Science.gov

Sample records for polycrystalline tungsten formed

  1. Fracture behaviour of polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Gaganidze, Ermile; Rupp, Daniel; Aktaa, Jarir

    2014-03-01

    Fracture behaviour of round blank polycrystalline tungsten was studied by means of three point bending Fracture-Mechanical (FM) tests at temperatures between RT and 1000 °C and under high vacuum. To study the influence of the anisotropic microstructure on the fracture toughness (FT) and ductile-to-brittle transition (DBT) the specimens were extracted in three different, i.e. longitudinal, radial and circumferential orientations. The FM tests yielded distinctive fracture behaviour for each specimen orientation. The crack propagation was predominantly intergranular for longitudinal orientation up to 600 °C, whereas transgranular cleavage was observed at low test temperatures for radial and circumferentially oriented specimens. At intermediate test temperatures the change of the fracture mode took place for radial and circumferential orientations. Above 800 °C all three specimen types showed large ductile deformation without noticeable crack advancement. For longitudinal specimens the influence of the loading rate on the FT and DBT was studied in the loading rate range between 0.06 and 18 MPa m1/2/s. Though an increase of the FT was observed for the lowest loading rate, no resolvable dependence of the DBT on the loading rate was found partly due to loss of FT validity. A Master Curve approach is proposed to describe FT vs. test temperature data on polycrystalline tungsten. Fracture safe design space was identified by analysis compiled FT data.

  2. Polycrystalline silicon on tungsten substrates

    NASA Technical Reports Server (NTRS)

    Bevolo, A. J.; Schmidt, F. A.; Shanks, H. R.; Campisi, G. J.

    1979-01-01

    Thin films of electron-beam-vaporized silicon were deposited on fine-grained tungsten substrates under a pressure of about 1 x 10 to the -10th torr. Mass spectra from a quadrupole residual-gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. During separate silicon depositions, the atomically clean substrates were maintained at various temperatures between 400 and 780 C, and deposition rates were between 20 and 630 A min. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry before and after cleaning, deposition, and annealing. Auger depth profiling, X-ray analysis, and SEM in the topographic and channeling modes were utilized to characterize the samples with respect to silicon-metal interface, interdiffusion, silicide formation, and grain size of silicon. The onset of silicide formation was found to occur at approximately 625 C. Above this temperature tungsten silicides were formed at a rate faster than the silicon deposition. Fine-grain silicon films were obtained at lower temperatures.

  3. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  4. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect

    Girault, B.; Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O.; Sauvage, T.

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  5. Hardness of polycrystalline tungsten and molybdenum oxides at elevated temperatures

    SciTech Connect

    Lee, M.; Flom, D.G. . Corporate Research and Development Center)

    1990-07-01

    Vickers hardness of WO{sub 3} W{sub 18}O{sub 49} and MoO{sub 2} is reported for temperatures up to 800{degrees}C. Polycrystalline samples of the oxides were prepared by hot-pressing, and hardness was determined using a Vickers hardness tester modified for high-temperature applications. The hardness of a heavily deformed tungsten rod was also measured as a reference.

  6. Heated die facilitates tungsten forming

    NASA Technical Reports Server (NTRS)

    Chattin, J. H.; Haystrick, J. E.; Laughlin, J. C.; Leidy, R. A.

    1966-01-01

    Tungsten forming in a press brake employs a bottom die assembly with a heating manifold between two water-cooled die sections. The manifold has hydrogen-oxygen burners spaced along its length for even heat during forming.

  7. Fluorine redistribution in a chemical vapor deposited tungsten/polycrystalline silicon gate structure during heat treatment

    NASA Astrophysics Data System (ADS)

    Eriksson, Th.; Carlsson, J.-O.; Keinonen, J.; Petersson, C. S.

    1988-09-01

    Fluorine redistribution during heat treatment of chemical vapor deposited tungsten/polycrystalline silicon gate structures was analyzed by the nuclear resonance broadening technique. The tungsten layer was deposited from a hydrogen/tungsten hexafluoride gas mixture. Upon heat treatment in the temperature range 1020-1325-K tungsten disilicide formation was observed using Rutherford backscattering spectrometry. In the as-deposited sample, the fluorine was accumulated at the tungsten/polycrystalline silicon interface. After silicide formation the fluorine was observed at the tungsten disilicide/polycrystalline silicon interface. At temperatures above 1120 K fluorine starts to diffuse through the polycrystalline silicon layer. A variation in the total fluorine content between the samples was also observed. The origin of the fluorine redistribution as well as the variation in the total fluorine content is discussed in connection to conceivable mechanisms.

  8. Fluorine redistribution in a chemical vapor deposited tungsten/polycrystalline silicon gate structure during heat treatment

    SciTech Connect

    Eriksson, T.; Carlsson, J.; Keinonen, J.; Petersson, C.S.

    1988-09-15

    Fluorine redistribution during heat treatment of chemical vapor deposited tungsten/polycrystalline silicon gate structures was analyzed by the nuclear resonance broadening technique. The tungsten layer was deposited from a hydrogen/tungsten hexafluoride gas mixture. Upon heat treatment in the temperature range 1020--1325-K tungsten disilicide formation was observed using Rutherford backscattering spectrometry. In the as-deposited sample, the fluorine was accumulated at the tungsten/polycrystalline silicon interface. After silicide formation the fluorine was observed at the tungsten disilicide/polycrystalline silicon interface. At temperatures above 1120 K fluorine starts to diffuse through the polycrystalline silicon layer. A variation in the total fluorine content between the samples was also observed. The origin of the fluorine redistribution as well as the variation in the total fluorine content is discussed in connection to conceivable mechanisms.

  9. Increase in the positronium emission yield from polycrystalline tungsten surfaces by sodium coating

    NASA Astrophysics Data System (ADS)

    Terabe, Hiroki; Iida, Shimpei; Yamashita, Takashi; Tachibana, Takayuki; Barbiellini, Bernardo; Wada, Ken; Mochizuki, Izumi; Yagishita, Akira; Hyodo, Toshio; Nagashima, Yasuyuki

    2015-11-01

    The study of positronium emission from metal surfaces bombarded by slow positrons provides information on the topmost layer of the metals such as electron and positron energy levels because positronium atoms are formed as the result of the interactions between the positrons and the electrons there. In the present work, time-of-flight spectra of ortho-positronium atoms emitted from polycrystalline tungsten surfaces with and without a sodium coating have been measured. The data shows a significant increase on coating in the yield of the 5 eV component due to positronium formed from thermalized positrons and conduction electrons. An attempt is made to explain the increase by an emission model based on the formation of positronium in a low electron density surface layer extended by the coating.

  10. Positron annihilation lifetime measurement and X-ray analysis on 120 MeV Au+7 irradiated polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Dube, Charu Lata; Kulriya, Pawan Kumar; Dutta, Dhanadeep; Pujari, Pradeep K.; Patil, Yashashri; Mehta, Mayur; Patel, Priyanka; Khirwadkar, Samir S.

    2015-12-01

    In order to simulate radiation damages in tungsten, potential plasma facing materials in future fusion reactors, surrogate approach of heavy ion irradiation on polycrystalline tungsten is employed. Tungsten specimen is irradiated with gold heavy ions of energy 120 MeV at different fluences. Positron annihilation lifetime measurements are carried out on pristine and ion beam irradiated tungsten specimens. The variation in positron annihilation lifetime in ion irradiated specimens confirms evolution of vacancy clusters under heavy ion irradiation. The pristine and irradiated tungsten specimens have also been characterized for their microstructural, structural, electrical, thermal, and mechanical properties. X-ray diffractograms of irradiated tungsten specimens show structural integrity of polycrystalline tungsten even after irradiation. Nevertheless, the increase in microstrain, electrical resistivity and microhardness on irradiation indicates creation of lattice damages inside polycrystalline tungsten specimen. On the other hand, the thermal diffusivity has not change much on heavy ion irradiation. The induction of damages in metallic tungsten is mainly attributed to high electronic energy loss, which is 40 keV/nm in present case as obtained from SRIM program. Although, concomitant effect of nuclear losses on damage creation cannot be ignored. It is believed that the energy received by the electronic system is being transferred to the atomic system by electron-phonon coupling. Eventually, elastic nuclear collisions and the transfer of energy from electronic to atomic system via inelastic collision is leading to significant defect generation in tungsten lattice.

  11. Removal of the process-induced fluorine associated to chemical vapor deposition of tungsten onto a polycrystalline silicon gate structure by heat treatment in a hydrogen-containing atmosphere

    NASA Astrophysics Data System (ADS)

    Eriksson, Th.; Carlsson, J.-O.; Mohadjeri, B.; Östling, M.; d'Heurle, F. M.; Petersson, C. S.; Keinonen, J.

    1990-09-01

    Tungsten was deposited from a gas mixture of hydrogen and tungsten hexafluoride onto a polycrystalline silicon gate structure in a chemical vapor deposition system. During the deposition process fluorine was also deposited as an undesired impurity. In order to remove the fluorine, heat treatments in the temperature range 550-1050 °C were performed in a hydrogen atmosphere. By this treatment it is possible to form volatile hydrofluoric acid and hence remove fluorine from the structure. Nuclear-resonance-broadening technique and secondary ion mass spectrometry were used for the analysis of fluorine. Fluorine was detected in all the samples except for the sample heat treated at 1050 °C. Moreover, etching of the polycrystalline silicon was observed. The gettering of fluorine, the etching of silicon and the observed formation of tungsten disilicide at 650 °C are discussed with respect to conceivable mechanisms. A thermodynamic study supporting the interpretations is also included.

  12. Process for the recovery of tungsten in a pure form from tungsten-containing materials

    SciTech Connect

    Fruchter, M.; Moscovici, A.

    1986-12-16

    A process is described for the recovery of tungsten from tungsten-containing materials which comprises the steps of (i) admixing the tungsten-containing material with a melt at a temperature of between 680/sup 0/C and 750/sup 0/C. The melt consists of a salt selected from the group consisting of sodium nitrate, sodium nitrite and mixtures thereof in a substantially stoichiometrical amount to the tungsten constituent of the tungsten-containing material. This is done to disintegrate the tungsten-containing material and to form sodium tungstate, cooling the melt, and leaching the cooled melt with water to obtain an aqueous solution of sodium tungstate; (ii) admixing a solution of calcium chloride with the aqueous solution of sodium tungstate at a temperature of between 40/sup 0/C and 95/sup 0/C to form a calcium tungstate precipitate and separating the calcium tungstate; (iii) admixing the calcium tungstate with a preheated concentrated hydrochloric acid solution to form a tungstic acid precipitate and a CaCl/sub 2/ solution having a concentration of between 80 g/l and 180 g/l free HCl and separating the tungstic acid precipitate and obtaining tungstic acid which is substantially free of calcium ions, and (iv) calcining the tungstic acid to convert it to tungstic oxide and reducing the tungstic oxide to form metallic tungsten.

  13. Visible light photoinactivation of bacteria by tungsten oxide nanostructures formed on a tungsten foil

    NASA Astrophysics Data System (ADS)

    Ghasempour, Fariba; Azimirad, Rouhollah; Amini, Abbas; Akhavan, Omid

    2015-05-01

    Antibacterial activity of tungsten oxide nanorods/microrods were studied against Escherichia coli bacteria under visible light irradiation and in dark. A two-step annealing process at temperatures up to 390 °C and 400-800 °C was applied to synthesize the tungsten oxide nanorods/microrods on tungsten foils using KOH as a catalyst. Annealing the foils at 400 °C in the presence of catalyst resulted in formation of tungsten oxide nanorods (with diameters of 50-90 nm and crystalline phase of WO3) on surface of tungsten foils. By increasing the annealing temperature up to 800 °C, tungsten oxide microrods with K2W6O19 crystalline phase were formed on the foils. The WO3 nanorods showed a strong antibacterial property under visible light irradiation, corresponding to >92% bacterial inactivation within 24 h irradiation at room temperature, while the K2W6O19 microrods formed at 800 °C could inactivate only ∼45% of the bacteria at the same conditions.

  14. Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences

    NASA Astrophysics Data System (ADS)

    Zibrov, M.; Balden, M.; Morgan, T. W.; Mayer, M.

    2017-04-01

    Deuterium (D) retention and surface modifications of hot-rolled polycrystalline tungsten (W) exposed to a low-energy (~40 eV D‑1), high-flux (2–5  ×  1023 D m‑2 s‑1) D plasma at temperatures of ~380 K and ~1140 K to fluences up to 1.2  ×  1028 D m‑2 have been examined by using nuclear reaction analysis, thermal desorption spectroscopy, and scanning electron microscopy. The samples exposed at ~380 K exhibited various types of surface modifications: dome-shaped blister-like structures, stepped flat-topped protrusions, and various types of nanostructures. It was observed that a large fraction of the surface was covered with blisters and protrusions, but their average size and the number density showed almost no fluence dependence. The D depth distributions and total D inventories also barely changed with increasing fluence at ~380 K. A substantial amount of D was retained in the subsurface region, and thickness correlated with the depth where the cavities of blisters and protrusions were located. It is therefore suggested that defects appearing during creation of blisters and protrusions govern the D trapping in the investigated fluence range. In addition, a large number of small cracks was observed on the exposed surfaces, which can serve as fast D release channels towards the surface, resulting in a reduction of the effective D influx into the W bulk. On the samples exposed at ~1140 K no blisters and protrusions were found. However, wave-like and faceted terrace-like structures were formed instead. The concentrations of trapped D were very low (<10‑5 at. fr.) after the exposure at ~1140 K.

  15. The relationship between structural evolution and electrical percolation of the initial stages of tungsten chemical vapor deposition on polycrystalline TiN

    SciTech Connect

    Rozenblat, A.; Haimson, S.; Shacham-Diamand, Y.; Horvitz, D.

    2012-01-16

    This paper presents experimental results and a geometric model of the evolution of sheet resistance and surface morphology during the transition from nucleation to percolation of tungsten chemical vapor deposition over ultrathin polycrystalline titanium nitride (TiN). We observed two mechanisms of reduction in sheet resistance. At deposition temperatures higher than 310 deg. C, percolation effect is formed at {approx}35% of surface coverage, {theta}, and characterized with a sharp drop in resistance. At temperature below 310 deg. C, a reduction in resistance occurs in two steps. The first step occurs when {theta} = 35% and the second step at {theta} = 85%. We suggest a geometric model in which the electrical percolation pass is modulated by the thickness threshold of the islands at the instant of collision.

  16. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  17. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2001-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center has developed and demonstrated a fabrication technique using the VPS process to form anode sections for a Lorentz force accelerator from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and accelerates the metal powder onto the mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions of the inside surface of the anode. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of the Lorentz force accelerator.

  18. Vacuum Plasma Spray Forming of Tungsten Lorentz Force Accelerator Components

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank R.

    2004-01-01

    The Vacuum Plasma Spray (VPS) Laboratory at NASA's Marshall Space Flight Center, working with the Jet Propulsion Laboratory, has developed and demonstrated a fabrication technique using the VPS process to form anode and cathode sections for a Lorentz force accelerator made from tungsten. Lorentz force accelerators are an attractive form of electric propulsion that provides continuous, high-efficiency propulsion at useful power levels for such applications as orbit transfers or deep space missions. The VPS process is used to deposit refractory metals such as tungsten onto a graphite mandrel of the desired shape. Because tungsten is reactive at high temperatures, it is thermally sprayed in an inert environment where the plasma gun melts and deposits the molten metal powder onto a mandrel. A three-axis robot inside the chamber controls the motion of the plasma spray torch. A graphite mandrel acts as a male mold, forming the required contour and dimensions for the inside surface of the anode or cathode of the accelerator. This paper describes the processing techniques, design considerations, and process development associated with the VPS forming of Lorentz force accelerator components.

  19. Tungsten

    SciTech Connect

    1996-08-01

    The name tungsten, derived from the Swedish words {open_quotes}tung{close_quotes} and {open_quotes}sten{close_quotes}, meaning heavy stone, was first applied to a tungsten-containing mineral in 1755. The mineral, itself, was subsequently identified by C.W. Scheele in 1781, and named scheelite. Metallic tungsten was first isolated from the mineral wolframite in 1783, and given the German name {open_quotes}wolfram,{close_quotes} which remains an alternative name for the element. Ultimately, the English word, tungsten, became the official name, while W remains the element`s chemical symbol. This article discusses the geology, exploitation, applications, and market overview of tungsten.

  20. Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature

    NASA Astrophysics Data System (ADS)

    Bisson, R.; Markelj, S.; Mourey, O.; Ghiorghiu, F.; Achkasov, K.; Layet, J.-M.; Roubin, P.; Cartry, G.; Grisolia, C.; Angot, T.

    2015-12-01

    Retention of deuterium ion implanted in polycrystalline tungsten samples is studied in situ in an ultra-high vacuum apparatus equipped with a low-flux ion source and a high sensitivity thermo-desorption setup. Retention as a function of ion fluence was measured in the 1017-1021 D+·m-2 range. By combining this new fluence range with the literature in situ experimental data, we evidence the existence of a retention ∝ fluence0.645±0.025 relationship which describes deuterium retention behavior on polycrystalline tungsten on 8 orders of magnitude of fluence. Evolution of deuterium retention as a function of the sample storage time in vacuum at room temperature was followed. A loss of 50% of the retained deuterium is observed when the storage time is increased from 2 h to 135 h. The role of the surface and of natural bulk defects on the deuterium retention/release in polycrystalline tungsten is discussed in light of the behavior of the single desorption peak obtained with Temperature Programmed Desorption.

  1. Selective formation of tungsten nanowires

    PubMed Central

    2011-01-01

    We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions. PMID:21970543

  2. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    SciTech Connect

    de Broglie, I.; Beck, C. E.; Liu, W.; Hofmann, Felix

    2015-05-30

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.

  3. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.

    PubMed

    Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G

    2016-05-13

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present.

  4. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts

    NASA Astrophysics Data System (ADS)

    Rizo, Hanika; Walker, Richard J.; Carlson, Richard W.; Horan, Mary F.; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G.

    2016-05-01

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.

  5. Sub-surface microstructure of single and polycrystalline tungsten after high flux plasma exposure studied by TEM

    NASA Astrophysics Data System (ADS)

    Dubinko, A.; Terentyev, D.; Bakaeva, A.; Hernández-Mayoral, M.; De Temmerman, G.; Buzi, L.; Noterdaeme, J.-M.; Unterberg, B.

    2017-01-01

    We have performed high flux plasma exposure of tungsten and subsequent microstructural characterization using transmission electron microscopy (TEM) techniques. The aim was to reveal the nanometric features in the sub-surface region as well as to compare the microstructural evolution in tungsten single crystal and ITER-relevant specification. In both types of samples, TEM examination revealed the formation of a dense dislocation network and dislocation tangles. The estimated dislocation density in the sub-surface region was of the order of 1014 m-2 and it gradually decreased with a depth position of the examined sample. Besides individual dislocation lines, networks and tangles, the interstitial dislocation loops have been observed in all examined samples only after the exposure. Contrary to that, examination of the pristine single crystal W and backside of the plasma-exposed samples did not reveal the presence of dislocation loops and tangles. This clearly proves that high flux plasma exposure induces severe plastic deformation in the sub-surface region irrespective of the presence of initial dislocations and sub-grains, and the formation of dislocation tangles, networks and interstitial loops is a co-product of thermal stress and intensive plasma particles uptake.

  6. High-temperature strength stability of three forms of chemically vapor deposited tungsten

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.

    1974-01-01

    Three types of CVD tungsten (fluoride-produced, chloride-produced, and a layered composite of the two-termed duplex) were evaluated to determine their high-temperature strength and microstructural stability following 5000-hr exposure to temperatures of 1540 and 1700 C. At the highest temperatures investigated (1540 and 1700 C), the tensile strengths of the two basic materials were essentially equal. At lower temperatures, chloride tungsten possessed lower yield strength but higher ultimate strength than fluoride tungsten while the behavior of the duplex material was generally intermediate. Apparent anomalies in high-temperature elongation behavior are explained on the basis of grain boundary cavity formation and recrystallization. The grain size of fluoride tungsten changed only slightly following 5000-h treatment at 1700 C. In contrast, chloride tungsten possessed both poor resistance to grain growth and an accompanying relatively high ductile-brittle transition temperature.

  7. Advanced Micro-Polycrystalline Silicon Films Formed by Blue-Multi-Laser-Diode Annealing

    NASA Astrophysics Data System (ADS)

    Noguchi, Takashi; Chen, Yi; Miyahira, Tomoyuki; de Dieu Mugiraneza, Jean; Ogino, Yoshiaki; Iida, Yasuhiro; Sahota, Eiji; Terao, Motoyasu

    2010-03-01

    Semiconductor blue-multi-laser-diode annealing (BLDA) for amorphous Si film was performed to obtain a film containing uniform polycrystalline silicon (poly-Si) grains as a low temperature poly-Si (LTPS) process used for thin-film transistor (TFT). By adopting continuous wave (CW) mode at the 445 nm wavelength of the BLDA system, the light beam is efficiently absorbed into the thin amorphous silicon film of 50 nm thickness and can be crystallized stably. By adjusting simply the laser power below 6 W with controlled beam shape, the isotropic Si grains from uniform micro-grains to arbitral grain size of polycrystalline phase can be obtained with reproducible by fixing the scan speed at 500 mm/s. As a result of analysis using electron microscopy and atomic force microscopy (AFM), uniform distributed micro-poly-Si grains of smooth surface were observed at a power condition below 5 W and the preferred crystal orientation of (111) face was confirmed. As arbitral grain size can be obtained stably and reproducibly merely by controlling the laser power, BLDA is promising as a next-generation LTPS process for AM OLED panel including a system on glass (SoG).

  8. Orientation-field models for polycrystalline solidification: Grain coarsening and complex growth forms

    NASA Astrophysics Data System (ADS)

    Korbuly, Bálint; Pusztai, Tamás; Tóth, Gyula I.; Henry, Hervé; Plapp, Mathis; Gránásy, László

    2017-01-01

    We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation fields: one by Kobayashi et al. [Physica D 140 (2000) 141] [15] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117] [22]. Setting the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605] [17,21], we extend the orientation field to the liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic solidification, and polycrystalline growth, including the formation of "dizzy" dendrites disordered via the interaction with foreign particles.

  9. Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films.

    PubMed

    Wang, Shalong; Dou, Kang; Zou, Yousheng; Dong, Yuhang; Li, Jubin; Ju, Dan; Zeng, Haibo

    2017-03-01

    High-performance electrochromic films based on tungsten oxide hydrate ([WO2(O2)H2O]·1.66H2O) colloidal nanocrystals with fast switching speed were fabricated by laser ablation in a mixture of water and hydrogen peroxide followed by electrophoretic methods. Through electrophoretic deposition, the nanoparticles in the colloids synthesized by laser ablation aggregated onto the FTO coated glass substrate forming a lager cell with a uniform size of around 200nm, which subsequently self-assembled into a porous tungsten oxide hydrate film. By optimizing the electrophoretic time (800s) and voltage (-0.5V), the mesh-like porous tungsten oxide hydrate film achieved a wide optical modulation of 32% at 632nm, fast coloration and bleaching response speed of 7.8 s and 1.7s respectively due to the synergetic effect of the unique atomic structure of [WO2(O2)H2O]·1.66H2O and porous structure with large surface area that facilitates the ion insertion/extraction. Thus the tungsten oxide hydrate can be a promising electrochromic material for practical applications.

  10. Strongly linked current flow in polycrystalline forms of the superconductor MgB2

    NASA Astrophysics Data System (ADS)

    Larbalestier, D. C.; Cooley, L. D.; Rikel, M. O.; Polyanskii, A. A.; Jiang, J.; Patnaik, S.; Cai, X. Y.; Feldmann, D. M.; Gurevich, A.; Squitieri, A. A.; Naus, M. T.; Eom, C. B.; Hellstrom, E. E.; Cava, R. J.; Regan, K. A.; Rogado, N.; Hayward, M. A.; He, T.; Slusky, J. S.; Khalifah, P.; Inumaru, K.; Haas, M.

    2001-03-01

    The discovery of superconductivity at 39K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures, their in-field performance is compromized by their large anisotropy, the result of which is to restrict high bulk current densities to a region much less than the full magnetic-field-temperature (H-T) space over which superconductivity is found. Moreover, the weak coupling across grain boundaries makes transport current densities in untextured polycrystalline samples low and strongly sensitive to magnetic field. Here we report that, despite the multiphase, untextured, microscale, subdivided nature of our MgB2 samples, supercurrents flow throughout the material without exhibiting strong sensitivity to weak magnetic fields. Our combined magnetization, magneto-optical, microscopy and X-ray investigations show that the supercurrent density is mostly determined by flux pinning, rather than by the grain boundary connectivity. Our results therefore suggest that this new superconductor class is not compromized by weak-link problems, a conclusion of significance for practical applications if higher temperature analogues of this compound can be discovered.

  11. Effect of Crystal Orientation on Self-Assembly Nanocones Formed on Tungsten Surface Induced by Helium Ion Irradiation and Annealing

    PubMed Central

    Huang, Shilin; Ran, Guang; Lei, Penghui; Wu, Shenghua; Chen, Nanjun; Li, Ning

    2016-01-01

    The self-assembly nanocone structures on the surface of polycrystalline tungsten were created by He+ ion irradiation and then annealing, and the resulting topography and morphology were characterized using atomic force microscopy and scanning electron microscopy. The cross-sectional samples of the self-assembly nanocones were prepared using an in situ–focused ion beam and then observed using transmission electron microscopy. The self-assembly nanocones were induced by the combined effect of He+ ion irradiation, the annealing process and the chromium impurity. The distribution characteristics, density and morphology of the nanocones exhibited a distinct difference relating to the crystal orientations. The highest density of the nanocones was observed on the grain surface with a (1 1 1) orientation, with the opposite for that with a (0 0 1) orientation and a medium value on the (1 0 1)-oriented grain. The size of the self-assembly nanocones increased with increasing the annealing time which met a power-law relationship. Irradiation-induced defects acted as the nucleation locations of the protrusions which attracted the migration of the tiny amount of chromium atoms. Under the action of temperature, the protrusions finally evolved into the nanocones. PMID:28335337

  12. Mineral resource of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2012-01-01

    The article offers information on tungsten. It says that tungsten is a metal found in chemical compounds such as in the scheelite and ore minerals wolframite. It states that tungsten has the highest melting point and it forms a compound as hard as diamond when combined with carbon. It states that tungsten can be used as a substitute for lead in fishing weights, ammunition, and hunting shot. Moreover, China started to export tungsten materials and products instead of tungsten raw materials.

  13. Tungsten toxicity.

    PubMed

    Witten, Mark L; Sheppard, Paul R; Witten, Brandon L

    2012-04-05

    There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.

  14. Evaluation of tungsten shaped-charge liners spray-formed using the low-pressure plasma spray process

    SciTech Connect

    Buchanan, E.R.; Sickinger, A.

    1994-12-31

    This paper documents the results of a DARPA Phase 1 SBIR program which was awarded following a solicitation to develop new technologies for the forming of refractory metal shaped-charge liners. Holtgren had proposed to manufacture liners by spraying refractory metal powder onto a rapidly-rotating mandrel inside the chamber of a low-pressure plasma spray system. A total of nine tungsten shaped-charge liners were sprayed during the course of the program. Metallographic evaluation of the liners revealed that the as-sprayed microstructure was dense, averaging 98.5% density. The grain structure is equiaxed and fine, averaging five microns in diameter. The sprayed shapes were then processed to the final liner configuration by cylindrical grinding. The liners were ductile enough to withstand the strains of grinding and normal handling.

  15. Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate

    SciTech Connect

    Park, Sun Hwa; Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong; Park, Hyun Min; Song, Jae Yong

    2012-11-15

    Highlights: ► Growth of long amorphous tungsten oxide nanorods on a substrate. ► Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ► High electrochemical pseudocapacitance of 2.8 mF cm{sup −2}. ► Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup −2} at the voltage scan rate of 20 mV s{sup −1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

  16. Paste development and co-sintering test of zirconium carbide and tungsten in freeze-form extrusion fabrication

    NASA Astrophysics Data System (ADS)

    Li, Ang

    Ultra-high temperature ceramics are being investigated for future use in aerospace applications due to their superior thermo-mechanical properties, as well as oxidation resistance, at temperatures above 2000°C. However, their brittle properties make them susceptible to thermal shock failure. Components fabricated as functionally graded materials (FGMs) can combine the superior properties of ceramics with the toughness of an underlying refractory metal by fabricating graded composites. This paper discusses the grading of two materials through the use of a Freeze-form Extrusion Fabrication (FEF) system to build FGMs parts consisting of zirconium carbide (ZrC) and tungsten (W). Aqueous-based colloidal suspensions of ZrC and W were developed and utilized in the FEF process to fabricate test bars graded from 100%ZrC to 50%W-50%ZrC (volume percent). Following FEF processing the test bars were co-sintered at 2300°C and characterized to determine their resulting density and micro-structure. Four-point bending tests were performed to assess the strength of test bars made using the FEF process, compared to test bars prepared using conventional powder processing and isostatic pressing techniques, for five distinct ZrC-W compositions. Scanning electron microscopy (SEM) was used to verify the inner structure of composite parts built using the FEF process.

  17. Thermal Shock and Ablation Behavior of Tungsten Nozzle Produced by Plasma Spray Forming and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xiong, X.; Zhao, Z. W.; Xie, L.; Min, X. B.; Yan, J. H.; Xia, G. M.; Zheng, F.

    2015-08-01

    Tungsten nozzle was produced by plasma spray forming (PSF, relative density of 86 ± 2%) followed by hot isostatic pressing (HIPing, 97 ± 2%) at 2000 °C and 180 MPa for 180 min. Scanning electron microscope, x-ray diffractometer, Archimedes method, Vickers hardness, and tensile tests have been employed to study microstructure, phase composition, density, micro-hardness, and mechanical properties of the parts. Resistance of thermal shock and ablation behavior of W nozzle were investigated by hot-firing test on solid rocket motor (SRM). Comparing with PSF nozzle, less damage was observed for HIPed sample after SRM test. Linear ablation rate of nozzle made by PSF was (0.120 ± 0.048) mm/s, while that after HIPing reduced to (0.0075 ± 0.0025) mm/s. Three types of ablation mechanisms including mechanical erosion, thermophysical erosion, and thermochemical ablation took place during hot-firing test. The order of degree of ablation was nozzle throat > convergence > dilation inside W nozzle.

  18. Ballistic performance of oriented columnar-grained tungsten polycrystals

    SciTech Connect

    Leonard, W.; Magness, L.S.; Dowding, R.J.; Trogolo, J.; Chung, M.; Kapoor, D.

    1996-06-01

    Prior ballistic tests have demonstrated that the crystallographic orientation of a single crystal tungsten penetrator with respect to the penetrator axis influences penetration performance. The difference in penetration performance is attributed to anisotropy of the flow and failure of the monocrystalline tungsten penetrators during the penetration of the armor target. In preliminary ballistic experiments, the performance and deformation behaviors of polycrystalline tungsten penetrators having columnar grains oriented in the [100], [110], or [111] crystallographic directions were explored.

  19. polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Cai, Yunqi; Ma, Ji; Cui, Qi; Wang, Wenzhang; Zhang, Hui; Chen, Qingming

    2014-12-01

    La2/3Ca1/3MnO3 polycrystalline ceramics were synthesized by sol-gel method. Sharp temperature coefficient of resistance (TCR) variation (with peak value up to 22 %) has been observed near the metal-insulator transition temperature T MI (273 K) for the sample sintered at 1,450 °C. This TCR value is much higher than the previously reported values for the undoped and Ag-doped La0.67Ca0.33MnO3 samples and is comparable to the optimized thin films. It was concluded that the improved physical properties of the La0.67Ca0.33MnO3 material are due to its improved microstructure and homogeneity.

  20. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Davis, John W.

    2000-07-18

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by sintering a stack of individual copper and tungsten powder blend layers having progressively higher copper content/tungsten content, by volume, ratio values in successive powder blend layers in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  1. Multiple Diamond Anvil (MDA) apparatus using nano-polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Irifune, T.; Kunimoto, T.; Tange, Y.; Shinmei, T.; Isobe, F.; Kurio, A.; Funakoshi, K.

    2011-12-01

    Thanks to the great efforts by Dave Mao, Bill Bassett, Taro Takahashi, and their colleagues at the University of Rochester through 1960s-70s, diamond anvil cell (DAC) became a major tool to investigate the deep Earth after its invention by scientists at NBS in 1958. DAC can now cover almost the entire pressure and temperature regimes of the Earth's interior, which seems to have solved the longstanding debate on the crystal structure of iron under the P-T conditions of the Earth's inner core. In contrast, various types of static large-volume presses (LVP) have been invented, where tungsten carbide has conventionally been used as anvils. Kawai-type multianvil apparatus (MA), which utilize 6 first-stage harden steel and 8 tungsten carbide anvils, is the most successful LVP, and has been used for accurate measurements of phase transitions, physical properties, element partitioning, etc. at high pressure and temperature. However, pressures using tungsten carbide as the second-stage anvils have been limited to about 30 GPa due to significant plastic deformation of the anvils. Efforts have been made to expand this pressure limit by replacing tungsten carbide anvils with harder sintered diamond (SD) anvils over the last two decades, but the pressures available in KMA with SD anvils have still been limited to below 100 GPa. We succeeded to produce nano-polycrystalline diamond (NPD or HIME-Diamond) in 2003, which is known to have ultrahigh hardness, very high toughness and elastic stiffness, high transmittance of light, relatively low thermal conductivity. These properties are feasible for its use as anvils, and some preliminary experiments of application of NPD anvils to laser heated DAC have successfully made in the last few years. We are now able to synthesize NPD rods with about 1cm in both diameter and length using a newly constructed 6000-ton KMA at Geodynamics Research Center, Ehime University, and have just started to apply this new polycrystalline diamond as anvils

  2. Polycrystalline silicon films with nanometer-sized dense fine grains formed by flash-lamp-induced crystallization.

    PubMed

    Ohdaira, Keisuke; Ishii, Shohei; Tomura, Naohito; Matsumura, Hideki

    2012-01-01

    Flash lamp annealing (FLA) with millisecond-order pulse duration can crystallize microm-order-thick a-Si films on glass substrates through explosive crystallization (EC), and flash-lamp-crystallized (FLC) poly-Si films consist of densely-packed nanometer-sized fine grains. We investigate the impact of the hydrogen concentration and the defect density of precursor a-Si films on crystallization mechanism and the microstructures of FLC poly-Si films, by comparing chemical-vapor-deposited (CVD) and sputtered precursor a-Si films. Transmission electron microscopy (TEM) observation reveals that FLC poly-Si films with similar periodic microstructures are formed by the FLA of the two kinds of precursor films, meaning no significant influence of hydrogen atoms and defect density on crystallization mechanism. This high flexibility of the properties of precursor a-Si films would contribute to a wide process window to reproducibly form FLC poly-Si films with the particular periodic microstructures.

  3. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  4. Highly doped polycrystalline silicon microelectrodes reduce noise in neuronal recordings in vivo.

    PubMed

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2010-10-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0-200 μV) and 2) test if noise amplitudes ( 0-15 μV ) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9-10 kΩ for voltages typical of neural signal amplitudes ( > 150-200 μV). Acute multiunit measurements and noise measurements were made in n=6 and n=8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ±10.13 pW) was significantly higher than the corresponding value in polycrystalline silicon microelectrodes (7.49 ±2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements.

  5. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, Andreas M.; Haggerty, John S.; Danforth, Stephen C.

    1983-01-01

    A process for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by imgingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step.

  6. Polycrystalline semiconductor processing

    DOEpatents

    Glaeser, A.M.; Haggerty, J.S.; Danforth, S.C.

    1983-04-05

    A process is described for forming large-grain polycrystalline films from amorphous films for use as photovoltaic devices. The process operates on the amorphous film and uses the driving force inherent to the transition from the amorphous state to the crystalline state as the force which drives the grain growth process. The resultant polycrystalline film is characterized by a grain size that is greater than the thickness of the film. A thin amorphous film is deposited on a substrate. The formation of a plurality of crystalline embryos is induced in the amorphous film at predetermined spaced apart locations and nucleation is inhibited elsewhere in the film. The crystalline embryos are caused to grow in the amorphous film, without further nucleation occurring in the film, until the growth of the embryos is halted by impingement on adjacently growing embryos. The process is applicable to both batch and continuous processing techniques. In either type of process, the thin amorphous film is sequentially doped with p and n type dopants. Doping is effected either before or after the formation and growth of the crystalline embryos in the amorphous film, or during a continuously proceeding crystallization step. 10 figs.

  7. Process Of Bonding Copper And Tungsten

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  8. Gelcasting Polycrystalline Alumina

    SciTech Connect

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  9. Thermal positron interactions with alkali covered tungsten

    NASA Astrophysics Data System (ADS)

    Yamashita, Takashi; Iida, Shimpei; Terabe, Hiroki; Nagashima, Yasuyuki

    2016-11-01

    The branching ratios of positron reemission, positronium emission, positronium negative ion emission and capture to the surface state for thermalized positrons at polycrystalline tungsten surfaces coated with Na, K and Cs have been measured. The data shows that the ratios depend on the coverage of the alkali-metal coating. The fraction of the emitted positronium increases with the coverage of the coating up to 90%.

  10. Electrical Properties of Tungsten Filaments and Films Fabricated by the Reduction of Tungsten Hexafluoride by Silicon.

    NASA Astrophysics Data System (ADS)

    Feinerman, Alan Dov

    1987-12-01

    A novel method of photolithography has been developed for fabricating ultrathin tungsten filaments and films. It is based on the selective deposition of tungsten via low pressure chemical vapor deposition on undoped polycrystalline silicon. Tungsten filaments have been fabricated with heights from 93nm down to 5nm, and with lengths from 10 to 350mu. Tungsten films from 3 to 49nm were simultaneously fabricated on the same silicon wafer. The self-limiting thickness of the deposited tungsten layer, and the amount of encroachment of tungsten into the silicon/silicon dioxide interface is affected by the surface treatment used immediately prior to the tungsten deposition. Various plasma and wet chemical treatments have been studied. A quick etch of the polycrystalline silicon in a dilute mixture of HF in HNO_ {3} acid minimizes encroachment. Encroachment is maximized by etching in CF_{4} /O_{2} plasma. Both treatments are isotropic etches of silicon. The resistance of the filaments and films has been measured from.05 to 400K and in magnetic fields up to 5 tesla. The filaments and films have a superconducting transition temperature (T_{rm c}) between.7 and 4.1K, and a critical field larger than 5 tesla. The superconducting transitions are very broad, possibly due to a distribution of grain sizes and strain. The high values obtained for T_ {rm c} and the x-ray diffraction studies suggest that the tungsten deposits in both alpha and beta phases. The broad superconducting transition suppresses localization and electron-electron interactions effects. The temperature dependence of the resistance between 30 and 400K is different for films and filaments. The filaments and films were deposited simultaneously and there should be no dimensionality effects in this temperature range.

  11. Software optimization for electrical conductivity imaging in polycrystalline diamond cutters

    SciTech Connect

    Bogdanov, G.; Ludwig, R.; Wiggins, J.; Bertagnolli, K.

    2014-02-18

    We previously reported on an electrical conductivity imaging instrument developed for measurements on polycrystalline diamond cutters. These cylindrical cutters for oil and gas drilling feature a thick polycrystalline diamond layer on a tungsten carbide substrate. The instrument uses electrical impedance tomography to profile the conductivity in the diamond table. Conductivity images must be acquired quickly, on the order of 5 sec per cutter, to be useful in the manufacturing process. This paper reports on successful efforts to optimize the conductivity reconstruction routine, porting major portions of it to NVIDIA GPUs, including a custom CUDA kernel for Jacobian computation.

  12. Fabrication Of Double Wall Tube By U-O Press Forming And Pulsed Gas Tungsten Arc-welding

    NASA Astrophysics Data System (ADS)

    Kasuga, Yukio; Kawamori, Shigehiro; Kuroda, Kiyoshi; Okai, Toshihiko

    2011-01-01

    Double walled tubes were trially fabricated by press-forming and arc-welding, as difficulty in fabrication was anticipated in the case of roll-forming. U-O press-formed double walled sheets are TIG arc- welded. For determination of welding conditions, overlapped flat sheets were employed and butt-welded including pulsed arc-welding. Pulse from 1 to 100Hz is effective to obtain penetrated weld bead. With this, the double walled tube could be arc-welded, which could not be achieved by conventional TIG arc-welding.

  13. Does speciation matter for tungsten ecotoxicology?

    PubMed

    Strigul, Nikolay

    2010-09-01

    Tungsten is a widely used transition metal that has not been thoroughly investigated with regards to its ecotoxicological effects. Tungsten anions polymerize in environmental systems as well as under physiological conditions in living organisms. These polymerization/condensation reactions result in the development of several types of stable polyoxoanions. Certain chemical properties (in particular redox and acidic properties) differentiate these polyanions from monotungstates. However, our current state of knowledge on tungsten toxicology, biological and environmental effects is based entirely on experiments where monotungstates were used and assumed by the authors to be the form of tungsten that was present and that produced the observed effect. Recent discoveries indicate that tungsten speciation may be important to ecotoxicology. New results obtained by different research groups demonstrate that polytungstates develop and persist in environmental systems, and that polyoxotungstates are much more toxic than monotungstates. This paper reviews the available toxicological information from the standpoint of tungsten speciation and identifies knowledge gaps and pertinent future research directions.

  14. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  15. Synthesis of Nano-Polycrystalline Synroc-B Powders as a High Level Radioactive Wastes Ceramic Forms by a Solution Combustion Synthesis.

    PubMed

    Han, Young-Min; Lee, Sang-Jin; Kim, Yeon-Ku; Jung, Choong-Hwan

    2016-02-01

    Synroc (Synthetic Rock) consists of four main titanate phases: peroveskite (CaTiO3), zirconolite (CaZrTi2O7), hollandite (BaAl2Ti6O16) and rutile (TiO2). Nano-polycrystalline synroc powders were made by a synthesis combustion process. The combustion process, an externally initiated reaction is self-sustained owing to the exothermic reaction. A significant volume of gas is evolved during the combustion reaction and leads to loosely agglomerated powders. This exothermic reaction provides necessary heat to further carry the reaction in forward direction to produce nanocrystalline powders as the final product. Glycine is used as a fuel, being oxidized by nitrate ions. It is inexpensive, has high energy efficiency, fast heating rates, short reaction times and high compositional homogeneity. In this study, combustion synthesis of nano-sized synroc-B powder is introduced. The fabrication of synroc-B powder result of observation XRD were prepared for polycrystalline (perovskite, zirconolite, hollandite, rutile) structures. The characterization of the synthesized powders is conducted by using XRD, SEM/EDS and TEM.

  16. Polycrystalline configurations that maximize electrical resistivity

    NASA Astrophysics Data System (ADS)

    Nesi, Vincenzo; Milton, Graeme W.

    A lower bound on the effective conductivity tensor of polycrystalline aggregates formed from a single basic crystal of conductivity σ was recently established by Avellaneda. Cherkaev, Lurie and Milton. The bound holds for any basic crystal, but for isotropic aggregates of a uniaxial crystal, the bound is achieved by a sphere assemblage model of Schulgasser. This left open the question of attainability of the bound when the crystal is not uniaxial. The present work establishes that the bound is always attained by a rather large class of polycrystalline materials. These polycrystalline materials, with maximal electrical resistivity, are constructed by sequential lamination of the basic crystal and rotations of itself on widely separated length scales. The analysis is facilitated by introducing a tensor S = 0( 0I + σ) -1 where 0 > 0 is chosen so that Tr S = 1. This tensor s is related to the electric field in the optimal polycrystalline configurations.

  17. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  18. Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO{sub 3−δ}

    SciTech Connect

    Thiel, Philipp; Eilertsen, James; Populoh, Sascha Saucke, Gesine; Shkabko, Andrey; Sagarna, Leyre; Karvonen, Lassi; Döbeli, Max; Weidenkaff, Anke

    2013-12-28

    Polycrystalline tungsten-substituted CaMn{sub 1−x}W{sub x}O{sub 3−δ} (0.00 ≤ x ≤ 0.05) powders were synthesized from a polymeric precursor, pressed and sintered to high density. The impact of tungsten substitution on the crystal structure, thermal stability, phase transition, electronic and thermal transport properties is assessed. Tungsten acts as an electron donator and strongly affects high-temperature oxygen stoichiometry. Oxygen vacancies form in the high figure-of-merit (ZT)-region starting from about T = 1000 K and dominate the carrier concentration and electronic transport far more than the tungsten substitution. The analysis of the transport properties yields that in the investigated regime the band filling is sufficiently high to overcome barriers of polaron transport. Therefore, the Cutler-Mott approach describes the electrical transport more accurately than the Mott approach for small polaron transport. The lattice thermal conductivity near room temperature is strongly suppressed with increasing tungsten concentration due to mass-difference impurity scattering. A ZT of 0.25 was found for x = 0.04 at 1225 K.

  19. Electronic transport in polycrystalline graphene.

    PubMed

    Yazyev, Oleg V; Louie, Steven G

    2010-10-01

    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to markedly alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain-boundary structure we find two distinct transport behaviours--either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need to introduce bulk bandgaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.

  20. A mechanism for selectivity loss during tungsten CVD

    SciTech Connect

    Creighton, J.R.

    1989-01-01

    The authors have investigated possible mechanisms for the loss of selectivity (i.e., deposition on silicon dioxide) during tungsten CVD by reduction of tungsten hexafluoride and found strong evidence that selectivity loss is initiated by desorption of tungsten subfluorides formed by the reaction of WF/sub 6/ with metallic tungsten surfaces. Adsorption and disproportionation of the tungsten subfluorides on the silicon dioxide surface produces a reactive state of tungsten that can lead directly to selectivity loss. The key feature of the experimental setup is the ability to independently heat a tungsten foil and a nearby oxide-covered silicon sample in the presence of tungsten hexafluoride. With the tungsten foil at 600/sup 0/C and the SiO/sub 2//Si sample at --30/sup 0/C under a WF/sub 6/ ambient, a tungsten subfluoride was found to deposit on the SiO/sub 2/ surface. Auger electron spectroscopy was used to measure a F/W ratio of 3.7 +- 0.5. Heating this tungsten subfluoride overlayer resulted in disporportionation to yield gas-phase WF/sub 6/ and metallic tungsten which remained on the surface. With the tungsten foil at 600/sup 0/C and the SiO/sub 2//Si sample at 300/sup 0/C in the presence of WF/sub 6/, metallic tungsten deposited directly on the SiO/sub 2/ without stopping at the subfluoride adsorption step. The net effect of this tungsten subfluoride desorption-disproportionation mechanism is the transport of tungsten from tungsten surfaces to silicon dioxide surfaces as well as other regions in the deposition chamber. Extrapolated rates for this process are high enough to explain the magnitude of the selectivity loss seen at normal CVD temperatures.

  1. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  2. Gelcasting polycrystalline alumina

    SciTech Connect

    Janney, M.A.

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  3. Properties of tungsten and tungsten disilicide layers on Si(100) substrates

    NASA Astrophysics Data System (ADS)

    Cros, A.; Pierrisnard, R.; Pierre, F.; Layet, J. M.; Meyer, F.

    1989-09-01

    Tungsten layers have been evaporated on Si(100) surfaces under ultra high vacuum conditions. The tungsten is in the α phase. Before the disilicide formation (at ˜ 700°C), a low temperature (400°C) reaction has been observed. Si atoms segregate at the surface and do not form crystalline WSI 2 while the tungsten layer stays in the α phase. It is suggested that this low temperature reaction plays an important role in the roughness and the adhesion properties of the tungsten disilicide subsequently grown.

  4. Highly Doped Polycrystalline Silicon Microelectrodes Reduce Noise in Neuronal Recordings In Vivo

    PubMed Central

    Saha, Rajarshi; Jackson, Nathan; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    The aims of this study are to 1) experimentally validate for the first time the nonlinear current-potential characteristics of bulk doped polycrystalline silicon in the small amplitude voltage regimes (0–200 μV) and 2) test if noise amplitudes (0–15 μV) from single neuronal electrical recordings get selectively attenuated in doped polycrystalline silicon microelectrodes due to the above property. In highly doped polycrystalline silicon, bulk resistances of several hundred kilo-ohms were experimentally measured for voltages typical of noise amplitudes and 9–10 kΩ for voltages typical of neural signal amplitudes (>150–200 μV). Acute multiunit measurements and noise measurements were made in n = 6 and n = 8 anesthetized adult rats, respectively, using polycrystalline silicon and tungsten microelectrodes. There was no significant difference in the peak-to-peak amplitudes of action potentials recorded from either microelectrode (p > 0.10). However, noise power in the recordings from tungsten microelectrodes (26.36 ± 10.13 pW) was significantly higher (p < 0.001) than the corresponding value in polycrystalline silicon microelectrodes (7.49 ± 2.66 pW). We conclude that polycrystalline silicon microelectrodes result in selective attenuation of noise power in electrical recordings compared to tungsten microelectrodes. This reduction in noise compared to tungsten microelectrodes is likely due to the exponentially higher bulk resistances offered by highly doped bulk polycrystalline silicon in the range of voltages corresponding to noise in multiunit measurements. PMID:20667815

  5. Strengthening mechanisms of tungsten powder reinforced uranium

    SciTech Connect

    Lewis, M.A.K.; Hill, M.A.; Rollett, A.D.; Dunn, P.S.; Mortensen, A.; Massachusetts Inst. of Tech., Cambridge, MA )

    1989-01-01

    Tungsten powder reinforced uranium exhibits a three-fold increase in yield strength due to precipitation hardening. The tungsten-rich interphase precipitates form at moving phase boundaries during slow cooling. Further increases in yield strength, attained with increasing tungsten content, are due to composite strengthening; this is verified by increasing elastic modulus with increasing tungsten content. Age hardening behavior is observed, with strengthening occurring at aging temperatures low in the alpha phase. Aging higher in alpha gives initial strengthening followed by rapid overaging. Beta phase aging results in a very soft structure with precipitates visible optically. Wrought material exhibits significant strain hardening as well as composite strengthening due to elongation of the tungsten particles. 7 refs., 15 figs., 4 tabs.

  6. Recrystallization of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  7. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique.

    PubMed

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C-N

    2013-05-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120-130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6-10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm(2)) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching.

  8. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique

    PubMed Central

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C.-N.

    2013-01-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120–130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6–10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm2) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching. PMID:23847751

  9. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-10-01

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to produce carbon monoxide and methane. Furthermore, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.

  10. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation

    PubMed Central

    Yang, Qi; You, Yu-Wei; Liu, Lu; Fan, Hongyu; Ni, Weiyuan; Liu, Dongping; Liu, C. S.; Benstetter, Günther; Wang, Younian

    2015-01-01

    We report the formation of wave-like structures and nanostructured fuzzes in the polycrystalline tungsten (W) irradiated with high-flux and low-energy helium (He) ions. From conductive atomic force microscope measurements, we have simultaneously obtained the surface topography and current emission images of the irradiated W materials. Our measurements show that He-enriched and nanostructured strips are formed in W crystal grains when they are exposed to low-energy and high-flux He ions at a temperature of 1400 K. The experimental measurements are confirmed by theoretical calculations, where He atoms in W crystal grains are found to cluster in a close-packed arrangement between {101} planes and form He-enriched strips. The formations of wave-like structures and nanostructured fuzzes on the W surface can be attributed to the surface sputtering and swelling of He-enriched strips, respectively. PMID:26077598

  11. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation.

    PubMed

    Yang, Qi; You, Yu-Wei; Liu, Lu; Fan, Hongyu; Ni, Weiyuan; Liu, Dongping; Liu, C S; Benstetter, Günther; Wang, Younian

    2015-06-16

    We report the formation of wave-like structures and nanostructured fuzzes in the polycrystalline tungsten (W) irradiated with high-flux and low-energy helium (He) ions. From conductive atomic force microscope measurements, we have simultaneously obtained the surface topography and current emission images of the irradiated W materials. Our measurements show that He-enriched and nanostructured strips are formed in W crystal grains when they are exposed to low-energy and high-flux He ions at a temperature of 1400 K. The experimental measurements are confirmed by theoretical calculations, where He atoms in W crystal grains are found to cluster in a close-packed arrangement between {101} planes and form He-enriched strips. The formations of wave-like structures and nanostructured fuzzes on the W surface can be attributed to the surface sputtering and swelling of He-enriched strips, respectively.

  12. Microstructural influences on the dynamic response of tungsten heavy alloys

    SciTech Connect

    Ramesh, K.T.; Coates, R.S.

    1992-09-01

    The influence of tungsten content, swaging, and grain size on the dynamic behavior of commercially available tungsten-nickel-iron (W-Ni-Fe) alloys has been examined using the compression Kolsky bar. The observed flow stresses increase with increasing tungsten content and with degree of swaging but are essentially independent of grain size for these compressive deformations. Further, the flow stresses sustained by these materials have a distinct dependence on strain rate, in that the flow stress increases by at least 20 pct over a range from 10(exp {minus}4)/s to 7 x 10(exp 3)/s. The rate sensitivity itself increases with increasing tungsten content. The rate sensitivity of the alloy with the highest tungsten content (97 pct W) appears to be essentially the same as that of pure polycrystalline tungsten. In addition to showing greater strain hardening, the unswaged alloy also shows a much higher rate dependence than the swaged alloys, with the flow stress almost doubling when the rate of deformation increases from quasistatic to 5 x 1O(exp 3)/s. The rate-hardening mechanism within the composite appears to be essentially that associated with the tungsten grains; however, the matrix contribution is significant in the case of an unswaged alloy.

  13. Structure and deuterium retention properties of tungsten layers deposited by plasma sputtering in a mixed atmosphere of D2 and He

    NASA Astrophysics Data System (ADS)

    Tang, X. H.; Shi, L. Q.; O'Connor, D. J.; King, B.

    2014-03-01

    The influence of the deposition conditions on the surface morphology, crystal structure and deuterium retention of the tungsten layers formed by rf magnetron plasma sputtering in mixed atmosphere of D2, He and Ar, has been carried out. Helium containing deuterated tungsten layers (named He-WDx) on Cu/Si substrate demonstrate serious film damages with zones of cracks, fractures, flaking-off and large surface blisters. However, these kinds of damages do not happen on the He-WDx layers performed on mechanically polished polycrystalline Cu substrates because of larger surface roughness of the substrates. The crystal structure of the W layer greatly changes with the additional He in the layer, and large amounts of defects resulting in lattice expansion and X-diffraction peak broadening were produced in the W crystal. He in the W layer has direct impacts on D retention. Both D and He concentrations vary simultaneously with He fraction, attached negative bias and substrate temperature.

  14. Fabrication of tungsten wire needles

    SciTech Connect

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading.

  15. Recovery of tungsten and molybdenum from sulfur--bearing material

    SciTech Connect

    Ritsko, J. E.; Acia, H. L.

    1984-11-13

    Tungsten and molybdenum are recovered from sulfur bearing material such as sulfide sludges by a pollution free process in which the sulfur bearing material is heated with agitation in an aqueous solution of sodium carbonate to form water soluble molybdenum and tungsten compounds without forming any appreciable amount of water soluble sulfur compounds. The reaction mixture is oxidized to convert partially reduced tungsten values or molybdenum values to sodium tungstate and sodium molybdate respectively. The liquid phase containing tungsten and molybdenum is separated from the solid phase containing free sulfur.

  16. Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors

    SciTech Connect

    Fominski, V. Y.; Grigoriev, S. N.; Romanov, R. I.; Zuev, V. V.; Grigoriev, V. V.

    2012-03-15

    Thin-film structures based on gas-sensitive tungsten oxide and catalytic platinum are fabricated by room-temperature deposition on a silicon carbide wafer using pulsed laser and ion-plasma methods. Oxide layer annealing in air to 600 Degree-Sign C caused the formation of microstructured and nanostructured crystalline states depending on the deposition conditions. Structural differences affect the electrical parameters and the stability of characteristics. The maximum response to hydrogen is detected in the structure fabricated by depositing a low-energy laser-induced flow of tungsten atoms in oxygen. The voltage shift of the currentvoltage curves for 2% H{sub 2} in air at 350 Degree-Sign C was 4.6 V at a current of {approx}10 {mu}A. The grown structures' metastability caused a significant decrease in the shift after long-term cyclic testing. The most stable shifts of {approx}2 V at positive bias on the Pt contact were detected for oxide films deposited by ion-plasma sputtering.

  17. Low flux and low energy helium ion implantation into tungsten using a dedicated plasma source

    NASA Astrophysics Data System (ADS)

    Pentecoste, Lucile; Thomann, Anne-Lise; Melhem, Amer; Caillard, Amael; Cuynet, Stéphane; Lecas, Thomas; Brault, Pascal; Desgardin, Pierre; Barthe, Marie-France

    2016-09-01

    The aim of this work is to investigate the first stages of defect formation in tungsten (W) due to the accumulation of helium (He) atoms inside the crystal lattice. To reach the required implantation conditions, i.e. low He ion fluxes (1011-1014 ions.cm2.s-1) and kinetic energies below the W atom displacement threshold (about 500 eV for He+), an ICP source has been designed and connected to a diffusion chamber. Implantation conditions have been characterized by means of complementary diagnostics modified for measurements in this very low density helium plasma. It was shown that lowest ion fluxes could only be reached for the discharge working in capacitive mode either in α or γ regime. Special attention was paid to control the energy gained by the ions by acceleration through the sheath at the direct current biased substrate. At very low helium pressure, in α regime, a broad ion energy distribution function was evidenced, whereas a peak centered on the potential difference between the plasma and the biased substrate was found at higher pressures in the γ mode. Polycrystalline tungsten samples were exposed to the helium plasma in both regimes of the discharge and characterized by positron annihilation spectroscopy in order to detect the formed vacancy defects. It was found that W vacancies are able to be formed just by helium accumulation and that the same final implanted state is reached, whatever the operating mode of the capacitive discharge.

  18. [Study on the micro-infrared spectra and origin of polycrystalline diamonds from Mengyin kimberlite pipes].

    PubMed

    Yang, Zhi-Jun; Liang, Rong; Zeng, Xiang-Qing; Ge, Tie-Yan; Ai, Qun; Zheng, Yun-Long; Peng, Ming-Sheng

    2012-06-01

    The natural polycrystalline diamonds from the Mengyin kimberlite pipes can be classified as the euhedral faceted polycrystalline diamonds and anhedral rounded polycrystalline diamonds. The results of micro-FTIR spectra characterization of the polycrystalline diamonds show that the concentration of nitrogen is low, varying from 16.69 to 72.81 microgram per gram and is different among different diamond grains or position in polycrystalline diamonds. The euhedral faceted polycrystalline diamonds are Ia AB type and have higher concentration of A-center defects than B-center defects. Most of the anhedral rounded polycrystalline diamonds are Ia AB type and have higher content of B-center defects. A minority of the anhedral rounded polycrystalline diamonds have C-center, A-center and B-center defects simultaneously. The polycrystalline diamonds probably originated from the relatively deeper mantle and were not formed in diamond nucleation stage, but in the diamond growth period or some special conditions after the diamond grains were formed already. Furthermore, the euhedral faceted polycrystalline diamonds were formed slightly later and the anhedral rounded polycrystalline diamonds were formed obviously earlier than the diamond single crystals from the Mengyin kimberlite pipes.

  19. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  20. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  1. Synthesis of Nanostructured Tungsten and Tungsten - Phases

    NASA Astrophysics Data System (ADS)

    Angastiniotis, Nicos Costa

    Reductive decomposition of spray dried ammonium metatungstate gives rise to nanocrystalline alpha -W (bcc structure) or nanocrystalline beta -W (A15 structure), depending on the specifics of the processing conditions. By controlling the reaction rate of the high surface area alpha-W and beta -W phases with oxygen at low temperatures ( <=300^circC) it is possible to transform both phases to an amorphous tungsten oxide. Furthermore, reduction of the amorphous oxide in hydrogen at <=400 ^circC yields gamma -W (amorphous structure), in which all or nearly all of the oxygen atoms are removed. The high surface area alpha -W and beta-W phases show striking differences in susceptibility to gas-solid reactions. Reaction of beta-W with ammonia at low temperatures (100^circ-300^ circC) results in the formation of an intermediate amorphous delta-WN_ {rm x} phase, which decomposes at higher temperatures (>=650 ^circC) into nanocrystalline rm W_2N_{x} phase. On the other hand, if nitridation is initiated at room temperature and continues as the temperature gradually increases to 300^circC, another amorphous phase (gamma-WN_{ rm x}) is formed. A similar behavior occurs when beta -W is reacted with carbon monoxide at low temperatures, starting at room temperature and continuing as the temperature gradually increases to 300^circC. The resulting amorphous phase delta- rm WC_{x}O_{y } is exceptionally stable. Only upon heating to 800^circC in carbon monoxide does it decompose to rm WC_{x }.. The unusual chemical activity of high surface area beta-W led to speculation concerning its susceptibility to solid-solid reactions, in addition to the gas-solid reactions noted above. Tests on the W -Cu system, in which both elements are mutually insoluble in the solid state, clearly showed that Cu can be diffused into beta-W to form a metastable solid solution. Some diffusional disordering evidently occurs because of the disappearance of the high order peaks of beta-W. However, the disordering

  2. Reactive deposition of tungsten and titanium carbides by induction plasma

    NASA Astrophysics Data System (ADS)

    Jiang, X. L.; Gitzhofer, F.; Boulos, M. I.; Tiwari, R.

    1995-05-01

    A study is reported on the use of induction plasma technology for the preparation of dense free-standing deposits of tungsten carbide and titanium carbide from metallic powders and methane. Phase analysis by X-ray diffraction indicates that primary carburization of the particles takes place in-flight giving rise to the formation of W2C and TiC(1 - x). Secondary carburization occurs in the deposits resulting in the formation of tungsten and titanium carbides. Microstructures revealed by optical and scanning electron microscopy show uniform small grains of the carbides. The reactive plasma spray-formed tungsten carbide shows transgranular fracture, while pure tungsten deposits show intergranular fracture.

  3. Tungsten-induced carcinogenesis in human bronchial epithelial cells

    PubMed Central

    Laulicht, Freda; Brocato, Jason; Cartularo, Laura; Vaughan, Joshua; Wu, Feng; Kluz, Thomas; Sun, Hong; Oksuz, Betul Akgol; Shen, Steven; Paena, Massimilano; Medici, Serenella; Zoroddu, Maria Antonietta; Costa, Max

    2015-01-01

    Metals such as arsenic, cadmium, beryllium, and nickel are known human carcinogens; however, other transition metals, such as tungsten (W), remain relatively uninvestigated with regard to their potential carcinogenic activity. Tungsten production for industrial and military applications has almost doubled over the past decade and continues to increase. Here, for the first time, we demonstrate tungsten’s ability to induce carcinogenic related endpoints including cell transformation, increased migration, xenograft growth in nude mice, and the activation of multiple cancer related pathways in transformed clones as determined by RNA seq. Human bronchial epithelial cell line (Beas-2B) exposed to tungsten developed carcinogenic properties. In a soft agar assay, tungsten-treated cells formed more colonies than controls and the tungsten-transformed clones formed tumors in nude mice. RNA-sequencing data revealed that the tungsten-transformed clones altered the expression of many cancer-associated genes when compared to control clones. Genes involved in lung cancer, leukemia, and general cancer genes were deregulated by tungsten. Taken together, our data shows the carcinogenic potential of tungsten. Further tests are needed, including in vivo and human studies, in order to validate tungsten as a carcinogen to humans. PMID:26164860

  4. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  5. Influence of tungsten content, swaging, and grain size on the viscoplastic response of tungsten heavy alloys

    SciTech Connect

    Ramesh, K.T.

    1992-12-31

    The response of tungsten-nickel-iron (W-Ni-Fe) alloys to high rates of deformation has been investigated using compression and torsional Kolsky bars. The influence of tungsten content, swaging, and grain size on the dynamic behavior of commercially available alloys has been examined, The results indicate that the flow stresses sustained by these materials have a distinct dependence on strain rate, over a range from 10(exp {minus}4)/sec to 7 x 10(exp 3)/sec. The rate sensitivity itself appears to be influenced by tungsten content and degree of prior swaging, but appears to be almost independent of tungsten grain size. Metallographic analyses and microhardness measurements were performed to study the microstructural evolution with increasing strain at high rates. Adiabatic shear localization has been observed in high-rate shearing tests; relatively narrow shear bands are formed, followed immediately by catastrophic fracture.

  6. Nanoengineering Applied to Tungsten

    DTIC Science & Technology

    2006-05-01

    and R. Z. Valiev ARL-RP- 123 May 2006 A reprint from the Proceedings of the Sixth International Conference on Tungsten, Refractory...Ground, MD 21005-5066 ARL-RP- 123 May 2006 Nanoengineering Applied to Tungsten Q. Wei University of North Carolina-Charlotte B. E...ORGANIZATION REPORT NUMBER ARL-RP- 123 10. SPONSOR/MONITOR’S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 11. SPONSOR

  7. Deuterium retention in tungsten films after different heat treatments

    NASA Astrophysics Data System (ADS)

    Wang, P.; Jacob, W.; Elgeti, S.

    2015-01-01

    Tungsten films deposited by magnetron sputtering on polycrystalline tungsten substrates were used as a model system to study the influence of the film microstructure on deuterium retention behavior. Different microstructures were produced by annealing the films up to recrystallization temperature and the corresponding structural changes were investigated by scanning electron microscopy combined with focused ion beam (FIB) cross sectioning. The influence of the induced structural changes on D retention was investigated by both nuclear reaction analysis and temperature-programmed desorption. D concentration in the investigated W films is higher than in polycrystalline bulk tungsten by a factor of 3. D retention in the films decreases as a function of annealing temperature. After annealing at 2000 K, FIB cross-section images reveal that cavities appeared at the grain boundaries within the film and at the initial interface between the W film and W substrate. This new microstructure strongly affects the D depth profile and leads to the increase of D retention. Although a further increase of the holding time at 2000 K or an increase of the annealing temperature to 2150 K lead to the reduction of the retained D amount, the D concentration in the recrystallized W films cannot be reduced to a level as low as that of bulk W recrystallized at 2000 K for 30 min.

  8. A novel method for formation of single crystalline tungsten nanotip

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigeki; Ono, Masashi; Tomonaga, Shinya; Nakanishi, Haruka

    2016-12-01

    A point electron source is desired to improve performance of high brightness electron beam instruments. It is valuable to create nano-sized tungsten (W) tip from sharp ordinary polycrystalline W needle. The sharp W needle, which is manufactured by electrochemical etching, has been practically utilized as a cold field emission electron source. A novel method for formation of single crystalline W nanotip on the top of h-BN coated conventional polycrystalline tungsten, by supplying high voltage, has been found. The W nanotip with an apex radius as small as a few times 10 nm would be grown on the top of the polycrystalline W needle. Field emission characteristics of obtained W nanotip are measured, and the field emission microscopic (FEM) and transmission emission microscopic (TEM) images are observed. The emission current from the W nanotip is measured to exceed 0.1 mA. The FEM image shows significant electron emission from the crystallographic facets of the W single crystal. From these results, the present method for formation of the single crystalline W nanotip would be expected as a key technology to realize a point electron source with a nano-sized apex which makes it possible to improve the performance of high brightness electron beam instruments, especially tiny X-ray tubes for medical use, as well as a cantilever of scanning probe microscope.

  9. Weldability of polycrystalline aluminides

    SciTech Connect

    Fasching, A.A.; Edwards, G.R.; David, S.A.

    1993-07-01

    Iron aluminide alloy FA-129 is susceptible to cold cracking during gas-tungsten arc (GTA) welding. Cracking occurs by brittle fracture in the fusion zone, which has been attributed to excessive grain growth during solidification, in concert with environmental embrittlement. Previous work has shown that iron aluminide can be susceptible to environmental embrittlement when tested in the presence of water vapor. The suggested mechanism is similar to that observed in aluminum alloys: the reaction of water molecules with freshly exposed aluminum atoms at the crack tip results in the formation of high activity atomic hydrogen, which diffuses into the metal and causes embrittlement. This phenomenon occurs only when the metal is stressed, and therefore, is a dynamic embrittlement phenomenon. The same effect was not seen in experiments conducted in the presence of hydrogen gas. To further investigate this embrittlement problem and its effect on welding, GTA welds were conducted in atmospheres of varying amounts of water vapor on base material of varying grain sizes. The varying base material grain sizes were chosen because fusion zone grain size depends, to an extent, on the grain size of the base material. For example, a fine-grained base material should produce a finer grained fusion zone that a coarse-grained base material would. The results of the investigation are presented within this paper.

  10. An experimental study of the influence of oxygen on silicide formation with tungsten deposited from tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Zhang, S.-L.; Smith, U.; Buchta, R.; Östling, M.

    1991-01-01

    Tungsten disilicide (WSi2) was formed by annealing tungsten films deposited by low-pressure chemical vapor deposition on <100>-silicon substrates. The influence of oxygen on the silicidation rate was studied. Si wafers with different oxygen content in the form of Czochralski, float-zone, and epitaxial wafers were used. Oxygen was also ion implanted into either the silicon substrate or the as-deposited tungsten film. The Rutherford backscattering technique was used to follow the progress of the silicidation. The silicidation rate was found to be dependent on the oxygen content of the Si substrates. The rate was lowest for Czochralski substrates and highest for float-zone substrates. Secondary ion mass spectroscopy was used to study the oxygen and fluorine profiles in the films prior to and after silicidation. Growth of WSi2 was found to be retarded concurrently with a pile-up of fluorine at the tungsten side of the W/WSi2 interface and a gettering of oxygen from the annealing atmosphere at the interface. Growth of WSi2 was then transferred to the tungsten surface. Oxygen implantation into silicon and tungsten, respectively, reduced the rate of silicide formation. Oxygen implantation into tungsten altered the distribution of fluorine and suppressed WSi2 growth at the tungsten surface. The observations led to a conceptual model, which ascribes the retardation in the growth of the inner WSi2 to a``poisoning'' effect caused by the increase of oxygen and fluorine levels at the interface.

  11. Plasma deposition of tungsten

    SciTech Connect

    Greenberg, K.E.

    1986-12-01

    Tungsten films were plasma-deposited using an abnormal glow discharge through a mixture of tungsten hexafluoride, hydrogen, and argon. The films adhered well to silicon, silicon dioxide, gallium arsenide, and aluminum substrates placed directly on the discharge cathode. Typical deposition rates were on the order of 160 Angstroms/minute with as-deposited film resistivities of 40 to 70 microohm-cm. The tungsten was analyzed using a number of techniques including x-ray diffraction, scanning electron microscopy, and Auger spectroscopy. Low-resistivity (<10 microohm-cm) films that adhered well to silicon dioxide were obtained with a two-step process utilizing plasma deposition and conventional chemical vapor deposition.

  12. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Doi, K.; Tawada, Y.; Lee, H. T.; Kato, S.; Tanaka, N.; Sasao, M.; Kisaki, M.; Nishiura, M.; Matsumoto, Y.; Kenmotsu, T.; Wada, M.; Ueda, Y.; Yamaoka, H.

    2016-02-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H+ beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions.

  13. Process for Polycrystalline film silicon growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  14. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  15. Electron emission from tungsten induced by slow, fusion-relevant ions

    NASA Astrophysics Data System (ADS)

    Kowarik, Gregor; Brunmayr, Michael; Aumayr, Friedrich

    2009-08-01

    Tungsten has recently been introduced as a new wall material for fusion, because it exhibits favourably low sputtering yields and a very low tritium retention as compared to the commonly used graphite wall and divertor tiles. We measure total electron emission yields due to impact of slow singly and multiply charged ions (deuterium, helium and carbon) on sputter-cleaned polycrystalline tungsten surfaces by using a current method in combination with a retarding grid. Results are presented in the eV to keV impact energy region as typical for fusion edge plasma conditions and discussed in terms of potential and kinetic electron emission.

  16. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  17. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  18. Diffusion of tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of tungsten hexafluoride

  19. Gas tungsten arc welder

    DOEpatents

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  20. High purity tungsten targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    High purity tungsten, which is used for targets in X-ray tubes was considered for space processing. The demand for X-ray tubes was calculated using the growth rates for dental and medical X-ray machines. It is concluded that the cost benefits are uncertain.

  1. Abnormality in fracture strength of polycrystalline silicene

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hong, Jiawang; Pidaparti, Ramana; Wang, Xianqiao

    2016-09-01

    Silicene, a silicon-based homologue of graphene, arouses great interest in nano-electronic devices due to its outstanding electronic properties. However, its promising electronic applications are greatly hindered by lack of understanding in the mechanical strength of silicene. Therefore, in order to design mechanically reliable devices with silicene, it is necessary to thoroughly explore the mechanical properties of silicene. Due to current fabrication methods, graphene is commonly produced in a polycrystalline form; the same may hold for silicene. Here we perform molecular dynamics simulations to investigate the mechanical properties of polycrystalline silicene. First, an annealing process is employed to construct a more realistic modeling structure of polycrystalline silicene. Results indicate that a more stable structure is formed due to the breaking and reformation of bonds between atoms on the grain boundaries. Moreover, as the grain size decreases, the efficiency of the annealing process, which is quantified by the energy change, increases. Subsequently, biaxial tensile tests are performed on the annealed samples in order to explore the relation between grain size and mechanical properties, namely in-plane stiffness, fracture strength and fracture strain etc. Results indicate that as the grain size decreases, the fracture strain increases while the fracture strength shows an inverse trend. The decreasing fracture strength may be partly attributed to the weakening effect from the increasing area density of defects which acts as the reservoir of stress-concentrated sites on the grain boundary. The observed crack localization and propagation and fracture strength are well-explained by a defect-pileup model.

  2. Hopping conduction in polycrystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Shukla, A. K.; Kapoor, A. K.; Srivastava, R.; Mathur, P. C.

    1985-03-01

    Measurements of dc conductivity (sigma) on polycrystalline semiconductors, viz., InSb, Si, and CdTe, have been reported in the temperature range 77-300 K. The conduction mechanism near liquid-nitrogen temperature has been identified as the hopping of charge carriers from the charged trap centers to empty traps near the Fermi level.

  3. Surface Coating of Tungsten Carbide by Electric Exploding of Contact

    SciTech Connect

    Grigoryev, Evgeny G.

    2011-01-17

    Electric exploding of a tungsten carbide--cobalt material near-by high-speed steel surface forms on it a hardening coating. The essential structure properties of the formed coatings are determined by parameters of contact exploding electrode at the pulse current amplitude from above 106 A/cm2 and duration less than 10-4 s. The metallographic investigations of coating structures were done by microscope 'Neophot-24'. They have shown that the contact electric exploding caused the transfer of tungsten carbide and cobalt on the surface of high-speed steel. The breakdown of tungsten carbide--cobalt material took place during electrical exploding. The hardening layers of tungsten carbide and pure nanocrystalline tungsten have been formed upon the surface of high-speed steel as a result of electric exploding. Crystalline grains of tungsten have an almost spherical form and their characteristic size less than 400 nanometers. Micro hardness of the coating layers and high-speed steel structures was measured.

  4. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    NASA Astrophysics Data System (ADS)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  5. Electrospark doping of steel with tungsten

    SciTech Connect

    Denisova, Yulia Shugurov, Vladimir; Seksenalina, Malika; Ivanova, Olga Ikonnikova, Irina; Kunitsyna, Tatyana Vlasov, Victor; Klopotov, Anatoliy; Ivanov, Yuriy

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensional approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.

  6. Systematic studies of the nucleation and growth of ultrananocrystalline diamond films on silicon substrates coated with a tungsten layer

    SciTech Connect

    Chu, Yueh-Chieh; Jiang, Gerald; Tu, Chia-Hao; Chang Chi; Liu, Chuan-pu; Ting, Jyh-Ming; Lee, Hsin-Li; Tzeng, Yonhua; Auciello, Orlando

    2012-06-15

    We report on effects of a tungsten layer deposited on silicon surface on the effectiveness for diamond nanoparticles to be seeded for the deposition of ultrananocrystalline diamond (UNCD). Rough tungsten surface and electrostatic forces between nanodiamond seeds and the tungsten surface layer help to improve the adhesion of nanodiamond seeds on the tungsten surface. The seeding density on tungsten coated silicon thus increases. Tungsten carbide is formed by reactions of the tungsten layer with carbon containing plasma species. It provides favorable (001) crystal planes for the nucleation of (111) crystal planes by Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) in argon diluted methane plasma and further improves the density of diamond seeds/nuclei. UNCD films grown at different gas pressures on tungsten coated silicon which is pre-seeded by nanodiamond along with heteroepitaxially nucleated diamond nuclei were characterized by Raman scattering, field emission-scanning electron microscopy, and high resolution-transmission electron microscopy.

  7. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  8. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    SciTech Connect

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to produce carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.

  9. Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces

    DOE PAGES

    Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.

    2015-03-27

    Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to producemore » carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.« less

  10. Acidic magnetorheological finishing of infrared polycrystalline materials

    DOE PAGES

    Salzman, S.; Romanofsky, H. J.; West, G.; ...

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however,more » surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.« less

  11. Acidic magnetorheological finishing of infrared polycrystalline materials

    SciTech Connect

    Salzman, S.; Romanofsky, H. J.; West, G.; Marshall, K. L.; Jacobs, S. D.; Lambropoulos, J. C.

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however, surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.

  12. Modeling of Nano-Tungsten Sintering Data

    DTIC Science & Technology

    2011-04-01

    penetration as that of depleted uranium -3/4% titanium penetrators. This type of behavior produces superior penetration performance (3). For the...Depleted Uranium Replacement Program (DURP), the source of tungsten powder feed stock with a low (~1%) concentration of oxygen was the Chongyi Zhangyuan...then spray dried to remove the solvent . A compact of the powder is formed either by cold iso-static pressing or die pressing. Next, the compact is

  13. Mobility, Geochemistry, and Speciation of Tungsten

    DTIC Science & Technology

    2008-12-01

    deionized water used had a resistivity of 18.3 MΩ . cm. Sodium carbonate, sodium polytungstate, and sodium tungstate dihydrate was purchased from Sigma... tungstate anion, although polymerization to form poly- and heteropoly- tungstates has been shown to occur. The current study investigates tungsten...are found in a variety of minerals, which can dissolve to yield the tungstate in most common environmental matrices (Seiler, Stollenwerk, and

  14. Fluoride compounds of tungsten with bridging deprotonated diols

    SciTech Connect

    Kokunov, Yu.V.; Bochkareva, V.A.; Buslaev, Yu.A.

    1987-05-01

    The reactions of tungsten hexafluoride with ethylene glycol, 1,2- and 1,3-propanediol, and 2,3-butanediol have been studied by /sup 19/F NMR. As a result, dimeric, trimeric, and tetrameric compounds with four or five fluoride atoms in which the tungsten atoms are joined to one another by deprotonated moieties of the diols, and each metal atom is bonded to the other metal atoms by means of only one such group, were obtained. Dimeric compounds, in which the two tungsten atoms are joined by two bridging deprotonated moieties of the diols in a stabilized gauche conformation, are obtained at an appropriate concentration of the diols. When the diol:WF/sub 6/ ratio is increased, monomeric octahedral compounds of tungsten with three fluorine atoms form. The parameters of the /sup 19/F NMR spectra of the compounds obtained have been determined.

  15. Transparent polycrystalline cubic silicon nitride.

    PubMed

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-17

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  16. Transparent polycrystalline cubic silicon nitride

    NASA Astrophysics Data System (ADS)

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-03-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.

  17. Transparent polycrystalline cubic silicon nitride

    PubMed Central

    Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo

    2017-01-01

    Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948

  18. Laser-induced amorphization of silicon during pulsed-laser irradiation of TiN/Ti/polycrystalline silicon/SiO2/silicon

    NASA Astrophysics Data System (ADS)

    Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.

    2002-11-01

    In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.

  19. Tungsten and tungsten-alloy powder metallurgy: Powder production and applications-excluding lamps. November 1971-July 1989 (Citations from the US Patent data base). Report for November 1971-July 1989

    SciTech Connect

    Not Available

    1989-10-01

    This bibliography contains citations of selected patents concerning the preparation of metallic and ceramic powders of tungsten and tungsten alloys including various applications of these materials. The hydrogen reduction of tungsten compounds together with alloying-element compounds produce forms with characteristics of high density, hardness, wear resistance, high melting points, and abrasiveness. Topics include production of various cathodes, heaters, filament wires, electrical contacts, acoustic absorbers, high-density sheets and coatings, hard penetrators, and tungsten carbide and metallized ceramics. Tungsten halogen lamps are examined in a separate bibliography. (Contains 60 citations fully indexed and including a title list.)

  20. Porous tungsten oxide nanoflakes for highly alcohol sensitive performance.

    PubMed

    Xiao, J; Liu, P; Liang, Y; Li, H B; Yang, G W

    2012-11-21

    Porous tungsten oxide (WO(3)) nanoflakes have been synthesized by a simple and green approach in an ambient environment. As a precursor solution a polycrystalline hydrated tungstite (H(2)WO(4)·H(2)O) nanoparticles colloid was first prepared by pulsed-laser ablation of a tungsten target in water. The H(2)WO(4)·H(2)O nanoflakes were produced by 72 h aging treatment at room temperature. Finally, porous WO(3) nanoflakes were synthesized by annealing at 800 °C for 4 h. Considering the large surface-to-volume ratio of porous nanoflakes, a porous WO(3) nanoflake gas sensor was fabricated, which exhibits an excellent sensor response performance to alcohol concentrations in the range of 20 to 600 ppm under low working temperature. This high response was attributed to the highly crystalline and porous flake-like morphology, which leads to effective adsorption and desorption, and provides more active sites for the gas molecules' reaction. These findings showed that the porous tungsten oxide nanoflake has great potential in gas-sensing performance.

  1. Gleeble Testing of Tungsten Samples

    DTIC Science & Technology

    2013-02-01

    close off porosity left after manufacturing and create a fully dense part. In order to alleviate this problem, rhenium was added to sintered nano...with and without rhenium , to determine a set of processing parameters that could be used during post-processing steps to create fully dense nano...4.2 Tungsten With Rhenium .................................................................................................9 4.3 Commercial Tungsten

  2. Preparation of tungsten oxide

    DOEpatents

    Bulian, Christopher J.; Dye, Robert C.; Son, Steven F.; Jorgensen, Betty S.; Perry, W. Lee

    2009-09-22

    Tungsten trioxide hydrate (WO.sub.3.H.sub.2O) was prepared from a precursor solution of ammonium paratungstate in concentrated aqueous hydrochloric acid. The precursor solution was rapidly added to water, resulting in the crash precipitation of a yellow white powder identified as WO.sub.3.H.sub.2O nanosized platelets by x-ray diffraction and scanning electron microscopy. Annealing of the powder at 200.degree. C. provided cubic phase WO.sub.3 nanopowder, and at 400.degree. C. provided WO.sub.3 nanopowder as a mixture of monoclinic and orthorhombic phases.

  3. Weldability of polycrystalline aluminides. Final report

    SciTech Connect

    Fasching, A.A.; Burt, R.P.; Edwards, G.R.; David, S.A.

    1996-07-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen cracking. Magnetic arc oscillation and weld pool inoculation were implemented to refine the fusion zone microstructure in iron aluminide alloy FA-129 weldments. Magnetic arc oscillation effectively refined the fusion zone microstructure, and slow strain rate tensile tests showed fine-grained microstructures to be less susceptible to hydrogen cracking. However, magnetic arc oscillation was found to be suitable only for well-controlled fabrication environments. Weld pool inoculation offers a potentially more robust refinement method. Titanium inoculation was also shown to effectively refined the fusion zone microstructure, but weldment properties were not improved using this refinement method. The effect of titanium on the size, shape and distribution of the second phase particles in the fusion zone appears to be the cause of the observed decrease in weldment properties.

  4. Polycrystalline Thin Film Device Degradation Studies

    SciTech Connect

    Albin, D. S.; McMahon, T. J.; Pankow, J. W.; Noufi, R.; Demtsu, S. H.; Davies, A.

    2005-11-01

    Oxygen during vapor CdCl2 (VCC) treatments significantly reduced resistive shunts observed in CdS/CdTe polycrystalline devices using thinner CdS layers during 100 deg C, open-circuit, 1-sun accelerated stress testing. Cu oxidation resulting from the reduction of various trace oxides present in as-grown and VCC treated films is the proposed mechanism by which Cu diffusion, and subsequent shunts are controlled. Graphite paste layers between metallization and CdTe behave like diffusion barriers and similarly benefit device stability. Ni-based contacts form a protective Ni2Te3 intermetallic layer that reduces metal diffusion but degrades performance through increased series resistance.

  5. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N-H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  6. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  7. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  8. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service. [ 74 FR 16143, Apr. 9,...

  9. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  10. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  11. 49 CFR 173.338 - Tungsten hexafluoride.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tungsten hexafluoride. 173.338 Section 173.338... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.338 Tungsten hexafluoride. (a) Tungsten... expansion test, must be condemned if removed from tungsten hexafluoride service....

  12. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  13. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wohlgemuth, J. H.

    1982-01-01

    Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.

  14. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  15. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  16. Casting larger polycrystalline silicon ingots

    SciTech Connect

    Wohlgemuth, J.; Tomlinson, T.; Cliber, J.; Shea, S.; Narayanan, M.

    1995-08-01

    Solarex has developed and patented a directional solidification casting process specifically designed for photovoltaics. In this process, silicon feedstock is melted in a ceramic crucible and solidified into a large grained semicrystalline silicon ingot. In-house manufacture of low cost, high purity ceramics is a key to the low cost fabrication of Solarex polycrystalline wafers. The casting process is performed in Solarex designed casting stations. The casting operation is computer controlled. There are no moving parts (except for the loading and unloading) so the growth process proceeds with virtually no operator intervention Today Solarex casting stations are used to produce ingots from which 4 bricks, each 11.4 cm by 11.4 cm in cross section, are cut. The stations themselves are physically capable of holding larger ingots, that would yield either: 4 bricks, 15 cm by 15 an; or 9 bricks, 11.4 cm by 11.4 an in cross-section. One of the tasks in the Solarex Cast Polycrystalline Silicon PVMaT Program is to design and modify one of the castings stations to cast these larger ingots. If successful, this effort will increase the production capacity of Solarex`s casting stations by 73% and reduce the labor content for casting by an equivalent percentage.

  17. Development of rapidly quenched brazing foils to join tungsten alloys with ferritic steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Moeslang, A.; Rohde, M.

    2004-08-01

    Results on rapidly solidified filler metals for tungsten brazing are presented. A rapidly quenched foil-type filler metal based on Ni bal-15Cr-4Mo-4Fe-(0.5-1.0)V-7.5Si-1.5B was developed to braze tungsten to ferritic/martensitic Crl3Mo2NbVB steel (FS) for helium gas cooled divertors and plasma facing components. Polycrystalline W-2CeO 2 and monocrystalline pure tungsten were brazed to the steel under vacuum at 1150 °C, using a 0.5 mm thick foil spacer made of a 50Fe-50Ni alloy. As a result of thermocycling tests (100 cycles between 700 °C/20 min and air-water cooling/3-5 min) on brazed joints, tungsten powder metallurgically processed W-2CeO 2 failed due to residual stresses, whereas the brazed joint with zone-melted monocrystalline tungsten withstood the thermocycling tests.

  18. Tungsten Toxicity in Plants

    PubMed Central

    Adamakis, Ioannis-Dimosthenis S.; Panteris, Emmanuel; Eleftheriou, Eleftherios P.

    2012-01-01

    Tungsten (W) is a rare heavy metal, widely used in a range of industrial, military and household applications due to its unique physical properties. These activities inevitably have accounted for local W accumulation at high concentrations, raising concerns about its effects for living organisms. In plants, W has primarily been used as an inhibitor of the molybdoenzymes, since it antagonizes molybdenum (Mo) for the Mo-cofactor (MoCo) of these enzymes. However, recent advances indicate that, beyond Mo-enzyme inhibition, W has toxic attributes similar with those of other heavy metals. These include hindering of seedling growth, reduction of root and shoot biomass, ultrastructural malformations of cell components, aberration of cell cycle, disruption of the cytoskeleton and deregulation of gene expression related with programmed cell death (PCD). In this article, the recent available information on W toxicity in plants and plant cells is reviewed, and the knowledge gaps and the most pertinent research directions are outlined. PMID:27137642

  19. Tungsten resources of Brazil

    USGS Publications Warehouse

    White, Max Gregg

    1974-01-01

    Brazilian tungsten production, 85 percent of which is exported, comes almost entirely from scheelite-bearing tactites in northeast Brazil, and has reached an annual rate of about 2,000 metric tons (2,200 short tons) of scheelite concentrate with 70 percent WO3. Scheelite ore reserves, located principally in the State of Rio Grande do Norte, are estimated to be as high as 8,300,000 tons (9,100,000 short tons) containing 0.7 percent WO3. Minor deposits (or those about which only minimal information is available) of wolframite, with which some cassiterite is associated, are located in Sao Paulo, Santa Catarina, and Rio Grande do Sul. Both the scheelite and the wolframite deposits are considered . to be late Precambrian A (620 to 900 m.y.) or early Cambrian in age.

  20. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in

  1. Low molybdenum state induced by tungsten as a model of molybdenum deficiency in rats.

    PubMed

    Yoshida, Munehiro; Nakagawa, Mikihito; Hosomi, Ryota; Nishiyama, Toshimasa; Fukunaga, Kenji

    2015-05-01

    Organ molybdenum (Mo) concentration and the activity of hepatic sulfite oxidase and xanthine oxidase were compared in tungsten-administered rats as well as rats fed with a low Mo diet to evaluate the use of tungsten-administered rats as a model of Mo deficiency. Twenty-four male 6-week-old Wistar rats were divided into four groups according to diet (AIN93G diet (control diet) or the control diet minus ammonium molybdate (low Mo diet)) and drinking water (deionized water or deionized water containing 200 μg/mL tungsten in the form of sodium tungstate). Mo content in the control and low Mo diets were 196 and 42 ng/g, respectively. Intake of the low Mo diet significantly reduced the Mo content of several organs and serum. Decrease in hepatic sulfite oxidase activity was also induced by the low Mo diet. The administration of tungsten induced marked decreases in organ Mo content and the activity of hepatic sulfite oxidase and xanthine oxidase. These decreases induced by tungsten administration were more pronounced than those induced by just a low Mo diet. Serum uric acid was also reduced by tungsten administration irrespective of Mo intake. Although a comparatively high accumulation of tungsten (3 to 9 μg/g) was observed in the kidneys and liver, adverse effects of tungsten accumulation on liver and kidney function were not observed in serum biochemical tests. These results indicate that tungsten-administered animals may be used as a model of Mo deficiency.

  2. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  3. Acoustic Nonlinearity in Polycrystalline Nickel from Fatigue-Generated Microstructures

    SciTech Connect

    Cantrell, John H.

    2005-04-09

    An analytical model of the nonlinear interaction of ultrasonic waves with dislocation substructures formed during the fatigue of wavy slip metals is presented. The model is applied to the calculation of the acoustic nonlinearity parameters {beta} of polycrystalline nickel for increasingly higher levels of fatigue from the virgin state. The values calculated for stress-controlled loading at 345 MPa predict a monotonic increase in {beta} of more than 390 percent as a function of percent life to fracture due to substructural evolution.

  4. Polishing of polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Harker, Alan B.; Flintoff, John F.; DeNatale, Jeffrey F.

    1990-12-01

    Optically smooth surfaces can be produced on initially rough polycrystalline diamond film through the combined use of reactive ion etching and high temperature lapping on Fe metai Protective thin film barriers are first applied to the diamond surface to restrict the reactiv oxygen or hydrogen ion etching process to regions of greatest roughness. When the overaJ surface roughness has been reduced sufficiently by etching mechanical lapping of the surfac on an Fe plate at temperatures of 730C-900C in the presence of hydrogen can be used t produce surface roughnesses of less than 10 nm as measured by profilimetry. The tw techniques are complementary for flat surfaces while the reactive etching process alone can b used with shaped substrates to produce a surface finish suitable for LWIR optical applications. 1.

  5. Polycrystalline Silicon: a Biocompatibility Assay

    SciTech Connect

    Pecheva, E.; Fingarova, D.; Pramatarova, L.; Hikov, T.; Laquerriere, P.; Bouthors, Sylvie; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-21

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  6. Shock waves in polycrystalline iron.

    PubMed

    Kadau, Kai; Germann, Timothy C; Lomdahl, Peter S; Albers, Robert C; Wark, Justin S; Higginbotham, Andrew; Holian, Brad Lee

    2007-03-30

    The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone.

  7. Interface scattering in polycrystalline thermoelectrics

    SciTech Connect

    Popescu, Adrian; Haney, Paul M.

    2014-03-28

    We study the effect of electron and phonon interface scattering on the thermoelectric properties of disordered, polycrystalline materials (with grain sizes larger than electron and phonons' mean free path). Interface scattering of electrons is treated with a Landauer approach, while that of phonons is treated with the diffuse mismatch model. The interface scattering is embedded within a diffusive model of bulk transport, and we show that, for randomly arranged interfaces, the overall system is well described by effective medium theory. Using bulk parameters similar to those of PbTe and a square barrier potential for the interface electron scattering, we identify the interface scattering parameters for which the figure of merit ZT is increased. We find the electronic scattering is generally detrimental due to a reduction in electrical conductivity; however, for sufficiently weak electronic interface scattering, ZT is enhanced due to phonon interface scattering.

  8. Bioactivity of polycrystalline silicon layers.

    PubMed

    Pramatarova, Lilyana; Pecheva, Emilia; Montgomery, Paul; Dimova-Malinovska, Doriana; Petrov, Todor; Toth, Attila L; Dimitrova, Magdalena

    2008-02-01

    After oxygen, silicon is the second most abundant element in the environment and is present as an impurity in most materials. The widespread occurrence of siliceous biominerals as structural elements in lower plants and animals suggests that Si plays a role in the production and maintenance of connective tissue in higher organisms. It has been shown that the presence of Si is necessary in bones, cartilage and in the formation of connective tissue, as well as in some important metabolic processes. In this work, polycrystalline silicon layers are tested in terms of bioactivity, i.e., their ability to induce hydroxyapatite formation from simulated body fluid. Hydroxyapatite is a biologically compatible material with chemical similarity to the inorganic part of bones and teeth. Polycrystalline silicon layers are obtained by aluminum induced crystallization of Al and amorphous Si thin films deposited sequentially on glass substrates by radio-frequency magnetron sputtering and subsequently annealed in different atmospheres. The hydroxyapatite formation is induced by applying a method of laser-liquid-solid interaction. The method consists of irradiating the samples with laser light while immersed in a solution that is supersaturated with respect to Ca and P. As a result, heterogeneous porous sponge-like carbonate-containing hydroxyapatite is grown on the polysilicon surfaces. Crystals that are spherical in shape, containing Ca, P and O, Na, Cl, Mg, Al, Si and S, as well as well-faceted NaCl crystals are embedded in the hydroxyapatite layer. Enhancement of the hydroxyapatite growth and increased crystallinity is observed due to the applied laser-liquid-solid interaction.

  9. Polarographic determination of tungsten in rocks

    USGS Publications Warehouse

    Reichen, L.E.

    1954-01-01

    This work was undertaken to develop a simpler and faster method than the classical gravimetric procedure for the determination of tungsten in rocks and ores. A new polarographic wave of tungsten is obtained in a supporting electrolyte of dilute hydrochloric acid containing tartrate ion. This permits the determination of tungsten both rapidly and accurately. No precipitation of the tungsten is necessary, and only the iron need be separated from the tungsten. The accuracy is within the limits of a polarographic procedure; comparison of polarographic and gravimetric results is given. The method reduces appreciably the amount of time ordinarily consumed in determination of tungsten.

  10. Double phase conjugation in tungsten bronze crystals.

    PubMed

    Sharp, E J; Clark Iii, W W; Miller, M J; Wood, G L; Monson, B; Salamo, G J; Neurgaonkar, R R

    1990-02-20

    In this paper we report a new method for double phase conjugation particularly suited to the tungsten bronze crystal strontium barium niobate. It has also been observed to produce conjugate waves in BaTiO(3) and BSKNN. This new arrangement is called the bridge conjugator because the two beams enter opposing [100] crystal faces and fan together to form a bridge without reflection off a crystal face. Our measurements indicate that the bridge conjugator is competitive with previously reported double phase conjugate mirrors in reflectivity, response time, ease of alignment, and fidelity.

  11. Surface finish and subsurface damage in polycrystalline optical materials

    NASA Astrophysics Data System (ADS)

    Shafrir, Shai Negev

    We measure and describe surface microstructure and subsurface damage (SSD) induced by microgrinding of hard metals and hard ceramics used in optical applications. We examine grinding of ceramic materials with bonded abrasives, and, specifically, deterministic microgrinding (DMG). DMG, at fixed nominal infeed rate and with bound diamond abrasive tools, is the preferred technique for optical fabrication of ceramic materials. In DMG material removal is by microcracking. DMG provides cost effective high manufacturing rates, while attaining higher strength and performance, i.e., low level of subsurface damage (SSD). A wide range of heterogeneous materials of interest to the optics industry were studied in this work. These materials include: A binderless tungsten carbide, nonmagnetic Ni-based tungsten carbides, magnetic Co-based tungsten carbides, and, in addition, other hard optical ceramics, such as aluminum oxynitride (Al23O27N5/ALON), polycrystalline alumina (Al2O3/PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). These materials are all commercially available. We demonstrate that spots taken with magnetorheological finishing (MRF) platforms can be used for estimating SSD depth induced by the grinding process. Surface morphology was characterized using various microscopy techniques, such as: contact interferometer, noncontact white light interferometer, light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). The evolution of surface roughness with the amount of material removed by the MRF process, as measured within the spot deepest point of penetration, can be divided into two stages. In the first stage the induced damaged layer and associated SSD from microgrinding are removed, reaching a low surface roughness value. In the second stage we observe interaction between the MRF process and the material's microstructure as MRF exposes the subsurface without introducing new damage. Line scans taken parallel to the MR

  12. Tungsten materials as durable catalyst supports for fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Perchthaler, M.; Ossiander, T.; Juhart, V.; Mitzel, J.; Heinzl, C.; Scheu, C.; Hacker, V.

    2013-12-01

    Durable platinum catalyst support materials, e.g. tungsten carbide (WC), tungsten oxide (WOx) and self-synthesized tungsten oxide (WOxs) were evaluated for the use in High-Temperature Proton Exchange Fuel Cells (HT-PEM) based on phosphoric acid doped polybenzimidazole as electrolyte. The support materials and the catalyst loaded support materials were characterized ex-situ by cyclic voltammetry in HClO4, potential cycling, CO-stripping, electron microscopy and X-ray diffraction measurements. The tungsten oxide and tungsten carbide based supported catalysts were compared to High Surface Area Carbon (HSAC), each coated with platinum via the same in-house manufacturing procedures. The in-house manufacturing procedures resulted in catalyst particle sizes on HSAC of 3-4 nm with a uniform distribution. The in-situ Potential Cycling experiments of WOx or WOxs supported catalysts showed much lower degradation rates compared to High Surface Area Carbons. The formation of WOx species on WC was proven by ex- and in-situ cyclic voltammetric studies and thermogravimetric analyses. X-ray diffraction, ex-situ cyclic voltammetry and in-situ cyclic voltammetry showed that WOx is formed from WC as starting material under oxidizing conditions. Finally a 1000 h durability test with WOx as catalyst support material on the anode was done in a HT-PEM fuel cell with reformed methanol on the anode.

  13. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  14. Influence of substrates on formation of polycrystalline silicon nanowire films

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Yamazaki, Tatsuya; Miyajima, Shinsuke; Konagai, Makoto

    2014-10-01

    Polycrystalline silicon nanowires (poly-SiNWs) films were successfully prepared by using metal assisted chemical etching of polycrystalline silicon (poly-Si) films. The poly-Si films were prepared by solid-phase crystallization of amorphous silicon (a-Si) deposited by different deposition techniques on different substrates. In the case of the electron beam evaporated a-Si on a quartz substrate, the formation of poly-SiNWs was not observed and the structure was found to be porous silicon. On the other hand, poly-SiNWs successfully formed from poly-Si on a silicon substrate. We also found that deposition techniques for a-Si films affect the formation of poly-SiNWs.

  15. Nucleation and growth of polycrystalline SiC

    NASA Astrophysics Data System (ADS)

    Kaiser, M.; Schimmel, S.; Jokubavicius, V.; Linnarsson, M. K.; Ou, H.; Syväjärvi, M.; Wellmann, P.

    2014-03-01

    The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar pressure at 2250°C in diffusion limited mass transport regime generating a convex shaped growth form of the solid-gas interface leading to lateral expansion of virtually [001] oriented crystallites. Growth at 2350°C led to the stabilization of 6H polytypic grains. The micropipe density in the bulk strongly depends on the substrate used.

  16. Material Mixing of Tungsten with Carbon and Helium

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Lee, H. T.

    2010-05-01

    In ITER, graphite and tungsten are used for divertor materials and are mixed through erosion, transport, and redeposition. Helium, a fusion reactant, is an intrinsic element in fusion plasmas that impinges on the metallic wall materials to form He bubbles. W-C mixed layers and He bubble layers greatly affect tritium retention. In this paper, impacts of W-C material mixing on erosion and hydrogen isotope retention are reviewed. Then, recent results on carbon deposition on tungsten in TEXTOR tokamak and helium effects on blistering and retention are discussed.

  17. Fabrication techniques developed for small- diameter, thin-wall tungsten and tungsten alloy tubing

    NASA Technical Reports Server (NTRS)

    Brillhart, D. C.; Burt, W. R.; Karasek, F. J.; Mayfield, R. M.

    1968-01-01

    Report describes methods for the fabrication of tungsten and tungsten alloys into small-diameter, thin-wall tubing of nuclear quality. The tungsten, or tungsten alloy tube blanks are produced by double extrusion. Plug-drawing has emerged as an excellent secondary fabrication technique for the reduction of the overall tube dimensions.

  18. New insights on the effect of hydrogen to tungsten hexafluoride partial pressure ratio on plasma deposited tungsten thin films

    NASA Astrophysics Data System (ADS)

    Kim, Yong Tae; Hong, Jong Sung; Min, Suk-Ki

    1991-12-01

    Resistivities of tungsten thin films deposited by plasma enhanced chemical vapor deposition are very sensitive to the H2/WF6 partial pressure ratio, while the resistivities of tungsten films deposited by low pressure chemical vapor deposition are insensitive to the H2/WF6 ratio. The reason is investigated with x-ray diffraction, transmission electron microscopy, Auger electron spectroscopy and optical emission spectroscopy. As a result, when the H2/WF6 partial pressure ratio is higher than 15, plasma deposited tungsten has a low resistive (11 μΩ cm) bcc structure without F impurities. However, if the H2/WF6 ratios are decreased, porous and β-phase W films are formed due to the incomplete reduction of F concentrations.

  19. Efficient Process for Making Polycrystalline Silicon

    NASA Technical Reports Server (NTRS)

    Mccormick, J. R.; Plahutnik, F. JR.; Sawyer, D. H.; Arvidson, A. N.; Goldfarb, S. M.

    1985-01-01

    Solar cells made with lower capital and operating costs. Process based on chemical-vapor deposition (CVD) of dichlorosilane produces high-grade polycrystalline silicon for solar cells. Process has potential as cost-effective replacement for CVD of trichlorosilane.

  20. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  1. Improving Solar Cells With Polycrystalline Silicon

    NASA Technical Reports Server (NTRS)

    Rohatgi, Ajeet; Campbell, Robert B.; Rai-Choudhury, Prosenjit

    1987-01-01

    In proposed solar-cell design, layers of polycrystalline silicon grown near front metal grid and back metal surface. Net electrical effect increases open-circuit voltage and short-circuit current, resulting in greater cell power output and energy conversion efficiency. Solar-cell configuration differs from existing one in that layers of doped polycrystalline silicon added to reduce recombination in emitter and back surface field regions.

  2. Accurate pointing of tungsten welding electrodes

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1971-01-01

    Thoriated-tungsten is pointed accurately and quickly by using sodium nitrite. Point produced is smooth and no effort is necessary to hold the tungsten rod concentric. The chemically produced point can be used several times longer than ground points. This method reduces time and cost of preparing tungsten electrodes.

  3. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus formingtungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  4. In vivo tungsten exposure alters B-cell development and increases DNA damage in murine bone marrow.

    PubMed

    Kelly, Alexander D R; Lemaire, Maryse; Young, Yoon Kow; Eustache, Jules H; Guilbert, Cynthia; Molina, Manuel Flores; Mann, Koren K

    2013-02-01

    High environmental tungsten levels were identified near the site of a childhood pre-B acute lymphoblastic leukemia cluster; however, a causal link between tungsten and leukemogenesis has not been established. The major site of tungsten deposition is bone, the site of B-cell development. In addition, our in vitro data suggest that developing B lymphocytes are susceptible to tungsten-induced DNA damage and growth inhibition. To extend these results, we assessed whether tungsten exposure altered B-cell development and induced DNA damage in vivo. Wild-type mice were exposed to tungsten in their drinking water for up to 16 weeks. Tungsten concentration in bone was analyzed by inductively coupled plasma mass spectrometry and correlated with B-cell development and DNA damage within the bone marrow. Tungsten exposure resulted in a rapid deposition within the bone following 1 week, and tungsten continued to accumulate thereafter albeit at a decreased rate. Flow cytometric analyses revealed a transient increase in mature IgD(+) B cells in the first 8 weeks of treatment, in animals of the highest and intermediate exposure groups. Following 16 weeks of exposure, all tungsten groups had a significantly greater percentage of cells in the late pro-/large pre-B developmental stages. DNA damage was increased in both whole marrow and isolated B cells, most notably at the lowest tungsten concentration tested. These findings confirm an immunological effect of tungsten exposure and suggest that tungsten could act as a tumor promoter, providing leukemic "hits" in multiple forms to developing B lymphocytes within the bone marrow.

  5. Polycrystallinity and stacking in CVD graphene.

    PubMed

    Tsen, Adam W; Brown, Lola; Havener, Robin W; Park, Jiwoong

    2013-10-15

    slowly grown films. These structural differences can affect the material's electrical properties: for example, better-connected grain boundaries are more electrically conductive. However, grain boundaries in general are mechanically weaker than pristine graphene, which is an order of magnitude stronger than CVD graphene based on indentation measurements performed with an atomic force microscope. Vertical junctions in multilayer CVD graphene have two key structural features. First, bilayer graphene (BLG) with Bernal stacking exists in two mirrored configurations (AB or AC) that also form isolated domains. Similarly, oriented trilayer graphene also has alternating ABA and ABC stacked layers. Second, in twisted multilayer graphene, stacked layers lack long-range atomic registry and can move freely relative to each other, which generates unique optical properties. In particular, an interlayer optical excitation produces strong Raman and absorption peaks, dependent on the twist angle. A better understanding of the structural and physical properties of grain boundaries and multilayers in CVD graphene is central to realizing the full potential of graphene in large-scale applications. In addition, these studies provide a model for characterizing other layered materials, such as hexagonal boron nitride and MoS2, where similar polycrystallinity and stacking are expected when grown in large areas.

  6. Solution-processed polycrystalline silicon on paper

    SciTech Connect

    Trifunovic, M.; Ishihara, R.; Shimoda, T.

    2015-04-20

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

  7. Solution-processed polycrystalline silicon on paper

    NASA Astrophysics Data System (ADS)

    Trifunovic, M.; Shimoda, T.; Ishihara, R.

    2015-04-01

    Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

  8. Water vapor interactions with polycrystalline titanium surfaces

    NASA Astrophysics Data System (ADS)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  9. Method of synthesizing tungsten nanoparticles

    SciTech Connect

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  10. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    NASA Astrophysics Data System (ADS)

    Yan, Yanfa; Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R.; Li, Chen; Poplawsky, Jonathan; Wang, Zhiwei; Moseley, John; Guthrey, Harvey; Moutinho, Helio; Pennycook, Stephen J.; Al-Jassim, Mowafak M.

    2015-03-01

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  11. Physics of grain boundaries in polycrystalline photovoltaic semiconductors

    SciTech Connect

    Yan, Yanfa Yin, Wan-Jian; Wu, Yelong; Shi, Tingting; Paudel, Naba R.; Li, Chen; Poplawsky, Jonathan; Wang, Zhiwei; Moseley, John; Guthrey, Harvey; Moutinho, Helio; Al-Jassim, Mowafak M.; Pennycook, Stephen J.

    2015-03-21

    Thin-film solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) and CdTe photovoltaic semiconductors have reached remarkable laboratory efficiencies. It is surprising that these thin-film polycrystalline solar cells can reach such high efficiencies despite containing a high density of grain boundaries (GBs), which would seem likely to be nonradiative recombination centers for photo-generated carriers. In this paper, we review our atomistic theoretical understanding of the physics of grain boundaries in CIGS and CdTe absorbers. We show that intrinsic GBs with dislocation cores exhibit deep gap states in both CIGS and CdTe. However, in each solar cell device, the GBs can be chemically modified to improve their photovoltaic properties. In CIGS cells, GBs are found to be Cu-rich and contain O impurities. Density-functional theory calculations reveal that such chemical changes within GBs can remove most of the unwanted gap states. In CdTe cells, GBs are found to contain a high concentration of Cl atoms. Cl atoms donate electrons, creating n-type GBs between p-type CdTe grains, forming local p-n-p junctions along GBs. This leads to enhanced current collections. Therefore, chemical modification of GBs allows for high efficiency polycrystalline CIGS and CdTe thin-film solar cells.

  12. Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Hammond, Karl D.; Wirth, Brian D.; Maroudas, Dimitrios

    2014-05-01

    We report results of atomistic computations for the interactions of small mobile helium clusters (Hen) with free surfaces and grain boundaries (GBs) in tungsten toward development of continuum drift-diffusion-reaction models for the dynamics of mobile helium clusters in plasma-exposed tungsten. Molecular-statics (MS) simulations based on reliable many-body interatomic potentials are carried out for Hen (1 ≤ n ≤ 7) clusters near sinks to obtain the potential energy profiles of the Hen clusters as a function of the clusters' center-of-mass distance from a sink. Sinks investigated include surfaces, GBs, and regions in the vicinity of junctions where GBs intersect free surfaces. Elastic interaction potentials based on elastic inclusion theory provide an excellent description of the MS results for the cluster-sink interactions. The key parameter in the elastic models is the sink segregation strength, which is found to increase with increasing cluster size. Such cluster-sink interactions are responsible for the migration of small helium clusters by drift and for helium segregation on surfaces and grain boundaries in tungsten. Such helium segregation on sinks is observed in large-scale molecular-dynamics simulations of helium aggregation in model polycrystalline tungsten at 933 K upon helium implantation.

  13. Interactions of mobile helium clusters with surfaces and grain boundaries of plasma-exposed tungsten

    SciTech Connect

    Hu, Lin; Maroudas, Dimitrios; Hammond, Karl D.; Wirth, Brian D.

    2014-05-07

    We report results of atomistic computations for the interactions of small mobile helium clusters (He{sub n}) with free surfaces and grain boundaries (GBs) in tungsten toward development of continuum drift-diffusion-reaction models for the dynamics of mobile helium clusters in plasma-exposed tungsten. Molecular-statics (MS) simulations based on reliable many-body interatomic potentials are carried out for He{sub n} (1 ≤ n ≤ 7) clusters near sinks to obtain the potential energy profiles of the He{sub n} clusters as a function of the clusters' center-of-mass distance from a sink. Sinks investigated include surfaces, GBs, and regions in the vicinity of junctions where GBs intersect free surfaces. Elastic interaction potentials based on elastic inclusion theory provide an excellent description of the MS results for the cluster-sink interactions. The key parameter in the elastic models is the sink segregation strength, which is found to increase with increasing cluster size. Such cluster-sink interactions are responsible for the migration of small helium clusters by drift and for helium segregation on surfaces and grain boundaries in tungsten. Such helium segregation on sinks is observed in large-scale molecular-dynamics simulations of helium aggregation in model polycrystalline tungsten at 933 K upon helium implantation.

  14. Process development for cladding APT tungsten targets

    SciTech Connect

    Horner, M H; Barber, R; Dalder, E

    2000-11-27

    This report describes development of processes for cladding APT Target tungsten components with a thin layer (0.127-mm) of Alloy 718, Alloy 600 or 316L stainless steel alloy. The application requires that the cladding be thermally bonded to the tungsten in order to transfer heat generated in the tungsten volume to a surrounding coolant. High temperature diffusion bonding using the hot isostatic processing (HIP) technique was selected as the method for creating a metallurgical bond between pure tungsten tubes and rods and the cladding materials. Bonding studies using a uniaxially loaded vacuum hot press were conducted in preliminary experiments to determine acceptable time-temperature conditions for diffusion bonding. The results were successfully applied in cladding tungsten rods and tubes with these alloys. Temperatures 800-810 C were suitable for cladding tungsten with Alloy 600 and 316L stainless steel alloy, whereas tungsten was clad with Alloy 718 at 1020 C.

  15. Mineral of the month: tungsten

    USGS Publications Warehouse

    Shedd, Kim B.

    2006-01-01

    Tungsten has the highest melting point of all metals, one of the highest densities and, when combined with carbon, is almost as hard as diamond. These and other properties make it useful in a wide variety of important commercial, industrial and military applications.

  16. Vacuum Gas Tungsten Arc Welding

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.

    1997-01-01

    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  17. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  18. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  19. Fuzzy tungsten in a magnetron sputtering device

    NASA Astrophysics Data System (ADS)

    Petty, T. J.; Khan, A.; Heil, T.; Bradley, J. W.

    2016-11-01

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 1023-3.0 × 1024 m-2, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 1024 m-2, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ1/2 relation as opposed to the incubation fluence fit.

  20. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  1. Creation of wear-resistant frictional surfaces by implanting materials based on tungsten carbide

    NASA Astrophysics Data System (ADS)

    Davidov, S. V.; Gorlenko, A. O.

    2017-02-01

    The influenceof the implanted tungsten carbide on the formation of wear-resistant structures, formed in the process of implementation of the combined electro-processing technology in the friction surfaces, is studied. It has been shown that during the thermal force influence in the deformation zone, there is intensive austenizationof the steel with the dissolution of the tungsten carbide powder and the subsequent formation of the composite nanostructures as a result of decomposition of the supercooled austenite, supersaturated with tungsten. The results of tribologicaltestings of cylindrical samples by the normalized method are presented.

  2. He bombardment of WEST tungsten grades: surface morphology changes and flux dependence

    NASA Astrophysics Data System (ADS)

    Hijazi, H.; Martin, C.; Meyer, F. W.; Bannister, M. E.; Cabie, M.; Campos, A.; Gardarein, J.-L.; Corre, Y.; Richou, M.; Addab, Y.; Roubin, P.

    2016-10-01

    We report measurements of the surface morphology changes induced by He ion bombardment of WEST grades polycrystalline tungsten at conditions relevant for the WEST He campaign (T =400-1000 °C and flux range 0.3-5.1020 m-2s-1).218 eV He impact energy bombardments were carried out at the ORNL MIRF, using a high-flux deceleration module and beam flux monitor. Surface analyses were performed at the PIIM laboratory using electron microscopy techniques (FIB-SEM and EBSD). At fluxes below 2.1020 m-2s-1, nano-wavy structures and pinholes are observed on individual grains, together with sub-surface bubbles. Interestingly, the wavy structures and pinholes were found preferentially on grains with surface orientations near 101 and 001, respectively. At fluxes above 2.1020 m-2s-1, the individual grain-to-grain variability disappears and the entire surface is covered by nano-fuzz structures. These results suggest that, at around 2.1020 m-2s-1, ion beam bombardment produces significant sub-surface damages with a high bubble density due to He saturation leading to a possible scenario that bubbles burst to form pinholes and then nanofuzz. Detailed analyses of the correlation between the grain orientation and the wavy structure as well as of the surface erosion, roughness and emissivity are underway. Research supported by A*MIDEX sponsored by the Investissements d'Avenir French program. Research at ORNL supported by the Office of Fusion Sciences of the U.S. Department of Energy.

  3. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    PubMed

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

  4. Scattering of ultrasound by minority phases in polycrystalline metals

    NASA Astrophysics Data System (ADS)

    Sayers, C. M.

    1984-01-01

    The scattering of ultrasound by minority phases in polycrystalline metals is discussed. For discrete inclusions, the scattering theory of Ying and Truell describes the attenuation of longitudinal waves. This is demonstrated by comparison with experiments of Papadakis for graphite particles in modular cast iron. To treat the scattering by a second phase formed by segregation at a grain boundary, the scattering by a spherical shell with density and elastic constants different from those of the surrounding medium is developed. Reflection of ultrasound at this boundary is found to enhance the attenuation at low frequencies. Application is made to the scattering by manganese sulphide in free machining steel.

  5. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  6. Scaling properties of polycrystalline graphene: a review

    NASA Astrophysics Data System (ADS)

    Isacsson, Andreas; Cummings, Aron W.; Colombo, Luciano; Colombo, Luigi; Kinaret, Jari M.; Roche, Stephan

    2017-03-01

    We present an overview of the electrical, mechanical, and thermal properties of polycrystalline graphene. Most global properties of this material, such as the charge mobility, thermal conductivity, or Young’s modulus, are sensitive to its microstructure, for instance the grain size and the presence of line or point defects. Both the local and global features of polycrystalline graphene have been investigated by a variety of simulations and experimental measurements. In this review, we summarize the properties of polycrystalline graphene, and by establishing a perspective on how the microstructure impacts its large-scale physical properties, we aim to provide guidance for further optimization and improvement of applications based on this material, such as flexible and wearable electronics, and high-frequency or spintronic devices.

  7. Characterization and modeling of tungsten source during DIII-D tungsten ring experiments

    NASA Astrophysics Data System (ADS)

    Guterl, J.; Abrams, T.; Elder, D.; Guo, H. Y.

    2016-10-01

    Two tungsten toroidal rings in the DIII-D divertor region were recently exposed to H-mode plasmas. During these experiments, the gross erosion rate of tungsten was spectroscopically monitored for various ELMy H-mode conditions to characterize the tungsten source in the divertor region (see e.g.). However, only a small fraction of tungsten eroded particles eventually exits the divertor region because of the large tungsten local redeposition. Tungsten local redeposition and migration in the vicinity of the tungsten tiles are simulated using the ERO-OEDGE code package to link the effective tungsten source to the measured gross erosion rates between and during ELMs. It is shown that the energy and angular distributions of sputtered tungsten particles strongly affect the ratio of locally redeposited particles and thus the effective tungsten source. Effects of carbon deposition on tungsten tiles between ELMs on the tungsten erosion rate are also discussed. Preliminary studies of divertor screening on long-range tungsten transport in the SOL between ELMs are also presented. Work supported in part by the US Department of Energy under DE-AC05-06OR23100 and DE-FC02-04ER54698.

  8. A New Polycrystalline Co-Ni Superalloy

    NASA Astrophysics Data System (ADS)

    Knop, M.; Mulvey, P.; Ismail, F.; Radecka, A.; Rahman, K. M.; Lindley, T. C.; Shollock, B. A.; Hardy, M. C.; Moody, M. P.; Martin, T. L.; Bagot, P. A. J.; Dye, D.

    2014-12-01

    In 2006, a new-ordered L12 phase, Co3(Al,W), was discovered that can form coherently in a face-centered cubic (fcc) A1 Co matrix. Since then, a community has developed that is attempting to take these alloys forward into practical applications in gas turbines. A new candidate polycrystalline Co-Ni γ/ γ' superalloy, V208C, is presented that has the nominal composition 36Co-35Ni-15Cr-10Al-3W-1Ta (at.%). The alloy was produced by conventional powder metallurgy superalloy methods. After forging, a γ' fraction of ~56% and a secondary γ' size of 88 nm were obtained, with a grain size of 2.5 μm. The solvus temperature was 1000°C. The density was found to be 8.52 g cm-3, which is similar to existing Ni alloys with this level of γ'. The alloy showed the flow stress anomaly and a yield strength of 920 MPa at room temperature and 820 MPa at 800°C, similar to that of Mar-M247. These values are significantly higher than those found for either conventional solution and carbide-strengthened Co alloys or the γ/ γ' Co superalloys presented in the literature thus far. The oxidation resistance, with a mass gain of 0.08 mg cm-2 in 100 h at 800°C, is also comparable with that of existing high-temperature Ni superalloys. These results suggest that Co-based and Co-Ni superalloys may hold some promise for the future in gas turbine applications.

  9. Elastic properties of polycrystalline dense matter

    NASA Astrophysics Data System (ADS)

    Kobyakov, D.; Pethick, C. J.

    2015-04-01

    Elastic properties of the solid regions of neutron star crusts and white dwarfs play an important role in theories of stellar oscillations. Matter in compact stars is presumably polycrystalline and, since the elastic properties of single crystals of such matter are very anisotropic, it is necessary to relate elastic properties of the polycrystal to those of a single crystal. We calculate the effective shear modulus of polycrystalline matter with randomly oriented crystallites using a self-consistent theory that has been very successful in applications to terrestrial materials and show that previous calculations overestimate the shear modulus by approximately 28 per cent.

  10. The effect of phosphorus on the formation of tungsten dioxide: A novel morphology

    SciTech Connect

    Hegedus, E.; Neugebauer, J.

    1999-02-19

    The industrial production of tungsten is based on the hydrogen reduction of tungsten oxides, ammonium paratungstate (APT) or ammonium tungsten oxide bronze (ATOB). Hydrogen reduction is applied when high purity tungsten is required and when the addition of other elements or compounds (dopants) is desired for modification of the properties of the metal powder. The first stage of the reduction is finished when WO{sub 2} is formed and it seems that the efficient incorporation of the additives starts mainly at this reduction step. The study reported here was undertaken to investigate the effect of phosphorus dope on the morphology of the intermediate tungsten dioxide and analyze its influence on the grain size of the final tungsten metal powder. The authors observed star shaped morphology of WO{sub 2}, a structure which has not been describe in the literature. Contrary to the well-known cauliflower shaped tungsten dioxide, these starlets are not pseudomorphic to the initial ATOB particles; they grow separately and have a great influence on the grain size of the final metal powder.

  11. Experimental mechanistic investigation of the nanostructuring of tungsten with low energy helium plasmas

    NASA Astrophysics Data System (ADS)

    Fiflis, P.; Connolly, N.; Ruzic, D. N.

    2016-12-01

    Helium ion bombardment of tungsten at temperatures between approximately one third and one half of its melting point has shown growth of nanostructures colloquially referred to as "fuzz". The nanostructures take the form of thin tendrils of diameter about 30 nm and grow out of the bulk material. Tungsten will and does compose one of the key materials for plasma facing components (PFCs) in fusion reactors. The formation of nanostructured fuzz layers on PFCs would be detrimental to the performance of the reactor, and must therefore be avoided. Previous experiments have shown evidence that tungsten fuzz is initially grown by loop punching of helium bubbles created in the bulk. However, once the tendrils grow to sufficient length, the tendrils should intercept the entire helium flux, halting the production of fuzz. Fuzz continues to grow though. To increase the understanding of the mechanisms of tungsten fuzz formation, and thereby aid the avoidance of its production, a series of tests were performed to examine the validity of several theories regarding later stage tungsten fuzz growth. Tests showed that the fuzz formation was dependent solely on the bombardment of helium ions, and not on electric fields, or adatom diffusion. Experiments employing a tungsten coated molybdenum sample indicate the presence of a strong mixing layer and strongly suggest that tungsten fuzz growth continues to occur from the bottom up even as the tendrils grow in size. Tests also show a similarity between different metals exposed to helium ion fluxes where the ratio of bubble diameter to tendril diameter is constant.

  12. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.

  13. Molybdenum-copper and tungsten-copper alloys and method of making

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1989-05-23

    Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.

  14. Tungsten foil laminate for structural divertor applications - Joining of tungsten foils

    NASA Astrophysics Data System (ADS)

    Reiser, Jens; Rieth, Michael; Möslang, Anton; Dafferner, Bernhard; Hoffmann, Jan; Mrotzek, Tobias; Hoffmann, Andreas; Armstrong, D. E. J.; Yi, Xiaoou

    2013-05-01

    This paper is the fourth in our series on tungsten laminates. The aim of this paper is to discuss laminate synthesis, meaning the joining of tungsten foils. It is obvious that the properties of the tungsten laminate strongly depend on the combination of (i) interlayer and (ii) joining technology, as this combination defines (i) the condition of the tungsten foil after joining (as-received or recrystallised) as well as (ii) the characteristics of the interface between the tungsten foil and the interlayer (wettability or diffusion leading to a solid solution or the formation of intermetallics). From the example of tungsten laminates joined by brazing with (i) an eutectic silver copper brazing filler, (ii) copper, (iii) titanium, and (iv) zirconium, the microstructure will be discussed, with special focus on the interface. Based on our assumptions of the mechanism of the extraordinary ductility of tungsten foil we present three syntheses strategies and make recommendations for the synthesis of high temperature tungsten laminates.

  15. Laser cleaning of tungsten ribbon

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Sonar, V. R.; Das, D. K.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-07-01

    Removal of a thin oxide layer from a tungsten ribbon was achieved using the fundamental, second and third harmonic radiation from a Q- switched Nd-YAG laser. It was found that beyond the threshold, oxide removal was achieved at all wavelengths for a wide range of fluence values. The removal mechanism of the oxide layer was found to be critically dependent on both wavelength and fluence of the incident radiation and has been identified as ejection or sublimation. The un-cleaned and cleaned surfaces were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of Neodymium atoms.

  16. Dopant diffusion in tungsten silicide

    SciTech Connect

    Pan, P.; Hsieh, N.; Geipel, H.J. Jr.; Slusser, G.J.

    1982-04-01

    The dopant (B, P, and As) redistribution in a silicide on polycrystalline silicon structure after annealing at 800 and 1000 /sup 0/C was studied. The distribution of boron was found to be quite different from these of phosphorus and arsenic. At 1000 /sup 0/C, the distribution coefficient for boron at the WSi/sub 2//polycrystalline silicon interface was found to be 2.7. The solubilities of phosphorus and arsenic in WSi/sub 2/ at 1000 /sup 0/C were estimated to be 6 x 10/sup 19/ and 1.6 x 10/sup 19/ atoms/cm/sup 3/, respectively. At 800 /sup 0/C, the diffusion coefficient for the dopants was found to be equal to, or greater than 3.3 x 10/sup -12/ cm/sup 2//s, which is at least three orders of magnitude larger than in silicon.

  17. Tungsten coating for improved wear resistance and reliability of microelectromechanical devices

    DOEpatents

    Fleming, James G.; Mani, Seethambal S.; Sniegowski, Jeffry J.; Blewer, Robert S.

    2001-01-01

    A process is disclosed whereby a 5-50-nanometer-thick conformal tungsten coating can be formed over exposed semiconductor surfaces (e.g. silicon, germanium or silicon carbide) within a microelectromechanical (MEM) device for improved wear resistance and reliability. The tungsten coating is formed after cleaning the semiconductor surfaces to remove any organic material and oxide film from the surface. A final in situ cleaning step is performed by heating a substrate containing the MEM device to a temperature in the range of 200-600 .degree. C. in the presence of gaseous nitrogen trifluoride (NF.sub.3). The tungsten coating can then be formed by a chemical reaction between the semiconductor surfaces and tungsten hexafluoride (WF.sub.6) at an elevated temperature, preferably about 450.degree. C. The tungsten deposition process is self-limiting and covers all exposed semiconductor surfaces including surfaces in close contact. The present invention can be applied to many different types of MEM devices including microrelays, micromirrors and microengines. Additionally, the tungsten wear-resistant coating of the present invention can be used to enhance the hardness, wear resistance, electrical conductivity, optical reflectivity and chemical inertness of one or more semiconductor surfaces within a MEM device.

  18. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  19. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    Tungsten, which is a material used in many high temperature applications, is limited by its susceptibility to oxidation at elevated temperatures. Although tungsten has the highest melting temperature of any metal, at much lower temperatures volatile oxides are formed during oxidation with oxygen containing species. This differs from many heterogeneous oxidation reactions involving metals since most reactions form very stable oxides that have higher melting or boiling points than the pure metal (e.g., aluminum, iron). Understanding heterogeneous oxidation and vaporization processes may allow for the expansion and improvement of high temperature tungsten applications. In order to increase understanding of the oxidation processes of tungsten, there is a need to develop reaction mechanisms and kinetics for oxidation processes involving oxidizers and environmental conditions of interest. Tungsten oxidation was thoroughly studied in the past, and today there is a good phenomenological understanding of these processes. However, as the design of large scale systems increasingly relies on computer modeling there becomes a need for improved descriptions of chemical reactions. With the increase in computing power over the last several decades, and the development of quantum chemistry and physics theories, heterogeneous systems can be modeled in detail at the molecular level. Thermochemical parameters that may not be measured experimentally may now be determined theoretically, a tool that was previously unavailable to scientists and engineers. Additionally, chemical kinetic modeling software is now available for both homogeneous and heterogeneous reactions. This study takes advantage of these new theoretical tools, as well as a thermogravimetric (TG) flow reactor developed as part of this study to learn about mechanisms and kinetics of tungsten oxidation. Oxidizers of interest are oxygen (O2), carbon dioxide (CO 2), water (H2O), and other oxidizers present in combustion and

  20. Tungsten coatings electro-deposited on CFC substrates from oxide molten salt

    NASA Astrophysics Data System (ADS)

    Sun, Ningbo; Zhang, Yingchun; Lang, Shaoting; Jiang, Fan; Wang, Lili

    2014-12-01

    Tungsten is considered as plasma facing material in fusion devices because of its high melting point, its good thermal conductivity, its low erosion rate and its benign neutron activation properties. On the other hand, carbon based materials like C/C fiber composites (CFC) have been used for plasma facing materials (PFMs) due to their high thermal shock resistance, light weight and high strength. Tungsten coatings on CFC substrates are used in the JET divertor in the frame of the JET ITER-like wall project, and have been prepared by plasma spray (PS) and other techniques. In this study, tungsten coatings were electro-deposited on CFC from Na2WO4-WO3 molten salt under various deposition parameters at 900 °C in air. In order to obtain tungsten coatings with excellent performance, the effects of pulse duration ratio and pulse current density on microstructures and crystal structures of tungsten coatings were investigated by X-ray diffraction (XRD, Rigaku Industrial Co., Ltd., D/MAX-RB) and a scanning electron microscope (SEM, JSM 6480LV). It is found that the pulsed duration ratio and pulse current density had a significant influence on tungsten nucleation and electro-crystallization phenomena. SEM observation revealed that intact, uniform and dense tungsten coatings formed on the CFC substrates. Both the average grain size and thickness of the coating increased with the pulsed current density. The XRD results showed that the coatings consisted of a single phase of tungsten with the body centered cubic (BCC) structure. The oxygen content of electro-deposited tungsten coatings was lower than 0.05%, and the micro-hardness was about 400 HV.

  1. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  2. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Culik, J. S.

    1982-01-01

    The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.

  3. RESEARCH ON THIN FILM POLYCRYSTALLINE SOLAR CELLS.

    DTIC Science & Technology

    Studies of factors affecting the properties of polycrystalline CdTe film grown by the vapor reaction process are discussed and a variety of...molybdenum substrates are compared. No real differences are found. Rough measures of temperature effects and tellurium flow rate on film growth rate are

  4. Communications; On the formation of potassium bubbles in tungsten rod

    SciTech Connect

    Briant, C.L. . Corporate Research and Development Center)

    1989-01-01

    The microstructure of tungsten wire that is manufactured for use as lamp filaments has been studied by a number of researchers. The author demonstrates that one of the most important features of the microstructure is the potassium bubbles, approximately 500 A in diameter, that are aligned in rows in the direction of wire drawing. These bubbles pin the grain boundaries as they migrate down the length of the wire, giving rise to an interlocking grain structure in the recrystallized wire. If these bubbles were not present, a bamboo structure would form which would then rapidly fail during operation of the lamp as a result of grain boundary sliding. The potassium which forms these bubbles is incorporated into the tungsten during sintering of the powder metallurgy ingot.

  5. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  6. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  7. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  8. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  9. 40 CFR 421.100 - Applicability: Description of the primary tungsten subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary tungsten subcategory. 421.100 Section 421.100 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Tungsten Subcategory § 421.100 Applicability: Description of the primary tungsten... tungsten at primary tungsten facilities....

  10. Corrosion of Tungsten Microelectrodes used in Neural Recording Applications

    PubMed Central

    Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu

    2011-01-01

    In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563

  11. Stochastic multiscale modeling of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Wen, Bin

    Mechanical properties of engineering materials are sensitive to the underlying random microstructure. Quantification of mechanical property variability induced by microstructure variation is essential for the prediction of extreme properties and microstructure-sensitive design of materials. Recent advances in high throughput characterization of polycrystalline microstructures have resulted in huge data sets of microstructural descriptors and image snapshots. To utilize these large scale experimental data for computing the resulting variability of macroscopic properties, appropriate mathematical representation of microstructures is needed. By exploring the space containing all admissible microstructures that are statistically similar to the available data, one can estimate the distribution/envelope of possible properties by employing efficient stochastic simulation methodologies along with robust physics-based deterministic simulators. The focus of this thesis is on the construction of low-dimensional representations of random microstructures and the development of efficient physics-based simulators for polycrystalline materials. By adopting appropriate stochastic methods, such as Monte Carlo and Adaptive Sparse Grid Collocation methods, the variability of microstructure-sensitive properties of polycrystalline materials is investigated. The primary outcomes of this thesis include: (1) Development of data-driven reduced-order representations of microstructure variations to construct the admissible space of random polycrystalline microstructures. (2) Development of accurate and efficient physics-based simulators for the estimation of material properties based on mesoscale microstructures. (3) Investigating property variability of polycrystalline materials using efficient stochastic simulation methods in combination with the above two developments. The uncertainty quantification framework developed in this work integrates information science and materials science, and

  12. Atomistic simulations of tungsten surface evolution under low-energy neon implantation

    NASA Astrophysics Data System (ADS)

    Backman, Marie; Hammond, Karl D.; Sefta, Faiza; Wirth, Brian D.

    2016-04-01

    Tungsten is a candidate material for the divertor of fusion reactors, where it will be subject to a high flux of particles coming from the fusion plasma as well as a significant heat load. Under helium plasma exposure in fusion-reactor-like conditions, a nanostructured morphology is known to form on the tungsten surface in certain temperature and incident energy ranges, although the formation mechanism is not fully established. A recent experimental study (Yajima et al 2013 Plasma Sci. Technol. 15 282-6) using neon or argon exposure did not produce similar nanostructure. This article presents molecular dynamics simulations of neon implantation in tungsten aimed at investigating the surface evolution and elucidating the role of noble gas mass in fuzz formation. In contrast to helium, neon impacts can sputter both tungsten and previously implanted neon atoms. The shorter range of neon ions, along with sputtering, limit the formation of large bubbles and likely prevents nanostructure formation.

  13. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, D.A.; Bickes, R.W. Jr.; Blewer, R.S.

    1990-12-11

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose. 2 figs.

  14. Tungsten bridge for the low energy ignition of explosive and energetic materials

    DOEpatents

    Benson, David A.; Bickes, Jr., Robert W.; Blewer, Robert S.

    1990-01-01

    A tungsten bridge device for the low energy ignition of explosive and energetic materials is disclosed. The device is fabricated on a silicon-on-sapphire substrate which has an insulating bridge element defined therein using standard integrated circuit fabrication techniques. Then, a thin layer of tungsten is selectively deposited on the silicon bridge layer using chemical vapor deposition techniques. Finally, conductive lands are deposited on each end of the tungsten bridge layer to form the device. It has been found that this device exhibits substantially shorter ignition times than standard metal bridges and foil igniting devices. In addition, substantially less energy is required to cause ignition of the tungsten bridge device of the present invention than is required for common metal bridges and foil devices used for the same purpose.

  15. Polycrystalline nanowires of gadolinium-doped ceria via random alignment mediated by supercritical carbon dioxide

    PubMed Central

    Kim, Sang Woo; Ahn, Jae-Pyoung

    2013-01-01

    This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061

  16. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys.

    PubMed

    Schuster, B E; Roszell, L E; Murr, L E; Ramirez, D A; Demaree, J D; Klotz, B R; Rosencrance, A B; Dennis, W E; Bao, W; Perkins, E J; Dillman, J F; Bannon, D I

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up-regulated and those involved with muscle development and differentiation significantly down-regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin-dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas.

  17. Gate Oxide Reliability Characterization of Tungsten Polymetal Gate with Low-Contact-Resistive WSix/WN Diffusion Barrier in Memory Devices

    NASA Astrophysics Data System (ADS)

    Sung, Min Gyu; Lim, Kwan-Yong; Cho, Heung-Jae; Lee, Seung Ryong; Jang, Se-Aug; Kim, Yong Soo; Kim, Tae-Yoon; Yang, Hong-Seon; Ku, Ja-Chun; Kim, Jin Woong

    2007-11-01

    Gate oxide reliability characteristics using different diffusion barrier metals for a tungsten polycrystalline silicon (poly-Si) gate stack were investigated in detail. The insertion of a thin WSix layer in a tungsten poly gate stack could effectively relieve the mechanical stress of a gate hardmask nitride film during a post thermal process, which contributes to better gate oxide reliability and the stress-immunity of the transistor. This insertion could also prevent the formation of a Si-N inter-dielectric layer, which could lower the contact resistance between poly and tungsten effectively. A W/WN/WSix/poly gate stack could be a promising candidate for a future W poly gate that shows reliable high-speed characteristics in dynamic random access memory applications.

  18. Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation.

    PubMed

    Saepurahman; Abdullah, M A; Chong, F K

    2010-04-15

    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.

  19. Study on the oxidation and reduction of tungsten surface for sub-50 nm patterning process

    SciTech Connect

    Kim, Jong Kyu; Nam, Seok Woo; Cho, Sung Il; Jhon, Myung S.; Min, Kyung Suk; Kim, Chan Kyu; Jung, Ho Bum; Yeom, Geun Young

    2012-11-15

    The oxidation characteristics of tungsten line pattern during the carbon-based mask-layer removal process using oxygen plasmas have been investigated for sub-50 nm patterning processes, in addition to the reduction characteristics of the WO{sub x} layer formed on the tungsten line surface using hydrogen plasmas. The surface oxidation of tungsten lines during the mask layer removal process could be minimized by using low-temperature (300 K) plasma processing for the removal of the carbon-based material. Using this technique, the thickness of WO{sub x} on the tungsten line could be decreased to 25% compared to results from high-temperature processing. The WO{sub x} layer could also be completely removed at a low temperature of 300 K using a hydrogen plasma by supplying bias power to the tungsten substrate to provide a activation energy for the reduction. When this oxidation and reduction technique was applied to actual 40-nm-CD device processing, the complete removal of WO{sub x} formed on the sidewall of tungsten line could be observed.

  20. Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment.

    PubMed

    Zhou, Li Qin; Ling, Chen; Jones, Michael; Jia, Hongfei

    2015-12-28

    Electrochemical reduction of CO2 to CO on polycrystalline silver (Ag) was greatly improved by a simple anodization treatment. A CO faradaic efficiency of 92.8% was achieved at an overpotential of 0.50 V in an aqueous electrolyte. This study suggests that the enhanced performance is due to a preferred (220) orientation and a thin silver oxide layer formed by anodization.

  1. In vivo corrosion, tumor outcome, and microarray gene expression for two types of muscle-implanted tungsten alloys

    SciTech Connect

    Schuster, B.E.; Roszell, L.E.; Murr, L.E.; Ramirez, D.A.; Demaree, J.D.; Klotz, B.R.; Rosencrance, A.B.; Dennis, W.E.; Bao, W.; Perkins, E.J.; Dillman, J.F.; Bannon, D.I.

    2012-11-15

    Tungsten alloys are composed of tungsten microparticles embedded in a solid matrix of transition metals such as nickel, cobalt, or iron. To understand the toxicology of these alloys, male F344 rats were intramuscularly implanted with pellets of tungsten/nickel/cobalt, tungsten/nickel/iron, or pure tungsten, with tantalum pellets as a negative control. Between 6 and 12 months, aggressive rhabdomyosarcomas formed around tungsten/nickel/cobalt pellets, while those of tungsten/nickel/iron or pure tungsten did not cause cancers. Electron microscopy showed a progressive corrosion of the matrix phase of tungsten/nickel/cobalt pellets over 6 months, accompanied by high urinary concentrations of nickel and cobalt. In contrast, non-carcinogenic tungsten/nickel/iron pellets were minimally corroded and urinary metals were low; these pellets having developed a surface oxide layer in vivo that may have restricted the mobilization of carcinogenic nickel. Microarray analysis of tumors revealed large changes in gene expression compared with normal muscle, with biological processes involving the cell cycle significantly up‐regulated and those involved with muscle development and differentiation significantly down‐regulated. Top KEGG pathways disrupted were adherens junction, p53 signaling, and the cell cycle. Chromosomal enrichment analysis of genes showed a highly significant impact at cytoband 7q22 (chromosome 7) which included mouse double minute (MDM2) and cyclin‐dependant kinase (CDK4) as well as other genes associated with human sarcomas. In conclusion, the tumorigenic potential of implanted tungsten alloys is related to mobilization of carcinogenic metals nickel and cobalt from corroding pellets, while gene expression changes in the consequent tumors are similar to radiation induced animal sarcomas as well as sporadic human sarcomas. -- Highlights: ► Tungsten/nickel/cobalt, tungsten/nickel/iron, and pure tungsten were studied. ► Male Fischer rats implanted with

  2. Effect of grain size on optical transmittance of birefringent polycrystalline ceramics

    NASA Astrophysics Data System (ADS)

    Wen, Tzu-Chien

    Polycrystalline ceramics are increasingly used for fabricating windows and domes for the mid infra-red regime (3-5 mum) due to their superior durability as compared to glass and the lower cost of their fabrication and finishing relative to single crystals without significant compromise in optical properties. Due to the noncubic structure, MgF2 and Al2O3 are birefringent ceramics. Birefringence causes scatter of light at the grain boundaries and diminishes in-line transmittance and optical performance. This dissertation presents experimental results and analyses of the grain-size and wavelength dependence of the in-line transmittance of polycrystalline MgF2 and Al2O3. Chapter 2 presents experimental results and analyses of light transmission in polycrystalline MgF2 as a function of the mean grain size at different wavelengths. The scattering coefficient of polycrystalline MgF 2 increased linearly with the mean grain size and inversely with the square of the wavelength of light. These trends are consistent with theoretical models based on both a limiting form of the Raleigh-Gans-Debye theory of particle scattering and light retardation theories that take refractive-index variations along the light path. Chapter 3 investigates the applicability of particle light scattering theories to light attenuation in birefringent polycrystalline ceramics by measuring light transmittance in a model two-phase system. The system consisted of microspheres of silica dispersed in a solution of glycerol in water. It was found that RGD theory showed the systematic deviation for higher particle volume fraction (φ > 0.2) and larger particle size (d p > 1 mum). This result suggested that light scattering models based on single particle scattering are unlikely to provide viable physical explanation for the effect of grain size on light transmittance in birefringent polycrystalline ceramics due to the high volume fraction in dense polycrystalline ceramics. Chapter 4 analyses light

  3. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE PAGES

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment weremore » different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  4. Retention and surface blistering of helium irradiated tungsten as a first wall material

    NASA Astrophysics Data System (ADS)

    Gilliam, S. B.; Gidcumb, S. M.; Parikh, N. R.; Forsythe, D. G.; Patnaik, B. K.; Hunn, J. D.; Snead, L. L.; Lamaze, G. P.

    2005-12-01

    The first wall of an inertial fusion energy reactor may suffer from surface blistering and exfoliation due to helium ion irradiation and extreme temperatures. Tungsten is a candidate for the first wall material. A study of helium retention and surface blistering with regard to helium dose, temperature, pulsed implantation, and tungsten microstructure was conducted to better understand what may occur at the first wall of the reactor. Single crystal and polycrystalline tungsten samples were implanted with 1.3 MeV 3He in doses ranging from 10 19 m -2 to 10 22 m -2. Implanted samples were analyzed by 3He(d,p) 4He nuclear reaction analysis and 3He(n,p)T neutron depth profiling techniques. Surface blistering was observed for doses greater than 10 21 He/m 2. For He fluences of 5 × 10 20 He/m 2, similar retention levels in both microstructures resulted without blistering. Implantation and flash heating in cycles indicated that helium retention was mitigated with decreasing He dose per cycle.

  5. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    SciTech Connect

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment were different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.

  6. Growth kinetics of tungsten microstructures produced via the hydrogen reduction of tungsten hexafluoride on laser-heated substrates

    NASA Astrophysics Data System (ADS)

    Auvert, G.; Pauleau, Y.; Tonneau, D.

    1992-05-01

    Laser-assisted chemical vapor deposition of tungsten microstructures (dots, stripes, or films) has been accomplished via the H2 reduction of WF6 on polycrystalline silicon-coated quartz substrates irradiated with a focused cw argon-ion laser beam. Tungsten dots were grown on the substrates via a pyrolytic process occurring within the laser-heated zone of about 200 μm in diameter. The morphology and height of these dots were determined as functions of deposition parameters by profilometer measurements. The effects of WF6 and H2 partial pressures on the morphology and deposition rate of W dots were investigated at a laser-induced surface temperature ranging from 340 to 950 °C. The deposition rate of flat-topped dots was independent of the deposition temperature and proportional to the WF6 partial pressure. The deposition rate of W dots with a Gaussian profile was independent of the WF6 partial pressure. At low temperatures (340-670 °C) and high H2 partial pressures (50-700 Torr), the deposition rate of Gaussian W dots was proportional to the square root of the H2 partial pressure. At high temperatures (750-950 °C) and reduced H2 partial pressures (20-80 Torr), the deposition rate of these dots was proportional to the H2 partial pressure. This reaction order equal to 1 was interpreted on the basis of the Rideal model involving a direct reaction between H2 molecules and fluorinated adspecies on the W surface. The nature of the fluorinated adsorbed phase on the metal surface was discussed in terms of coordination number of W and F atoms. A new reaction mechanism for the H2 reduction of WF6 promoted by laser irradiation of the deposition zone or accomplished in a conventional furnace-type reactor is discussed and proposed.

  7. The electrical conductivity of polycrystalline metallic films

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Arenas, Claudio; Henriquez, Ricardo; Bravo, Sergio; Solis, Basilio

    2016-10-01

    We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes (MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering properties of grain boundaries are taken into account by means of another specularity parameter and a probability of coherent passage. The difference between the sum of these and one is the probability of diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin films on the probability of coherent passage and grain diameters is examined. In accordance with MS we find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked grains. However, when compared with recent resitivity-thickness data, it is shown that all three formalisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data of gold films measured by

  8. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    SciTech Connect

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF[sub 6], tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10[sup 10]-10[sup 11]/cm[sup 3]) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO[sub 2], Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films.

  9. Development of Tungsten Based Composites

    DTIC Science & Technology

    1992-02-01

    Rise, 0 C L 4 / /2’ C) r, 1 / 1 1 00 /Pressure in /’ Stress Wave, SPa L 6. 44 // © , " / 1000 10,000 Impact Velocity, Ft/Sec - 4- be phase...and it is not desirable to make the steel and tungsten segments quite so long. Accordingly, it is necessary to make stress wave analyses of bar...stresses, because of wave superposition and bar segment lengths. Wave analyses similar to those presented above may result in higher stresses delivered to

  10. Novel properties of Tungsten ditelluride

    NASA Astrophysics Data System (ADS)

    Liu, Huimei; National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Cent Collaboration

    Tungsten ditelluride has attracted intense research interest due to the recent discovery of its large unsaturated magnetoresistance up to 60 Tesla. By using density functional theory calculations, we qualitatively reproduced the observed spin texture. Since the spin texture would forbid back scatterings that are directly involved in the resistivity, we suggest that the SOC and the related spin and orbital angular momentum textures may play an important role in the anomalously large magnetoresistance of WTe2. Motivated by the presence of a small, sensitive Fermi surface of 5d electronic orbitals, we also boost the electronic properties by applying a high pressure, and introduce superconductivity successfully.

  11. Effect of localized polycrystalline silicon properties on solar cell performance

    NASA Technical Reports Server (NTRS)

    Leung, D.; Iles, P. A.; Hyland, S.; Kachare, A.

    1984-01-01

    Several forms of polycrystalline silicon, mostly from cast ingots, (including UCP, SILSO and HEM) were studied. On typical slices, localized properties were studied in two ways. Small area (about 2.5 sq mm) mesa diodes were formed, and localized photovoltaic properties were measured. Also a small area (about .015 sq mm) light spot was scanned across the cells; the light spot response was calibrated to measure local diffusion length directly. Using these methods, the effects of grain boundaries, or of intragrain imperfections were correlated with cell performance. Except for the fine grain portion of SILSO, grain boundaries played only a secondary role in determining cell performance. The major factor was intra-grain material quality and it varied with position in ingots and probably related to solidification procedure.

  12. Origins of Folding Instabilities on Polycrystalline Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.

    2014-12-01

    Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.

  13. Modeling of polycrystalline thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fahrenbruch, Alan L.

    1999-03-01

    This paper describes modeling polycrystalline thin-film solar cells using the program AMPS-1D1 to visualize the relationships between the many variables involved. These simulations are steps toward two dimensional modeling the effects of grain boundaries in polycrystalline cells. Although this paper describes results for the CdS/CdTe cell, the ideas presented here are applicable to copper-indium-gallium selenide (CIGS) cells as well as other types of cells. Results of these one-dimensional simulations are presented: (a) the duplication of experimentally observed cell parameters, (b) the effects of back-contact potential barrier height and its relation to stressing the cell, (c) the effects of the depletion layer width in the CdTe layer on cell parameters, and (d) the effects of CdS layer thickness on the cell parameters. Experience using the software is also described.

  14. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1982-01-01

    The investigation of the performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was continued by fabricating a set of minicell wafers on a selection of 10 cm x 10 cm wafers. A minicell wafer consists of an array of small (approximately 0.2 sq cm in area) photodiodes which are isolated from one another by a mesa structure. The junction capacitance of each minicell was used to obtain the dopant concentration, and therefore the resistivity, as a function of position across each wafer. The results indicate that there is no significant variation in resistivity with position for any of the polycrystalline wafers, whether Semix or Wacker. However, the resistivity of Semix brick 71-01E did decrease slightly from bottom to top.

  15. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  16. Gas-tungsten arc welding of aluminum alloys

    DOEpatents

    Frye, L.D.

    1982-03-25

    The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  17. Fluidized bed for production of polycrystalline silicon

    SciTech Connect

    Flagella, R.N.

    1992-08-18

    This patent describes a method for removing silicon powder particles from a reactor that produces polycrystalline silicon by the pyrolysis of a silane containing gas in a fluidized bed reaction zone of silicon seed particles. It comprises introducing the silane containing gas stream into the reaction zone of fluidized silicon seed particles; heterogeneously decomposing the silane containing gas under conditions; collecting the silicon product particles from the collection zone; and removing silicon powder particles from the reactor.

  18. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, L.C.; Ishida, Takanobu

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  19. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—potassium doped tungsten wire

    NASA Astrophysics Data System (ADS)

    Riesch, J.; Han, Y.; Almanstötter, J.; Coenen, J. W.; Höschen, T.; Jasper, B.; Zhao, P.; Linsmeier, Ch; Neu, R.

    2016-02-01

    For the next step fusion reactor the use of tungsten is inevitable to suppress erosion and allow operation at elevated temperature and high heat loads. Tungsten fibre-reinforced composites overcome the intrinsic brittleness of tungsten and its susceptibility to operation embrittlement and thus allow its use as a structural as well as an armour material. That this concept works in principle has been shown in recent years. In this contribution we present a development approach towards its use in a future fusion reactor. A multilayer approach is needed addressing all composite constituents and manufacturing steps. A huge potential lies in the optimization of the tungsten wire used as fibre. We discuss this aspect and present studies on potassium doped tungsten wire in detail. This wire, utilized in the illumination industry, could be a replacement for the so far used pure tungsten wire due to its superior high temperature properties. In tensile tests the wire showed high strength and ductility up to an annealing temperature of 2200 K. The results show that the use of doped tungsten wire could increase the allowed fabrication temperature and the overall working temperature of the composite itself.

  20. Direct laser deposition of nanostructured tungsten oxide for sensing applications

    NASA Astrophysics Data System (ADS)

    Palla-Papavlu, Alexandra; Filipescu, Mihaela; Schneider, Christof W.; Antohe, Stefan; Ossi, Paolo M.; Radnóczi, György; Dinescu, Maria; Wokaun, Alexander; Lippert, Thomas

    2016-05-01

    Nanostructured tungsten trioxide (WO3) thin films are deposited by pulsed laser deposition (PLD) and radio-frequency (RF) assisted PLD onto interdigitated sensor structures. Structural characterization by x-ray diffraction and Raman spectroscopy shows the WO3 films are polycrystalline, with a pure monoclinic phase for the PLD grown films. The as-fabricated WO3 sensors are tested for ammonia (NH3) detection, by measuring the electrical response to NH3 at different temperatures. Sensors based on WO3 deposited by RF-PLD do not show any response to NH3. In contrast, sensors fabricated by PLD operating at 100 °C and 200 °C show a slow recovery time whilst at 300 °C, these sensors are highly sensitive in the low ppm range with a recovery time in the range of a few seconds. The microstructure of the films is suggested to explain their excellent electrical response. Columnar WO3 thin films are obtained by both deposition methods. However, the WO3 films grown by PLD are porous, (which may allow NH3 molecules to diffuse through the film) whereas RF-PLD films are dense. Our results highlight that WO3 thin films deposited by PLD can be applied for the fabrication of gas sensors with a performance level required for industrial applications.

  1. Properties of tungsten-rhenium and tungsten-rhenium with hafnium carbide

    NASA Astrophysics Data System (ADS)

    Leonhardt, Todd

    2009-07-01

    Historically, tungsten-25wt.% rhenium alloy has been manufactured into wire for the thermocouple market, but recent demands for high-temperature structural components have forced the development of novel processing techniques for tungsten-rhenium and tungsten-rhenium with hafnium carbide. With a melting temperature of 3,050°C, and a recrystallization temperature near 1,900°C, tungsten-rhenium alloys are being used in aerospace, temperature measuring, and friction stir welding applications. The mechanical properties and microstructures of tungsten-25wt.% rhenium and tungsten-25wt.% rhenium with hafnium carbide are reported at ambient temperature, 1,371°C, and 1,926°C, after processing by three methods: hot isostatic pressing, swaging, and extrusion.

  2. Fabrication and properties of tungsten heavy metal alloys containing 30% to 90% tungsten

    SciTech Connect

    Gurwell, W.E.; Nelson, R.G.; Dudder, G.B.; Davis, N.C.

    1984-09-01

    In 1983, Pacific Northwest Laboratory conducted a survey of tungsten heavy metal alloys having lower-than-normal (<90%) tungsten content. The purpose of the work was to develop tougher, more impact-resistant high-density alloys for applications benefitting from improved mechanical properties. Tungsten heavy metal alloys of 30 to 90% tungsten content were fabricated and their mechanical properties measured. Although ultimate strength was essentially independent of tungsten content, lower tungsten-content alloys had lower yield stress, hardness, and density, and decidedly higher elongations and impact energies. Cold work was effective in raising strength and hardness but detrimental to elongation and impact energies. Precipitation hardening and strain aging raised hardness effectively but had less influence on other mechanical properties. 34 figures, 7 tables.

  3. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  4. Fast bolometric sensor built-in into polycrystalline CVD diamond

    NASA Astrophysics Data System (ADS)

    Klokov, A. Yu; Sharkov, A. I.; Galkina, T. I.; Khmelnitsky, R. A.; Dravin, V. A.; Ralchenko, V. G.; Gippius, A. A.

    2007-12-01

    Diamond, with its unique combination of physical properties, is a promising material for electronic devices operating under extreme conditions. Due to its exceptionally high thermal conductivity, diamond-based bolometers should possess very short response time. A fast bolometric sensor was formed within a polycrystalline diamond plate by ion implantation and subsequent annealing. The response kinetics of the structure was studied under a nitrogen laser pulsed illumination. The response time at room temperature was less than 20 ns. The spatial-temporal distribution of responses allowed us to distinguish between thermal responses and those of different nature (e.g. photoconductivity). This study was supported by the Russian Foundation for Basic Research, project nos. 05-02-17545 and 07-02-00575.

  5. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  6. Tungsten effects on phosphate-dependent biochemical pathways are species and liver cell line dependent.

    PubMed

    Johnson, David R; Ang, Chooyaw; Bednar, Anthony J; Inouye, Laura S

    2010-08-01

    Tungsten, in the form of tungstate, polymerizes with phosphate, and as extensive polymerization occurs, cellular phosphorylation and dephosphorylation reactions may be disrupted, resulting in negative effects on cellular functions. A series of studies were conducted to evaluate the effect of tungsten on several phosphate-dependent intracellular functions, including energy cycling (ATP), regulation of enzyme activity (cytosolic protein tyrosine kinase [cytPTK] and tyrosine phosphatase), and intracellular secondary messengers (cyclic adenosine monophosphate [cAMP]). Rat noncancerous hepatocyte (Clone-9), rat cancerous hepatocyte (H4IIE), and human cancerous hepatocyte (HepG2) cells were exposed to 1-1000 mg/l tungsten (in the form of sodium tungstate) for 24 h, lysed, and analyzed for the above biochemical parameters. Cellular ATP levels were not significantly affected in any cell line. After 4 h, tungsten significantly decreased cytPTK activity in Clone-9 cells at >or= 18 mg/l, had no effect in H4IIE cells, and significantly increased cytPTK activity by 70% in HepG2 cells at >or= 2 mg/l. CytPTK displayed a slight hormetic response to tungsten after 24-h exposure yet returned to normal after 48-h exposure. Tungsten significantly increased cAMP by over 60% in Clone-9 cells at >or= 100 mg/l, significantly increased cAMP in H4IIE cells at only 100 mg/l, and significantly increased cAMP in HepG2 cells between 1-100 mg/l but at much more modest levels (8-20%). In conclusion, these data indicate that tungsten produces complex results that must be carefully interpreted in the context of their respective animal models, as well as the phenotype of the cell lines (i.e., normal vs. cancerous).

  7. Effect of 800 keV argon ions pre-damage on the helium blister formation of tungsten exposed to 60 keV helium ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Han, Wenjia; Yu, Jiangang; Zhu, Kaigui

    2016-04-01

    This study aims to investigate the effect of Ar8+ ions pre-damage on the following He2+ irradiation behavior of polycrystalline tungsten. We compared the irradiation resistance performance against 60 keV He2+ ions of undamaged tungsten samples with that of pre-damaged samples which were preliminarily exposed to 800 keV Ar8+ ions at a fluence of 4 × 1019 ions m-2. The experimental results indicate that the helium blistering of tungsten could be effectively relieved by the Ar8+ ions pre-damage, while the retention of helium around low energy desorption sites in the pre-damaged tungsten was larger than that of the undamaged samples. A strong orientation dependence of blistering had been observed, with the blister occurred preferentially on the surface of grains with normal direction close to <111>. The Ar8+ ions irradiation-induced damage altered the morphology of helium bubbles in tungsten exposed to the following He2+ irradiation significantly. The intensity of helium release peaks at relatively low temperatures (<600 K) was enhanced due to Ar8+ ions pre-damage.

  8. Plasma-enhanced chemical vapor deposition of β-tungsten, a metastable phase

    NASA Astrophysics Data System (ADS)

    Tang, C. C.; Hess, D. W.

    1984-09-01

    Plasma-enhanced chemical vapor deposition of a metastable phase of tungsten ( β-W) is performed using tungsten hexafluoride and hydrogen as source gases. At 350 °C, the as-deposited resistivity of these films is ˜50 μΩ cm. After heat treatments between 650 and 750 °C in forming gas, the resistivity drops below 11 μΩ cm. Concomitant with this resistivity change is a phase change to α-W, the equilibrium, body-centered-cubic form.

  9. Direct Electrochemical Preparation of Cobalt, Tungsten, and Tungsten Carbide from Cemented Carbide Scrap

    NASA Astrophysics Data System (ADS)

    Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen

    2017-02-01

    A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.

  10. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  11. Composition of CVD tungsten silicides

    SciTech Connect

    Hara, T.; Takahashi, H.; Ishizawa, Y.

    1987-05-01

    The composition of tungsten silicide (WSi/sub x/) deposited by chemical vapor deposition on silicon and silicon dioxide substrates was studied. The composition x changed from 2.7 to 2.2 with varying WF/sub 6/ flow rate from 6 to 20 cm/sup 3//min in the deposition on silicon. When annealing was performed at 1000C, the dissociation of excess silicon occurred from the nonstoichiometric silicide in the layer on the silicon. As a result, the composition of each layer, which was different when deposited, tended toward the same composition of around 2.1. This result indicated the formation of near-stoichiometric silicide as a result of annealing.

  12. Dielectronic recombination of tungsten ions

    NASA Astrophysics Data System (ADS)

    Li, Bowen; O'Sullivan, Gerry; Dong, Chenzhong; Chen, Ximeng

    2016-08-01

    Ab initio calculations of dielectronic recombination rate coefficients of Ne-, Pd- and Ag-like tungsten have been performed. Energy levels, radiative transition probabilities and autoionization rates were calculated using the Flexible Atomic Code. The contributions from different channels to the total rate coefficients are discussed. The present calculated rate coefficients are compared with other calculations where available. Excellent agreement has been found for Ne-like W while a large discrepancy was found for Pd-like W, which implies that more ab initio calculations and experimental measurements are badly needed. Further calculations demonstrated that the influence of configuration interaction is small while nonresonant radiative stabilizing (NRS) contribution to doubly excited non-autoionizing states are vital. The data obtained are expected to be useful for modeling plasmas for fusion applications, especially for the ITER community, which makes experimental verification even more essential.

  13. Polycrystalline gamma plutonium's elastic moduli versus temperature

    SciTech Connect

    Migliori, Albert; Betts, J; Trugman, A; Mielke, C H; Mitchell, J N; Ramos, M; Stroe, I

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  14. Strain aging in tungsten heavy alloys

    SciTech Connect

    Dowding, R.J.; Tauer, K.J. . Materials Technology Lab.)

    1991-01-01

    This paper reports on tungsten heavy alloys which are two-phase mixtures of body center cubic (BCC) tungsten surrounded by a face center cubic (FCC) matrix. The matrix is most often composed of nickel and iron in a ratio of 70:30 but, occasionally, the matrix may also contain cobalt or copper. Nickel, however, is always the primary matrix component. The tungsten heavy alloy is fabricated through powder metallurgy techniques. Elemental powders are blended, pressed to shape, and sintered. Depending upon the tungsten content, the sintering temperatures are usually in the range of 1450{degrees}C to 1525{degrees}C. These temperatures are high enough that, as a result, the matrix is at the liquid phase and the process is known as liquid phase sintering. At the liquid phase temperature, the matrix becomes saturated with tungsten, but this does not change the FCC character of the matrix. The sintering is usually done in a hydrogen atmosphere furnace in order to reduce the oxides on the tungsten powder surfaces and create clean, active surfaces which will enhance the adherence between the tungsten and the matrix. The hydrogen atmosphere also creates the presence of excess dissolved hydrogen in the alloy. It has been shown that the hydrogen degrades the toughness and ductility of the heavy alloy. A post-sintering vacuum heat treatment is generally required to insure that there is no residual hydrogen present. The as-sintered tensile strength of a 90% tungsten, 7% nickel, 3% iron alloy (90W) is in the range of 800 to 940 MPa and can be increased significantly by cold working, usually rolling or swaging. Swaging to reductions in area of 20% can result in tensile strengths of 1250 MPa or more. As the strength increases, the elongation, which may have been 30% or more, decreases to less than 5%.

  15. Tungsten Speciation in Firing Range Soils

    DTIC Science & Technology

    2011-01-01

    32 Figure 8. Microprobe XRF images of normalized iron, tungsten, and calcium fluorescence intensities for a soil collected...measuring the XRF spectrum for 250 μs at each point (2 s at NSLS). Regions of interest were defined for a number of elements, includ- ing tungsten, calcium ...K-range. Nevertheless, iron K-edge XANES is highly effective at identify- ing and quantifying crystalline iron oxides, ferrihydrite, iron silicates

  16. Speciation and Geochemistry of Tungsten in Soil

    DTIC Science & Technology

    2006-11-01

    sodium tungstate dihydrate was purchased from Sigma Aldrich (St. Louis, MO) and Alfa Aesar (Ward Hill, MA), respectively. Single element and mixed...yielding an amorphous tungsten oxide (WO3) coating. This coating rapidly dissolves to yield the tungstate anion (WO42-), which can migrate in...well characterized. Tungsten exists in most environmental matrices as the soluble and mobile tungstate anion, which can polymerize with itself and

  17. Visualization of Gas Tungsten Arc Weld Pools

    DTIC Science & Technology

    1991-09-01

    flow visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night~vision...visualization of Gas Tungsten Arc weld pools for HY-80 steel is presented using a pulsed laser light source and a conventional night-vision image-intensifier...effects of electromagnetic stirring on GTA welds in austenitic stainless steel . Changes in shape and solidification structure of welds observed

  18. International strategic mineral issues summary report: tungsten

    USGS Publications Warehouse

    Werner, Antony B.T.; Sinclair, W. David; Amey, Earle B.

    1998-01-01

    In 1995, China and the former Soviet Union accounted for over three-fourths of the world's mine production of tungsten. China alone produced about two-thirds of world output. Given its vast resources, China will likely maintain its prominent role in world tungsten supply. By the year 2020, changes in supply patterns are likely to result from declining output from individual deposits in Australia, Austria, and Portugal and the opening of new mines in Canada, China, and the United Kingdom.

  19. Theoretical investigation of the first-shell mechanism of acetylene hydration catalyzed by a biomimetic tungsten complex.

    PubMed

    Liu, Yan-Fang; Liao, Rong-Zhen; Ding, Wan-Jian; Yu, Jian-Guo; Liu, Ruo-Zhuang

    2011-06-01

    The reaction mechanism of the hydration of acetylene to acetaldehyde catalyzed by [W(IV)O(mnt)(2)](2-) (where mnt(2-) is 1,2-dicyanoethylenedithiolate) is studied using density functional theory. Both the uncatalyzed and the catalyzed reaction are considered to find out the origin of the catalysis. Three different models are investigated, in which an aquo, a hydroxo, or an oxo coordinates to the tungsten center. A first-shell mechanism is suggested, similarly to recent calculations on tungsten-dependent acetylene hydratase. The acetylene substrate first coordinates to the tungsten center in an η(2) fashion. Then, the tungsten-bound hydroxide activates a water molecule to perform a nucleophilic attack on the acetylene, resulting in the formation of a vinyl anion and a tungsten-bound water molecule. This is followed by proton transfer from the tungsten-bound water molecule to the newly formed vinyl anion intermediate. Tungsten is directly involved in the reaction by binding and activating acetylene and providing electrostatic stabilization to the transition states and intermediates. Three other mechanisms are also considered, but the associated energetic barriers were found to be very high, ruling out those possibilities.

  20. Tungsten targets the tumor microenvironment to enhance breast cancer metastasis.

    PubMed

    Bolt, Alicia M; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients' years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans.

  1. Tungsten Targets the Tumor Microenvironment to Enhance Breast Cancer Metastasis

    PubMed Central

    Bolt, Alicia M.; Sabourin, Valérie; Molina, Manuel Flores; Police, Alice M.; Negro Silva, Luis Fernando; Plourde, Dany; Lemaire, Maryse; Ursini-Siegel, Josie; Mann, Koren K.

    2015-01-01

    The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients’ years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans. PMID:25324207

  2. Development of tungsten-tantalum generator

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Babich, J.; Jhingran, S. G.

    1985-01-01

    The purpose of this project was to develop a useable tungsten (W)/tantalum (Ta) generator. Ta-178 is formed following the decay of its parent, W-178 (half-life: 21.7d) and has a half life of 9.3 minutes in turn yielding stable Hf-178. The decay of the parent isotope (W-178) occurs entirely by electron capture to the 9.3 minute Ta-178 state, without feeding the high spin Ta-178 isomer (half life 2.2 hours). In Ta-178 decay, 99.2% of the disintegrations proceed by electron capture and 0.18% by positron emission. Electron capture results in a 61.2% branch to the ground state of Hf-178 and 33.7% to the first excited state at 93 1KeV. The most prominent features of the radionuclide's energy spectrum are the hafnium characteristic radiation peaks with energies between 54.6 and 65.0 KeV. The radiation exposure dose of Ta-118 was calculated to be approximately one-twentieth that of Tc-99m on a per millicurie basis. A twenty-fold reduction in radiation exposure from Ta-178 compared with Tc-99m means that the usual administered dose can be increased three or four times, greatly increasing statistical accuracy while reducing radiation exposure by a factor of five.

  3. Electrical properties of polycrystalline methane hydrate

    USGS Publications Warehouse

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  4. Reversible piezomagnetoelectric switching in bulk polycrystalline ceramics

    SciTech Connect

    Stevenson, T. Bennett, J.; Brown, A. P.; Wines, T.; Bell, A. J.; Comyn, T. P.; Smith, R. I.

    2014-08-01

    Magnetoelectric (ME) coupling in materials offer tremendous advantages in device functionality enabling technologies including advanced electronic memory, combining electronic speed, and efficiency with magnetic robustness. However, low cost polycrystalline ME materials are excluded from most commercial applications, operating only at cryogenic temperatures, impractically large electric/magnetic fields, or with low ME coefficients (1-100 mV/cm Oe). Despite this, the technological potential of single compound ME coupling has continued to drive research into multiferroics over the last two decades. Here we show that by manipulating the large induced atomic strain within the polycrystalline, room temperature multiferroic compound 0.7BiFeO{sub 3}–0.3PbTiO{sub 3}, we can induce a reversible, piezoelectric strain controlled ME effect. Employing an in situ neutron diffraction experiment, we have demonstrated that this piezomagnetoelectric effect manifests with an applied electric field >8 kV/mm at the onset of piezoelectric strain, engineered in to the compound by crystallographic phase mixing. This produces a remarkable intrinsic ME coefficient of 1276 mV/cm Oe, due to a strain driven modification to the oxygen sub-lattice, inducing an increase in magnetic moment per Fe{sup 3+} ion of +0.142 μ{sub B}. This work provides a framework for investigations into strain engineered nanostructures to realize low-cost ME devices designed from the atoms up, as well as contributing to the deeper understanding of single phase ME coupling mechanisms.

  5. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1984-01-01

    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells.

  6. Development of Novel Polycrystalline Ceramic Scintillators

    SciTech Connect

    Wisniewska, Monika; Boatner, Lynn A; Neal, John S; Jellison Jr, Gerald Earle; Ramey, Joanne Oxendine; North, Andrea L; Wisniewski, Monica; Payzant, E Andrew; Howe, Jane Y; Lempicki, Aleksander; Brecher, Charlie; Glodo, J.

    2008-01-01

    For several decades most of the efforts to develop new scintillator materials have concentrated on high-light-yield inorganic single-crystals while polycrystalline ceramic scintillators, since their inception in the early 1980 s, have received relatively little attention. Nevertheless, transparent ceramics offer a promising approach to the fabrication of relatively inexpensive scintillators via a simple mechanical compaction and annealing process that eliminates single-crystal growth. Until recently, commonly accepted concepts restricted the polycrystalline ceramic approach to materials exhibiting a cubic crystal structure. Here, we report our results on the development of two novel ceramic scintillators based on the non-cubic crystalline materials: Lu SiO:Ce (LSO:Ce) and LaBr:Ce. While no evidence for texturing has been found in their ceramic microstructures, our LSO:Ce ceramics exhibit a surprisingly high level of transparency/ translucency and very good scintillation characteristics. The LSO:Ce ceramic scintillation reaches a light yield level of about 86% of that of a good LSO:Ce single crystal, and its decay time is even faster than in single crystals. Research on LaBr:Ce shows that translucent ceramics of the high-light-yield rare-earth halides can also be synthesized. Our LaBr:Ce ceramics have light yields above 42 000 photons/MeV (i.e., 70%of the single-crystal light yield).

  7. Edge determination for polycrystalline silicon lines on gate oxide

    NASA Astrophysics Data System (ADS)

    Villarrubia, John S.; Vladar, Andras E.; Lowney, Jeremiah R.; Postek, Michael T., Jr.

    2001-08-01

    In a scanning electron microscope (SEM) top-down secondary electron image, areas within a few tens of nanometers of the line edges are characteristically brighter than the rest of the image. In general, the shape of the secondary electron signal within such edge regions depends upon the energy and spatial distribution of the electron beam and the sample composition, and it is sensitive to small variations in sample geometry. Assigning edge shape and position is done by finding a model sample that is calculated, on the basis of a mathematical model of the instrument-sample interaction, to produce an image equal to the one actually observed. Edge locations, and consequently line widths, are then assigned based upon this model sample. In previous years we have applied this strategy to lines with geometry constrained by preferential etching of single crystal silicon. With this study we test the procedure on polycrystalline silicon lines. Polycrystalline silicon lines fabricated according to usual industrial processes represent a commercially interesting albeit technically more challenging application of this method. With the sample geometry less constrained a priori, a larger set of possible sample geometries must be modeled and tested for a match to the observed line scan, and the possibility of encountering multiple acceptable matches is increased. For this study we have implemented a data analysis procedure that matches measured image line scans to a precomputed library of sample shapes and their corresponding line scans. Linewidth test patterns containing both isolated and dense lines separated form the underlying silicon substrate by a thin gate oxide have been fabricated. Line scans from test pattern images have been fitted to the library of modeled shapes.

  8. Precipitate Rafting in a Polycrystalline Superalloy During Compression Creep

    NASA Astrophysics Data System (ADS)

    Altincekic, Arun; Balikci, Ercan

    2014-12-01

    Rafting is an industrially and scientifically important phenomenon for precipitate-strengthened alloys utilized at high temperatures. Although this phenomenon is observed in polycrystalline alloys as well, the literature lacks scientific work on rafting in polycrystals. Scientific work is usually conducted on single-crystal superalloys. Being one of the many polycrystalline nickel-base superalloys, IN738LC has a good high-temperature strength and hot corrosion resistance. Coherency strains between the FCC gamma matrix ( γ)- and L12 gamma prime ( γ')-precipitate phase particles mainly provide the high-temperature strength in IN738LC. Conical IN738LC specimens have been aged under compression for various times [24, 192, 480, and 960 hours at 1223 K (950 °C) and 12, 24, 192, and 480 hours at 1323 K (1050 °C)] in order to observe the morphological evolution of the γ' precipitate microstructure. Dislocations play a determining role in morphological changes. Fingerprints of matrix dislocations in the form of indentations on γ' precipitates have been identified by scanning electron microscope. Precipitate morphology has become more complex through dissolution/merging as temperature, aging time, and stress have increased. The precipitate morphology has evolved toward rafting at appropriate strain, temperature, and time. Localized slip bands have marked the beginning of rafting. The rafts have been observed at around a 45 deg angle away from the load direction. For higher stress positions, there is a trend toward N-type rafting which is expected of a positive misfit alloy under compression. Rafts eventually have collapsed due to severe creep deformation.

  9. Development of brazing foils to join monocrystalline tungsten alloys with ODS-EUROFER steel

    NASA Astrophysics Data System (ADS)

    Kalin, B. A.; Fedotov, V. T.; Sevrjukov, O. N.; Kalashnikov, A. N.; Suchkov, A. N.; Moeslang, A.; Rohde, M.

    2007-08-01

    Results on rapidly solidified filler metals for brazing W with W and monocrystalline W with EUROFER steel (FS) are presented. Rapidly quenched powder-type filler metals based on Ti bal-V-Cr-Be were developed to braze polycrystalline W with monocrystalline W. In addition, Fe bal-Ta-Ge-Si-B-Pd alloys were developed to braze monocrystalline W with FS for helium gas cooled divertors and plasma-facing components. The W to FS brazed joints were fabricated under vacuum at 1150 °C, using a Ta spacer of 0.1 mm in thickness to account for the different thermal expansions. The monocrystalline tungsten as well as the related brazed joints withstood 30 cycles between 750 °C/20 min and air cooling/3-5 min.

  10. Abnormal thermal conductivity in tetragonal tungsten bronze Ba6-xSrxNb10O30

    NASA Astrophysics Data System (ADS)

    Kolodiazhnyi, T.; Sakurai, H.; Vasylkiv, O.; Borodianska, H.; Mozharivskyj, Y.

    2014-03-01

    Ba6-xSrxNb10O30 solid solution with 0 ≤ x ≤ 6 crystallizes in centrosymmetric tetragonal "tungsten bronze" structure (space group P4/mbm). We report on the x dependence of thermal conductivity of polycrystalline samples measured in the 2-400 K temperature interval. Substitution of Sr for Ba brings about a significant decrease in thermal conductivity at x ≥ 3 accompanied by development of a low-temperature (T ≈ 10-30 K) "plateau" region reminiscent of a glass-like compounds. We explain this behaviour based on a size-driven site occupancy and atomic displacement parameters associated with an alkaline earth atomic positions in the title compounds.

  11. Tungsten mesh as positron transmission moderator in a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Weng, H. M.; Ling, C. C.; Beling, C. D.; Fung, S.; Cheung, C. K.; Kwan, P. Y.; Hui, I. P.

    2004-09-01

    The slow positron yield has been measured for various tungsten (W) moderator samples from a 22Na radioactive source. Multi-folded W mesh, W(1 0 0) single crystal foil and W polycrystalline foil samples have been investigated. It is found that the fast to slow conversion efficiency of the W mesh moderator depends on: (1) the annealing pretreatments, (2) the chemical etching duration and (3) the number of the folding layers. With the raw W mesh material having a wire diameter of 20 μm and transmission efficiency of 92.5%, an optimal efficiency of 1.2 × 10 -3 was achieved with 5 min etching duration and a folding number of 12 layers.

  12. The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav

    2011-06-01

    The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.

  13. Progress in polycrystalline thin-film solar cells

    SciTech Connect

    Zweibel, K; Hermann, A; Mitchell, R

    1983-07-01

    Photovoltaic devices based on several polycrystalline thin-film materials have reached near and above 10% sunlight-to-electricity conversion efficiencies. This paper examines the various polycrystalline thin-film PV materials including CuInSe/sub 2/ and CdTe in terms of their material properties, fabrication techniques, problems, and potentials.

  14. Atomic scale calculations of tungsten surface binding energy and beryllium-induced tungsten sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Hassanein, Ahmed

    2014-02-01

    Tungsten surface binding energy is calculated using classical molecular dynamic simulations with three many-body potentials. We present the consistency in tungsten sputtering yield by beryllium bombardment between molecular dynamic LAMMPS code and binary collision approximation ITMC code using the new surface binding energy (11.75 eV). The commonly used heat of sublimation value (8.68 eV) could lead to overestimated sputtering yield results. The analysis of the sputtered tungsten angular distributions show that molecular dynamic accurately reproduced the [1 1 1] most prominent preferential ejection directions in bcc tungsten, while the distinct shapes by typical MC codes such as ITMC code is caused by the treatment of amorphous target. The ITMC calculated emitted tungsten energy profile matches the Thompson energy spectrum, while the molecular dynamic results generally follow the Falcone energy spectrum.

  15. Stable powders made from photosensitive polycrystalline complexes of heterocyclic monomers and their polymers

    NASA Technical Reports Server (NTRS)

    Hodko, Dalibor (Inventor); Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1999-01-01

    The present invention relates to a low electronic conductivity polymer composition having well dispersed metal granules, a stable powder made from photosensitive polycrystalline complexes of pyrrole, or its substituted derivatives and silver cations for making the polymer composition, and methods of forming the stable powder and polymer composition, respectively. A polycrystalline complex of silver and a monomer, such as pyrrole, its substituted derivatives or combinations thereof, is precipitated in the form of a stable photosensitive powder upon addition of the monomer to a solvent solution, such as toluene containing an electron acceptor. The photosensitive powder can be stored in the dark until needed. The powder may be dissolved in a solvent, cast onto a substrate and photopolymerized.

  16. Review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1990-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semi-empirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produced predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis for fully-dense materials are in good agreement with those calculated from elastic properties.

  17. Review and statistical analysis of the use of ultrasonic velocity for estimating the porosity fraction in polycrystalline materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Swickard, S. M.; Stang, D. B.; Deguire, M. R.

    1991-01-01

    A review and statistical analysis of the ultrasonic velocity method for estimating the porosity fraction in polycrystalline materials is presented. Initially, a semiempirical model is developed showing the origin of the linear relationship between ultrasonic velocity and porosity fraction. Then, from a compilation of data produced by many researchers, scatter plots of velocity versus percent porosity data are shown for Al2O3, MgO, porcelain-based ceramics, PZT, SiC, Si3N4, steel, tungsten, UO2,(U0.30Pu0.70)C, and YBa2Cu3O(7-x). Linear regression analysis produces predicted slope, intercept, correlation coefficient, level of significance, and confidence interval statistics for the data. Velocity values predicted from regression analysis of fully-dense materials are in good agreement with those calculated from elastic properties.

  18. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    PubMed

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-08-19

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

  19. Modelling heat conduction in polycrystalline hexagonal boron-nitride films

    PubMed Central

    Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon

    2015-01-01

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820

  20. Multiscale modeling of thermal conductivity of polycrystalline graphene sheets.

    PubMed

    Mortazavi, Bohayra; Pötschke, Markus; Cuniberti, Gianaurelio

    2014-03-21

    We developed a multiscale approach to explore the effective thermal conductivity of polycrystalline graphene sheets. By performing equilibrium molecular dynamics (EMD) simulations, the grain size effect on the thermal conductivity of ultra-fine grained polycrystalline graphene sheets is investigated. Our results reveal that the ultra-fine grained graphene structures have thermal conductivity one order of magnitude smaller than that of pristine graphene. Based on the information provided by the EMD simulations, we constructed finite element models of polycrystalline graphene sheets to probe the thermal conductivity of samples with larger grain sizes. Using the developed multiscale approach, we also investigated the effects of grain size distribution and thermal conductivity of grains on the effective thermal conductivity of polycrystalline graphene. The proposed multiscale approach on the basis of molecular dynamics and finite element methods could be used to evaluate the effective thermal conductivity of polycrystalline graphene and other 2D structures.

  1. Inverse pseudo Hall-Petch relation in polycrystalline graphene.

    PubMed

    Sha, Z D; Quek, S S; Pei, Q X; Liu, Z S; Wang, T J; Shenoy, V B; Zhang, Y W

    2014-08-08

    Understanding the grain size-dependent failure behavior of polycrystalline graphene is important for its applications both structurally and functionally. Here we perform molecular dynamics simulations to study the failure behavior of polycrystalline graphene by varying both grain size and distribution. We show that polycrystalline graphene fails in a brittle mode and grain boundary junctions serve as the crack nucleation sites. We also show that its breaking strength and average grain size follow an inverse pseudo Hall-Petch relation, in agreement with experimental measurements. Further, we find that this inverse pseudo Hall-Petch relation can be naturally rationalized by the weakest-link model, which describes the failure behavior of brittle materials. Our present work reveals insights into controlling the mechanical properties of polycrystalline graphene and provides guidelines for the applications of polycrystalline graphene in flexible electronics and nano-electronic-mechanical devices.

  2. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides.

    PubMed

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K(3)[Fe(CN)(6)] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO(3) form.

  3. Estimation of the composition parameter of electrochemically colored amorphous hydrogen tungsten oxide films

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroko; Miyake, Kiyoshi

    1989-07-01

    The electrical and optical steady state observed in electrochemical coloration has been studied using asymmetric cells consisting of evaporated amorphous tungsten oxide films with 350-6000 Å thickness. The counter electrode used is indium wire, steel wire, or antimony-tin oxide film, and the electrolyte is a 1-N H2SO4 aqueous solution containing 10 vol % glycerol. The current and optical transmittance of the cells decrease with increasing time during coloration, and simultaneously reach a steady state. The optical density (λ=0.5 μm) in the steady state is proportional to the thickness of the tungsten oxide film, and the absorption coefficient at λ=0.5 μm of the colored oxide film in the state is approximately 9.0×104 cm-1. The effective charges which contribute to the coloration of films calculated from the charge injected until the electro-optical steady state were found to be 1.03-1.20×103 C/cm3. Assuming that the evaporated tungsten oxide films used have a distorted ReO3 structure, and that a hydrogen tungsten bronze HxWO3 is formed by coloration, the composition parameter x calculated from the average value of the effective charge, is 0.36, which is comparable with that of hydrogen tungsten bronze H0.33WO3 obtained for the colored crystalline WO3 films.

  4. First-principles calculations of transition metal solute interactions with hydrogen in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Hu, Q. M.; Chen, Jun-Ling; Luo, G.-N.

    2016-02-01

    We have performed systematic first-principles calculations to predict the interaction between transition metal (TM) solutes and hydrogen in the interstitial site as well as the vacancy in tungsten. We showed that the site preference of the hydrogen atom is significantly influenced by the solute atoms, which can be traced to the charge density perturbation in the vicinity of the solute atom. The solute-H interactions are mostly attractive except for Re, which can be well understood in terms of the competition between the chemical and elastic interactions. The chemical interaction dominates the solute-H interaction for the TM solutes with a large atomic volume and small electronegativity compared to tungsten, while the elastic interaction is primarily responsible for the solute-H interaction for the TM solutes with a small atomic volume and large electronegativity relative to tungsten. The presence of a hydrogen atom near the solute atom has a negative effect on the binding of other hydrogen atoms. The large positive binding energies among the solute, vacancy and hydrogen suggest that they would easily form a defect cluster in tungsten, where the solute-vacancy and vacancy-H interaction contribute greatly while the solute-H interaction contributes a little. Our result provides a sound theoretical explanation for recent experimental phenomena of hydrogen retention in the tungsten alloy and further recommends a suitable W-Re-Ta ternary alloy for possible plasma-facing materials (PFMs) including the consideration of the hydrogen retention.

  5. Low-temperature reaction in tungsten layers deposited on Si(100) substrates

    SciTech Connect

    Cros, A.; Pierrisnard, R.; Pierre, F.; Layet, J. M.; Meyer, F.

    1989-07-17

    Tungsten layers have been evaporated with an electron gun under ultrahigh vacuum conditions on atomically clean Si(100) substrates. The metallic films deposited on substrates at room temperature are mostly in the body-centered-cubic /alpha/ phase of tungsten. Upon annealing at 400 /degree/C, the bulk of the layer stays unreacted but we have observed the appearance of cracks in the metallic film and the segregation of silicon atoms at the surface. These atoms are not in the form of crystalline WSi/sub 2/.

  6. Electron transfer and coupling in graphene-tungsten disulfide van der Waals heterostructures.

    PubMed

    He, Jiaqi; Kumar, Nardeep; Bellus, Matthew Z; Chiu, Hsin-Ying; He, Dawei; Wang, Yongsheng; Zhao, Hui

    2014-11-25

    The newly discovered two-dimensional materials can be used to form atomically thin and sharp van der Waals heterostructures with nearly perfect interface qualities, which can transform the science and technology of semiconductor heterostructures. Owing to the weak van der Waals interlayer coupling, the electronic states of participating materials remain largely unchanged. Hence, emergent properties of these structures rely on two key elements: electron transfer across the interface and interlayer coupling. Here we show, using graphene-tungsten disulfide heterostructures as an example, evidence of ultrafast and highly efficient interlayer electron transfer and strong interlayer coupling and control. We find that photocarriers injected in tungsten disulfide transfer to graphene in 1 ps and with near-unity efficiency. We also demonstrate that optical properties of tungsten disulfide can be effectively tuned by carriers in graphene. These findings illustrate basic processes required for using van der Waals heterostructures in electronics and photonics.

  7. Chromatographic separation of vanadium, tungsten and molybdenum with a liquid anion-exchanger.

    PubMed

    Fritz, J S; Topping, J J

    1971-09-01

    In acidic solution only molybdenum(VI), tungsten(VI), vanadium(V), niobium(V) and tantalum(V) form stable, anionic complexes with dilute hydrogen peroxide. This fact has been used in developing an analytical method of separating molybdenum(VI), tungsten(VI) and vanadium(V) from other metal ions and from each other. Preliminary investigations using reversed-phase paper chromatography and solvent extraction led to a reversed-phase column Chromatographic separation technique. These metal-peroxy anions are retained by a column containing a liquid anion-exchanger (General Mills Aliquat 336) in a solid support. Then molybdenum(VI), tungsten(VI) and vanadium(V) are selectively eluted with aqueous solutions containing dilute hydrogen peroxide and varying concentrations of sulphuric acid.

  8. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten

    NASA Astrophysics Data System (ADS)

    Xie, Z. M.; Liu, R.; Fang, Q. F.; Zhou, Y.; Wang, X. P.; Liu, C. S.

    2014-01-01

    Dense pure tungsten and W-(0.1, 0.2, 0.5, 1.0) wt% Zr alloys were fabricated through spark plasma sintering method. The relative density of all the samples was about 97%. The FESEM and TEM analysis, tensile tests and Vickers micro-hardness measurements were exploited to characterize these samples. It is found that Zr could capture impurity oxygen in tungsten and form nanometer scaled ZrO2 particles. With the increase of Zr addition from 0 to 0.2 wt%, the room-temperature fracture strength increased from 154 MPa to 265 MPa, and the fracture energy density elevated from 3.73 × 104 J/m3 to 9.22 × 104 J/m3. However, more Zr addition would increase the size of Zr-O particles and significantly decrease the fracture strength and toughness of tungsten.

  9. Molybdenum and tungsten oxygen transferases--and functional diversity within a common active site motif.

    PubMed

    Pushie, M Jake; Cotelesage, Julien J; George, Graham N

    2014-01-01

    Molybdenum and tungsten are the only second and third-row transition elements with a known function in living organisms. The molybdenum and tungsten enzymes show common structural features, with the metal being bound by a pyranopterin-dithiolene cofactor called molybdopterin. They catalyze a variety of oxygen transferase reactions coupled with two-electron redox chemistry in which the metal cycles between the +6 and +4 oxidation states usually with water, either product or substrate, providing the oxygen. The functional roles filled by the molybdenum and tungsten enzymes are diverse; for example, they play essential roles in microbial respiration, in the uptake of nitrogen in green plants, and in human health. Together, the enzymes form a superfamily which is among the most prevalent known, being found in all kingdoms of life. This review discusses what is known of the active site structures and the mechanisms, together with some recent insights into the evolution of these important enzyme systems.

  10. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  11. Imaging performance of crystalline and polycrystalline oxides

    NASA Astrophysics Data System (ADS)

    Duncan, Donald D.; Lange, Charles H.; Fischer, David J.

    1990-10-01

    Knowledge of the scatter characteristics of candidate infrared sensor dome materials is necessary for the evaluation of image quality and susceptibility to bright off-axis sources. For polycrystalline materials in particular, the scattering levels are high enough to warrant concern. To evaluate the effects of scatter on image quality, estimates of the window Point Spread Function (PSF), or its transform, the Optical Transfer Function (OTF) are required. Additionally, estimates of the material scatter cross-section per unit volume are essential for determining flare susceptibility. Experimental procedures and models in use at JHU/APL allow the determination of each. Measurement results are provided for samples of A1203 (ordinary ray), Y203, LaO3-doped Y203, MgAL2O4, and ALON. Applications of these results are illustrated for planar windows having arbitrary orientations with respect to the optical axis.

  12. Plastic deformation of polycrystalline zirconium carbide

    NASA Technical Reports Server (NTRS)

    Darolia, R.; Archbold, T. F.

    1976-01-01

    The compressive yield strength of arc-melted polycrystalline zirconium carbide has been found to vary from 77 kg per sq mm at 1200 C to 19 kg per sq mm at 1800 C. Yield drops were observed with plastic strain-rates greater than 0.003/sec but not with slower strain rates. Strain-rate change experiments yielded values for the strain-rate sensitivity parameter m which range from 6.5 at 1500 C to 3.8 at 1800 C, and the product dislocation velocity stress exponent times T was found to decrease linearly with increasing temperature. The deformation rate results are consistent with the Kelly-Rowcliffe model in which the diffusion of carbon assists the motion of dislocations.

  13. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  14. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    An investigation was begun into the usefulness of molecular hydrogen annealing on polycrystalline solar cells. No improvement was realized even after twenty hours of hydrogenation. Thus, samples were chosen on the basis of: (1) low open circuit voltage; (2) low shunt conductance; and (3) high light generated current. These cells were hydrogenated in molecular hydrogen at 300 C. The differences between the before and after hydrogenation values are so slight as to be negligible. These cells have light generated current densities that indicate long minority carrier diffusion lengths. The open circuit voltage appears to be degraded, and quasi-neutral recombination current enhanced. Therefore, molecular hydrogen is not usful for passivating electrically active defects.

  15. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  16. Polycrystalline silicon ion sensitive field effect transistors

    NASA Astrophysics Data System (ADS)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  17. Dynamical electrophotoconductivity in polycrystalline thin films

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.

    1982-01-01

    Polycrystalline cadmium sulfide (CdS) films were deposited on lithium niobate (LiNbO3) substrates by vacuum evaporation and annealed to obtain high photosensitivity. The change in photoconductivity of these films due to the penetration of electric fields associated with elastic waves propagating on their substrates was demonstrated and studied. The relationship between the acoustic electric field and the induced change in film conductivity was found to be a nonlinear one. The fractional change in conductivity is strongly dependent on the light intensity and the film temperature, showing a prominent maximum as a function of these quantities. The largest recorded fractional change in conductivity was about 25% at electric fields of the order of 1,000 volts per centimeter. A phenomological model was developed based on the interaction between the space charge created by the electric field and the electron trapping states in the photoconductor.

  18. Ultrasonic drawing of tungsten wire for incandescent lamps production.

    PubMed

    Mordyuk, B N; Mordyuk, V S; Buryak, V V

    2004-04-01

    An influence of ultrasonic treatment (drawing) on structure, high temperature durability, evaporation and creep behaviours of tungsten single crystal and wires were investigated. A relation of tungsten wires properties with dislocation distribution was determined.

  19. Some Tungsten Oxidation-Reduction Chemistry: A Paint Pot Titration.

    ERIC Educational Resources Information Center

    Pickering, Miles; Monts, David L.

    1982-01-01

    Reports an oxidation-reduction experiment using tungsten, somewhat analogous to the classical student experiment involving oxidation-reduction of vanadium. Includes experimental procedures, results, and toxicity/cost of tungsten compounds. (Author/JN)

  20. Growth of tungsten oxide on carbon nanowalls templates

    SciTech Connect

    Wang, Hua; Su, Yan; Chen, Shuo; Quan, Xie

    2013-03-15

    Highlights: ► Tungsten oxide deposited on carbon nanowalls by hot filament chemical vapor deposition technique. ► This composite has two-dimensional uniform morphology with a crystalline structure of monoclinic tungsten trioxide. ► Surface photoelectric voltage measurements show that this product has photoresponse properties. - Abstract: In the present work we present a simple approach for coupling tungsten oxide with carbon nanowalls. The two-dimensional carbon nanowalls with open boundaries were grown using plasma enhanced hot filament chemical vapor deposition, and the subsequent tungsten oxide growth was performed in the same equipment by direct heating of a tungsten filament. The tungsten oxide coating is found to have uniform morphology with a crystalline structure of monoclinic tungsten trioxide. Surface photoelectric voltage measurements show that this product has photoresponse properties. The method of synthesis described here provides an operable route to the production of two-dimensional tungsten oxide nanocomposites.

  1. Evaporites and strata-bound tungsten mineralization

    SciTech Connect

    Ririe, G.T. )

    1989-02-01

    Discoidal gypsum crystal cavities occur in quartzites that host varying amounts of strata-bound scheelite mineralization near Halls Creek in Western Australia. The host quartzites have been regionally metamorphosed to greenschist facies and are contained within a Middle Proterozoic sequence that includes pelites, mafic and felsic volcanics, and volcaniclastic rocks. Textural, fluid inclusion, and oxygen isotope data indicate that scheelite was present in the host quartzites prior to regional metamorphism. The presence of crystal cavities after gypsum in the quartzites implies an evaporitic origin for this sequence. The continental-sabkha playa basins of the Mojave Desert, California, are suggested to be possible modern analogs-e.g., Searles Lake, where the tungsten content is up to 70 ppm WO{sub 3} in brines and 118 ppm in muds, and exceeds the amount of tungsten in all known deposits in the United States. Metamorphism of a continental evaporitic sequence containing tungsten could produce an assemblage of rocks very similar to those reported from several stratabound tungsten deposits. Some of these, such as at Halls Creek, may be related to original accumulations of tungsten in nonmarine evaporitic environments.

  2. Texture evolution of vertically aligned biaxial tungsten nanorods using RHEED surface pole figure technique.

    PubMed

    Krishnan, R; Liu, Y; Gaire, C; Chen, L; Wang, G-C; Lu, T-M

    2010-08-13

    Vertically aligned biaxial tungsten nanorods with cubic A15 crystal structure were deposited by DC magnetron sputtering on native oxide covered Si(100) substrates with glancing angle flux incidence (theta approximately 85 degrees) and a two-step substrate rotation mode at room temperature. These vertical nanorods were grown to different thicknesses (10, 25, 50 and 100 nm) and analyzed for biaxial texture evolution using a highly surface sensitive reflection high-energy electron diffraction (RHEED) pole figure technique. The initial polycrystalline film begins to show the inception of biaxial texture with a fiber background between 10 and 25 nm. Biaxial texture development is eventually completed between 50 and 100 nm thicknesses of the film. The out-of-plane crystallographic direction is [002] and the in-plane texture is selected so as to obtain maximum capture area. In a comparison with 100 nm thick inclined tungsten nanorods deposited at 85 degrees without substrate rotation, it is found that the selection of in-plane texture does not maintain maximum in-plane capture area. This anomalous behavior is observed when the [002] texture axis is tilted approximately 17 degrees from the substrate normal in the direction towards the glancing incident flux.

  3. Direct growth of transparent conducting Nb-doped anatase TiO{sub 2} polycrystalline films on glass

    SciTech Connect

    Yamada, Naoomi; Kasai, Junpei; Hitosugi, Taro; Hoang, Ngoc Lam Huong; Nakao, Shoichiro; Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya

    2009-06-15

    This paper proposes a novel sputter-based method for the direct growth of transparent conducting Ti{sub 1-x}Nb{sub x}O{sub 2} (TNO) polycrystalline films on glass, without the need for any postdeposition treatments, by the use of an initial seed-layer. Anatase TNO epitaxial films grown on LaAlO{sub 3} (100) substrates under a reducing atmosphere exhibited a low resistivity (rho) of (3-6)x10{sup -4} OMEGA cm. On glass, however, highly resistive rutile phase polycrystalline films (rhoapprox100 OMEGA cm) formed preferentially under the same conditions. These results suggest that epitaxial stabilization of the oxygen-deficient anatase phase occurs on lattice-matched substrates. To produce a similar effect on a glass surface, we deposited a seed-layer of anatase TNO with excellent crystallinity under an increased oxygen atmosphere. As a result, anatase phase TNO polycrystalline films could be grown even under heavily reducing atmospheres. An optimized film exhibited rho=1.1x10{sup -3} OMEGA cm and optical absorption lower than 10% in the visible region. This rho value is more than one order of magnitude lower than values reported for directly deposited TNO polycrystalline films. This indicates that the seed-layer method has considerable potential for producing transparent conducting TNO polycrystalline films on glass.

  4. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe

    NASA Technical Reports Server (NTRS)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  5. Helium retention and surface blistering characteristics of tungsten with regard to first wall conditions in an inertial fusion energy reactor

    NASA Astrophysics Data System (ADS)

    Gilliam, S. B.; Gidcumb, S. M.; Forsythe, D.; Parikh, N. R.; Hunn, J. D.; Snead, L. L.; Lamaze, G. P.

    2005-12-01

    The first wall of an inertial fusion energy reactor may suffer from surface blistering and exfoliation due to helium ion fluxes and extreme temperatures. Tungsten is a candidate for the first wall material. A study of helium retention and surface blistering with regard to helium dose, temperature and tungsten microstructure was conducted to learn how the damaging effects of helium may be diminished. Single crystal and polycrystalline tungsten samples were implanted with 1.3 MeV 3He in doses ranging from 1019/m2 to 1022/m2. Implanted samples were analyzed by 3He(d, p)4He nuclear reaction analysis and neutron depth profiling techniques. Surface blistering occurred for doses greater than 1021 He/m2 and was analyzed by scanning electron microscopy. Repeated cycles of implantation and flash annealing indicated that helium retention was reduced with decreasing implant dose per cycle. A carbon foil energy degrader, currently in development, will allow a continuous spectrum of helium implantation energy matching the theoretical models of He ion fluxes within the IFE reactor.

  6. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  7. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    SciTech Connect

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; Ren, Chai; Oya, Yasuhisa; Otsuka, Teppei; Yamauchi, Yuji; Whaley, Josh A.

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungsten being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.

  8. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  9. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  10. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  11. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  12. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  13. TPV Systems with Solar Powered Tungsten Emitters

    SciTech Connect

    Vlasov, A. S.; Khvostikov, V. P.; Khvostikova, O. A.; Gazaryan, P. Y.; Sorokina, S. V.; Andreev, V. M.

    2007-02-22

    A solar TPV generator development and characterization are presented. A double stage sunlight concentrator ensures 4600x concentration ratio. TPV modules based on tungsten emitters and GaSb cells were designed, fabricated and tested at indoor and outdoor conditions. The performance of tungsten emitter under concentrated solar radiation was analyzed. Emitter temperatures in the range of 1400-2000 K were measured, depending on the emitter size. The light distribution in the module has been characterized, 1x1 cm GaSb TPV cells were fabricated with the use of the Zn-diffusion and LPE technologies. The cell efficiency of 19% under illumination by a tungsten emitter (27% under spectra cut-off at {lambda} > 1820 nm) heated up to 1900-2000 K had been derived from experimentally measured PV parameters. The series connection of PV cells was ensured by the use of BeO ceramics. The possibilities of system performance improvement are discussed.

  14. Element 74, the Wolfram Versus Tungsten Controversy

    SciTech Connect

    Holden,N.E.

    2008-08-11

    Two and a quarter centuries ago, a heavy mineral ore was found which was thought to contain a new chemical element called heavy stone (or tungsten in Swedish). A few years later, the metal was separated from its oxide and the new element (Z=74) was called wolfram. Over the years since that time, both the names wolfram and tungsten were attached to this element in various countries. Sixty years ago, IUPAC chose wolfram as the official name for the element. A few years later, under pressure from the press in the USA, the alternative name tungsten was also allowed by IUPAC. Now the original, official name 'wolfram' has been deleted by IUPAC as one of the two alternate names for the element. The history of this controversy is described here.

  15. Superhard Diamond/tungsten Carbide Nanocomposites

    SciTech Connect

    Z Lin; J Zhang; B Li; L Wang; H Mao; R Hemley; Y Zhao

    2011-12-31

    We investigated the processing conditions of diamond/tungsten carbide (WC) composites using in situ synchrotron x-ray diffraction (XRD) and reactive sintering techniques at high pressure and high temperatures. The as-synthesized composites were characterized by synchrotron XRD, scanning electron microscopy, high-resolution transmission electron microscopy, and indentation hardness measurements. Through tuning of the reaction temperature and time, we produced fully reacted, well-sintered, and nanostructured diamond composites with Vickers hardness of about 55 GPa and the grain size of WC binding matrix smaller than 50 nm. A specific set of orientation relationships between WC and tungsten is identified to gain microstructural insight into the reaction mechanism between diamond and tungsten.

  16. Characterization of plasma coated tungsten heavy alloy

    SciTech Connect

    Bose, A.; Kapoor, D.; Lankford, J. Jr.; Nicholls, A.E.

    1996-06-01

    The detrimental environmental impact of Depleted Uranium-based penetrators have led to tremendous development efforts in the area of tungsten heavy alloy based penetrators. One line of investigation involves the coating of tungsten heavy alloys with materials that are prone to shear localization. Plasma spraying of Inconel 718 and 4340 steel have been used to deposit dense coatings on tungsten heavy alloy substrates. The aim of the investigation was to characterize the coating primarily in terms of its microstructure and a special push-out test. The paper describes the results of the push-out tests and analyzes some of the possible failure mechanisms by carrying out microstructural characterization of the failed rings obtained from the push out tests.

  17. Freeze-dried processing of tungsten heavy alloys

    SciTech Connect

    White, G.D.; Gurwell, W.E.

    1989-06-01

    Tungsten heavy alloy powders were produced from freeze-dried aqueous solutions of ammonium metatungstate and, principally, sulfates of Ni and Fe. The freeze-dried salts were calcined and hydrogen reduced to form very fine, homogeneous, low-density, W heavy alloy powders having a coral-like structure with elements of approximately 0.1 /mu/m in diameter. The powders yield high green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%, and 96% W were prepared by freeze drying, compacted, and solid-state (SS) sintered to fully density at temperatures as low as 1200/degree/C and also at conventional liquid-phase (LP) sintering temperatures. Solid-state sintered microstructures contained polygonal W grains with high contiguity; the matrix did not coat and separate the W grains to form low-contiguity, high-ductility structures. Liquid-phase sintered microstructures were very conventional in appearance, having W spheroids of low contiguity. All these materials were found to be brittle. High levels of residual S accompanied by segregation of the S to all the microstructural interfaces are principally responsible for the brittleness; problems with S could be eliminated by using Fe and Ni nitrates rather than the sulfates. 9 refs., 22 figs., 3 tabs.

  18. Nuclear thermionic converter. [tungsten-thorium oxide rods

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Mondt, J. F. (Inventor)

    1977-01-01

    Efficient nuclear reactor thermionic converter units are described which can be constructed at low cost and assembled in a reactor which requires a minimum of fuel. Each converter unit utilizes an emitter rod with a fluted exterior, several fuel passages located in the bulges that are formed in the rod between the flutes, and a collector receiving passage formed through the center of the rod. An array of rods is closely packed in an interfitting arrangement, with the bulges of the rods received in the recesses formed between the bulges of other rods, thereby closely packing the nuclear fuel. The rods are constructed of a mixture of tungsten and thorium oxide to provide high power output, high efficiency, high strength, and good machinability.

  19. Incremental Carcass Theory of Polycrystalline Media at Large Elastic and Plastic Deformations

    NASA Astrophysics Data System (ADS)

    Akhundov, V. M.

    2016-11-01

    A two-level carcass theory as applied to media with a polycrystalline structure at large elastic and plastic deformation of crystals (crystal grains) is presented. The theory is incremental, in accordance with the incremental nature of governing equations of a crystal, which take into account the prehistory of its deformation in the medium. The theory is based on the field of carcass (macroscopic) displacements, which determines the material displacements of carcass points and carcass (macroscopic) deformations of the medium. At the macromechanical level, the equations of macroscopic deformation and motion are given in an incremental form. At the micromechanical (locally structural) level, incremental microboundary-value problems for nodal presentation blocks of the polycrystalline material are solved on the basis of carcass displacements and their increments. From the internal fields of nodal blocks and their increments found, the incremental macroscopic stresses are determined, which allow one to close the system of equations of the macromechanical level of analysis.

  20. Comparison of Deformation in High-Purity Single/Large Grain and Polycrystalline Niobium Superconducting Cavities

    SciTech Connect

    Ganapati Rao Myneni; Peter Kneisel

    2005-07-10

    The current approach for the fabrication of superconducting radio frequency (SRF) cavities is to roll and deep draw sheets of polycrystalline high-purity niobium. Recently, a new technique was developed at Jefferson Laboratory that enables the fabrication of single-crystal high-purity Nb SRF cavities. To better understand the differences between SRF cavities fabricated out of fine-grained polycrystalline sheet in the standard manner and single crystal cavities fabricated by the new technique, two half-cells were produced according to the two different procedures and compared using a variety of analytical techniques including optical microscopy, scanning laser confocal microscopy, profilometry, and X-ray diffraction. Crystallographic orientations, texture, and residual stresses were determined in the samples before and after forming and this poster presents the results of this ongoing study.

  1. Nucleation and growth of damage in polycrystalline aluminum under dynamic tensile loading

    SciTech Connect

    Qi, M. L.; Yao, Y.; Ran, X. X.; Ye, W.; Bie, B. X.; Fan, D.; Li, P.

    2015-03-15

    Plate-impact experiments were conducted to study the features and mechanisms of void nucleation and growth in the polycrystalline of pure aluminum under dynamic loading. Soft-recovered samples have been analyzed by metallographic microscopy, electron back scattering diffraction (EBSD), and synchrotron radiation x-ray tomography technology. It was found that most of the void nucleation in grains neared the boundaries of “weak-orientation” grains and grew toward the grain boundaries with fractured small grains around the boundaries. This was mainly caused by the accumulation and interaction of slip systems in the “weak-orientation” grains. In addition, the micro voids were nearly octahedron because the octahedral slip systems were formed by 8 slip planes in the polycrystalline of pure aluminum. The EBSD results are consistent with the three-dimensional structure observed by synchrotron radiation x-ray.

  2. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    NASA Astrophysics Data System (ADS)

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-11-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials.

  3. Equipment simulation of selective tungsten deposition

    SciTech Connect

    Werner, C.; Ulacia, J.I.; Hopfmann, C.; Flynn, P. )

    1992-02-01

    This paper presents the numerical modeling of a cold wall reactor for selective tungsten chemical vapor deposition. In a two dimensional simulation the mass and heat transfer equations were solved considering the five chemical species H{sub 2}, WF{sub 6}, HF, WF{sub x}, and SiF{sub y}. Detailed models for multicomponent diffusion and for the autocatalytic tungsten nucleation process were implemented. Model results are in good agreement with experimental findings. The simulations are used to study the impact of reactor design on selectivity.

  4. Measured emissivities of uranium and tungsten plasmas.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.

    1971-01-01

    Uranium and tungsten absorption coefficients between 2,500-8500 A were measured as functions of thermodynamic variables. A gas-driven shock tube was used to obtain plasma temperatures, heavy metal partial pressures, and total pressures in the ranges 7,000-12,000 K, 0.02-1.0 atm, and 3.0-48 atm, respectively. Emission and absorption data were recorded both photographically and photoelectrically. The spectral distributions, thermal dependence and line-to-continuum ratios of the uranium and tungsten radiation differ distinctly. The uranium data are compared with theoretical predictions and with results from other experiments.

  5. Failure mechanisms of polycrystalline diamond compact drill bits in geothermal environments

    SciTech Connect

    Hoover, E.R.; Pope, L.E.

    1981-09-01

    Over the past few years the interest in polycrystalline diamond compact (PDC) drill bits has grown proportionately with their successful use in drilling oil and gas wells in the North Sea and the United States. This keen interest led to a research program at Sandia to develop PDC drill bits suitable for the severe drilling conditions encountered in geothermal fields. Recently, three different PDC drill bits were tested using either air or mud drilling fluids: one in the laboratory with hot air, one in the Geysers field with air, and one in the Geysers field with mud. All three tests were unsuccessful due to failure of the braze joint used to attach the PDC drill blanks to the tungsten carbide studs. A post-mortem failure analysis of the defective cutters identified three major failure mechanisms: peripheral nonbonding caused by braze oxidation during the brazing step, nonbonding between PDC drill blanks and the braze due to contamination prior to brazing, and hot shortness. No evidence was found to suggest that the braze failures in the Geysers field tests were caused by frictional heating. In addition, inspection of the PDC/stud cutter assemblies using ultrasonic techniques was found to be ineffective for detecting the presence of hot shortness in the braze joint.

  6. Comparative investigation of smooth polycrystalline diamond films on dental burs by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Sein, Htet; Ahmed, Waqar; Rego, Christopher; Jackson, Mark; Polini, Riccardo

    2006-04-01

    Depositions of hot filament chemical vapor-deposited diamond on cobalt-cemented tungsten carbide (WC-Co) rotary cutting dental burs are presented. Conventional dental tools made of sintered polycrystalline diamond have a number of problems associated with the heterogeneity of the crystallite, decreased cutting efficiency, and short life. A preferential (111) faceted diamond was obtained after 15 h of deposition at a growth rate of 1.1 µm/h. Diamond-coated WC-Co dental burs and conventional sintered burs are mainly used in turning, milling, and drilling operations for machining metal ceramic hard alloys such as CoCr, composite teeth, and aluminum alloy in the dental laboratory. The influence of structure, the mechanical characteristics of both diamond grains and hard alloys on the wear behavior, as well as the regimen of grinding on diamond wear are considered. Erosion wear properties are also investigated under air-sand erosion testing. After machining with excessive cutting performance, calculations can be made on flank and crater wear areas. Diamond-coated WC-Co dental burs offered significantly better erosion and wear resistance compared with uncoated WC-Co tools and sintered burs.

  7. Tungsten oxide fiber dissolution and persistence in artificial human lung fluids

    NASA Astrophysics Data System (ADS)

    Stefaniak, A. B.; Chirila, M.

    2009-02-01

    Tungsten is a dense metal that is used in a range of industrial applications, including non-sag wire for light bulb filaments. During the conversion of tungsten oxide powder into tungsten metal powder for use as filaments, aerosols may be generated which contain tungsten sub-oxide particles having fiber morphology. To evaluate whether these fibers pose a yet unrecognized inhalation hazard due in part to their biodurability, we characterized the physicochemical properties and measured relative dissolution of fiber-containing (WO2.81, WO2.66, WO2.51) and isometric-shaped (WO3.00, WO2.98) powders in artificial lung fluids. Raman spectroscopy results present a shift in the main frequencies for tungsten oxide samples that were sonicated in surfactant, confirming a decrease in the size of the crystalline domains by de-agglomeration. Geometric mean fiber aspect ratios were 8.3 (WO2.81), 7.9 (WO2.66), and 6.9 (WO2.51). In artificial extracellular lung fluid, alkylbenzyldimethylammonium chloride (ABDC), added to prevent mold growth during experiments, inhibited (p < 0.05) dissolution of WO2.98, WO2.81, and WO2.66. Less (p < 0.05) of the fibrous WO2.66 and WO2.51 dissolved relative to W metal; however, biodurability was only modestly greater than W metal. These data are useful for understanding the inhalation dosimetry of fibrous and non-fibrous forms of tungsten oxide materials.

  8. Visible emission spectroscopy of highly charged tungsten ions in LHD: II. Evaluation of tungsten ion temperature

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Takahashi, Y.; Nakai, Y.; Kato, D.; Goto, M.; Morita, S.; Hasuo, M.; Experiment Group2, LHD

    2015-12-01

    We demonstrated a polarization-resolved high resolution spectroscopy of a visible emission line of highly charged tungsten ions (λ0 = 668.899 nm, Shinohara et al Phys. Scr. 90 125402) for the large helical device (LHD) plasma, where the tungsten ions were introduced by a pellet injection. Its spectral profile shows broadening and polarization dependence, which are attributed to the Doppler and Zeeman effects, respectively. The tungsten ion temperature was evaluated for the first time from the broadening of visible the emission line, with its emission location determined by the Abel inversion of the chord-integrated emission intensities observed with multiple chords. The tungsten ion temperature was found to be close to the helium-like argon ion temperature, which is used as an ion temperature monitor in LHD.

  9. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  10. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  11. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  12. Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Gretskaya, I. Yu; Grunin, A. V.; Dyachenko, M. Yu; Puntakov, N. A.; Sadovskiy, Ya A.

    2016-09-01

    Tungsten layers with iron impurity were deposited on tungsten substrates modeling re-deposited layers in a fusion device. The samples were tested by thermocycling and hydrogen ion beam tests. Thermocycling revealed globule formation on the surface. The size of the globules depended on iron impurity content in the coating deposited. Pore formation was observed which in some cases lead to exfoliation of the coatings. Hydrogen ion irradiation lead to formation of blisters on the coating and finally its exfoliation.

  13. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  14. Colloidal polycrystalline monolayers under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Buttinoni, Ivo; Steinacher, Mathias; Spanke, Hendrik Th.; Pokki, Juho; Bahmann, Severin; Nelson, Bradley; Foffi, Giuseppe; Isa, Lucio

    2017-01-01

    In this paper we probe the structural response to oscillatory shear deformations of polycrystalline monolayers of soft repulsive colloids with varying area fraction over a broad range of frequencies and amplitudes. The particles are confined at a fluid interface, sheared using a magnetic microdisk, and imaged through optical microscopy. The structural and mechanical response of soft materials is highly dependent on their microstructure. If crystals are well understood and deform through the creation and mobilization of specific defects, the situation is much more complex for disordered jammed materials, where identifying structural motifs defining plastically rearranging regions remains an elusive task. Our materials fall between these two classes and allow the identification of clear pathways for structural evolution. In particular, we demonstrate that large enough strains are able to fluidize the system, identifying critical strains that fulfill a local Lindemann criterion. Conversely, smaller strains lead to localized and erratic irreversible particle rearrangements due to the motion of structural defects. In this regime, oscillatory shear promotes defect annealing and leads to the growth of large crystalline domains. Numerical simulations help identify the population of rearranging particles with those exhibiting the largest deviatoric stresses and indicate that structural evolution proceeds towards the minimization of the stress stored in the system. The particles showing high deviatoric stresses are localized around grain boundaries and defects, providing a simple criterion to spot regions likely to rearrange plastically under oscillatory shear.

  15. Hydrogen passivation of polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Scheller, L.-P.; Weizman, M.; Simon, P.; Fehr, M.; Nickel, N. H.

    2012-09-01

    The influence of post-hydrogenation on the electrical and optical properties of solid phase crystallized polycrystalline silicon (poly-Si) was examined. The passivation of grain-boundary defects was measured as a function of the passivation time. The silicon dangling-bond concentration decreases with increasing passivation time due to the formation of Si-H complexes. In addition, large H-stabilized platelet-like clusters are generated. The influence of H on the electrical properties was investigated using temperature dependent conductivity and Hall-effect measurements. For poly-Si on Corning glass, the dark conductivity decreases upon hydrogenation, while it increases when the samples are fabricated on silicon-nitride covered Borofloat glass. Hall-effect measurements reveal that for poly-Si on Corning glass the hole concentration and the mobility decrease upon post-hydrogenation, while a pronounced increase is observed for poly-Si on silicon-nitride covered Borofloat glass. This indicates the formation of localized states in the band gap, which is supported by sub band-gap absorption measurments. The results are discussed in terms of hydrogen-induced defect passivation and generation mechanisms.

  16. Interface cavitation damage in polycrystalline copper

    SciTech Connect

    Field, D.P.; Adams, B.L. . Dept. of Mechanical Engineering)

    1992-06-01

    In this paper determination of an interface damage function (IDF), from a stereological procedure similar to that presented by Hillard is described. The mathematical and experimental simplicity of the method is utilized in measuring an IDF for polycrystalline copper crept at 0.6T{sub m} under uniaxial tension. Whereas previous work focussed on a five parameter description of the local state of a grain boundary, the domain of the IDF is increased to eight degrees of freedom in the present study to include the complete geometrical description of grain boundary structure. The resulting functions identify certain types of grain boundaries which were preferentially damaged. Most of the damage occurred on interfaces oriented nearly normal to the principal stress axis. Some relatively small angle boundaries demonstrated a surprising propensity to cavitate as did certain special boundaries distinguished by a group multiplicity in misorientation space greater than one. A sequence of two dimensional projections through the eight-dimensional domain of the IDF is shown to identify a number of interface structures which are readily damaged.

  17. Conduction mechanisms in undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Chou, Hsueh-Tao; Lee, Chia-Chang; Sun, Chia-Hsin

    2000-07-01

    The unadopted polycrystalline diamond films are deposited on p-type silicon substrates by a microwave plasma chemical vapor deposition (MPCVD) system. The deposition conditions are CH4?/H(subscript 2=0.5%, pressure equals 45 torr, power equals 2.2kW, and subtract temperature equals 885 degree(s)C. SEM was used to inspect the surface morphology, Raman Spectroscopy to determine the quality, and XPS to analyze the chemical composition. It in concluded that a cleaning procedure on diamond surfaces can eliminate the carbon phase but enhance the oxygenation on the films. The electrical characteristics were investigated by current-voltage-temperature measurements in a metal-insulator-semiconductor (MIS) structure with top metal contacts and back silicon substrates contacts. It can be found a transition electric field of 240 kV/cm, where Schottky emission (SE) mechanism is responsible for electric conduction below 240kV/cm, and Poole-Frenkel transport (PF) mechanism dominates beyond 240 kV/cm. By the extrapolations, the Schottky barrier height of silver and diamond film is 2.4 eV, and the tarp depth is 4.75 eV in the diamond film.

  18. Stability of polycrystalline Nextel 720 fiber

    SciTech Connect

    Das, G.

    1996-12-31

    The microstructure and tensile properties of polycrystalline Nextel 720 fiber (85 wt.% Al{sub 2}O{sub 3} - 15 wt-% SiO{sub 2}), both crystallized and precrystallized, were evaluated following prolonged thermal exposure at 982{degrees}C in air. The room temperature tensile strengths of Nextel 720 fibers did not appear to suffer degradation for exposures up to 3000 h and the microstructure remained unaffected by thermal exposures. The tensile strength of precrystallized Nextel 720 fiber was also determined at room temperature following heat treatments at 1093-1427{degrees}C in air. The precrystallized Nextel 720 fiber started to show a slight loss of strength after heat treatment at 1093{degrees}C/4 h and the strength deterioration was exacerbated for heat treatments at 1204{degrees}C/4 h and above. Microstructural characterization by x-ray and transmission electron microscopy (TEM) revealed the formation of mullite in heat treated precrystallized Nextel 720 fiber at 1204{degrees}C and a coarsening of microstructure above 1204{degrees}C. The degradation of strength in precrystallized Nextel 720 fiber heat treated at 1204{degrees}C/4 h and above may be attributed to phase instability and grain coarsening. Fractographs showed that fracture originated predominantly at the fiber surface.

  19. Polishing of dental porcelain by polycrystalline diamond.

    PubMed

    Nakamura, Yoshiharu; Sato, Hideaki; Ohtsuka, Masaki; Hojo, Satoru

    2010-01-01

    Polycrystalline diamond (PCD) exhibits excellent abrasive characteristics and is commonly used as loose grains for precision machining of hard ceramics and other materials that are difficult to grind and polish. In the present study, we investigated using bonded PCD for polishing dental porcelain, for which a lustrous surface is difficult to obtain by polishing. We compared the surface texture and characteristics of dental porcelain after polishing with bonded PCD with that obtained using bonded monocrystalline diamond (MCD), which is commonly used for this purpose. Polishing was performed at various pressures and rotational speeds on a custom-built polishing apparatus using bonded PCD or MCD with grain sizes of 3.92 μm on specimens consisting of VITA Omega 900 dentin porcelain after firing and then glazing to a specified surface roughness. The surface roughness of the polished porcelain and the abrasion quantity in terms of its polishing depth were measured, and its surface texture and characteristics were investigated. At low polishing pressures, PCD yielded a finer polished surface than MCD. The polishing depth after polishing for 20-30 min was approximately 2-3 μm with PCD and 1-2 μm with MCD. The polished surface was more uniform and smooth with PCD than with MCD.

  20. Abnormal hopping conduction in semiconducting polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Park, Jeongho; Mitchel, William C.; Elhamri, Said; Grazulis, Larry; Altfeder, Igor

    2013-07-01

    We report the observation of an abnormal carrier transport phenomenon in polycrystalline semiconducting graphene grown by solid carbon source molecular beam epitaxy. At the lowest temperatures in samples with small grain size, the conduction does not obey the two-dimensional Mott-type variable-range hopping (VRH) conduction often reported in semiconducting graphene. The hopping exponent p is found to deviate from the 1/3 value expected for Mott VRH with several samples exhibiting a p=2/5 dependence. We also show that the maximum energy difference between hopping sites is larger than the activation energy for nearest-neighbor hopping, violating the assumptions of the Mott model. The 2/5 dependence more closely agrees with the quasi-one-dimensional VRH model proposed by Fogler, Teber, and Shklovskii (FTS). In the FTS model, conduction occurs by tunneling between neighboring metallic wires. We suggest that metallic edge states and conductive grain boundaries play the role of the metallic wires in the FTS model.

  1. Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension

    NASA Astrophysics Data System (ADS)

    Janmanee, Pichai; Muttamara, Apiwat

    2012-07-01

    Surface modification by a titanium coating layer onto a tungsten carbide surface by electrical discharge coating (EDC) was studied by considering a titanium coating modification as well as the completeness of the tungsten carbide surface. This was carried out by electrical discharge machining (EDM). The tungsten carbide material was produced using a fluid dielectric oil, which was mixed with titanium powder. The current and duty cycles were varied resulting in a change in the titanium coating layer thickness. Also, an analysis of the chemical composition using energy dispersive spectroscopy (EDS) revealed that a titanium coating layer was formed causing the hardness of the titanium surface to be close to that of tungsten carbide. The completeness of the surface was evaluated using scanning electron microscopy (SEM) and a small number of microcracks were found on the surface since the microcracks were filled and substituted by titanium powder and carbon (a hydrocarbon) that decomposed from the dielectric that acted as a combiner (TiC). Also, the high concentration of carbon increased the amount of Ti and C combination and TiC was formed, which enhanced the surface hardness of the coated layer to 1750 HV. The surface roughness of the coated layer decreased and this reduced the formation of microcracks on the surface workpiece.

  2. Thermophotovoltaic Cells on Zinc Diffused Polycrystalline GaSb

    SciTech Connect

    Sulima, O.V.; Bett, A.W.; Dutta, P.S.; Ehsani, H.; Gutmann, R.J.

    2000-05-01

    For the first time, it has been demonstrated that thermophotovoltaic cells made of polycrystalline GaSb with small grain sizes (down to 100 x 100 {micro}m) have similar characteristics to the best Zinc diffused single crystal GaSb cells with identified device parameters. The grain boundaries in polycrystalline GaSb do not degrade TPV cell parameters, indicating that such material can be used for high-efficiency thermophotovoltaic cells.

  3. Plasma-enhanced etching of tungsten, tungsten silicide, and molybdenum in chlorine-containing discharges

    SciTech Connect

    Fischl, D.S.

    1988-01-01

    Thin films of tungsten, tungsten silicide, and molybdenum were etched both within and downstream from Cl{sub 2} discharges. Without a discharge, molecular chlorine did not etch the films. Experimental conditions ranged from 0.1 to 1.0 Torr pressure, 30 to 180{degree}C electrode temperature, 0.2 to 1.0 W/cm{sup 2} power density, and 3 to 200 sccm flow rate. In-discharge etch rates varied from 10 to 90 nm/min for tungsten (W), 10 to 450 nm/min for tungsten silicide (WSi{sub x}), and 1 to 8 nm/min for molybdenum (Mo). Small additions of BCl{sub 3}, during W and WSi{sub x} etching, significantly increased the etch rates and improved the reproducibility. When samples were positioned downstream from a Cl{sub 2} discharge, etching proceeded solely by chemical reaction of the film with chlorine atoms. Downstream and in-plasma tungsten etch rates were approximately equal at 110{degree}C, but the chlorine atom etch rate dropped more rapidly than the in-plasma etch rate as temperature decreased. In contrast, molybdenum etched faster by atoms alone than in the plasma, although atom etching was not observed below 100{degree}C. Reactions of tungsten with a modulated beam of chlorine atoms and molecules were also studied.

  4. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  5. Gas tungsten arc welder with electrode grinder

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1984-01-01

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  6. Physical properties optimization of polycrystalline LiFeAs

    NASA Astrophysics Data System (ADS)

    Singh, Shiv J.; Gräfe, Uwe; Beck, Robert; Wolter, Anja U. B.; Grafe, Hans-Joachim; Hess, Christian; Wurmehl, Sabine; Büchner, Bernd

    2016-10-01

    We present a study of parameter optimization for synthesizing truly stoichiometric polycrystalline LiFeAs. Stoichiometric LiFeAs has been prepared in a very broad range of synthesis temperature (200-900 °C) under otherwise exactly the same conditions, and has been characterized by structural, magnetic, transport, nuclear quadrupole resonance (NQR), and specific heat measurements. Our study showed that the LiFeAs phase is formed at 200 °C with a large amount of impurity phases. The amount of these impurity phases reduces with increasing synthesis temperature and the clean LiFeAs phase is obtained at a synthesis temperature of 600 °C. Magnetic susceptibility and resistivity measurements confirmed that the superconducting properties such as the critical temperature Tc, and the upper critical field Hc2 do not depend on the synthesis temperature (≤ 700 °C), remaining at almost the same value of ∼19 K and ∼40 T, respectively. However, the width ΔTc of the transition and the NQR line width decrease with increasing the synthesis temperature and reached to minimum value for the synthesis temperature of 600 °C. Our careful analysis suggests that the best sample obtained at 600 °C is optimal concerning the low resistivity, high residual resistivity ratio (RRR), low ΔTc, high Tc and Hc2, and a small NQR line width with values which are comparable to that reported for LiFeAs single crystals. Specific heat measurements confirmed the bulk superconducting nature of the samples. The Hc2 value estimated from the specific heat is consistent with that of the resistivity measurements. Concisely, 600 °C synthesis temperature yields optimal high quality polycrystalline LiFeAs bulk samples. Further improvement of the quality of the sample prepared at 600 °C could be obtained by a controlled slow cooling process. Microstructural analysis reveals that the abundance of micro-cracks becomes strongly reduced by the slow cooling process, resulting in an increase in clean and

  7. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  8. Formation of porous grain boundaries in polycrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Kageyama, Yasuyuki; Murase, Yoshie; Tsuchiya, Toshiyuki; Funabashi, Hirofumi; Sakata, Jiro

    2002-06-01

    Unique polycrystalline silicon (poly-Si) thin films, which were permeable to a concentrated hydrofluoric acid solution through their porous grain boundaries, were investigated to elucidate the formation mechanism of their microstructure. 0.1-μm-thick permeable poly-Si thin films were made through processes of amorphous silicon film formation by low pressure chemical vapor deposition, successive postannealing for crystallization, and excess phosphorus diffusion by a phosphorus oxichloride predeposition. At the grain boundaries, porous microstructures were formed after the films were cleaned in an SC1 solution (a 1:1:5 mixture of NH4OH:H2O2:H2O at 80 °C for 10 min), whereas segregated soluble precipitates observed by a field emission secondary electron microscope were present before the SC1 cleaning. Auger electron microscope revealed that the surface of the precipitates mainly consist of silicon (˜80 at. %) and oxygen (˜20 at. %). As a result of transmission electron microscope observation, it is concluded that enhancement of silicon atom mobility by the phosphorus doping process induced consequent segregation of the soluble precipitates at the grain boundaries.

  9. The initial interactions of oxygen with polycrystalline titanium surfaces

    NASA Astrophysics Data System (ADS)

    Azoulay, A.; Shamir, N.; Fromm, E.; Mintz, M. H.

    1997-01-01

    The interactions of gaseous oxygen and different types of polycrystalline titanium surfaces were studied at room temperature within the exposure range of 0-1000 L. Combined measurements utilizing direct recoils spectrometry (DRS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and work function variations enabled the distinction between processes occurring on the topmost atomic layer and those associated with subsurface incorporation of oxygen. Also, the different chemical forms (oxidation states) developing during the exposure course were identified. The results were compared for three types of surfaces, each prepared by a different cleaning procedure. It has been concluded that: (i) Oxygen initially accumulates on the topmost atomic layer, regardless of the type of the studied surface. No preferred subsurface occupation has been observed. (ii) The kinetics of initial accumulation (up to a complete surface coverage) are similar for all the different types of surfaces. (iii) Mixtures of different oxidation states of titanium (0, +2, +3, +4) are present during the whole course of exposure. Qualitatively, increasing proportions of the higher valence states are displayed for higher oxygen exposures. However, the quantitative estimates of their relative amounts indicate a strong dependence on the type of surface, with preferred high oxidation (+4) states obtained for high temperature annealed samples (as compared with room temperature sputtered surfaces). (iv) Topmost oxygen atoms which terminate the oxides surfaces are less negatively charged than the underlying (i.e., subsurface) "oxidic" atoms. These results may account for some of the controversies presented in the literature.

  10. Low-chromium reduced-activation chromium-tungsten steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.; Maziasz, P.J.

    1996-10-01

    Bainitic microstructures formed during continuous cooling can differ from classical upper and lower bainite formed during isothermal transformation. Two types of non-classical bainite were observed depending on the cooling rate: carbide-free acicular bainite at rapid cooling rates and granular bainite at slower cooling rates. The Charpy impact toughness of the acicular ferrite was found to be considerably better than for the granular bainite. It was postulated that alloying to improve the hardenability of the steel would promote the formation of acicular bainite, just as increasing the cooling rate does. To test this, chromium and tungsten were added to the 2 1/4Cr-2W and 2 1/4Cr-2WV steel compositions to increase their hardenability, and the microstructures and mechanical properties were examined.

  11. Characterization of tungsten films and their hydrogen permeability

    SciTech Connect

    Nemanič, Vincenc Kovač, Janez; Lungu, Cristian; Porosnicu, Corneliu; Zajec, Bojan

    2014-11-01

    Prediction of tritium migration and its retention within fusion reactors is uncertain due to a significant role of the structural disorder that is formed on the surface layer after plasma exposure. Tungsten films deposited by any of the suitable methods are always disordered and contain a high density of hydrogen traps. Experiments on such films with hydrogen isotopes present a suitable complementary method, which improves the picture of the hydrogen interaction with fusion relevant materials. The authors report on the morphology, composition, and structure of tungsten films deposited by the thermionic vacuum arc method on highly permeable Eurofer substrates. Subsequently, hydrogen permeation studies through these films were carried out in a wide pressure range from 20 to 1000 mbars at 400 °C. The final value of the permeation coefficient for four samples after 24 h at 400 °C was between P = 3.2 × 10{sup −14} mol H{sub 2}/(m s Pa{sup 0.5}) and P = 1.1 × 10{sup −15} mol H{sub 2}/(m s Pa{sup 0.5}). From the time evolution of the permeation flux, it was shown that diffusivity was responsible for the difference in the steady fluxes, as solubility was roughly the same. This is confirmed by XRD data taken on these samples.

  12. Selectivity and kinetics during the chemical vapor deposition of tungsten by the hydrogen reduction and silane reduction of tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Desatnik, Nathan

    1997-09-01

    Tungsten is used in the semiconductor industry for via-contact filling. During tungsten CVD, WFsb6 is reduced by Hsb2, a well characterized process, or SiHsb4 which produces higher deposition rates and tends to be mass transfer limited. Tungsten can selectively deposit on the metal. Therefore, it is important to study the combined selectivity loss and deposition processes. An apparatus was developed to address the effects of different conditions on both aspects of the process. A differential LPCVD quartz reactor was used, which could produce simple laminar flows and short residence times. A model was used for experiment design on the selectivity loss during the Hsb2 reduction. The intermediate theory was used, proposing a reactive byproduct from the deposition as nuclei generator on the oxide. Hence, metallic and oxide samples were placed at different locations, and the fraction of the oxide covered with tungsten was measured. Thus, direct dependencies of nucleation on the metal size, temperature, and time were found. Nucleation was highest closest to the metal; however, the effect of flow was nonmonotonic with higher nucleation for lower flow rates near the metal, and the reversed effect further downstream. The same trends were obtained for the SiHsb4 process. Reconciliation of modeling and experimentation confirmed the theory of an intermediate characterized by a short lifetime to explain the selectivity loss. In addition, it was found that nuclei deposit forming clusters. The SiHsb4 reduction was analyzed with minimized mass transfer limitations. From film thickness measurements, the film grew without a significant incubation time. Order dependencies of 1.35 and -0.42 for SiHsb4 and WFsb6 mole fractions were measured, while the carrier gas did not affect the reaction. Higher temperatures produced higher deposition rates until 300sp°C, beyond which no more dependence was observed. Hence, a mechanism proposes the dissociative adsorption of SiHsb4, and the

  13. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  14. Magnetoresistance in polycrystalline and epitaxial Fe1-xCoxSi thin films

    NASA Astrophysics Data System (ADS)

    Porter, N. A.; Creeth, G. L.; Marrows, C. H.

    2012-08-01

    Thin films of Fe1-xCoxSi were grown using molecular beam epitaxy on Si(111). These 20-nm-thick films, with compositions x=0 or 0.5, were produced by two methods: the first produced large (111)-textured crystallites of the B20 phase; the second produced phase-pure B20 (111) epilayers. The lattice mismatch with the substrate causes biaxial tensile strain in the layers, greater in the epilayers, that distorts the (111)-oriented material to a rhombohedral form. Magnetotransport measurements show that a combination of additional scattering arising from crystal grain boundaries and strain-free polycrystalline films results in a higher resistivity than for the epitaxial films. Magnetometry for x=0.5 suggests an increase in the ordering temperature in strained films relative to the polycrystalline films of 15±4 K. Moreover, the characteristic linear magnetoresistance, typical of bulk single-crystal material of this composition, is retained in the polycrystalline film but reduced in the epitaxial film. While the bulk properties of these materials are reproduced qualitatively, there are small quantitative modifications, due to the strain, to properties such as band gap, Curie temperature, and magnetoresistance.

  15. Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Guin, Laurent; Raphanel, Jean L.; Kysar, Jeffrey W.

    2016-06-01

    Pristine single crystal graphene is the strongest known two-dimensional material, and its nonlinear anisotropic mechanical properties are well understood from the atomic length scale up to a continuum description. However, experiments indicate that grain boundaries in the polycrystalline form reduce the mechanical behavior of polycrystalline graphene. Herein, we perform atomistic-scale molecular dynamics simulations of the deformation and fracture of graphene grain boundaries and express the results as continuum cohesive zone models (CZMs) that embed notions of the grain boundary ultimate strength and fracture toughness. To facilitate energy balance, we employ a new methodology that simulates a quasi-static controlled crack propagation which renders the kinetic energy contribution to the total energy negligible. We verify good agreement between Griffith's critical energy release rate and the work of separation of the CZM, and we note that the energy of crack edges and fracture toughness differs by about 35%, which is attributed to the phenomenon of bond trapping. This justifies the implementation of the CZM within the context of the finite element method (FEM). To enhance computational efficiency in the FEM implementation, we discuss the use of scaled traction-separation laws (TSLs) for larger element sizes. As a final result, we have established that the failure characteristics of pristine graphene and high tilt angle bicrystals differ by less than 10%. This result suggests that one could use a unique or a few typical TSLs as a good approximation for the CZMs associated with the mechanical simulations of the polycrystalline graphene.

  16. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1989-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  17. Deformation and fracture of single-crystal and sintered polycrystalline silicon carbide produced by cavitation

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.

    1987-01-01

    An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in the SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.

  18. Nonlinear alternating current conduction in polycrystalline manganites

    SciTech Connect

    Ghosh, T. N.; Nandi, U. N.; Jana, D.; Dey, K.; Giri, S.

    2014-06-28

    The real part of ac conductance Σ(T, f) of yttrium-doped mixed-valent polycrystalline manganite systems La{sub 1−x−y}Y{sub y}Ca{sub x}MnO{sub 3} with x = 0.33 and 0.05 and y = 0.07 and iron doped LaMn{sub 1−x}Fe{sub x}O{sub 3} with x = 0.15 is measured as a function of frequency f by varying zero-frequency Ohmic conductance Σ{sub 0} by T. The former shows a metal-insulator transition, whereas the latter exhibits insulating character throughout the measured temperature range. At a fixed temperature T, Σ(T, f) remains almost constant to the value Σ{sub 0} up to a certain frequency, known as the onset frequency f{sub c} and increases from Σ{sub 0} as frequency is increased from f{sub c}. Scaled appropriately, the data for Σ(T, f) at different T fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductance. f{sub c} scales with Σ{sub 0} as f{sub c}∼Σ{sub 0}{sup x{sub f}}, where x{sub f} is the nonlinearity exponent characterising the onset. With the help of data for ac conduction, it is shown that x{sub f} is very much phase sensitive and can be used to characterize the different phases in a manganite system originated due to change in temperature or disorder. Scaling theories and existing theoretical models are used to analyze the results of ac conduction and the nonlinearity exponent x{sub f}.

  19. Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for Penetrator Application

    DTIC Science & Technology

    2005-09-30

    preparation, sintering, cyclic heat-treatment, swaging , and annealing processes, on microstructures and static/dynamic mechanical properties of ODS tungsten ... tungsten / tungsten contiguity. The swaging and annealing processes of ODS tungsten heavy alloy increase the tensile strength with decreasing the...Final Report for 2nd Year Contract of AOARD 034032 Development of Advanced Oxide Dispersion Strengthened Tungsten Heavy Alloy for

  20. A new series of bis(ene-1,2-dithiolato)tungsten(IV), -(V), -(VI) complexes as reaction centre models of tungsten enzymes: preparation, crystal structures and spectroscopic properties.

    PubMed

    Sugimoto, Hideki; Hatakeda, Kohei; Toyota, Kazuo; Tatemoto, Susumu; Kubo, Minoru; Ogura, Takashi; Itoh, Shinobu

    2013-03-07

    The carbomethoxy substituted dithiolene ligand (L(COOMe)) enabled us to develop a series of new bis(ene-1,2-dithiolato)tungsten complexes including W(IV)O, W(IV)(OSiBuPh(2)), W(VI)O(2), W(VI)O(OSiBuPh(2)) and W(VI)O(S) core structures. By using these tungsten complexes, a systematic study of the terminal monodentate ligand effects has been performed on the structural, spectroscopic properties and reactivity. The structure and spectroscopic properties of the tungsten complexes have also been compared to those of the molybdenum complexes coordinated by the same ligand to investigate the effects of the metal ion (W vs. Mo). X-ray crystallographic analyses of the tungsten(IV) complexes have revealed that the tungsten centres adopt a distorted square pyramidal geometry with a dithiolene ligand having an ene-1,2-dithiolate form. On the other hand, the dioxotungsten(VI) complex exhibits an octahedral structure consisting of the bidentate L(COOMe) and two oxo groups, in which π-delocalization was observed between the W(VI)O(2) and ene-1,2-dithiolate units. The tungsten(IV) and dioxotungsten(VI) complexes are isostructural with the molybdenum counter parts. DFT calculation study of the W(VI)O(S) complex has indicated that the W=S bond of 2.2 Å is close to the bond length between the tungsten centre and ambiguously assigned terminal monodentate atom in aldehyde oxidoreductase of the tungsten enzyme. Resonance Raman (rR) spectrum of the W(VI)O(S) complex has shown the two inequivalent L(COOMe) ligands with respect to their bonding interactions with the tungsten centre, reproducing the appearance of two ν(C=C) stretches in the rR spectrum of aldehyde oxidoreductase. Sulfur atom transfer reaction from the W(VI)O(S) complex to triphenylphosphines has also been studied kinetically to demonstrate that the tungsten complex has a lower reactivity by about one-order of magnitude, when compared with its molybdenum counterpart.

  1. Investigation of the compatibility of tungsten and high temperature sodium

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Li; Long, Bin; Xu, Yuan-Chao; Li, Hua-Qing

    2005-08-01

    The compatibility of rotary swaged tungsten and sodium was investigated at 500, 600, 700 °C, and also at 600 °C of polished tungsten. The weight loss curves for the two kinds of W-specimens appear significantly different, however their weight losses approach constant values after testing for 400 h. The asymptotic change in sodium containing 30 μg/g oxygen at 600 °C are about 2.3 and 0.8 mg/cm 2 from 400 to 1500 h, respectively for the rotary swaging tungsten and the polishing tungsten. The corrosion products at the surfaces of two kinds of W-specimens after testing in high temperature sodium are different. The grains show significant growth after testing of both kinds of tungsten. The fracture stress of the rotary swaged tungsten at room temperature decreases considerably after testing with the effect slightly increasing with temperature from 500, 600 to 700 °C. A much smaller decrease of fracture stress is observed for polished tungsten at 600 °C, which already before testing has much smaller value. The micro-morphologies of the fracture surface indicate brittle inter-granular fracture in both kinds of tungsten. Embrittlement becomes much more notable for rotary swaged tungsten, while inter- and trans-granular fracture modes appear after corrosion tests in high temperature sodium for both kinds of tungsten.

  2. High density tungsten-nickel-iron-cobalt alloys having improved hardness and method for making same

    SciTech Connect

    Penrice, T.W.; Bost, J.

    1988-08-09

    This patent describes the process of making high density alloy containing about 85 to 98 weight percent tungsten and the balance of the alloy being essentially a binder of nickel, iron and cobalt, and wherein the cobalt is present in an amount within the range of about 5 to 47.5 weight percent of the binder, comprising: blending powders of the tungsten, nickel, iron and cobalt into a homogeneous composition, compacting the homogeneous composition into a shaped article, heating the shaped article to a temperature and for a time sufficient to sinter the article, subjecting the sintered article to a temperature sufficient to enable the intermetallic phase formed at the matrix to tungsten interface to diffuse into the gamma austenitic phase whereby the alpha tungsten/gamma austenite boundaries are essentially free of such intermetallic phase, quenching the article, and swaging the article to a reduction in area of about 5 to 40 percent, the article having improved mechanical properties, including improved tensile strength and hardness while maintaining suitable ductility for subsequent working thereof.

  3. Reactive sintering of tungsten-doped high strength ZrB{sub 2}–SiC porous ceramics using metastable precursors

    SciTech Connect

    Zhao, Bin; Jiang, Yanshan; Yang, Biyun; Wang, Tingyu; Hu, Yongzhen; Sun, Dongfeng; Li, Ruixing; Yin, Shu; Li, Junping; Feng, Zhihai; Sato, Tsugio

    2014-03-01

    Graphical abstract: - Highlights: • Tungsten-doped porous ZrB{sub 2}–SiC specimens were fabricated by reactive sintering. • Both sintering and mechanical properties were improved by doping with tungsten. • Optimum concentration to obtain high mechanical properties was W/Zr (mol) = 0.05. • Sintering might be promoted by self-accelerated diffusion. • Mechanical properties might be improved by solid solution strengthening. - Abstract: Tungsten-doped porous ZrB{sub 2}-20 vol.% SiC specimens with a high strength skeleton were fabricated by reactive sintering using metastable reactants, i.e., as-synthesized amorphous hydrous ZrO{sub 2}–WO{sub 3}/ZrO{sub 2}, amorphous boron, nanocarbon, and β-SiC. Doping with tungsten clearly promoted sintering and improved mechanical properties; the optimum tungsten concentration to obtain high mechanical properties was investigated. A single-phase solid solution (Zr,W)B{sub 2} was formed in the specimens with tungsten. We suggest that sintering was promoted by self-accelerated diffusion owing to the formation of point defects caused by doping with tungsten. The improvement of mechanical properties could be attributed to solid solution strengthening.

  4. Study for identification of beneficial Uses of Space (BUS). Volume 2: Technical report. Book 3: Development and business analysis of space processed tungsten fox X-ray targets

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development plans, analysis of required R and D and production resources, the costs of such resources, and finally, the potential profitability of a commercial space processing opportunity for containerless melting and resolidification of tungsten are discussed. The aim is to obtain a form of tungsten which, when fabricated into targets for X-ray tubes, provides at least, a 50 percent increase in service life.

  5. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  6. Bend ductility of tungsten heavy alloys

    SciTech Connect

    Gurwell, W.E.; Garnich, M.R.; Dudder, G.B.; Lavender, C.A.

    1992-11-01

    A bend ductility test is used to indicate the formability of tungsten heavy alloys sheet. The primary test bends a notchless Charpy impact specimen to a bend angle of approximately 100C. This can be augmented by a bend-completion test. Finite element modeling as well as strain-gaged bend specimens elucidate the strain distribution in the specimen as a function of material thickness and bend angle. The bend ductilities of 70%W, 807.W and 90%W alloys are characterized. As expected, decreasing thickness or tungsten content enhances bend ductility. Oxidation is not detrimental; therefore, controlled atmosphere is not required for cooling. The potentially detrimental effects of mechanical working (e.g., rolling, roller-leveling, grit blasting, and peening) and machining (e.g., cutting and sanding) are illustrated.

  7. Ultrasonic ranking of toughness of tungsten carbide

    NASA Technical Reports Server (NTRS)

    Vary, A.; Hull, D. R.

    1983-01-01

    The feasibility of using ultrasonic attenuation measurements to rank tungsten carbide alloys according to their fracture toughness was demonstrated. Six samples of cobalt-cemented tungsten carbide (WC-Co) were examined. These varied in cobalt content from approximately 2 to 16 weight percent. The toughness generally increased with increasing cobalt content. Toughness was first determined by the Palmqvist and short rod fracture toughness tests. Subsequently, ultrasonic attenuation measurements were correlated with both these mechanical test methods. It is shown that there is a strong increase in ultrasonic attenuation corresponding to increased toughness of the WC-Co alloys. A correlation between attenuation and toughness exists for a wide range of ultrasonic frequencies. However, the best correlation for the WC-Co alloys occurs when the attenuation coefficient measured in the vicinity of 100 megahertz is compared with toughness as determined by the Palmqvist technique.

  8. Polycrystalline thin film materials and devices

    NASA Astrophysics Data System (ADS)

    Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E.

    1991-11-01

    Results and conclusions of Phase 1 of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe2 and CdTe solar cells. The kinetics of the formation of CuInSe2 by selenization with hydrogen selenide was investigated and a CuInSe2/Cds solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe2 films and a cell efficiency of 7 percent. Detailed investigations of the open circuit voltage of CuInSe2 solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe2 thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe2 is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10 percent can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm(exp 2) are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.

  9. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    SciTech Connect

    Muñoz-Andrade, Juan D.

    2013-12-16

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  10. Systematic study of polycrystalline flow during tension test of sheet 304 austenitic stainless steel at room temperature

    NASA Astrophysics Data System (ADS)

    Muñoz-Andrade, Juan D.

    2013-12-01

    By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.

  11. Nano-inclusion suite and high resolution micro-computed-tomography of polycrystalline diamond (framesite) from Orapa, Botswana

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Wirth, R.; Enzmann, F.; Kronz, A.; Schreiber, A.

    2011-08-01

    A single polycrystalline diamond aggregate from the Orapa kimberlite (Botswana) contains a syngenetic micro- and nano-inclusion suite of magnetite, pyrrhotite, omphacite, garnet, rutile and C-O-H fluid in order of abundance. This suite of inclusions is distinctly different from those in fibrous diamonds, although the presence of sub-micrometer fluid inclusions provides evidence for a similarly important role of fluids in the genesis of polycrystalline diamond. It is the first study of polycrystalline diamond by High resolution μ-CT (Computed Tomography) reaching a resolution of 1.3 μm using polychromatic X-rays. Combined with Focused Ion Beam assisted Transmission Electron Microscopy the method reveals epigenetic replacement coatings of hematite and late stage sheet silicates around the magnetites showing that magnetites are often (but not always) interstitial to the diamond and, thus, were open to late stage overprinting. It is proposed that the polycrystalline diamond formed by a redox reaction between a small-scale carbonatitic melt and a sulfide-bearing eclogite. The water released from the melt during diamond precipitation fluxed local melting of the surrounding eclogite, and oxidation of sulfide phases to magnetite, which mingled with the carbonatitic melt and (re-)precipitated locally.

  12. Dynamic SEM wear studies of tungsten carbide cermets

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  13. OBJECT KINETIC MONTE CARLO SIMULATIONS OF RADIATION DAMAGE IN TUNGSTEN

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-04-16

    We used our recently developed lattice-based object kinetic Monte Carlo code; KSOME [1] to carryout simulations of radiation damage in bulk tungsten at temperatures of 300, and 2050 K for various dose rates. Displacement cascades generated from molecular dynamics (MD) simulations for PKA energies at 60, 75 and 100 keV provided residual point defect distributions. It was found that the number density of vacancies in the simulation box does not change with dose rate while the number density of vacancy clusters slightly decreases with dose rate indicating that bigger clusters are formed at larger dose rates. At 300 K, although the average vacancy cluster size increases slightly, the vast majority of vacancies exist as mono-vacancies. At 2050 K no accumulation of defects was observed during irradiation over a wide range of dose rates for all PKA energies studied in this work.

  14. Plasma-enhanced chemical vapor deposition of tungsten films

    NASA Astrophysics Data System (ADS)

    Chu, J. K.; Tang, C. C.; Hess, D. W.

    1982-07-01

    High-purity films of tungsten are deposited from tungsten hexafluoride and hydrogen using plasma-enhanced deposition (PED). At 400 °C deposition temperature, resistivities of ˜40 μΩ cm are attained. After annealing at 1100 °C, the resistivity falls to ˜7 μΩ cm. Below 400 °C, the as-deposited film stress is <6×109 dynes/cm2. Tensile, unlike tungsten, molybdenum films deposited by PED displayed high resistivities.

  15. Growth rate modeling for selective tungsten LPCVD

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Streiter, R.; Schulz, S. E.; Gessner, T.

    1995-10-01

    Selective chemical vapor deposition of tungsten plugs on sputtered tungsten was performed in a single-wafer cold-wall reactor using silane (SiH 4) and tungsten hexafluoride (WF 6). Extensive SEM measurements of film thickness were carried out to study the dependence of growth rates on various process conditions, wafer loading, and via dimensions. The results have been interpreted by numerical calculations based on a simulation model which is also presented. Both continuum fluid dynamics and the ballistic line-of-sight approach are used for transport modeling. The reaction rate is described by an empirical rate expression using coefficients fitted from experimental data. In the range 0.2 < p( SiH 4) /p( WF 6) < 0.75 , the reaction order was determined as 1.55 and -0.55 with respect to SiH 4 and WF 6, respectively. For higher partial pressure ratios the second-order rate dependence on p(SiH 4) and the minus first-order dependence on p(WF 6) were confirmed.

  16. The tungsten divertor experiment at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Neu, R.; Asmussen, K.; Krieger, K.; Thoma, A.; Bosch, H.-S.; Deschka, S.; Dux, R.; Engelhardt, W.; García-Rosales, C.; Gruber, O.; Herrmann, A.; Kallenbach, A.; Kaufmann, M.; Mertens, V.; Ryter, F.; Rohde, V.; Roth, J.; Sokoll, M.; Stäbler, A.; Suttrop, W.; Weinlich, M.; Zohm, H.; Alexander, M.; Becker, G.; Behler, K.; Behringer, K.; Behrisch, R.; Bergmann, A.; Bessenrodt-Weberpals, M.; Brambilla, M.; Brinkschulte, H.; Büchl, K.; Carlson, A.; Chodura, R.; Coster, D.; Cupido, L.; de Blank, H. J.; de Peña Hempel, S.; Drube, R.; Fahrbach, H.-U.; Feist, J.-H.; Feneberg, W.; Fiedler, S.; Franzen, P.; Fuchs, J. C.; Fußmann, G.; Gafert, J.; Gehre, O.; Gernhardt, J.; Haas, G.; Herppich, G.; Herrmann, W.; Hirsch, S.; Hoek, M.; Hoenen, F.; Hofmeister, F.; Hohenöcker, H.; Jacobi, D.; Junker, W.; Kardaun, O.; Kass, T.; Kollotzek, H.; Köppendörfer, W.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lang, R. S.; Laux, M.; Lengyel, L. L.; Leuterer, F.; Manso, M. E.; Maraschek, M.; Mast, K.-F.; McCarthy, P.; Meisel, D.; Merkel, R.; Müller, H. W.; Münich, M.; Murmann, H.; Napiontek, B.; Neu, G.; Neuhauser, J.; Niethammer, M.; Noterdaeme, J.-M.; Pasch, E.; Pautasso, G.; Peeters, A. G.; Pereverzev, G.; Pitcher, C. S.; Poschenrieder, W.; Raupp, G.; Reinmüller, K.; Riedl, R.; Röhr, H.; Salzmann, H.; Sandmann, W.; Schilling, H.-B.; Schlögl, D.; Schneider, H.; Schneider, R.; Schneider, W.; Schramm, G.; Schweinzer, J.; Scott, B. D.; Seidel, U.; Serra, F.; Speth, E.; Silva, A.; Steuer, K.-H.; Stober, J.; Streibl, B.; Treutterer, W.; Troppmann, M.; Tsois, N.; Ulrich, M.; Varela, P.; Verbeek, H.; Verplancke, Ph; Vollmer, O.; Wedler, H.; Wenzel, U.; Wesner, F.; Wolf, R.; Wunderlich, R.; Zasche, D.; Zehetbauer, T.; Zehrfeld, H.-P.

    1996-12-01

    Tungsten-coated tiles, manufactured by plasma spray on graphite, were mounted in the divertor of the ASDEX Upgrade tokamak and cover almost 90% of the surface facing the plasma in the strike zone. Over 600 plasma discharges have been performed to date, around 300 of which were auxiliary heated with heating powers up to 10 MW. The production of tungsten in the divertor was monitored by a W I line at 400.8 nm. In the plasma centre an array of spectral lines at 5 nm emitted by ionization states around W XXX was measured. From the intensity of these lines the W content was derived. Under normal discharge conditions W-concentrations around 0741-3335/38/12A/013/img12 or even lower were found. The influence on the main plasma parameters was found to be negligible. The maximum concentrations observed decrease with increasing heating power. In several low power discharges accumulation of tungsten occurred and the temperature profile was flattened. The concentrations of the intrinsic impurities carbon and oxygen were comparable to the discharges with the graphite divertor. Furthermore, the density and the 0741-3335/38/12A/013/img13 limits remained unchanged and no negative influence on the energy confinement or on the H-mode threshold was found. Discharges with neon radiative cooling showed the same behaviour as in the graphite divertor case.

  17. Supported carbon-containing molybdenum and tungsten sulfide catalysts, their preparation and use

    SciTech Connect

    Seiver, R.L.; Chianelli, R.R.

    1984-02-14

    A supported carbon-containing molybdenum sulfide and tungsten sulfide catalyst useful for conducting methanation and hydrotreating reactions, principally the latter, can be formed by compositing a preselected quantity of a porous, refractory inorganic oxide with a complex salt characterized by the formula B /SUB x/ (MO /SUB y/ S/sub 4/- /SUB y/ ) where B is an organo or hydrocarbyl substituted diammonium ion, an organo or hydrocarbyl substituted ammonium ion or quaternary ammonium ion, or an ionic form of a cyclic amine containing one or more basic N atoms, x is 1 where B is an organo or hydrocarbyl substituted diammonium ion, or 2 where B is an organo or hydrocarbyl substituted ammonium or quaternary ammonium ion or an ionic form of a cyclic amine containing one or more basic N atoms, M is molybdenum or tungsten, and y is O, or a fraction or whole number ranging up to 3, and heat decomposing the salt of said catalyst precursor composite in the presence of hydrogen, hydrocarbon and sulfur to form said supported carbon-containing molybdenum sulfide or tungsten sulfide catalyst.

  18. Microstructure and properties of CVD tungsten carbide from tungsten hexafluoride and dimethyl ether

    SciTech Connect

    Skaf, D.W.; Warner, A.W.; Dollahon, N.R.; Fargo, G.H. )

    1994-12-01

    Tungsten carbide was deposited from tungsten hexafluoride, dimethyl ether, and hydrogen using a horizontal, cold-wall reactor. The effects of substrate temperature, reactor pressure, and reagent ratio on the coating growth rate, morphology, composition, and microhardness were studied. Under most conditions, the solid deposit was primarily W[sub 3]C with minor amounts of W. The tungsten carbide growth rate data fit an Arrhenius rate expression for temperatures from 425 to 550 C and had an activation energy of 24 kcal/mol at 70 mmHg total pressure and a WF[sub 6]/DME ratio of 6.3. A variety of surface morphologies and microstructures were observed. The microhardness of the coated substrates increased with coating thickness to a maximum value of 2,400 kg/mm[sup 2].

  19. Cuprous selenide and sulfide form improved photovoltaic barriers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Photovoltaic barriers formed by depositing a layer of polycrystalline cuprous sulfide or cuprous selenide on gallium arsenide are chemically and electrically stable. The stability of these barrier materials is significantly greater than that of cuprous iodide.

  20. Directed vapor deposition of amorphous and polycrystalline electronic materials: Nonhydrogenated a-Si

    SciTech Connect

    Groves, J.F.; Jones, S.H.; Globus, T.; Hsiung, L.M.; Wadley, H.

    1995-10-01

    A novel directed vapor deposition (DVD) process for creating amorphous and polycrystalline electronic materials is reported. Initial experimental results for DVD of nonhydrogenated a-Si indicate that growth rates at least between 0.02 and 1.0 {micro}m/min can be achieved. In this process, evaporated silicon is efficiently entrained in a previously formed low pressure supersonic He jet. The silicon is evaporated using a high energy, high voltage, electron beam. The collimated jet of He entrained with silicon is used to deposit thin films of a-Si at room temperature on glass substrates. Initial TEM microstructure analysis and optical absorption analysis is presented.

  1. Concepts for interrelating ultrasnic attenuation, microstrucutre and fracture toughness in polycrystalline solids

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Conceptual models are advanced for explaining and predicting empirical correlations found between ultrasonic measurements and fracture toughness of polycrystalline solids. The models lead to insights concerning microstructural factors governing fracture processes and associated stress wave interactions. Analysis of the empirical correlations suggested by the models indicate that, in addition to grain size and shape, grain boundary reflections, elastic anisotropy, and dislocation damping are factors that underly both fracture toughness and ultrasonic attenuation. One outcome is that ultrasonic attenuation can predict the size of crack blunting or process zones that develop in the vicinity active cracks in metals. This forms a basis for ultrasonic ranking according to variations in fracture toughness.

  2. Changes in a surface of polycrystalline aluminum upon bombardment with argon ions

    NASA Astrophysics Data System (ADS)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Bliev, A. P.; Magkoev, T. T.; Krymshokalova, D. A.

    2014-10-01

    The interaction between argon ions and a natural oxide layer of polycrystalline aluminum is studied via Auger electron (AE) and electron energy loss (EEL) spectroscopy. It is found that bombardment with argon ions whose energy is lower than the Al2O3 sputtering threshold results in the accumulation of bombarding ions in interstitial surface voids, thus forming a supersaturated solid solution of target atoms and bombarding ions of argon and nitrogen entrapped by the ion beam from the residual gas of the working chamber of the spectrometer.

  3. Characterization study of polycrystalline tin oxide surfaces before and after reduction in CO

    NASA Technical Reports Server (NTRS)

    Drawdy, Jean E.; Hoflund, Gar B.; Davidson, Mark R.; Schryer, David R.

    1990-01-01

    Polycrystalline tin oxide surfaces have been examined before and after reduction in 40 Torr of CO at 100 and 175 C using Auger electron spectroscopy (AES), electron spectroscopy for chemical analysis (ESCA), ion scattering spectroscopy (ISS) and electron stimulated desorption (ESD). The changes in the surface composition and chemical states of the surface species generally are subtle for the reductive conditions used. However, significant changes do occur with regard to the amounts and the chemical forms of the hydrogen-containing species remaining after both the 100 and 175 C reductions.

  4. Optical spectra of triply-charged rare-earth ions in polycrystalline corundum

    NASA Astrophysics Data System (ADS)

    Kaplyanskiĭ, A. A.; Kulinkin, A. B.; Kutsenko, A. B.; Feofilov, S. P.; Zakharchenya, R. I.; Vasilevskaya, T. N.

    1998-08-01

    Solid samples of polycrystalline corundum α-Al2O3 activated by triply-charged rare-earth ions RE3+ (R=Eu3+, Er3+, Pr3+) were synthesized by the sol-gel technology. Characteristic narrow-line optical absorption and luminescence spectra produced by intraconfigurational 4 f-4 f transitions in RE3+ ions have been measured. RE3+ ions have been established to form one dominant type of optical centers in the corundum matrix, and the energy diagram of Eu3+ and Er3+ Stark levels in corundum has been determined.

  5. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    NASA Astrophysics Data System (ADS)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  6. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    SciTech Connect

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px

  7. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  8. TOPICAL REVIEW: Modelling polycrystalline solidification using phase field theory

    NASA Astrophysics Data System (ADS)

    Gránásy, László; Pusztai, Tamás; Warren, James A.

    2004-10-01

    We review recent advances made in the phase field modelling of polycrystalline solidification. Areas covered include the development of theory from early approaches that allow for only a few crystal orientations, to the latest models relying on a continuous orientation field and a free energy functional that is invariant to the rotation of the laboratory frame. We discuss a variety of phenomena, including homogeneous nucleation and competitive growth of crystalline particles having different crystal orientations, the kinetics of crystallization, grain boundary dynamics, and the formation of complex polycrystalline growth morphologies including disordered ('dizzy') dendrites, spherulites, fractal-like polycrystalline aggregates, etc. Finally, we extend the approach by incorporating walls, and explore phenomena such as heterogeneous nucleation, particle-front interaction, and solidification in confined geometries (in channels or porous media).

  9. Effect of copper impurity on polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Daud, T.; Koliwad, K. M.

    1978-01-01

    The presence of copper impurity, up to 10 to the 15th atoms/cc, in single crystal silicon has been shown to have no deleterious effect on the p-n junction solar cell performance. However, in polycrystalline silicon, copper atoms tend to migrate to the defect sites because of the structural sensitive properties of copper. This study was undertaken to investigate the influence of this behavior of copper impurity on the performance of p-n junction solar cells fabricated from structurally imperfect silicon. Two sets of polycrystalline silicon substrates containing copper were examined. In one set of samples, copper was incorporated during growth, whereas in the other, copper was diffused. Solar cells were fabricated on both the sets of substrates by a standard process. Dark and light I-V and spectral response characteristics of the cells were measured and compared with copper-free polycrystalline silicon solar cells. The results and the model are discussed.

  10. Toxicologic evaluation of tungsten: 28-day inhalation study of tungsten blue oxide in rats.

    PubMed

    Rajendran, Narayanan; Hu, Shu-Chieh; Sullivan, Dennis; Muzzio, Miguel; Detrisac, Carol J; Venezia, Carmen

    2012-12-01

    The toxicity and toxicokinetics of tungsten blue oxide (TBO) were examined. TBO is an intermediate in the production of tungsten powder, and has shown the potential to cause cellular damage in in vitro studies. However, in vivo evidence seems to indicate a lack of adverse effects. The present study was undertaken to address the dearth of longer-term inhalation toxicity studies of tungsten oxides by investigating the biological responses induced by TBO when administered via nose-only inhalation to rats at levels of 0.08, 0.325, and 0.65 mg TBO/L of air for 6 h/day for 28 consecutive days, followed by a 14-day recovery period. Inhaled TBO was absorbed systemically and blood levels of tungsten increased as inhaled concentration increased. Among the tissues analyzed for tungsten levels, lung, femur and kidney showed increased levels, with lung at least an order of magnitude greater than kidney or femur. By exposure day 14, tungsten concentration in tissues had reached steady-state. Increased lung weight was noted for both terminal and recovery animals and was attributed to deposition of TBO in the lungs, inducing a macrophage influx. Microscopic evaluation of tissues revealed a dose-related increase in alveolar pigmented macrophages, alveolar foreign material and individual alveolar foamy macrophages in lung. After a recovery period there was a slight reduction in the incidence and severity of histopathological findings. Based on the absence of other adverse effects, the increased lung weights and the microscopic findings were interpreted as nonadverse response to exposure and were not considered a specific reaction to TBO.

  11. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst

    SciTech Connect

    Kim, Young-ho; Irie, Hiroshi; Hashimoto, Kazuhito

    2008-05-05

    A photocatalyst composed of tungsten carbide (WC) and tungsten oxide (WO{sub 3}) has been prepared by the mechanical mixing of each powder. Its photocatalytic activity was evaluated by the gaseous isopropyl alcohol decomposition process. The photocatalyst showed high visible light photocatalytic activity with a quantum efficiency of 3.2% for 400-530 nm light. The photocatalytic mechanism was explained by means of enhanced oxygen reduction reaction due to WC, which may serve as a multielectron reduction catalyst, as well as the photogeneration of holes in the valence band of WO{sub 3}.

  12. Boron carbide coating deposition on tungsten and testing of tungsten layers and coating under intense plasma load

    SciTech Connect

    Airapetov, A. A.; Begrambekov, L. B.; Buzhinskiy, O. I.; Grunin, A. V.; Gordeev, A. A.; Zakharov, A. M.; Kalachev, A. M.; Sadovskiy, Ya. A.; Shigin, P. A.

    2015-12-15

    A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.

  13. Electron diffraction from polycrystalline materials showing stress induced preferred orientation

    NASA Astrophysics Data System (ADS)

    McKenzie, D. R.; Bilek, M. M. M.

    1999-07-01

    The Gibbs free energy as generalized by J. F. Nye [Physical Properties of Crystals (Clarendon Press, Oxford, 1957), p. 179] is minimized in thermodynamic systems held at constant temperature and constant stress. This function is orientation dependent in all crystal systems in stress fields which are not purely hydrostatic. There are situations in which preferred orientation arises as a result of the synthesis of materials under impressed stress conditions such as thin film growth under ion bombardment and the pressing of powders into solids. Here, we derive the orientational constraints for cubic crystals which result from growth under a general biaxial stress field. The sign of the expression δ=s11-s12-1/2s44 determines the behavior of a cubic crystal. Electron diffraction patterns of face-centered-cubic specimens with both positive and negative values of δ are calculated using a program in MATLAB and displayed in a form suitable for direct comparison with experiment. The use of a biaxial stress with unequal principal components for producing highly oriented polycrystalline material is discussed. In the case of δ positive, as occurs in silicon, the preferred orientation is simply an alignment of the <100> directions along the principal stresses. For δ negative, as occurs in titanium nitride, the preferred orientation depends on the ratio of the principal stresses and low index directions are aligned with the principal stresses only when the principal stresses are either equal or one of them is zero. In the general case, arc-like diffraction patterns are produced. The results of a calculation of a diffraction pattern from a cross-sectional TiN film are compared with diffraction patterns reported by L. Hultman et al. [J. Appl. Phys. 78, 5395 (1995)] and show good agreement.

  14. Improved transport properties of polycrystalline YBCO thin-films

    NASA Astrophysics Data System (ADS)

    Azoulay, J.; Verdyan, A.; Lapsker, I.

    1994-12-01

    Resistive evaporation technique was used to fabricate polycrystalline YBaCuO and YBaNaCuO thin films on MgO substrates. Heat treatment was carried out in a low oxygen partial pressure. Polycrystalline YBCO and Na doped YBCO thin films samples were thus obtained using the same technique and conditions. The critical current density of Na doped YBCO sample was measured to be significantly higher than that of the undoped YBCO one. The results are discussed in terms of the Na contribution to the intragrain conductivity.

  15. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  16. Fabrication of protective-coated SiC reinforced tungsten matrix composites with reduced reaction phases by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Umer, Malik Adeel; Lee, Dongju; Waseem, Owais Ahmed; Ryu, Ho Jin; Hong, Soon Hyung

    2016-05-01

    SiC reinforced tungsten matrix composites were fabricated via the spark plasma sintering process. In order to prevent an interfacial reaction between the SiC and tungsten during sintering, TiOx coated SiC particles were synthesized by a solution-based process. TiOx layer coated SiC particles were treated in high temperature nitriding conditions or annealed in a high temperature vacuum to form TiN or TiC coated SiC particles, respectively. The TiC layers coated on SiC particles successfully prevented tungsten from reacting with SiC; hence the proposed process resulted in successful fabrication of the SiC/W composites. The mechanical properties such as compressive strength and flexural strength of the composites were measured. Additionally, the effect of SiC on the high temperature oxidative ablation of tungsten was also investigated. The addition of SiC resulted in an improved oxidative ablation resistance of the tungsten-based composites.

  17. Bibliography on Metallurgy of High-Purity Tungsten, January 1911 through February 1959

    DTIC Science & Technology

    1960-01-01

    scheelite; and wolframite concen- By depositing a coating of a silicide on W and Mo trates with WO 71.0 percent (7.2 g. Cl used per g. (in the form of...metals could frequently be overcome by applying entitled Tungsten Carbide Research in Germany, for them as surface coatings . After reviewing previous...further information. work on the prod-action of W coatings , Davis and Gentry consider deposition from aqueous solution, or- ganic solvent baths, and

  18. Equation of state for tungsten over a wide range of densities and internal energies

    NASA Astrophysics Data System (ADS)

    Khishchenko, K. V.

    2015-11-01

    A caloric model, which describes the pressure-density-internal-energy relationship in a broad region of condensed-phase states, is applied for tungsten. As distinct from previously known caloric equations of state for this material, a new form of the cold-compression curve at T = 0 K is used. Thermodynamic characteristics along the cold curve and shock Hugoniots are calculated for the metal and compared with some theoretical results and experimental data available at high energy densities.

  19. Polycrystalline silicon conductivity modulated thin film transistors

    NASA Astrophysics Data System (ADS)

    Anish, Kumar K. P.

    1997-09-01

    Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on glass has received significant attention for use in large area microelectronic applications. These applications include both niche and large volume applications such as printer drivers, image scanners, active-matrix liquid crystal displays (AMLCDs), electro-luminescent displays, plasma assisted displays, etc. Currently, the leading technology for these applications is amorphous-Si (a-Si) TFT. However, as the information content increases, a-Si technology encounters severe challenges due to its inherent low mobility, high parasitic capacitance, low aperture ratio, and non-compatibility to CMOS process. On the other hand, poly-Si technology offers high mobility, low parasitic capacitance, small size, CMOS compatibility, good stability, and uses the infrastructure of silicon science and technology. Thus, a simple low temperature poly-Si technology which allows large area system integration on panel will be in great demand for future high definition displays. However, it was found that poly-Si material properties vary with its method of preparation, its grain size, its surface roughness, and the nature and distribution of the inter-granular and bulk defects. Therefore, extensive studies are needed to optimize the key parameters such as the off-current, on-current, and breakdown voltage of the devices. These parameters can be optimized by means of material preparation as well as innovative device designs. In this thesis, three TFT structures were invented and fabricated using a simple low temperature poly-Si technology. With these novel structures, pixels, pixel drivers, and analog and digital peripheral circuits can all be built on the same glass substrate. This allows the ultimate goal of display systems on glass to be much more closer to reality. First, a high voltage transistor called the Conductivity Modulated Thin Film Transistor (CMTFT) is presented. Using this structure, the fundamental current

  20. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    ERIC Educational Resources Information Center

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  1. Conflict minerals from the Democratic Republic of the Congo: global tungsten processing plants, a critical part of the tungsten supply chain

    USGS Publications Warehouse

    Bermúdez-Lugo, Omayra

    2014-01-01

    The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.

  2. Effect of tungsten crystallographic orientation on He-ion-induced surface morphology changes

    SciTech Connect

    Parish, Chad M; Hijazi, Hussein Dib; Meyer III, Harry M; Meyer, Fred W

    2014-01-01

    In order to study the early stages of nanofuzz growth in fusion-plasma-facing tungsten, mirror-polished high-purity tungsten was exposed to 80 eV helium at 1130 C to a fluence of 4 1024 He/m2. The previously smooth surface shows morphology changes, and grains form one of four qualitatively different morphologies: smooth, wavy, pyramidal, or terraced/wide waves. Combining high-resolution scanning electron microscopy (SEM) observations to determine the morphology of each grain with quantitative measurement of the grain's orientation via electron backscatter diffraction (EBSD) in SEM shows that the normal-direction crystallographic orientation of the underlying grain controls the growth morphology. Specifically, near-<001> || normal direction (ND) grains formed pyramids, near-<114> to <112> || ND grains formed wavy and stepped structures, and near-<103> || ND grains remained smooth. Comparisons to control specimens indicate no changes to underlying bulk crystallographic texture, and the effects are attributed to surface energy anisotropy, although, surprisingly, the expected {101} low-energy planes were not the most stable. Future developments to control tungsten texture via thermomechanical processing, ideally obtaining a sharp near- <103> || ND processing texture, may delay the formation of nanofuzz.

  3. Preparation and optical properties of hexa-tungsten bronze-type CsNbW2O9 semiconductor

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xu, Hui; Chen, Yanhu; Wang, Yong

    2017-04-01

    CsNbW2O9 semiconductor nanoparticles were synthesized by the facile sol-gel method. The morphological characteristics were tested by SEM, TEM, and EDS measurements. The samples crystalized in the uniform nanoparticle with a diameter of about 50 nm. The X-ray polycrystalline diffraction (XRD) measurements and the Rietveld refinements were completed to confirm the successful synthesis of CsNbW2O9 nanoparticles. CsNbW2O9 belongs to an interesting compound of AxWO3-type (A = Cs) hexagonal tungsten bronzes with the partial substitution of W6+ by Nb5+ ions. In contrast to AxWO3 (A = Cs) tungsten bronzes, which are nonstoichiometric compounds with metallic-type conductivity, CsNbW2O9 belongs to a typical semiconductor. The optical absorption, band gap energy and electronic structures were discussed. CsNbW2O9 semiconductor shows an indirect allowed transition with an energy gap of 2.38 eV. Meanwhile, CsNbW2O9 shows a self-activated emission due to d0 transitions in (Nb/W)O6. The luminescence properties of CsNbW2O9 semiconductor with a low quenching temperature were discussed based on the distorted structure.

  4. Low resistance tungsten films on GaAs deposited by means of rapid thermal low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Katz, A.; Feingold, A.; Nakahara, S.; Pearton, S. J.; Lane, E.

    1992-08-01

    Low resistance tungsten (W) films were deposited onto GaAs substrates by means of rapid thermal low pressure chemical vapor deposition (RT-LPCVD), using tungsten hexafluoride (WF6) gas reduced by hydrogen (H2). Deposition temperatures up to 550 °C for durations of up to 30 s were explored, resulting in deposition of relatively pure W films (containing less than 2% O2 and C). Post-deposition sintering of the layers led to significant reduction of the resistivity to values as low as 50 μΩ cm. The efficiency of the deposition improved upon increasing the H2 flow rate up to 1250 sccm resulting in a deposition rate of about 10 nm/s at a total chamber pressure of 3.5 Torr and temperature of 500 °C. The films appeared to be polycrystalline with a very fine grain structure, regardless of the deposition temperature with good morphology and underwent a limited reaction with the underlying GaAs substrates.

  5. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    NASA Astrophysics Data System (ADS)

    Mashimo, Tsutomu; Liu, Xun; Kodama, Masao; Zaretsky, Eugene; Katayama, Masahide; Nagayama, Kunihiko

    2016-01-01

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity-particle velocity (US-UP) Hugoniot relation in the plastic regime was determined to be US = 4.137 + 1.242UP km/s (UP < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the US-UP Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal Us-Up Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.

  6. Solid-state chemistry route for supported tungsten and tungsten carbide nanoparticles

    SciTech Connect

    Hugot, N.; Desforges, A.; Fontana, S.; Mareche, J.F.; Herold, C.; Albiniak, A.

    2012-10-15

    Nanoparticles of tungsten and tungsten carbide have been prepared using solid-state chemistry methods. After the vapor phase impregnation of a tungsten hexachloride precursor on a carbon support, a temperature-programmed reduction/carburization was performed. Several parameters were investigated and the evolution of obtained samples was followed by XRD and TEM. The optimization of the reaction parameters led to the preparation of W, W{sub 2}C and WC particles well dispersed on the support. WC phase however could not be obtained alone with less than 10 nm mean size. This could be explained by the carburization mechanism and the carbon diffusion on the support. - Graphical abstract: Bright field picture of carbon-supported WC nanoparticles dispersed on the surface of the sample 1223 K in 10% CH{sub 4}/90% H{sub 2}. Highlights: Black-Right-Pointing-Pointer We aimed at the preparation of supported nanoparticulate tungsten derivatives. Black-Right-Pointing-Pointer Several parameters were investigated. Black-Right-Pointing-Pointer The evolution of obtained samples was followed by XRD and TEM. Black-Right-Pointing-Pointer The optimal preparation led to W, W{sub 2}C and WC particles dispersed on the support.

  7. New pathways to tungsten and molybdenum oxides, nitrides and azides

    SciTech Connect

    Close, M.R.

    1992-10-07

    [WNCl{sub 3}]{sub 4} was prepared and characterized structurally by X-ray diffraction. [WNCl{sub 3}]{sub 4} crystallizes in space group P{bar 1} as planar 8-membered W-N rings interconnected through chloride bridges. The inter-tetramer linkage is weak and broken easily to accommodate basic ligands in the site trans to the W-N triple bond. Reactivity of WNCl{sub 3}, with nitriding agents, such as ammonia, trimethylsilylazide and lithium nitride, has been investigated, which resulted in preparation of new tungsten azido and nitrido compounds. Second, the reactivity of the metal dimers MO{sub 2}(O{sub 2}CCH{sub 3}){sub 4} and MO{sub 2}Cl{sub 4}py{sub 4} with trimethylsilylazide has been explored, and the reactions in pyridine were found to yield a material corresponding to the formulation, MoN(N{sub 3})py. Thermolytic decomposition of this azide at 280{degree}C was performed under argon, dynamic vacuum or ammonia. Thermal decomposition in ammonia produces a molybdenum nitride relatively free of carbon with a Mo:N ratio of 1:1.8. WNCl{sub 3} was converted into a hexagonal ammonium tungsten bronze, (NH{sub 4}){sub 0.28}WO{sub 3-y}(NH){sub y}. This synthesis increased the probability of isoelectronic imido substitution for oxide in the bronze framework. Rietveld refinements of neutron powder data indicated strongly that nitrogen, in the form of imide, does not substitute for oxygen. A model for ammonium cation motion in the hexagonal channels of the bronze was developed. Electrical resistivity measurements on a pressed pellet of this hexagonal bronze show a temperature dependence like that of a low-band gap semiconductor, in contrast to conventionally prepared metallic hexagonal bronze phases.

  8. Mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Cao, Pinqiang; Wu, Jianyang; Zhang, Zhisen; Ning, Fulong

    2017-01-01

    The mechanical properties of monocrystalline and polycrystalline monolayer black phosphorus (MBP) are systematically investigated using classic molecular dynamic simulations. For monocrystalline MBP, it is found that the shear strain rate, sample dimensions, temperature, atomic vacancies and applied statistical ensemble affect the shear behaviour. The wrinkled morphology is closely connected with the direction of the in-plane shear, dimensions of the samples, and applied ensembles. Particularly, small samples subjected to loading/unloading of the shear deformation along the armchair direction demonstrate a clear mechanical hysteresis loop. For polycrystalline MBP, the maximum shear stress as a function of the average grain size follows an inverse pseudo Hall-Petch type relationship under an isothermal-isobaric (NPT) ensemble, whereas under a canonical (NVT) ensemble, the maximum shear stress of polycrystalline MBP exhibits a ‘flipped’ behaviour. Furthermore, polycrystalline MBP subjected to uniaxial tension also exhibits a strongly grain size-dependent mechanical response, and it can fail by brittle intergranular and transgranular fractures because of its weaker grain boundary structures and the direction-dependent edge energy, respectively. These findings provide useful insight into the mechanical design of BP for nanoelectronic devices.

  9. System of polarization correlometry of biological liquids layers polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Boychuk, T. M.; Mincer, O. P.; Angelsky, P. O.; Bodnar, N. B.; Oleinichenko, B. P.; Bizer, L. I.

    2013-09-01

    A model of generalized optical anisotropy of human bile is suggested and a method of polarimetric of the module and phase Fourier of the image of the field of laser radiation is analytically substantiated, that is generated by the mechanisms of linear and circular birefringence of polycrystalline networks with a diagnosis and differentiation of cholelithiasis against a background of chronic cholecystitis.

  10. Raman Microscopic Characterization of Proton-Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.; Davidson, J. L.; Lance, M. J.

    2004-01-01

    The microstructural effects of irradiating polycrystalline diamond films with proton dosages ranging from 10(exp 15) to 10(exp 17) H(+) per square centimeter was examined. Scanning Electron Microscopy and Raman microscopy were used to examine the changes in the diamond crystalline lattice as a function of depth. Results indicate that the diamond lattice is retained, even at maximum irradiation levels.

  11. Anomalous photoelectric effect of a polycrystalline topological insulator film.

    PubMed

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-07-29

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators.

  12. Anomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film

    PubMed Central

    Zhang, Hongbin; Yao, Jiandong; Shao, Jianmei; Li, Hai; Li, Shuwei; Bao, Dinghua; Wang, Chengxin; Yang, Guowei

    2014-01-01

    A topological insulator represents a new state of quantum matter that possesses an insulating bulk band gap as well as a spin-momentum-locked Dirac cone on the surface that is protected by time-reversal symmetry. Photon-dressed surface states and light-induced surface photocurrents have been observed in topological insulators. Here, we report experimental observations of an anomalous photoelectric effect in thin films of Bi2Te3, a polycrystalline topological insulator. Under illumination with non-polarised light, transport measurements reveal that the resistance of the topological surface states suddenly increases when the polycrystalline film is illuminated. The resistance variation is positively dependent on the light intensity but has no relation to the applied electric field; this finding can be attributed to the gap opening of the surface Dirac cone. This observation of an anomalous photoelectric effect in polycrystalline topological insulators offers exciting opportunities for the creation of photodetectors with an unusually broad spectral range. Moreover, polycrystalline topological insulator films provide an attractive material platform for exploring the nature and practical application of topological insulators. PMID:25069391

  13. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  14. Fabrication of large tungsten structures by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Kahle, V. E.; Lewis, W. J.; Stubbs, V. R.

    1971-01-01

    Process is accomplished by reducing tungsten hexafluoride with hydrogen. Metallic tungsten of essentially 100 percent purity and density is produced and built up as dense deposit on heated mandrel assembly. Process variations are building up, sealing or bonding refractory metals at temperatures below transition temperatures of base metal substrates.

  15. Processing of tungsten scrap into powders by electroerosion disintegration

    SciTech Connect

    Fominskii, L.P.; Leuchuk, M.V.; Myuller, A.S.; Tarabrina, V.P.

    1985-04-01

    Utilization of tungsten and tungsten alloy swarf and other waste and also of rejected and worn parts is a matter of great importance in view of the shortage of this metal. The authors examine the electroerosion (EE) disintegration of tungsten in water as a means of utilizing swarf and other loose waste. Unlike chemical methods, EE disintegration ensures ecological purity since there are no effluent waters or toxic discharges. Swarf and trimmings of rods of diameters up to 20 mm obtained after the lathe-turning of tungsten bars sintered from PVN and PVV tungsten powders were disintegrated in water at room temperature between tungsten electrodes. The phase composition of the powder was studied using FeK /SUB alpha/ radiation, by x-ray diffraction methods in a DRON-2 diffractometer with a graphite monochromator on the secondary beam. When tungsten is heated to boiling during EE disintegration, the impurities present in it can evaporate and burn out. Thus, tungsten powder produced by EE disintegration can be purer than the starting metal.

  16. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  17. Microstructure and tensile properties of tungsten at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Tielong; Dai, Yong; Lee, Yongjoong

    2016-01-01

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250-300 °C for the HR tungsten and about 350 °C for the HF tungsten.

  18. Measurement of the Properties of Tungsten at High Temperatures

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1985-01-01

    The thermophysical properties of tungsten and other materials were measured using containerless techniques. Levitation of liquid silver, gallium and tungsten were studied. The studies of liquid aluminum are almost complete and are expected to derive new, reliable properties for liquid aluminum.

  19. Gas Tungsten Arc Welding. Welding Module 6. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching a three-unit module in gas tungsten arc welding. The module has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The basic principles involved in gas tungsten arc welding, supplies, and applications are covered. The materials included…

  20. Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment

    NASA Astrophysics Data System (ADS)

    You, Yu-Wei; Li, Dongdong; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Pan, B. C.; Chen, J. L.; Luo, G.-N.

    2014-10-01

    The behaviours of hydrogen and helium in tungsten are vitally important in fusion research because they can result in the degradation of the material. In the present work, we carry out density-functional theory calculations to investigate the clustering of hydrogen and helium atoms at interstitial sites, vacancy and small vacancy clusters (Vacm, m = 2, 3), and the influence of hydrogen and helium on vacancy evolution in tungsten. We find that hydrogen atoms are extremely difficult to aggregate at interstitial sites to form a stable cluster in tungsten. However, helium atoms are energetically favourable to cluster together in a close-packed arrangement between (1 1 0) planes forming helium monolayer structure, where the helium atoms are not perfectly in one plane. Both hydrogen and helium prefer to aggregate stably in vacancy and small vacancy cluster forming VacmXn (X = H, He). The concentrations of VacmHn (m = 1) clusters relative to temperature are evaluated through the law of mass action. The present calculations also show that the emission of a <1 1 1> dumbbell self-interstitial atom (SIA) from Hen to form VacHen and from VacHen to form Vac2Hen may take place for n > 5 and n > 9, respectively. According to the present results, we predict that a helium monolayer structure could nucleate for He atom platelet lying on (1 1 0) plane in tungsten, and the helium platelet formation on (1 1 0) plane in molybdenum observed by the experiment may be due to the initial monolayer arrangement of He atoms at interstitial sites. Meanwhile, our results contribute to the understanding for nucleation and the development of the voids and blisters in tungsten that are observed in the experiments.

  1. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Song, Chi; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2012-11-01

    values of dipolar tensor only can be obtained due to the small supercell. However, it appears clearly that the dipolar tensor is highly anisotropic. Whatever the FIA nature, the values of P33 are much larger than the values of P11. The reason is that the coordination polyhedron of the octahedral site is not a regular octahedron. To summarize, the introduction of an FIA in an octahedral site in tungsten leads to a tetragonal distortion to the neighboring tungsten lattice. A similar phenomenon has been found in other bcc metals, such as Fe [14], when a carbon or nitrogen atom is placed at the octahedral site.The vacancy formation energy is the energy required to take an atom from inside the crystal, and place it into a reservoir of the same atoms. In the perfect supercell, it can be calculated by Eq. (1). In the supercell with an FIA, the vacancy formation energy of the nearest-neighbors of octahedral interstitial carbon or nitrogen atom is defined as [34]: Ef'V=E(W127FIA1)-E(W128FIA)+{E(W128)}/{128}. The calculated vacancy formation energies of the nearest-neighbors of the FIA are summarized in Table 3. The vacancy formation energies of the 1nn of the octahedral interstitial carbon and nitrogen atoms are 1.23 eV and 0.73 eV, respectively, which are remarkably lower than that in the perfect tungsten supercell (3.2 eV). For other nearest-neighbors, the vacancy formation energies are a bit lower than that in the perfect tungsten supercell. These results show that the octahedral interstitial carbon and nitrogen can decrease the energies needed to form a vacancy around them. The effect of vacancy formation energy on the equilibrium concentration of vacancies can be expressed as c0=exp(-EfV/kT). Therefore, the introduction of carbon and nitrogen can increase the equilibrium concentration of vacancies.In order to explore the mechanisms of the FIA reducing the vacancy formation energy, the electronic charge density difference is plotted in the (1 1¯ 0) plane with the FIA in the

  2. Tungsten fiber reinforced superalloys: A status review

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.

    1981-01-01

    Improved performance of heat engines is largely dependent upon maximum cycle temperatures. Tungsten fiber reinforced superalloys (TFRS) are the first of a family of high temperature composites that offer the potential for significantly raising hot component operating temperatures and thus leading to improved heat engine performance. This status review of TFRS research emphasizes the promising property data developed to date, the status of TFRS composite airfoil fabrication technology, and the areas requiring more attention to assure their applicability to hot section components of aircraft gas turbine engines.

  3. Electrical properties of complex tungsten bronze ceramics

    NASA Astrophysics Data System (ADS)

    Padhee, R.; Das, Piyush R.

    2014-09-01

    This paper highlights the electrical properties of two new complex tungsten bronze ceramics (K2Pb2Eu2W2Ti4Nb4O30 and K2Pb2Pr2W2Ti4Nb4O30) which were prepared by high temperature mixed oxide method. Variation of impedance parameters with temperature (27-500 °C) and frequency (1 kHz to 5 MHz) shows the grain and grain boundary effects in the samples. The variation of dielectric parameters with frequency is also studied. The ac conductivity variation with temperature clearly exhibits that the materials have thermally activated transport properties of Arrhenius type.

  4. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  5. Low temperature photoresponse of monolayer tungsten disulphide

    SciTech Connect

    Cao, Bingchen; Shen, Xiaonan; Shang, Jingzhi; Cong, Chunxiao; Yang, Weihuang; Eginligil, Mustafa E-mail: meginligil@ntu.edu.sg; Yu, Ting E-mail: meginligil@ntu.edu.sg

    2014-11-01

    High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD) method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup), while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  6. Surface morphology and bond characterization of nanocrystalline diamonds grown on tungsten carbide via hot filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hamzah, E.; Yong, T. M.; Mat Yajid, M. A.

    2013-06-01

    Nanocrystalline diamonds (NCDs) were deposited on chemically prepared tungsten carbide substrates via hot filament chemical vapor deposition. The surface morphology of the NCDs was examined using field emission scanning electron microscopy. The NCDs formed a ballas morphology evenly across the tungsten carbide surface. Overetching affected the diamond deposition by causing the ballas to form aggregations. Cross-sectional fragmentation using a diamond wafering blade caused the nanocrystalline diamond to fragment at overetched boundaries, and delamination only occurred 30-50 µm off the edge and revealed that the thickness of the diamond film was 6 µm. Grazing XRD is an effective method to identify diamonds even at the nanoscale. The crystallite size was calculated to be 18.4 nm by modeling. Cross-sectional TEM analysis indicated that the diamond grain size was approximately 10-30 nm near the interface. Amorphous carbon, an embedded diamond and voids were also observed. TEM also revealed that the tungsten carbide surface undulates. The nanocrystalline diamonds nucleated and grew on the tungsten carbide (100) planes in the <111> direction, forming (111) planes, as observed from HRTEM, d-spacing measurements, SAD and FFT analyses for a FIB-prepared sample.

  7. Atomic tungsten for ultrafast hard X-ray generation.

    PubMed

    Shan, Fang; Couch, Vernon A; Guo, Ting

    2005-05-19

    High-resolution X-ray absorption measurements (with an accuracy of +/-0.3 eV) of ZnSO(4) (aq) were performed with ultrafast selected energy X-ray absorption spectroscopy (USEXAS) using a laser-driven tungsten target X-ray source. The results were used to determine the absolute spectral positions of characteristic emission lines. By comparing these positions to those predicted for the line emission from tungsten of different oxidation states using the Dirac-Fock formula, the tungsten species responsible for ultrafast hard X-ray generation were found to be tungsten atoms. This finding provides the first direct evidence to support the mechanism of X-ray generation via high-energy electrons interacting with tungsten atoms in the solid target.

  8. Dynamics of small mobile helium clusters near tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Hammond, Karl D.; Wirth, Brian D.; Maroudas, Dimitrios

    2014-08-01

    We report the results of a systematic atomic-scale analysis of the dynamics of small mobile helium clusters in tungsten, near tungsten surfaces. These helium clusters are attracted to tungsten surfaces due to an elastic interaction force that drives surface segregation. As the clusters migrate toward the surface, trap mutation and cluster dissociation are activated at rates higher than in the bulk. These kinetic processes are responsible for important structural, morphological, and compositional features in plasma-exposed tungsten, including surface adatoms, near-surface immobile helium-vacancy complexes, and retained helium content. Detailed results are presented for di-helium and tri-helium clusters near low-Miller-index tungsten surfaces.

  9. Tungsten recycling in the United States in 2000

    USGS Publications Warehouse

    Shedd, Kim B.

    2011-01-01

    This report, which is one of a series of reports on metals recycling, defines and quantifies the flow of tungsten-bearing materials in the United States from imports and stock releases through consumption and disposition in 2000, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap). Because of tungsten's many diverse uses, numerous types of scrap were available for recycling by a wide variety of processes. In 2000, an estimated 46 percent of U.S. tungsten supply was derived from scrap. The ratio of tungsten consumed from new scrap to that consumed from old scrap was estimated to be 20:80. Of all the tungsten in old scrap available for recycling, an estimated 66 percent was either consumed in the United States or exported to be recycled.

  10. Amorphous and polycrystalline water ices in space environments

    NASA Astrophysics Data System (ADS)

    Andrade, Diana; Pilling, Sergio; Da Silveira, Enio; Barros, Ana

    2016-07-01

    Ices are an important reservoir of more complex molecular species in several space environments, containing information about the composition and formation of these regions. Water ice is the dominant constituent of interstellar ices in most lines of sight and is about 70 % of the composition in comets, being a key molecule in astrochemical models. It is believed that one of the reactive species possibly evaporated from the water ices is the hydronium ion, H_{3}O^{+}, which plays an important role in the oxygen chemistry network. This ion has been detected in the lunar surface of Enceladus and Titan, and toward the Sagittarius B2 molecular Clouds, where H_{2}O and OH were also identified. In this work, the ion desorption due to radiolysis in ices constituted by water at three different temperatures (40, 70 and 125 K) is studied, to investigate the different allotropic water ices. A discussion on the rate of H_{3}O^{+} and water delivered to gas phase, as well as the half-life of water ice grains, inside dense molecular clouds considering a constants cosmic ray flux is given. The ions desorbed from water ice have been mass/charge analyzed by a time-of-flight spectrometer. Among the results, it is seen that in the positive ion spectrum of high density amorphous water ice at 40 K the highest desorption yields (ejected ions/impact) correspond to H^{+}, H_{3}O^{+} and clusters formed by (H_{2}O)_{n}R^{+}, where R^{+} is H_{3}O^{+} and 1 ≤ n ≤ 25. At T = 125 K, the ice is in its low density polycrystalline form and new clusters are present, such as (H_{2}O)_{n}R^{+}, where R^{+} is H_{2}^{+} and H_{3}^{+} (for low n), beyond H_{3}O^{+}. Therefore, it is seen that (H_{2}O)_{n}H_{3}O^{+} series (with n between 1 and 25) is dominant in all cases. The H_{3}O^{+} desorption yield at 40 K is about 5times10^{-3} ions/impact. This value is 4-5 times higher than the one obtained at T > 125 K. This behavior is also seen to all series member and consequently to the sum (Yn).

  11. Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina.

    PubMed

    Pezzotti, Giuseppe; Zhu, Wenliang

    2015-01-28

    A method of Raman spectroscopic analysis has been proposed for evaluating tensorial stress fields stored in alumina polycrystals with a corundum structure (α-Al2O3). Raman selection rules for all the vibrational modes of the structure were expanded into explicit functions of both 3 Euler angles in space and 4 Raman tensor elements (RTE) of corundum. A theoretical treatment was then worked out according to the phonon deformation potential (PDP) formalism, which explicitly expressed the changes in force constants under stress in matricial form. Close-form solutions could be obtained for the matrix eigenvalues as a function of 9 unknown variables, namely 6 independent stress tensor components and 3 Euler angles in space, the latter parameters being representatives of local crystal orientation. Successively, two separate sets of Raman calibration experiments were performed for the determination of both RTE and PDP constants of the corundum structure of alumina. Calibration experiments provided a quantitative frame to the newly developed Raman formalism. Polarized Raman spectra were systematically recorded in both single-crystalline and polycrystalline samples, with both A1g and Eg vibrational bands being characterized. Regarding polycrystalline samples, a validation of the proposed Raman method could be done through a comparison between Raman and fluorescence data collected at the same locations across an alumina/metal interface embedded in a steeply graded residual stress field.

  12. Equations for determining CVD tungsten-rhenium alloy composition and plating rate

    SciTech Connect

    Klingsporn, P.E.

    1987-04-01

    The composition and plating rate of CVD tungsten-rhenium alloy, formed by hydrogen reduction of a tungsten and rhenium metal hexafluoride gas mixture on a heated substrate, depend on the substrate temperature, hydrogen gas flow, metal fluoride gas flow, and the pressure. An equation was derived that allows the alloy composition to be calculated for any combination of the variables, based on the measured composition for one set of the variables. Also, equations were derived from which the W-Re alloy plating rate can be calculated in terms of the measured rate and composition at one set of the variables, or, in terms of the measured rates at two sets of the variables, without knowledge of the composition. W-Re alloy compositions and plating rates calculated with the equations were compared with experimental data.

  13. Tungsten hydride complex as a template in organic inorganic hybrid materials

    NASA Astrophysics Data System (ADS)

    Montinho, Isilda; Boev, Victor; Fonseca, António M.; Silva, Carlos J. R.; Neves, Isabel C.

    2003-03-01

    A tungsten hydride complex, [WH 2( η2-OOCCH 3)(Ph 2PCH 2CH 2PPh 2) 2][BPh 4], was dispersed in a hybrid matrix synthesized by a sol-gel process. The host matrix of the so-called ureasil is a network of silica to which oligopolyoxyethylene chains [POE, (OCH 2CH 2) n] are grafted by means of urea cross-links. The free complex and sol-gel materials were characterized by thermal analysis (DSC) and spectroscopic methods (FT-IR and UV/Vis). The data gathered indicate that the tungsten(IV) complex is immobilized in the host matrix, and it exhibits structural properties different from those of the free form. These differences could arise either from distortions caused by steric effects imposed by the structure of hybrid matrix or by interactions with the matrix.

  14. Nanocrystaline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Nie, Ming; Shen, Pei Kang; Wei, Zidong

    Au-Pd nanobimetallic particles supported on nanocrystaline tungsten carbide as electrocatalysts for oxygen reduction were prepared by an intermittent microwave heating (IMH) method. XRD measurement revealed that AuPd alloy formed during the IMH process. We showed these novel electrocatalysts could offer the activities that surpass that of the state-of-the-art Pt-based electrocatalysts for oxygen reduction reaction. The AuPd-WC/C electrode showed an over 70 mV shift towards more positive potentials compared to Pt/C electrode for ORR. The advantage seemed to come from the novel support of tungsten carbide which itself has the catalytic activity to enhance the catalytic activity of the metal electrocatalysts.

  15. Studies on growth and characterization of heterogeneous tungsten oxide nanostructures for photoelectrochemical and gas sensing applications

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Mahalingam, T.; Ravi, G.

    2016-01-01

    Tungsten oxide nanostructures were developed on indium tin oxide coated glass substrates by modified thermal evaporation process without using catalyst and vacuum. Depending on the substrate temperature and vapor concentration, different nanostructures like rod, sheet and pyramid were formed. Morphology, phase structure and crystallinity of the nanostructure films were characterized by Scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy and HR-TEM. The samples were investigated under dark current and photocurrent and in H2SO4 aqueous solution as a function of applied potential. The saturated photocurrent density of tungsten oxide was found to be ≈14.4 μA cm-2. The films were also investigated as resistive gas sensor for ethanol gases (10-50 ppm) at room temperature. The response and recovery time were also determined.

  16. Tungsten injector for scrape-off layer impurity transport experiments in the Tore Supra tokamak

    SciTech Connect

    Kočan, M.; Lunt, T.; Gunn, J. P.; Meyer, O.; Pascal, J.-Y.

    2013-07-15

    This paper describes the design and operation of a new tungsten (W) injection system for impurity transport experiments in the Tore Supra tokamak. The system is mounted on a reciprocating manipulator and injects a controlled amount of gaseous tungsten hexacarbonyl, W(CO){sub 6} at arbitrary depth in the scrape-off layer, using an inertially activated valve. Injected W(CO){sub 6} is dissociated in the plasma, forming a radially localized plume of W atoms. The injector does not require an external gas feed and can perform a large number of injections from an on-board reservoir of W(CO){sub 6}. Some examples of W injections in Tore Supra are included, demonstrating successful operation and discussing some technical issues of the injector prototype.

  17. Formation of thin tungsten oxide layers: characterization and exposure to deuterium

    NASA Astrophysics Data System (ADS)

    Addab, Y.; Martin, C.; Pardanaud, C.; Khayadjian, J.; Achkasov, K.; Kogut, D.; Cartry, G.; Giacometti, G.; Cabié, M.; Gardarein, J. L.; Roubin, P.

    2016-02-01

    Thin tungsten oxide layers with thicknesses up to 250 nm have been formed on W surfaces by thermal oxidation following a parabolic growth rate. The reflectance of the layers in the IR range 2.5-16 μm has been measured showing a decrease with the layer thickness especially at low wavelengths. Raman microscopy and x-ray diffraction show a nanocrystalline WO3 monoclinic structure. Low energy deuterium plasma exposure (11 eV/D+) has been performed inducing a phase transition, a change in the sample colour and the formation of tungsten bronze (D x WO3). Implantation modifies the whole layer suggesting a deep diffusion of deuterium inside the oxide. After exposure, a deuterium release due to the oxidation of D x WO3 under ambient conditions has been evidenced showing a reversible deuterium retention.

  18. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  19. Hydrolysis equilibria of tungsten(VI) in aqueous sodium chloride solutions to 300/sup 0/C

    SciTech Connect

    Wesolowski, D.; Drummond, S.E.; Mesmer, R.E.; Ohmoto, H.

    1984-04-11

    Formation constants for the protonated mononuclear and polynuclear forms of tungstate have been measured by means of a hydrogen electrode concentration cell from 95 to 290/sup 0/C in 0.10-5.1 m NaCl solutions over a pH range of 2-8 and tungsten concentration from 5 X 10/sup -4/ to 10/sup -2/m. Polytungstates dominate the speciation in the 10/sup -2/ m solutions below a pH of 5, particularly in the low-temperature solutions. Monomers become increasingly stable at low tungsten concentrations, high temperatures, and high ionic strengths and are the only form of tungsten detected above 200/sup 0/C at 5.1 m NaCl. The equilibrium quotients for the reaction WO/sub 4//sup 2-/ + H/sup +/ reverse arrow..-->..HWO/sub 4//sup -/ have been determined to 300/sup 0/C over the entire composition range. An analytical expression for the temperature and ionic strength dependence of these equilibrium quotients and derived thermodynamic properties are presented.

  20. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.

    PubMed

    Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-08-01

    Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation.

  1. Record Low Thermal Conductivity of Polycrystalline Si Nanowire: Breaking the Casimir Limit by Severe Suppression of Propagons.

    PubMed

    Zhou, Yanguang; Hu, Ming

    2016-10-12

    Thermoelectrics offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Nanoengineering existing low-dimensional thermoelectric materials pertaining to realizing fundamentally low thermal conductivity has emerged as an efficient route to achieve high energy conversion performance for advanced thermoelectrics. In this paper, by performing nonequilibrium and Green-Kubo equilibrium molecular dynamics simulations we report that the thermal conductivity of Si nanowires (NWs) in polycrystalline form can reach a record low value substantially below the Casimir limit, a theory of diffusive boundary limit that regards the direction-averaged mean free path is limited by the characteristic size of the nanostructures. The astonishingly low thermal conductivity of polycrystalline Si NW is 269 and 77 times lower with respect to that of bulk Si and pristine Si NW, respectively, and is even only about one-third of the value of the purely amorphous Si NW at room temperature. By examining the mode level phonon behaviors including phonon group velocities, lifetime, and so forth, we identify the mechanism of breaking the Casimir limit as the strong localization of the middle and high frequency phonon modes, which leads to a prominent decrease of effective mean free path of the heat carriers including both propagons and diffusons. The contribution of the propagons to the overall thermal transport is further quantitatively characterized and is found to be dramatically suppressed in polycrystalline Si NW form as compared with bulk Si, perfect Si NW, and pure amorphous Si NW. Consequently, the diffusons, which transport the heat through overlap with other vibrations, carry the majority of the heat in polycrystalline Si NWs. We also proposed approach of introducing "disorder" in the polycrystalline Si NWs that could eradicate the contribution of propagons to achieve an even lower thermal conductivity than that ever thought possible

  2. Pharmacokinetics of radiolabeled tungsten ((188)W) in male Sprague-Dawley rats following acute sodium tungstate inhalation.

    PubMed

    Radcliffe, Pheona M; Leavens, Teresa L; Wagner, Dean J; Olabisi, Ayodele O; Struve, Melanie F; Wong, Brian A; Tewksbury, Earl; Chapman, Gail D; Dorman, David C

    2010-01-01

    Aerosol cloud formation may occur when certain tungsten munitions strike hard targets, placing military personnel at increased risk of exposure. Although the pharmacokinetics of various forms of tungsten have been studied in animals following intravenous and oral administration, tungsten disposition following inhalation remains incompletely characterized. The objective of this study was to evaluate the pharmacokinetics of inhaled tungstate (WO(4)) in rats. Male, 16-wk-old, CD rats (n = 7 rats/time point) underwent a single, 90-min, nose-only exposure to an aerosol (mass median aerodynamic diameter [MMAD] 1.50 mum ) containing 256 mg W/m(3) as radiolabeled sodium tungstate (Na(2)(188)WO(4)). (188)W tissue concentrations were determined at 0, 1, 3, 7, and 21 days postexposure by gamma spectrometry. The thyroid and urine had the highest (188)W levels postexposure, and urinary excretion was the primary route of (188)W elimination. The pharmacokinetics of tungsten in most tissues was best described with a two-compartment pharmacokinetic model with initial phase half-lives of approximately 4 to 6 h and a longer terminal phase with half-lives of approximately 6 to 67 days. The kidney, adrenal, spleen, femur, lymph nodes, and brain continued to accumulate small amounts of tungsten as reflected by tissue:blood activity ratios that increased throughout the 21-day period. At day 21 all tissues except the thyroid, urine, lung, femur, and spleen had only trace levels of (188)W. Data from this study can be used for development and refinement of pharmacokinetic models for tungsten inhalation exposure in environmental and occupational settings.

  3. Modeling of Tungsten Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Kim, Byunghoon; Akiyama, Yasunobu; Imaishi, Nobuyuki; Park, Heung-Chul

    1999-05-01

    Low-pressure chemical vapor deposition (LPCVD) of tungsten (W)film on silicon (Si) substrate was performed by reducting hexafluoride(WF6) with hydrogen. This CVD system is known for its nonlineardependence of growth rate on WF6 concentration. This study adopted asimple surface-reaction model which assumes that the precursor, i.e.,WF6, in the gas phase adsorbs on solid surfaces and then the adsorbedWF6 molecule is converted into tungsten solid film. The two kineticparameters involved in the model are derived from the experimentalresults. The solidification rate constant (ks) is equal to the growthrate at very high WF6 concentrations. The adsorption rate constant(ka) is derived from profile analyses of films grown in microtrenchesunder very low WF6 concentrations by applying the conventional MonteCarlo simulation code, which is valid for linear surface-reactionsystems. In the temperature range of 623 to 823 K, ka and ks haveactivation energies of 82 kJmol-1, 66.1 kJmol-1, respectively. A newlyproposed Monte Carlo simulation for nonlinear reaction systems, incombination with the two kinetic parameters, can quantitativelypredict the shape of film in microtrenches for a wide range oftemperatures and WF6 concentrations.

  4. Concentration dependent hydrogen diffusion in tungsten

    NASA Astrophysics Data System (ADS)

    Ahlgren, T.; Bukonte, L.

    2016-10-01

    The diffusion of hydrogen in tungsten is studied as a function of temperature, hydrogen concentration and pressure using Molecular Dynamics technique. A new analysis method to determine diffusion coefficients that accounts for the random oscillation of atoms around the equilibrium position is presented. The results indicate that the hydrogen migration barrier of 0.25 eV should be used instead of the presently recommended value of 0.39 eV. This conclusion is supported by both experiments and density functional theory calculations. Moreover, the migration volume at the saddle point for H in W is found to be positive: ΔVm ≈ 0.488 Å3, leading to a decrease in the diffusivity at high pressures. At high H concentrations, a dramatic reduction in the diffusion coefficient is observed, due to site blocking and the repulsive H-H interaction. The results of this study indicates that high flux hydrogen irradiation leads to much higher H concentrations in tungsten than expected.

  5. Transport analysis of tungsten impurity in ITER

    NASA Astrophysics Data System (ADS)

    Murakami, Y.; Amano, T.; Shimizu, K.; Shimada, M.

    2003-03-01

    The radial distribution of tungsten impurity in ITER is calculated by using the 1.5D transport code TOTAL coupled with NCLASS, which can solve the neo-classical impurity flux considering arbitrary aspect ratio and collisionality. An impurity screening effect is observed when the density profile is flat and the line radiation power is smaller than in the case without impurity transport by a factor of 2. It is shown that 90 MW of line radiation power is possible without significant degradation of plasma performance ( HH98( y,2) ˜1) when the fusion power is 700 MW (fusion gain Q=10). The allowable tungsten density is about 7×10 15/m 3, which is 0.01% of the electron density and the increase of the effective ionic charge Zeff is about 0.39. In this case, the total radiation power is more than half of the total heating power 210 MW, and power to the divertor region is less than 100 MW. This operation regime gives an opportunity for high fusion power operation in ITER with acceptable divertor conditions. Simulations for the case with an internal transport barrier (ITB) are also performed and it is found that impurity shielding by an ITB is possible with density profile control.

  6. Tungsten - Yttrium Based Nuclear Structural Materials

    NASA Astrophysics Data System (ADS)

    Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo

    2013-04-01

    The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.

  7. High temperature annealing of ion irradiated tungsten

    DOE PAGES

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  8. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  9. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  10. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this subpart F are applicable to discharges from (a) mines that produce tungsten ore and...

  11. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this subpart F are applicable to discharges from (a) mines that produce tungsten ore and...

  12. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of this subpart F are applicable to discharges from (a) mines that produce tungsten ore and...

  13. Piezoresistive Transduction in Multilayer Polycrystalline Silicon Resonators

    DTIC Science & Technology

    2009-10-01

    semiconductor CMOS foundry processes,6 and as such, is amenable to integration with minimal process disruption. A further advantage of this approach is...poly- crystalline silicon CMOS foundry processes, opening up the possibility of directly integrating MEMS devices and trans- ducers with CMOS . This... Fab - rication was performed at the Cornell Nanoscale Science and Technology Facility, and certain measurements were per- formed at the Cornell Center

  14. Influence of point defects on grain boundary mobility in bcc tungsten.

    PubMed

    Borovikov, Valery; Tang, Xian-Zhu; Perez, Danny; Bai, Xian-Ming; Uberuaga, Blas P; Voter, Arthur F

    2013-01-23

    Atomistic computer simulations were performed to study the influence of radiation-induced damage on grain boundary (GB) sliding processes in bcc tungsten (W), the divertor material in the ITER tokamak and the leading candidate for the first wall material in future fusion reactors. In particular, we calculated the average sliding-friction force as a function of the number of point defects introduced into the GB for a number of symmetric tilt GBs. In all cases the average sliding-friction force at fixed shear strain rate depends on the number of point defects introduced into the GB, and in many cases introduction of these defects reduces the average sliding-friction force by roughly an order of magnitude. We have also observed that as the number of interstitials in the GB is varied, the direction of the coupled GB motion sometimes reverses, causing the GB to migrate in the opposite direction under the same applied shear stress. This could be important in the microstructural evolution of polycrystalline W under the harsh radiation environment in a fusion reactor, in which high internal stresses are present and frequent collision cascades generate interstitials and vacancies.

  15. Deuterium retention in TiC and TaC doped tungsten at high temperatures

    NASA Astrophysics Data System (ADS)

    Zibrov, M.; Mayer, M.; Gao, L.; Elgeti, S.; Kurishita, H.; Gasparyan, Yu.; Pisarev, A.

    2015-08-01

    Samples made of tungsten doped either with titanium carbide (W-1.1TiC) or tantalum carbide (W-3.3TaC) were either exposed to D2 gas at a pressure of 100 kPa at 800-963 K or irradiated by 38 eV/D ions at 800 K. The deuterium (D) inventory in the samples was examined by nuclear reaction analysis and thermal desorption spectroscopy. The D bulk concentration and total retention in W-3.3TaC were comparable in all cases to that in pure polycrystalline W. The D bulk concentration in W-1.1TiC was more than one order of magnitude higher than that in pure W after exposure to D2 gas, and was also several times higher than that in W-1.1TiC after irradiation at 800 K. It is suggested that D trapping inside the carbide precipitates in W-1.1TiC becomes essential at high temperatures.

  16. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    PubMed Central

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-01-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from −2.61 eV to −0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors. PMID:27874047

  17. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.

    PubMed

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-22

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from -2.61 eV to -0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  18. Dielectric and Pyroelectric Properties of La- and Pr-Modified Tungsten-Bronze Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Parida, B. N.; Das, Piyush R.; Padhee, R.; Choudhary, R. N. P.

    2013-08-01

    The polycrystalline materials Li2Pb2R2W2Ti4Nb4O30 (R = La, Pr) of the tungsten-bronze structural family have been synthesized using a high- temperature mixed-oxide method. Room-temperature x-ray diffraction (XRD) analysis confirms the formation of single-phase compounds. Room-temperature scanning electron micrography of the pellet samples shows a uniform distribution of well-defined different sizes of grains on the surface of the samples, confirming the formation of single-phase compounds. Study of the frequency and temperature dependence of the dielectric constant and loss tangent suggests the existence of dielectric dispersion in the materials. The ferroelectric phase transition in the samples has been studied based on the variation of fitting parameters (calculated from a theoretical model) with temperature. Studies of pyroelectric properties [figure of merit (FOM) and coefficient] show that the materials have reasonably high FOM useful for pyroelectric detectors. The variation of alternating-current (AC) and direct-current (DC) conductivity with inverse absolute temperature (obtained from dielectric data) follows a typical Arrhenius relation. The low leakage current and negative temperature coefficient of resistance behavior of the samples have been verified from J- E plots.

  19. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    NASA Astrophysics Data System (ADS)

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from ‑2.61 eV to ‑0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  20. Measurement of uptake and release of tritium by tungsten

    SciTech Connect

    Nakayama, M.; Torikai, Y.; Saito, M.; Penzhorn, R.D.; Isobe, K.; Yamanishi, T.; Kurishita, H.

    2015-03-15

    Tungsten is currently contemplated as plasma facing material for the divertor of future fusion machines. In this paper the uptake of tritium by tungsten and its release behavior have been investigated. Tungsten samples have been annealed at various temperatures and loaded at also different temperatures with deuterium containing 7.2 % tritium at a pressure of 1.2 kPa. A specific system was designed to assess the release of tritiated water and molecular tritium by the samples. Due to the rather low solubility of hydrogen isotopes in tungsten it is particularly important to be aware of the presence of hydrogen traps or thin oxide films. As shown in this work, traps or oxide films may affect the retention capability of tungsten and lead to significantly modified release properties. It became clear that there were capture sites that had different thermal stability and different capture intensity in tungsten after polishing, or oxide films that were grown on the surface of tungsten and had barrier effects.

  1. Carbon nanotubes and tungsten oxide nanorods: Synthesis and applications

    NASA Astrophysics Data System (ADS)

    Xiao, Bing

    Synthesis and applications of two types of one-dimensional nanomaterials, carbon nanotubes (CNTs) and tungsten oxide nanorods, are investigated in this dissertation. Multi-walled CNTs have been successfully synthesized using two types of chemical vapor deposition (CVD) methods: microwave plasma enhanced CVD and atmospheric pressure thermal CVD. CNTs and their synthesis processes are characterized with various analysis techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and optical emission spectroscopy. Ultra-thin and high quality multi-walled CNTs are discovered in CNT films produced by MPCVD, which exhibit good field emission performance that is found to be dependent on the synthesis conditions, like the growth time and CH4/H2 flow ratio. CNTs grown by thermal CVD have similar field emission performance. Based on silicon surface micromachining techniques and thermal CVD method, a self-aligned method has been developed to fabricate CNT based gated field emitter arrays (FEAs) which demonstrate low turn-on voltage and good emission current. Tungsten oxide nanorods have been synthesized on various tungsten substrates via thermal annealing in argon at atmospheric pressure. Nanorod growth mechanism is proposed based on thermal oxidation of tungsten in gas ambient with a very low partial pressure of oxygen as well as the self-catalytic effect on tungsten surface. The lattice structure and composition of the tungsten oxide nanorods are observed and analyzed using high resolution TEM, selected area electron diffraction (SAD), and energy dispersive X-ray spectroscopy (EDXS). The analysis results reveal that the lattice structure of the tungsten oxide nanorods is closest to that of the monoclinic WO3 crystal. Tungsten oxide nanorods have been successfully grown on tungsten tips for use in scanning tunneling microscope (STM) as probes which readily produce atomic resolution images on sample surface. Nanorod

  2. Temporal Variability of Tungsten and Cobalt in Fallon, Nevada

    PubMed Central

    Sheppard, Paul R.; Speakman, Robert J.; Ridenour, Gary; Witten, Mark L.

    2007-01-01

    Background Since 1997, Fallon, Nevada, has experienced a cluster of childhood leukemia that has been declared “one of the most unique clusters of childhood cancer ever reported.” Multiple environmental studies have shown airborne tungsten and cobalt to be elevated within Fallon, but the question remains: Have these metals changed through time in correspondence with the onset of the leukemia cluster? Methods We used dendrochemistry, the study of element concentrations through time in tree rings, in Fallon to assess temporal variability of airborne tungsten and cobalt since the late 1980s. The techniques used in Fallon were also tested in a different town (Sweet Home, OR) that has airborne tungsten from a known source. Results The Sweet Home test case confirms the accuracy of dendrochemistry for showing temporal variability of environmental tungsten. Given that dendrochemistry works for tungsten, tree-ring chemistry shows that tungsten increased in Fallon relative to nearby comparison towns beginning by the mid-1990s, slightly before the onset of the cluster, and cobalt has been high throughout the last ~ 15 years. Other metals do not show trends through time in Fallon. Discussion Results in Fallon suggest a temporal correspondence between the onset of excessive childhood leukemia and elevated levels of tungsten and cobalt. Although environmental data alone cannot directly link childhood leukemia with exposure to metals, research by others has shown that combined exposure to tungsten and cobalt can be carcinogenic to humans. Conclusion Continued biomedical research is warranted to directly test for linkage between childhood leukemia and tungsten and cobalt. PMID:17520058

  3. Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite

    SciTech Connect

    Hu, Sujuan; Shi, Binbin; Yao, Guoxing; Li, Guohua; Ma, Chunan

    2011-10-15

    Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide and titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.

  4. Mechanism for chemical-vapor deposition of tungsten on silicon from tungsten hexafluoride

    SciTech Connect

    Yarmoff, J.A.; McFeely, F.R.

    1988-06-01

    The mechanism for the growth of tungsten films on silicon substrates with the use of low-pressure chemical-vapor deposition from WF/sub 6/ was studied with soft-x-ray photoemission by growing films in situ. The dissociative chemisorption of WF/sub 6/ on Si(111) was found to be complete, even at room temperature. The reaction is self-poisoning at room temperature, however, as the fluorine liberated from WF/sub 6/ ties up the active Si sites responsible for the dissociation. The mechanism for continued growth of tungsten films at elevated temperature was determined to proceed via Si diffusion through the layer towards the surface. Post-fluorination of these films via XeF/sub 2/ was employed as a means for illustrating their morphology.

  5. Mechanism for chemical-vapor deposition of tungsten on silicon from tungsten hexafluoride

    NASA Astrophysics Data System (ADS)

    Yarmoff, Jory A.; McFeely, F. Read

    1988-06-01

    The mechanism for the growth of tungsten films on silicon substrates with the use of low-pressure chemical-vapor deposition from WF6 was studied with soft-x-ray photoemission by growing films in situ. The dissociative chemisorption of WF6 on Si(111) was found to be complete, even at room temperature. The reaction is self-poisoning at room temperature, however, as the fluorine liberated from WF6 ties up the active Si sites responsible for the dissociation. The mechanism for continued growth of tungsten films at elevated temperature was determined to proceed via Si diffusion through the layer towards the surface. Post-fluorination of these films via XeF2 was employed as a means for illustrating their morphology.

  6. Hexatic-to-disorder transition in colloidal crystals near electrodes: rapid annealing of polycrystalline domains.

    PubMed

    Dutcher, C S; Woehl, T J; Talken, N H; Ristenpart, W D

    2013-09-20

    Colloids are known to form planar, hexagonal closed packed (hcp) crystals near electrodes in response to electrohydrodynamic (EHD) flow. Previous work has established that the EHD velocity increases as the applied ac frequency decreases. Here we report the existence of an order-to-disorder transition at sufficiently low frequencies, despite the increase in the attractive EHD driving force. At large frequencies (~500 Hz), spherical micron-scale particles form hcp crystals; as the frequency is decreased below ~250 Hz, however, the crystalline structure transitions to randomly closed packed (rcp). The transition is reversible and second order with respect to frequency, and independent measurements of the EHD aggregation rate confirm that the EHD driving force is indeed higher at the lower frequencies. We present evidence that the transition is instead caused by an increased particle diffusivity due to increased particle height over the electrode at lower frequencies, and we demonstrate that the hcp-rcp transition facilitates rapid annealing of polycrystalline domains.

  7. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  8. Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires

    PubMed Central

    Jeong, Junho; Yong, Zheng; Joushaghani, Arash; Tsukernik, Alexander; Paradis, Suzanne; Alain, David; Poon, Joyce K. S.

    2016-01-01

    Vanadium dioxide (VO2) exhibits a reversible insulator-metal phase transition that is of significant interest in energy-efficient nanoelectronic and nanophotonic devices. In these applications, crystalline materials are usually preferred for their superior electrical transport characteristics as well as spatial homogeneity and low surface roughness over the device area for reduced scattering. Here, we show applied electrical currents can induce a permanent reconfiguration of polycrystalline VO2 nanowires into crystalline nanowires, resulting in a dramatically reduced hysteresis across the phase transition and reduced resistivity. Low currents below 3 mA were sufficient to cause the local temperature in the VO2 to reach about 1780 K to activate the irreversible polycrystalline-to-crystalline transformation. The crystallinity was confirmed by electron microscopy and diffraction analyses. This simple yet localized post-processing of insulator-metal phase transition materials may enable new methods of studying and fabricating nanoscale structures and devices formed from these materials. PMID:27892519

  9. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams

    NASA Astrophysics Data System (ADS)

    Chmielus, M.; Zhang, X. X.; Witherspoon, C.; Dunand, D. C.; Müllner, P.

    2009-11-01

    The magnetic shape-memory alloy Ni-Mn-Ga shows, in monocrystalline form, a reversible magnetic-field-induced strain (MFIS) up to 10%. This strain, which is produced by twin boundaries moving solely by internal stresses generated by magnetic anisotropy energy, can be used in actuators, sensors and energy-harvesting devices. Compared with monocrystalline Ni-Mn-Ga, fine-grained Ni-Mn-Ga is much easier to process but shows near-zero MFIS because twin boundary motion is inhibited by constraints imposed by grain boundaries. Recently, we showed that partial removal of these constraints, by introducing pores with sizes similar to grains, resulted in MFIS values of 0.12% in polycrystalline Ni-Mn-Ga foams, close to those of the best commercial magnetostrictive materials. Here, we demonstrate that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%. These strains, which remain stable over >200,000cycles, are much larger than those of any polycrystalline, active material.

  10. Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam

    SciTech Connect

    Wood, B.P.; Bitteker, L.J.; Waganaar, W.J.; Perry, A.J.

    1998-12-31

    When treated with intense pulsed ion beams (IPIB), many materials exhibit increased wear resistance, fatigue life, and hardness. However, this treatment often results in cratering and roughening of the surface. In this work, high purity single crystal and polycrystalline copper samples were irradiated with pulses from an IPIB to gain insight into the causes of this cratering behavior. Samples were treated with 1,2,5, and 10 shots at 2 J/cm{sup 2} and 5 J/cm{sup 2} average energy fluence per shot. Shots were about 400 ns in duration and consisted of a mixture of carbon, hydrogen, and oxygen ions at 300 keV. It was found that the single crystal copper cratered far less than the polycrystalline copper at the lower energy fluence. At the higher energy fluence, cratering was replaced by other forms of surface damage, and the single crystal copper sustained less damage at all but the largest number of shots. Molten debris from the Lucite anode (the ion source) was removed and redeposited on the samples with each shot.

  11. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    NASA Astrophysics Data System (ADS)

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-10-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.

  12. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    PubMed Central

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  13. Determination of antimony by using tungsten trap atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Titretir, Serap; Kendüzler, Erdal; Arslan, Yasin; Kula, İbrahim; Bakırdere, Sezgin; Ataman, O. Yavuz.

    2008-08-01

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH 3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 °C. Following the preconcentration step, the trap is heated to 895 °C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH 4 solutions, H 2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l - 1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17.

  14. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30

    Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keV exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.

  15. Further development and application of polycrystalline metal whiskers

    NASA Technical Reports Server (NTRS)

    Schladitz, H. J.

    1979-01-01

    High strength metal whiskers have a larger versatile field of application than monocrystalline whiskers. Although polycrystalline metal whiskers can be used for composites, preferably by extrusion in thermoplastics or by infiltration of resins or metals into whisker networks, the chief application at present may be the production and various use of whisker networks. Such networks can be produced up to high degrees of porosity and besides high mechanical strength, they have high inside surfaces and high electric conductivity. There are for instance, applications concerning construction of electrodes for batteries and fuel cells, catalysts and also new heat-exchanger material, capable of preparing fuel oil and gasoline in order to assist a high-efficiency combustion. The technical application of polycrystalline metal whiskers require their modification as well as the construction of a pilot production unit.

  16. Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    SciTech Connect

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.; Lee, Michael V.; Qi, Yabing; Joo Shin, Tae; Ahn, Docheon; Lee, Han-Koo; Baik, Jaeyoon; Shin, Hyun-Joon

    2015-03-15

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  17. Mechanical instability of monocrystalline and polycrystalline methane hydrates

    PubMed Central

    Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang

    2015-01-01

    Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051

  18. Backside damage-gettering in cast polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Culik, J.; Roncin, S.; Alexander, P.

    1984-01-01

    The technique of backside-damage gettering improves the performance of short minority-carrier diffusion length, large-grain (grain diameter greater than 1 to 2 mm), cast polycrystalline silicon. On average, increases of nearly 20 percent in short-circuit current, 10 mV in open-circuit voltage, and 15 percent in peak-power were obtained by heat-treating 300 micron thick polycrystalline wafers at 1000 C in flowing nitrogen for 5 hours. Additional measurements of the bulk and space-charge recombination current components indicate that this improvement results from a significant increase in the minority-carrier diffusion length due to gettering of impurities from the bulk.

  19. Compton profile study of polycrystalline ZnBr{sub 2}

    SciTech Connect

    Dhaka, M. S.; Sharma, G.; Mishra, M. C.; Kothari, R. K.; Sharma, B. K.

    2010-12-01

    The first ever Compton profile study of polycrystalline ZnBr{sub 2} is presented in this paper. The measurement of polycrystalline sample of ZnBr{sub 2} is performed using 59.54 keV gamma-rays emanating from an {sup 241}Am radioisotope. Theoretical calculations are performed following the Ionic model calculations for a number of configurations Zn{sup +x}Br{sub 2}{sup -x/2}(0.0{<=}x{<=}2.0 in step of 0.5) utilizing free atom profiles. The ionic model suggest transfer of 2.0 electrons from 4 s state of Zn to 4 p state of two Br atoms. The autocorrelation function B(z) is also derived from experiment and the most favoured ionic valence Compton profiles.

  20. Selective and low temperature synthesis of polycrystalline diamond

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Roppel, T.; Ellis, C.; Baugh, W.; Jaworske, D. A.

    1991-01-01

    Polycrystalline diamond thin films have been deposited on single-crystal silicon substrates at low temperatures (not above 600 C) using a mixture of hydrogen and methane gases by high-pressure microwave plasma-assisted chemical vapor deposition. Low-temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.

  1. Flexible polycrystalline thin-film photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  2. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  3. Mechanisms of selectivity loss during tungsten CVD (chemical vapor deposition)

    SciTech Connect

    Creighton, J.R.

    1990-01-01

    The tungsten subfluoride mechanism as well as other proposed mechanisms of selectivity loss are reviewed. To further demonstrate the viability of the tungsten subfluoride mechanism, we have extended the measurement of the tungsten subfluoride production rate down to 450{degree}C. We also report results from some preliminary experiments designed to identify the selectivity loss mechanism when elemental silicon is available for reaction. Comments regarding the origins of the insulator effect and selectivity loss for silane reduction are offered. 23 refs., 2 figs.

  4. Electrode potentials of tungsten in fused alkali chlorides

    NASA Astrophysics Data System (ADS)

    Ivanov, A. B.; Volkovich, V. A.; Poskryakov, D. A.; Vasin, B. D.; Griffiths, T. R.

    2016-09-01

    Anodic dissolution of tungsten was studied at 823-1173 K in the melts based on NaCl-CsCl, NaCl-KCl-CsCl and LiCl-KCl-CsCl eutectic mixtures. The process results in the formation of W(IV) ions. Prolonged contact with silica results in oxidation W(IV) ions and decreasing tungsten concentration in the electrolyte due to formation of volatile higher oxidation state chloro- and oxychloro-species. Tungsten electrode potentials were measured in NaCl-CsCl and NaCl-KCl-CsCl based melts using potentiometry.

  5. Effects of nitrogen on hydrogen retention in tungsten: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Kong, Xiang-Shan; Wu, Xuebang; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2015-04-01

    While the use of nitrogen seeding to reduce the edge plasma temperature has been successfully applied in many tokamak experiments, questions remain as to effects of the nitrogen-enriched layer on hydrogen retention in tungsten. In this paper, we investigate the influence of nitrogen on hydrogen dissolution and diffusion behavior in tungsten using the first-principles. The nitrogen has little effect on the dissolution of hydrogen in the interstitial site but significantly impedes the accumulation of hydrogen in the vacancy, leading to the decrease of hydrogen retention in nitrogen-enriched layer. Meanwhile, both the interstitial nitrogen and the vacancy-nitrogen complex can significantly reduce the hydrogen effective diffusivity. This suggests that the nitrogen-enriched layer forming on the tungsten surface can act as a diffusion barrier for the re-emission of implanted hydrogen, enhancing hydrogen diffusion into the bulk, and consequently, increasing of hydrogen retention in bulk. These results provide a sound explanation for the recent experimental results.

  6. Covalent attachment of diamondoid phosphonic acid dichlorides to tungsten oxide surfaces.

    PubMed

    Li, Fei Hua; Fabbri, Jason D; Yurchenko, Raisa I; Mileshkin, Alexander N; Hohman, J Nathan; Yan, Hao; Yuan, Hongyuan; Tran, Ich C; Willey, Trevor M; Bagge-Hansen, Michael; Dahl, Jeremy E P; Carlson, Robert M K; Fokin, Andrey A; Schreiner, Peter R; Shen, Zhi-Xun; Melosh, Nicolas A

    2013-08-06

    Diamondoids (nanometer-sized diamond-like hydrocarbons) are a novel class of carbon nanomaterials that exhibit negative electron affinity (NEA) and strong electron-phonon scattering. Surface-bound diamondoid monolayers exhibit monochromatic photoemission, a unique property that makes them ideal electron sources for electron-beam lithography and high-resolution electron microscopy. However, these applications are limited by the stability of the chemical bonding of diamondoids on surfaces. Here we demonstrate the stable covalent attachment of diamantane phosphonic dichloride on tungsten/tungsten oxide surfaces. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy revealed that diamondoid-functionalized tungsten oxide films were stable up to 300-350 °C, a substantial improvement over conventional diamondoid thiolate monolayers on gold, which dissociate at 100-200 °C. Extreme ultraviolet (EUV) light stimulated photoemission from these diamondoid phosphonate monolayers exhibited a characteristic monochromatic NEA peak with 0.2 eV full width at half-maximum (fwhm) at room temperature, showing that the unique monochromatization property of diamondoids remained intact after attachment. Our results demonstrate that phosphonic dichloride functionality is a promising approach for forming stable diamondoid monolayers for elevated temperature and high-current applications such as electron emission and coatings in micro/nano electromechanical systems (MEMS/NEMS).

  7. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES

    Colgan, James; Fontes, Christopher; Zhang, Honglin; ...

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  8. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    SciTech Connect

    Colgan, James; Fontes, Christopher; Zhang, Honglin; Abdallah, Jr., Joseph

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that were submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. We also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.

  9. Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus

    SciTech Connect

    Yang, Yunfei; Li, Mingzhe Wang, Bolong; Liu, Zhiwei

    2015-12-15

    A new high pressure device with a split cylinder was investigated on the basis of the belt-type apparatus. The belt-type die is subjected to excessive tangential tensile stress and the tungsten carbide cylinder is easily damaged in the running process. Taking into account the operating conditions and material properties of the tungsten carbide cylinder, it is divided into 6 blocks to eliminate the tangential tensile stress. We studied two forms of the split type: radial split and tangential split. Simulation results indicate that the split cylinder has more uniform stress distribution and smaller equivalent stress compared with the belt-type cylinder. The inner wall of the tangential split cylinder is in the situation that compressive stress is distributed in the axial, radial, and tangential directions. It is similar to the condition of hydrostatic pressure, and it is the best condition for tungsten carbide materials. The experimental results also verify that the tangential split die can bear the highest chamber pressure. Therefore, the tangential split structure can increase the pressure bearing capacity significantly.

  10. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    DOE PAGES

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; ...

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover,more » at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.« less

  11. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions

    SciTech Connect

    El-atwani, O.; Hattar, Khalid Mikhiel; Hinks, J. A.; Greaves, G.; Harilal, S. S.; Hassanein, A.

    2014-12-25

    We investigated the effects of helium ion irradiation energy and sample temperature on the performance of grain boundaries as helium sinks in ultrafine grained and nanocrystalline tungsten. Irradiations were performed at displacement and non-displacement energies and at temperatures above and below that required for vacancy migration. Microstructural investigations were performed using Transmission Electron Microscopy (TEM) combined with either in-situ or ex-situ ion irradiation. Under helium irradiation at an energy which does not cause atomic displacements in tungsten (70 eV), regardless of temperature and thus vacancy migration conditions, bubbles were uniformly distributed with no preferential bubble formation on grain boundaries. Moreover, at energies that can cause displacements, bubbles were observed to be preferentially formed on the grain boundaries only at high temperatures where vacancy migration occurs. Under these conditions, the decoration of grain boundaries with large facetted bubbles occurred on nanocrystalline grains with dimensions less than 60 nm. Finally, we discuss the importance of vacancy supply and the formation and migration of radiation-induced defects on the performance of grain boundaries as helium sinks and the resulting irradiation tolerance of ultrafine grained and nanocrystalline tungsten to bubble formation.

  12. A characterization study of a hydroxylated polycrystalline tin oxide surface

    NASA Technical Reports Server (NTRS)

    Hoflund, Gar B.; Grogan, Austin L., Jr.; Asbury, Douglas A.; Schryer, David R.

    1989-01-01

    In this study Auger electron spectroscopy, electron spectroscopy for chemical analysis (ESCA) and electron-stimulated desorption (ESD) have been used to examine a polycrystalline tin oxide surface before and after annealing in vacuum at 500 C. Features due to surface hydroxyl groups are present in both the ESCA and ESD spectra, and ESD shows that several chemical states of hydrogen are present. Annealing at 500 C causes a large reduction in the surface hydrogen concentration but not complete removal.

  13. Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode

    DTIC Science & Technology

    2011-07-01

    value of the ratio Ian/Icalc: 1. The minimal ratio would be 1, corresponding to a one- electron oxidation of one-site attached CH3CH2O surface...Coulometric Study of Ethanol Adsorption at a Polycrystalline Platinum Electrode Sol Gilman Sensors and Electron Devices Directorate, ARL...noble metals and noble metal alloys that can provide what amounts to an adsorbed oxygen “valve” for initiating adsorption/reaction on a clean and

  14. An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor

    SciTech Connect

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap Tanemura, Masaki

    2016-02-01

    The synthesis of large-area monolayer tungsten disulphide (WS{sub 2}) single crystal is critical for realistic application in electronic and optical devices. Here, we demonstrate an effective approach to synthesize monolayer WS{sub 2} crystals using tungsten hexachloride (WCl{sub 6}) as a solid precursor in atmospheric chemical vapor deposition process. In this technique, 0.05M solution of WCl{sub 6} in ethanol was drop-casted on SiO{sub 2}/Si substrate to create an even distribution of the precursor, which was reduced and sulfurized at 750 °C in Ar atmosphere. We observed growth of triangular, star-shaped, as well as dendritic WS{sub 2} crystals on the substrate. The crystal geometry evolves with the shape and size of the nuclei as observed from the dendritic structures. These results show that controlling the initial nucleation and growth process, large WS{sub 2} single crystalline monolayer can be grown using the WCl{sub 6} precursor. Our finding shows an easier and effective approach to grow WS{sub 2} monolayer using tungsten halide solution-casting, rather than evaporating the precursor for gas phase reaction.

  15. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K

    NASA Technical Reports Server (NTRS)

    Hee, Man Yun

    1988-01-01

    The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

  16. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals

    SciTech Connect

    Grey, Ian E. . E-mail: ian.grey@csiro.au; Birch, William D.; Bougerol, Catherine

    2006-12-15

    Structural relations between secondary tungsten minerals with general composition A{sub x}[(W,Fe)(O,OH){sub 3}]{sub .y}H{sub 2}O are described. Phyllotungstite (A=predominantly Ca) is hexagonal, a=7.31(3)A, c=19.55(1)A, space group P6{sub 3}/mmc. Pittongite, a new secondary tungsten mineral from a wolframite deposit near Pittong in Victoria, southeastern Australia (A=predominantly Na) is hexagonal, a=7.286(1)A, c=50.49(1)A, space group P-6m2. The structures of both minerals can be described as unit-cell scale intergrowths of (111){sub py} pyrochlore slabs with pairs of hexagonal tungsten bronze (HTB) layers. In phyllotungstite, the (111){sub py} blocks have the same thickness, 6A, whereas pittongite contains pyrochlore blocks of two different thicknesses, 6 and 12A. The structures can alternatively be described in terms of chemical twinning of the pyrochlore structure on (111){sub py} oxygen planes. At the chemical twin planes, pairs of HTB layers are corner connected as in hexagonal WO{sub 3}.

  17. Tungsten carbide production from ore concentrates by molten salt-natural gas sparging treatment

    SciTech Connect

    Carnahan, T.G.; Kazonich, G.; Raddatz, A.E.

    1988-01-01

    The U.S. Bureau of Mines conducted a bench-scale study to delineate the important parameters in a three-step process to produce commercial-quality tungsten carbide (WC) directly from tungsten minerals. In the process, tungsten concentrates of wolframite or wolframite and scheelite are decomposed at 1,050{sup 0}C in a molten mixture of NcCl and Na{sub 2}SiO{sub 3} that forms two immiscible phases. Tungsten, as sodium tungstate, reports to the halide phase and is separated from the gangue constituents, which report to the silicate phase. After decanting to separate the two phases, natural gas is sparged into the molten halide phase a 1,070{sup 0}C. Submicrometer crystals of WC are initially produced. These crystals grow into thin triangular-shaped plates up to 100 {mu}m on a side or into popcorn-shaped conglomerates. Sparged WC was examined for its suitability for use in sintered carbide products. In physical evaluations, sparged WC ground to an average particle size of 1.52 {mu}m and compacted with 10 pct Co binder into standard 6-by 22-mm test bars had a density of 14.35 and a Rockwell A hardness of 89.6. This compared favorably with 14.39 and 89.7 respectively, for test bars made from a standard commercial 1.52-{mu}m WC powder. Test bars made from Bureau of Mines WC had no C'' porosity or eta phase.

  18. In-situ observation of sputtered particles for carbon implanted tungsten during energetic isotope ion implantation

    SciTech Connect

    Oya, Y.; Sato, M.; Uchimura, H.; Okuno, K.; Ashikawa, N.; Sagara, A.; Yoshida, N.; Hatano, Y.

    2015-03-15

    Tungsten is a candidate for plasma facing materials in future fusion reactors. During DT plasma operations, carbon as an impurity will bombard tungsten, leading to the formation of tungsten-carbon (WC) layer and affecting tritium recycling behavior. The effect of carbon implantation for the dynamic recycling of deuterium, which demonstrates tritium recycling, including retention and sputtering, has been investigated using in-situ sputtered particle measurements. The C{sup +} implanted W, WC and HOPG were prepared and dynamic sputtered particles were measured during H{sub 2}{sup +} irradiation. It has been found that the major hydrocarbon species for C{sup +} implanted tungsten is CH{sub 3}, while for WC and HOPG (Highly Oriented Pyrolytic Graphite) it is CH{sub 4}. The chemical state of hydrocarbon is controlled by the H concentration in a W-C mixed layer. The amount of C-H bond and the retention of H trapped by carbon atom should control the chemical form of hydrocarbon sputtered by H{sub 2}{sup +} irradiation and the desorption of CH{sub 3} and CH{sub 2} are due to chemical sputtering, although that for CH is physical sputtering. The activation energy for CH{sub 3} desorption has been estimated to be 0.4 eV, corresponding to the trapping process of hydrogen by carbon through the diffusion in W. It is concluded that the chemical states of hydrocarbon sputtered by H{sub 2}{sup +} irradiation for W is determined by the amount of C-H bond on the W surface. (authors)

  19. Synthesis, structure and theoretical investigation into a homoleptic tris(dithiolene) tungsten.

    PubMed

    Arifin, Khuzaimah; Minggu, Lorna Jeffery; Daud, Wan Ramli Wan; Yamin, Bohari M; Daik, Rusli; Kassim, Mohammad B

    2014-01-01

    A new homoleptic dithiolene tungsten complex, tris-{1,2-bis(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten, was successfully synthesized via a reaction of the thiophosphate ester and sodium tungstate. The thiophosphate ester was prepared from 3,5-dimethoxybenzaldehyde via benzoin condensation to produce the intermediate 1,2-bis-(3,5-dimethoxyphenyl)-2-hydroxy-ethanone compound, followed by a reaction of the intermediate with phosphorus pentasulfide. FTIR, UV-Vis spectroscopy, 1H NMR and 13C NMR and elemental analysis confirmed the product as tris{1,2-bis-(3,5-dimethoxyphenyl)-1,2-ethylenodithiolene-S,S'}tungsten with the molecular formula of C54H54O12S6W. Crystals of the product adopted a monoclinic system with space group of P2(1)/n, where a=12.756(2) Å, b=21.560(3) Å, c=24.980(4) Å and β=103.998(3)°. Three thioester ligands were attached to the tungsten as bidentate chelates to form a distorted octahedral geometry. Density functional theory calculations were performed to investigate the molecular properties in a generalized-gradient approximation framework system using Perdew-Burke-Ernzerhof functions and a double numeric plus polarization basis set. The HOMO was concentrated on the phenyl ligands, while the LUMO was found along the W(S2C2)3 rings. The theoretical optical properties showed a slight blue shift in several low dielectric solvents. The solvatochromism effect was insignificant for high polar solvents.

  20. Stress-dependent ultrasonic scattering in polycrystalline materials.

    PubMed

    Kube, Christopher M; Turner, Joseph A

    2016-02-01

    Stress-dependent elastic moduli of polycrystalline materials are used in a statistically based model for the scattering of ultrasonic waves from randomly oriented grains that are members of a stressed polycrystal. The stress is assumed to be homogeneous and can be either residual or generated from external loads. The stress-dependent elastic properties are incorporated into the definition of the differential scattering cross-section, which defines how strongly an incident wave is scattered into various directions. Nine stress-dependent differential scattering cross-sections or scattering coefficients are defined to include all possibilities of incident and scattered waves, which can be either longitudinal or (two) transverse wave types. The evaluation of the scattering coefficients considers polycrystalline aluminum that is uniaxially stressed. An analysis of the influence of incident wave propagation direction, scattering direction, frequency, and grain size on the stress-dependency of the scattering coefficients follows. Scattering coefficients for aluminum indicate that ultrasonic scattering is much more sensitive to a uniaxial stress than ultrasonic phase velocities. By developing the stress-dependent scattering properties of polycrystals, the influence of acoustoelasticity on the amplitudes of waves propagating in stressed polycrystalline materials can be better understood. This work supports the ongoing development of a technique for monitoring and measuring stresses in metallic materials.