galerkin method and extrinsic cohesive law describing the fracture process.

  19. Polycrystalline VO2 thin films via femtosecond laser processing of amorphous VO x

    NASA Astrophysics Data System (ADS)

    Charipar, N. A.; Kim, H.; Breckenfeld, E.; Charipar, K. M.; Mathews, S. A.; Piqué, A.

    2016-05-01

    Femtosecond laser processing of pulsed laser-deposited amorphous vanadium oxide thin films was investigated. Polycrystalline VO2 thin films were achieved by femtosecond laser processing in air at room temperature. The electrical transport properties, crystal structure, surface morphology, and optical properties were characterized. The laser-processed films exhibited a metal-insulator phase transition characteristic of VO2, thus presenting a pathway for the growth of crystalline vanadium dioxide films on low-temperature substrates.

  20. Superconductor—Insulator Transitions in Pure Polycrystalline Nb Thin Films

    NASA Astrophysics Data System (ADS)

    Couedo, F.; Crauste, O.; Bergé, L.; Dolgorouky, Y.; Marrache-Kikuchi, C.; Dumoulin, L.

    2012-12-01

    We report on a study of the transport properties of Nb thin films. By varying the thickness of the films from 263 Å to 25 Å, we observed a depression of the superconductivity. Magnetic field was also applied up to 6 T, inducing the disappearance of the superconductivity and the onset of an insulating behavior. The results were compared to those we have already obtained on a highly disordered system, a-NbxSi1-x, to understand whether the same mechanisms for the disappearance of the superconductivity could be at play in pure metallic thin films and in highly disordered systems.

  1. Influence of lattice distortion on phase transition properties of polycrystalline VO2 thin film

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen; Yu, Yonghao

    2016-08-01

    In this work, high power impulse magnetron sputtering was used to control the lattice distortion in polycrystalline VO2 thin film. SEM images revealed that all the VO2 thin films had crystallite sizes of below 20 nm, and similar configurations. UV-vis-near IR transmittance spectra measured at different temperatures showed that most of the as-deposited films had a typical metal-insulator transition. Four-point probe resistivity results showed that the transition temperature of the films varied from 54.5 to 32 °C. The X-ray diffraction (XRD) patterns of the as-deposited films revealed that most were polycrystalline monoclinic VO2. The XRD results also confirmed that the lattice distortions in the as-deposited films were different, and the transition temperature decreased with the difference between the interplanar spacing of the as-deposited thin film and standard rutile VO2. Furthermore, a room temperature rutile VO2 thin film was successfully synthesized when this difference was small enough. Additionally, XRD patterns measured at varied temperatures revealed that the phase transition process of the polycrystalline VO2 thin film was a coordinative deformation between grains with different orientations. The main structural change during the phase transition was a gradual shift in interplanar spacing with temperature.

  2. Properties of boron-doped thin films of polycrystalline silicon

    SciTech Connect

    Merabet, Souad

    2013-12-16

    The properties of polycrystalline-silicon films deposited by low pressure chemical vapor deposition and doped heavily in situ boron-doped with concentration level of around 2×10{sup 20}cm{sup −3} has been studied. Their properties are analyzed using electrical and structural characterization means by four points probe resistivity measurements and X-ray diffraction spectra. The thermal-oxidation process are performed on sub-micron layers of 200nm/c-Si and 200nm/SiO{sub 2} deposited at temperatures T{sub d} ranged between 520°C and 605°C and thermally-oxidized in dry oxygen ambient at 945°C. Compared to the as-grown resistivity with silicon wafers is known to be in the following sequence <ρ{sub 200nm/c−Si}> < <ρ{sub 200nm/SiO2}> and <ρ{sub 520}> < <ρ{sub 605}>. The measure X-ray spectra is shown, that the Bragg peaks are marked according to the crystal orientation in the film deposited on bare substrates (poly/c-Si), for the second series of films deposited on bare oxidized substrates (poly/SiO{sub 2}) are clearly different.

  3. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    SciTech Connect

    Do, Woori; Jin, Won-Beom; Choi, Jungwan; Bae, Seung-Muk; Kim, Hyoung-June; Kim, Byung-Kuk; Park, Seungho; Hwang, Jin-Ha

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in the electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.

  4. Ferroelectric domain switching of individual nanoscale grains in polycrystalline lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Jing, Yuanyuan

    2011-12-01

    This thesis will focus on the switching behavior of nanoscale ferroelectric domains in polycrystalline thin films. Ferroelectrics are a class of dielectric materials that demonstrate spontaneous polarizations under zero applied electric field. A region with the same polarization is called a ferroelectric domain. One important attribute of ferroelectrics is the domain switching from one thermodynamically stable state to another by application of an external electric field. Ferroelectric domain switching has been intensively investigated in epitaxial thin films. However, little is known about the domain switching in polycrystalline thin films. The main reason is that each grain is differently orientated and each is in a unique local stress and electric field determined by neighboring grains. To understand and deterministically control the nanoscale domain switching in polycrystalline thin films, it's critical to experimentally identify the effect of local microstructure (grain orientation and grain boundary misorientation) on the individual grain switching behavior. In this thesis, the effect of local microstructure on domain switching has been quantitatively analyzed in a 100 nm thick polycrystalline PbZr 0.2Ti0.8O3 thin film. The ferroelectric domains are characterized by Piezoresponse Force Microscopy (PFM), with their switching behavior analyzed by Polarization Difference Maps (PDMs, an analytical technique developed in this work). The local microstructure is determined by Electron Back Scattering Diffraction (EBSD). The results are discussed in chapter 3 to 6. Chapter 3 introduces the PDMs technique that enables the rapid identification of 0o, 90o switching and 180o switching in polycrystalline thin films. By assigning different colors to different types of switching, the full nature of polarization switching can be visualized simultaneously for large number of domains or grains in one map. In chapter 4, an external electric field reversal experiment has been

  5. Amorphous silicon/polycrystalline thin film solar cells

    SciTech Connect

    Ullal, H.S.

    1991-03-13

    An improved photovoltaic solar cell is described including a p-type amorphous silicon layer, intrinsic amorphous silicon, and an n-type polycrystalline semiconductor such as cadmium sulfide, cadmium zinc sulfide, zinc selenide, gallium phosphide, and gallium nitride. The polycrystalline semiconductor has an energy bandgap greater than that of the amorphous silicon. The solar cell can be provided as a single-junction device or a multijunction device.

  6. Progress in polycrystalline thin-film photovoltaic-device research

    NASA Astrophysics Data System (ADS)

    Hermann, A. M.; Fabick, L.; Zweibel, K.; Hardy, R. W.

    1982-09-01

    Recent results from the United States Department of Energy (DOE) Thin Film Photovoltaic Device Program are presented. The program encompasses materials and device research on highly absorbing compound semiconductors including CuInSe2, CdTe, Cu/sub 2-x/Se, Zn3P2, ZnSiAs2, and Cu2S. Excitement in the program has been generated by recent progress in the (Cd,Zn)S/CuInSe2 device area where an efficiency of 10.6% on a 5 micrometers thick device has been reported. Other highlights include deposition of a hybrid CdS/Cu2S device (evaporated CdS, sputtered Cu2S) with a 7.1% AMI efficiency, and of a 3.94% AMI efficiency all sputtered CdS/Cu2S cell. AMI efficiencies exceeding 5% are reported for CdTe Schottky barrier and heterojunction devices, and for a CdS/Cu/sub 2-x/Se heterojunction. AMI efficiencies exceeding 4% are reported for Mg/Zn3P3 Schottky barrier cells. Future research emphasis is outlined.

  7. Polycrystalline silicon thin-film solar cell prepared by the solid phase crystallization (SPC) method

    SciTech Connect

    Baba, T.; Matsuyama, T.; Sawada, T.; Takahama, T.; Wakisaka, K.; Tsuda, S.; Nakano, S.

    1994-12-31

    A solid phase crystallization (SPC) method was applied to the fabrication of thin-film polycrystalline silicon (poly-Si) for solar cells for the first time. Among crystalline silicon solar cells crystallized at a low temperature of less than 600 C, the world`s highest conversion efficiency of 8.5% was achieved in a solar cell using thin-film poly-Si with only 10 {micro}m thickness prepared by the SPC method. This solar cell showed high photosensitivity in the long-wavelength region of more than 800 nm and also exhibited no light-induced degradation after light exposure.

  8. Thin film polycrystalline silicon: Promise and problems in displays and solar cells

    SciTech Connect

    Fonash, S.J.

    1995-08-01

    Thin film polycrystalline Si (poly-Si) with its carrier mobilities, potentially good stability, low intragrain defect density, compatibility with silicon processing, and ease of doping activation is an interesting material for {open_quotes}macroelectronics{close_quotes} applications such as TFTs for displays and solar cells. The poly-Si films needed for these applications can be ultra-thin-in the 500{Angstrom} to 1000{Angstrom} thickness range for flat panel display TFTs and in the 4{mu}m to 10{mu}m thickness range for solar cells. Because the films needed for these microelectronics applications can be so thin, an effective approach to producing the films is that of crystallizing a-Si precursor material. Unlike cast materials, poly-Si films made this way can be produced using low temperature processing. Unlike deposited poly-Si films, these crystallized poly-Si films can have grain widths that are much larger than the film thickness and almost atomically smooth surfaces. This thin film poly-Si crystallized from a-Si precursor films, and its promise and problems for TFTs and solar cells, is the focus of this discussion.

  9. Progress towards high efficiency polycrystalline thin-film GaAs AMOS solar cells

    NASA Technical Reports Server (NTRS)

    Yeh, Y. C. M.; Ernest, F. P.; Stirn, R. J.

    1978-01-01

    Results of Ge film recrystallization using focused laser beams and GaAs film growth on such layers in the making of high efficiency thin-film AMOS solar cells are discussed. Since a conversion efficiency of 14% was obtained for an AMOS cell fabricated on sliced bulk polycrystalline GaAs, high efficiency cells are being developed by chemically vapor-depositing GaAs films on previously recrystallized evaporated Ge films to minimize the grain boundary (GB) effects. Schottky barrier solar cells made on sliced polycrystalline GaAs wafers were studied to investigate the effects of grain boundaries on cell properties and the potential efficiency of GaAs thin-film cells. Ge film recrystallization and the chemical vapor deposition (CVD) of the 2 to 3 micron thick GaAs films are described. AMOS solar cells with 100 Angstrom thick Ag metallization were made on CVD GaAs/recrystallized Ge/W substrates with an energy conversion efficiency of 8%.

  10. Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993

    SciTech Connect

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.; Yokimcus, T.A.

    1993-08-01

    This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.

  11. Polycrystalline Mg{sub 2}Si thin films: A theoretical investigation of their electronic transport properties

    SciTech Connect

    Balout, H.; Boulet, P.; Record, M.-C.

    2015-05-15

    The electronic structures and thermoelectric properties of a polycrystalline Mg{sub 2}Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the S{sub yy} component of the tensor amounts to about ±1000 μV K{sup −1}, depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure–property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg{sub 2}Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses. - Graphical abstract: Structure of the polycrystalline thin film of Mg{sub 2}Si. - Author-Highlights: • Polycrystalline Mg{sub 2}Si film has been modelled by DFT approach. • Thermoelectric properties have been evaluated by semi-classical Boltzmann theory. • The structure was found to be slightly disordered after relaxation. • The highest

  12. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Magnfält, D.; Fillon, A.; Boyd, R. D.; Helmersson, U.; Sarakinos, K.; Abadias, G.

    2016-02-01

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  13. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    NASA Astrophysics Data System (ADS)

    Canulescu, S.; Borca, C. N.; Rechendorff, K.; Davidsdóttir, S.; Pagh Almtoft, K.; Nielsen, L. P.; Schou, J.

    2016-04-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti content. X-ray absorption fine structure measurements reveal that the atomic ordering around Ti atoms increases with increasing Ti content up to 20% and then decreases as a result of a transition from a polycrystalline to amorphous structure. The transport properties of the Al-Ti films are influenced by electron scattering at the grain boundaries in the case of polycrystalline films and static defects, such as anti-site effects and vacancies in the case of the amorphous alloys. The combination of Ti having a real refractive index (n) comparable with the extinction coefficient (k) and Al with n much smaller than k allows us to explore the parameter space for the free-electron behavior in transition metal-Al alloys. The free electron model, applied for the polycrystalline Al-Ti films with Ti content up to 20%, leads to an optical reflectance at near infrared wavelengths that scales linearly with the square root of the electrical resistivity.

  14. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1991--15 January 1992

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  15. Polycrystalline Mg2Si thin films: A theoretical investigation of their electronic transport properties

    NASA Astrophysics Data System (ADS)

    Balout, H.; Boulet, P.; Record, M.-C.

    2015-05-01

    The electronic structures and thermoelectric properties of a polycrystalline Mg2Si thin film have been investigated by first-principle density-functional theory (DFT) and Boltzmann transport theory calculations within the constant-relaxation time approximation. The polycrystalline thin film has been simulated by assembling three types of slabs each having the orientation (001), (110) or (111) with a thickness of about 18 Å. The effect of applying the relaxation procedure to the thin film induces disorder in the structure that has been ascertained by calculating radial distribution functions. For the calculations of the thermoelectric properties, the energy gap has been fixed at the experimental value of 0.74 eV. The thermoelectric properties, namely the Seebeck coefficient, the electrical conductivity and the power factor, have been determined at three temperatures of 350 K, 600 K and 900 K with respect to both the energy levels and the p-type and n-type doping levels. The best Seebeck coefficient is obtained at 350 K: the Syy component of the tensor amounts to about ±1000 μV K-1, depending on the type of charge carriers. However, the electrical conductivity is much too small which results in low values of the figure of merit ZT. Structure-property relationship correlations based on directional radial distribution functions allow us to tentatively draw some explanations regarding the anisotropy of the electrical conductivity. Finally, the low ZT values obtained for the polycrystalline Mg2Si thin film are paralleled with those recently reported in the literature for bulk chalcogenide glasses.

  16. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition

    NASA Astrophysics Data System (ADS)

    Trefny, J. U.; Furtak, T. E.; Williamson, D. L.; Kim, D.

    1994-07-01

    This report describes the principal results of work performed during the second year of a 3-year program at the Colorado School of Mines (CSM). The work on transparent conducting oxides was carried out primarily by CSM students at NREL and is described in three publications listed in Appendix C. The high-quality ZnO produced from the work was incorporated into a copper indium diselenide cell that exhibited a world-record efficiency of 16.4%. Much of the time was devoted to the improvement of cadmium sulfide films deposited by chemical bath deposition methods and annealed with or without a cadmium chloride treatment. Progress was also made in the electrochemical deposition of cadmium telluride. High-quality films yielding CdS/CdTe/Au cells of greater than 10% efficiency are now being produced on a regular basis. We explored the use of zinc telluride back contacts to form an n-i-p cell structure as previously used by Ametek. We began small-angle x-ray scattering (SAXS) studies to characterize crystal structures, residual stresses, and microstructures of both CdTe and CdS. Large SAXS signals were observed in CdS, most likely because of scattering from gain boundaries. The signals observed to date from CdTe are much weaker, indicating a more homogeneous microstructure. We began to use the ADEPT modeling program, developed at Purdue University, to guide our understanding of the CdS/CdTe cell physics and the improvements that will most likely lead to significantly enhanced efficiencies.

  17. Boron- and phosphorus-doped polycrystalline silicon thin films prepared by silver-induced layer exchange

    SciTech Connect

    Antesberger, T.; Wassner, T. A.; Jaeger, C.; Algasinger, M.; Kashani, M.; Scholz, M.; Matich, S.; Stutzmann, M.

    2013-05-27

    Intentional boron and phosphorus doping of polycrystalline silicon thin films on glass prepared by the silver-induced layer exchange is presented. A silver/(titanium) oxide/amorphous silicon stack is annealed at temperatures below the eutectic temperature of the Ag/Si system, leading to a complete layer exchange and simultaneous crystallization of the amorphous silicon. Intentional doping of the amorphous silicon prior to the exchange process results in boron- or phosphorus-doped polycrystalline silicon. Hall effect measurements show carrier concentrations between 2 Multiplication-Sign 10{sup 17} cm{sup -3} and 3 Multiplication-Sign 10{sup 20} cm{sup -3} for phosphorus and 4 Multiplication-Sign 10{sup 18} cm{sup -3} to 3 Multiplication-Sign 10{sup 19} cm{sup -3} for boron-doped layers, with carrier mobilities up to 90 cm{sup 2}/V s.

  18. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg1-xCdxTe, Pb1-xCdxTe, Hg1-xZnxTe, and Pb1-xZnxS cover the region of interest of 0.50-0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50-0.75 eV range are Pb1-xZnxTe, Sn1-xCd2xTe2, Pb1-xCdxSe, Pb1-xZnxSe, and Pb1-xCdxS. Hg1-xCdxTe (with x~0.21) has been studied extensively for infrared detectors. PbTe and Pb1-xSnxTe have also been studied for infrared detectors. Not much work has been carried out on Hg1-xZnxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg1-xCdxTe thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg1-xCdxTe is to provide excess mercury incidence rate, to optimize the deposition parameters for enhanced mercury incorporation, and to achieve the requisite stoichiometry, grain size, and doping. MBE and MOCVD

  19. MIS and PN junction solar cells on thin-film polycrystalline silicon

    SciTech Connect

    Ariotedjo, A.; Emery, K.; Cheek, G.; Pierce, P.; Surek, T.

    1981-05-01

    The Photovoltaic Advanced Silicon (PVAS) Branch at the Solar Energy Research Institute (SERI) has initiated a comparative study to assess the potential of MIS-type solar cells for low-cost terrestrial photovoltaic systems in terms of performance, stability, and cost-effectiveness. Several types of MIS and SIS solar cells are included in the matrix study currently underway. This approach compares the results of MIS and p/n junction solar cells on essentially identical thin-film polycrystalline silicon materials. All cell measurements and characterizations are performed using uniform testing procedures developed in the Photovoltaic Measurements and Evaluation (PV M and E) Laboratory at SERI. Some preliminary data on the different cell structures on thin-film epitaxial silicon on metallurgical-grade substrates are presented here.

  20. Innovative deposition techniques for the fabrication of polycrystalline thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.

    1992-12-01

    A key issue for photovoltaics (PV), both in terrestrial and future space applications, is producibility, particularly for applications utilizing a large volume of PV. Among the concerns for fabrication of polycrystalline thin-film photovoltaics, such as copper-indium-diselenide (CIS) and cadmium-telluride (CdTe), are production volume, which translates directly related to cost, and minimization of waste. Both the rotating cylindrical magnetron (C-MagTM) and pulsed electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film photovoltaics due to scaleability, efficient utilization of source materials and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-MagTM facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput, reduced health and safety risks, and ultimately lower fabrication cost. For pulsed electrodeposition, the films appear to be more tightly adherent and deposited at an enhanced rate when compared to conventional DC electrodeposition. This paper addresses Martin Marietta's investigation into innovative sputtering techniques and pulsed electrodeposition with a near-term goal of 930 cm2 (1 ft2) monolithically-integrated CIS and CdTe submodules.

  1. Innovative deposition techniques for the fabrication of polycrystalline thin-film photovoltaics

    SciTech Connect

    Armstrong, J.H.; Lanning, B.R.; Misra, M.S. )

    1992-12-01

    A key issue for photovoltaics (PV), both in terrestrial and future space applications, is [ital producibility], particularly for applications utilizing a large volume of PV. Among the concerns for fabrication of polycrystalline thin-film photovoltaics, such as copper-indium-diselenide (CIS) and cadmium-telluride (CdTe), are production volume, which translates directly related to cost, and minimization of waste. Both the rotating cylindrical magnetron (C-Mag[sup TM]) and pulsed electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film photovoltaics due to scaleability, efficient utilization of source materials and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mag[sup TM] facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput, reduced health and safety risks, and ultimately lower fabrication cost. For pulsed electrodeposition, the films appear to be more tightly adherent and deposited at an enhanced rate when compared to conventional DC electrodeposition. This paper addresses Martin Marietta's investigation into innovative sputtering techniques and pulsed electrodeposition with a near-term goal of 930 cm[sup 2] (1 ft[sup 2]) monolithically-integrated CIS and CdTe submodules.

  2. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  3. Ferroelectric properties of highly a-oriented polycrystalline Bi2WO6 thin films grown on glass substrates

    NASA Astrophysics Data System (ADS)

    Ahn, Yoonho; Son, Jong Yeog

    2016-10-01

    Polycrystalline Bi2WO6 (BWO) thin films were deposited on Pt/Ta/glass substrates by pulsed laser deposition (PLD). In this study, we comparatively investigate the influence of oxygen partial pressure on structural and ferroelectric properties of the BWO films. In comparison with the BWO films deposited at oxygen partial pressure of 100 and 300 mTorr, the BWO film deposited at 300 mTorr exhibits a highly a-oriented crystalline structure. The highly a-oriented polycrystalline BWO thin film shows good ferroelectric properties with a remnant polarization of about 21.5 μ C /cm2 . The piezoresponse force microscope study reveals that the highly a-oriented BWO thin film possesses larger ferroelectric domain patterns due to smaller domain wall energy.

  4. Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films

    NASA Astrophysics Data System (ADS)

    Ivry, Yachin; Scott, James F.; Salje, Ekhard K. H.; Durkan, Colm

    2012-11-01

    The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model.

  5. Impact of universal mobility law on polycrystalline organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Raja, Munira; Donaghy, David; Myers, Robert; Eccleston, Bill

    2012-10-01

    We have developed novel analytical models for polycrystalline organic thin-film transistor (OTFT) by employing new concepts on the charge carrier injection to polysilicon thin-films. The models, also incorporate the effect of contact resistance associated with the poor ohmic nature of the contacts. The drain current equations of the OTFT, both in the quasi-diffusion and quasi-drift regimes, predict temperature dependencies on essential material and device parameters. Interestingly, under the drift regime, the polycrystalline OTFT model reveals similar power dependencies on the applied voltages, to those of purely disordered model developed by utilizing the universal mobility law (UML). Such similarities are not thought to be coincidental since the effect of gate voltage on surface potential is influenced by the Fermi level pinning in the grain boundary. Nonetheless, the best fits on the data of 6,13-bis(tri-isopropylsilylethynyl) OTFTs are attained with the proposed polycrystalline rather than the disordered model, particularly at low gate voltages where the diffusive component is dominant. Moreover, in order to understand the effect of grain boundaries, we devise a relationship for the dependency of the effective mobility on carrier concentration, assuming a crystalline region to be in direct contact with a disordered region. Interestingly, we find a similar dependency as the UML in purely disordered materials, which further signifies the conduction to be limited by the grain boundaries. Subsequently, an analytical model for the variation of the effective mobility with gate voltage is established. Such models are vital in assisting the development of more accurate designs of the novel organic circuits.

  6. Metastable Electrical Characteristics of Polycrystalline Thin-Film Photovoltaic Modules upon Exposure and Stabilization: Preprint

    SciTech Connect

    Deline, C. A.; del Cueto, J. A.; Albin, D. S.; Rummel, S. R.

    2011-09-01

    The significant features of a series of stabilization experiments conducted at the National Renewable Energy Laboratory (NREL) between May 2009 and the present are reported. These experiments evaluated a procedure to stabilize the measured performance of thin-film polycrystalline cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules. The current-voltage (I-V) characteristics of CdTe and CIGS thin-film PV devices and modules exhibit transitory changes in electrical performance after thermal exposure in the dark and/or bias and light exposures. We present the results of our case studies of module performance versus exposure: light-soaked at 65 degrees C; exposed in the dark under forward bias at 65 degrees C; and, finally, longer-term outdoor exposure. We find that stabilization can be achieved to varying degrees using either light-soaking or dark bias methods and that the existing IEC 61646 light-soaking interval may be appropriate for CdTe and CIGS modules with one caveat: it is likely that at least three exposure intervals are required for stabilization.

  7. Buffer layers for deposition of superconducting YBaCuO thin film on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Beetz, Charles P.; Cui, G. J.; Lincoln, B. A.; Kirlin, Peter S.

    1992-09-01

    In an attempt to combine the properties of high temperature superconductors with the high thermal conductivity and low specific heat of diamond, we have explored the deposition of in- situ YBa(subscript 2)Cu(subscript 3)O(subscript 7-(delta) ) (YBCO) superconducting films on polycrystalline diamond thin films. We demonstrate for the first time superconducting YBCO films on diamond employing multiple layer buffer layer systems. Three different composite buffer layer systems were explored for this purpose: (1) Diamond/Zr/YSZ/YBCO, (2) Diamond/Si(subscript 3)N(subscript 4)/YSZ/YBCO, and (3) Diamond/SiO(subscript 2)/YSZ/YBCO. Adherent thin Zr films were deposited by dc sputtering on the diamond films at 450 to 820 degree(s)C. The yttria stabilized zirconia (YSZ) was deposited by reactive RF sputtering at 680 to 750 degree(s)C. The Si(subscript 3)N(subscript 4) and SiO(subscript 2) were also deposited by on-axis RF sputtering at 400 to 700 degree(s)C. YBCO films were grown on the buffer layers by off-axis RF sputtering at substrate temperatures between 690 degree(s)C and 750 degree(s)C. In all cases, the as-deposited YBCO films were superconducting above 77 K. This demonstration enables the fabrication of low heat capacity, fast response time bolometric far IR detectors and paves the way for the use of HTSC as a high frequency interconnect metallization on thick diamond film based multichip modules.

  8. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  9. Fatigue characteristics of polycrystalline silicon thin-film membrane and its dependence on humidity

    NASA Astrophysics Data System (ADS)

    Tanemura, Tomoki; Yamashita, Shuichi; Wado, Hiroyuki; Takeuchi, Yukihiro; Tsuchiya, Toshiyuki; Tabata, Osamu

    2013-03-01

    This paper describes fatigue characteristics of a polycrystalline silicon thin-film membrane under different humidity evaluated by out-of-plane resonant vibration. The membrane, without the surface of sidewalls by patterning of photolithography and etching process, was applied to evaluate fatigue characteristics precisely against the changes in the surrounding humidity owing to narrower deviation in the fatigue lifetime. The membrane has 16 mm square-shaped multilayered films consisting of a 250 or 500 nm thick polysilicon film on silicon dioxide and silicon nitride underlying layers. A circular weight of 12 mm in diameter was placed at the center of the membrane to control the resonant frequency. Stress on the polysilicon film was generated by deforming the membrane oscillating the weight in the out-of-plane direction. The polysilicon film was fractured by fatigue damage accumulation under cyclic stress. The lifetime of the polysilicon membrane extended with lower relative humidity, especially at 5%RH. The results of the fatigue tests were well formulated with Weibull's statistics and Paris’ law. The dependence of fatigue characteristics on humidity has been quantitatively revealed for the first time. The crack growth rate indicated by the fatigue index decreased with the reduction in humidity, whereas the deviation of strength represented by the Weibull modulus was nearly constant against humidity.

  10. 1 Tbit/in.2 Very-High-Density Recording in Mass-Productive Polycrystalline Ferroelectric Thin Film Media

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kenjiro; Kawano, Takahiro; Onoe, Atsushi; Tamura, Masahiro; Umeda, Masaru; Toda, Masayuki

    2009-07-01

    We demonstrate very-high-density ferroelectric recording experiments of 1 Tbit/in.2 in polycrystalline Pb(Zr,Ti)O3 (PZT) thin film for the first time. A high-quality polycrystalline PZT thin film was successfully deposited on a silicon substrate with a SrRuO3 (SRO) electrode by metal-organic chemical vapor deposition (MOCVD). The roughness of the PZT film was reduced to less than 1 nm by chemical mechanical polishing (CMP). The PZT film has very high controllability for domain inversion. Our fabrication process also enables high productivity. Therefore, our PZT film has potential to be a mass-productive ferroelectric recording medium for high-density storage systems.

  11. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    SciTech Connect

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    III-V photovoltaics have exhibited efficiencies above 40%, but have found only a limited use because of the high cost of single crystal substrates. At the other end of the spectrum, polycrystalline and amorphous thin film solar cells offer the advantage of low-cost fabrication, but have not yielded high efficiencies. Our program is based on single-crystalline-like thin film photovoltaics on polycrystalline substrates using biaxially-textured templates made by Ion Beam-Assisted Deposition (IBAD). MgO templates made by IBAD on flexible metal substrate have been successfully used for epitaxial growth of germanium films. In spite of a 4.5% lattice mismatch, heteroepitaxial growth of Ge was achieved on CeO2 that was grown on IBAD MgO template. Room temperature optical bandgap of the Ge films was identified at 0.67 eV indicating minimal residual strain. Refraction index and extinction coefficient values of the Ge films were found to match well with that measured from a reference Ge single crystal. GaAs has been successfully grown epitaxially on Ge on metal substrate by molecular beam epitaxy. RHEED patterns indicate self annihilation of antiphase boundaries and the growth of a single domain GaAs. The GaAs is found to exhibit strong photoluminescence signal and, an existence of a relatively narrow (FWHM~20 meV) band-edge excitons measured in this film indicates a good optoelectronic quality of deposited GaAs. While excellent epitaxial growth has been achieved in GaAs on flexible metal substrates, the defect density of the films as measured by High Resolution X-ray Diffraction and etch pit experiments showed a high value of 5 * 10^8 per cm^2. Cross sectional transmission electron microscopy of the multilayer architecture showed concentration of threading dislocations near the germanium-ceria interface. The defect density was found decrease as the Ge films were made thicker. The defects appear to originate from the MgO layer presumably because of large lattice mismatches

  12. Ultrafast carrier dynamics and the role of grain boundaries in polycrystalline silicon thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Cocker, Tyler L.; Xu, Sijia; Baribeau, Jean-Marc; Wu, Xiaohua; Lockwood, David J.; Hegmann, Frank A.

    2016-10-01

    We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 °C to 572 °C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 °C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

  13. Optical absorption characteristics of polycrystalline AgGaSe2 thin films

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. R. A.; Firoz Hasan, S. M.

    2006-12-01

    Silver gallium di-selenide (AgGaSe2) composite thin films have been formed onto ultrasonically and chemically cleaned glass substrates by in situ thermal annealing of the stack of successively evaporated individual elemental layers in vacuum. The structural properties of the films were ascertained by the x-ray diffraction method. The diffractogram indicated that these films were polycrystalline in nature having tetragonal structure with lattice parameters, a ap 6.00 Å and c ap 10.92 Å and average grain dimension 40 nm. The optical properties and atomic compositions of the films have been determined by UV-VIS-NIR spectrophotometry (photon wavelength ranging between 300 and 2500 nm) and energy dispersive analysis of x-ray, respectively. The typical optical absorption characteristic of the films has been critically analysed. The optical absorption coefficients vary from 103 to 105 cm-1 in the measured wavelength range of photons. The films have more than one type of fundamental electronic transitions. Direct allowed and direct forbidden transitions vary from 1.628 to 1.748 eV and 2.077 to 2.193 eV, respectively, depending on the composition of the films. The former transitions are found to have a general tendency to be symmetric around non-molecularity ΔX = 0, defined by ΔX = [(Ag/Ga)] - 1, while the latter shows no such dependence. Stoichiometric or slightly silver-deficient films show electron transition energies closer to the single crystal value. Spin-orbit splitting of the valence band becomes minimum at perfect stoichiometry.

  14. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  15. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  16. Broadening of optical transitions in polycrystalline CdS and CdTe thin films

    SciTech Connect

    Li Jian; Chen Jie; Collins, R. W.

    2010-11-01

    The dielectric functions {epsilon} of polycrystalline CdS and CdTe thin films sputter deposited onto Si wafers were measured from 0.75 to 6.5 eV by in situ spectroscopic ellipsometry. Differences in {epsilon} due to processing variations are well understood using an excited carrier scattering model. For each sample, a carrier mean free path {lambda} is defined that is found to be inversely proportional to the broadening of each of the band structure critical points (CPs) deduced from {epsilon}. The rate at which broadening occurs with {lambda}{sup -1} is different for each CP, enabling a carrier group speed {upsilon}{sub g} to be identified for the CP. With the database for {upsilon}{sub g}, {epsilon} can be analyzed to evaluate the quality of materials used in CdS/CdTe photovoltaic heterojunctions.

  17. A simple and continuous polycrystalline silicon thin-film transistor model for SPICE implementation

    NASA Astrophysics Data System (ADS)

    Pappas, I.; Hatzopoulos, A. T.; Tassis, D. H.; Arpatzanis, N.; Siskos, S.; Dimitriadis, C. A.; Kamarinos, G.

    2006-09-01

    A simple current-voltage model for polycrystalline silicon thin-film transistors (polysilicon TFTs) is proposed, including the sixth-order polynomial function coefficients fitted to the effective mobility versus gate voltage data, the channel length modulation, and impact ionization effects. The model possesses continuity of current in the transfer characteristics from weak to strong inversion and in the output characteristics throughout the linear and saturation regions of operation. The model parameters are used as input parameters in AIM-SPICE circuit simulator for device modeling. The model has been applied in a number of long and short channel TFTs, and the statistical distributions of the model parameters have been derived which are useful for checking the functionality of TFTs circuits with AIM-SPICE.

  18. Activation of ion-implanted polycrystalline silicon thin films prepared on glass substrates

    SciTech Connect

    So, Byoung-Soo; Bae, Seung-Muk; You, Yil-Hwan; Kim, Young-Hwan; Hwang, Jin-Ha

    2012-10-15

    Phosphorous-implanted polycrystalline Si thin films were subjected to thermal annealing between 300 °C and 650 °C. The thermal activation was monitored electrically and structurally using Hall measurements, Raman spectroscopy, UV–visible spectrophotometry, and transmission electron microscopy. Charge transport information was correlated to the corresponding structural evolution in thermal activation. Phosphorous-implanted activation is divided into short-range ordering at low temperatures and long-range ordering at high temperatures, with the boundary between low and high temperatures set at 425 °C. Short-range ordering allows for significant increase in electronic concentration through substitution of P for Si. Higher temperatures are attributed to long-range ordering, thereby increasing electronic mobility.

  19. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  20. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver

    2015-06-01

    Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.

  1. Electrical and thermal properties of polycrystalline Si thin films with phononic crystal nanopatterning for thermoelectric applications

    SciTech Connect

    Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver

    2015-06-01

    Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.

  2. Progress with polycrystalline silicon thin-film solar cells on glass at UNSW

    NASA Astrophysics Data System (ADS)

    Aberle, Armin G.

    2006-01-01

    Polycrystalline Si (pc-Si) thin-film solar cells on glass have long been considered a very promising approach for lowering the cost of photovoltaic (PV) solar electricity. In recent years there have been dramatic advances with this PV technology, and the first commercial modules (CSG Solar) are expected to hit the marketplace in 2006. The CSG modules are based on solid-phase crystallisation of plasma-enhanced chemical vapor deposition (PECVD) -deposited amorphous Si. Independent research in the author's group at the University of New South Wales (UNSW) during recent years has led to the development of three alternative pc-Si thin-film solar cells on glass—EVA, ALICIA and ALICE. Cell thickness is generally about 2 μm. The first two cells are made by vacuum evaporation, whereas ALICE cells can be made by either vacuum evaporation or PECVD. Evaporation has the advantage of being a fast and inexpensive Si deposition method. A crucial component of ALICIA and ALICE cells is a seed layer made on glass by metal-induced crystallisation of amorphous silicon (a-Si). The absorber layer of these cells is made by either ion-assisted Si epitaxy (ALICIA) or solid-phase epitaxy of a-Si (ALICE). This paper reports on the status of these three new thin-film PV technologies. All three solar cells seem to be capable of voltages of over 500 mV and, owing to their potentially inexpensive and scalable fabrication process, have significant industrial appeal.

  3. Characterization of polycrystalline VO2 thin film with low phase transition temperature fabricated by high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-04-01

    VO2 is a unique material that undergoes a reversible phase transformation around 68∘C. Currently, applications of VO2 on smart windows are limited by its high transition temperature. In order to reduce the temperature, VO2 thin film was fabricated on quartz glass substrate by high power impulse magnetron sputtering with a modulated pulsed power. The phase transition temperature has been reduced to as low as 32∘C. In addition, the VO2 film possesses a typical metal-insulator transition. X-ray diffraction and selected area electron diffraction patterns reveal that an obvious lattice distortion has been formed in the as-deposited polycrystalline VO2 thin film. X-ray photoelectron spectroscopy proves that oxygen vacancies have been formed in the as-deposited thin film, which will induce a lattice distortion in the VO2 thin film.

  4. Local impedance imaging of boron-doped polycrystalline diamond thin films

    SciTech Connect

    Zieliński, A.; Ryl, J.; Burczyk, L.; Darowicki, K.

    2014-09-29

    Local impedance imaging (LII) was used to visualise surficial deviations of AC impedances in polycrystalline boron-doped diamond (BDD). The BDD thin film electrodes were deposited onto the highly doped silicon substrates via microwave plasma-enhanced CVD. The studied boron dopant concentrations, controlled by the [B]/[C] ratio in plasma, ranged from 1 × 10{sup 16} to 2 × 10{sup 21} atoms cm{sup −3}. The BDD films displayed microcrystalline structure, while the average size of crystallites decreased from 1 to 0.7 μm with increasing [B]/[C] ratios. The application of LII enabled a direct and high-resolution investigation of local distribution of impedance characteristics within the individual grains of BDD. Such an approach resulted in greater understanding of the microstructural control of properties at the grain level. We propose that the obtained surficial variation of impedance is correlated to the areas of high conductance which have been observed at the grain boundaries by using LII. We also postulate that the origin of high conductivity is due to either preferential boron accumulation, the presence of defects, or sp{sup 2} regions in the intragrain regions. The impedance modulus recorded by LII was in full agreement with the bulk impedance measurements. Both variables showed a decreasing trend with increasing [B]/[C] ratios, which is consistent with higher boron incorporation into BDD film.

  5. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  6. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    PubMed

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-01-01

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  7. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    NASA Astrophysics Data System (ADS)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  8. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    SciTech Connect

    Dhere, N.G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg{sub 1{minus}x}Cd{sub x}Te, Pb{sub 1{minus}x}Cd{sub x}Te, Hg{sub 1{minus}x}Zn{sub x}Te, and Pb{sub 1{minus}x}Zn{sub x}S cover the region of interest of 0.50{endash}0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50{endash}0.75 eV range are Pb{sub 1{minus}x}Zn{sub x}Te, Sn{sub 1{minus}x}Cd{sub 2x}Te{sub 2}, Pb{sub 1{minus}x}Cd{sub x}Se, Pb{sub 1{minus}x}Zn{sub x}Se, and Pb{sub 1{minus}x}Cd{sub x}S. Hg{sub 1{minus}x}Cd{sub x}Te (with x{approx}0.21) has been studied extensively for infrared detectors. PbTe and Pb{sub 1{minus}x}Sn{sub x}Te have also been studied for infrared detectors. Not much work has been carried out on Hg{sub 1{minus}x}Zn{sub x}Te thin films. Hg{sub 1{minus}x}Cd{sub x}Te and Pb{sub 1{minus}x}Cd{sub x}Te alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg{sub 1{minus}x}Cd{sub x}Te thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum

  9. Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer

    SciTech Connect

    Yue, Naili; Zhang, Yong; Tsu, Raphael

    2013-02-18

    We report laser induced local conversion of polycrystalline SiC thin-films grown on Si wafers into multi-layer graphene, a process compatible with the Si based microelectronic technologies. The conversion can be achieved using a 532 nm CW laser with as little as 10 mW power, yielding {approx}1 {mu}m graphene discs without any mask. The conversion conditions are found to vary with the crystallinity of the film. More interestingly, the internal structure of the graphene disc, probed by Raman imaging, can be tuned with varying the film and illumination parameters, resembling either the fundamental or doughnut mode of a laser beam.

  10. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures.

    PubMed

    Antonuk, L E; Koniczek, M; McDonald, J; El-Mohri, Y; Zhao, Q; Behravan, M

    2008-01-01

    An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors. PMID:20862269

  11. Electronic transitions in the bandgap of copper indium gallium diselenide polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Heath, Jennifer Theresa

    The electronic properties of polycrystalline copper indium gallium diselenide thin films have been investigated, with emphasis on understanding the distribution and origin of electronic states in the bandgap. The samples studied were working photovoltaic devices with the structure ZnO/CdS/CuIn1-xGa xSe2/Mo, and photovoltaic efficiencies ranging from 8 to 16%. The CdS layer and the p-type CuIn1-xGa xSe2 film create the n+- p junction at the heart of these devices. The samples were investigated using four techniques based on the electrical response of the junction: admittance spectroscopy, drive level capacitance profiling, transient photocapacitance spectroscopy, and transient photocurrent spectroscopy. From these measurements the free carrier densities, defect densities within the bandgap, spatial uniformity, and minority carrier mobilities have been deduced. The sub-bandgap response from the CuIn1-xGaxSe2 film was dominated by two defects. One exhibited a thermal transition to the valence band with an activation energy ranging between 0.1 and 0.3 eV and thermal emission prefactors obeying the Meyer-Neldel rule. The second was detected as an optical transition 0.8 eV from the valence band edge. Neither of these defects exhibited densities that varied systematically with gallium content, implying that they are not directly connected with the group III elements in these alloys. The defect densities also do not clearly correlate with the photovoltaic device performance; however, the position of the 0.8 eV defect lies nearer to mid-gap in the higher gallium, and hence higher band gap, material. This implies that it may be a more important recombination center in these devices and may be partially responsible for the reduced photovoltaic efficiencies observed when Ga/(In + Ga) > 0.4. An additional defect response was observed near mid-gap in films grown by processes known to produce lower quality devices. The influence of defects located at grain boundaries was also

  12. A thin-film polycrystalline photoelectrochemical cell with 8% solar conversion efficiency

    NASA Astrophysics Data System (ADS)

    Hodes, G.

    1980-05-01

    A thin-film polycrystalline CdSe(0.65)Te(0.35)/polysulfide-based photoelectrochemical solar cell with an energy conversion efficiency of up to 8% is presented. Cell electrodes were prepared by painting a slurry of sintered CdSe(0.65)Te(0.35) powder onto a Ti substrate and then annealing in an inert atmosphere and etching by various means. Solar efficiencies of the electrodes immersed in an aqueous electrolyte 1 M in KOH, Na2S and S with a counter electrode of sulfide brass gauze of up to 5% were obtained following a HCl:HNO3 etch, up to 5.5% following etching in dilute aqueous CrO3 and up to 8.0% following photoetching and K2CrO4 treatment. The spectral response of the anode in polysulfide solution exhibits a short-wavelength cutoff due to electrolyte absorption, a flat plateau region, and a fairly sharp long-wavelength cut-off indicating an effective band gap of about 1.45 eV, similar to that of CdTe. Output stability has been found to decrease with increasing output current, remaining stable for more than 21 h at a current of 20 mA/sq cm.

  13. Investigation of Melting and Solidification of Thin Polycrystalline Silicon Films via Mixed-Phase Solidification

    NASA Astrophysics Data System (ADS)

    Wang, Ying

    Melting and solidification constitute the fundamental pathways through which a thin-film material is processed in many beam-induced crystallization methods. In this thesis, we investigate and leverage a specific beam-induced, melt-mediated crystallization approach, referred to as Mixed-Phase Solidification (MPS), to examine and scrutinize how a polycrystalline Si film undergoes the process of melting and solidification. On the one hand, we develop a more general understanding as to how such transformations can transpire in polycrystalline films. On the other hand, by investigating how the microstructure evolution is affected by the thermodynamic properties of the system, we experimentally reveal, by examining the solidified microstructure, fundamental information about such properties (i.e., the anisotropy in interfacial free energy). Specifically, the thesis consists of two primary parts: (1) conducting a thorough and extensive investigation of the MPS process itself, which includes a detailed characterization and analysis of the microstructure evolution of the film as it undergoes MPS cycles, along with additional development and refinement of a previously proposed thermodynamic model to describe the MPS melting-and-solidification process; and (2) performing MPS-based experiments that were systematically designed to reveal more information on the anisotropic nature of Si-SiO2 interfacial energy (i.e., sigma Si-SiO2). MPS is a recently developed radiative-beam-based crystallization technique capable of generating Si films with a combination of several sought-after microstructural characteristics. It was conceived, developed, and characterized within our laser crystallization laboratory at Columbia University. A preliminary thermodynamic model was also previously proposed to describe the overall melting and solidification behavior of a polycrystalline Si film during an MPS cycle, wherein the grain-orientation-dependent solid-liquid interface velocity is identified

  14. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  15. On the effect of processing parameters in the chemical-vapor deposition of YBa2Cu3O(7-delta) thin films on polycrystalline silver

    NASA Astrophysics Data System (ADS)

    Chen, L.; Piazza, T. W.; Schmidt, B. E.; Kelsey, J. E.; Kaloyeros, A. E.; Hazelton, D. W.; Walker, M. S.; Luo, L.; Dye, R. C.; Maggiore, C. J.

    1993-06-01

    Results are presented of experimental studies which examined the effect of recrystallization of polycrystalline silver on the growth of YBa2Cu3O(7-delta) superconducting thin films and investigated optimum processing conditions for high-quality superconducting films. The samples were characterized using XRD, Rutherford backscattering, SEM, dynamic impedance, and four-point resistivity probe. The results were used to formulate a model for the underlying mechanics of film growth on polycrystalline silver substrates.

  16. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    NASA Astrophysics Data System (ADS)

    Kumar, Dileep; Singh, Sadhana; Vishawakarma, Pramod; Dev, Arun Singh; Reddy, V. R.; Gupta, Ajay

    2016-11-01

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress.

  17. Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields (Presentation)

    SciTech Connect

    von Roedern, B.; Ullal, H.; Zweibel, K.

    2006-05-01

    The conclusions of this report are that: (1) many issues how thin-film solar cells work remain unresolved, requiring further fundamental R and D effort; (2) commercial thin-film PV module production reached 29% in 2005 in the US, indicating much more rapid growth than crystalline Si PV; (3) commercial module performance is increasing based on current knowledge, more R and D will lead to further improvement; and (4) stability of thin-film modules is acceptable ({le} 1% per year power loss) if the right manufacturing processes are used for manufacturing.

  18. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    NASA Astrophysics Data System (ADS)

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-01

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 μm, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  19. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  20. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1990--15 January 1991

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.

    1991-11-01

    Results and conclusion of Phase I of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe{sub 2} and CdTe solar cells. The kinetics of the formation of CuInSe{sub 2} by selenization with hydrogen selenide was investigated and a CuInSe{sub 2}/CdS solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe{sub 2} films and a cell efficiency of 7%. Detailed investigations of the open circuit voltage of CuInSe{sub 2} solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe{sub 2} thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe{sub 2} is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10% can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm{sup 2} are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  1. Enhanced electrical properties at boundaries including twin boundaries of polycrystalline CdTe thin-film solar cells.

    PubMed

    Li, H; Liu, X X; Lin, Y S; Yang, B; Du, Z M

    2015-05-01

    The effect of grain boundaries (GBs), in particular twin boundaries (TBs), on CdTe polycrystalline thin films is studied by conductive atomic force microscopy (C-AFM), electron-beam-induced current (EBIC), scanning Kelvin probe microscopy (SKPM), electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM). Four types of CdTe grains with various densities of {111} Σ3 twin boundaries (TBs) are found in Cl-treated CdTe polycrystalline thin films: (1) grains having multiple {111} Σ3 TBs with a low angle to the film surface; (2) grains having multiple {111} Σ3 TBs parallel to the film surfaces; (3) small grains on a scale of not more than 500 nm, composed of Cd, Cl, Te, and O; and (4) CdTe grains with not more than two {111} Σ3 TBs. Grain boundaries (including TBs) exhibit enhanced current transport phenomena. However, the {111} Σ3 TB is much more beneficial to micro-current transport. The enhanced current transport can be explained by the lower electron potential at GBs (including TBs) than the grain interiors (GIs). Our results open new opportunities for enhancing solar cell performances by controlling the grain boundaries, and in particular TBs.

  2. Thickness dependence of structure and piezoelectric properties at nanoscale of polycrystalline lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Araújo, E. B.; Lima, E. C.; Bdikin, I. K.; Kholkin, A. L.

    2013-05-01

    Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films.

  3. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  4. Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Pikna, P.; Skoromets, V.; Becker, C.; Fejfar, A.; Kužel, P.

    2015-12-01

    We used time-resolved terahertz spectroscopy to study ultrafast photoconductivity of polycrystalline thin-film silicon solar cells. We selected a series of samples, which exhibited variable conversion efficiencies due to hydrogen plasma passivation under various technological conditions. The decay of the transient terahertz conductivity shows two components: the fast one is related to the charge recombination at interfaces, while the slow nanosecond one is attributed to the trapping of photocarriers by defects localized at grain boundaries or at dislocations in the polycrystalline p- layer of the structure. We observed a clear correlation between the open-circuit voltage and the nanosecond-scale decay time of the transient terahertz conductivity of the solar cells. Thus, the terahertz spectroscopy appears to be a useful contactless tool for inspecting the local photoconductivity of solar cells including, in particular, various nanostructured schemes.

  5. Ultrafast optical control of magnetization dynamics in polycrystalline bismuth doped iron garnet thin films

    SciTech Connect

    Deb, Marwan Vomir, Mircea; Rehspringer, Jean-Luc; Bigot, Jean-Yves

    2015-12-21

    Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.

  6. Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5

    NASA Astrophysics Data System (ADS)

    Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.

    2015-12-01

    The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ∼300 nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV-vis-spectrophotometer in the wavelength range of 200-1100 nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.

  7. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Sood, Aditya; Cho, Jungwan; Hobart, Karl D.; Feygelson, Tatyana I.; Pate, Bradford B.; Asheghi, Mehdi; Cahill, David G.; Goodson, Kenneth E.

    2016-05-01

    While there is a great wealth of data for thermal transport in synthetic diamond, there remains much to be learned about the impacts of grain structure and associated defects and impurities within a few microns of the nucleation region in films grown using chemical vapor deposition. Measurements of the inhomogeneous and anisotropic thermal conductivity in films thinner than 10 μm have previously been complicated by the presence of the substrate thermal boundary resistance. Here, we study thermal conduction in suspended films of polycrystalline diamond, with thicknesses ranging between 0.5 and 5.6 μm, using time-domain thermoreflectance. Measurements on both sides of the films facilitate extraction of the thickness-dependent in-plane ( κ r ) and through-plane ( κ z ) thermal conductivities in the vicinity of the coalescence and high-quality regions. The columnar grain structure makes the conductivity highly anisotropic, with κ z being nearly three to five times as large as κ r , a contrast higher than that reported previously for thicker films. In the vicinity of the high-quality region, κ r and κ z range from 77 ± 10 W/m-K and 210 ± 50 W/m-K for the 1 μm thick film to 130 ± 20 W/m-K and 710 ± 120 W/m-K for the 5.6 μm thick film, respectively. The data are interpreted using a model relating the anisotropy to the scattering on the boundaries of columnar grains and the evolution of the grain size considering their nucleation density and spatial rate of growth. This study aids in the reduction in the near-interfacial resistance of diamond films and efforts to fabricate diamond composites with silicon and GaN for power electronics.

  8. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  9. Metal-organic chemical vapour deposition of polycrystalline tetragonal indium sulphide (InS) thin films

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Cleaver, William M.; Barron, Andrew R.; Power, Michael B.; Hepp, Aloysius F.

    1992-01-01

    The dimeric indium thiolate /(t Bu)2In(mu-S sup t Bu)/2 has been used as a single-source precursor for the MOCVD of InS thin films. The dimeric In2S2 core is proposed to account for the formation of the nonequilibrium high-pressure tetragonal phase in the deposited films. Analysis of the deposited films has been obtained by TEM, with associated energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy.

  10. Progress Toward a Stabilization and Preconditioning Protocol for Polycrystalline Thin-Film Photovoltaic Modules

    SciTech Connect

    del Cueto, J. A.; Deline, C. A.; Rummel, S. R.; Anderberg, A.

    2010-08-01

    Cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules can exhibit substantial variation in measured performance depending on prior exposure history. This study examines the metastable performance changes in these PV modules with the goal of establishing standard preconditioning or stabilization exposure procedures to mitigate measured variations prior to current-voltage (IV) measurements.

  11. Growth and characterization of copper indium diselenide polycrystalline thin films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Engelmann, Michael G.

    The incorporation of sulfur into CuInSe2 thin films was quantitatively investigated to establish a scientific and engineering basis for the fabrication of homogeneous and compositionally graded CuIn(Se,S)2 thin films. The motivation for this work was to develop a means of controlling the band gap for this class of materials to achieve improved performance in photovoltaic devices. The approach taken was the reaction of thin film Cu/In layers and CuInSe2 thin films in H2S and/or H2Se gasses at atmospheric pressure. The reaction of Cu/In layers in a mixture of H2S and H 2Se as a function of gas phase composition was investigated to quantify the relationship between the gas and solid phase compositions in the formation of homogeneous CuIn(Se,S)2 thin films. A reaction model, accounting for mixing and the presence of oxygen, was developed and regressed to the experimental data. This work then led to the development of a phenomenological model for the inhomogeneous incorporation of sulfur into CuInSe2 thin films by a surface reaction followed by diffusion. X-ray diffraction line profiles, grain size distribution, and grain boundary width were used in conjunction with a quantitative diffusion model to estimate the bulk and grain boundary diffusion of sulfur into CuInSe2. Diffusion coefficients were determined at multiple temperatures and activation energies were estimated. The analysis was also applied to the diffusion of CdS into CdTe that occurs during the post deposition thermochemical treatments that are necessary to achieve high performance CdTe solar cells. Bulk and grain boundary diffusion coefficients and activation energies for CdS-CdTe were estimated. Based on the analysis of both equilibrium chemistry and diffusion, a well defined process for the fabrication of homogeneous and graded CuIn(Se,S) 2 thin films was developed. This process provides a method of band gap engineering that has application in both the fabrication of wide band gap devices for use in

  12. Fabrication of polycrystalline CdTe thin-film solar cells using carbon electrodes with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Okamoto, Tamotsu; Hayashi, Ryoji; Ogawa, Yohei; Hosono, Aikyo; Doi, Makoto

    2015-04-01

    The effects of adding carbon nanotubes (CNTs) to carbon back electrodes in polycrystalline CdTe thin-film solar cells were investigated. The CNTs were prepared by arc discharge under atmospheric pressure. The conductivity of the obtained CNT film with a density of 1.65 g/cm3 was approximately 2.6 × 103 S/cm. In the CdTe solar cells using carbon back electrodes with CNTs, the fill factor (FF) was improved as a result of adding CNTs with a concentration of 1 to 5 wt %. The improvement of FF was mainly due to the decrease in the series resistance of the CdTe solar cell. Furthermore, the open-circuit voltage (VOC) was improved by the CNT addition. The improvement of VOC was probably due to the reduction of the back barrier at the back contact.

  13. Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size.

    PubMed

    Feser, Joseph P; Chan, Emory M; Majumdar, Arun; Segalman, Rachel A; Urban, Jeffrey J

    2013-05-01

    Polycrystallinity leads to increased phonon scattering at grain boundaries and is known to be an effective method to reduce thermal conductivity in thermoelectric materials. However, the fundamental limits of this approach are not fully understood, as it is difficult to form uniform sub-20 nm grain structures. We use colloidal nanocrystals treated with functional inorganic ligands to obtain nanograined films of CdSe with controlled characteristic grain size between 3 and 6 nm. Experimental measurements demonstrate that thermal conductivity in these composites can fall beneath the prediction of the so-called minimum thermal conductivity for disordered crystals. The measurements are consistent, however, with diffuse boundary scattering of acoustic phonons. This apparent paradox can be explained by an overattribution of transport to high-energy phonons in the minimum thermal conductivity model where, in compound semiconductors, optical and zone edge phonons have low group velocity and high scattering rates.

  14. A study on the optical and microstructural characteristics of quaternary Cu(In,Ga)Se2 polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Albin, D. S.; Tuttle, J. R.; Mooney, G. D.; Carapella, J. J.; Duda, A.

    The optical and microstructural properties of polycrystalline CuIn(1-y)Ga(y)Se2 (CIGS) thin films deposited by coevaporation are reported within the boundaries of an orthogonal experimental design investigating the effects of Cu flux, Ga/(Ga+In) composition, Se rate, substrate temperature, Ts, and substrate type. The optical bandgaps for near-stoichiometric CuIn(1-y)Ga(y)Se2 are smaller and exhibit bowing behavior which follows the relationship Eg = 1.011 + 0.664y + 0.249y(y-1). In comparison, Cu-poor films exhibit a linear variation with zero bowing given by Eg = 1.0032 + 0.71369y. The increase in Eg with decreasing Cu may result in part from lattice shrinkage as measured by X-ray diffraction (XRD). Optical absorption below the band edge appears to be dependent upon both Cu and Ga content. Absorption coefficients of alpha = 1000/cm or greater within this region are indicative of Cu-rich films. Absorption of 1000/cm or less may be dictated more by surface morphology and possible phase separation in films containing = 50 percent or more Ga. The magnitude of alpha varies from 20,000 near the band edge up to 100,000/cm at 1 eV above the edge for near-stoichiometric films, with the absorption in Cu-poor films being slightly less.

  15. Tunable thermal conductivity of thin films of polycrystalline AlN by structural inhomogeneity and interfacial oxidation.

    PubMed

    Jaramillo-Fernandez, J; Ordonez-Miranda, J; Ollier, E; Volz, S

    2015-03-28

    The effect of the structural inhomogeneity and oxygen defects on the thermal conductivity of polycrystalline aluminum nitride (AlN) thin films deposited on single-crystal silicon substrates is experimentally and theoretically investigated. The influence of the evolution of crystal structure, grain size, and out-of plane disorientation along the cross plane of the films on their thermal conductivity is analyzed. The impact of oxygen-related defects on thermal conduction is studied in AlN/AlN multilayered samples. Microstructure, texture, and grain size of the films were characterized by X-ray diffraction and scanning and transmission electron microscopy. The measured thermal conductivity obtained with the 3-omega technique for a single and multiple layers of AlN is in fairly good agreement with the theoretical predictions of our model, which is developed by considering a serial assembly of grain distributions. An effective thermal conductivity of 5.92 W m(-1) K(-1) is measured for a 1107.5 nm-thick multilayer structure, which represents a reduction of 20% of the thermal conductivity of an AlN monolayer with approximately the same thickness, due to oxygen impurities at the interface of AlN layers. Our results show that the reduction of the thermal conductivity as the film thickness is scaled down, is strongly determined by the structural inhomogeneities inside the sputtered films. The origin of this non-homogeneity and the effect on phonon scattering are also discussed.

  16. Optical properties of vacuum evaporated Cd xSn 1-xSe polycrystalline thin films: influence of composition and thickness

    NASA Astrophysics Data System (ADS)

    Padiyan, D. Pathinettam; Marikani, A.; Murali, K. R.

    2005-03-01

    Polycrystalline Cd xSn 1-xSe material is synthesized by melt growth technique for various x values and thin films are prepared by vacuum evaporation technique. Optical transmittance measurements have been made on thin films of Cd xSn 1-xSe, with x=0,0.3,0.75 and 1 for various thicknesses. The studies reveal that these thin films have a direct allowed band gap energy and the indirect band gap energy is improbable. The band gap energy increases with decrease in thickness in all the compositions and it is attributed to the quantum size effect.

  17. Polycrystalline thin-film, cadmium-telluride solar cells fabricated by electrodeposition cells. Final subcontract report, March 20, 1992--April 27, 1995

    SciTech Connect

    Trefny, J.U.; Mao, D.; Kim, D.

    1995-10-01

    The objective of this project was to develop improved processes for the fabrication of CdTe/CdS polycrystalline thin film solar cells. The technique we used for the formation of CdTe, electrodeposition, was a non-vacuum, low-cost technique that is attractive for economic, large-scale production. Annealing effects and electrical properties are discussed.

  18. A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Ching-Lin Fan,; Yi-Yan Lin,; Jyu-Yu Chang,; Bo-Jhang Sun,; Yan-Wei Liu,

    2010-06-01

    This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (Δ VTH = ± 0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.

  19. A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Chang, Jyu-Yu; Sun, Bo-Jhang; Liu, Yan-Wei

    2010-06-01

    This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (ΔVTH = ±0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.

  20. Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Guduru, Pradeep R.

    2016-05-01

    Residual stress is a long-standing issue in thin film growth. Better understanding and control of film stress would lead to enhanced performance and reduced failures. In this work, we review how thin film stress is measured and interpreted. The results are used to describe a comprehensive picture that is emerging of what controls stress evolution. Examples from multiple studies are discussed to illustrate how the stress depends on key parameters (e.g., growth rate, material type, temperature, grain size, morphology, etc.). The corresponding stress-generating mechanisms that have been proposed to explain the data are also described. To develop a fuller understanding, we consider the kinetic factors that determine how much each of these processes contributes to the overall stress under different conditions. This leads to a kinetic model that can predict the dependence of the stress on multiple parameters. The model results are compared with the experiments to show how this approach can explain many features of stress evolution.

  1. Structural and optical analyses of polycrystalline Zn1-xSbxSe thin films prepared by resistive heating technique

    NASA Astrophysics Data System (ADS)

    Rashid, R.; Mahmood, Arshad; Aziz, U.; Shah, A.; Ali, Zahid; Raza, Q.; Malik, Abdul; Rasheed, Muhammad Asim

    2016-01-01

    Here we report the influence of Sb doping on the structural and optical properties of Zn1-xSbxSe (0 ⩽ x ⩾ 0.15) thin films prepared by thermal evaporation technique on glass substrate. Various characterization techniques such as X-ray diffraction (XRD), EDS, Raman spectroscopy and spectroscopic ellipsometer are employed to assess the structural and optical properties of the deposited films. XRD analysis reveals the formation of polycrystalline cubic structure having preferred growth orientation along (1 1 1) plane without any evidence of secondary phases. Crystallographic parameters like grain size, micro strain, dislocation density, number of crystallites per unit area and texture coefficient point out the structural modification in ZnSe films with Sb inclusion. Raman analysis shows the existence of three 1LO, 2LO and 3LO phonon modes at 251, 511 and 745 cm-1 in pure ZnSe while 3LO mode disappears by the incorporation of Sb atoms in ZnSe matrix. Increase in FWHM of Raman peaks with Sb concentration also indicates the change in crystalline quality of ZnSe films which is in accordance with our XRD results. Spectroscopic ellipsometry results demonstrate a decreasing trend for the optical band gap energy (from 2.61 eV to 1.81 eV) with increasing Sb content.

  2. Local grain orientation and strain in polycrystalline YBa2Cu3O7-δ superconductor thin films measured by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Amer, Maher S.; Maguire, John; Cai, L.; Biggers, R.; Busbee, J.; LeClair, S. R.

    2001-06-01

    We report direct measurements of local grain orientation and residual strain in polycrystalline, C-axis oriented thin YBa2Cu3O7-δ superconducting films using polarized Raman spectroscopy. Strain dependence of the Ag Raman active mode at 335 cm-1 was calibrated and used to measure local strain in the films. Our data showed that high quality films are associated with the connected path of uniform grain orientation (single crystal-like) across the film and uniform residual strain in the range of -0.3%. Nonuniform grain orientation or high angle grain boundaries and nonuniform local strains were associated with low quality films.

  3. Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys

    SciTech Connect

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-06-14

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  4. Comparison of ZnO thin films grown on a polycrystalline 3C-SiC buffer layer by RF magnetron sputtering and a sol-gel method

    NASA Astrophysics Data System (ADS)

    Phan, Duy-Thach; Chung, Gwiy-Sang

    2011-02-01

    Zinc oxide (ZnO) thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer using RF magnetron sputtering and a sol-gel method. The post-deposition annealing was performed on ZnO thin films prepared using both methods. The formation of ZnO piezoelectric thin films with less residual stress was due to a close lattice mismatch of the ZnO and SiC layers as obtained by the sputtering method. Nanocrystalline, porous ZnO film prepared using the sol-gel method showed strong ultraviolet UV emission at a wavelength of 380 nm. The 3C-SiC buffer layer improved the optical and piezoelectric properties of the ZnO film produced by the two deposition methods. Moreover, the different structures of the ZnO films on the 3C-SiC intermediate layer caused by the different deposition techniques were also considered and discussed.

  5. Elastic properties determination of CuInSe2 polycrystalline thin films via a dynamic method

    NASA Astrophysics Data System (ADS)

    Hadjoub, Z.; Merdes, S.; Hadjoub, I.; Doghmane, A.

    2010-11-01

    Developing and using a simulation program based on the spectrum angular model, we first determine reflectance functions and acoustic signatures for bulk as well as for different thickness of CuInSe2 films. For bulk material, it is found that the longitudinal and Rayleigh modes are excited at incidence angles of 23.4° and 47°, respectively. This result reveals the great difficulties to characterize CuInSe2 with a conventional scanning acoustic microscope that uses a lens half- opening angle of 50° and water as a coupling liquid. Hence, Freon is used as alternative coupling liquid. Consequently, the effect of thickness on reflection coefficient and acoustic signature variations are quantified for both bulk and thin material. It is shown that as the thickness increases: (i) the critical angle of mode excitation increases, (ii) the periods of acoustic signature curves decrease and (iii) the Rayleigh velocity, VR, mode shifts towards lower values. Hence, a velocity dispersion curve is established in terms of VR as a function of film thickness; it decreases initially from the velocity value of the glass substrate then saturates when it reaches that of CuInSe2. The importance of such curve lies in the possibility of velocity determination by just knowing the thickness, and vice versa. Moreover, elastic constants are straight forward deduced from such a velocity.

  6. Growth and properties of YBCO thin films on polycrystalline Ag substrates by inclined substrate pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Li, M.; Ma, B.; Koritala, R. E.; Fisher, B. L.; Dorris, S. E.; Venkataraman, K.; Balachandran, U.

    2002-06-01

    Fully c-axis-oriented YBCO films were directly deposited on polycrystalline silver substrates by inclined substrate pulsed laser ablation. The orientation and microstructure of the YBCO films were characterized by x-ray diffraction 2θ-scans, Ω-scans and pole figure analysis. Surface morphology was examined by scanning electron microscopy. Irregular-mosaic-shaped supergrains were observed in the films. Raman spectroscopy was used to evaluate the quality of the YBCO films. The superconducting transition temperature (Tc) and the critical current density (Jc) of the films were determined by inductive and transport measurements, respectively. Tc = 91 K with sharp transition and Jc = 2.7 × 105 A cm-2 at 77 K in zero field were obtained on a film that was 0.14 μm thick, 5 mm wide and 10 mm long. This work demonstrated a promising approach to obtain high-Jc YBCO films on nontextured polycrystalline silver substrate.

  7. Effect of yttrium-doping on the microstructures and semiconductor-metal phase transition characteristics of polycrystalline VO2 thin films

    NASA Astrophysics Data System (ADS)

    Gu, Deen; Sun, Zhanhong; Zhou, Xin; Guo, Rui; Wang, Tao; Jiang, Yadong

    2015-12-01

    We investigate the effect of yttrium-doping on the microstructures and semiconductor-metal phase transition characteristics of polycrystalline VO2 thin films prepared by reactively co-sputtering process. XPS analyses indicate the existence of Y3+ in the Y-doped VO2 films, but Y-doping hardly influences the chemical states of V and O elements. X-ray diffraction patterns and Raman spectra reveal that both undoped and Y-doped VO2 thin films have a polycrystalline structure of monoclinic VO2. The introduction of Y greatly reduces the grain size of VO2 thin films as evidenced by scanning electron microscopy analyses. The relationship between the hysteresis width and doping level is not monotonic although the grain size is monotonically reduced with increasing the doping level. Y-doped VO2 films with optimal doping level (1.82 at%) have a notably narrower hysteresis width (4.6 °C) than undoped VO2 films (10.7 °C). This is ascribed to increased heterogeneous nucleation centers due to Y in the VO2 lattice. With the further increase of doping level, the size effect gradually plays a prominent role in SMPT, and the hysteresis width of Y-doped VO2 films increases instead. The SMPT temperature of Y-doped VO2 films obviously decreases compared with undoped VO2 films due to reduced grain size and deformation of local structure around Y atom.

  8. Metastability of copper indium gallium diselenide polycrystalline thin film solar cell devices

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo

    High efficiency thin film solar cells have the potential for being a world energy solution because of their cost-effectiveness. Looking to the future of solar energy, there is the opportunity and challenge for thin film solar cells. The main theme of this research is to develop a detailed understanding of electronically active defect states and their role in limiting device performance in copper indium gallium diselenide (CIGS) solar cells. Metastability in the CIGS is a good tool to manipulate electronic defect density and thus identify its effect on the device performance. Especially, this approach keeps many device parameters constant, including the chemical composition, grain size, and interface layers. Understanding metastability is likely to lead to the improvement of CIGS solar cells. We observed systematic changes in CIGS device properties as a result of the metastable changes, such as increases in sub-bandgap defect densities and decreases in hole carrier mobilities. Metastable changes were characterized using high frequency admittance spectroscopy, drive-level capacitance profiling (DLCP), and current-voltage measurements. We found two distinctive capacitance steps in the high frequency admittance spectra that correspond to (1) the thermal activation of hole carriers into/out of acceptor defect and (2) a temperature-independent dielectric relaxation freeze-out process and an equivalent circuit analysis was employed to deduce the dielectric relaxation time. Finally, hole carrier mobility was deduced once hole carrier density was determined by DLCP method. We found that metastable defect creation in CIGS films can be made either by light-soaking or with forward bias current injection. The deep acceptor density and the hole carrier density were observed to increase in a 1:1 ratio, which seems to be consistent with the theoretical model of VCu-V Se defect complex suggested by Lany and Zunger. Metastable defect creation kinetics follows a sub-linear power law

  9. Device Physics of Thin-Film Polycrystalline Cells and Modules; Final Subcontract Report; 6 December 1993-15 March 1998

    SciTech Connect

    Sites, J. R.

    1999-05-03

    This report describes work performed under this subcontract by Colorado State University (CSU). The results of the subcontract effort included progress in understanding CdTe and Cu(In1-xGax)Se2-based solar cells, in developing additional measurement and analysis techniques at the module level, and in strengthening collaboration within the thin-film polycrystalline solar-cell community. A major part of the CdTe work consisted of elevated-temperature stress tests to determine fabrication and operation conditions that minimize the possibility of long-term performance changes. Other CdTe studies included analysis of the back-contact junction, complete photon accounting, and the tradeoff with thin CdS between photocurrent gain and voltage loss. The Cu(In1-xGax)Se2 studies included work on the role of sodium in enhancing performance, the conditions under which conduction-band offsets affect cell performance, the transient effects of cycling between light and dark conditions, and detailed analysis of several individual series of cells. One aspect of thin-film module analysis has been addressing the differences in approach needed for relatively large individual cells made without grids. Most work, however, focused on analysis of laser-scanning data, including defect signatures, photocurrent/shunting separation, and the effects of forward bias or high-intensity light. Collaborations with other laboratories continued on an individual basis, and starting in 1994, collaboration was through the national R&D photovoltaic teams. CSU has been heavily involved in the structure and logistics of both the CdTe and CIS teams, as well as making frequent technical contributions in both areas.

  10. Transport Properties of Anatase-TiO2 Polycrystalline-Thin-Film Field-Effect Transistors with Electrolyte Gate Layers

    NASA Astrophysics Data System (ADS)

    Horita, Ryohei; Ohtani, Kyosuke; Kai, Takahiro; Murao, Yusuke; Nishida, Hiroya; Toya, Taku; Seo, Kentaro; Sakai, Mio; Okuda, Tetsuji

    2013-11-01

    We have fabricated anatase-TiO2 polycrystalline-thin-film field-effect transistors (FETs) with poly(vinyl alcohol) (PVA), ion-liquid (IL), and ion-gel (IG) gate layers, and have tried to improve the response to gate voltage by varying the concentration of mobile ions in these electrolyte gate layers. The increase in the concentration of mobile ions by doping NaOH into the PVA gate layer or reducing the gelator in the IG gate layer markedly increases the drain-source current and reduces the driving gate voltage, which show that the mobile ions in the PVA, IL, and IG gate layers cause the formation of electric double layers (EDLs), which act as nanogap capacitors. In these TiO2-EDL-FETs, the slow formation of EDLs and the oxidation reaction at the interface between the surface of the TiO2 film and the electrolytes cause unideal FET properties. In the optimized IL and IG TiO2-EDL-FETs, the driving gate voltage is less than 1 V and the ON/OFF ratios of the transfer characteristics are about 1×104 at RT, and the nearly metallic state is realized at the interface purely by applying a gate voltage.

  11. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Varlamov, Sergey; Xue, Chaowei

    2014-09-01

    This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, Voc and Jsc than the one on the seed layer without RTA treatment.

  12. SEMICONDUCTOR DEVICES: A process simplification scheme for fabricating CMOS polycrystalline-Si thin film transistors

    NASA Astrophysics Data System (ADS)

    Miin-Horng, Juang; Chia-Wei, Chang; Der-Chih, Shye; Chuan-Chou, Hwang; Jih-Liang, Wang; Sheng-Liang, Jang

    2010-06-01

    A process simplification scheme for fabricating CMOS poly-Si thin-film transistors (TFTs) has been proposed, which employs large-angle-tilt-implantation of dopant through a gate sidewall spacer (LATITS). By this LATITS scheme, a lightly doped drain region under the oxide spacer is formed by low-dose tilt implantation of phosphorus (or boron) dopant through the spacer, and then the n+-source/drain (n+-S/D) (or p+-S/D) region is formed via using the same photo-mask layer during CMOS integration. For both n-TFT and p-TFT devices, as compared to the sample with conventional single n+-S/D (or p+-S/D) structure, the LATITS scheme can cause an obviously smaller leakage current, due to more gradual dopant distribution and thus smaller electric field. In addition, the resultant on-state currents only show slight degradation for the LATITS scheme. As a result, by the LATITS scheme, CMOS poly-Si TFT devices with an on/off current ratio well above 8 orders may be achieved without needing extra photo-mask layers during CMOS integration.

  13. In-plane texturing control of Y-Ba-Cu-O thin films on polycrystalline substrates by ion-beam-modified intermediate buffer layers

    NASA Astrophysics Data System (ADS)

    Iijima, Y.; Onabe, K.; Futaki, N.; Tanabe, N.; Sadakata, N.; Kohno, O.; Ikeno, Y.

    1993-03-01

    Biaxially aligned YBCO thin films were successfully formed on polycrystalline Ni-based alloy by using ion-beam-modified yttria-stabilized-zirconia (YSZ) intermediate layers. YSZ layers were deposited by ion-beam-assisted deposition (IBAD) with concurrent off-axis ion beam bombardment. The YSZ 100-line axis was oriented normal to the substrate, and a YSZ 111-line axis was aligned to the bombarding ion beam axis. Explicit in-plane ordering was achieved on polycrystalline metallic substrates without epitaxial relationships. C-axis-oriented YBCO thin films were grown on those buffer layers, with controlled in-plane a- and b-axes, by pulsed laser deposition. At 77 K, 0 T and at 77 K, 0.6 T, 4.3 x 10 exp 5 A/sq cm and 1.1 x 10 exp 5 A/sq cm were achieved, respectively.

  14. Development of tandem cells consisting of GaAs single crystal and CuInSe2/CdZnS polycrystalline thin films

    NASA Technical Reports Server (NTRS)

    Kim, Namsoo P.; Stanbery, Billy J.; Gale, Ronald P.; Mcclelland, Robert W.

    1989-01-01

    The tandem cells consisting of GaAs single crystal and CuInSe2 polycrystalline thin films are being developed under the joint program of the Boeing Co. and Kopin Corp. to meet the increasing power needs for future spacecraft. The updated status of this program is presented along with experimental results such as cell performance, and radiation resistance. Other cell characteristics including the specific power of and the interconnect options for this tandem cell approach are also discussed.

  15. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    SciTech Connect

    Trefny, J U; Mao, D

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  16. [Research on the polycrystalline CdS thin films prepared by close-spaced sublimation].

    PubMed

    Yang, Ding-Yu; Xia, Geng-Pei; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping

    2009-01-01

    In the present paper, the factors of influence on the deposition rate of CdS films prepared by close-spaced sublimation (CSS) were first studied systematically, and it was found from the experiments that the deposition rate increased with the raised temperature of sublimation source, while decreased with the raised substrate temperature and the deposition pressure. The structure, morphology and light transmittance of the prepared samples were tested subsequently, and the results show: (1) The CdS films deposited under different oxygen partial pressure all present predominating growth lattice orientation (103), and further more the films will be strengthened after annealed under CdCl2 atmosphere. (2) The AFM images of CdS show that the films are compact and uniform in grain diameter, and the grain size becomes larger with the increased substrate temperature. Along with it, the film roughness was also augmented. (3) The transmittance in the shortwave region of visible light through the CdS films would be enhanced when its thickness is reduced, and that will help improve the shortwave spectral response of CdTe solar cells. Finally, the prepared CdS films were employed to fabricate CdTe solar cells, which have achieved a conversion efficiency of 10.29%, and thus the feasibility of CSS process in the manufacture of CdTe solar cells was validated primarily.

  17. Polycrystalline CuInSe2 thin films for solar cells by three-source magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nakada, Tokio; Migita, Kazuo; Kunioka, Akio

    1993-08-01

    Polycrystalline CuInSe2 films were deposited in a wide range of Cu/In ratios by three-source magnetron sputtering technique onto soda-lime glass and Mo-coated glass substrates at elevated substrate temperatures. Good run-to-run reproductibility was achieved in our sputtering system using melt-grown polycrystalline selenium target. In excess films which are desirable for solar cells were obtained in the temperature range of 400 to 500 C. These films showed a preferential (112) orientation of the chalcopyrite structure and possessed an excellent adhesion property to the substrates. Preliminary solar cells with ZnO:Al/CdS/CuInSe2 structure resulted in a conversion efficiency of 6.3% under AM 1.5 illumination.

  18. Electrical and structural properties of semi-insulating polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Lombardo, S.; Campisano, S. U.; Baroetto, F.

    1993-05-01

    Semi-insulating polycrystalline silicon layers with oxygen concentrations ranging from 2 up to 30 at. % O have been prepared by low-pressure chemical vapor deposition. After deposition, the samples were annealed at 920 °C for 30 min. Grain-size distributions, high- and low-frequency dielectric constants were measured, respectively, by transmission-electron microscopy, capacitance, and optical measurements as a function of the oxygen content. The average grain radius decreases with the oxygen content from 15 up to 2.5 nm. The current-voltage characteristics have been measured as a function of temperature in the range 80-450 K and under applied transverse electric fields up to ~=106 V/cm. In weak-transverse-field conditions, the current density as a function of temperature shows two thermally activated regions at low and high temperatures, with activation energies of ~=0.14 and ~=0.54 eV, respectively. The application of transverse electric fields of the order of ~=106 V/cm produces a current enhancement depending upon field intensity, temperature, and oxygen content. The results have been modeled by assuming thermionic emission, tunneling, and Frenkel generation in a long series of Schottky barriers formed at the boundary of the adjacent grains. The best-fit values of the model parameters indicate that for 30 at. % O a continuous SiO2 shell, two monolayers thick, surrounds each grain. For lower oxygen contents this shell is discontinuous and the carrier transport parameters change considerably.

  19. A comparative study on in situ grown superconducting YBCO and YBCO-Ag thin films by PLD on polycrystalline SmBa2NbO6 substrate

    NASA Astrophysics Data System (ADS)

    Kurian, J.; John, Asha M.; Wariar, P. R. S.; Sajith, P. K.; Koshy, J.; Pai, S. P.; Pinto, R.

    2000-02-01

    The development and characterization of SmBa2NbO6, which is a new ceramic substrate material for the YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> superconductor, are reported. SmBa2NbO6 has a complex cubic perovskite structure with lattice constant a = 8.524 Å. The dielectric properties of SmBa2NbO6 are in a range suitable for its use as a substrate for microwave applications. SmBa2NbO6 was found to have a thermal conductivity of 77 W m-1 K-1 and a thermal expansion coefficient of 7.8 × 10-6 °C-1 at room temperature. Superconducting YBa2 Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> and YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> -Ag thin films have been grown in situ on polycrystalline SmBa2NbO6 by the pulsed laser ablation technique. The films exhibited (00l) orientation of an orthorhombic YBa2 Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> phase and gave a zero resistivity superconducting transition (TC(0)) at 90 K with a transition width of ~1.5 K. The critical current density of YBCO-Ag thin films grown on polycrystalline SmBa2NbO6 substrate was ~3 × 105 A cm-2 at 77 K. A comparative study of YBCO and YBCO-Ag thin films developed on polycrystalline SmBa2NbO6 substrate by PLD based on the crystallinity, orientation and critical current density of the YBCO film is discussed in detail.

  20. Unraveling Charge Carriers Generation, Diffusion, and Recombination in Formamidinium Lead Triiodide Perovskite Polycrystalline Thin Film.

    PubMed

    Piatkowski, Piotr; Cohen, Boiko; Ponseca, Carlito S; Salado, Manuel; Kazim, Samrana; Ahmad, Shahzada; Sundström, Villy; Douhal, Abderrazzak

    2016-01-01

    We report on studies of the formamidinium lead triiodide (FAPbI3) perovskite film using time-resolved terahertz (THz) spectroscopy (TRTS) and flash photolysis to explore charge carriers generation, migration, and recombination. The TRTS results show that upon femtosecond excitation above the absorption edge, the initial high photoconductivity (∼75 cm(2) V(-1) s(-1)) remains constant at least up to 8 ns, which corresponds to a diffusion length of 25 μm. Pumping below the absorption edge results in a mobility of 40 cm(2) V(-1) s(-1) suggesting lower mobility of charge carriers located at the bottom of the conduction band or shallow sub-bandgap states. Furthermore, analysis of the THz kinetics reveals rising components of <1 and 20 ps, reflecting dissociation of excitons having different binding energies. Flash photolysis experiments indicate that trapped charge carriers persist for milliseconds. PMID:26703885

  1. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report

    SciTech Connect

    Trefny, J.U.; Mao, D.

    1998-01-01

    During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

  2. Atomic-resolution characterization of the effects of CdCl{sub 2} treatment on poly-crystalline CdTe thin films

    SciTech Connect

    Paulauskas, T. Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Klie, R. F.

    2014-08-18

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl{sub 2} environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl{sub 2}, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  3. Metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor technology and application to flat-panel displays

    NASA Astrophysics Data System (ADS)

    Meng, Zhiguo

    High quality flat-panel displays (FPD) typically use active-matrix (AM) addressing, with the optical state of each pixel controlled by one or more active devices such as amorphous silicon (a-Si) thin film transistors (TFT). The successful examples are portable computer and liquid-crystal television (LC-TV). A high level of system on panel (SoP) electronic integration is required for versatile and compact systems. Meanwhile, many self-emitting display technologies are developing fast, active matrix for self-emitting display is typically current driven. The a-Si TFTs suffer from limited current driving capability, polycrystalline silicon (poly-Si) device technology is required. A new technology employing metal-induced unilaterally crystallization (MIUC) is presently reported. The device characteristics are obviously better than those in rapid-thermal annealed (RTA) and solid-phase crystallization (SPC) TFTs and the fabrication equipment is much cheaper than excimer laser crystallization (ELC) technology. The field effect mobility (muFE) of p- and n-channel MIUC TFTs is about 100cm2/Vs. Ion/I off is more than seven orders. Gate-induced leakage current in LT-MIUC poly-Si TFTs has been reduced by crystallization before heavy junction implantation to improve material quality and incorporating a gate-modulated lightly-doped drain (gamo-LDD) structure to reduce the electric field near the drain/channel junction region. At the same time, recrystallized (RC) MIUC TFT was researched with device characteristics improved. The 6.6cm 120 x 160 active matrix for OLED display is fabricated using LT-MIUC TFT technology on glass substrate. This display has the advantages of self-emitting, large intrinsic view angle and very fast response. At the same time, 6.6cm 120X160 AM-reflective twist nematic (RTN) display is fabricated using RC-MIUC TFT technology. This display is capable of producing 16 grade levels, 10:1 contrast and video image. The SOP display for AM-OLED were designed

  4. Polycrystalline ZnTe thin film on silicon synthesized by pulsed laser deposition and subsequent pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Xu, Menglei; Gao, Kun; Wu, Jiada; Cai, Hua; Yuan, Ye; Prucnal, S.; Hübner, R.; Skorupa, W.; Helm, M.; Zhou, Shengqiang

    2016-03-01

    ZnTe thin films on Si substrates have been prepared by pulsed laser deposition and subsequent pulsed laser melting (PLM) treatment. The crystallization during PLM is confirmed by Raman scattering, x-ray diffraction and room temperature photoluminescence (PL) measurements. The PL results show a broad peak at 574 nm (2.16 eV), which can be assigned to the transitions from the conduction band to the acceptor level located at 0.145 eV above the valence band induced by zinc-vacancy ionization. Our work provides an applicable approach to low temperature preparation of crystalline ZnTe thin films.

  5. Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser

    SciTech Connect

    Yun, J. Varalmov, S.; Huang, J.; Green, M. A.; Kim, K.

    2014-06-16

    The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-μm thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550 °C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450 °C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550 °C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450 °C, which limits the solar cell performance by n = 2 recombination, and a performance degradation is expected due to severe shunting.

  6. Characterization of excimer laser annealed polycrystalline Si1-xGex alloy thin films by x-ray diffraction and spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Yu, Guolin; Krishna, Kalaga Murali; Shao, Chunlin; Umeno, Masayoshi; Soga, Tetsuo; Watanabe, Junji; Jimbo, Takashi

    1998-01-01

    Thin films of Si1-xGex alloys of different compositions x have been deposited, on single-crystal Si (100) surface and glass substrates, by simple ion beam sputtering, at room temperature. Crystallization of these films has been done using excimer laser annealing. Structural and optical properties of as-deposited and annealed Si1-xGex alloy films are characterized by x-ray diffraction (XRD), uv-visible spectrophotometry, spectroscopic ellipsometry (SE), and Auger electron spectroscopy (AES). The as-deposited films, both on Si and glass, have been found to be amorphous by XRD. Polycrystalline nature of laser-annealed samples has been evidenced by both x-ray and SE measurements. The results of x-ray, uv-visible, AES, and SE are compared and discussed. The poly-Si1-xGex films were oriented predominantly to (111) and the grain sizes were determined from half-width of x-ray peaks. The compositions x of Si1-xGex films have been evaluated from the SE dielectric function ɛ(ω) data, using the second-derivative technique, and are found to be 0.23 and 0.36 for two different compositions. A detailed analysis of ɛ(ω) with the effective-medium theory has demonstrated the volume fraction of crystalline Si1-xGex increases with the increasing energy of laser irradiation.

  7. Effect of depth of traps in ZnO polycrystalline thin films on ZnO-TFTs performance

    NASA Astrophysics Data System (ADS)

    Medina-Montes, Maria I.; Baldenegro-Perez, Leonardo A.; Sanchez-Zeferino, Raul; Rojas-Blanco, Lizeth; Becerril-Silva, Marcelino; Quevedo-Lopez, Manuel A.; Ramirez-Bon, Rafael

    2016-09-01

    ZnO thin films were processed by radio frequency magnetron sputtering at room temperature on p-Si/SiO2 substrates under pure argon (Ar:O2 = 100:0 vol.%) and argon-oxygen mixture (Ar:O2 = 99:1 vol.%) gas environment. Morphological, optical and electrical characteristics of the ZnO films are reported, and they show a clear relationship with the gas mixture employed for the sputtering process. Scanning Electron Microscopy revealed the formation of grains of 15.3 and 19.9 nm average sizes and thicknesses of 59 nm and 82 nm for films growth in pure argon and argon-oxygen, respectively. Photoluminescence measurements at room temperature showed the violet emission band (centered at 3 eV) which was only detected in the ZnO film grown under pure argon. From thermally stimulated conductivity measurements two traps with 0.27 and 0.14 eV activation energies were identified for films grown in pure argon and argon-oxygen mixture, respectively. The trap at 0.27 eV is associated with a level located below the conduction band edge and it is supported by the PL band centered at 3 eV. Both types of ZnO films were used as the active channel layer in thin film transistors with thermal SiO2 as gate dielectric. Field effect mobility, threshold voltage and current ratio were improved in the devices with ZnO channel deposited with the argon-oxygen mixture (99% Ar/1% O2 vol.). Threshold voltage decreased from 25 V to 15 V, field effect mobility and current ratio increased from 0.8 to 2.4 cm2/Vs and from 102 to 106, in that order.

  8. Low Temperature Deposition of PECVD Polycrystalline Silicon Thin Films using SiF4 / SiH4 mixture

    NASA Astrophysics Data System (ADS)

    Syed, Moniruzzaman; Inokuma, Takao; Kurata, Yoshihiro; Hasegawa, Seiichi

    2016-03-01

    Polycrystalline silicon films with a strong (110) texture were prepared at 400°C by a plasma-enhanced chemical vapor deposition using different SiF4 flow rates ([SiF4] = 0-0.5 sccm) under a fixed SiH4 flow rate ([SiH4] = 1 or 0.15 sccm). The effects of the addition of SiF4 to SiH4 on the structural properties of the films were studied by Raman scattering, X-ray diffraction (XRD), Atomic force microscopy and stress measurements. For [SiH4] = 1 sccm, the crystallinity and the (110) XRD grain size monotonically increased with increasing [SiF4] and their respective maxima reach 90% and 900 Å. However, for [SiH4] = 0.15 sccm, both the crystallinity and the grain size decreased with [SiF4]. Mechanisms causing the change in crystallinity are discussed, and it was suggested that an improvement in the crystallinity, due to the addition of SiF4, is likely to be caused by the effect of a change in the surface morphology of the substrates along with the effect of in situ chemical cleaning.

  9. Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films on polycrystalline ferrite for magnetically tunable microwave components

    SciTech Connect

    Jia, Q.X.; Findikoglu, A.T.; Arendt, P.; Foltyn, S.R.; Roper, J.M.; Groves, J.R.; Coulter, J.Y.; Li, Y.Q.; Dionne, G.F.

    1998-04-01

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films with a surface resistance of 0.86 m{Omega} at 10 GHz and 76 K have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. The chemical and structural mismatches between YBCO and YIG are solved by using a double buffer layer of biaxially oriented yttria-stabilized zirconia (YSZ) and CeO{sub 2}, where YSZ is deposited by an ion-beam-assisted-deposition technique. The YBCO films are {ital c} axis oriented with an in-plane mosaic spread [full width at half maximum of an x-ray {phi}-scan on (103) reflection] of less than 8{degree}. The films have a superconductive transition temperature above 88 K with a transition width less than 0.3 K, giving a critical current density above 10{sup 6}A/cm{sup 2} in self field at 75 K. At 75 K in an external magnetic field of 1 T perpendicular to the film surface, the films maintain a critical current density over 2{times}10{sup 5}A/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  10. Electrical Characteristics of Low-Temperature Polycrystalline Silicon Complementary Metal-Oxide-Semiconductor Thin-Film Transistors with Six-Step Photomask Structure

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Jin; Park, Jae-Hoon; Oh, Kum-Mi; Lee, Seok-Woo; Lee, Kyung-Eon; Shin, Woo-Sup; Jun, Myung-chul; Yang, Yong-Suk; Hwang, Yong-Kee

    2011-06-01

    We propose two types of six-step photomask, complementary metal-oxide-semiconductor (CMOS), thin-film transistor (TFT) PCT device structures in order to simplify their fabrication process compared with that of conventional, low-temperature, polycrystalline silicon (LTPS) CMOS TFT devices. The initial charge transfer characteristics of both types of six-step PCT are equivalent to those of the conventional nine-step PCT. Both types of six-step PCT are comparable to the conventional nine-step mask lightly doped drain (LDD) device in terms of the dc device lifetime of over 10 years at Vds=5 V for line inversion driving, which is the normally recognized duration time for semiconducting devices.

  11. Driving Method Compensating for the Hysteresis of Polycrystalline Silicon Thin-Film Transistors for Active-Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Jung, Myoung-Hoon; Kim, Ohyun; Kim, Byeong-Koo; Chung, Hoon-Ju

    2009-05-01

    A new driving method for active-matrix organic light-emitting diode displays is proposed and evaluated. The pixel structure of the proposed driving method is composed of three thin-film transistors (TFTs) and one capacitor. It inserts black data into display images to reset driving TFTs for the purpose of maintaining constant electrical characteristics of driving TFTs. The proposed driving scheme is less sensitive to the hysteresis of low-temperature polycrystalline silicon (LTPS) TFTs than the conventional pixel structure with two TFTs and one capacitor, and this scheme can virtually eliminate the recoverable residual image that occurs owing to the hysteresis characteristics of LTPS TFTs. In the proposed driving scheme, black data are inserted into displayed images so that the motion image quality is improved.

  12. Controllability of self-aligned four-terminal planar embedded metal double-gate low-temperature polycrystalline-silicon thin-film transistors on a glass substrate

    NASA Astrophysics Data System (ADS)

    Ohsawa, Hiroki; Sasaki, Shun; Hara, Akito

    2016-03-01

    Self-aligned four-terminal n-channel (n-ch) and p-channel (p-ch) planar embedded metal double-gate polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) were fabricated on a glass substrate at a low temperature of 550 °C. This device includes a metal top gate (TG) and a metal bottom gate (BG), which are used as the drive and control gates or vice versa. The BG was embedded in a glass substrate, and a poly-Si channel with large lateral grains was fabricated by continuous-wave laser lateral crystallization. The threshold voltage modulation factors under various control gate voltages (γ = ΔVth/ΔVCG) were nearly equal to the theoretical predictions in both the n- and p-ch TFTs. By exploiting this high controllability, an enhancement depletion (ED) inverter was fabricated, and successful operation at 2.0 V was confirmed.

  13. A low-temperature polycrystalline-silicon thin-film transistor micro-manipulation array with indium tin oxide micro-coils and real-time detection

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Yang; Huang, Chien-Yu; Lin, Chrong-Jung; King, Ya-Chin

    2009-12-01

    This study proposes an array for a bio-handling system consisting of microcoils on top of photodetectors fabricated by low-temperature polycrystalline-silicon thin-film transistor (LTPS-TFT) technology on a glass substrate. Using magnetic beads as the medium, the proposed system can simultaneously monitor and manipulate micrometer-sized bio-samples. In a manipulation system based on magnetic force, photo-detecting is a reliable method, immune to the interference caused by electromagnetic fields. Under 480 lux ambient white light, the sensor can detect a microbead as small as 23 µm in diameter with detectable output difference. It provides a new, easier way for handling samples on a small chip.

  14. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    SciTech Connect

    Jahangir, S.; Cheng, Xuan; Huang, H. H.; Nagarajan, V.; Ihlefeld, J.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materials characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.

  15. Optical properties of CdS{sub x}Te{sub 1{minus}x} polycrystalline thin films

    SciTech Connect

    Wood, D.A.; Lane, D.W.; Rogers, K.D.; Coath, J.A.

    1999-11-12

    Thin films of CdS{sub x}Te{sub 1{minus}x} (0 {le} x {le} 1) have been prepared by vacuum evaporation from solid solutions. Rutherford backscattering spectrometry has been used to determine the thickness of the films, which is in the range 8--50 nm, and x-ray diffraction analysis has been used to determine the phase. The refractive index and extinction coefficient of the films has been calculated from reflectance and transmittance measurements for the wavelength region 250--3,200 nm. Polynomial functions are given for each sample, which describe the variation in refractive index and extinction coefficient over the entire wavelength range. Least squares fitting to the absorption spectra revealed that the films all have a direct band gap, although photon energies required for indirect transitions have also been found. CdS{sub 0.8}Te{sub 0.2} is found to have the lowest absorption coefficient at energies greater than 2.1 eV.

  16. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    PubMed Central

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at −0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  17. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at ‑0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  18. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor.

    PubMed

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-21

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at -0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm(2)/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  19. Surface Modification of Polycrystalline Cu(In,Ga)Se2 Thin-Film Solar Cell Absorber Surfaces for PEEM Measurements

    SciTech Connect

    Wilks, R. G.; Contreras, M. A.; Lehmann, S.; Herrero-Albillos, J.; Bismaths, L. T.; Kronast, F.; Noufi, R.; Bar, M.

    2011-01-01

    We present a thorough examination of the {micro}m-scale topography of Cu(In, Ga)Se{sub 2} ('CIGSe') thin-film solar cell absorbers using different microscopy techniques. We specifically focus on the efficacy of preparing smooth sample surfaces - by etching in aqueous bromine solution - for a spatially resolved study of their chemical and electronic structures using photoelectron emission microscopy (PEEM). The etching procedure is shown to reduce the CIGSe surface roughness from ca. 40 to 25 nm after 40s etching, resulting in an increase in the quality of the obtained PEEM images. Furthermore we find that the average observed grain size at the etched surfaces appears larger than at the unetched surfaces. Using a liftoff procedure, it is additionally shown that the backside of the absorber is flat but finely patterned, likely due to being grown on the finely-structured Mo back contact.

  20. The effect of Ta doping in polycrystalline TiO{sub x} and the associated thin film transistor properties

    SciTech Connect

    Ok, Kyung-Chul Park, Yoseb Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Chung, Kwun-Bum E-mail: jsparklime@hanyang.ac.kr

    2013-11-18

    Tantalum (Ta) is suggested to act as an electron donor and crystal phase stabilizer in titanium oxide (TiO{sub x}). A transition occurs from an amorphous state to a crystalline phase at an annealing temperature above 300 °C in a vacuum ambient. As the annealing temperature increases from 300 °C to 450 °C, the mobility increases drastically from 0.07 cm{sup 2}/Vs to 0.61 cm{sup 2}/Vs. The remarkable enhancement of thin film transistor performance is suggested to be due to the splitting of Ti 3d band orbitals as well as the increase in Ta{sup 5+} ions that can act as electron donors.

  1. Symmetry dependent optoelectronic properties of grain boundaries in polycrystalline Cu(In,Ga)Se{sub 2} thin films

    SciTech Connect

    Müller, Mathias; Bertram, Frank; Christen, Jürgen; Abou-Ras, Daniel Rissom, Thorsten

    2014-01-14

    In a correlative study applying electron backscatter diffraction as well as spatially and spectrally resolved cathodoluminescence spectroscopy at low temperatures of about 5 K, the symmetry-dependent optoelectronic properties of grain boundaries in Cu(In,Ga)Se{sub 2} thin films have been investigated. We find that grain boundaries with lower symmetries tend to show a distinct spectral red shift of about 10 meV and a weak influence on the emission intensity. These behaviors are not detected at high-symmetry Σ3 grain boundaries, or at least in a strongly reduced way. The investigations in the present work help to clarify the ambivalent properties reported for grain boundaries in Cu(In,Ga)Se{sub 2}.

  2. Optoelectronic characterization of wide-bandgap (AgCu)(InGa)Se 2 thin-film polycrystalline solar cells including the role of the intrinsic zinc oxide layer

    NASA Astrophysics Data System (ADS)

    Obahiagbon, Uwadiae

    Experiments and simulations were conducted to vary the thickness and the sheet resistance of the high resistance (HR) ZnO layer in polycrystalline thin film (AgCu)(GaIn)Se2 (ACIGS) solar cells. The effect of varying these parameters on the electric field distribution, depletion width and hence capacitance were studied by SCAPS simulation. Devices were then fabricated and characterized by a number of optoelectronic techniques. Thin film CIGS has received a lot of attention, for its use as an absorber layer for thin film solar cells. However, the addition of Silver (Ag) to the CIGS alloy system increases the band gap as indicated from optical transmission measurements and thus higher open circuit voltage (Voc) could be obtained. Furthermore, addition of Ag lowers the melting temperature of the alloy and it is expected that this lowers the defect densities in the absorber and thus leads to higher performance. Transient photocapacitance analysis on ACIGS devices shows sharper band edge indicating lower disorder than CIGS. Presently there is a lack of fundamental knowledge relating film characteristics to device properties and performance. This is due to the fact that some features in the present solar cell structure have been optimized empirically. The goal of this research effort was to develop a fundamental and detailed understanding of the device operation as well as the loss mechanism(s) limiting these devices. Recombination mechanisms in finished ACIGS solar cell devices was studied using advanced admittance techniques (AS, DLCP, CV) to identify electronically active defect state(s) and to study their impact on electronic properties and device performance. Analysis of various optoelectronic measurements of ACIGS solar cells provided useful feedback regarding the impact on device performance of the HR ZnO layer. It was found that thickness between 10-100 nm had negligible impact on performance but reducing the thickness to 0 nm resulted in huge variability in all

  3. Polycrystalline silicon thin-film transistor with nickel-titanium oxide by sol-gel spin-coating and nitrogen implantation

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Chieh; Hou, Tuo-Hung; Chuang, Shiow-Huey; Chou, Hsin-Chih; Chao, Tien-Sheng; Lei, Tan-Fu

    2012-12-01

    This study demonstrates polycrystalline silicon thin-film transistors (poly-Si TFTs) integrated with a high-κ nickel-titanium oxide (NiTiO3) gate dielectric using sol-gel spin-coating and nitrogen channel implantation. This novel fabrication method of the high-κ NiTiO3 gate dielectric offers thin equivalent-oxide thickness and high gate capacitance density, favorable for increasing the current driving capability. Introducing nitrogen ions into the poly-Si using implantation effectively passivates the trap states not only in the poly-Si channel but also at the gate dielectric/poly-Si interface. The poly-Si NiTiO3 TFTs with nitrogen implantation exhibit significantly improved electrical characteristics, including lower threshold voltage, a steeper subthreshold swing, higher field-effect mobility, a larger on/off current ratio, and less threshold-voltage roll-off. Furthermore, the nitrogen implantation improves the reliability of poly-Si NiTiO3 TFTs against hot-carrier stress and positive bias temperature instability.

  4. Effects of gate insulator using high pressure annealing on the characteristics of solid phase crystallized polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Moojin; Jin, GuangHai

    2009-04-01

    The oxidizing ambient was built using high pressure H2O vapor at 550 °C. For the solid phase crystallization (SPC) polycrystalline silicon (poly-Si) that is annealed for 1 h at 2 MPa, the oxide thickness is about 150 Å. The oxide layer is approximately 90 Å above the original surface of the poly-Si and 60 Å below the original surface. The oxide layer is used as the first gate insulator layer of thin-film transistors (TFTs). The heating at 550 °C with 2 MPa H2O vapor increased the carrier mobility from 17.6 cm2/V s of the conventional SPC process to 30.4 cm2/V s, and it reduced the absolute value of the threshold voltage (Vth) from 4.13 to 3.62 V. The subthreshold swing also decreased from 0.72 to 0.60 V/decade. This improvement is attributed mainly to the reduction in defect density at the oxide/poly-Si interface and in the poly-Si film by the high pressure annealing (HPA) process. Since the realization of excellent performance at the oxide/poly-Si interface and in poly-Si depends on the defect density, the poly-Si having the thermal oxide formed by a combined process of SPC and HPA may be well suited for fabrication of poly-Si TFTs for flat panel displays such as active matrix organic light emitting diodes.

  5. A Optical and Microstructural Characterization Study and Microstructural Model of Co-Evaporated Polycrystalline Thin Film Copper Indium Diselenide for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Tuttle, John R.

    The electrical, optical, microstructural, and morphological properties of polycrystalline thin film CuInSe _2 are investigated by X-Ray Diffraction, spectrophotometry, and Transmission Electron Microscopy as a function of compositional parameters and processing conditions. The film microstructure is redefined as a compositionally and temperature dependent polycrystalline aggregate mixture of CuInSe_2 and Cu_{rm x}Se/In _{rm y}Se minor phases, with a core crystallite exhibiting order-disorder phase separation and a CuInSe_2-CuIn_2 Se_{3.5} solid solution. The secondary phase phenomena includes Cu _{1.85}Se at grain boundaries and free surfaces, with sufficient amount for percolation in near-stoichiometric and Cu-rich compositions, and Cu _{rm x}Se inclusions for Cu-rich compositions, and for Cu-poor compositions at substrate temperatures of 500^circC. The inclusions are modeled by the Maxwell-Garnett theory as metallic inclusions with a filling fraction as little as eta = 0.01. The observed polymorphisms include phase separation of ordered chalcopyrite and disordered sphalerite regions, where the latter is the majority phase, and a solid solution of chalcopyrite CuInSe_2 and the ordered vacancy compound (OVC) CuIn_2Se _{3.5}, with an associated temperature dependent lattice shrinkage proportional to the deviation in molecularity. The polymorphisms reported here are the first in the CuInSe_2 material system. The stability of excessive Cu-vacancies observed in the OVC has significant ramifications on the electronic structure of CuInSe_2. The optical absorption coefficient, alpha , for thin film CuInSe_2 is reported as a function of composition and exhibits behavior indicative of a two-phase mixture and a solid solution for Cu-rich and Cu-poor compositions, respectively. The magnitude of alpha is significantly lower than previously reported values, and is substantiated by device modeling that accurately reproduces the measured internal quantum efficiency of Cd

  6. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  7. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  8. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Hultman, L.

    2016-11-01

    We present first self-consistent modelling of x-ray photoelectron spectroscopy (XPS) Ti 2p, N 1s, O 1s, and C 1s core level spectra with a cross-peak quantitative agreement for a series of TiN thin films grown by dc magnetron sputtering and oxidized to different extent by varying the venting temperature Tv of the vacuum chamber before removing the deposited samples. So-obtained film series constitute a model case for XPS application studies, where certain degree of atmosphere exposure during sample transfer to the XPS instrument is unavoidable. The challenge is to extract information about surface chemistry without invoking destructive pre-cleaning with noble gas ions. All TiN surfaces are thus analyzed in the as-received state by XPS using monochromatic Al Kα radiation (hν = 1486.6 eV). Details of line shapes and relative peak areas obtained from deconvolution of the reference Ti 2p and N 1 s spectra representative of a native TiN surface serve as an input to model complex core level signals from air-exposed surfaces, where contributions from oxides and oxynitrides make the task very challenging considering the influence of the whole deposition process at hand. The essential part of the presented approach is that the deconvolution process is not only guided by the comparison to the reference binding energy values that often show large spread, but in order to increase reliability of the extracted chemical information the requirement for both qualitative and quantitative self-consistency between component peaks belonging to the same chemical species is imposed across all core-level spectra (including often neglected O 1s and C 1s signals). The relative ratios between contributions from different chemical species vary as a function of Tv presenting a self-consistency check for our model. We propose that the cross-peak self-consistency should be a prerequisite for reliable XPS peak modelling as it enhances credibility of obtained chemical information, while relying

  9. Size effects of polycrystalline lanthanum modified Bi{sub 4}Ti{sub 3}O{sub 12} thin films

    SciTech Connect

    Simoes, A.Z. Riccardi, C.S.; Cavalcante, L.S.; Gonzalez, A.H.M.; Longo, E.; Varela, J.A.

    2008-01-08

    The film thickness dependence on the ferroelectric properties of lanthanum modified bismuth titanate Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} was investigated. Films with thicknesses ranging from 230 to 404 nm were grown on platinum-coated silicon substrates by the polymeric precursor method. The internal strain is strongly influenced by the film thickness. The morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The leakage current, remanent polarization and drive voltage were also affected by the film thickness.

  10. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  11. Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate

    DOEpatents

    Findikoglu, Alp T.; Jia, Quanxi; Arendt, Paul N.; Matias, Vladimir; Choi, Woong

    2009-10-27

    A template article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material; is provided, together with a semiconductor article including a base substrate including: (i) a base material selected from the group consisting of polycrystalline substrates and amorphous substrates, and (ii) at least one layer of a differing material upon the surface of the base material; and, a buffer material layer upon the base substrate, the buffer material layer characterized by: (a) low chemical reactivity with the base substrate, (b) stability at temperatures up to at least about 800.degree. C. under low vacuum conditions, and (c) a lattice crystal structure adapted for subsequent deposition of a semiconductor material, and, a top-layer of semiconductor material upon the buffer material layer.

  12. Cobalt-free polycrystalline Ba0.95La0.05FeO3-δ thin films as cathodes for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Dengjie; Chen, Chi; Dong, Feifei; Shao, Zongping; Ciucci, Francesco

    2014-03-01

    Ba0.95La0.05FeO3-δ (BLF) thin films as electrodes for intermediate-temperature solid oxide fuel cells are prepared on single-crystal yttria-stabilized zirconia (YSZ) substrates by pulsed laser deposition. The phase structure, surface morphology and roughness of the BLF thin films are characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. X-ray photoelectron spectroscopy is used to analyze the compositions of the deposited thin film and the chemical state of transition metal. The dense thin film exhibits a polycrystalline perovskite structure with a low surface roughness and a high oxygen vacancy concentration on the surface. Ag (paste or strip) and Au (strip) are applied on both surfaces of the symmetric cells as current collectors to evaluate electrochemical performance of the thin films. The electrode polarization resistances of the symmetric cells are found to be lower than those of most cobalt-free thin-film electrodes, e.g., 0.437 Ω cm2 at 700 °C and 0.21 atm. The oxygen reduction reaction mechanism of the BLF cathode in symmetric cells is studied by electrochemical impedance spectroscopy thanks to the equivalent fitting analysis. Both the oxygen surface exchange reaction and charge transfer are shown to determine the overall oxygen reduction reaction.

  13. Carrier mobility measurement across a single grain boundary in polycrystalline silicon using an organic gate thin-film transistor

    SciTech Connect

    Hashimoto, Masaki; Kanomata, Kensaku; Momiyama, Katsuaki; Kubota, Shigeru; Hirose, Fumihiko

    2012-01-09

    In this study, we developed a measurement method for field-effect-carrier mobility across a single grain boundary in polycrystalline Si (poly Si) used for solar cell production by using an organic gate field-effect transistor (FET). To prevent precipitation and the diffusion of impurities affecting the electronic characteristics of the grain boundary, all the processing temperatures during FET fabrication were held below 150 deg. C. From the grain boundary, the field-effect mobility was measured at around 21.4 cm{sup 2}/Vs at 297 K, and the temperature dependence of the field-effect mobility suggested the presence of a potential barrier of 0.22 eV at the boundary. The technique presented here is applicable for the monitoring of carrier conduction characteristics at the grain boundary in poly Si used for the production of solar cells.

  14. Polycrystalline domain structure of pentacene thin films epitaxially grown on a hydrogen-terminated Si(111) surface

    SciTech Connect

    Nishikata, S.; Sadowski, J. T.; Al-Mahboob, A.; Nishihara, T.; Fujikawa, Y.; Sakurai, T.; Nakajima, K.; Sazaki, G.; Suto, S.

    2007-10-15

    Single-monolayer high pentacene (Pn) dendrites grown on a hydrogen-terminated Si(111) surface [H-Si(111)] under ultrahigh vacuum were observed by low-energy electron microscopy and microbeam low-energy electron diffraction analyses. We determined the epitaxial structure (type I) inside a unique polycrystalline domain structure of such dendrites, each of which has six equivalent epitaxial orientations of Pn two-dimensional (2D) unit cells. There are three sets of these cells, which are rotated {+-}120 deg. relative to each other. Domain boundaries inside each dendrite were successfully observed by scanning tunneling microscopy. In addition, we found another epitaxial relation (type II): the polycrystalline domain structure and lattice parameters are similar to those of the type-I dendrite; however, the 2D unit cells of the type-II dendrite are rotated approximately 90 deg. relative to those of the type-I dendrite. These results suggest that the crystal structure of the dendrites on H-Si(111) is determined mainly by the interaction between Pn molecules. Each dendrite is composed of domains that are exclusively of type I or II. The so-called point-on-line coincidences are found between the Pn 2D lattices of types I and II, and H-Si(111). The higher commensurability of the type-I dendrites than the type-II dendrites results in a higher probability of type-I dendrite formation. Moreover, for both the type-I and type-II dendrites, we found supercell structures. We estimated the minimum interface energy between the dendrite and H-Si(111) from an island's free energy, which is necessary to reproduce the growth of a single-monolayer high dendrite.

  15. Preparation of polycrystalline Bi3Fe5O12 garnet films

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Katayama, T.; Satoh, K.; Yamamoto, H.

    1991-04-01

    Polycrystalline films of nonthermodynamical garnet Bi3Fe5O12 were synthesized by direct epitaxial growth from the vapor phase. Polycrystalline thin layers of various kinds of thermodynamical garnets prepared on fused quartz substrates were employed as the substrate materials. The saturation magnetization of the film grown onto the polycrystalline GGG layer was 140 mT at 5 K. The films showed quite large magneto-optical effects. In the film on the GGG layer, the Faraday rotation angle at a wavelength of 633 nm was -5.5 deg/μm and the magneto-optical Kerr rotation angle at 455 nm was -0.9°.

  16. Device physics of thin-film polycrystalline cells and modules: Phase 1 annual report: February 1998--January 1999

    SciTech Connect

    Sites, J. R.

    1999-12-21

    This report describes work done by Colorado State University (CSU) during Phase 1 of this subcontract. CSU researchers continued to make basic measurements on CI(G)S and CdTe solar cells fabricated at different labs, to quantitatively deduce the loss mechanisms in these cells, and to make appropriate comparisons that illuminate where progress is being made. Cells evaluated included the new record CIGS cell, CIS cells made with and without CdS, and those made by electrodeposition and electroless growth from solution. Work on the role of impurities focused on sodium in CIS. Cells with varying amounts of sodium added during CIS deposition were fabricated at NREL using four types of substrates. The best performance was achieved with 10{sup {minus}2}--10{sup {minus}1} at% sodium, and the relative merits of proposed mechanisms for the sodium effect were compared. Researchers also worked on the construction and testing of a fine-focused laser-beam apparatus to measure local variations in polycrystalline cell performance. A 1{micro}m spot was achieved, spatial reproducibility in one and two dimensions is less than 1 {micro}m, and photocurrent is reliably measured when the 1{micro}m spot is reduced as low as 1-sun in intensity. In elevated-temperature stress tests, typical CdTe cells held at 100 C under illumination and normal resistive loads for extended periods of time were generally very stable; but those held under reverse or large forward bias and those contacted using larger amounts of copper were somewhat less stable. CdTe cell modeling produced reasonable fits to experimental data, including variations in back-contact barriers. A major challenge being addressed is the photovoltaic response of a single simple-geometry crystallite with realistic grain boundaries.

  17. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    PubMed

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-07-29

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

  18. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors.

    PubMed

    El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping

    2009-07-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in

  19. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    SciTech Connect

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao Qihua; Li Yixin; Street, Robert A.; Lu Jengping

    2009-07-15

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of {approx}10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical

  20. Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors

    PubMed Central

    El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping

    2009-01-01

    Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill

  1. Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS

    NASA Astrophysics Data System (ADS)

    Harsha, S. Sree; Melinger, Joseph. S.; Qadri, S. B.; Grischkowsky, D.

    2012-01-01

    The influence of the metal substrate on the measurement of high resolution THz vibrational modes of molecular solids with the waveguide THz-TDS technique is investigated. The sample film of salicylic acid is studied using waveguide THz-TDS on three different metal substrates and two-surface passivated substrates. The independence of the observed THz vibrational modes to the metal substrate is demonstrated. Independently, surface passivation is presented as a viable experimental addition to the waveguide THz-TDS technique to aid the characterization of samples with known reactivity to metal surfaces.

  2. The electrical conductivity of polycrystalline metallic films

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  3. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual subcontract report, 20 March 1993--19 March 1994

    SciTech Connect

    Trefny, J.U.; Furtak, T.E.; Williamson, D.L.; Kim, D.

    1994-07-01

    This report describes the principal results of work performed during the second year of a 3-year program at the Colorado School of Mines (CSM). The work on transparent conducting oxides was carried out primarily by CSM students at NREL and is described in three publications listed in Appendix C. The high-quality ZnO produced from the work was incorporated into a copper indium diselenide cell that exhibited a world-record efficiency of 16.4%. Much of the time was devoted to the improvement of cadmium sulfide films deposited by chemical bath deposition methods and annealed with or without a cadmium chloride treatment. Progress was also made in the electrochemical deposition of cadmium telluride. High-quality films yielding CdS/CdTe/Au cells of greater than 10% efficiency are now being produced on a regular basis. We explored the use of zinc telluride back contacts to form an n-i-p cell structure as previously used by Ametek. We began small-angle x-ray scattering (SAXS) studies to characterize crystal structures, residual stresses, and microstructures of both CdTe and CdS. Large SAXS signals were observed in CdS, most likely because of scattering from gain boundaries. The signals observed to date from CdTe are much weaker, indicating a more homogeneous microstructure. We began to use the ADEPT modeling program, developed at Purdue University, to guide our understanding of the CdS/CdTe cell physics and the improvements that will most likely lead to significantly enhanced efficiencies.

  4. Pixel structures to compensate nonuniform threshold voltage and mobility of polycrystalline silicon thin-film transistors using subthreshold current for large-size active matrix organic light-emitting diode displays

    NASA Astrophysics Data System (ADS)

    Na, Jun-Seok; Kwon, Oh-Kyong

    2014-01-01

    We propose pixel structures for large-size and high-resolution active matrix organic light-emitting diode (AMOLED) displays using a polycrystalline silicon (poly-Si) thin-film transistor (TFT) backplane. The proposed pixel structures compensate the variations of the threshold voltage and mobility of the driving TFT using the subthreshold current. The simulated results show that the emission current error of the proposed pixel structure B ranges from -2.25 to 2.02 least significant bit (LSB) when the variations of the threshold voltage and mobility of the driving TFT are ±0.5 V and ±10%, respectively.

  5. Thin-Film Photovoltaics: Status and Applications to Space Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  6. Applications of thin-film photovoltaics for space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The authors discuss the potential applications of thin-film polycrystalline and amorphous cells for space. There have been great advances in thin-film solar cells for terrestrial applications. Transfer of this technology to space applications could result in ultra low-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper indium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon arrays. The possibility of using thin-film multi-bandgap cascade solar cells is discussed.

  7. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  8. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  9. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  10. Substrate effect on excimer laser assisted crystal growth in phosphor Ca 0.997Pr 0.002TiO 3 polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2007-12-01

    Ca 0.997Pr 0.002TiO 3 thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition process with a KrF laser at a fluence of 100 mJ/cm 2 at 100 °C. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide coated glasses. The crystallinity of the Ca 0.997Pr 0.002TiO 3 films depended on the substrates; the borosilicate and indium-tin-oxide coated glasses with a large optical absorption of a KrF laser ( λ = 248 nm) were effective for the crystallization for the Ca 0.997Pr 0.002TiO 3. In addition, a high thermal conductivity of the indium-tin-oxide coated glass substrate could also improve the crystallinity due to an enhancement of thermal propagation to the film. Oxygen annealing at 500 °C for 6 h successfully eliminated the oxygen vacancy produced by the laser irradiation, and also remarkably improved the PL emission intensity. Thus, we have shown that substrate properties such as an optical absorbance and a thermal conductivity were quite important factors for the crystal growth and the PL emission for the Ca 0.997Pr 0.002TiO 3 in the excimer laser assisted metal organic deposition process.

  11. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  12. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual subcontract report, 20 March 1992--19 March 1993

    SciTech Connect

    Trefny, J.U.; Furtak, T.E.; Wada, N.; Williamson, D.L.; Kim, D.

    1993-08-01

    This report describes progress during the first year of a 3-year program at Colorado School of Mines, based upon earlier studies performed by Ametek Corporation, to develop specific layers of the Ametek n-i-p structure as well as additional studies of several transparent conducting oxides. Thin films of ZnO and ZnO:Al were deposited under various conditions. For the n-layer of the Ametek structure, a dip-coating method was developed for the deposition of CdS films. The authors also present data on the characterization of these films by X-ray diffraction, Raman spectroscopy, scanning tunneling microscopy, small-angle X-ray scattering, and other techniques. They made progress in the electrodeposition of the CdTe i-layer of the Ametek structure. They developed appropriate electrochemical baths and are beginning to understand the role of the many experimental parameters that must be controlled to obtain high-quality films of this material. They explored the possibility of using an electrochemical process for fabricating the ZnTe p-layer. Some preliminary success was achieved, and this step will be pursued in the next phase. Finally, they fabricated a number of ``dot`` solar cells with the structure glass/SnO{sub 2}/CdS/CdTe/Au. Several cells with efficiencies in the range of 5%-6% were obtained, and they are confident, given recent progress, that cells with efficiencies in excess of 10% will be achieved in the near future.

  13. Electrodeposited CuInSe{sub 2} thin film devices

    SciTech Connect

    Raffaelle, R.P.; Mantovani, J.G.; Friedfeld, R.B.; Bailey, S.G.; Hubbard, S.M.

    1997-12-31

    The authors have been investigating the electrochemical deposition of thin films and junctions based on copper indium diselenide (CIS). CIS is considered to be one of the best absorber materials for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a simple and inexpensive method for producing thin-film CIS. The authors have produced both p and n type CIS thin films, as well as a CIS pn junction electrodeposited from a single aqueous solution. Optical bandgaps were determined for these thin films using transmission spectroscopy. Current versus voltage characteristics were measured for Schottky barriers on the individual films and for the pn junction.

  14. Research on polycrystalline thin-film CuInGaSe{sub 2} solar cells. Annual subcontract report, 3 May 1991--21 May 1993

    SciTech Connect

    Chen, W.S.; Stewart, J.M.; Mickelsen, R.A.; Devaney, W.E.; Stanbery, B.J.

    1993-10-01

    This report describes work to fabricate high-efficiency CdZnS/CuInGaSe{sub 2}, thin-film solar cells and to develop improved transparent conductor window layers such as ZnO. The specific technical milestone for Phase I was to demonstrate an air mass (AM) 1.5 global 13% , 1-cm{sup 2} total-area CuInGaSe{sub 2} (CIGS) thin-film solar cell. For Phase II, the objective was to demonstrate an AM1.5 global 13.5%, 1-cm{sup 2} total-area efficiency. We focused our activities on three areas. First, we modified the CIGS deposition system to double its substrate capacity. Second, we developed new tooling to enable investigation of a modified aqueous CdZnS process in which the goal was to improve the yield of this critical step in the device fabrication process. Third, we upgraded the ZnO sputtering system to improve its reliability and reproducibility. A dual rotatable cathode metallic source was installed, and the sputtering parameters were further optimized to improve ZnO`s properties as a transparent conducting oxide (TCO). Combining the refined CdZnS process with CIGS from the newly fixtured deposition system enable us to fabricate and deliver a ZnO/Cd{sub 0.08}Zn{sub 0.20}S/CuIn{sub 0.74}Ga{sub 0.26}Se{sub 2} cell on alumina with I-V characteristics, as measured by NREL under standard test conditions, of 13.7% efficiency with V{proportional_to} = 0.5458 V, J{sub sc} = 35.48 mA/cm{sup 2}, FF = 0.688, and efficiency = 14.6%.

  15. Acoustoelectric current saturation in {ital c}-axis fiber-textured polycrystalline zinc oxide films

    SciTech Connect

    Pompe, T.; Srikant, V.; Clarke, D.R.

    1996-12-01

    Acoustoelectric current saturation, which until now has only been observed in piezoelectric single crystals, is observed in thin polycrystalline zinc oxide films. Epitaxial ZnO films on {ital c}-plane sapphire and textured ZnO polycrystalline films on fused silica both exhibit current saturation phenomenon. The values of the saturation current densities are in the range 10{sup 5}{endash}10{sup 6} A/cm{sup 2}, depending on the carrier concentration in the film, with corresponding saturation electric fields of 3{endash}5{times}10{sup 3} V/cm. In addition to the current saturation, the electrical properties of the films degraded with the onset of the acoustoelectric effect but could be restored by annealing at 250{degree}C in a vacuum for 30 min. {copyright} {ital 1996 American Institute of Physics.}

  16. The electrical conduction properties of poly-crystalline indium-zinc-oxide film

    SciTech Connect

    Tomai, S.; Terai, K.; Junke, T.; Tsuruma, Y.; Ebata, K.; Yano, K.; Uraoka, Y.

    2014-02-28

    We have developed a high-mobility and high-uniform oxide semiconductor using poly-crystalline semiconductor material composed of indium and zinc (p-IZO). A typical conduction mechanism of p-IZO film was demonstrated by the grain boundary scattering model as in polycrystalline silicon. The grain boundary potential of the 2-h-annealed IZO film was calculated to be 100 meV, which was comparable to that of the polycrystalline silicon. However, the p-IZO thin film transistor (TFT) measurement shows rather uniform characteristics. It denotes that the mobility deterioration around the grain boundaries is lower than the case for low-temperature polycrystalline silicon. This assertion was made based on the difference of the mobility between the polycrystalline and amorphous IZO film being much smaller than is the case for silicon transistors. Therefore, we conclude that the p-IZO is a promising material for a TFT channel, which realizes high drift mobility and uniformity simultaneously.

  17. Research on polycrystalline thin-film submodules based on CuInSe{sub 2} materials. Final subcontract report, 11 November 1990--30 June 1995

    SciTech Connect

    Arya, R; Fogleboch, J; Kessler, J; Russell, L; Skibo, S; Wiedeman, S

    1996-01-01

    This report describes work performed in development of CIS-based photovoltaic (PV) products. The activity began with developing manufacturable deposition methods for all required thin-film layers and developing and understanding processes using those methods. It included demonstrating the potential for high conversion efficiency and followed with developing viable methods for module segment formation and interconnection. These process steps were integrated to fabricate monolithic CIS-based submodules. An important result of this program is the basis of understanding established in developing this material for PV applications, which is necessary to address issues of manufacturability and cost-which were recognized early in the program as being determined by successful solutions to issues of yield, reproducibility, and control as much as by material and energy costs, conversion efficiency, and process speed. Solarex identified at least one absorber formation process that is very robust to shunt formation from pinholes or point defects, tolerant of variation in processing temperature and elemental composition, and is capable of producing high conversion efficiency. This program also allowed development and scale-up of processes for the deposition of all other substrate, heterojunction buffer, and window layers and associated scribing/module formation operations to 1000-CM{sup 2} size. At the completion of this program, Solarex has in place most of the necessary elements to begin the transition to pilot operation of CIS manufacturing activities.

  18. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  19. Grain boundary mediated leakage current in polycrystalline HfO2 films

    SciTech Connect

    Mckenna, Keith P.; Shluger, AL; Iglesias, V.; Porti, M.; Nafria, M.; Lanza, M.; Bersuker, G.

    2011-07-01

    In this work, we combine conductive atomic force microscopy (CAFM) and first principles calculations to investigate leakage current in thin polycrystalline HfO2 films. A clear correlation between the presence of grain boundaries and increased leakage current through the film is demonstrated. The effect is a result of a number of related factors, including local reduction in the oxide film thickness near grain boundaries, the intrinsic electronic properties of grain boundaries which enhance direct tunnelling relative to the bulk, and segregation of oxygen vacancy defects which increase trap assisted tunnelling currents. These results highlight the important role of grain boundaries in determining the electrical properties of polycrystalline HfO2 films with relevance to applications in advanced logic and memory devices.

  20. Pixel-Level Digital-to-Analog Conversion Scheme for Compact Data Drivers of Active Matrix Organic Light-Emitting Diodes with Low-Temperature Polycrystalline Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wook; Choi, Byong-Deok

    2010-03-01

    This paper shows that a part of a digital-to-analog conversion (DAC) function can be included in a pixel circuit to save the circuit area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). Because the pixel-level DAC can be constructed by two TFTs and one small capacitor, the pixel circuit does not become markedly complex. The design of an 8-bit DAC, which combines a 6-bit resistor-string-based DAC and a 2-bit pixel-level DAC for a 4-in. diagonal VGA format active matrix organic light-emitting diode (AMOLED), is shown in detail. In addition, analysis results are presented, revealing that the 8-bit DAC scheme including a 2-bit pixel-level DAC with 1:3 demultiplexing can be applied to very high video formats, such as XGA, for a 3 to 4-in. diagonal AMOLED. Even for a 9- to 12-in. diagonal AMOLED, the proposed scheme can still be applied to the XGA format, even though no demultiplexing is allowed. The total height of the proposed 8-bit DAC is approximately 960 µm, which is almost one-half of that of the previous 6-bit resistor-string-based DAC.

  1. Pixel-Level Digital-to-Analog Conversion Scheme for Compact Data Drivers of Active Matrix Organic Light-Emitting Diodes with Low-Temperature Polycrystalline Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Tae-Wook Kim,; Byong-Deok Choi,

    2010-03-01

    This paper shows that a part of a digital-to-analog conversion (DAC) function can be included in a pixel circuit to save the circuit area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs). Because the pixel-level DAC can be constructed by two TFTs and one small capacitor, the pixel circuit does not become markedly complex. The design of an 8-bit DAC, which combines a 6-bit resistor-string-based DAC and a 2-bit pixel-level DAC for a 4-in. diagonal VGA format active matrix organic light-emitting diode (AMOLED), is shown in detail. In addition, analysis results are presented, revealing that the 8-bit DAC scheme including a 2-bit pixel-level DAC with 1:3 demultiplexing can be applied to very high video formats, such as XGA, for a 3 to 4-in. diagonal AMOLED. Even for a 9- to 12-in. diagonal AMOLED, the proposed scheme can still be applied to the XGA format, even though no demultiplexing is allowed. The total height of the proposed 8-bit DAC is approximately 960 μm, which is almost one-half of that of the previous 6-bit resistor-string-based DAC.

  2. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  3. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  4. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  5. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  6. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  7. Raman Microscopic Characterization of Proton-Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.; Davidson, J. L.; Lance, M. J.

    2004-01-01

    The microstructural effects of irradiating polycrystalline diamond films with proton dosages ranging from 10(exp 15) to 10(exp 17) H(+) per square centimeter was examined. Scanning Electron Microscopy and Raman microscopy were used to examine the changes in the diamond crystalline lattice as a function of depth. Results indicate that the diamond lattice is retained, even at maximum irradiation levels.

  8. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  9. Anisotropic thermal conductivity of thin polycrystalline oxide samples

    SciTech Connect

    Tiwari, A.; Boussois, K.; Nait-Ali, B.; Smith, D. S.; Blanchart, P.

    2013-11-15

    This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for such anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.

  10. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  11. Thickness-dependent cooperative aging in polycrystalline films of antiferromagnet CoO

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Cheng, Xiang; Boettcher, Stefan; Urazhdin, Sergei; Novozhilova, Lydia

    2016-07-01

    We demonstrate that thin polycrystalline films of antiferromagnet CoO, in bilayers with ferromagnetic Permalloy, exhibit slow power-law aging of their magnetization state. The aging characteristics are remarkably similar to those previously observed in thin epitaxial Fe50Mn50 films, indicating that these behaviors are likely generic to ferromagnet/antiferromagnet bilayers. In very thin films, aging is observed over a wide temperature range. In thicker CoO, aging effects become reduced at low temperatures. Aging entirely disappears for large CoO thicknesses. We also investigate the dependence of aging characteristics on temperature and magnetic history. Analysis shows that the observed behaviors are inconsistent with the Neel-Arrhenius model of thermal activation, and are instead indicative of cooperative aging of the antiferromagnet. Our results provide new insights into the mechanisms controlling the stationary states and dynamics of ferromagnet/antiferromagnet bilayers, and potentially other frustrated magnetic systems.

  12. Crystal structure analysis in solution-processed uniaxially oriented polycrystalline thin film of non-peripheral octahexyl phthalocyanine by grazing incidence wide-angle x-ray scattering techniques

    NASA Astrophysics Data System (ADS)

    Ohmori, Masashi; Uno, Takashi; Nakatani, Mitsuhiro; Nakano, Chika; Fujii, Akihiko; Ozaki, Masanori

    2016-10-01

    Uniaxially oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which exhibits high carrier mobility, have been fabricated by the bar-coating technique, which is a simple solution process. The molecular orientation and molecular steps in the thin film were observed by the polarized spectroscopy and the atomic force microscopy, respectively. The three-dimensional molecular packing structure in the thin film was investigated by the grazing incidence wide-angle X-ray scattering technique with an in-plane sample rotation. The crystal orientation was clarified, and the three-dimensional molecular packing structure of the thin film was found to match the single crystal structure. Moreover, the X-ray diffraction patterns of the oriented thin films were simulated by using the lattice parameters of C6PcH2 single crystal to reproduce the observed X-ray diffraction patterns.

  13. Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    SciTech Connect

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.; Lee, Michael V.; Qi, Yabing; Joo Shin, Tae; Ahn, Docheon; Lee, Han-Koo; Baik, Jaeyoon; Shin, Hyun-Joon

    2015-03-15

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  14. Thin-film coatings

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1980-01-01

    Thin, adherent, high density films are discussed with respect to their application in two plasma physics techniques (ion plating and sputtering). The operation of each technique is described as well as what surfaces can be coated, and what kind of materials can be applied. The effects of these films on the mechanical properties of solid surfaces are also discussed.

  15. Thin film processing of photorefractive BaTiO3

    NASA Technical Reports Server (NTRS)

    Schuster, Paul R.; Potember, Richard S.

    1991-01-01

    The principle objectives of this ongoing research involve the preparation and characterization of polycrystalline single-domain thin films of BaTiO3 for photorefractive applications. These films must be continuous, free of cracks, and of high optical quality. The two methods proposed are sputtering and sol-gel related processing.

  16. Synchrotron X-ray Microdiffraction Analysis of Proton Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. I.; Davidson, J. L.; Ice, G. E.; Liu, W.

    2004-01-01

    X-ray microdiffraction is a non-destructive technique that allows for depth-resolved, strain measurements with sub-micron spatial resolution. These capabilities make this technique promising for understanding the mechanical properties of MicroElectroMechanical Systems (MEMS). This investigation examined the local strain induced by irradiating a polycrystalline diamond thin film with a dose of 2x10(exp 17) H(+)per square centimeter protons. Preliminary results indicate that a measurable strain, on the order of 10(exp -3), was introduced into the film near the End of Range (EOR) region of the protons.

  17. X-ray diffraction characterization of thin superconductive films

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Book, G.W.; Carter, W.B.

    1995-12-31

    The physical and mechanical properties of thin films are often different from the properties of bulk material and are dictated by the film/substrate orientation relationship, crystal anisotropy and crystalgraphic texture of the film. X-ray diffraction texture analysis provides information about preferential film growth and can be used for optimization of deposition parameters and prediction of properties of thin films. An x-ray back reflection technique using the Braga-Brentano geometry with experimental corrections for absorption and defocusing was used to study thin ceramic films deposited by combustion chemical vapor deposition (CCVD). The film/substrate orientation relationships of YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) superconducting thin films deposited via CCVD on single crystal MgO and polycrystalline silver substrates were studied. The as-deposited films on single crystal (100) MgO substrates showed strong preferential growth with the basal plane parallel to the substrate surface (c-axis up growth). Texture analysis showed two in-plane alignment orientations of the film with respect to the substrate, with YBCO [100] and [110] aligned with the [100] MgO substrate. YBCO films deposited on cold-rolled polycrystalline silver displayed c-axis up growth indicating that the orientation of the polycrystalline substrate (brass type texture) did not induce detectable in-plane preferential growth of the YBCO.

  18. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  19. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  20. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    SciTech Connect

    Coloma Ribera, R. Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.

    2015-08-07

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  1. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Yakshin, A. E.; Bijkerk, F.

    2015-08-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.

  2. Thin film composite actuators

    NASA Astrophysics Data System (ADS)

    Su, Quanmin; Kim, Taesung; Zheng, Yun; Wuttig, Manfred R.

    1995-05-01

    The mechanical properties of Ni50Ti50 deposited on Si substrates were studied focussing on the interaction of the film and substrate. This interaction determines the transformation characteristics through interface accommodation and mechanical constraints exerted by the substrate stiffness. Substrate stiffness, controlled by the film/substrate thickness ratio, was found to have a substantial influence on the output energy of the film/substrate composite. A switch type composite based on this knowledge was fabricated and tested. The thermo-mechanical properties of Terfenol-D thin films deposited on Si substrates were studied by static and dynamic measurements of film/substrate composite cantilevers. The Curie transition, (Delta) E effect and mechanical damping of the film were measured simultaneously. The stress in the film was controlled by annealing below the recrystallization temperature and determined to vary from -500 MPa, compression, in as deposited films to +480 MPa, tension, in annealed films. The Curie temperature shifts from 80 degree(s)C to 140 degree(s)C as the tension increases while the structure of the film remains amorphous. The stress change induced by annealing also drastically effects the film's damping characteristics. The (Delta) E effect of the amorphous material, about 20%, was used to estimate the magnetostriction, (lambda) s approximately equals 4 (DOT) 10-3.

  3. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  4. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  5. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  6. Recent technological advances in thin film solar cells

    SciTech Connect

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  7. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  8. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  9. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  10. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  11. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  12. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  13. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. Thin-film polycrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, A. K.; Feng, T.; Eustace, D. J.; Maruska, H. P.

    1981-07-01

    The highest efficiencies achieved with single crystals are 14.1% for ITO/n-SI and 13.3% of SnO2/n-Si, while the corresponding values for polysilicon are 11.2% and 10.1%. For large area single crystal devices the efficiency values are 11.7% and 11.2% for ITO and SnO2 cells, respectively, while for polysilicon the corresponding values are 9.82% and 8.55%. The lower efficiency for large area devices is mainly due to lower J sub sc and FF. Results are presented to show the optimum grid spacing required. From stability studies it is shown that there are two distinct mechanisms for degradation, one optical and the other thermal. The optical degradation could be eliminated if the cells could be protected from uv light and the thermal degradation can be prevented if the cells are operated below 100 C.

  15. Electrodeposited CulnSe2 Thin Film Junctions

    NASA Technical Reports Server (NTRS)

    Raffaelle, R. P.; Mantovani, J. G.; Bailey, S. G.; Hepp, A. F.; Gordon, E. M.; Haraway, R.

    1998-01-01

    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

  16. Electrodeposited CuInSe2 Thin Film Junctions

    NASA Technical Reports Server (NTRS)

    Raffaelle, R. P.; Mantovani, J. G.; Bailey, S. G.; Hepp, A. F.; Gordon, E. M.; Haraway, R.

    1997-01-01

    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

  17. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  18. The state of the art of thin-film photovoltaics

    SciTech Connect

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  19. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  20. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  1. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  2. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  3. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  4. Room temperature ferroelectricity in continuous croconic acid thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Wang, Xiao; Yu, Le; Ahmadi, Zahra; Costa, Paulo S.; DiChiara, Anthony D.; Cheng, Xuemei; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan

    2016-09-01

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  5. Growth, microstructure, optical and electrical properties of sprayed CuInSe{sub 2} polycrystalline films

    SciTech Connect

    Akl, Alaa A.; Afify, H.H.

    2008-06-03

    Polycrystalline thin films of CuInSe{sub 2} have been prepared by chemical spray pyrolysis technique as a function of Cu/In ratio. Incremental growth of the various ratios followed at different substrate temperatures ranging from 548 to 623 K. Characterizations by means of compositional analysis, X-ray diffraction and spectrophotometry measurements have been carried out. Voigt profile method has been used to determine the microstructure parameter (crystallite/domain size and macrostrain). The effect of Cu/In ratio as well as substrate temperature on the optical features (absorption coefficient and band gap) of these films has been investigated. The films of different Cu/In ratios (0.9-1.1) displayed a band gap from 0.92 to 1.025 eV for direct transition. The dark resistivity measurements at room temperature of Cu-rich samples show about five orders of magnitude higher than that of In-rich samples.

  6. A versatile platform for magnetostriction measurements in thin films

    NASA Astrophysics Data System (ADS)

    Pernpeintner, M.; Holländer, R. B.; Seitner, M. J.; Weig, E. M.; Gross, R.; Goennenwein, S. T. B.; Huebl, H.

    2016-03-01

    We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering.

  7. Thin film interconnect processes

    NASA Astrophysics Data System (ADS)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  8. EBSD analysis of electroplated magnetite thin films

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Teng, C. L.; Ryan, M. P.; Hartmann, U.; Mücklich, F.

    2010-05-01

    By means of electron backscatter diffraction (EBSD), we analyse the crystallographic orientation of electroplated magnetite thin films on Si/copper substrates. Varying the voltage during the electroplating procedure, the resulting surface properties are differing considerably. While a high voltage produces larger but individual grains on the surface, the surfaces become smoother on decreasing voltage. Good quality Kikuchi patterns could be obtained from all samples; even on individual grains, where the surface and the edges could be measured. The spatial resolution of the EBSD measurement could be increased to about 10 nm; thus enabling a detailed analysis of single magnetite grains. The thin film samples are polycrystalline and do not exhibit a preferred orientation. EBSD reveals that the grain size changes depending on the processing conditions, while the detected misorientation angles stay similar.

  9. Microstructure of polycrystalline PBTTT films: domain mapping and structure formation.

    PubMed

    Schuettfort, Torben; Watts, Benjamin; Thomsen, Lars; Lee, Mijung; Sirringhaus, Henning; McNeill, Christopher R

    2012-02-28

    We utilize near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and scanning transmission X-ray microscopy (STXM) to study the microstructure and domain structure of polycrystalline films of the semiconducting polymer poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Total electron yield NEXAFS spectroscopy is used to examine the surface structure of the first 1-2 molecular layers, while bulk-sensitive STXM is used to produce maps of domain orientation and order sampled through the entire film thickness. We study different phases of PBTTT including as-cast, terraced and nanoribbon morphologies produced via spin-coating as well as aligned films of as-cast and nanoribbon morphologies produced by zone-casting. For the terraced morphology, domains are observed that are larger than the size of the terraced surface features, and the calculated degree of order is reduced compared to the nanoribbon morphology. For zone-cast films, we find that, although little optical anisotropy is observed in the bulk of as-cast films, a high degree of surface structural anisotropy is observed with NEXAFS spectroscopy, similar to what is observed in annealed nanoribbon films. This observation indicates that the aligned surface structure in unannealed zone-cast films templates the bulk ordering of the aligned nanoribbon phase. STXM domain mapping of aligned nanoribbon films reveals elongated, micrometer-wide domains with each domain misoriented with respect to its neighbor by up to 45°, but with broad domain boundaries. Within each nanoribbon domain, a high degree of X-ray dichroism is observed, indicating correlated ordering throughout the bulk of the film.

  10. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  11. Significant enhancement of the thermoelectric figure of merit of polycrystalline Si films by reducing grain size

    NASA Astrophysics Data System (ADS)

    Valalaki, K.; Vouroutzis, N.; Nassiopoulou, A. G.

    2016-08-01

    The thermoelectric properties of p-type polycrystalline silicon thin films deposited by low pressure chemical vapour deposition (LPCVD) were accurately determined at room temperature and the thermoelectric figure of merit was deduced as a function of film thickness, ranging from 100 to 500 nm. The effect of film thickness on their thermoelectric performance is discussed. More than threefold increase in the thermoelectric figure of merit of the 100 nm thick polysilicon film was observed compared to the 500 nm thick film, reaching a value as high as 0.033. This enhancement is mainly the result of the smaller grain size in the thinner films. With the decrease in grain size the resistivity of the films is increased twofold and electrical conductivity decreased, however the Seebeck coefficient is increased by 30% and the thermal conductivity is decreased eightfold, being mainly at the origin of the increased figure of merit of the 100 nm film. Our experimental results were compared to known theoretical models and the possible mechanisms involved are presented and discussed.

  12. Growth and characterization of organic ferroelectric croconic acid thin films

    NASA Astrophysics Data System (ADS)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Enders, Axel; Gruverman, Alexei; Xu, Xiaoshan

    Using vapor phase evaporation, we have studied the growth of the croconic acid (CCA) thin films, at various conditions such as temperature, thickness, growth speed, and substrates. The morphology of thin film was measured by atomic force microscopy (AFM); the ferroelectric property was confirmed by piezoresponse force microscopy (PFM). A critical thickness of 40 nm and optimal temperature of -30 celsius were found for continuous films, while the substrate and growth speed are found to play a minimal role. According to the reflection high energy electron diffraction (RHEED), the CCA films are polycrystalline. For a 40 nm continuous film, the roughness is about 3 nm, while the coercive voltage for the ferroelectric domain switching is approximately 7V. This is the first molecule ferroelectric thin film. The successful growth of continuous CCA films enhances the applications potential of CCA, which is a molecular crystal of ferroelectricity. Supported by NSF through UNL MRSEC (DMR-1420645).

  13. On properties of boundaries and electron conductivity in mesoscopic polycrystalline silicon films for memory devices

    SciTech Connect

    Berman, G.P.; Doolen, G.D.; Mainieri, R.; Rehacek, J.; Campbell, D.K.; Luchnikov, V.A.; Nagaev, K.E.

    1998-02-01

    The authors present the results of MD modeling on the structural properties of grain boundaries (GB) in thin polycrystalline films. The transition from crystalline boundaries with low mismatch angle to amorphous boundaries is investigated. It is shown that the structures of the GBs satisfy a thermodynamical criterion suggested in a cited reference. The potential energy of silicon atoms is closely related with a geometrical quantity -- tetragonality of their coordination with their nearest neighbors. A crossover of the length of localization is observed to analyze the crossover of the length of localization of the single electron states and properties of conductance of the thin polycrystalline film at low temperature. They use a two-dimensional Anderson localization model, with the random one site electron charging energy for a single grain (dot), random non-diagonal matrix elements, and random number of connections between the neighboring grains. The results on the crossover behavior of localization length of the single electron states and characteristic properties of conductance are presented in the region of parameters where the transition from an insulator to a conductor regimes takes place.

  14. Method for production of free-standing polycrystalline boron phosphide film

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  15. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOEpatents

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  16. Highly oriented polycrystalline Cu2O film formation using RF magnetron sputtering deposition for solar cells

    NASA Astrophysics Data System (ADS)

    Noda, S.; Shima, H.; Akinaga, H.

    2014-02-01

    Room temperature sputtering deposition and re-crystallization of the deposited thin films by rapid thermal annealing have been evaluating in detail as a formation method of Cu2O active layer for solar cells, which minimize thermal budget in fabrication processes. Single phase polycrystalline Cu2O films were obtained by a magnetron rf sputtering deposition and its crystallinity and electrical characteristics were controlled by the annealing. Hall mobility was improved up to 17 cm2V-1s-1 by the annealing at 600°C for 30s. Since this value was smaller than 47 cm2V-1s-1 of the film deposited under thermal equilibrium state using pulsed laser deposition at 600°C, some contrivances were necessary to compensate the deficiency. It was understood that the sputter-deposited Cu2O films on (111)-oriented Pt films were strongly oriented to (111) face also by the self-assembly and the crystallinity was improved by the annealing preserving its orientation. The sputter-deposited film quality was expected to become equivalent to the pulsed laser deposition film from the results of X-ray diffractometry and photoluminescence.

  17. Nanomechanical behavior of (1 0 0) oriented titanium thin films

    NASA Astrophysics Data System (ADS)

    Vasu, Kuraganti; Ghanashyam Krishna, Mamidipudi; Padmanabhan, Kuppuswamy Anantha

    2014-03-01

    Titanium thin films were deposited on single crystal Si (3 1 1) and polycrystalline 316 LN nuclear grade stainless steel substrates by RF magnetron sputtering. X-ray diffraction revealed that, irrespective of substrate type, films exhibit preferential growth along the (1 0 0) plane. The microstructure of the films corresponds to the zone-I type in structure zone model on both substrates. The hardness and Young's modulus of the films were extracted from load-displacement curves. The maximum values of hardness and Young's modulus were 12 and 132 GPa respectively for 220 nm thin film on SS substrate. The electrical resistivity data revealed that the films are metallic in nature and the resistivity is lower in the case of the 220 nm thickness film, on both substrates. The observed changes in mechanical and electrical properties can be correlated with variations in the microstructure of Ti films.

  18. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  19. Thin film magnetism

    SciTech Connect

    Bader, S.D. )

    1990-06-01

    New developments in thin-film magnetism are reviewed with an emphasis on the ultrathin regime. The scope includes relatively simple metallic systems in overlayer, sandwich, and superlattice configurations. Sample fabrication, characterization, and magnetic measurement techniques are outlined by highlighting some of the more modern experimental innovations. Current issues and advances that demonstrate the symbiotic relationship between experiment and theory are then examined, including the surface magnetic anisotropy, the two-dimensional critical behavior, the creation of metastable phases via epitaxy, and phenomena associated with coupled magnetic layers. The review ends with a brief account of the impact of the various contemporary developments on the applications area.

  20. Formation and ferromagnetic properties of FeSi thin films

    SciTech Connect

    Shin, Yooleemi; Anh Tuan, Duong; Hwang, Younghun; Viet Cuong, Tran; Cho, Sunglae

    2013-05-07

    In this work, the growth and ferromagnetic properties of {epsilon}-FeSi thin film on Si(100) substrate prepared by molecular beam epitaxy are reported. The inter-diffusion of Fe layer on Si(100) substrate at 600 Degree-Sign C results in polycrystalline {epsilon}-FeSi layer. The determined activation energy was 0.044 eV. The modified magnetism from paramagnetic in bulk to ferromagnetic states in {epsilon}-FeSi thin films was observed. The saturated magnetization and coercive field of {epsilon}-FeSi film are 4.6 emu/cm{sup 3} and 29 Oe at 300 K, respectively.

  1. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  2. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  3. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  4. Magnetooptical Voigt effect in rippled polycrystalline Co films

    NASA Astrophysics Data System (ADS)

    Arranz, Miguel A.; Colino, José M.

    2016-10-01

    The magneto-optical properties of eroded polycrystalline Co films were investigated using Kerr and Voigt magnetometry. Both techniques showed the existence of two magnetization axes, parallel and perpendicular to the ripples direction. The study on the polarization rotation of the transmitted light revealed a fine magnetic birefringence correlated to that two-axes magnetic structure. Additionally, the field depencence of that induced rotation depicted asymmetric hysteresis loops, comprising linear (Faraday) and quadratic (Voigt) dependences on the in-plane magnetic field applied to these rippled Co films. This latter contribution, depending on the spin-orbit coupling in crystalline systems, is here uncovered from the different mechanisms for reversing the magnetization along the symmetry axes of the ripples array. That dissimilarity enabled us to characterize its magnetooptical tensor with a two-fold symmetry, yielding the occurrence of magnetic birefringence in the transmitted light. This Voigt effect in uniaxially patterned Co films can be satisfactorily explained in the frame of magnetization reversal along that two-axes magnetic structure.

  5. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  6. Thin films: Past, present, future

    SciTech Connect

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  7. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  8. Growth and Characterization of Bismuth and Antimony Thin Films

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Berrios, A. R.; Collazo, R.; Garcia, J. L.; Ducoudray, G. O.

    1996-03-01

    We have grown thin films of bismuth and antimony using hot wall epitaxy. The polycrystalline films were grown onto (111)-silicon substrates. The chemical integrity of the films was established using Auger electron spectroscopy. The crystallographical properties of the films were assessed using x-ray diffraction techniques. We will report on the results of these characterization efforts, as well as, on the growth apparatus and process. Work supported in part by NSWC-CRADA 93-01 and EPSCoR-NSF Grant EHR-9108775

  9. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  10. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  11. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  12. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  13. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  14. Thin film diamond microstructure applications

    NASA Technical Reports Server (NTRS)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  15. Interfacial Charge Transfer Anisotropy in Polycrystalline Lead Iodide Perovskite Films.

    PubMed

    Yin, Jun; Cortecchia, Daniele; Krishna, Anurag; Chen, Shi; Mathews, Nripan; Grimsdale, Andrew C; Soci, Cesare

    2015-04-16

    Solar cells based on organic-inorganic lead iodide perovskite (CH3NH3PbI3) exhibit remarkably high power conversion efficiency (PCE). One of the key issues in solution-processed films is that often the polycrystalline domain orientation is not well-defined, which makes it difficult to predict energy alignment and charge transfer efficiency. Here we combine ab initio calculations and photoelectron spectroscopy to unravel the electronic structure and charge redistribution at the interface between different surfaces of CH3NH3PbI3 and typical organic hole acceptor Spiro-OMeTAD and electron acceptor PCBM. We find that both hole and electron interfacial transfer depend strongly on the CH3NH3PbI3 surface orientation: while the (001) and (110) surfaces tend to favor hole injection to Spiro-OMeTAD, the (100) surface facilitates electron transfer to PCBM due to surface delocalized charges and hole/electron accumulation at the CH3NH3PbI3/organic interfaces. Molecular dynamic simulations indicate that this is due to strong orbital interactions under thermal fluctuations at room temperature, suggesting the possibility to further improve charge separation and extraction in perovskite-based solar cells by controlling perovskite film crystallization and surface orientation.

  16. Highly (0001)-oriented Al-doped ZnO polycrystalline films on amorphous glass substrates

    NASA Astrophysics Data System (ADS)

    Nomoto, Junichi; Inaba, Katsuhiko; Osada, Minoru; Kobayashi, Shintaro; Makino, Hisao; Yamamoto, Tetsuya

    2016-09-01

    Very thin aluminum-doped zinc oxide (AZO) films with a well-defined (0001) orientation and a surface roughness of 0.357 nm were deposited on amorphous glass substrates at a temperature of 200 °C by radio frequency magnetron sputtering, which are promising, particularly in terms of orientation evolution, surface roughness, and carrier transport, as buffer layers for the subsequent deposition of highly (0001)-oriented AZO polycrystalline films of 490 nm thickness by direct current (DC) magnetron sputtering. Sintered AZO targets with an Al2O3 content of 2.0 wt. % were used. DC magnetron sputtered AZO films on bare glass substrates showed a mixed (0001) and the others crystallographic orientation, and exhibited a high contribution of grain boundary scattering to carrier transport, resulting in reduced Hall mobility. Optimizing the thickness of the AZO buffer layers to 10 nm led to highly (0001)-oriented bulk AZO films with a marked reduction in the above contribution, resulting in AZO films with improved Hall mobility together with enhanced carrier concentration. The surface morphology and point defect density were also improved by applying the buffer layers, as shown by atomic force microscopy and Raman spectroscopy, respectively.

  17. The interaction of polycrystalline copper films with dilute aqueous solutions of cupric chloride

    NASA Astrophysics Data System (ADS)

    Walsh, Lois Harper

    1989-10-01

    In the electronics industry, thin films of copper deposited on substrates are used as electrically conductive paths to interconnect semiconductor devices and other computer components. The dissolution of copper in a dilute aqueous cupric chloride solution was studied to achieve an understanding of the role microstructure plays in the dissolution process. A multi-technique approach was taken using combinations of solution chemistry, computer modeling, and microstructural characterization techniques to analyze as-received samples and to monitor the dissolution process. This latter approach allowed reaction rates and activation energies to be calculated from speciation concentrations derived from computer modeling of known thermochemical reactions. In conjunction with the solution analysis, surface techniques were used to analyze the concentration distribution of the various elements after sample exposure to the etchant. The etching characteristics of the polycrystalline thin copper films are dependent on the film's microstructure. A procedure is suggested that will aid future researchers in the correlation of microstructure and dissolution characteristics of different copper samples prior to mass production of metallization for microelectronic circuits.

  18. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  19. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect

    Seo, Won-Oh; Kim, Jihyun; Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol; Kim, Donghwan

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2 MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  20. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  1. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  2. Ultra thin gage plastic film

    NASA Technical Reports Server (NTRS)

    Cox, D. W., Jr.; Struble, A. D.

    1971-01-01

    Process utilizing specially modified conventional equipment, with changes in process temperature, pressure, and cooling requirements produces ultra thin 1.56 micron /0.0614 mil/ thick polyethylene film.

  3. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  4. Fluorine doped tin oxide (FTO) thin film as transparent conductive oxide (TCO) for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Muthukumar, Anusha; Rey, Germain; Giusti, Gael; Consonni, Vincent; Appert, Estelle; Roussel, Hervé; Dakshnamoorthy, Arivuoli; Bellet, Daniel

    2013-02-01

    Textured FTO thin films were deposited on corning glass substrates at 420°C by ultrasonic spray pyrolysis method. The electrical, optical and structural properties of the prepared functional FTO thin films were investigated. Homogeneous textured columnar grain morphology was observed through FESEM. As prepared thin films exhibits polycrystalline cassiterite structure with preferred orientation along (200). FTO is a promising TCO as front electrodes of thin film solar cells because of their good electrical properties (4.3×10-4ω.cm) combined with high transmission properties (86%).

  5. Structural, morphological, optical and photoluminescent properties of spray-deposited ZnSe thin film

    NASA Astrophysics Data System (ADS)

    Lohar, G. M.; Shinde, S. K.; Fulari, V. J.

    2014-11-01

    ZnSe thin films are successfully deposited by spray pyrolysis deposition technique. Deposited thin films are characterized by X-ray diffraction study, and it reveals that spray-deposited ZnSe thin films are polycrystalline with hexagonal crystal structure. Surface morphology is carried out by scanning electron microscopy. It shows cotton-like morphology, and optical properties, such as absorbance, transmittance, reflectance, band gap, refractive index, extinction coefficient are studied. Photoluminescence shows strong emission at 497 nm. Also, spray-deposited ZnSe thin films are hydrophilic in nature, which is shown by contact angle meter.

  6. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  7. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  8. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  9. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  10. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  11. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    PubMed Central

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  12. Electrochemically produced films and polycrystalline salts of C60n-: Their physical characterization

    SciTech Connect

    Jones, M.T.; Subramanian, R.; Boulas, P.

    1994-12-31

    The discovery of C60 and its anionic salts C60{sup n-} (n = 1, 2, or 3) has provided a series of new materials with a wide range of very interesting chemical and physical properties such as ferromagnetism, nonlinear optical activity, semiconductivity and superconductivity. To date, relatively few salts of the anions of C60 have been studied because until recently a simple synthesis procedure did not exist. The authors recently developed simple and efficient methods for preparing thin films (prepared electrochemically) of both C60 and C60n- (n = 1, 2, or 3) and for preparing anion salts of C60 (prepared electrochemically and chemically). The authors now report the spectroscopic characterization of some of these materials. For example, studies of the temperature dependence of the Raman spectra of selected films (such as C60 and Cs3C60) are discussed. Also discussed are the ESR studies of a series of polycrystalline C60 anion salts derived from films as well as from the facile chemical preparation methods which are presented. The results of these spectroscopic studies are discussed as are results from other physical methods of characterization.

  13. Single Source Precursors for Thin Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.

    2002-01-01

    The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.

  14. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  15. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  16. Robust topological surface transport with weak localization bulk channels in polycrystalline Bi2Te3 films

    NASA Astrophysics Data System (ADS)

    Zhang, H. B.; Yao, J. D.; Shao, J. M.; Yang, G. W.

    2016-03-01

    Bi2Te3 polycrystalline topological insulator films have provided an attractive material platform to investigate topological insulator properties and created new opportunities for novel magneto-electronic device applications. In order to confirm that Bi2Te3 polycrystalline film has a robust topological surface state, and whether such surface Dirac fermions can be protected from localization in transport, we performed a systematic transport measurement and analysis based on a Sn-doped Bi2Te3 polycrystalline film with Hall configuration electrodes. We demonstrated that the electron-electron interaction effect is very strong, which can help realize an insulating ground state. The surface state of the film always exhibits stable weak anti-localization features despite the presence of many structural defects and non-magnetic doping, and the Hall resistance can present a significant nonlinear dependence on magnetic fields. These two characteristics provide significant experimental evidence that the polycrystalline film has a robust topological surface state, and that such surface electrons cannot be localized. Owing to the lack of topological protection, the weak anti-localization transport of bulk electrons cannot be guaranteed, and weak localization behavior may appear in the bulk channels. These results verify that robust topological surface transport in topological insulator polycrystalline films can be accompanied by weak localization bulk channels.

  17. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  18. Morphology of Microscopic Thin Rubber Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Briber, Robert; Wang, Howard

    2014-03-01

    Microscopic thin rubber films have been prepared using photolithographic methods. Thin films of low molecular weight polybutadiene have been spun cast on positive photoresists, and transferred to various substrates upon UV exposure for crosslinking and defining the lateral dimension. The morphological scaling of thin rubber films as a function of film dimension and temperature is discussed.

  19. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  20. Polarization-phase images of liquor polycrystalline films in determining time of death.

    PubMed

    Garazdyuk, M S; Bachinskyi, V T; Vanchulyak, O Ya; Ushenko, A G; Dubolazov, O V; Gorsky, M P

    2016-04-20

    An optical model for generalized optical anisotropy of polycrystalline networks of albumin and globulin liquor of the human brain has been suggested. The polarization-phase method for spatial and frequency differentiation of linear and circular birefringence coordinate distributions has been analytically substantiated. A set of criteria documenting the dynamics of polarization-phase images of liquor polycrystalline films has been identified in determining time of death. PMID:27140134

  1. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  2. High efficiency thin-film GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1977-01-01

    Several oxidation techniques are discussed which have been found to increase the open circuit (V sub oc) of metal-GaAs Schottky barrier solar cells, the oxide chemistry, attempts to measure surface state parameters, the evolving characteristics of the solar cell as background contamination (has been decreased, but not eliminated), results of focused Nd/YAG laser beam recrystallization of Ge films evaporated onto tungsten, and studies of AMOS solar cells fabricated on sliced polycrystalline GaAs wafers. Also discussed are projected materials availability and costs for GaAs thin-film solar cells.

  3. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  4. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  5. InSb thin films grown by electrodeposition

    SciTech Connect

    Singh, Joginder Rajaram, P.

    2014-04-24

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl{sub 3} and 0.03M SbCl{sub 3}, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm{sup −1} corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  6. InSb thin films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Singh, Joginder; Rajaram, P.

    2014-04-01

    We have grown InSb thin films on Cu substrates using the electrodeposition technique. The electrochemical bath from which the InSb thin films were grown was made up of a mixture of aqueous solutions of 0.05 M InCl3 and 0.03M SbCl3, 0 .20M citric acid and 0.30M sodium citrate. Citric acid and sodium citrate were used as complexing agents to bring the reduction potential of In and Sb closer to maintain binary growth. The electrodeposited films were characterized by structural, morphological and optical studies. X-ray diffraction studies show that the films are polycrystalline InSb having the zinc blende structure. Scanning electron microscopy (SEM) studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. FTIR spectra of InSb thin films show a sharp absorption peak at wave number 1022 cm-1 corresponding to the band gap. Hot probe analysis shows that the InSb thin films have p type conductivity.

  7. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  8. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  9. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  10. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  11. YSZ thin films with minimized grain boundary resistivity.

    PubMed

    Mills, Edmund M; Kleine-Boymann, Matthias; Janek, Juergen; Yang, Hao; Browning, Nigel D; Takamura, Yayoi; Kim, Sangtae

    2016-04-21

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film-substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg(2+) diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary "design" as an attractive method to obtain highly conductive solid electrolyte thin films.

  12. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  13. The effect of morphology on electron field-effect mobility in disordered c60 thin films.

    PubMed

    Kwiatkowski, Joe J; Frost, Jarvist M; Nelson, Jenny

    2009-03-01

    We present a model of polycrystalline C60 field-effect transistors (FETs) that incorporates the microscopic structural and electronic details of the C60 films. We generate disordered polycrystalline thin films by simulating the physical-vapor deposition process. We simulate electron hopping transport using a Monte Carlo method and electronic structure calculations. Our model reproduces experimentally observed FET characteristics, including electrical characteristics, electrochemical potentials, and charge mobilities. Our results suggest that even relatively disordered films have charge mobilities that are only a factor of 2 smaller than mobilities in single crystals.

  14. Deposition of hydroxyapatite thin films by Nd:YAG laser ablation: a microstructural study

    SciTech Connect

    Nistor, L.C.; Ghica, C.; Teodorescu, V.S.; Nistor, S.V. . E-mail: snistor@alpha1.infim.ro; Dinescu, M.; Matei, D.; Frangis, N.; Vouroutzis, N.; Liutas, C.

    2004-11-02

    Hydroxyapatite (HA) thin films has been successfully deposited by Nd:YAG laser ablation at {lambda} = 532 nm. The morphology and microstructure of the deposited layers was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). Polycrystalline HA films were directly obtained with the substrate at 300 deg. C and without introducing water vapors in the deposition chamber. Electron paramagnetic resonance (EPR) measurements show that the oxygen stoichiometry in the HA films is also maintained. Depositions performed at {lambda} = 335 nm laser wavelength and 300 deg. C substrate temperature resulted in polycrystalline layers of mixed composition of HA and tricalciumphosphate (TCP)

  15. Development of a computer model for polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells; Annual subcontract report, 1 March 1992--28 February 1993

    SciTech Connect

    Gray, J.L.; Schwartz, R.J.; Lee, Y.J.

    1994-03-01

    Solar cells operate by converting the radiation power from sun light into electrical power through photon absorption by semiconductor materials. The elemental and compound material systems widely used in photovoltaic applications can be produced in a variety of crystalline and non-crystalline forms. Although the crystalline group of materials have exhibited high conversion efficiencies, their production cost are substantially high. Several candidates in the poly- and micro-crystalline family of materials have recently gained much attention due to their potential for low cost manufacturability, stability, reliability and good performance. Among those materials, CuInSe{sub 2} and CdTe are considered to be the best choices for production of thin film solar cells because of the good optical properties and almost ideal band gap energies. Considerable progress was made with respect to cell performance and low cost manufacturing processes. Recently conversion efficiencies of 14.1 and 14.6% have been reported for CuInSe{sub 2} and CdTe based solar cells respectively. Even though the efficiencies of these cells continue to improve, they are not fully understood materials and there lies an uncertainty in their electrical properties and possible attainable performances. The best way to understand the details of current transport mechanisms and recombinations is to model the solar cells numerically. By numerical modeling, the processes which limit the cell performance can be sought and therefore, the most desirable designs for solar cells utilizing these materials as absorbers can be predicted. The problems with numerically modeling CuInSe{sub 2} and CdTe solar cells are that reported values of the pertinent material parameters vary over a wide range, and some quantities such as carrier concentration are not explicitly controlled.

  16. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  17. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  18. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  19. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  20. Effects of duty cycle on properties of CIGS thin films fabricated by pulse-reverse electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Ahn, SeJin; Yun, Jae Ho; Park, Chan-Jin

    2013-03-01

    DC and pulse-reverse electrodeposition mode were employed for the deposition of polycrystalline Cu(In,Ga)Se2 thin films. In comparison with DC electrodeposition mode, films obtained by pulse-reverse electrodeposition were smoother, denser and more uniform with good adhesion. The Ga content in final composition of CIGS thin film was improved in pulse-reverse electrodeposition mode. In addition, pulse-reverse electrodeposited CIGS thin films were more crystalline with chalcopyrite structure. The compact morphology without pores in the deposit was achieved in the pulse-reverse electrodeposited CIGS thin films by varying duty cycle.

  1. Rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Ku-Yen; Wang, Yan-Jun; Chen, Ko-Lun; Yang, Chun-Chuen; Ho, Ching-Yuan; Lee, Kueir-Rarn; Shen, Ji-Lin; Chiu, Kuan-Cheng

    2016-04-01

    Rubrene polycrystalline films growth from vacuum deposition (with a fixed source temperature of 300 °C) were characterized with respect to various substrate temperatures (Tsub=103-221 °C). First, the growth behavior of these as-deposited polycrystalline films is confirmed to follow an activated surface-adsorption process with an activation energy EA=0.69±0.01 eV. A comparison of EA for the growth of some other small organic molecular solid films is given. Then, the surface morphology and the temporal evolution of the grain size in these polycrystalline films with respect to Tsub are described and discussed. Furthermore, by X-ray diffraction, these rubrene crystalline grains are confirmed to have an orthorhombic structure, and the average coherent length and lattice microstrain of the crystallites deposited at high Tsub (189-221 °C) are estimated and compared. This experimental work reveals that Tsub has a strong influence on the growth rate, the surface morphology, and the structural properties of the as-deposited rubrene polycrystalline films.

  2. Magnetoelastic properties of cobalt-nickel thin films

    NASA Astrophysics Data System (ADS)

    Anapolsky, Abraham

    Cobalt-nickel alloys show large values of magnetostriction, magnetocrystalline anisotropy, and a martensitic phase transformation at temperatures around 0 K. Collectively, these properties make Co-Ni alloys good candidates for the so-called giant magnetostrictive effect. Magnetostrictive (and giant magnetostrictive) alloys can be used to replace complex machinery (such as actuators) in micro-electromechanical systems (MEMS). For this reason, researchers have been investigating the magnetostrictive properties of thin films. I grew and characterized films in the composition range Co: 10 wt% Ni to Co: 35 wt% Ni. Films were grown by electron beam evaporation and a variety of techniques including SEM, TEM, x-ray diffraction, and SQUID magnetometry were used to characterize the films. A thorough background in elastic and non-elastic mechanisms of deformation (in relation to magnetostriction) is discussed. These topics include a semi-classical treatment of magnetoelasticity, superelasticity, and martensitic transformations. An important result of this thesis is the complete magnetic and physical characterization for the entire range of Co-Ni thin films that undergo martensitic transformation. Extensive analysis of morphology, microstructure, phase, and magnetic data, developed a consistent picture of Co-Ni polycrystalline thin films in the composition range mentioned above. Another important result was the development of a novel technique for measuring the value of the magnetostriction coefficient in thin films. The in-plane component of magnetostriction ( lips ) is determined by fitting a theoretical model (based on the Stoner-Wohlforth theory for uniaxial systems) to magnetization vs temperature (M vs T) data for cobalt-nickel thin films. My theoretical model predicts the effect of an imposed stress (or strain) on the in-plane component of saturation magnetization ( Mips ). The imposed stress (or strain) is due to a mismatch in the coefficient of thermal expansion

  3. Characterization of the mechanical properties of freestanding platinum thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Khawar

    an optical microscope. Digital image correlation was used to obtain similar accuracy (˜10 nm) for displacement measurements in both an SEM and under an optical microscope. The mechanical behavior of nanocrystalline thin film structure has been the subject of extensive research in recent years. Mainly, the focus has been on the effects of the film thickness with only a few researchers mentioning anything about the grain sizes of their polycrystalline films. The effect of thin film cross sectional morphology on the mechanical behavior of a thin film structure has never been studied directly. Presented in this dissertation is experimental evidence that these thin film structures are composite structures of various grain morphologies and the overall mechanical behavior exhibited by them is the combined effect of individual contributions of each of these grain morphologies.

  4. Pulsed electrodeposition and characterization of molybdenum diselenide thin film

    SciTech Connect

    Delphine, S. Mary; Jayachandran, M.; Sanjeeviraja, C. . E-mail: sanjeeviraja@rediffmail.com

    2005-01-04

    Molybdenum dichalcogenides are semiconductors with layered type structure, which can act as efficient electrodes in the realization of photoelectrochemical solar cells. The main advantage of this molybdenum diselenide (MoSe{sub 2}) semiconductor is the prevention of electrolyte corrosion because of the phototransitions involving non-bonding d-d orbital of the Mo atoms. Polycrystalline molybdenum diselenide thin films are prepared by pulsed electrodeposition on conducting glass and titanium substrates in galvanostatic mode from an ammoniacal solution of H{sub 2}MoO{sub 4} and SeO{sub 2}. The growth kinetics of the film was studied and the deposition parameters such as electrolyte bath concentration, bath temperature, time of deposition, deposition current, pH of the electrolyte and duty cycle of the current are optimized. X-ray diffraction analysis of the as deposited and annealed films showed the presence of highly textured MoSe{sub 2} films with polycrystalline nature. EDAX spectrum of the surface composition confirms the nearly stoichiometric MoSe{sub 2} nature of the film. Surface morphology studies by scanning electron microscope (SEM) shows that the films are pinhole free and of device quality nature. The optical absorption spectra show an indirect band gap value of 1.16 eV. Conductivity measurements were carried out at different temperatures and electrical constants such as activation energy, trapped energy state and barrier height were calculated.

  5. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  6. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  7. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  8. Pulsed laser deposition and characterizations of pyrochlore iridate thin films

    NASA Astrophysics Data System (ADS)

    Starr, Matthew; Aviles-Acosta, Jaime; Xie, Yuantao; Zhu, Wenka; Li, Zhen; Chen, Aiping; Li, Nan; Tao, Chenggang; Jia, Quanxi; Heremans, J. J.; Zhang, S. X.

    Pyrochlore iridates have attracted growing interest in recent years because of their potential to realize novel topological phases. While most of the previous studies have focused on polycrystalline and single crystalline bulk samples, epitaxial thin films offer a unique platform for controllable tuning of material parameters such as oxygen stoichiometry and elastic strain to achieve new electronic states. In this talk, we will present the growth and characterizations of epitaxial thin films of pyrochlore Y2Ir2O7 and Bi2Ir2O7 that are predicted to host topologically non-trivial states. The iridate thin films were grown by pulsed laser deposition at different conditions, and a narrow window for epitaxial growth was determined. Characterizations of crystalline structures were performed using X-ray diffraction and transmission electron microscopy to establish a growth parameter-structure phase diagram. The compositions of thin films were determined by energy dispersive X-ray spectroscopy, and the surface morphologies were characterized using atomic force microscopy and scanning tunneling microscopy. Magneto-transport studies indicate a strong dependence of transport properties on the oxygen stoichiometry and the film thickness.

  9. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  10. Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films

    NASA Astrophysics Data System (ADS)

    Grzibovskis, Raitis; Vembris, Aivars; Pudzs, Kaspars

    2016-08-01

    Nowadays most organic devices consist of thin (below 100 nm) layers. Information about the morphology and energy levels of thin films at such thickness is essential for the high efficiency devices. In this work we have investigated thin films of 2-(4-[N,N-dimethylamino]-benzylidene)-indene-1,3-dione (DMABI) and 2-(4-(bis(2-(trityloxy)ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph). DMABI-6Ph is the same DMABI molecule with attached bulky groups which assist formation of amorphous films from solutions. Polycrystalline structure was obtained for the DMABI thin films prepared by thermal evaporation in vacuum and amorphous structure for the DMABI-6Ph films prepared by spin-coating method. Images taken by SEM showed separate crystals or islands at the thickness of the samples below 100 nm. The ionization energy of the studied compounds was determined using photoemission yield spectroscopy. A vacuum level shift of 0.40 eV was observed when ITO electrode was covered with the thin film of the organic compound. Despite of the same active part of the investigated molecules the ITO/DMABI interface is blocking electrons while ITO/DMABI-6Ph interface is blocking holes.

  11. Structural and optical studies on AgSbSe{sub 2} thin films

    SciTech Connect

    Asokan, T. Namitha; Urmila, K. S.; Pradeep, B.

    2014-01-28

    AgSbSe{sub 2} semiconducting thin films are successfully deposited using reactive evaporation technique at a substrate temperature of 398K. X-ray diffraction studies reveal that the films are polycrystalline in nature. The structural parameters such as average particle size, dislocation density, and number of crystallites per unit have been evaluated. Atomic Force Microscopy is used to study the topographic characteristics of the film including the grain size and surface roughness. The silver antimony selenide thin films have high absorption coefficient of about 10{sup 5} cm{sup −1} and it has an indirect band gap of 0.64eV.

  12. Flexible thin film magnetoimpedance sensors

    NASA Astrophysics Data System (ADS)

    Kurlyandskaya, G. V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz.

  13. Thin film concentrator panel development

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1982-01-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  14. Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio).

  15. Growth of ZnO:Al thin films onto different substrates

    SciTech Connect

    Prepelita, Petronela; Medianu, R.; Garoi, F.; Moldovan, A.

    2010-11-01

    In this paper we present some results regarding undoped and doped ZnO thin films deposited on various substrates like glass, silicon and kapton by rf magnetron sputtering. The influence of the amount of aluminum as well as the usage of different substrates on the final photovoltaic properties of the thin films is studied. For this, structural-morphological and optical investigations on the thin films are conducted. It was found that three important factors must be taken into account for adjusting the final desired application intended for the deposited thin films. These factors are: deposition conditions, the nature of both the dopant material and the substrate. A comparison study between undoped and doped case is also realized. Smooth Al doped ZnO thin films with a polycrystalline structure and a lower roughness than undoped ZnO are obtained.

  16. Growth of poly-crystalline Cu films on Y substrates by picosecond pulsed laser deposition for photocathode applications

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Lorusso, A.; Klini, A.; Manousaki, A.; Perrone, A.; Fotakis, C.

    2015-11-01

    In this work, the deposition of Cu thin films on Y substrates for photocathode applications by pulsed laser deposition employing picosecond laser pulses is reported and compared with the use of nanosecond pulses. The influence of power density (6-50 GW/cm2) on the ablation of the target material, as well as on the properties of the resulting film, is discussed. The material transfer from the target to the substrate surface was found to be rather efficient, in comparison to nanosecond ablation, leading to the growth of films with high thickness. Scanning electron microscope analysis indicated a quasi-continuous film morphology, at low power density values, becoming granular with increasing power density. The structural investigation, through X-ray diffraction, revealed the poly-crystalline nature of the films, with a preferential growth along the (111) crystallographic orientation of Cu cubic network. Finally, energy-dispersive X-ray spectroscopy showed a low contamination level of the grown films, demonstrating the potential of a PLD technique for the fabrication of Cu/Y patterned structures, with applications in radiofrequency electron gun technology.

  17. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  18. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  19. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  20. Diamond deposition on polycrystalline films of cubic boron nitride

    SciTech Connect

    Friedmann, T.A.; Bernardez, L.J.; McCarty, K.F.; Klaus, E.J.; Ottesen, D.K.; Johnsen, H.A.; Clift, W.M. )

    1993-09-06

    We have grown diamond films on films of cubic boron nitride (cBN). The cBN films were grown on Si(100) substrates using ion-assisted pulsed laser deposition. Fourier transform infrared (FTIR) spectroscopy indicated that the BN films contained [similar to]75% [ital sp][sup 3]-bonded cBN. The as-grown cBN films were inserted with no surface pretreatment (e.g., abrading or scratching) into a conventional hot filament diamond reactor. [ital In] [ital situ] Raman spectroscopy was used to confirm diamond synthesis during growth. The nucleation density of the diamond films was estimated at 1[times]10[sup 9]/cm[sup 2], equivalent to or higher than the best values for scratched silicon substrates. In addition, we found that the cBN films were etched in the diamond reactor; a film thickness [approx gt]1500 A was required to prevent total film loss before diamond nucleation occurred. The presence of cBN under the diamond was established using FTIR spectroscopy and Auger electron spectroscopy.

  1. Improving crystalline quality of polycrystalline silicon thin films crystallized on yttria-stabilized zirconia crystallization-induction layers by the two-step irradiation method of pulsed laser annealing

    NASA Astrophysics Data System (ADS)

    Thi Kieu Lien, Mai; Horita, Susumu

    2015-03-01

    The crystalline quality of pulsed-laser-annealed micocrystalline silicon films on yttria-stabilized zirconia [(ZrO2)1-x(Y2O3)x: YSZ] crystallization-induction (CI) layers was further improved by a new two-step irradiation method, in which amorphous silicon (a-Si) films were irradiated using two energy densities. Firstly, they were irradiated at a low energy density for a short time to generate nuclei and then at a high energy density to complete crystallization. The crystalline fraction and grain size of the Si film crystallized by the two-step method were found to be larger, while its FWHM was found to be smaller than those of the Si films crystallized by a conventional method. Moreover, the grain size of Si/YSZ/glass was more uniform than that of Si/glass. This indicates not only the effectiveness of the YSZ CI layer but also the usefulness of the two-step method in improving the Si film quality.

  2. Oriented Thin Films of a Benzodithiophene Covalent Organic Framework

    PubMed Central

    2014-01-01

    A mesoporous electron-donor covalent organic framework based on a benzodithiophene core, BDT-COF, was obtained through condensation of a benzodithiophene-containing diboronic acid and hexahydroxytriphenylene (HHTP). BDT-COF is a highly porous, crystalline, and thermally stable material, which can be handled in air. Highly porous, crystalline oriented thin BDT-COF films were synthesized from solution on different polycrystalline surfaces, indicating the generality of the synthetic strategy. The favorable orientation, crystallinity, porosity, and the growth mode of the thin BDT-COF films were studied by means of X-ray diffraction (XRD), 2D grazing incidence diffraction (GID), transmission and scanning electron microscopy (TEM, SEM), and krypton sorption. The highly porous thin BDT-COF films were infiltrated with soluble fullerene derivatives, such as [6,6]-phenyl C61 butyric acid methyl ester (PCBM), to obtain an interpenetrated electron-donor/acceptor host–guest system. Light-induced charge transfer from the BDT-framework to PCBM acceptor molecules was indicated by efficient photoluminescence quenching. Moreover, we monitored the dynamics of photogenerated hole-polarons via transient absorption spectroscopy. This work represents a combined study of the structural and optical properties of highly oriented mesoporous thin COF films serving as host for the generation of periodic interpenetrated electron-donor and electron-acceptor systems. PMID:24559375

  3. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H{sub 2}/Ar at 400 °C, the as-grown α−Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  4. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  5. Liquid crystals for organic thin-film transistors

    PubMed Central

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-ichi

    2015-01-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V−1 s−1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics. PMID:25857435

  6. Liquid crystals for organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  7. Investigation of polycrystalline thin-film CuInSe{sub 2} solar cells based on ZnSe windows. Annual subcontract report, 15 Febraury 1992--14 February 1993

    SciTech Connect

    Olsen, L C

    1994-05-01

    Investigations of ZnSe/CIS solar cells are being carried out in an effort to improve the efficiencies CIS cells and to determine if ZnSe is a viable alternative to CdS as a window material. MOCVD growth of ZnSe is accomplished in a SPIRE 500XT reactor housed in the Electronic Materials Laboratory at WSU Tri-Cities by reacting a zinc adduct with H{sub 2}Se. Conductive n-type ZnSe is grown by using iodine as a dopant. Ethyliodide was mixed with helium and installed on one of the gas lines to the system. ZnSe films have been grown on CIS substrates at 200{degrees}C to 250{degrees}C. ZnO is also being deposited by MOCVD by reacting tetrahydrofuran (THF) with a zinc adduct. ZnSe/CIS heterojunctions have been studied by growing n-ZnSe films onto 2 cm x 2 cm CIS substrates diced from materials supplied by Siemens and then depositing an array of aluminum circular areas 2.8.mm in diameter on top of the ZnSe to serve as contacts. Al films are deposited with a thickness of 80 to l00 {angstrom}so that light can pass through the film, thus allowing the illuminated characteristics of the ZnSe/CIS junction to be tested. Accounting for the 20 to 25 % transmittance through the Al film into the ZnSe/CIS structure, current devices have estimated, active-area AM1.5 efficiencies of 14 %. Open circuit voltages > 500 mV are often attained.

  8. Polycrystalline photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1983-10-25

    A photovoltaic cell is disclosed, having an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 /SUB u/ thick) of underlying polycrystalline semiconductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  9. Order on disorder: Copper phthalocyanine thin films on technical substrates

    SciTech Connect

    Peisert, H.; Schwieger, T.; Auerhammer, J. M.; Knupfer, M.; Golden, M. S.; Fink, J.; Bressler, P. R.; Mast, M.

    2001-07-01

    We have studied the molecular orientation of the commonly used organic semiconductor copper phthalocyanine (CuPC) grown as thin films on the technically relevant substrates indium tin oxide, oxidized Si, and polycrystalline gold using polarization-dependent x-ray absorption spectroscopy, and compare the results with those obtained from single crystalline substrates [Au(110) and GeS(001)]. Surprisingly, the 20{endash}50 nm thick CuPC films on the technical substrates are as highly ordered as on the single crystals. Importantly, however, the molecular orientation in the two cases is radically different: the CuPC molecules stand on the technical substrates and lie on the single crystalline substrates. The reasons for this and its consequences for our understanding of the behavior of CuPC films in devices are discussed. {copyright} 2001 American Institute of Physics.

  10. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films.

    PubMed

    Tokaç, M; Bunyaev, S A; Kakazei, G N; Schmool, D S; Atkinson, D; Hindmarch, A T

    2015-07-31

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface. PMID:26274431

  11. Interfacial Structure Dependent Spin Mixing Conductance in Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Tokaç, M.; Bunyaev, S. A.; Kakazei, G. N.; Schmool, D. S.; Atkinson, D.; Hindmarch, A. T.

    2015-07-01

    Enhancement of Gilbert damping in polycrystalline cobalt thin-film multilayers of various thicknesses, overlayered with copper or iridium, was studied in order to understand the role of local interface structure in spin pumping. X-ray diffraction indicates that cobalt films less than 6 nm thick have strong fcc(111) texture while thicker films are dominated by hcp(0001) structure. The intrinsic damping for cobalt thicknesses above 6 nm is weakly dependent on cobalt thickness for both overlayer materials, and below 6 nm the iridium overlayers show higher damping enhancement compared to copper overlayers, as expected due to spin pumping. The interfacial spin mixing conductance is significantly enhanced in structures where both cobalt and iridium have fcc(111) structure in comparison to those where the cobalt layer has subtly different hcp(0001) texture at the interface.

  12. Surface and sub-surface thermal oxidation of thin ruthenium films

    SciTech Connect

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F.; Kokke, S.; Zoethout, E.

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  13. Formation of polycrystalline-silicon films with hemispherical grains for capacitor structures with increased capacitance

    SciTech Connect

    Novak, A. V.

    2014-12-15

    The effect of formation conditions on the morphology of silicon films with hemispherical grains (HSG-Si) obtained by the method of low-pressure chemical vapor deposition (LPCVD) is investigated by atomic-force microscopy. The formation conditions for HSG-Si films with a large surface area are found. The obtained HSG-Si films make it possible to fabricate capacitor structures, the electric capacitance of which is twice as large in comparison to that of capacitors with “smooth” electrodes from polycrystalline silicon.

  14. Investigation of polycrystalline thin film CuInSe{sub 2} solar cells based on ZnSe windows. Annual subcontract report, 15 February, 1993--14 February, 1994

    SciTech Connect

    Olsen, L.C.

    1995-03-01

    This report concerns studies of CIS solar cells based on ZnSe window layers. ZnSe/CIS devices are fabricated by growing ZnSe films by MOCVD onto Siemens CIS and graded absorber substrates. ZnSe films are grown by reacting H{sub 2}Se with a zinc adduct. ZnSe/CIS heterojunctions have been studied by depositing transparent aluminum contacts onto ZnSe. These studies indicate that ZnSe/CIS solar cells can be fabricated with an efficiency greater than 14%. Open circuit voltages are typically larger than 500 mV and the optimum range of ZnSe film thickness for maximum efficiency is between 100 {angstrom} and 250 {angstrom}. Photocurrents are significantly reduced as the film thickness exceeds 250 {angstrom}. Photoluminescence spectroscopy has been utilized to characterize the physical nature of CIS substrate surfaces, and ZnSe-CIS interfaces. These studies indicate that a segregated phase(s) exists at the surface of as received Siemens substrates. Additionally, it is determined that the segregated phase(s) still exist after the ZnSe growth process. To date, sputtered ZnO top contact layers have caused degradation of the photovoltaic properties of the ZnSe/CIS structure. Investigations of the effects of MOCVD grown ZnO upon ZnSe/CIS structures will soon be initiated. To establish the feasibility of ZnSe as a window layer, cells have been fabricated by incorporating a protective layer of CdS between the ZnSe and ZnO. A total area efficiency of 11% was obtained with such a structure.

  15. Method of producing amorphous thin films

    DOEpatents

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  16. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  17. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  18. Mercury Vapor Sorption and Amalgamation with a Thin Gold Film.

    PubMed

    Hou, Tingting; Chen, Miao; Greene, George W; Horn, Roger G

    2015-10-21

    Understanding the amalgamation mechanisms between mercury and gold is of fundamental interest and importance to many mercury sensing applications. However, there is only limited and piecemeal discussion in the literature of the mechanisms by which Au-Hg amalgams are formed on thin Au films. Here, we present a comprehensive description of a series of morphological changes occurring in a thin polycrystalline Au film during Au-Hg amalgamation investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). These microscopic investigations enable us to offer a coherent explanation for the features and the mechanisms of amalgamation of Hg with Au in the film. We also use an optical technique (fringes of equal chromatic order, FECO) to observe changes in optical thickness and reflectivity of the film. Amalgamation reactions in the film render it inhomogeneous, thus making optical techniques unsuitable as a method for quantitative monitoring of Hg vapor using Au films of this type.

  19. Mercury Vapor Sorption and Amalgamation with a Thin Gold Film.

    PubMed

    Hou, Tingting; Chen, Miao; Greene, George W; Horn, Roger G

    2015-10-21

    Understanding the amalgamation mechanisms between mercury and gold is of fundamental interest and importance to many mercury sensing applications. However, there is only limited and piecemeal discussion in the literature of the mechanisms by which Au-Hg amalgams are formed on thin Au films. Here, we present a comprehensive description of a series of morphological changes occurring in a thin polycrystalline Au film during Au-Hg amalgamation investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). These microscopic investigations enable us to offer a coherent explanation for the features and the mechanisms of amalgamation of Hg with Au in the film. We also use an optical technique (fringes of equal chromatic order, FECO) to observe changes in optical thickness and reflectivity of the film. Amalgamation reactions in the film render it inhomogeneous, thus making optical techniques unsuitable as a method for quantitative monitoring of Hg vapor using Au films of this type. PMID:26486235

  20. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching

    NASA Astrophysics Data System (ADS)

    Lunt, Richard R.; Giebink, Noel C.; Belak, Anna A.; Benziger, Jay B.; Forrest, Stephen R.

    2009-03-01

    We demonstrate spectrally resolved photoluminescence quenching as a means to determine the exciton diffusion length of several archetype organic semiconductors used in thin film devices. We show that aggregation and crystal orientation influence the anisotropy of the diffusion length for vacuum-deposited polycrystalline films. The measurement of the singlet diffusion lengths is found to be in agreement with diffusion by Förster transfer, whereas triplet diffusion occurs primarily via Dexter transfer.

  1. Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films

    NASA Astrophysics Data System (ADS)

    Gervacio-Arciniega, J. J.; Flores-Ruiz, F. J.; Diliegros-Godines, C. J.; Broitman, E.; Enriquez-Flores, C. I.; Espinoza-Beltrán, F. J.; Siqueiros, J.; Cruz, M. P.

    2016-08-01

    Differences in friction coefficients (μ) of ferroelectric YCrO3, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB® software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO3 film deposited on a Pt(150 nm)/TiO2(30 nm)/SiO2/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO3 (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO3 films seem to be the best candidates due to their lower μ.

  2. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  3. Nanophotoactivity of Porphyrin Functionalized Polycrystalline ZnO Films.

    PubMed

    Rogero, Celia; Pickup, David F; Colchero, Jaime; Azaceta, Eneko; Tena-Zaera, Ramón; Palacios-Lidón, Elisa

    2016-07-01

    Kelvin probe force microscopy in darkness and under illumination is reported to provide nanoscale-resolved surface photovoltage maps of hybrid materials. In particular, nanoscale charge injection and charge recombination mechanisms occurring in ZnO polycrystalline surfaces functionalized with Protoporphyrin IX (H2PPIX) are analyzed. Local surface potential and surface photovoltage maps not only reveal that upon molecular adsorption the bare ZnO work function increases, but also they allow study of its local dependence. Nanometer-sized regions not correlated with apparent topographic features were identified, presenting values significantly different from the average work function. Depending on the region, the response to the light excitation is different, distinguishing two relaxation processes, one faster than the other. This behavior can be explained in terms of electrons trapped closed to the molecule-semiconductor interface or electrons pushed into the ZnO bulk, respectively. Moreover, the origin of these differences is correlated with the H2PPIX-ZnO bonding and molecules configuration and aggregation. The chenodeoxycholic acid (CDCA) coadsorption leads to a more homogeneous surface potential distribution, confirming the antiaggregate effect of this additive, while the surface photovoltage is mostly dominated by the slow relaxation component. This work reveals the complexity of real device architectures with ill-defined surfaces even in a relatively simple system with only one type of dye molecule and hightlights the importance of nanoscale characterization with appropriate tools. PMID:27303943

  4. Powder Diffraction Simulated by a Polycrystalline Film of Spherical Colloids

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Xia, Younan

    2006-01-01

    This article describes a simple way to demonstrate powder diffraction in a classroom setting using a dry film of spherical colloids on a glass substrate. Use of transparent, elastomeric poly(dimethylsiloxane) as a supporting substrate for the spheres rather than glass enables demonstration of the reciprocal lattice effect. (Contains 4 figures and…

  5. Failure of semiclassical models to describe resistivity of nanometric, polycrystalline tungsten films

    SciTech Connect

    Choi, Dooho; Liu, Xuan; Schelling, Patrick K.; Coffey, Kevin R.; Barmak, Katayun

    2014-03-14

    The impact of electron scattering at surfaces and grain boundaries in nanometric polycrystalline tungsten (W) films was studied. A series of polycrystalline W films ranging in thickness from 10 to 310 nm and lateral grain size from 74 to 133 nm were prepared on thermally oxidized Si. The Fuchs-Sondheimer surface-scattering model and Mayadas-Shatzkes grain-boundary scattering model were employed for quantitative analyses. Predictions from the theoretical models were found to deviate systematically from the experimental data. Possible reasons for the failure of the theoretical models to describe the experimental data are explored. Finally, a discussion of the crucial features lacking from existing models is presented, along with possible avenues for improving the models to result in better agreement with experimental data.

  6. Epitaxial Brownmillerite Oxide Thin Films for Reliable Switching Memory.

    PubMed

    Acharya, Susant K; Nallagatla, Raveendra Venkata; Togibasa, Octolia; Lee, Bo W; Liu, Chunli; Jung, Chang U; Park, Bae Ho; Park, Ji-Yong; Cho, Yunae; Kim, Dong-Wook; Jo, Janghyun; Kwon, Deok-Hwang; Kim, Miyoung; Hwang, Cheol Seong; Chae, Seung C

    2016-03-01

    Resistive switching memory, which is mostly based on polycrystalline thin films, suffers from wide distributions in switching parameters-including set voltage, reset voltage, and resistance-in their low- and high-resistance states. One of the most commonly used methods to overcome this limitation is to introduce inhomogeneity. By contrast, in this paper, we obtained uniform resistive switching parameters and sufficiently low forming voltage by maximizing the uniformity of an epitaxial thin film. To achieve this result, we deposited an SrFeOx/SrRuO3 heteroepitaxial structure onto an SrTiO3 (001) substrate by pulsed laser deposition, and then we deposited an Au top electrode by electron-beam evaporation. This device exhibited excellent bipolar resistance switching characteristics, including a high on/off ratio, narrow distribution of key switching parameters, and long data retention time. We interpret these phenomena in terms of a local, reversible phase transformation in the SrFeOx film between brownmillerite and perovskite structures. Using the brownmillerite structure and atomically uniform thickness of the heteroepitaxial SrFeOx thin film, we overcame two major hurdles in the development of resistive random-access memory devices: high forming voltage and broad distributions of switching parameters.

  7. Observation and simulation of hard x ray photoelectron diffraction to determine polarity of polycrystalline zinc oxide films with rotation domains

    SciTech Connect

    Williams, Jesse R.; Adachi, Yutaka; Ohashi, Naoki; Pis, Igor; Kobata, Masaaki; Winkelmann, Aimo; Matsushita, Tomohiro; Kobayashi, Keisuke

    2012-02-01

    X ray photoelectron diffraction (XPD) patterns of polar zinc oxide (ZnO) surfaces were investigated experimentally using hard x rays and monochromatized Cr K{alpha} radiation and theoretically using a cluster model approach and a dynamical Bloch wave approach. We focused on photoelectrons emitted from the Zn 2p{sub 3/2} and O 1s orbitals in the analysis. The obtained XPD patterns for the (0001) and (0001) surfaces of a ZnO single crystal were distinct for a given emitter and polarity. Polarity determination of c-axis-textured polycrystalline ZnO thin films was also achieved with the concept of XPD, even though the in-plane orientation of the columnar ZnO grains was random.

  8. Evolution of morphology and structure of Pb thin films grown by pulsed laser deposition at different substrate temperatures

    SciTech Connect

    Lorusso, Antonella Maiolo, Berlinda; Perrone, Alessio; Gontad, Francisco; Maruccio, Giuseppe; Tasco, Vittorianna

    2014-03-15

    Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.

  9. Theory of transport phenomena in polycrystalline lead chalcogenide films. Mobility. Nondegenerate statistics

    SciTech Connect

    Atakulov, Sh. B. Zaynolobidinova, S. M.; Nabiev, G. A.; Nabiyev, M. B.; Yuldashev, A. A.

    2013-07-15

    The mobility of nondegenerate electrons in quasi-single-crystal and polycrystalline PbTe films is experimentally investigated. The results obtained are compared with the data for bulk crystals at the same charge-carrier concentration. Under the assumption of limitation of the charge-carrier mobility by intercrystallite potential barriers, electron transport in an electric field is theoretically considered. The theoretical results are in good agreement with the experiment.

  10. Unconventional drop in the electrical resistance of chromium metal thin films at low temperature

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Kubota, T.; Takanashi, K.

    2016-09-01

    We studied the electrical resistance of single-crystal and polycrystalline chromium films. The ρ (T) curve of single-crystal films decrease with decreasing temperature and show humps at around 300 K consistent with the bulk chromium being an itinerant antiferromagnet. In the polycrystalline films, on the other hand, the ρ (T) curves deviate from those of the bulk chromium. Moreover, we observed sudden decrease in the resistance around 1.5 K. Although previous studies suggested that chromium films become superconductive (Schmidt et al. (1972) [12]), it is difficult to conclude whether a superconducting transition occurs because the electrical resistivity is not zero in all films. No anomaly was detected by resistance measurements around room temperature, and the sudden decrease in the resistance at low temperature may be attributed to the suppression of antiferromagnetic interaction by thinning down the chromium element.

  11. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals

    PubMed Central

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong

    2016-01-01

    Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463

  12. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Jiang, Weilin; Qiang, You; Burks, Edward; Liu, Kai; Namavar, Fereydoon; Mccloy, John S.

    2014-11-03

    Iron oxide films were deposited onto Si substrates using ion-beam-assisted deposition. The films were ~300 nm thick polycrystalline magnetite with an average crystallite size of ~6 nm. Additionally, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite. However, Raman spectroscopy and x-ray diffraction both indicate that the films are single-phase magnetite. Since no direct evidence of a second phase could be found, exchange bias likely arises due to defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples have such small grains, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field. The high energy deposition process results in an oxygen-rich, argon-containing magnetite film with low temperature exchange bias due to defects at the high concentration of grain boundaries.

  13. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films.

    PubMed

    Li, Cheng; Zhong, Yu; Luna, Carlos Andres Melo; Unger, Thomas; Deichsel, Konstantin; Gräser, Anna; Köhler, Jürgen; Köhler, Anna; Hildner, Richard; Huettner, Sven

    2016-01-01

    Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL) characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH₃NH₃PbI3-xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM) layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices. PMID:27548128

  14. Electrodeposition and characterization of HgSe thin films

    SciTech Connect

    Mahalingam, T. . E-mail: maha51@rediffmail.com; Kathalingam, A.; Sanjeeviraja, C.; Chandramohan, R.; Chu, J.P.; Kim, Yong Deak; Velumani, S.

    2007-08-15

    In this article we present the results on the electrochemical synthesis of mercury selenide (HgSe), an interesting II-VI material. HgSe thin films were deposited potentiostatically on conducting glass substrates from an aqueous bath containing HgCl{sub 2} and SeO{sub 2}. The prepared films were characterized by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), scanning electron microscope (SEM) and optical absorption techniques. Stoichiometric polycrystalline HgSe films were obtained at a deposition potential around - 0.7 V vs SCE, at a temperature 60 deg. C and a pH value of 3.5. The as-grown films exhibited a direct optical band gap of 0.78 eV. This report deals with the growth mechanism and a study related to the influence of electrolyte bath composition, deposition potential, temperature and pH on the properties of HgSe thin films.

  15. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  16. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  17. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Lorusso, A.; Gontad, F.; Solombrino, L.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-11-01

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y.

  18. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  19. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  20. Effect of Organic Additive on Surface Roughness of Polycrystalline Silicon Film after Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Hwang, Hee-Sub; Park, Jin-Hyung; Yi, Sok-Ho; Paik, Ungyu; Park, Jea-Gun

    2010-01-01

    The effect of an organic additive on the surface roughness of a polycrystalline silicon (poly-Si) film was investigated by chemical mechanical polishing (CMP). The surface roughness of the polished poly-Si film was markedly reduced by adding 0.001 wt % hydroxyl ethyl cellulose (HEC) and then decreased slightly with further addition of HEC. We concluded that the reduction of surface roughness was attributed to the formation of a hydroplane layer on the poly-Si surface. Evidence of the hydroplane layer was verified by contact angle and X-ray photoelectron spectroscopy (XPS) measurements.

  1. Birefringence images of polycrystalline films of human urine in early diagnostics of kidney pathology.

    PubMed

    Dubolazov, A V; Pashkovskaya, N V; Ushenko, Yu A; Marchuk, Yu F; Ushenko, V A; Novakovskaya, O Yu

    2016-04-20

    We propose an optical model of the Mueller-matrix description of mechanisms of optical anisotropy of polycrystalline films of urine, namely, optical activity and birefringence. The algorithm of reconstruction of distributions of parameters-optical rotation angles and phase shifts of the indicated anisotropy types-are elaborated upon. The objective criteria of differentiation of urine films taken from healthy donors and albuminuria patients by means of statistical analysis of such distributions are determined. The operational characteristics (sensitivity, specificity, and accuracy) of the Mueller-matrix reconstruction method of the optical anisotropy parameters are defined. PMID:27140137

  2. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  3. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  4. Magnetostrictive thin films for microwave spintronics

    PubMed Central

    Parkes, D. E.; Shelford, L. R.; Wadley, P.; Holý, V.; Wang, M.; Hindmarch, A. T.; van der Laan, G.; Campion, R. P.; Edmonds, K. W.; Cavill, S. A.; Rushforth, A. W.

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications. PMID:23860685

  5. Magnetostrictive thin films for microwave spintronics.

    PubMed

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  6. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup −5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 10{sup 6} cm{sup −1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  7. Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.

  8. Adjustable metal-semiconductor transition of FeS thin films by thermal annealing

    SciTech Connect

    Fu Ganhua; Polity, Angelika; Volbers, Niklas; Meyer, Bruno K.; Mogwitz, Boris; Janek, Juergen

    2006-12-25

    FeS polycrystalline thin films were prepared on float glass at 500 deg. C by radio-frequency reactive sputtering. The influence of vacuum annealing on the metal-semiconductor transition of FeS films was investigated. It has been found that with the increase of the annealing temperature from 360 to 600 deg. C, the metal-semiconductor transition temperature of FeS films first decreases and then increases, associated with first a reduction and then an enhancement of hysteresis width. The thermal stress is considered to give rise to the abnormal change of the metal-semiconductor transition of the FeS film during annealing.

  9. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  10. Deposition of Co-doped TiO2 Thin Films by sol-gel method

    NASA Astrophysics Data System (ADS)

    Boutlala, A.; Bourfaa, F.; Mahtili, M.; Bouaballou, A.

    2016-03-01

    Cobalt doped TiO2 thin films have been prepared by sol-gel method onto glass substrate at room temperature. in this present work, we are interesting to study the effect of Cobalt doped TiO2 thin films.the concentration of Co was varied from 0 to 6%at .The obtained films have been annealed at 500°C for 2 hours. X-ray diffraction patterns showed that Co: TiO2 films are polycrystalline with a tetragonal anatase and orthorhombic brookite types structures. The surface morphologies of the TiO2 doped with cobalt thin films were evaluated by Atomic Force Microscopy (AFM). The optical properties were studied by mean of UV-visible and near infrared spectroscopy.The calculated optical band gap decreases from 3.30 to 2.96 eV with increasing Co doping.

  11. Properties of antimony doped ZnO thin films deposited by spray pyrolysis technique

    SciTech Connect

    Sadananda Kumar, N. Bangera, Kasturi V.; Shivakumar, G. K.

    2015-07-15

    Antimony (Sb) doped zinc oxide (ZnO) thin films were deposited on the glass substrate at 450°C using spray pyrolysis technique. Effect of Sb doping on surface morphology structural, optical and electrical properties were studied. X-ray diffraction (XRD) analysis showed that both the undoped and doped ZnO thin films are polycrystalline in nature with (101) preferred orientation. SEM analysis showed a change in surface morphology of Sb doped ZnO thin films. Doping results in a marked increase in conductivity without affecting the transmittance of the films. ZnO films prepared with 3 at % Sb shows the lowest resistivity of 0.185 Ohm cm with a Hall mobility of 54.05 cm{sup 2} V{sup –1} s{sup –1}, and a hole concentration of 6.25 × 10{sup 17} cm{sup –3}.

  12. Low-temperature fabrication of VO2 thin film on ITO glass with a Mott transition

    NASA Astrophysics Data System (ADS)

    Lin, Tiegui; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2016-09-01

    Polycrystalline Vanadium dioxide (VO2) thin film can be fabricated on glass substrates by high power impulse magnetron sputtering at a relative high temperature. In order to apply an effective bias voltage on substrate and control the energy of the ions impinged to the substrate, conductive indium-tin oxide (ITO) glass was used as the substrate. UV-visible-near IR transmittance spectra and X-ray diffraction (XRD) patterns of the as-deposited films exhibited that M-VO2 thin film with a metal-insulator transition temperature of 37∘C was fabricated successfully at 300∘C with a bias voltage of ‑200V, and the calculated average crystalline size of this film was about 12nm. XRD patterns at varied temperatures showed that the structural change of MIT of the VO2 thin film was suppressed during the phase transition process, and a pure Mott transition was obtained.

  13. Microstructure and optoelectronic properties of galliumtitanium-zinc oxide thin films deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Shou-bu; Lu, Zhou; Zhong, Zhi-you; Long, Hao; Gu, Jin-hua; Long, Lu

    2016-07-01

    Gallium-titanium-zinc oxide (GTZO) transparent conducting oxide (TCO) thin films were deposited on glass substrates by radio frequency magnetron sputtering. The dependences of the microstructure and optoelectronic properties of GTZO thin films on Ar gas pressure were observed. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increment of Ar gas pressure, the microstructure and optoelectronic properties of GTZO thin films will be changed. When Ar gas pressure is 0.4 Pa, the deposited films possess the best crystal quality and optoelectronic properties.

  14. Indium doped zinc oxide nanowire thin films for antireflection and solar absorber coating applications

    SciTech Connect

    Shaik, Ummar Pasha; Krishna, M. Ghanashyam

    2014-04-24

    Indium doped ZnO nanowire thin films were prepared by thermal oxidation of Zn-In metal bilayer films at 500°C. The ZnO:In nanowires are 20-100 nm in diameter and several tens of microns long. X-ray diffraction patterns confirm the formation of oxide and indicate that the films are polycrystalline, both in the as deposited and annealed states. The transmission which is <2% for the as deposited Zn-In films increases to >90% for the ZnO:In nanowire films. Significantly, the reflectance for the as deposited films is < 10% in the region between 200 to 1500 nm and < 2% for the nanowire films. Thus, the as deposited films can be used solar absorber coatings while the nanowire films are useful for antireflection applications. The growth of nanowires by this technique is attractive since it does not involve very high temperatures and the use of catalysts.

  15. Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films

    SciTech Connect

    Araújo, E.B.; Nahime, B.O.; Melo, M.; Dinelli, F.; Tantussi, F.; Baschieri, P.; Fuso, F.; Allegrini, M.

    2015-01-15

    Highlights: • Pyrochlore phase crystallizes near the bottom film-electrode interface. • PLZT films show a non-uniform microstrain and crystallite size in depth profile. • Complex grainy structure leads to different elastic modulus at the nanoscale. - Abstract: Polycrystalline lead lanthanum zirconate titanate (PLZT) thin films have been prepared by a polymeric chemical route to understand the mechanisms of phase transformations and map the microstructure and elastic properties at the nanoscale in these films. X-ray diffraction, atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) have been used as investigative tools. On one side, PLZT films with mixed-phase show that the pyrochlore phase crystallizes predominantly in the bottom film-electrode interface while a pure perovskite phase crystallizes in top film surface. On the contrary, pyrochlore-free PLZT films show a non-uniform microstrain and crystallite size along the film thickness with a heterogeneous complex grainy structure leading to different elastic properties at nanoscale.

  16. Study of narrowband single photon emitters in polycrystalline diamond films

    SciTech Connect

    Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor

    2014-11-03

    Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (∼several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

  17. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  18. Thin film bioreactors in space.

    PubMed

    Hughes-Fulford, M; Scheld, H W

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  19. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  20. BDS thin film damage competition

    SciTech Connect

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  1. Wrinkle motifs in thin films

    PubMed Central

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-01-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174

  2. Wrinkle motifs in thin films

    NASA Astrophysics Data System (ADS)

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-03-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as `telephone cord' buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales.

  3. In situ deformation of thin films on substrates.

    PubMed

    Legros, Marc; Cabié, Martiane; Gianola, Daniel S

    2009-03-01

    Metallic thin-film plasticity has been widely studied by using the difference between the coefficients of thermal expansion of the film and the underlying substrate to induce stress. This approach is commonly known as the wafer curvature technique, based on the Stoney equation, which has shown that thinner films have higher yield stresses. The linear increase of the film strength as a function of the reciprocal film thickness, down to a couple hundred nanometers, has been rationalized in terms of threading and interfacial dislocations. Polycrystalline films also show this kind of dependence when the grain size is larger than or comparable to the film thickness. In situ TEM performed on plan-view or cross-section specimens faithfully reproduces the stress state and the small strain levels seen by the metallic film during wafer curvature experiments and simultaneously follows the change in its microstructure. Although plan-view experiments are restricted to thinner films, cross-sectional samples where the film is reduced to a strip (or nanowire) on its substrate are a more versatile configuration. In situ thermal cycling experiments revealed that the dislocation/interface interaction could be either attractive or repulsive depending on the interfacial structure. Incoherent interfaces clearly act as dislocation sinks, resulting in a dislocation density drop during thermal cycles. In dislocation-depleted films (initially thin or annealed), grain boundaries can compensate for the absence of dislocations by either shearing the film similarly to threading dislocations or through fast diffusion processes. Conversely, dislocations are confined inside the film by image forces in the cases of epitaxial interfaces on hard substrates. To increase the amount of strain seen by a film, and to decouple the effects of stress and temperature, compliant substrates can also be used as support for the metallic film. The composite can be stretched at a given temperature using heating

  4. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  5. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  6. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  7. Direct growth of transparent conducting Nb-doped anatase TiO{sub 2} polycrystalline films on glass

    SciTech Connect

    Yamada, Naoomi; Kasai, Junpei; Hitosugi, Taro; Hoang, Ngoc Lam Huong; Nakao, Shoichiro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2009-06-15

    This paper proposes a novel sputter-based method for the direct growth of transparent conducting Ti{sub 1-x}Nb{sub x}O{sub 2} (TNO) polycrystalline films on glass, without the need for any postdeposition treatments, by the use of an initial seed-layer. Anatase TNO epitaxial films grown on LaAlO{sub 3} (100) substrates under a reducing atmosphere exhibited a low resistivity (rho) of (3-6)x10{sup -4} OMEGA cm. On glass, however, highly resistive rutile phase polycrystalline films (rhoapprox100 OMEGA cm) formed preferentially under the same conditions. These results suggest that epitaxial stabilization of the oxygen-deficient anatase phase occurs on lattice-matched substrates. To produce a similar effect on a glass surface, we deposited a seed-layer of anatase TNO with excellent crystallinity under an increased oxygen atmosphere. As a result, anatase phase TNO polycrystalline films could be grown even under heavily reducing atmospheres. An optimized film exhibited rho=1.1x10{sup -3} OMEGA cm and optical absorption lower than 10% in the visible region. This rho value is more than one order of magnitude lower than values reported for directly deposited TNO polycrystalline films. This indicates that the seed-layer method has considerable potential for producing transparent conducting TNO polycrystalline films on glass.

  8. Short Pulse Laser Production of Diamond Thin Films

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Dinh, L.; Feit, M.D.; Rubenchik, A.M.; McLean, W.; Perry, M.D.

    1998-03-20

    The use of diamond thin films has the potential for major impact in many industrial and scientific applications. These include heat sinks for electronics, broadband optical sensors, windows, cutting tools, optical coatings, laser diodes, cold cathodes, and field emission displays. Attractive properties of natural diamond consist of physical hardness, high tensile yield strength, chemical inertness, low coefficient of friction, high thermal conductivity, and low electrical conductivity. Unfortunately, these properties are not completely realized in currently produced diamond thin films. Chemical vapor deposition, in its many forms, has been the most successful to this point in producing crystalline diamond films microns to millimeters in thickness which are made up of closely packed diamond crystals microns in physical dimension. However, high purity films are difficult to realize due to the use of hydrogen in the growth process which becomes included in the film matrix. These impurities are manifest in film physical properties which are inferior to those of pure crystalline diamond. In addition, the large density of grain boundaries due to the polycrystalline nature of the films reduce the films' diamond-like character. Finally, substrates must be heated to several hundred degrees Celsius which is not suitable for many materials. Pulsed laser deposition is attractive due to its ability to produce high purity films-limited only by the purity of the target. For diamond film production, high purity carbon can be ablated directly by lasers and deposited as thin films at ambient temperatures. However, lasers currently in use generally deliver long (>10 ns) pulses, and the generally explosive nature of laser ablation, in addition to the desired single-atom or single-ion carbon, liberates significant amounts of carbon clusters (C{sub n} where n=2-30) and macroscopic particles (> 1-10 pm) of carbon. These carbon particles interrupt the ordered deposition of crystalline

  9. Chemical vapor deposition and characterization of titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Gilmer, David Christopher

    1998-12-01

    The continued drive to decrease the size and increase the speed of micro-electronic Metal-Oxide-Semiconductor (MOS) devices is hampered by some of the properties of the SiOsb2 gate dielectric. This research has focused on the CVD of TiOsb2 thin films to replace SiOsb2 as the gate dielectric in MOS capacitors and transistors. The relationship of CVD parameters and post-deposition anneal treatments to the physical and electrical properties of thin films of TiOsb2 has been studied. Structural and electrical characterization of TiOsb2 films grown from the CVD precursors tetraisopropoxotitanium (IV) (TTIP) and TTIP plus Hsb2O is described in Chapter 3. Both types of deposition produced stoichiometric TiOsb2 films comprised of polycrystalline anatase, but the interface properties were dramatically degraded when water vapor was added. Films grown with TTIP in the presence of Hsb2O contained greater than 50% more hydrogen than films grown using only TTIP and the hydrogen content of films deposited in both wet and dry TTIP environments decreased sharply with a post deposition Osb2 anneal. A significant thickness variation of the dielectric constant was observed which could be explained by an interfacial oxide and the finite accumulation thickness. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 38, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 4 discusses the low temperature CVD of crystalline TiOsb2 thin films deposited using the precursor tetranitratotitanium (IV), TNT, which produces crystalline TiOsb2 films of the anatase phase in UHV-CVD at temperatures as low as 184sp°C. Fabricated TiOsb2 capacitors exhibited electrically equivalent SiOsb2 gate dielectric thicknesses and leakage current densities as low as 17, and 1×10sp{-8} Amp/cmsp2 respectively. Chapter 5 describes the results of a comparison of physical and electrical properties between TiOsb2 films grown via LPCVD using

  10. Thin film solar cell module

    SciTech Connect

    Gay, R.R.

    1987-01-20

    A thin film solar cell module is described comprising a first solar cell panel containing an array of solar cells consisting of a TFS semiconductor sandwiched between a transparent conductive zinc oxide layer and a transparent conductive layer selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide deposited upon a transparent superstrate, and a second solar cell panel containing an array of solar cells consisting of a CIS semiconductor layer sandwiched between a zinc oxide semiconductor layer and a conductive metal layer deposited upon an insulating substrate. The zinc oxide semiconductor layer contains a first relatively thin layer of high resistivity zinc oxide adjacent the CIS semiconductor and a second relatively thick layer of low resistivity zinc oxide overlying the high resistivity zinc oxide layer. The transparent conductive zinc oxide layer of the first panel faces the low resistivity zinc oxide layer of the second panel, the first and second panels being positioned optically in series and separated by a transparent insulating layer.

  11. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  12. Degradation of the acousto-electric current saturation behavior in c-axis fiber-textured polycrystalline zinc oxide films

    SciTech Connect

    Pompe, T.; Srikant, V.; Clarke, D.R.

    1996-12-31

    Acoustic-electric current saturation has been observed in thin, polycrystalline Al-doped zinc oxide films grown on fused quartz. The films, grown by laser ablation, are c-axis textured with high angle grain boundaries between the grains. After annealing at 600 C in 0.1 mtorr oxygen, the films exhibit a current saturation at a current density of 2 10{sup 5} A/cm{sup 2} and electric fields of 5 10{sup 3} V/cm. However, under constant field the current density falls and the current saturation behavior is not maintained. Current saturation at the same current density can, however, be restored by increasing the electric field. Similarly, the appearance and disappearance of the current saturation behavior can be reversibly controlled by annealing in different oxygen partial pressures at 200 C. The degradation phenomena is attributed to the high acoustic flux enhancing the diffusion of oxygen along the grain boundaries where oxygen can alter the grain boundary potential barrier and hence the electric field in the grains.

  13. Highly conductive grain boundaries in copper oxide thin films

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Klein, Andreas; Fortunato, Elvira

    2016-06-01

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu2O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu2O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu2O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  14. Micromotors using magnetostrictive thin films

    NASA Astrophysics Data System (ADS)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  15. Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis

    NASA Astrophysics Data System (ADS)

    Abdel-wahab, M. Sh.; Jilani, Asim; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-06-01

    Pure and Ni-doped ZnO thin films with different concentration of Ni (3.5 wt%, 5 wt%, 7 wt%) were prepared by DC/RF magnetron sputtering technique. The X-rays diffraction pattern showed the polycrystalline nature of pure and Ni-doped ZnO thin films. The surface morphology of pure and Ni doped ZnO thin films were investigated through atomic force microscope, which indicated the increase in the grain dimension and surface roughness with increasing the Ni doping. The UV-Visible transmission spectra showed the decrease in the transmittance of doped ZnO thin films with the incorporation of Ni dopants. The surface and chemical state analysis of pure and Ni doped ZnO thin films were investigated by X-rays photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by an aqueous solution of methyl green dye. The tungsten lamp of 500 W was used as a source of visible light for photocatalytic study. The degradation results showed that the Ni-doped ZnO thin films exhibit highly enhanced photocatalytic activity as compared to the pure ZnO thin films. The enhanced photocatalytic activities of Ni-doped ZnO thin films were attributed to the enhanced surface area (surface defects), surface roughness and decreasing the band gap of Ni-doped ZnO thin films. Our work supports the applications of thin film metal oxides in waste water treatment.

  16. Large-bias conduction model of polycrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Das, Soumen; Lahiri, Samir K.

    1994-04-01

    There exists a need for a large-bias conduction model of polysilicon films used in VLSI/ULSI and in high power integrated circuits. A large-bias conduction model has been developed by extending the emission-based models of Lu et al. and Mandurah et al. valid for small-bias, small-signal conditions. The following large-bias effects have been taken into account: 1) asymmetry of potential distribution around grain boundaries and 2) avalanche multiplication of carriers in the grain boundary layers at high electric fields. Since the exact nature of the grain boundary material is not yet known, and there is no direct method for determining the model parameters relating to grain boundaries, these were extracted by the parametric fitting of resistance versus temperature data of polysilicon resistors near room temperature with the above small-signal resistivity models modified by including Fermi-Dirac distribution. The model has been validated with experimental data on the current-voltage characteristics of ion-beam sputtered polysilicon resistors of different sizes and aspect ratios. The dependence of model parameters relating to grain boundary scattering and avalanche multiplication on the dimensions of resistors have been explained physically. The increased kink effect in polysilicon TFT's may also be predicted from the present theory. Some results on the I-V characteristics of polyresistors trimmed by high current pulses have been discussed qualitatively in the light of the present model. Although the model involves numerical integrations and a few iterations, it is reasonably fast in execution.

  17. Multiferroic YCrO3 thin films grown on glass substrate: Resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Seo, Jeongdae; Ahn, Yoonho; Son, Jong Yeog

    2016-01-01

    Polycrystalline YCrO3 thin films were deposited on (111) Pt/Ta/glass substrates by pulsed laser deposition. The YCrO3 thin films exhibited good ferroelectric properties with remnant polarization of about 5 µC/cm2. Large leakage current was observed by I- V curve and ferroelectric hysteresis loop. The YCrO3 resistive random access memory (RRAM) capacitor showed unipolar switching behaviors with SET and RESET voltages higher than those of general NiO RRAM capacitors. [Figure not available: see fulltext.

  18. Investigations of CuInSe sub 2 thin films and contacts

    SciTech Connect

    Nicolet, M.A. )

    1991-10-01

    This report describes research into electrical contacts for copper indium diselenide (CuInSe{sub 2}) polycrystalline thin films used for solar cell applications. Molybdenum contacts have historically been the most promising for heterojunction solar cells. This program studied contact stability by investigating thermally induced bilayer reactions between molybdenum and copper, indium, and selenium. Because selenization is widely used to fabricate CuInSe{sub 2} thin films for photovoltaic cells, a second part of the program investigated how the morphologies, phases, and reactions of pre-selenization Cu-In structures are affected by the deposition process and heat treatments. 7 refs., 6 figs.

  19. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  20. High mobility organic thin-film transistors based on p-p heterojunction buffer layer

    NASA Astrophysics Data System (ADS)

    Qian, Xianrui; Wang, Tong; Yan, Donghang

    2013-10-01

    The p-p heterojunction of 5, 6, 11, 12-tetraphenylnaphthacene/vanadyl phthalocyanine, which has been used as the buffer layer, is demonstrated. The highest field-effect mobility is 5.1 cm2/Vs, which is one of the highest reported for polycrystalline rubrene thin film transistors. Current versus voltage characteristics of heterojunction diodes are utilized to investigate the charge injection mechanism, revealing the factors that bring about the improvement of carrier injection and the reduction of contact resistance. These results suggest that our approach is very promising to fabricate high performance organic thin-film transistors for practical applications in organic electronics.

  1. MIS solar cells on thin polycrystalline silicon. Progress report No. 3, September 1-November 30, 1980

    SciTech Connect

    Anderson, W.A.

    1980-12-01

    The first task of this project involves electron-beam deposition of thin silicon films on low cost substrates. The goal is to obtain 20 ..mu..m thick films having 20 ..mu..m diameter crystallites which may be recrystallized to > 40 ..mu..m. Material characterization and device studies are to be included in efforts to reach a 6% conversion efficiency. The second task deals with MIS solar cell fabrication on various types of silicon including poly-Si, ribbon-Si, silicon on ceramic, and thin film silicon. Conduction mechanism studies, optimum engineering design, and modification of the fabrication process are to be used to achieve 13% efficiency on Xtal-Si and 11% efficiency on poly-Si. The third task involves more detailed test procedures and includes spectral response, interface and grain boundary effects, computer analysis, materials studies, and grain boundary passivation. Progress is detailed. (WHK)

  2. Yb-doped SnTe semimetal thin films deposited by thermal evaporation: Structural, electrical, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Hmood, A.; Kadhim, A.; Hassam, H. A.

    2014-12-01

    Sn monochalcogenide and Yb-doped Sn1-xYbxTe (0.0 ⩾ x ⩽ 0.1) semimetals, which are known for their usefulness as efficient thermoelectric (TE) materials, were prepared by solid-state microwave technique. Polycrystalline thin films of Sn1-xYbxTe were deposited onto clean glass substrates by using vacuum evaporation technique at 10-6 bar. The structures of the polycrystalline thin films were examined by X-ray diffraction patterns. A rock salt structure was observed. Grain size increased with increasing Yb content but not according to a sequence. The morphology of the nanosheet structures for these thin films was determined by field emission scanning electron microscopy. TE properties were measured at a temperature range of 298-523 K. The carrier concentrations of the films were determined by Hall effect measurements at 300 K.

  3. Structural investigations of sputter deposited thin films: reflection mode EXAFS, specular and non specular X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lützenkirchen-Hecht, Dirk; Frahm, Ronald

    2000-06-01

    The extended X-ray absorption fine structure technique (EXAFS) in the reflection mode was used for the ex situ investigation of sputter deposited thin films on float glass substrates. We show that a detailed analysis of the reflectivity fine structure enables the extraction of short-range order structural information such as bond distances, coordination numbers and Debye-Waller factors. The surface roughness and the density of the thin films were determined from specular and non-specular X-ray scattering experiments. Polycrystalline Ag and Au films prepared by DC-sputtering in Ar atmospheres were investigated to show the potential of the technique. Both systems reveal a polycrystalline short-range order structure similar to that of the respective bulk materials. In contrast, amorphous structures with significantly reduced densities were found for Ta 2O 5 thin films prepared by reactive sputtering in pure O 2-atmospheres.

  4. Effect of substrate on magneto-transport properties of polycrystalline manganite films

    NASA Astrophysics Data System (ADS)

    Siwach, P. K.; Singh, D. P.; Singh, H. K.; Khare, N.; Singh, A. K.; Srivastava, O. N.

    2003-06-01

    Polycrystalline films of La0.7Ca0.2Ba0.1MnO3 (LCBMO) were deposited on LaAlO3, SrTiO3 (STO), Al2O3 and YSZ single crystal substrates by spray pyrolysis technique employing an ultrasonic nebulizer. Deposition and annealing conditions for all four films were kept identical. All films have been found to be single phase and have orthorhombic unit cells with only slightly different lattice parameters. The magneto-transport properties (magnetoresistance (MR), TC and TIM) of these polycrystalline LCBMO films are found to depend strongly on the substrate. The lattice mismatch between the film and substrate induces strain of various degrees. The strain is believed to get relaxed and accommodated. This produces disorders dominantly through the increase in the grain boundary density and hence decrease in grain size. The largest strain leads to the creation of highest degree of disorder. The observed MR for the case of YSZ/LCBMO is found to be significantly higher than other case of STO/LCBMO. As for example, for YSZ/LCBMO where the lattice mismatch is -24.280%, MR is ~7%, on the other hand for STO/LCBMO where the lattice mismatch is -0.333%, MR is ~2.3%. The TC and TIM for the film with higher disorder (YSZ/LCBMO) is significantly reduced as compared to the case of the film having lower disorder (STO/LCBMO). The TC for YSZ/LCBMO (higher disorder) is 243 K and for STO/LCBMO (lower disorder), it is 285 K.

  5. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  6. Macro stress mapping on thin film buckling

    SciTech Connect

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  7. Structural characterization of thin film photonic crystals

    SciTech Connect

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  8. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  9. Thin films of gallium arsenide on low-cost substrates. Final technical report, July 5, 1976-December 5, 1978

    SciTech Connect

    Ruth, R.P.; Dapkus, P.D.; Dupuis, R.D.; Johnson, R.E.; Moudy, L.A.; Yang, J.J.; Yingling, R.D.

    1980-03-01

    The MO-CVD technique was applied to the growth of thin films of GaAs and GaAl As on inexpensive polycrystalline or amorphous substrate materials (primarily glasses and metals) for use in fabrication of large-area low-cost photovoltaic device structures. Trimethylgallium, arsine, and trimethylaluminum are mixed in appropriate concentrations at room temperature in the gaseous state and pyrolyzed at the substrate, which is heated in a vertical reactor chamber to temperatures of 700 to 750/sup 0/C, to produce the desired film composition and properties. Studies of the properties of grain boundaries in polycrystalline GaAs films by the use of transport measurements as a function of temperature indicated that the grain boundary regions are depleted of majority carriers by a large density of neutral traps at the grain boundary interface, causing a barrier to majority carrier flow in the material. Schottky-barrier solar cells of approx. 3 percent efficiency (simulated AM0 illumination, no AR coating) were demonstrated on thin-film polycrystalline GaAs n/n/sup +/ structures on Mo sheet, Mo film/glass, and graphite substrates. Substantial enhancement of average grain size in polycrystalline MO-CVD GaAs films on Mo sheet was obtained by the addition of HCl to the growth atmosphere during deposition. Extensive investigation of polycrystalline thin-film p-n junctions indicated that the forward voltage of such devices is apparently limited to 0.5 to 0.6V. A laboratory-type deposition apparatus for the formation of TiO/sub 2/ antireflection (AR) coatings by pyrolysis of titanium isopropoxide was assembled and tested. Detailed analyses were made of the materials and labor costs involved in the laboratory-scale fabrication of MO-CVD thin-film GaAs solar cells. Details are presented. (WHK)

  10. Crystal structure and magnetic properties of Zn{sub 0.9}Cu{sub 0.1}O{sub y} rf-sputtered thin films

    SciTech Connect

    Venkaiah, M.; Kiran, U Kumar; Singh, R.

    2013-02-05

    Zn{sub 0.9}Cu{sub 0.01}O thin films were deposited on quartz substrates by rf-magnetron sputtering using ceramic target in pure argon gas environment. The X-ray diffraction show the polycrystalline wurtzite structure of the films. The average grain size increases from 40-100nm as thickness of the film increases. The room temperature magnetization studies show the films to be ferromagnetic. The saturation magnetization decreases with increase in film thickness.

  11. Origin of carrier scattering in polycrystalline Al-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Oka, Nobuto; Kusayanagi, Minehide; Nakatomi, Satoshi; Shigesato, Yuzo

    2014-10-01

    We observed the carrier transport phenomena in polycrystalline Al-doped ZnO (AZO) films with carrier densities ranging from 2.0 × 1019 to 1.1 × 1021 cm-3. A comparison of the optical carrier density and Hall carrier density indicates that the conduction band in AZO films is nonparabolic above 2.0 × 1020 cm-3. A transition from grain boundary scattering to ionized impurity scattering is observed at a doping level of ˜4.0 × 1020 cm-3. The trap density at the grain boundary increases with increasing Al concentration in the films, implying that the doping level plays a decisive role in the trap density. The excellent fitting of the optical mobility and carrier density using the Brooks-Herring model shows that the acceptor concentration increases with increasing doping level.

  12. Insect thin films as solar collectors.

    PubMed

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  13. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  14. Electrodeposition of CuInSe 2 thin films and their characteristics

    NASA Astrophysics Data System (ADS)

    Al-Bassam, A. A. I.

    1999-05-01

    Polycrystalline thin films of CuInSe 2 (CIS) were deposited by the electrochemical method. Some of the physical properties such as lattice parameters, crystal structure and X-ray data of CuInSe 2 (CIS) films with different Cu/In ratios (0.49-1.1) were determined using X-ray diffractometry. A structural transition from chalcopyrite to sphalerite was observed on the electrodeposited CuInSe 2 when the compositions of the thin films were varied from a quasi-stoichiometry to indium rich. The surface morphology with different Cu/In ratios was studied using a scanning electron microscope. Quasi-stoichiometric CuInSe 2 thin films were obtained in the chalcopyrite structure with grain sizes of the matter of 0.60 μm.

  15. i Barrier layer mechanism engineering in calcium copper titanate thin film capacitors through microstructure control

    NASA Astrophysics Data System (ADS)

    Paisley, E. A.; Losego, M. D.; Aygun, S. M.; Craft, H. S.; Maria, J.-P.

    2008-12-01

    A peak permittivity greater than 10 000 has been achieved for calcium copper titanate (CCT) thin films by engineering a thin film microstructure that maximizes space charge contributions to polarizability. This permittivity is an order of magnitude greater than previous polycrystalline thin film efforts. This unique microstructure control is accomplished using a chemical solution deposition process flow that produces highly dense parallel layers ˜100 nm in thickness. We observe a thickness dependent permittivity where the entire film thickness constitutes the conducting region of a barrier layer capacitor despite the presence of multiple grain boundaries within that thickness. The model predictions are in good agreement with experimental data and are consistent with existing literature reports. These trends in permittivity with dielectric thickness raise new questions regarding the nature of barrier layers in CCT—and specifically, these results suggest that grain boundaries may not always participate as high resistance interlayers.

  16. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  17. Thermal transport properties of polycrystalline tin-doped indium oxide films

    SciTech Connect

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-04-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In{sub 2}O{sub 3} and 10 wt %SnO{sub 2}). The resistivity and carrier density of the ITO films ranged from 2.9x10{sup -4} to 3.2x10{sup -3} {omega} cm and from 1.9x10{sup 20} to 1.2x10{sup 21} cm{sup -3}, respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10{sup -6} m{sup 2}/s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant ({lambda}{sub ph}=3.95 W/m K), which was about twice that for amorphous indium zinc oxide films.

  18. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Duta, L.; Oktar, F. N.; Stan, G. E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I. N.

    2013-01-01

    We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical-chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  19. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  20. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  1. Thin films for geothermal sensing: Final report

    SciTech Connect

    Not Available

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  2. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  3. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  4. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  5. Studies on sprayed lanthanum sulphide (La 2S 3) thin films from non-aqueous medium

    NASA Astrophysics Data System (ADS)

    Bagde, G. D.; Pathan, H. M.; Lokhande, C. D.; Patil, S. A.; Muller, M.

    2005-12-01

    Thin films of lanthanum sulphide (La 2S 3) have been deposited onto glass substrates by spray pyrolysis technique from non-aqueous (methanol) medium. The structural, morphological, optical, dielectric, electric and thermoemf properties were studied. The films were polycrystalline with an irregular shaped particles present over the porous structure within a fibrous network structure. The optical band gap was estimated to be 2.50 eV. The dielectric properties were measured in the range 100 Hz-1 MHz. The electrical resistivity was of the order of 10 4 to 10 5 Ω cm. Thermoemf study revealed that the La 2S 3 films exhibit p-type electrical conductivity.

  6. Formation of rubrene nanocrystals by laser ablation in liquids utilizing MAPLE deposited thin films

    NASA Astrophysics Data System (ADS)

    O'Malley, Sean M.; Amin, Mitesh; Borchert, James; Jimenez, Richard; Steiner, Matt; Fitz-Gerald, James M.; Bubb, Daniel M.

    2014-03-01

    Nanoparticles (NPs) of the organic semiconductor rubrene were formed utilizing the laser ablation in liquids (LAL) method. Thin-films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) served as the ablation targets. We note in the case of amorphous films targets, the absorbed energy is below the threshold value needed for ablation; though polycrystalline films irradiated under the same LAL conditions result in ejecta. It is suggested this stems from an increase in the effective absorption through light trapping within crystalline domains. An observed red-shift in the absorption edge is attributed to the polar aqueous environment and to the crystalline phase.

  7. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  8. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    more recent work on polycrystalline zeolite thin films as promising biocompatible coatings and environmentally benign wear-resistant and antifouling coatings. When zeolites are incorporated into polymer thin films in the form of nanocrystals, we also show that the resultant composite membranes can significantly improve the performance of reverse osmosis membranes for sea water desalination and proton exchange membrane fuel cells. These diverse applications of zeolites have the potential to initiate new industries while revolutionizing existing ones with a potential economic impact that could extend into the hundreds of billions of dollars. We have licensed several of these inventions to companies with millions of dollars invested in their commercial development. We expect that other related technologies will be licensed in the near future. PMID:20158246

  9. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    more recent work on polycrystalline zeolite thin films as promising biocompatible coatings and environmentally benign wear-resistant and antifouling coatings. When zeolites are incorporated into polymer thin films in the form of nanocrystals, we also show that the resultant composite membranes can significantly improve the performance of reverse osmosis membranes for sea water desalination and proton exchange membrane fuel cells. These diverse applications of zeolites have the potential to initiate new industries while revolutionizing existing ones with a potential economic impact that could extend into the hundreds of billions of dollars. We have licensed several of these inventions to companies with millions of dollars invested in their commercial development. We expect that other related technologies will be licensed in the near future.

  10. Flush Mounting Of Thin-Film Sensors

    NASA Technical Reports Server (NTRS)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  11. Thin-film microelectronic wearable body sensors.

    PubMed

    Neuman, Michael R

    2015-01-01

    This review of various applications of well-established thin-film processing techniques to wearable body sensors gives examples of work done in the author's laboratory over many years. Sensors for the vital signs of body temperature, electrocardiogram, heart rate, breathing pattern and breathing rate are presented along with other applications. Thin-film based sensors have the advantage of small size, high surface area to mass ratio, flexibility, capability for batch production, and compatibility with other microelectronic technologies.

  12. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  13. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  14. Thin solid-lubricant films in space

    NASA Astrophysics Data System (ADS)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  15. Large piezoelectric response of BiFeO3/BaTiO3 polycrystalline films induced by the low-symmetry phase.

    PubMed

    Hou, Y F; Li, W L; Zhang, T D; Wang, W; Cao, W P; Liu, X L; Fei, W D

    2015-05-01

    BaTiO3, BiFeO3 and BiFeO3/BaTiO3 polycrystalline films were prepared by the radio frequency magnetron sputtering on the Pt/Ti/SiO2/Si substrate. The phase structure, converse piezoelectric coefficient and domain structure of BaTiO3, BiFeO3 and BiFeO3/BaTiO3 thin films are characterized by XRD and PFM, respectively. The converse piezoelectric coefficient d33 of BiFeO3/BaTiO3 thin films is 119.5 pm V(-1), which is comparable to that of lead-based piezoelectric films. The large piezoelectric response of BiFeO3/BaTiO3 thin films is ascribed to the low-symmetry T-like phase BiFeO3, because the spontaneous polarization vector of T-like phase (with monoclinic symmetry) BiFeO3 can rotate easily under external field. In addition, the reduced leakage current and major domains with upward polarization are also attributed to the large piezoelectricity.

  16. Mechanisms for Intrinsic Stress Evolution during and after Polycrystalline Film Growth

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    Growth of polycrystalline films involves poorly understood kinetic processes that occur far from equilibrium and lead to complex co-evolution of the surface, microstructure and intrinsic stress of the films. Here we present a comprehensive study consisting of in situ stress measurements, microstructure characterization, and analytical modeling for various polycrystalline systems. We find that in systems of high atomic mobility, the stress change after polycrystalline film growth can be attributed to a fast reversible surface process and a slow irreversible bulk process. The fast process is weakly dependent on temperature and is associated with changes in the shape of grain surfaces. The slow process is strongly dependent on temperature and is mostly associated with grain growth in the bulk of the film. We also discovered a turnaround phenomenon in which, under conditions of intermediate atomic mobility, the stress evolves from a tensile toward a compressive state, and then turns around to evolve toward a tensile state. This stress turnaround phenomenon is strongly dependent on the substrate temperature and deposition rate, and can be attributed to an increase of the grain size during film deposition. Grain growth during deposition not only leads to a tensile component of the intrinsic stress, but also changes the grain size dependence of the compressive component. The compressive component results from incorporation of excess adatoms in grain boundaries, and the magnitude of the compressive stress is controlled by a competition between adatom incorporation in 2D islands and incorporation at grain boundaries. We also investigated the effect of the angle of incidence of the flux of depositing atoms on stress and structure evolution during polycrystalline film growth. We find that as the angle of incidence increases, the coalescence thickness increases and the stress becomes less compressive or more tensile. We attribute these phenomena to the enhanced surface

  17. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    SciTech Connect

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test the quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.

  18. Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices

    DOE PAGES

    Xiao, Zhigang; Kisslinger, Kim

    2015-06-17

    Thin films of hafnium dioxide (HfO2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ring oscillator to test themore » quality of the HfO2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO2 thin film functioned very well as the gate oxide.« less

  19. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2013-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

  20. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed. PMID:27454334

  1. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  2. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  3. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  4. Compositional dependence of Pb(Mg1/3,Nb2/3)O3-PbTiO3 piezoelectric thin films by combinatorial sputtering

    NASA Astrophysics Data System (ADS)

    Kurokawa, Fumiya; Tsujiura, Yuichi; Hida, Hirotaka; Kanno, Isaku

    2014-09-01

    We evaluated the compositional dependence of Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT) polycrystalline thin films by combinatorial sputtering. We prepared compositional gradient (1 - x)PMN-xPT polycrystalline thin films with preferential orientation along the <001> direction in the composition range of x = 0-0.62. We determined that the morphotropic phase boundary (MPB) composition of PMN-PT polycrystalline thin film existed at around x = 0.35, from the X-ray diffraction (XRD) measurements. The maximum value of relative dielectric constants (ɛr = 1498) was obtained at approximately x = 0.23. On the other hand, the piezoelectric coefficients (|e31,f| = 14.1 C/m2) peaked at the determined MPB composition of x = 0.35. From the results of the compositional dependence of dielectric and piezoelectric characteristics, the FOM (e_{31,\\text{f}}^{2}/\\varepsilon _{0}\\varepsilon _{\\text{r}}) of the PMN-PT (x = 0.35) thin film reached 21 GPa, which is much higher than that of the other polycrystalline piezoelectric thin films. These results suggest that PMN-PT (x = 0.35) thin film is a promising material for high-efficiency piezoelectric MEMS energy harvesters.

  5. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  6. Fabrication and Characterization of Lead Zirconate Titanate (PZT) Thin Films by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Rahman, M. F.; Miglioli, L.

    2016-02-01

    In this work, thin lead zirconate titanate, Pb[Zr0.52Ti0.48]O3 (PZT) films have been developed from a novel sol-gel route. The sol-gel films were deposited by spin coating method. Isopropanol-based solution was used for its less toxic property. Gold (Au), platinum (Pt) and indium tin oxide (ITO) were used as substrates. Homogeneous polycrystalline films with (110) preferred orientation were obtained from all the films. The films behaved as ferroelectric material where dielectric constant at 0V for the films obtained from Au, Pt and ITO substrates were 484, 770 and 655, respectively. The coercive field values were around 10-15KV/cm which revealed that the films were soft ferroelectric.

  7. Optical characterization of copper indium gallium diselenide thin films

    NASA Astrophysics Data System (ADS)

    Hebert, Damon

    Cu(In,Ga)Se2 (CIGS) and its alloys are the leading choice for thin film photovoltaic absorber layers due to their high performance in devices, low degradation, high optical absorption coefficient and high tolerance to off-stoichiometry and intrinsic defects. Film conductivity and recombination losses are controlled by intrinsic point defect concentrations, especially in the near-surface space-charge region of the heterojunction. Despite the amount of research already performed on CIGS alloys, their optoelectronic properties, defect chemistry and recombination mechanisms are still poorly understood. The focus of this dissertation is to optically characterize a selection of CIGS absorber layers fabricated by various techniques in order to better understand the radiative emission and defect physics. This work aims to identify the defects responsible for recombination and their relation to grain boundaries and band edge fluctuations, which limit device performance. This study used photoluminescence (PL) spectroscopy, photoluminescence excitation (PLE) spectroscopy, and cathodoluminescence (CL) to study radiative emissions from a variety of Cu-poor CIGS thin films. Three general types of CIGS films were analyzed. Polycrystalline layers deposited on Mo-coated soda lime glass, polycrystalline layers deposited on metal foil, and epitaxial films grown on (100) and (111) GaAs were analyzed in this work. This work concludes that the donor-acceptor pair recombination model used in most interpretations of CIGS emission should be replaced with a model that accounts for high compensation and band edge fluctuations, which is shown to be undoubtedly the case in Cu-poor CIGS. Within this model, the most commonly observed emissions were explained as free-to-bound types, specifically iii band-to-impurity (BI) and tail-to-impurity (TI) types. Band tail width was measured by PLE. A correlation was established between band tail width and device efficiency. CIGS absorber layers that

  8. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  9. Bimodal swelling responses in microgel thin films.

    PubMed

    Sorrell, Courtney D; Lyon, L Andrew

    2007-04-26

    A series of studies on microgel thin films is described, wherein quartz crystal microgravimetry (QCM), surface plasmon resonance (SPR), and atomic force microscopy (AFM) have been used to probe the properties of microstructured polymer thin films as a function of film architecture and solution pH. Thin films composed of pNIPAm-co-AAc microgels were constructed by using spin-coating layer-by-layer (scLbL) assembly with poly(allylamine hydrochloride) (PAH) as a polycationic "glue". Our findings suggest that the interaction between the negatively charged microgels and the positively charged PAH has a significant impact on the pH responsivity of the film. These effects are observable in both the optical and mechanical behaviors of the films. The most significant changes in behavior are observed when the motional resistance of a quartz oscillator is monitored via QCM experiments. Slight changes to the film architecture and alternating the pH of the environment significantly changes the QCM and SPR responses, suggesting a pH-dependent swelling that is dependent on both particle swelling and polyelectrolyte de-complexation. Together, these studies allow for a deeper understanding of the morphological changes that take place in environmentally responsive microgel-based thin films. PMID:17407344

  10. Growth of n-type polycrystalline pyrite (FeS 2) films by metalorganic chemical vapour deposition and their electrical characterization

    NASA Astrophysics Data System (ADS)

    Oertel, J.; Ellmer, K.; Bohne, W.; Röhrich, J.; Tributsch, H.

    1999-03-01

    The compound semiconductor pyrite (FeS 2) has attracted attention as a possible absorber material for thin film solar cells. In this article it is shown for the first time that polycrystalline pyrite films which normally show p-type conductivity, can in situ be doped n-type by using cobalt as a dopant above a concentration of 0.3 at%. The chemical cobalt concentration - determined by high energy heavy ion Rutherford backscattering analysis - is proportional to the cobalt-to-iron ratio in the gas phase. The carrier concentrations are very high (>10 20 cm -3) and the Seebeck coefficients are low (<70 μV/K), pointing at degenerated semiconductor properties. The carrier transport in the films can be described by the grain barrier limited transport model described by Seto (1975). From the temperature dependence of the Hall mobility, barrier heights of 7-37 meV have been determined. The trap density in the grain barriers is about 2×10 13 cm -2, a value which is much higher than in polycrystalline silicon or CdS-films.

  11. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  12. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  13. Microcrystalline organic thin-film solar cells.

    PubMed

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  14. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering

    PubMed Central

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-01-01

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10−3 Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications. PMID:25169804

  15. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  16. Rupture Limit of Thin Moving Films

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Joseph, Daniel D.; Kim, Hyungjun

    2010-11-01

    The rupture of a thin film in another fluid is studied including the effects of disjoining pressure. The study considers the linear stability of a moving viscous film in a motionless inviscid fluid and of a stagnant viscous film in a motionless viscous fluid. These are analyzed by means of the Navier--Stokes equations and the dissipation approximation based on potential flow. Results reveal that the dissipation method provides a good approximation for the case of a moving film, whereas its predictions are off the mark for the stagnant film case. The thickness of the gap at the trough of Kelvin-Helmholtz waves locates the formation of holes. The wavelength at final collapse is determined by the length of waves at the trough of the corrugated film. The disjoining pressure effects cause very fast break-up for very thin films. These effects influence the cutoff wavenumber. In the limit of small gaps on this corrugated film, the Reynolds and Weber numbers tend to zero with the gap size, the Ohnesorge number increases like the reciprocal of the square root and the Hamaker number like the reciprocal of the square of the gap. The motion of the film does not enter at the point of formation of holes. Moreover, for the most unstable wave, the ratio of the wavelength to film thickness is found to decrease with decreasing film thickness.

  17. Holographic analysis of thin films

    NASA Technical Reports Server (NTRS)

    Norden, B. N.; Williams, J. R.

    1970-01-01

    Technique for monitoring deposition of films on surfaces, in place on a real-time basis, reads both the thickness and the uniformity of the deposited film. Holograms are produced from both reflected and transmitted light on one plate.

  18. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  19. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  20. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  1. Magnetoelectric thin film composites with interdigital electrodes

    NASA Astrophysics Data System (ADS)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  2. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  3. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  4. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  5. Formation of a new electric material: Fullerene/metal polycrystalline film

    SciTech Connect

    Xu, Bingshu; Tanaka, Shunichiro

    1997-07-01

    An investigation of the formation behavior and mechanism of onion like fullerene/metal polycrystalline film under electron beam irradiation is presented. Metallic nanoparticles of Al, Au and Pt having diameters of 1{approximately}35 nm, were supported on an amorphous carbon film with thickness of about 20 nm. The amorphous carbon film transformed into onion-like fullerene film under electron beam irradiation, with intensity about 10{sup 20} e/cm{sup 2}{center{underscore}dot}sec using high resolution transmission electron microscopy. The transformation mechanism and growth morphology have been investigated. It is found that the nucleation and growth process of onion-like fullerenes from amorphous carbon were divided into several steps: Firstly, a few elliptic shells of carbon were induced under Al, Au or Pt nanoparticles; secondly, a gradual reorganization took place into the structures composed of quasi-concentric spheroid or sphered graphite, i.e., onion like fullerenes, and finally, fullerenes were bonded to each other into a film.

  6. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  7. Paper-Thin Plastic Film Soaks Up Sun to Create Solar Energy

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A non-crystallized silicon known as amorphous silicon is the semiconductor material most frequently chosen for deposition, because it is a strong absorber of light. According to the U.S. Department of Energy, amorphous silicon absorbs solar radiation 40 times more efficiently than single-crystal silicon, and a thin film only about 1-micrometer (one one-millionth of a meter) thick containing amorphous silicon can absorb 90 percent of the usable light energy shining on it. Peak efficiency and significant reduction in the use of semiconductor and thin film materials translate directly into time and money savings for manufacturers. Thanks in part to NASA, thin film solar cells derived from amorphous silicon are gaining more and more attention in a market that has otherwise been dominated by mono- and poly-crystalline silicon cells for years. At Glenn Research Center, the Photovoltaic & Space Environments Branch conducts research focused on developing this type of thin film solar cell for space applications. Placing solar cells on thin film materials provides NASA with an attractively priced solution to fabricating other types of solar cells, given that thin film solar cells require significantly less semiconductor material to generate power. Using the super-lightweight solar materials also affords NASA the opportunity to cut down on payload weight during vehicle launches, as well as the weight of spacecraft being sent into orbit.

  8. Effect of precursor concentration and bath temperature on the growth of chemical bath deposited tin sulphide thin films

    NASA Astrophysics Data System (ADS)

    Jayasree, Y.; Chalapathi, U.; Uday Bhaskar, P.; Sundara Raja, V.

    2012-01-01

    SnS is a promising candidate for a low-cost, non-toxic solar cell absorber layer. Tin sulphide thin films have been deposited by chemical bath deposition technique from a solution containing stannous chloride, thioacetamide, ammonia and triethanolamine (TEA). The effects of concentration of tin salt, triethanolamine and bath temperature on the growth of tin sulphide films have been investigated in order to optimize the growth conditions to obtain tin monosulphide (SnS) films. SnS films obtained under optimized conditions were found to be polycrystalline in nature with orthorhombic structure. The optical band gap of these films was found to be 1.5 eV.

  9. Microscale damping using thin film active materials

    NASA Astrophysics Data System (ADS)

    Kerrigan, Catherine A.; Ho, Ken K.; Mohanchandra, K. P.; Carman, Gregory P.

    2007-04-01

    This paper focuses on understanding and developing a new approach to dampen MEMS structures using both experiments and analytical techniques. Thin film Nitinol and thin film Terfenol-D are evaluated as a damping solution to the micro scale damping problem. Stress induced twin boundary motion in Nitinol is used to passively dampen potentially damaging vibrations. Magnetic domain wall motion is used to passively dampen vibration in Terfenol-D. The thin films of Nitinol, Nitinol/Silicon laminates and Nitinol/Terfenol-D/Nickel laminates have been produced using a sputter deposition process and damping properties have been evaluated. Dynamic testing shows substantial damping (tan δ) measurable in each case. Nitinol film samples were tested in the Differential Scanning Calorimetry (DSC) to determine phase transformation temperatures. The twin boundary mechanism by which energy absorption occurs is present at all points below the Austenite start temperature (approximately 69°C in our film) and therefore allows damping at cold temperatures where traditional materials fail. Thin film in the NiTi/Si laminate was found to produce substantially higher damping (tan δ = 0.28) due to the change in loading condition. The NiTi/Si laminate sample was tested in bending allowing the twin boundaries to be reset by cyclic tensile and compressive loads. The thin film Terfenol-D in the Nitinol/Terfenol-D/Nickel laminate was shown to produce large damping (tan δ = 0.2). In addition to fabricating and testing, an analytical model of a heterogeneous layered thin film damping material was developed and compared to experimental work.

  10. MOF thin films: existing and future applications.

    PubMed

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  11. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  12. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  13. Structure and magnetic properties of epitaxial terbium- iron thin films

    NASA Astrophysics Data System (ADS)

    Wang, Chuei-Tang

    TbFe2 is a giant magnetostrictive material which has the largest known room temperature magnetostriction constant. The large magnetostriction constant suggests that we can manipulate the magnetic anisotropy of the material using small strains. Other research groups have grown amorphous and polycrystalline TbFe2 films; however, these films lose giant mangetostriction because of diordered atomic structure in the amorphous films and random grain orientation in the polycrystalline films. Single-crystal structure is needed to achieve the large magnetostriction, so epitaxial growth of TbFe2 thin films is necessary. The goal of this research is to grow epitaxial TbFe2 films and study the effect of film strain on magnetic anisotropy. A technique was developed to grow epitaxial TbFe2films using DC magnetron sputtering. The films were grown in a UHV system using elemental Tb and Fe sputtering targets and single-crystal Al2O3, MgO, and CaF2 substrates. (110) -oriented Mo, W, and Nb were used as buffer layers to provide the base for epitaxial growth and to prevent chemical reactions between the TbFe2 films and the substrates. On the Mo and W buffer layers the TbFe2 film is (111) -oriented but on the Nb buffer layer it is (110) -oriented. Preliminary calculation of magnetostrictive anisotropy in TbFe2(111) films predicts that compressive strain greater than 0.5% will induce perpendicular magnetization while tensile strain greater than 0.5% will induce an in- plane magnetization. Epitaxial growth on CaF2 provides compressive thermal strain of 0.51%, and SQUID measurements confirmed that these samples did have perpendicular magnetization. On the other hand, Al2O3 provides tensile thermal strain of 0.56%, and SQUID measurements showed the films on Al2O3 were in-plane. The values of strain on these three substrates were determined by strain measurement from synchrotron radiation. X-ray epitaxial quality measurements revealed a new orientation relationship, R30o, at the TbFe2

  14. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Chesterfield, Reid J.; McKeen, John C.; Newman, Christopher R.; Frisbie, C. Daniel; Ewbank, Paul C.; Mann, Kent R.; Miller, Larry L.

    2004-06-01

    We report structural and electrical properties in thin films of an n-channel organic semiconductor, N,N'-dipentyl-3,4,9,10-perylene tetracarboxylic dimide (PTCDI-C5). The structure of polycrystalline thin films of PTCDI-C5 was studied using x-ray diffraction and atomic force microscopy. Films order with single crystal-like packing, and the direction of π-π overlap is in the substrate plane. Organic thin film transistors (OTFTs) based on PTCDI-C5 were fabricated on hydrophobic and hydrophilic substrates. OTFTs showed effective mobility as high as 0.1 cm2/V s. Contact resistance of operating OTFTs was studied using resistance versus length plots and a four-probe method for three different contact metals (Au, Ag, Ca). Typical OTFTs had a specific contact resistance of 8×104 Ω cm at high gate voltage. There was no dependence of contact resistance with contact metal. Variable temperature measurements revealed that film resistance in the OTFT was activated in the temperature range 100-300 K, with typical activation energies of 60-80 meV. Contact resistance showed similar activated behavior, implying that the Schottky barrier at the contact is not the limiting resistance for the contact. Film resistance data showed a Meyer-Neldel relationship with characteristic energy EMN=20-25 meV, for various samples. The common TFT instability of threshold voltage shift (TVS) was observed in PTCDI-C5 OTFTs. A model is proposed to explain positive TVS in gate bias stress and oxygen exposure experiments. The model is based on the formation of a metastable complex between PTCDI-C5 and oxygen, which creates a deep acceptor-like trap state.

  15. Sequential Sputtering/Selenization Technique for the Growth of CuInSe2 Thin Films

    NASA Astrophysics Data System (ADS)

    Nakada, Tokio; Kunioka, Akio

    1998-09-01

    We have proposed a sequential sputtering/selenization technique and apparatus for the growth of CuInSe2 (CIS)-based thin films. The apparatus consists of a cylindrical rotating drum for holding substrates and three horizontally interconnected subchambers for Cu, In, and Se fluxes. The serious problem associated with hybrid sputtering of metal target contamination by Se flux has been greatly reduced by the current geometric design. In this method, a very thin Cu/In stacked layer is first sputter-deposited, and then selenized with thermally evaporated Se vapor at each rotation of the drum. Polycrystalline CIS films for solar cells were grown by sequentially repeating these steps, which prevented the formation of the micron-sized voids usually observed in CIS-based thin films grown by selenization.

  16. Influence of hydrogen and hydrogen/methane plasmas on AlN thin films

    SciTech Connect

    Pobedinskas, P. Hardy, A.; Van Bael, M. K.; Haenen, K.; Degutis, G.; Dexters, W.

    2014-02-24

    Polycrystalline aluminum nitride (AlN) thin films are exposed to hydrogen and hydrogen/methane plasmas at different conditions. The latter plays an indispensable role in the subsequent deposition of nanocrystalline diamond thin films on AlN. The changes of AlN properties are investigated by means of Fourier transform infrared (FTIR) and Raman spectroscopies as well as atomic force microscopy. The E{sub 1}(TO) and E{sub 2}{sup 2} phonon mode frequencies blue-shift after the exposure to plasmas. The damping constant of E{sub 1}(TO) phonon, calculated from FTIR transmission spectra using the factorized model of a damped oscillator, and the width of E{sub 2}{sup 2} peak in Raman spectra decrease with increasing substrate temperature till the decomposition of AlN thin film becomes notable. It is proven that these changes are driven by the plasmas as annealing in vacuum does not induce them.

  17. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    SciTech Connect

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B.; Kunnen, G. R.; Allee, D. R.; Sastré-Hernández, J.; Contreras-Puente, G.; Mendoza-Pérez, R.

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  18. Influence of hydrogen and hydrogen/methane plasmas on AlN thin films

    NASA Astrophysics Data System (ADS)

    Pobedinskas, P.; Degutis, G.; Dexters, W.; Hardy, A.; Van Bael, M. K.; Haenen, K.

    2014-02-01

    Polycrystalline aluminum nitride (AlN) thin films are exposed to hydrogen and hydrogen/methane plasmas at different conditions. The latter plays an indispensable role in the subsequent deposition of nanocrystalline diamond thin films on AlN. The changes of AlN properties are investigated by means of Fourier transform infrared (FTIR) and Raman spectroscopies as well as atomic force microscopy. The E1(TO) and E22 phonon mode frequencies blue-shift after the exposure to plasmas. The damping constant of E1(TO) phonon, calculated from FTIR transmission spectra using the factorized model of a damped oscillator, and the width of E22 peak in Raman spectra decrease with increasing substrate temperature till the decomposition of AlN thin film becomes notable. It is proven that these changes are driven by the plasmas as annealing in vacuum does not induce them.

  19. Cd self-doping of CdTe polycrystalline films by co-sputtering of CdTe-Cd targets

    NASA Astrophysics Data System (ADS)

    Picos-Vega, A.; Becerril, M.; Zelaya-Angel, O.; Ramírez-Bon, R.; Espinoza-Beltrán, F. J.; González-Hernández, J.; Jiménez-Sandoval, S.; Chao, B.

    1998-01-01

    Cadmium self-doped CdTe polycrystalline films were grown on Corning glass substrates at room temperature by cosputtering from a CdTe-Cd target. The electrical, structural, and optical properties of the films were analyzed as a function of the Cd concentration. Films with a stoichiometric composition, and slightly below and above it, were prepared. In films where the Te exceeds 50 at. %, it is found segregation of Te and its electrical resistivity is about 107 Ω cm. In those with an excess of Cd, the electrical resistivity drops several orders of magnitude, the carrier concentration increases, and the resistivity activation energy drops. From these results, we concluded that using this deposition method, n-type Cd self-doped CdTe polycrystalline films can be produced.

  20. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.