Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.
2015-08-18
A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.
Δg: The new aromaticity index based on g-factor calculation applied for polycyclic benzene rings
NASA Astrophysics Data System (ADS)
Ucun, Fatih; Tokatlı, Ahmet
2015-02-01
In this work, the aromaticity of polycyclic benzene rings was evaluated by the calculation of g-factor for a hydrogen placed perpendicularly at geometrical center of related ring plane at a distance of 1.2 Å. The results have compared with the other commonly used aromatic indices, such as HOMA, NICSs, PDI, FLU, MCI, CTED and, generally been found to be in agreement with them. So, it was proposed that the calculation of the average g-factor as Δg could be applied to study the aromaticity of polycyclic benzene rings without any restriction in the number of benzene rings as a new magnetic-based aromaticity index.
Veljković, Dušan Ž
2018-03-01
Energies of CH/O interactions between water molecule and polycyclic aromatic hydrocarbons with a different number of aromatic rings were calculated using ab initio calculations at MP2/cc-PVTZ level. Results show that an additional aromatic ring in structure of polycyclic aromatic hydrocarbons significantly strengthens CH/O interactions. Calculated interaction energies in optimized structures of the most stable tetracene/water complex is -2.27 kcal/mol, anthracene/water is -2.13 kcal/mol and naphthalene/water is -1.97 kcal/mol. These interactions are stronger than CH/O contacts in benzene/water complex (-1.44 kcal/mol) while CH/O contacts in tetracene/water complex are even stronger than CH/O contacts in pyridine/water complexes (-2.21 kcal/mol). Electrostatic potential maps for different polycyclic aromatic hydrocarbons were calculated and used to explain trends in the energies of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Electron energy loss spectra of polycyclic aromatic hydrocarbons
NASA Technical Reports Server (NTRS)
Keller, John W.; Coplan, M. A.; Goruganthu, R.
1992-01-01
A survey of the electron energy-loss spectroscopy is reported of gas-phase polycyclic aromatic hydrocarbon (PAH) molecules consisting of up to seven rings where the study is limited to the more thermodynamically stable pericondensed systems. The aim of this work is to obtain absorption profiles (proportional to the oscillator strengths) from the visible to the soft X-ray region near 30 eV.
Gong, Miao; Wang, Yulan; Fan, Yujie; Zhu, Wei; Zhang, Huiwen; Su, Ying
2018-02-01
The formation of polycyclic aromatic hydrocarbon is a widespread issue during the supercritical water gasification of sewage sludge, which directly reduces the gasification efficiency and restricts the technology practical application. The changes of the concentrations and forms as well as the synthesis rate of polycyclic aromatic hydrocarbons in the residues from supercritical water gasification of dewatered sewage sludge were investigated to understand influence factors and the reaction pathways. Results showed that the increase of reaction temperature during the heating period favours directly concentration of polycyclic aromatic hydrocarbon (especially higher-molecular-weight), especially when it raise above 300 °C. Lower heating and cooling rate essentially extend the total reaction time. Higher polycyclic aromatic hydrocarbon concentration and higher number of rings were generally promoted by lower heating and cooling rate, longer reaction time and higher reaction temperature. The lower-molecular-weight polycyclic aromatic hydrocarbons can be directly generated through the decomposition of aromatic-containing compounds in sewage sludge, as well as 3-ring and 4-ring polycyclic aromatic hydrocarbons can be formed by aromatization of steroids. Possible mechanisms of reaction pathways of supercritical water gasification of sewage sludge were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fowler, Patrick W.; Gibson, Christopher M.; Bean, David E.
2014-01-01
Alternating partial hydrogenation of the interior region of a polycyclic aromatic hydrocarbon gives a finite model system representing systems on the pathway from graphene to the graphane modification of the graphene sheet. Calculations at the DFT and coupled Hartree–Fock levels confirm that sp2 cycles of bare carbon centres isolated by selective hydrogenation retain the essentially planar geometry and electron delocalization of the annulene that they mimic. Delocalization is diagnosed by the presence of ring currents, as detected by ipsocentric calculation and visualization of the current density induced in the π system by a perpendicular external magnetic field. These induced ‘ring’ currents have essentially the same sense, strength and orbital origin as in the free hydrocarbon. Subjected to the important experimental proviso of the need for atomic-scale control of hydrogenation, this finding predicts the possibility of writing single, multiple and concentric diatropic and/or paratropic ring currents on the graphene/graphane sheet. The implication is that pathways for free flow of ballistic current can be modelled in the same way. PMID:24611026
Yeh, Chia-Nan; Chai, Jeng-Da
2016-01-01
We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289
Virtual Exploration of the Ring Systems Chemical Universe.
Visini, Ricardo; Arús-Pous, Josep; Awale, Mahendra; Reymond, Jean-Louis
2017-11-27
Here, we explore the chemical space of all virtually possible organic molecules focusing on ring systems, which represent the cyclic cores of organic molecules obtained by removing all acyclic bonds and converting all remaining atoms to carbon. This approach circumvents the combinatorial explosion encountered when enumerating the molecules themselves. We report the chemical universe database GDB4c containing 916 130 ring systems up to four saturated or aromatic rings and maximum ring size of 14 atoms and GDB4c3D containing the corresponding 6 555 929 stereoisomers. Almost all (98.6%) of these ring systems are unknown and represent chiral 3D-shaped macrocycles containing small rings and quaternary centers reminiscent of polycyclic natural products. We envision that GDB4c can serve to select new ring systems from which to design analogs of such natural products. The database is available for download at www.gdb.unibe.ch together with interactive visualization and search tools as a resource for molecular design.
Star-Shaped Conjugated Systems
Detert, Heiner; Lehmann, Matthias; Meier, Herbert
2010-01-01
The present review deals with the preparation and the properties of star-shaped conjugated compounds. Three, four or six conjugated arms are attached to cross-conjugated cores, which consist of single atoms (B, C+, N), benzene or azine rings or polycyclic ring systems, as for example triphenylene or tristriazolotriazine. Many of these shape-persistent [n]star compounds tend to π-stacking and self-organization, and exhibit interesting properties in materials science: Linear and non-linear optics, electrical conductivity, electroluminescence, formation of liquid crystalline phases, etc.
Chung, N J; Cho, J Y; Park, S W; Park, B J; Hwang, S A; Park, T I
2008-08-01
The effects of domestic wastewater application on the translocation and accumulation of polycyclic aromatic hydrocarbons (PAHs) in soil and crops (rice, lettuce, and barley) were investigated by Wagner's pot experiment. In the soils and crops after domestic wastewater irrigation, high-molecular weight PAHs (5 to 6 ring) were not detected, but low-molecular weight PAHs (3 to 4 ring) were only detected at trace levels.
Couladouros, Elias A; Vidali, Veroniki P
2004-08-06
A new stereocontrolled method for the formation of trans-anti cyclogeranyl-oxepene systems is described. The demanding stereochemistry is secured by stereoselective coupling of a cyclogeranyl tertiary alcohol with a 1,2-unsymmetrically substituted epoxide, while the formation of the highly strained oxepene is achieved employing ring-closing metathesis. Since the stereochemistry of the trans-fused 6,7-ring system is determined by the epoxide, the method also allows the construction of trans-syn 6,7-ring systems. This approach leads to the synthesis of the AB fragment of Adociasulfate-2 and Toxicol A, for the first time. The flexibility and efficiency of the presented strategy is demonstrated by the total asymmetric synthesis of (-)-Aplysistatin, (+)-Palisadin A, (+)-12-hydroxy-Palisadin B, and (+)-Palisadin B, employing two similar key intermediates.
Li, Xin; Kaattari, Stephen L; Vogelbein, Mary A; Vadas, George G; Unger, Michael A
2016-03-01
Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC 50 values between 1.68-31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples.
Iwegbue, Chukwujindu M A
2011-10-01
The concentrations and profiles of polycyclic aromatic hydrocarbons were determined in spent drilling fluid deposited at Emu-Uno, Delta State of Nigeria. The total concentrations of polycyclic aromatic hydrocarbons in the spent drilling fluid deposits ranged between 40 and 770 μg kg(-1). The PAHs profile were predominantly 2- and 3-rings with acenaphthalene, phenanthrene, fluorene being the predominant PAHs. The prevalence of 2- and 3-rings PAHs in the spent drilling fluid deposits indicate contamination of the drilling fluids with crude oil during drilling. Incorporation of spent drilling fluids into the soil has serious implication for soil, surface water and groundwater quality. © Springer Science+Business Media, LLC 2011
New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals.
Liu, Peng; Lin, He; Yang, Yang; Shao, Can; Gu, Chen; Huang, Zhen
2014-12-04
Thermal decompositions of polycyclic aromatic hydrocarbon (PAH) oxyradicals on various surface sites including five-membered ring, free-edge, zigzag, and armchair have been systematically investigated by using ab initio density functional theory B3LYP/6-311+G(d,p) basis set. The calculation based on Hückel theory indicates that PAHs (3H-cydopenta[a]anthracene oxyradical) with oxyradicals on a five-membered ring site have high chemical reactivity. The rate coefficients of PAH oxyradical decomposition were evaluated by using Rice-Ramsperger-Kassel-Marcus theory and solving the master equations in the temperature range of 1500-2500 K and the pressure range of 0.1-10 atm. The kinetic calculations revealed that the rate coefficients of PAH oxyradical decomposition are temperature-, pressure-, and surface site-dependent, and the oxyradical on a five-membered ring is easier to decompose than that on a six-membered ring. Four-membered rings were found in decomposition of the five-membered ring, and a new reaction channel of PAH evolution involving four-membered rings is recommended.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Kim, Ki-Hyun
2015-07-01
The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.
Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A
2018-01-01
The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.
Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Mineo, Hirobumi; Fujimura, Yuichi
2017-12-01
We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.
Li, Xin; Kaattari, Stephen L.; Vogelbein, Mary A.; Vadas, George G.; Unger, Michael A.
2016-01-01
Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental methylated PAHs, with IC50 values between 1.68–31 μg/L (ppb). 2G8 has been successfully applied on the KinExA Inline Biosensor system for quantifying 3-5 ring PAHs in aqueous environmental samples. PAHs were detected at a concentration as low as 0.2 μg/L. Furthermore, the analyses only required 10 min for each sample. To evaluate the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples analyzed by biosensor and GC-MS were compared. In most cases, the results yielded a good correlation between methods. This indicates that generic antibody 2G8 based biosensor possesses significant promise for a low cost, rapid method for PAH determination in aqueous samples. PMID:26925369
Finnegan, David F; Snapper, Marc L
2011-05-20
Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.
Polycyclic aromatic hydrocarbon (PAH) emissions from a coal-fired pilot FBC system.
Liu, K; Han, W; Pan, W P; Riley, J T
2001-06-29
Due to the extensive amount of data suggesting the hazards of these compounds, 16 polycyclic aromatic hydrocarbons (PAHs) are on the Environmental Protection Agency (EPA) Priority Pollutant List. Emissions of these PAHs in the flue gas from the combustion of four coals were measured during four 1000h combustion runs using the 0.1MW heat-input (MWth) bench-scale fluidized bed combustor (FBC). An on-line sampling system was designed for the 16 PAHs, which consisted of a glass wool filter, condenser, glass fiber filter, Teflon filter, and a Tenax trap. The filters and Tenax were extracted by methylene chloride and hexane, respectively, followed by GC/MS analysis using the selective ion monitoring (SIM) mode. In this project, the effects of operating parameters, limestone addition, chlorine content in the coal, and Ca/S molar ratio on the emissions of PAHs were studied. The results indicated that the emissions of PAHs in an FBC system are primarily dependent on the combustion temperature and excess air ratio. The injection of secondary air with high velocity in the freeboard effectively reduces PAH emissions. The addition of extra limestone can promote the formation of PAHs in the FBC system. Chlorine in the coal can possibly lead to large benzene ring PAH formation during combustion. The total PAH emission increases with an increase in the sulfur content of coal. Incomplete combustion results in PAHs with four or more benzene rings. High efficiency combustion results in PAHs with two or three benzene rings.
Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen
1999-05-14
The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.
Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate.
Forsey, Steven P; Thomson, Neil R; Barker, James F
2010-04-01
The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene
PERSONAL EXPOSURE TO FINE PARTICLE POLYCYCLIC AROMATIC HYDROCARBONS: OUTDOOR SOURCE TRACERS
The most carcinogenic and toxic polycyclic aromatic hydrocarbons (PAH) are the 4-5 ring PAH found preferentially adsorbed to the fine particles (<2.54u in urban ambient air and personal air. Personal exposure to the carcinogenic particle bound PAH is also highly correlated ...
Liao, Weisheng; Liu, Hsin-Wang; Chen, Hsing-Jung; Chang, Wen-Yen; Chiu, Kong-Hwa; Wai, Chien M
2011-01-01
Catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) with up to four fused benzene rings over high-density-polyethylene-stabilized palladium nanoparticles in supercritical carbon dioxide via in situ UV/Vis spectroscopy is presented. PAHs can be efficiently converted to saturated polycyclic hydrocarbons using this green technique under mild conditions at 20 MPa of CO₂ containing 1 MPa of H₂ at 40-50°C. Kinetic studies based on in situ UV/Vis spectra of the CO₂ phase reveal that the initial hydrogenation of a given PAH and the subsequent hydrogenations of its intermediates are pseudo-first-order. The hydrogenation rate of the latter is always much smaller than that of the former probably due to increasing steric hindrance introduced by the hydrogenated benzene rings of PAHs which impedes the adsorption process and hydrogen access to PAHs on catalyst surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2018-02-01
Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH 2 ) stationary phase. The retention behavior of PASH on the NH 2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH 2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.
Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter
NASA Technical Reports Server (NTRS)
Sagan, Carl; Khare, B. N.; Thompson, W. R.; Mcdonald, G. D.; Wing, Michael R.; Bada, Jeffrey L.; Vo-Dinh, Tuan; Arakawa, E. T.
1993-01-01
PAHs are important components of the interstellar medium and carbonaceous chondrites, but have never been identified in the reducing atmospheres of the outer solar system. Incompletely characterized complex organic solids (tholins) produced by irradiating simulated Titan atmospheres reproduce well the observed UV/visible/IR optical constants of the Titan stratospheric haze. Titan tholin and a tholin generated in a crude simulation of the atmosphere of Jupiter are examined by two-step laser desorption/multiphoton ionization mass spectrometry. A range of two- to four-ring PAHs, some with one to four alkylation sites, are identified, with a net abundance of about 0.0001 g/g (grams per gram) of tholins produced. Synchronous fluorescence techniques confirm this detection. Titan tholins have proportionately more one- and two-ring PAHs than do Jupiter tholins, which in turn have more four-ring and larger PAHs. The four-ringed PAH chrysene, prominent in some discussions of interstellar grains, is found in Jupiter tholins.
Byss, Marius; Elhottová, Dana; Tříska, Jan; Baldrian, Petr
2008-11-01
The aim of this study was to determine the efficacy of selected basidiomycetes in the removing of polycyclic aromatic hydrocarbons (PAH) from the creosote-contaminated soil. Fungi Pleurotus ostreatus and Irpex lacteus were supplemented with creosote-contaminated (50-200 mg kg(-1) PAH) soil originating from a wood-preserving plant and incubated at 15 °C for 120 d. Either fungus degraded PAH with 4-6 aromatic rings more efficiently than the microbial community present initially in the soil. PAH removal was higher in P. ostreatus treatments (55-67%) than in I. lacteus treatments (27-36%) in general. P. ostreatus (respectively, I. lacteus) removed 86-96% (47-59%) of 2-rings PAH, 63-72% (33-45%) of 3-rings PAH, 32-49% (9-14%) of 4-rings PAH and 31-38% (11-13%) of 5-6-rings PAH. MIS (Microbial Identification System) Sherlock analysis of the bacterial community determined the presence of dominant Gram-negative bacteria (G-) Pseudomonas in the inoculated soil before the application of fungi. Complex soil microbial community was characterized by phospholipid fatty acids analysis followed by GC-MS/MS. Either fungus induced the decrease of bacterial biomass (G- bacteria in particular), but the soil microbial community was influenced by P. ostreatus in a different way than by I. lacteus. The bacterial community was stressed more by the presence of I. lacteus than P. ostreatus (as proved by the ratio of the fungal/bacterial markers and by the ratio of trans/cis mono-unsaturated fatty acids). Moreover, P. ostreatus stimulated the growth of Gram-positive bacteria (G+), especially actinobacteria and these results indicate the potential of the positive synergistic interaction of this fungus and actinobacteria in creosote biodegradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Nzila, Alexis
2018-05-07
The biodegradation of low- and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) (LWM-PAHs and HMW-PAHs, respectively) has been studied extensively under aerobic conditions. Molecular O 2 plays 2 critical roles in this biodegradation process. O 2 activates the aromatic rings through hydroxylation prior to ring opening and serves as a terminal electron acceptor (TEA). However, several microorganisms have devised ways of activating aromatic rings, leading to ring opening (and thus biodegradation) when TEAs other than O 2 are used (under anoxic conditions). These microorganisms belong to the sulfate-, nitrate-, and metal-ion-reducing bacteria and the methanogens. Although the anaerobic biodegradation of monocyclic aromatic hydrocarbons and LWM-PAH naphthalene have been studied, little information is available about the biodegradation of HMW-PAHs. This manuscript reviews studies of the anaerobic biodegradation of HMW-PAHs and identifies gaps that limit both our understanding and the efficiency of this biodegradation process. Strategies that can be employed to overcome these limitations are also discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dominikowska, Justyna; Palusiak, Marcin
2011-07-07
The concept of Clar's π-electron aromatic sextet was tested against a set of polycyclic aromatic hydrocarbons in neutral and doubly charged forms. Systems containing different types of rings (in the context of Clar's concept) were chosen, including benzene, naphthalene, anthracene, phenanthrene and triphenylene. In the case of dicationic structures both singlet and triplet states were considered. It was found that for singlet state dicationic structures the concept of aromatic sextet could be applied and the local aromaticity could be discussed in the context of that model, whereas in the case of triplet state dicationic structures Clar's model rather failed. Different aromaticity indices based on various properties of molecular systems were applied for the purpose of the studies. The discussion about the interdependence between the values of different aromaticity indices applied to neutral and charged systems in singlet and triplet states is also included. This journal is © the Owner Societies 2011
Kuang, Yuan-wen; Zhou, Guo-yi; Wen, Da-zhi; Li, Jiong; Sun, Fang-fang
2011-09-01
Concentrations of polycyclic aromatic hydrocarbons (PAHs) were examined and potential sources of PAHs were identified from the dated tree-rings of Masson pine (Pinus massoniana L.) near two industrial sites (Danshuikeng, DSK and Xiqiaoshan, XQS) in the Pearl River Delta of south China. Total concentrations of PAHs (∑PAHs) were revealed with similar patterns of temporal trends in the tree-rings at both sites, suggesting tree-rings recorded the historical variation in atmospheric PAHs. The differences of individual PAHs and of ∑PAHs detected in the tree-rings between the two sites reflected the historical differences of airborne PAHs. Regional changes in industrial activities might contribute to the site-specific and period-specific patterns of the tree-ring PAHs. The diagnostic PAH ratios of Ant/(Ant + PA), FL/(FL + Pyr), and BaA/(BaA + Chr)) revealed that PAHs in the tree-rings at both sites mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood burning, coal combustion, diesel, and gasoline-powered vehicular emissions were the dominant contributors of PAHs sources at DSK, while diesel combustion, gasoline and natural gas combustion, and incomplete coal combustion were responsible for the main origins of PAHs at XQS. Tree-ring analysis of PAHs was indicative of PAHs from a mixture of sources of combustion, thus minimizing the bias of short-term active air sampling.
Li, Jia-Le; Wang, Yan-Xin; Zhang, Cai-Xiang; Dong, Yi-Hui; Du, Bin; Liao, Xiao-Ping
2014-12-01
31 topsoil samples were collected by grid method in Xiaodian sewage irrigation area, Taiyuan City, North of China. The concentrations of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatograph coupled with mass spectrum. Generally speaking, the distribution order of PAHs in the area is: those with five and six rings > those with four rings > those with two and three rings. Source apportionment shows a significant zonation of the source of PAHs: the civil coal pollution occurred in the north part, the local and far factory pollution happened in the middle area and the mixed pollution sources from coal and wood combustion, automotive emission, presented in the south area. The distribution of PAHs has a definite relationship with the sewage water flow and soil adsorption. The related coefficient between PAHs and physicochemical property showed there was a negative correlation between pH, silt, clay and PAHs while there was a positive correlation between total organic carbon, sand and PAHs.
Kim, Seung-Kyu; Chae, Doo Hyun
2016-08-15
Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) in air-seawater interface were measured over 1year in the coastal region of Incheon, South Korea. Most individual PAHs and total PAHs in air displayed statistically significant negative correlations with temperature, but not significant in seawater. Less hydrophobic compounds with three rings were at or near equilibrium in summer, while PAHs with four to six rings were in disequilibrium in all seasons, with higher fugacity gradients in colder seasons and for more hydrophobic compounds. Differently from fugacity gradients, the highest net fluxes occurred for some three- and four-ring PAHs showing the highest atmospheric concentrations. Net gaseous exchange, which was higher in winter, occurred from air to seawater with an annual cumulative flux of 2075μg/m(2)/year (for Σ15PAHs), indicating that atmospheric PAHs in this region, originating from coal/biomass combustion, can deteriorate the quality of seawater and sediment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yan, Jinxia; Liu, Jingling; Shi, Xuan; You, Xiaoguang; Cao, Zhiguo
2016-08-15
The distribution, seasonal variations and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in water from three estuaries in Hai River Basin of China, which has been suffering from different anthropogenic pressures, were investigated. In three estuaries, the average concentration of ΣPAHs was the lowest in Luan River estuary, followed by Hai River estuary, and the highest in Zhangweixin River estuary. There were significant seasonal variations in ΣPAHs, the concentrations of ΣPAHs were higher in November than in May and August. The composition profiles of PAHs in different sites were significantly different, and illustrated seasonal variations. Generally, 2-ring (Nap) and 3-ring PAHs (Acp, Fl and Phe) were the most abundant components at most sampling sites in three estuaries. The PAHs in three estuaries were mainly originated from pyrogenic sources. A method based on toxic equivalency factors (TEFs) and risk quotient (RQ) was proposed to assess the ecological risk of ΣPAHs, with the ecological risk of individual PAHs being considered separately. The results showed that the ecological risks caused by ΣPAHs were high in Hai River estuary and Zhangweixin River estuary, and moderate in Luan River estuary. The mean values of ecological risk in August were lower than those in November. The contributions of individual PAHs to ecological risk were different in May, August and November. 3-ring and 4-ring PAHs accounted for much more ecological risk than 2-ring, 5-ring and 6-ring, although the contributions of 5-ring and 6-ring to ecological risk were higher than these to PAHs concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schmidt, Yvonne; Lam, Jonathan K.; Pham, Hung V.; Houk, K. N.; Vanderwal, Christopher D.
2013-01-01
The unusual intramolecular arene/allene cycloaddition described thirty years ago by Himbert permits rapid access to strained polycyclic compounds that offer great potential for the synthesis of complex scaffolds. To more fully understand the mechanism of this cycloaddition reaction, and to guide efforts to extend its scope to new substrates, quantum mechanical computational methods were employed in concert with laboratory experiments. These studies indicated that the cycloadditions likely proceed via concerted processes; a stepwise biradical mechanism was shown to be higher in energy in the cases studied. The original Himbert cycloaddition chemistry is also extended from heterocyclic to carbocyclic systems, with computational guidance used to predict thermodynamically favorable cases. Complex polycyclic scaffolds result from the combination of the cycloaddition and subsequent ring-rearrangement metathesis reactions. PMID:23634642
CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS
Rogoff, Martin H.
1962-01-01
Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381
Zhou, Hui; Wu, Chunfei; Onwudili, Jude A; Meng, Aihong; Zhang, Yanguo; Williams, Paul T
2015-02-01
The formation of 2-4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Jianwang; Shang, Xu; Zhao, Zhixu; Tanguay, Robert L.; Dong, Qiaoxiang; Huang, Changjiang
2012-01-01
The town of Shuitou was renowned as the leather capital of China because of its large-scale tanning industry, but the industry’s lack of pollution controls has caused severe damage to the local water system. This study determined 15 priority polycyclic aromatic hydrocarbons (PAHs) in water, sediment, soil, and plant samples collected from Aojiang River and its estuary. The total PAHs ranged from 910 to 1520 ng/L in water samples. The total PAH in sediments were moderate to low in comparison with other rivers and estuaries in China, but the relative proportions of PAHs per million people are high when considering the population size associated with each watershed. Ratios of fluoranthene/pyrene and PAHs with low/high molecular weight suggest a petrogenic PAH origin. The PAH composition profile in soil was similar to that in sediment with 4–6 ring PAHs being dominant. The PAHs with 2–3 rings were the dominant species in plant leaves. There were no correlations between PAHs in soils and in plants, suggesting that PAHs accumulate in plant leaves through absorption from the air. The general observation of elevated PAH concentrations in all matrix suggests a possible contribution by the local leather industry on the PAH concentrations in the Aojiang watershed. PMID:19726127
Zhang, Wanhui; Wei, Chaohai; An, Guanfeng
2015-05-01
In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.
Liu, Liang; Liu, An; Li, Yang; Zhang, Lixun; Zhang, Guijuan; Guan, Yuntao
2016-09-01
Reusing stormwater is becoming popular worldwide. However, urban road stormwater commonly contains toxic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), which could undermine reuse safety. This study investigated pollution level of PAHs and their composition build-up on urban roads in a typical megacity in South China. The potential ecological risk posed by PAHs associated with road deposited solid (RDS) was also assessed. Results showed that ecological risk levels varied based on different land use types, which could be significantly influenced by the composition of PAHs and characteristics of RDS. A higher percentage of high-ring PAHs, such as more than four rings, could pose higher ecological risk and are more likely to undermine stormwater reuse safety. Additionally, the degree of traffic congestion rather than traffic volume was found to exert a more significant influence on the generation of high-ring PAH generation. Therefore, stormwater from more congested roads might need proper treatment (particularly for removing high-ring PAHs) before reuse or could be suitable for purposes requiring low-water-quality. The findings of this study are expected to contribute to adequate stormwater reuse strategy development and to enhance the safety of urban road stormwater reuse. Copyright © 2016 Elsevier B.V. All rights reserved.
Wilson, Walter B.; Sander, Lane C.; Oña-Ruales, Jorge O.; Mössner, Stephanie G.; Sidisky, Leonard M.; Lee, Milton L.; Wise, Stephen A.
2017-01-01
Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184 Da PASHs, (2) 13 four-ring MM 234 Da PASHs, (3) 10 five-ring MM 258 Da PASHs, and (4) 20 five-ring MM 284 Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r = 0.50 (MM 284 Da) to r = 0.77 (MM 234 Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r = 0.31 (MM 234 Da) to r = 0.54 (MM 284 Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r = 0.14 (MM 258 Da) to r = 0.59 (MM 284 Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases. PMID:28089272
Wilson, Walter B; Sander, Lane C; Oña-Ruales, Jorge O; Mössner, Stephanie G; Sidisky, Leonard M; Lee, Milton L; Wise, Stephen A
2017-02-17
Retention indices for 48 polycyclic aromatic sulfur heterocycles (PASHs) were determined using gas chromatography with three different stationary phases: a 50% phenyl phase, a 50% liquid crystalline dimethylpolysiloxane (LC-DMPS) phase, and an ionic liquid (IL) phase. Correlations between the retention behavior on the three stationary phases and PASH geometry (L/B and T, i.e., length-to-breadth ratio and thickness, respectively) were investigated for the following four isomer sets: (1) 4 three-ring molecular mass (MM) 184Da PASHs, (2) 13 four-ring MM 234Da PASHs, (3) 10 five-ring MM 258Da PASHs, and (4) 20 five-ring MM 284Da PASHs. Correlation coefficients for retention on the 50% LC-DMPS vs L/B ranged from r=0.50 (MM 284Da) to r=0.77 (MM 234Da). Correlation coefficients for retention on the IL phase vs L/B ranged from r=0.31 (MM 234Da) to r=0.54 (MM 284Da). Correlation coefficients for retention on the 50% phenyl vs L/B ranged from r=0.14 (MM 258Da) to r=0.59 (MM 284Da). Several correlation trends are discussed in detail for the retention behavior of PASH on the three stationary phases. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Meng; Xie, Jingfang; Wang, Zhentao; Zhao, Lijuan; Zhang, Hong; Li, Meng
2016-09-01
Sixteen polycyclic aromatic hydrocarbons (PAHs) present in PM2. 5 were analyzed in 2012 in Taiyuan (China) using high performance liquid chromatography (HPLC) with fluorescence and ultraviolet detectors. The average daily mass concentrations of ΣPAHs in different seasons ranged from 10.36 ng/m3 to 215.93 ng/m3 and had strong seasonal variation, with highest values in winter and lowest in summer. Over the whole year, PAHs appeared in the following order of frequency: 4-ring > 6-ring > 5-ring > 3-ring; in winter, the percentage of 4-ring PAHs was the highest (62.68%), while in summer, the percentages of 5-ring and 6-ring PAHs (cumulative total of 50.57%) were higher. The ratio method was employed to investigate potential source categories of PAHs in PM2.5 in Taiyuan, with data suggesting that the main PAH sources are coal and wood combustion and vehicle emissions. Finally, a risk assessment of PAHs was performed based on benzo(a)pyrene equivalent (BaPeq) values and individual cancer risk ratios, with results suggesting that the toxicity of PAHs was high during winter and spring time in Taiyuan. The values of incremental lifetime cancer risk (ILCR) induced by whole year inhalation exposure(Ri) for all age groups were larger than 10- 6 in spring and winter, while Ri values for male and female adults in summer and autumn were also larger than 10- 6, indicating high potential carcinogenic risk. During the same season, the ILCR of adults was greater than that of other age groups and that of females was a little higher than of males. With respect to the season, the ranking of ILCR in decreasing order was as follows: winter, spring, autumn, and summer.
Afshar-Mohajer, Nima; Wilson, Christina; Wu, Chang-Yu; Stormer, James E
2016-04-01
Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources. Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter in determining the source with the prevailing contribution. Mobile vehicle sources showed a higher contribution for species with four or fewer benzene rings, whereas sugarcane burning contributed more for species with five or more benzene rings. Results from this study encourage more control for sugarcane burns and help to better manage authorization of the sugarcane burning incidents and more restrictive transportation plans to limit PAH emissions from mobile vehicles.
Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Feigelson, Eric D.
1989-01-01
Production of polycyclic aromatic hydrocarbons in carbon-rich circumstellar envelopes was investigated using a kinetic approach. A detailed chemical reaction mechanism of gas-phase PAH formation and growth, containing approximately 100 reactions of 40 species, was numerically solved under the physical conditions expected in cool stellar winds. The chemistry is based on studies of soot production in hydrocarbon pyrolysis and combustion. Several first-ring and second-ring cyclization processes were considered. A linear lumping algorithm was used to describe PAH growth beyond the second aromatic ring. PAH production using this mechanism was examined with respect to a grid of idealized constant velocity stellar winds as well as several published astrophysical models. The basic result is that the onset of PAH production in the interstellar envelopes is predicted to occur within the temperature interval of 1100 to 900 K. The absolute amounts of the PAHs formed, however, are very sensitive to a number of parameters, both chemical and astrophysical, whose values are not accurately known. Astrophysically meaningful quantities of PAHs require particularly dense and slow stellar winds and high initial acetylene abundance. It is suggested that most of the PAHs may be produced in a relatively small fraction of carbon-rich red giants.
Olivella, M A; Ribalta, T G; de Febrer, A R; Mollet, J M; de Las Heras, F X C
2006-02-15
Extensive forest fires occurred in Catalonia, northern Spain, in 1994. In our study, concentrations and profiles of 12 parent polycyclic aromatic hydrocarbons (PAHs) were determined in riverine waters, ash and sediment samples at nine sampling sites (W1-W9) and at three sampling dates from Llobregat hydrographic basin: in August, 1994, one month after the extensive forest fires; in September, 1994, after the first heavy autumn rainfalls and in January, 1995, six months after forest fires. In August 1994, the total concentrations of 12 PAHs measured in riverine waters varied from 2 ng/l to 336 ng/l. In September 1994, the total PAH concentrations decreased to 0.2-31 ng/l and in January 1995, from 9 ng/l to 73 ng/l. In August, the composition pattern of PAHs showed a distribution dominated by 4-ring PAHs (pyrene, chrysene+triphenylene, benzo(a)anthracene) at W3-W6, W8 and W9 and 3-ring PAHs (phenanthrene) at W1, W2 and W7. In September, a preference by 3-ring PAHs (phenanthrene) at all sampling sites except W5 was shown and in January was clearly dominated by 4-ring PAHs (chrysene+triphenylene, pyrene, benzo(a)anthracene) at all sampling sites. In ash and sediment samples, the total concentrations of 12 PAHs ranged from 1.3 ng/g to 19 ng/g. The dominant compound was phenanthrene.
Pathiratne, Asoka; Hemachandra, Chamini K
2010-08-01
Despite ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the tropical environments, little information is available concerning responses of tropical fish to PAHs and associated toxicity. In the present study, effects of five PAHs containing two to four aromatic rings on hepatic CYP1A dependent ethoxyresorufin O-deethylase (EROD), glutathione S-transferase (GST) and serum sorbitol dehydrogenase (SDH) activities in Nile tilapia, a potential fish species for biomonitoring pollution in tropical waters, were evaluated. Results showed that EROD activities were induced by the PAHs containing four aromatic rings (pyrene and chrysene) in a dose dependent manner. However PAHs with two to three aromatic rings (naphthalene, phenanthrene and fluoranthene) caused no effect or inhibition of EROD activities depending on the dose and the duration. Fluoranthene was the most potent inhibitor. SDH results demonstrated that high doses of fluoranthene induced hepatic damage. GST activity was induced by the lowest dose of phenanthrene, fluoranthene and chrysene but high doses had no effect. The results indicate that induction of EROD enzyme in Nile tilapia is a useful biomarker of exposure to PAHs such as pyrene and chrysene. However EROD inhibiting PAHs such as fluoranthene in the natural environment may modulate the EROD inducing potential of other PAHs thereby influencing PAH exposure assessments.
Zhou, Jie-Cheng; Chen, Zhen-Lou; Bi, Chun-Juan; Lü, Jin-Gang; Xu, Shi-Yuan; Pan, Qi
2012-12-01
Concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) in water and surface sediments collected from the urban rivers of Wenzhou city in spring and summer were measured by GC-MS. The results showed that the total PAHs concentrations in water and sediments of the studied rivers varied in ranges of 146.74-3 047.89 ng x L(-1) and 21.01-11 990.48 ng x g(-1), respectively. Higher concentrations occurred in spring. The low and middle rings of 2-4-ring were dominant in both water and sediments, but the concentrations of 5-ring and 6-ring PAHs in sediments were relatively higher than those in water. The EBaP values of PAHs in water of the studied rivers in spring and summer were 1.69-51.95 ng x L(-1) and 0-3.03 ng x L(-1), respectively. Eighty percent of water samples in spring surpassed the limits of BaP in surface water of China. The concentrations of sigma PAHs in the sediments both in spring and summer were lower than the ERM value, but part of the components of PAHs had values higher than the ERM, suggesting possible toxic effect on living organisms. Based on the PAHs molecule ratios and principal component analysis, a mixed PAHs source of petroleum and combustion in water and sediments was diagnosed, while sediments showed a greater proportion of combustion sources.
Guo, Meixia; Gong, Zongqiang; Allinson, Graeme; Tai, Peidong; Miao, Renhui; Li, Xiaojun; Jia, Chunyun; Zhuang, Jie
2016-02-01
The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pushparajah, Daphnee; Lewis, Dfv; Ioannides, Costas
2017-04-01
The objectives of the present study were two-fold: (a) to evaluate the role of molecular shape on the interaction of polycyclic aromatic hydrocarbons (PAHs) with the Ah receptor and CYP1A1 upregulation, and (b) to evaluate the potential of PAHs to induce epoxide hydrolase and glutathione S-transferase, two major enzymes involved in their metabolism. In order to achieve these objectives, precision-cut rat liver slices were incubated with a range of concentrations of seven 5-ring isomeric PAHs, namely benzo[c]chrysene, benzo[b]chrysene, benzo[g]chrysene, dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, picene and pentacene, for 24h. All compounds, with the exception of pentacene, elevated the O-deethylation of ethoxyresorufin, an activity associated with CYP1A1; induction of this enzyme by the various PAHs correlated with their avidity for the Ah receptor. None of the PAHs studied increased epoxide hydrolase activity, monitored using benzo[a]pyrene 4,5-oxide. Of the seven PAHs, only benzo[g]chrysene elevated glutathione S-transferase activity, measured using 1-chloro-2,4-dinitrobenzene or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole as substrates. No relationship could be established between length or length/width and interaction with the Ah receptor and CYP1A1 up-regulation indicating that other structural or electronic factors are likely to be more important. Finally, 5-ring PAHs are poor inducers of the epoxide hydrolase and glutathione S-transferase enzyme systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Chi; Tian, Jun; Ren, Jun; Wang, Zhongwen
2017-01-26
Aiming to develop efficient and general strategies for construction of complex and diverse polycyclic skeletons, we have successfully developed [4+3]IMPC (intramolecular parallel cycloaddition) of cyclopropane 1,1-diesters with [3]dendralenes. With a combination of the [4+3]IMPC and subsequent [4+n] cycloadditions, trans-[5.3.0]decane skeleton and its corresponding structurally complex and diverse polycyclic variants could be constructed efficiently. This novel [4+3] cycloaddition reaction mode of donor-acceptor cyclopropanes proceeds as a result of the ring-strain relief of a trans-[3.3.0]octane. We strongly believe that the developed methods will demonstrate potential applications in natural products synthesis and drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
1986-01-01
biological activity. Pullman, in 1945 , noted that active compounds contained angular benzo rings. She introduced the terminology "K- region" to refer to...Figure 1.6) give .... ~~~~~. .. .. .. . ........ . _............ . _.-.•.-•.. . ..... ... ,. 12 .xcellent correlation when measured reactivity ( hydrolysis ...molecular plane, the diol epoxide is trans or series 2. Early studies indicated that isomer 1 is the more reactive diol epoxide in hydrolysis reactions
Lv, Jinze; Zhu, Lizhong
2013-03-01
Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.
Abuhelou, Fayez; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Catteloin, Delphine; Collin, Valéry; Bauer, Allan; Kanbar, Hussein Jaafar; Gley, Renaud; Manceau, Luc; Thomas, Fabien; Montargès-Pelletier, Emmanuelle
2017-10-01
In this study, we compared the influence of two different collection methods, filtration (FT) and continuous flow field centrifugation (CFC), on the concentration and the distribution of polycyclic aromatic compounds (PACs) in suspended particulate matter (SPM) occurring in river waters. SPM samples were collected simultaneously with FT and CFC from a river during six sampling campaigns over 2 years, covering different hydrological contexts. SPM samples were analyzed to determine the concentration of PACs including 16 polycyclic aromatic hydrocarbons (PAHs), 11 oxygenated PACs (O-PACs), and 5 nitrogen PACs (N-PACs). Results showed significant differences between the two separation methods. In half of the sampling campaigns, PAC concentrations differed from a factor 2 to 30 comparing FT and CFC-collected SPMs. The PAC distributions were also affected by the separation method. FT-collected SPM were enriched in 2-3 ring PACs whereas CFC-collected SPM had PAC distributions dominated by medium to high molecular weight compounds typical of combustion processes. This could be explained by distinct cut-off threshold of the two separation methods and strongly suggested the retention of colloidal and/or fine matter on glass-fiber filters particularly enriched in low molecular PACs. These differences between FT and CFC were not systematic but rather enhanced by high water flow rates.
Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China.
Wang, Chunhui; Zhou, Shenglu; Wu, Shaohua; Song, Jing; Shi, Yaxing; Li, Baojie; Chen, Hao
2017-10-01
The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑ 16 PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaP eq ) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.
Total Synthesis of Natural Products Using Hypervalent Iodine Reagents
NASA Astrophysics Data System (ADS)
Maertens, Gaetan; L'homme, Chloe; Canesi, Sylvain
2014-12-01
We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaeger, C.; Huisken, F.; Henning, Th.
2009-05-01
Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less
The study of azaarene behavior over atmosphere of subtropical city(Keelung)
NASA Astrophysics Data System (ADS)
Liu, Chih Yun
2017-04-01
In this study, we collected the Total Suspended Particulates (TSP) from July 2014 to February 2016 in the subtropical city (Keelung), and researched azaarene behavior over atmosphere. Polycyclic Aromatic Compounds (PAHs) are ubiquitous pollutants in the environment; they have known carcinogens and/or mutagens, mainly produce from incomplete combustion. Azaarenes are polycyclic aromatic hydrocarbon derivative compounds in which a carbon atom in one of the aromatic rings is substituted by a nitrogen atom. Organism exposure to azaarenes occurs through inhalation of polluted air and by ingestion of food and/or water containing combustion products and accumulate in the body. Total azaarene concentration (16 individual compound concentration of the aggregate) is between 0.92 to 3.76 μg/m3, results showed that the concentration of azaarenes have significant seasonal variation, they have higher concentration in the cold month. In molecular weight, the highest proportion is the molecular weight equal to 143(ΣMQ) and then the molecular weight equal to 179(BAP), ΣMQ would rise from 30% 40% to 40% 50% during the cold month and warm months. Compared to ring number, 2-rings are biggest part, the smallest is 4-rings, its ratio has slight variation, but primary species is 2-rings. Emissions from transportation, local housing heating, factories burning fossil fuels and dust from Mainland south air mass are pollutant, their sources and climate conditions can affect concentration and composition of compound. There are highly significant correlation between 3-rings and 4-rings, which suggests that there are similar source strengths and transport mechanisms for these compounds. Correlation between concentration of azaarenes and ambient temperature is negative moderation, with concentration of atmospheric suspended particles is positive moderate correlation. Finally, we establish the relationship between the three parameters to predict concentration of azaarenes over atmosphere of subtropical regions. Key words: azaarenes, atmospheric suspended particles, subtropical city, multiple regression analysis.
Oña-Ruales, Jorge O.; Sharma, Arun K.; Wise, Stephen A.
2015-01-01
We applied a combination of normal-phase liquid chromatography (NPLC) with ultraviolet-visible spectroscopy and gas chromatography with mass spectrometry (GC/MS) for the fractionation, identification, and quantification of six ring C26H16 cata-condensed polycyclic aromatic hydrocarbons, PAHs, in the Standard Reference Material 1597a, Complex Mixture of PAHs from Coal Tar. For the characterization analysis, we calculated the GC retention indices of 17 C26H16 PAH authentic reference standards using the Rxi-PAH and DB-5 GC columns. Then, we used NPLC with ultraviolet-visible spectroscopy to isolate the fractions containing the C26H16 PAHs, and subsequently, we used GC/MS to establish the identity and quantity of the C26H16 PAHs using authentic reference standards. Following this procedure, 12 C26H16 cata-condensed PAHs benzo[c]pentaphene, dibenzo[f,k]tetraphene, benzo[h]pentaphene, dibenzo[a,l]tetracene, dibenzo[c,k]tetraphene, naphtho[2,3-c]tetraphene, dibenzo[a,c]tetracene, benzo[b]picene, dibenzo[a,j]tetracene, naphtho[2,1-a]tetracene, dibenzo[c,p]chrysene, and dibenzo[a,f]tetraphene were identified and quantified for the first time, and benzo[c]picene was quantified for the first time in an environmental combustion sample. PMID:26449848
Peng, Nana; Li, Yi; Liu, Zhengang; Liu, Tingting; Gai, Chao
2016-09-15
Emission and distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) were investigated during municipal solid waste (MSW) and coal combustion alone and MSW/coal blend (MSW weight fraction of 25%) co-combustion within a temperature range of 500°C-900°C. The results showed that for all combustion experiments, flue gas occupied the highest proportion of total PAHs and fly ash contained more high-ring PAHs. Moreover, the 3- and 4-ring PAHs accounted for the majority of total PAHs and Ant or Phe had the highest concentrations. Compared to coal, MSW combustion generated high levels of total PAHs with the range of 111.28μg/g-10,047.22μg/g and had high toxicity equivalent value (TEQ). MSW/coal co-combustion generated the smallest amounts of total PAHs and had the lowest TEQ than MSW and coal combustion alone. Significant synergistic interactions occurred between MSW and coal during co-combustion and the interactions suppressed the formation of PAHs, especially hazardous high-ring PAHs and decreased the TEQ. The present study indicated that the reduction of the yield and toxicity of PAHs can be achieved by co-combustion of MSW and coal. Copyright © 2016 Elsevier B.V. All rights reserved.
Howerton, Samuel B; McGuffin, Victoria L
2003-07-15
The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.
Tripathi, Krishna N; Ray, Devalina; Singh, Ravi P
2017-12-06
Functionalized polycyclic pyrrole-azole structures possessing fused six membered and seven membered rings were directly synthesized via ligand-enabled, Pd-catalyzed, site selective, intramolecular cross couplings of N-substituted pyrrole-azoles. C5-H activation in the presence of a reactive C2-H remains a challenge that needs to be addressed and this was targeted to be resolved through the present approach by specifically generating the cyclized products with 83-100% selectivity. The featured methodology provides a novel disconnection for the synthesis of pyrrole containing alkaloids and medicinal compounds.
Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.
Wu, Xinxin; Zhu, Chen
2018-06-01
Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
Marks, Tobin J.; Chen, You-Xian
2001-01-01
Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
Marks, Tobin J.; Chen, You-Xian
2002-01-01
Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
The ability of several 4- and 5-ring polycyclic aromatic hydrocarbons (PAHs), heterocyclic PAHs, and their monohydroxy derivatives to interact with the estrogen receptor (ER) alpha and beta isoforms was examined. Only compounds possessing a hydroxyl group were able to compete wit...
Ma, Chuanliang; Lin, Tian; Ye, Siyuan; Ding, Xigui; Li, Yuanyuan; Guo, Zhigang
2017-03-01
The polycyclic aromatic hydrocarbons (PAHs) of a 210 Pb-dated sediment core extracted from the Liaohe River Delta wetland were measured to reconstruct the sediment record of PAHs and its response to human activity for the past 300 years in Northeast China. The concentrations of the 16 U.S. Environmental Protection Agency priority PAHs (∑16PAHs) ranged from 46 to 1167 ng g -1 in this sediment core. The concentrations of the 16 PAHs (especially 4- and 5+6-ring PAHs) after the 1980s (surface sediments 0-6 cm) were one or two orders of magnitudes higher than those of the down-core samples. The exponential growth of 4-ring and 5+6-ring PAH concentrations after the 1980s responded well to the increased energy consumption and number of civil vehicles resulting from the rapid economic development in China. Prior to 1950, relatively low levels of the 16 PAHs and a high proportion of 2+3-ring PAHs was indicative of biomass burning as the main source of the PAHs. A significant increase in the 2 + 3 ring PAH concentration from the 1860s-1920s was observed and could be attributed to a constant influx of population migration into Northeast China. It was suggested that the link between historical trend of PAHs and population or energy use involves two different economic stages. Typically, in an agricultural economy, the greater the population size, the greater the emission of PAHs from biomass burning, while in an industrial economy, the increase in sedimentary PAH concentrations is closely related to increasing energy consumption of fossil fuels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xiao, Rong; Bai, Junhong; Wang, Junjing; Lu, Qiongqiong; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui
2014-09-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the soils from industrial, wharf, cropland, milldam and natural wetland sites to characterize their distributions, toxic levels and possible sources in the Pearl River Estuary and identify their relationships with soil organic matter (SOM) and water-stable aggregates (WSAs). Our results indicate that the average concentration of total PAHs in this region reached a moderate pollution level, which was higher than that in other larger estuaries in Asia. The average level of total PAHs in industrial soils was 1.2, 1.5, 1.6 and 2.3 times higher than those in soils from wharf, cropland, milldam and natural wetland sites, respectively. Greater accumulation of PAHs occurred in the middle and/or bottom soil layers where 3-ring PAHs were dominant. Industrial soils also exhibited the highest toxic levels with the highest toxic equivalent concentrations of PAHs, followed by wharf and milldam soils, and the cropland and wetland soils had the lowest toxicity. The diagnostic ratios suggested that PAHs primarily originated from biomass and coal combustion at industrial and milldam sites, and petroleum combustion was determined to be the primary source of PAHs at the wharf, cropland and wetland sites. Both 3-ring and 4-ring PAHs in the milldam and wharf soils were significantly positively correlated with the SOM, whereas the 4,5,6-ring PAHs and total PAHs in industrial soils and the 2-ring PAHs in cropland soils were significantly negatively correlated with the SOM. In addition, large WSAs also exhibited a significant positive correlation with PAHs. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouanneau,Y.; Meyer, C.; Jakoncic, J.
In Sphingomonas CHY-1, a single ring-hydroxylating dioxygenase is responsible for the initial attack of a range of polycyclic aromatic hydrocarbons (PAHs) composed of up to five rings. The components of this enzyme were separately purified and characterized. The oxygenase component (ht-PhnI) was shown to contain one Rieske-type [2Fe-2S] cluster and one mononuclear Fe center per {alpha} subunit, based on EPR measurements and iron assay. Steady-state kinetic measurements revealed that the enzyme had a relatively low apparent Michaelis constant for naphthalene (K{sub m} = 0.92 {+-} 0.15 {mu}M) and an apparent specificity constant of 2.0 {+-} 0.3 M{sup -1} s{sup -1}.more » Naphthalene was converted to the corresponding 1,2-dihydrodiol with stoichiometric oxidation of NADH. On the other hand, the oxidation of eight other PAHs occurred at slower rates and with coupling efficiencies that decreased with the enzyme reaction rate. Uncoupling was associated with hydrogen peroxide formation, which is potentially deleterious to cells and might inhibit PAH degradation. In single turnover reactions, ht-PhnI alone catalyzed PAH hydroxylation at a faster rate in the presence of organic solvent, suggesting that the transfer of substrate to the active site is a limiting factor. The four-ring PAHs chrysene and benz[a]anthracene were subjected to a double ring-dihydroxylation, giving rise to the formation of a significant proportion of bis-cis-dihydrodiols. In addition, the dihydroxylation of benz[a]anthracene yielded three dihydrodiols, the enzyme showing a preference for carbons in positions 1,2 and 10,11. This is the first characterization of a dioxygenase able to dihydroxylate PAHs made up of four and five rings.« less
Cheng, Cheng; Jiang, Yi; Liu, Cheng-Fang; Zhang, Jian-Dong; Lai, Wen-Yong; Huang, Wei
2016-12-19
A new set of star-shaped polycyclic aromatic hydrocarbons (PAHs) based on naphthalene-fused truxenes, TrNaCn (n=1-4), were synthesized and characterized. The synthesis involved a microwave-assisted six-fold Suzuki coupling reaction, followed by oxidative cyclodehydrogenation. Multiple dehydrocyclization products could be effectively isolated in a single reaction, thus suggesting that the oxidative cyclodehydrogenation reaction involved a stepwise ring-closing process. The thermal, optical, and electrochemical properties and the self-assembly behavior of the resulting oxidized samples were investigated to understand the impact of the ring-fusing process on the properties of the star-shaped PAHs. Distinct bathochromic shift of the absorption maxima (λ max ) revealed that the molecular conjugation extended with the stepwise ring-closing reactions. The optical band-gap energy of these PAHs varied significantly on increasing the number of fused rings, thereby resulting in readily tunable emissive properties of the resultant star-shaped PAHs. Interestingly, the generation of rigid "arms" by using perylene analogues caused TrNaC2 and TrNaC3 to show significantly enhanced photoluminescence quantum yields (PLQYs) in solution (η=0.65 and 0.66, respectively) in comparison with those of TrNa and TrNaC1 (η=0.08 and 0.16, respectively). Owing to strong intermolecular interactions, the TrNa precursor was able to self-assemble into rod-like microcrystals, which could be facilely identified by the naked eye, whilst TrNaC1 self-assembled into nanosheets once the naphthalene rings had fused. This study offers a unique platform to gain further insight into-and a better understanding of-the photophysical and self-assembly properties of π-extended star-shaped PAHs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Hongbo; Aitken, Michael D.
2010-01-01
We evaluated two nonionic surfactants, one hydrophobic (Brij 30) and one hydrophilic (C12E8), for their ability to enhance the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil after it had been treated in an aerobic bioreactor. The effects of each surfactant were evaluated at doses corresponding to equilibrium aqueous-phase concentrations well above the surfactant’s critical micelle concentration (CMC), slightly above the CMC, and below the CMC. The concentrations of all 3- and 4-ring PAHs were significantly lower in the soil amended with Brij 30 at the two lower doses compared to controls, whereas removal of only the 3-ring PAHs was significantly enhanced at the highest Brij 30 dose. In contrast, C12E8 did not enhance PAH removal at any dose. In the absence of surfactant, <5% of any PAH desorbed from the soil over an 18-d period. Brij 30 addition at the lowest dose significantly increased the desorption of most PAHs, whereas the addition of C12E8 at the lowest dose actually decreased the desorption of all PAHs. These findings suggest that the effects of the two surfactants on PAH biodegradation could be explained by their effects on PAH bioavailability. Overall, this study demonstrates that the properties of the surfactant and its dose relative to the corresponding aqueous-phase concentration are important factors in designing systems for surfactant-enhanced bioremediation of PAH-contaminated soils in which PAH bioavailability is limited. PMID:20586488
2015-01-01
Catalytic, enantioselective hydroacylations of N-allylindole-2-carboxaldehydes and N-allylpyrrole-2-carboxaldehydes are reported. In contrast to many alkene hydroacylations that form six-membered rings, these annulative processes occur in the absence of ancillary functionality to stabilize the acylrhodium(III) hydride intermediate. The intramolecular hydroacylation reactions generate 7,8-dihydropyrido[1,2-a]indol-9(6H)ones and 6,7-dihydroindolizin-8(5H)-ones in moderate to high yields with excellent enantioselectivities. PMID:25020184
Cai, Jing; Gao, Shutao; Zhu, Like; Jia, Xuwei; Zeng, Xiangying; Yu, Zhiqiang
2017-11-10
This study was conducted to investigate the pollutant status and the retention mechanism of polycyclic aromatic hydrocarbons (PAHs) in soils and sediment from bank-water-level-fluctuating zone (WLFZ)-water systems in Hanfeng Lake, Three Gorges, China. The concentrations of the 16 PAHs ranged from 21.8 to 1324 ng g -1 dry wt for all 20 soil and sediment samples. These concentration levels were remarkably lower than those in soils and sediment collected domestically and worldwide. PAHs with two and three rings were found to be dominant in all the samples, with phenanthrene being most abundant. The spatial distribution of PAHs in bank soil, WLFZ soil, and sediment implied that the transfer and fate of PAHs in the bank soil-WLFZ soil-sediment systems were influenced by both water dynamic factors and physicochemical properties of PAHs. Diagnostic ratio analysis and principal component analysis suggested that the PAHs in the areas of Hanfeng Lake were primarily (>75%) derived from coal combustion and vehicle emissions . Use of natural gas, improving gasoline/diesel quality and phasing out old and nonstandard vehicles and ships are proposed to control PAH contamination and protect drinking water safety in the region.
Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S
2013-04-01
Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).
Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.
2013-01-01
Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Incardona, John P., E-mail: john.incardona@noaa.gov; Linbo, Tiffany L.; Scholz, Nathaniel L.
Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) weremore » distinct for each. BaP exposure (40 {mu}M) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 {mu}M) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 {mu}M) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: Black-Right-Pointing-Pointer PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. Black-Right-Pointing-Pointer These compounds produced differential cardiac developmental toxicity that did not strictly correlate with associated CYP1A induction. Black-Right-Pointing-Pointer Cardiotoxicity of benzo(a)pyrene was partially dependent on the AHR2 isoform, while benzo(k)fluoranthene cardiotoxicity was not. Black-Right-Pointing-Pointer Individual PAH compounds have distinct toxicokinetic pathways in fish embryos, and act through different toxic mechanisms.« less
CLONING AND CHARACTERIZATION OF THE PHTHALATE CATABOLISM REGION OF PRE1 OF ARTHROBACTER KEYSERI 12B
o-Phthalate (benzene-1,2-dicarboxylate) is a central intermediate in the bacterial degradation of phthalate ester plasticizers as well as of a number of fused-ring polycyclic aromatic hydrocarbons found in fossil fuels. In Arthrobacter keyseri 12B, the genes encoding catabolism o...
Luo, Pei; Bao, Lian-Jun; Li, Shao-Meng; Zeng, Eddy Y
2015-05-01
Atmospheric particle size distribution of polycyclic aromatic hydrocarbons (PAHs) in a typical e-waste recycling zone and an urban site (Guangzhou) in southern China featured a unimodal peak in 0.56-1.8 μm for 4-6 ring PAHs but no obvious peak for 2-3 ring PAHs at both sites. The atmospheric deposition fluxes of PAHs were estimated at 5.4 ± 2.3 μg m(-2) d(-1) in the e-waste recycling zone and 3.1 ± 0.6 μg m(-2) d(-1) in Guangzhou. In addition, dry and wet deposition fluxes of PAHs were dominated by coarse (Dp > 1.8 μm) and fine particles (Dp < 1.8 μm), respectively. Fine particles predominated the deposition of PAHs in the lung. The results estimated by incremental inhalation cancer risk suggested that particle-bound PAHs posed serious threat to human health within the e-waste recycling zone and Guangzhou. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong
2016-07-01
Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wilson, Walter B; Hayes, Hugh V; Sander, Lane C; Campiglia, Andres D; Wise, Stephen A
2017-09-01
Retention indices for 124 polycyclic aromatic hydrocarbons (PAHs) and 62 methyl-substituted (Me-) PAHs were determined using normal-phase liquid chromatography (NPLC) on a aminopropyl (NH 2 ) stationary phase. PAH retention behavior on the NH 2 phase is correlated to the total number of aromatic carbons in the PAH structure. Within an isomer group, non-planar isomers generally elute earlier than planar isomers. MePAHs generally elute slightly later but in the same region as the parent PAHs. Correlations between PAH retention behavior on the NH 2 phase and PAH thickness (T) values were investigated to determine the influence of non-planarity for isomeric PAHs with four to seven aromatic rings. Correlation coefficients ranged from r = 0.19 (five-ring peri-condensed molecular mass (MM) 252 Da) to r = -0.99 (five-ring cata-condensed MM 278 Da). In the case of the smaller PAHs (MM ≤ 252 Da), most of the PAHs had a planar structure and provided a low correlation. In the case of larger PAHs (MM ≥ 278 Da), nonplanarity had a significant influence on the retention behavior and good correlation between retention and T was obtained for the MM 278 Da, MM 302 Da, MM 328 Da, and MM 378 Da isomer sets. Graphical abstract NPLC separation of the three-, four-, five-, and six-ring PAH isomers with different number of aromatic carbon atoms and degrees of non-planarity (Thickness, T). The inserted figure plots the number of aromatic carbon atoms vs. the log I value for the 124 parent PAHs.
Hu, Jing; Aitken, Michael D.
2012-01-01
A betaproteobacterium within the family Rhodocyclaceae previously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed in Escherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of the E. coli constructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene. PMID:22427500
Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati
2016-08-15
Fugitive emissions of PM10 (particles <10μm in diameter) and associated polycyclic aromatic hydrocarbons (PAHs) were monitored in the vicinity of coking unit, sintering unit, blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios
2018-03-06
We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-01-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found. PMID:7487007
Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds.
Grifoll, M; Selifonov, S A; Gatlin, C V; Chapman, P J
1995-10-01
Pseudomonas cepacia F297 grew with fluorene as a sole source of carbon and energy; its growth yield corresponded to an assimilation of about 40% of fluorene carbon. The accumulation of a ring meta-cleavage product during growth and the identification of 1-indanone in growth media and washed-cell suspensions suggest that strain F297 metabolizes fluorene by mechanisms analogous to those of naphthalene degradation. In addition to fluorene, strain F297 utilized for growth a wide variety of polycyclic aromatic compounds (PACs), including naphthalene, 2,3-dimethylnaphthalene, phenanthrene, anthracene, and dibenzothiophene. Fluorene-induced cells of the strain also transformed 2,6-dimethylnaphthalene, biphenyl, dibenzofuran, acenaphthene, and acenaphthylene. The identification of products formed from those substrates (by gas chromatography-mass spectrometry) in washed-cell suspensions indicates that P. cepacia F297 carries out the following reactions: (i) aromatic ring oxidation and cleavage, apparently using the pyruvate released for growth, (ii) methyl group oxidations, (iii) methylenic oxidations, and (iv) S oxidations of aromatic sulfur heterocycles. Strain F297 grew with a creosote-PAC mixture, producing an almost complete removal of all aromatic compounds containing 2 to 3 rings in 14 days, as demonstrated by gas chromatography analysis of the remaining PACs recovered from cultures. The identification of key chemicals confirmed that not only are certain compounds depleted but also the anticipated reaction products are found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hui; Energy Research Institute, University of Leeds, Leeds LS2 9JT; Wu, Chunfei, E-mail: c.wu@leeds.ac.uk
2015-02-15
Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. Themore » results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.« less
Markopoulos, Georgios
2012-01-01
Summary This review describes the preparation, structural properties and the use of bisallenes in organic synthesis for the first time. All classes of compounds containing at least two allene moieties are considered, starting from simple conjugated bisallenes and ending with allenes in which the two cumulenic units are connected by complex polycyclic ring systems, heteroatoms and/or heteroatom-containing tethers. Preparatively the bisallenes are especially useful in isomerization and cycloaddition reactions of all kinds leading to the respective target molecules with high atom economy and often in high yield. Bisallenes are hence substrates for generating molecular complexity in a small number of steps (high step economy). PMID:23209534
Khuman, Sanjenbam Nirmala; Chakraborty, Paromita; Cincinelli, Alessandra; Snow, Daniel; Kumar, Bhupander
2018-04-30
Sixteen priority polycyclic aromatic hydrocarbons (PAHs) regulated by the United States Environmental Protection Agency (USEPA) were analyzed in surface waters and riverine sediments of Brahmaputra and Hooghly Rivers, along urban-suburban-rural transects. ∑ 16 PAHs concentrations were higher in Hooghly riverine sediment (HRS) (Avg, 445 ng g -1 ) than Brahmaputra riverine sediment (BRS) (Avg, 169 ng g -1 ) dominated by 4-ring PAHs. In contrast, PAHs concentrations in surface water of Brahmaputra River (BRW) (Avg, 4.04 μg L -1 ) were comparable with Hooghly River (HRW) (Avg, 4.8 μg L -1 ), with dominance by 3-ring PAHs. Toxic PAHs (BaA, Chr, BbF, BkF, BaP, InP and DBA) were dominant in sub-urban transect of HRS (Avg, 387 ng g -1 ) and BRS (Avg, 14 ng g -1 ). Diagnostic ratios, principal component analysis (PCA) and ring wise composition suggested combustion as the main PAHs source in these riverine belts. In BRS, higher PAHs in suburban and rural transects were attributed to incomplete combustion of fossil fuel and biomass burning. In HRS, >85% of high molecular weight PAHs were found in the industrial areas of the suburban transect possibly associated with the discharge of industrial effluents. Harbor and port activities were other major contributors of HMW-PAHs in Hooghly riverine system. Carcinogenic potency estimated in terms of toxic equivalent (TEQ) was several folds higher in HRS (Avg, 106 ng TEQ g -1 ) compared with BRS (Avg, 2.5 ng TEQ g -1 ). Mostly low molecular weight PAHs are likely posing a risk to fishes in both the rivers. Risk on edible fish species may be a matter of concern considering the regular consumption of fishes in this region. Copyright © 2018 Elsevier B.V. All rights reserved.
Petroleum hydrocarbons in the surface water of two estuaries in the Southeastern united states
NASA Astrophysics Data System (ADS)
Bidleman, T. F.; Castleberry, A. A.; Foreman, W. T.; Zaranski, M. T.; Wall, D. W.
1990-01-01
Surface water samples from Charleston Harbor, SC and Winyah Bay, SC were analysed for total hydrocarbons by gas chromatography (GC) and for petroleum residues (expressed as crude oil equivalents) by fluorescence spectrometry. Cleanup by column chromatography and saponification was necessary to reduce the background from extraneous fluorescing materials. Oil concentrations determined by FS ranged from 0·5-25 μg l -1 in Charleston Harbor and <0·23-9·6 μg l -1 in Winyah Bay. Hydrocarbons determined by GC were significantly correlated ( P < 0·01) with crude oil equivalents determined by FS, but the data showed considerable scatter as indicated by r2 = 0·45. Polycyclic aromatic hydrocarbons were determined by gas chromatography—mass spectrometry for one set of Winyah Bay samples. The sum of nonalkylated polycyclic aromatic hydrocarbons having ≥ 3 rings ranged from 7-64 ng l -1 at different stations. Perylene, possibly originating from sediment dredging, was one of the more abundant polycyclic aromatic hydrocarbons.
Trumbore, David C; Osborn, Linda V; Johnson, Kathleen A; Fayerweather, William E
2015-01-01
We studied exposure of 151 workers to polycyclic aromatic compounds and asphalt emissions during the manufacturing of asphalt roofing products-including 64 workers from 10 asphalt plants producing oxidized, straight-run, cutback, and wax- or polymer-modified asphalts, and 87 workers from 11 roofing plants producing asphalt shingles and granulated roll roofing. The facilities were located throughout the United States and used asphalt from many refiners and crude oils. This article helps fill a gap in exposure data for asphalt roofing manufacturing workers by using a fluorescence technique that targets biologically active 4-6 ring polycyclic aromatic compounds and is strongly correlated with carcinogenic activity in animal studies. Worker exposures to polycyclic aromatic compounds were compared between manufacturing plants, at different temperatures and using different raw materials, and to important external benchmarks. High levels of fine limestone particulate in the plant air during roofing manufacturing increased polycyclic aromatic compound exposure, resulting in the hypothesis that the particulate brought adsorbed polycyclic aromatic compounds to the worker breathing zone. Elevated asphalt temperatures increased exposures during the pouring of asphalt. Co-exposures in these workplaces which act as confounders for both the measurement of total organic matter and fluorescence were detected and their influence discussed. Exposures to polycyclic aromatic compounds in asphalt roofing manufacturing facilities were lower than or similar to those reported in hot-mix paving application studies, and much below those reported in studies of hot application of built-up roofing asphalt. These relatively low exposures in manufacturing are primarily attributed to air emission controls in the facilities, and the relatively moderate temperatures, compared to built-up roofing, used in these facilities for oxidized asphalt. The exposure to polycyclic aromatic compounds was a very small part of the overall worker exposure to asphalt fume, on average less than 0.07% of the benzene-soluble fraction. Measurements of benzene-soluble fraction were uniformly below the American Conference of Governmental Industrial Hygienists' Threshold Limit Value for asphalt fume.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara; Wise, Stephen A
2016-04-15
A methodology for the characterization of groups of polycyclic aromatic hydrocarbons (PAHs) using a combination of normal phase liquid chromatography with ultraviolet-visible spectroscopy (NPLC/UV-vis) and gas chromatography with mass spectrometry (GC/MS) was used for the identification and quantification of seven fused aromatic rings C26H14 peri-condensed benzenoid polycyclic aromatic hydrocarbons, PAHs, in standard reference material (SRM) 1597a, complex mixture of PAHs from coal tar. The NPLC/UV-vis isolated the fractions based on the number of aromatic carbons and the GC/MS allowed the identification and quantification of five of the nine C26H14 PAH isomers; naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene using a retention time comparison with authentic reference standards. For the other four benzenoid isomers with no available reference standards the following two approaches were used. First, the annellation theory was used to achieve the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene, and second, the elution distribution in the GC fractions was used to support the potential identification of benzo[qr]naphtho[3,2,1,8-defg]chrysene and to reach the tentative identifications of dibenzo[a,ghi]perylene, naphtho[7,8,1,2,3-pqrst]pentaphene, and anthra[2,1,9,8-opqra]naphthacene. It is the first time that naphtho[1,2,3,4-ghi]perylene, dibenzo[b,ghi]perylene, dibenzo[b,pqr]perylene, naphtho[8,1,2-bcd]perylene, and dibenzo[cd,lm]perylene are quantified, and the first time that benzo[qr]naphtho[3,2,1,8-defg]chrysene is potentially identified, in any sample, in any context. Copyright © 2016 Elsevier B.V. All rights reserved.
Sobus, Jon R.; McClean, Michael D.; Herrick, Robert F.; Waidyanatha, Suramya; Nylander-French, Leena A.; Kupper, Lawrence L.; Rappaport, Stephen M.
2009-01-01
When working with hot mix asphalt, road pavers are exposed to polycyclic aromatic hydrocarbons (PAHs) through the inhalation of vapors and particulate matter (PM) and through dermal contact with PM and contaminated surfaces. Several PAHs with four to six rings are potent carcinogens which reside in these particulate emissions. Since urinary biomarkers of large PAHs are rarely detectable in asphalt workers, attention has focused upon urinary levels of the more volatile and abundant two-ring and three-ring PAHs as potential biomarkers of PAH exposure. Here, we compare levels of particulate polycyclic aromatic compounds (P-PACs, a group of aromatic hydrocarbons containing PAHs and heterocyclic compounds with four or more rings) in air and dermal patch samples from 20 road pavers to the corresponding urinary levels of naphthalene (U-Nap) (two rings), phenanthrene (U-Phe) (three rings), monohydroxylated metabolites of naphthalene (OH-Nap) and phenanthrene (OH-Phe), and 1-hydroxypyrene (OH-Pyr) (four rings), the most widely used biomarker of PAH exposure. For each worker, daily breathing-zone air (n = 55) and dermal patch samples (n = 56) were collected on three consecutive workdays along with postshift, bedtime, and morning urine samples (n = 149). Measured levels of P-PACs and the urinary analytes were used to statistically model exposure–biomarker relationships while controlling for urinary creatinine, smoking status, age, body mass index, and the timing of urine sampling. Levels of OH-Phe in urine collected postshift, at bedtime, and the following morning were all significantly associated with levels of P-PACs in air and dermal patch samples. For U-Nap, U-Phe, and OH-Pyr, both air and dermal patch measurements of P-PACs were significant predictors of postshift urine levels, and dermal patch measurements were significant predictors of bedtime urine levels (all three analytes) and morning urine levels (U-Nap and OH-Pyr only). Significant effects of creatinine concentration were observed for all analytes, and modest effects of smoking status and body mass index were observed for U-Phe and OH-Pyr, respectively. Levels of OH-Nap were not associated with P-PAC measurements in air or dermal patch samples but were significantly affected by smoking status, age, day of sample collection, and urinary creatinine. We conclude that U-Nap, U-Phe, OH-Phe, and OH-Pyr can be used as biomarkers of exposure to particulate asphalt emissions, with OH-Phe being the most promising candidate. Indications that levels of U-Nap, U-Phe, and OH-Pyr were significantly associated with dermal patch measurements well into the evening after a given work shift, combined with the small ratios of within-person variance components to between-person variance components at bedtime, suggest that bedtime measurements may be useful for investigating dermal PAH exposures. PMID:19602502
Natural product-like virtual libraries: recursive atom-based enumeration.
Yu, Melvin J
2011-03-28
A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.
Li, Yong; Long, Ling; Ge, Jing; Yang, Li-Xuan; Cheng, Jin-Jin; Sun, Ling-Xiang; Lu, Changying; Yu, Xiang-Yang
2017-10-01
Polycyclic aromatic hydrocarbons (PAHs) accumulated in agricultural soils are likely to threaten human health and ecosystem though the food chain, therefore, it is worth to pay more attention to soil contamination by PAHs. In this study, the presence, distribution and risk assessment of 16 priority PAHs in rice-wheat continuous cropping soils close to industrial parks of Suzhou were firstly investigated. The concentrations of the total PAHs ranged from 125.99 ng/g to 796.65 ng/g with an average of 352.94 ng/g. Phenanthrene (PHE), fluoranthene (FLT), benzo [a] anthracene (BaA) and pyrene (PYR) were the major PAHs in those soil samples. The highest level of PAHs was detected in the soils around Chemical plant and Steelworks, followed by Printed wire board, Electroplate Factory and Paper mill. The composition of PAHs in the soils around Chemical plant was dominated by 3-ring PAHs, however, the predominant compounds were 4, 5-ring PAHs in the soils around other four factories. Meanwhile, the concentration of the total PAHs in the soils close to the factories showed a higher level of PAHs in November (during rice harvest) than that in June (during wheat harvest). Different with other rings of PAHs, 3-ring PAHs in the soils around Chemical plant and Steelworks had a higher concentration in June. The results of principal component analysis and isomeric ratio analysis suggested that PAHs in the studied areas mainly originated from biomass, coal and petroleum combustion. The risk assessment indicated that higher carcinogenic risk was found in those sites closer to the industrial park. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Li; Dong, Lei; Meng, Xiaoyang; Li, Qingyun; Huang, Zhuo; Li, Chao; Li, Rui; Yang, Wenjun; Crittenden, John
2018-07-01
After the impoundment of the Three Gorges Reservoir (TGR), the hydrological situation of the reservoir has changed greatly. The concentration and distribution of typical persistent organic pollutants in water and sediment have also changed accordingly. In this study, the concentration, distribution and potential sources of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 phthalic acid esters (PAEs) during the water drawdown and impoundment periods were investigated in water and sediment from the TGR. According to our results, PAHs and PAEs showed temporal and spatial variations. The mean ΣPAH and ΣPAE concentrations in water and sediment were both higher during the water impoundment period than during the water drawdown period. The water samples from the main stream showed larger ΣPAH concentration fluctuations than those from tributaries. Both the PAH and PAE concentrations meet the Chinese national water environmental quality standard (GB 3838-2002). PAH monomers with 2-3 rings and 4 rings were dominant in water, and 4-ring and 5-6-ring PAHs were dominant in sediment. Di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) were the dominant PAE pollutants in the TGR. DBP and DEHP had the highest concentrations in water and sediment, respectively. The main source of PAHs in water from the TGR was petroleum and emissions from coal and biomass combustion, whereas the main sources of PAHs in sediments included coal and biomass combustion, petroleum, and petroleum combustion. The main source of PAEs in water was domestic waste, and the plastics and heavy chemical industries were the main sources of PAEs in sediment. Copyright © 2017. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Furanocoumarins (FCs) are a class of aromatic compounds in grapefruit that inhibit human intestinal cytochrome P450 3A4 (CYP3A4). Since fungi metabolize polycyclic aromatic hydrocarbons, we hypothesized that certain fungi might also metabolize FCs into forms that may be inactive as CYP3A4 inhibitors...
Wang, Zhong; An, Yu-Guang; Xu, Guang-Ju; Wang, Xiao-Zhe
2011-07-01
The polycyclic aromatic hydrocarbons (PAHs) were measured by glass fiber filter and XAD-2 collector, ultrasonic extraction, soxhlet extraction and GC-MS analysis equipment. The exhaust emission of the DI single cylinder diesel engine fueled with pure diesel, biodiesel and biodiesel blends of 50% (B50) were measured. The results indicate that the particle-phase PAHs emissions of diesel engine decrease with the increasing of load. The gas-phase PAHs emissions of diesel engine decrease with the increasing of load in the beginning and it turns to going up with further increasing of load. The particle-phase and gas-phase PAHs emissions of biodiesel decrease and mean concentration are lower than that of diesel. The total PAHs emission concentration of biodisesl is 41.1-70.1 microg/m3. Total PAHs mean concentration emissions of biodiesel is decreased 33.3% than that of diesel. The mass proportion of three-ring PAHs emissions of those 3 kinds tested fuels is about 44% in the total PAHs. Biodiesel can increase the proportion of three-ring PAHs. Toxic equivalence of PAHs emissions of biodiesel are greatly lower than that of diesel. It is less harmful to human than diesel fuel.
Waidyanatha, Suramya; Zheng, Yuxin; Rappaport, Stephen M
2003-05-06
Polycyclic aromatic hydrocarbons (PAHs) represent a complex mixture of toxic compounds that are ubiquitous in the environment. We investigated the utility of head space-solid phase microextraction (HS-SPME) to measure the following surrogate PAHs in urine: naphthalene (NAP), phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BAP), representing classes of 2-, 3-, 4- and 5-ring compounds, respectively. We then applied the method to urine from 28 coke oven workers (median levels (microg/l) were: NAP=3.65, PHE=1.51, PYR=0.003, BAP not detected) and 22 controls (median (microg/l) NAP=0.859, PHE=0.062, PYR=0.001, BAP not detected). Urinary levels of NAP, PHE, and PYR were all associated with exposure category (controls, side- and bottom-workers, and top-workers) but not with smoking status. Strong correlations were observed between urinary levels of NAP, PHE, and PYR in coke-oven workers. Our results indicate that unmetabolized 2-, 3- and 4-ring PAHs can be measured in urine by HS-SPME. Such measurements can be used to investigate the uptake and metabolism of complex PAH mixtures in humans.
NASA Astrophysics Data System (ADS)
Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig
The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.
Chen, Baoliang; Xuan, Xiaodong; Zhu, Lizhong; Wang, Jing; Gao, Yanzheng; Yang, Kun; Shen, Xueyou; Lou, Baofeng
2004-09-01
Ten polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in 17 surface water samples and 11 sediments of four water bodies, and 3 soils near the water-body bank in Hangzhou, China in December 2002. It was observed that the sum of PAHs concentrations ranged from 0.989 to 9.663 microg/L in surface waters, from 132.7 to 7343 ng/g dry weight in sediments, and from 59.71 to 615.8 ng/g dry weight in soils. The composition pattern of PAHs by ring size in water, sediment and soil were surveyed. Three-ring PAHs were dominated in surface waters and soils, meanwhile sediments were mostly dominated by four-ring PAHs. Furthermore, PAHs apparent distribution coefficients (K(d)) and solid f(oc)-normalized K(d) (e.g. K(oc)= K(d) / f(oc)) were calculated. The relationship between logK(oc) and logK(ow) of PAHs for field data on sediments and predicted values were compared. The sources of PAHs in different water bodies were evaluated by comparison of K (oc) values in sediments of the river downstream with that in soils. Hangzhou section of the Great Canal was heavily polluted by PAHs released from industrial wastewater in the past and now PAHs in sediment may serve as sources of PAHs in surface water. PAHs in Qiantang River were contributed from soil runoff. Municipal road runoff was mostly contributed to West Lake PAHs.
Sawulski, Przemyslaw; Clipson, Nicholas; Doyle, Evelyn
2014-11-01
Development of successful bioremediation strategies for environments contaminated with recalcitrant pollutants requires in-depth knowledge of the microorganisms and microbial processes involved in degradation. The response of soil microbial communities to three polycyclic aromatic hydrocarbons, phenanthrene (3-ring), fluoranthene (4-ring) and benzo(a)pyrene (5-ring), was examined. Profiles of bacterial, archaeal and fungal communities were generated using molecular fingerprinting techniques (TRFLP, ARISA) and multivariate statistical tools were employed to interpret the effect of PAHs on community dynamics and composition. The extent and rate of PAH removal was directly related to the chemical structure, with the 5-ring PAH benzo(a)pyrene degraded more slowly than phenathrene or fluoranthene. Bacterial, archaeal and fungal communities were all significantly affected by PAH amendment, time and their interaction. Based on analysis of clone libraries, Actinobacteria appeared to dominate in fluoranthene amended soil, although they also represented a significant portion of the diversity in phenanthrene amended and unamended soils. In addition there appeared to be more γ-Proteobacteria and less Bacteroidetes in soil amended with either PAH compared to the control. The soil bacterial community clearly possessed the potential to degrade PAHs as evidenced by the abundance of PAH ring hydroxylating (PAH-RHDα) genes from both gram negative (GN) and gram positive (GP) bacteria in PAH-amended and control soils. Although the dioxygenase gene from GP bacteria was less abundant in soil than the gene associated with GN bacteria, significant (p < 0.001) increases in the abundance of the GP PAH-RHDα gene were observed during phenanthrene and fluoranthene degradation, whereas there was no significant difference in the abundance of the GN PAH-RHDα gene during the course of the experiment. Few studies to-date have examined the effect of pollutants on more than one microbial community in soil. The current study provides information on the response of soil bacterial, archaeal and fungal communities during the degradation of three priority pollutants and contributes to a knowledge base that can inform the development of effective bioremediation strategies for contaminated sites.
In vivo metabolism and genotoxic effects of nitrated polycyclic aromatic hydrocarbons.
Möller, L
1994-10-01
During incomplete combustion of organic matter, nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), are formed in a reaction that is catalyzed by a low pH. 2-Nitrofluorene (NF), a marker for nitro-PAHs, is metabolized in vivo by two different routes. After inhalation, potent mutagenic metabolites, hydroxylated nitrofluorenes (OH-NFs), are formed. The metabolites are distributed by systemic circulation. After oral administration, NF is reduced to the corresponding amine, a reaction mediated by the intestinal microflora. This metabolite is acetylated to 2-acetylaminofluorene (AAF), a potent carcinogen. Further ring-hydroxylation of AAF leads to detoxification and excretion. Induction of cytochrome P450s affects the metabolism, and more OH-NFs are formed. As a consequence, more mutagenic metabolites are found in the circulation. OH-NFs are excreted in the bile as, in terms of mutagenicity, totally harmless glucuronide conjugates. When these conjugates are excreted via the bile, intestinal beta-glucuronidase can liberate direct-acting mutagens in the intestine. Thus, inhalation of NF can lead to formation of potent mutagens in the intestine. NF is a direct-acting mutagen in bacterial assays and an initiator and promoter of the carcinogenic process, and gives rise to DNA adduct formation in laboratory animals.
Reflectance spectroscopy (350-2500 nm) of solid-state polycyclic aromatic hydrocarbons (PAHs)
NASA Astrophysics Data System (ADS)
Izawa, M. R. M.; Applin, D. M.; Norman, L.; Cloutis, E. A.
2014-07-01
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds based on fused aromatic rings, and are formed in a variety of astrophysical, solar nebula and planetary processes. Polycyclic aromatic hydrocarbons are known or suspected to occur in a wide variety of planetary settings including icy satellites, Titan’s hazes, carbonaceous meteorites, comet nuclei, ring particles; and terrestrial organic-rich lithologies such as coals, asphaltites, and bituminous sands. Relatively few measurements of the visible and near-infrared spectra of PAHs exist, yet this wavelength region (350-2500 nm) is widely used for remote sensing. This study presents detailed analyses of the 350-2500 nm reflectance spectra of 47 fine-grained powders of different high-purity solid-state PAHs. Spectral properties of PAHs change with variations in the number and connectivity of linked aromatic rings and the presence and type of side-groups and heterocycles. PAH spectra are characterized by three strong features near ∼880 nm, ∼1145 nm, and ∼1687 nm due to overtones of νCH fundamental stretching vibrations. Some PAHs are amenable to remote detection due to the presence of diagnostic spectral features, including: Nsbnd H stretching overtones at 1490-1515 nm in NH- and NH2-bearing PAHs, aliphatic or saturated bond Csbnd H overtone vibrations at ∼1180-1280 nm and ∼1700-1860 nm; a broad asymmetric feature between ∼1450 nm and ∼1900 nm due to Osbnd H stretching overtones in aromatic alcohols, Csbnd H and Cdbnd O combinations near ∼2000-2010 nm and ∼2060-2270 nm in acetyl and carboxyl-bearing PAHs. Other substituents such as sulphonyl, thioether ether and carboxyl heterocycles, or cyano, nitrate, and aromatic side groups, do not produce well-resolved diagnostic spectral features but do cause shifts in the positions of the aromatic Csbnd H vibrational overtone features. Fluorescence is commonly suppressed by the presence of heterocycles, side-groups and in many non-alternant PAHs. The spectral characteristics of PAHs offer the potential, under suitable circumstances, for remote characterization of the classes of PAH present and in some cases, identification of particular heterocyclic or side-group substituents.
Lee, Sunyoung; Diab, Sonia; Queval, Pierre; Sebban, Muriel; Chataigner, Isabelle; Piettre, Serge R
2013-05-27
Non-stabilized azomethine ylide 4a reacts smoothly at room temperature with a variety of uncomplexed aromatic heterocycles and carbocycles on the condition that the ring contains at least one or two electron-withdrawing substituents, respectively. Aromatic substrates, including pyridine and benzene derivatives, participate as 2π components in [3+2] cycloaddition reactions and interact with one, two, or three equivalent(s) of the ylide, depending on their structure and substitution pattern. Thus, this process affords highly functionalized polycyclic structures that contain between one and three pyrrolidinyl ring(s) in useful yields. These results indicate that the site selectivity of the cycloaddition reactions strongly depends on both the nature and the positions of the substituents. In most cases, the second 1,3-dipolar reaction occurs on the opposite face to the one that contains the first pyrrolidinyl ring. DFT calculations on model compounds indicate that a concerted mechanism features a low activation barrier. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706
Kirouac, Kevin N; Basu, Ashis K; Ling, Hong
2013-11-15
Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.
Malev, O; Contin, M; Licen, S; Barbieri, P; De Nobili, M
2016-02-01
Biochar has a charcoal polycyclic aromatic structure which allows its long half-life in soil, making it an ideal tool for C sequestration and for adsorption of organic pollutants, but at the same time raises concerns about possible adverse impacts on soil biota. Two biochars were tested under laboratory-controlled conditions on Eisenia andrei earthworms: a biochar produced at low temperature from wine tree cuttings (WTB) and a commercial low tar hardwood lump charcoal (HLB). The avoidance test (48-h exposure) showed that earthworms avoid biochar-treated soil with rates higher than 16 t ha(-1) for HLB and 64 t ha(-1) for WTB. After 42 days, toxic effects on earthworms were observed even at application rates (100 t ha(-1)) that are generally considered beneficial for most crops. The concentration of HLB and WTB required to kill half of earthworms' population (LC50; 95% confidence limits) in the synthetic OECD soil was 338 and 580 t ha(-1), respectively. Accumulation of polycyclic aromatic hydrocarbons (PAH) in earthworms exposed to the two biochar types at 100 t ha(-1) was tested in two soils of different texture. In biochar-treated soils, the average earthworm survival rates were about 64% in the sandy and 78% clay-loam soils. PAH accumulation was larger in the sandy soil and largest in soils amended with HLB. PAH with less than four rings were preferentially scavenged from the soil by biochars, and this behaviour may mask that of the more dangerous components (i.e. four to five rings), which are preferentially accumulated. Earthworms can accumulate PAH as a consequence of exposure to biochar-treated soils and transfer them along the food chain. Soil type and biochar quality are both relevant in determining PAH transfer.
Polygonal current models for polycyclic aromatic hydrocarbons and graphene sheets of various shapes.
Pelloni, Stefano; Lazzeretti, Paolo
2018-01-05
Assuming that graphene is an "infinite alternant" polycyclic aromatic hydrocarbon resulting from tessellation of a surface by only six-membered carbon rings, planar fragments of various size and shape (hexagon, triangle, rectangle, and rhombus) have been considered to investigate their response to a magnetic field applied perpendicularly. Allowing for simple polygonal current models, the diatropicity of a series of polycyclic textures has been reliably determined by comparing quantitative indicators, the π-electron contribution to I B , the magnetic field-induced current susceptibility of the peripheral circuit, to ξ∥ and to σ∥(CM)=-NICS∥(CM), respectively the out-of-plane components of the magnetizability tensor and of the magnetic shielding tensor at the center of mass. Extended numerical tests and the analysis based on the polygonal model demonstrate that (i) ξ∥ and σ∥(CM) yield inadequate and sometimes erroneous measures of diatropicity, as they are heavily flawed by spurious geometrical factors, (ii) I B values computed by simple polygonal models are valid quantitative indicators of aromaticity on the magnetic criterion, preferable to others presently available, whenever current susceptibility cannot be calculated ab initio as a flux integral, (iii) the hexagonal shape is the most effective to maximize the strength of π-electron currents over the molecular perimeter, (iv) the edge current strength of triangular and rhombic graphene fragments is usually much smaller than that of hexagonal ones, (v) doping by boron and nitrogen nuclei can regulate and even inhibit peripheral ring currents, (vi) only for very large rectangular fragments can substantial current strengths be expected. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Anyanwu, Ihuoma N; Ikpikpini, Ojerime C; Semple, Kirk T
2018-01-01
When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14 C-phenanthrene and 12/14 C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14 C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore, 12/14 C-B[a]P and 14 C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons ( 14 C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14 C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1 ), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara
2017-06-01
The annellation theory method has been used to predict the locations of maximum absorbance (LMA) of the ultraviolet-visible (UV-Vis) spectral bands in the group of polycyclic aromatic hydrocarbons (PAHs) C 24 H 14 (dibenzo and naphtho) derivatives of fluoranthene (DBNFl). In this group of 21 PAHs, ten PAHs present a sextet migration pattern with four or more benzenoid rings that is potentially related to a high molecular reactivity and high mutagenic conduct. This is the first time that the locations of maximum absorbance in the UV-Vis spectra of naphth[1,2- a]aceanthrylene, dibenz[ a,l]aceanthrylene, indeno[1,2,3- de]naphthacene, naphtho[1,2- j]fluoranthene, naphth[2,1- e]acephenanthrylene, naphth[2,1- a]aceanthrylene, dibenz[ a,j]aceanthrylene, naphth[1,2- e]acephenanthrylene, and naphtho[2,1- j]fluoranthene have been predicted. Also, this represents the first report about the application of the annellation theory for the calculation of the locations of maximum absorbance in the UV-Vis spectra of PAHs with five-membered rings. Furthermore, this study constitutes the premier investigation beyond the pure benzenoid classical approach toward the establishment of a generalized annellation theory that will encompass not only homocyclic benzenoid and non-benzenoid PAHs, but also heterocyclic compounds.
Ma, Yukun; McGree, James; Liu, An; Deilami, Kaveh; Egodawatta, Prasanna; Goonetilleke, Ashantha
2017-10-01
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants present in urban stormwater. Consequently, urban stormwater reuse is constrained due to the human health risk posed by these pollutants. This study developed a scientifically robust approach to assess the risk to human health posed by HMs and PAHs in urban stormwater in order to enhance its reuse. Accordingly, an innovative methodology was created consisting of four stages: quantification of traffic and land use parameters; estimation of pollutant concentrations for model development; risk assessment, and risk map presentation. This methodology will contribute to catchment scale assessment of the risk associated with urban stormwater and for risk mitigation. The risk map developed provides a simple and efficient approach to identify the critical areas within a large catchment. The study also found that heavy molecular weight PAHs (PAHs with 5-6 benzene rings) in urban stormwater pose higher risk to human health compared to light molecular PAHs (PAHs with 2-4 benzene rings). These outcomes will facilitate the development of practical approaches for applying appropriate mitigation measures for the safe management of urban stormwater pollution and for the identification of enhanced reuse opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.
Hartzell, Sharon E; Unger, Michael A; Vadas, George G; Yonkos, Lance T
2018-03-01
Although the complexity of contaminant mixtures in sediments can confound the identification of causative agents of adverse biological response, understanding the contaminant(s) of primary concern at impacted sites is critical to sound environmental management and remediation. In the present study, a stock mixture of 18 polycyclic aromatic hydrocarbon (PAH) compounds was prepared to reflect the variety and relative proportions of PAHs measured in surface sediment samples collected from discrete areas of a historically contaminated industrial estuary. This site-specific PAH stock mixture was spiked into nontoxic in-system and out-of-system field-collected reference sediments in dilution series spanning the range of previously measured total PAH concentrations from the region. Spiked sediments were evaluated in 10-d Leptocheirus plumulosus tests to determine whether toxicity in laboratory-created PAH concentrations was similar to the toxicity found in field-collected samples with equivalent PAH concentrations. The results show that toxicity of contaminated sediments was not explained by PAH exposure, while indicating that toxicity in spiked in-system (fine grain, high total organic carbon [TOC]) and out-of-system (course grain, low TOC) sediments was better explained by porewater PAH concentrations, measured using an antibody-based biosensor that quantified 3- to 5-ring PAHs, than total sediment PAH concentrations. The study demonstrates the application of site-specific spiking experiments to evaluate sediment toxicity at sites with complex mixtures of multiple contaminant classes and the utility of the PAH biosensor for rapid sediment-independent porewater PAH analysis. Environ Toxicol Chem 2018;37:893-902. © 2017 SETAC. © 2017 SETAC.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-12-01
Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias
2015-07-01
An analytical method using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization for the determination of polycyclic aromatic hydrocarbons in asphalt fractions has been developed. The 14 compounds determined, characterized by having two or more condensed aromatic rings, are expected to be present in asphalt and are considered carcinogenic and mutagenic. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all of the compounds. The limits of detection ranged from 0.5 to 346.5 μg/L and the limits of quantification ranged from 1.7 to 1550 μg/L. The method was validated against a diesel particulate extract standard reference material (NIST SRM 1975), and the obtained concentrations agreed with the certified values. The method was applied to asphalt samples after its fractionation according to ASTM D4124 and the method of Green. The concentrations of the seven polycyclic aromatic hydrocarbons quantified in the sample ranged from 0.86 mg/kg for benzo[ghi]perylene to 98.32 mg/kg for fluorene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photooxidation products of polycyclic aromatic compounds containing sulfur.
Bobinger, Stefan; Andersson, Jan T
2009-11-01
Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.
NASA Astrophysics Data System (ADS)
Canelo, Carla M.; Friaça, Amâncio C. S.; Sales, Dinalva A.; Pastoriza, Miriani G.; Ruschel-Dutra, Daniel
2018-04-01
Analyses of the polycyclic aromatic hydrocarbon (PAH) feature profiles, especially the 6.2 μm feature, could indicate the presence of nitrogen incorporated in their aromatic rings. In this work, 155 predominantly starburst-dominated galaxies (including H II regions and Seyferts, for example), extracted from the Spitzer/Infrared Spectrograph ATLAS project, have their 6.2 μm profiles fitted allowing their separation into the Peeters' A, B, and C classes. 67 per cent of these galaxies were classified as class A, 31 per cent were as class B, and 2 per cent as class C. Currently, class A sources, corresponding to a central wavelength near 6.22 μm, seem only to be explained by polycyclic aromatic nitrogen heterocycles (PANHs), whereas class B may represent a mix between PAHs and PANHs emissions or different PANH structures or ionization states. Therefore, these spectra suggest a significant presence of PANHs in the interstellar medium (ISM) of these galaxies that could be related to their starburst-dominated emission. These results also suggest that PANHs constitute another reservoir of nitrogen in the Universe, in addition to the nitrogen in the gas phase and ices of the ISM.
Liao, Xiaoyong; Wu, Zeying; Ma, Xu; Gong, Xuegang; Yan, Xiulan
2017-11-01
In order to illuminate the mechanism of the interaction of polycyclic aromatic hydrocarbon (PAH) with different benzene rings and arsenic (As) in As hyperaccumulator, Pteris vittata L., the uptakes of PAHs were investigated using hydroponics simulation and localizations of PAHs in the plant were determined using two-photon laser scanning confocal microscopy (TPLSCM). The results showed that the total As concentration in different parts of P. vittata decreased in the presence of PAHs with increased numbers of benzene rings: 38.0-47.4% for benzo(a)pyrene (BaP, five rings), 20.5-35.9% for pyrene (PYR, four rings), and 13.7-16.6% for fluorine (FLU, three rings). BaP and PYR concentrations increased, while FLU concentration decreased in the presence of As. The results of TPLSCM revealed that PAHs distributed in epidermal cells of roots, xylem, and endothelial cells of rachis, epidermis, and stomatal cells of pinnae; however, the fluorescence intensity of BaP and PYR were higher than FLU significantly in plant. This study provided important basis to further research on interactive effects of PAHs and As in the P. vittata. These findings were important to understand the mechanisms of PAH and As translocation and distribution by P. vittata.
Sapegin, Alexander; Kalinin, Stanislav; Angeli, Andrea; Supuran, Claudiu T; Krasavin, Mikhail
2018-02-01
4-Chloro-3-nitrobenzenesulfonamide reacted cleanly at room-temperature with a range of bis-electrophilic phenols bearing an NH-acidic functionality (secondary carboxamide or pyrazole) in the ortho-position. This produced a novel class of [1,4]oxazepine-based primary sulfonamides which exhibited strong inhibition of therapeutically relevant human carbonic anhydrases. 2-Chloronitrobenzene did not enter a similar cyclocondensation process, even under prolonged heating. Thus, the primary sulfonamide functionality plays a dual role by enabling the [1,4]oxazepine ring construction and acting as a enzyme prosthetic zinc-binding group when the resulting [1,4]oxazepine sulfonamides are employed as carbonic anhydrase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.
High-resolution mid-infrared observations of NGC 7469
NASA Technical Reports Server (NTRS)
Miles, J. W.; Houck, J. R.; Hayward, T. L.
1994-01-01
We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.
Bacosa, Hernando P; Erdner, Deana L; Liu, Zhanfei
2015-06-15
We determined the contributions of photooxidation and biodegradation to the weathering of Light Louisiana Sweet crude oil by incubating surface water from the Deepwater Horizon site under natural sunlight and temperature conditions. N-alkane biodegradation rate constants were ca. ten-fold higher than the photooxidation rate constants. For the 2-3 ring and 4-5 ring polycyclic aromatic hydrocarbons (PAHs), photooxidation rate constants were 0.08-0.98day(-1) and 0.01-0.07day(-1), respectively. The dispersant Corexit enhanced degradation of n-alkanes but not of PAHs. Compared to biodegradation, photooxidation increased transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. For the first time we observed that sunlight inhibited biodegradation of pristane and phytane, possibly due to inhibition of the bacteria that can degrade branched-alkanes. This study provides quantitative measures of oil degradation under relevant field conditions crucial for understanding and modeling the fate of spilled oil in the northern Gulf of Mexico. Copyright © 2015 Elsevier Ltd. All rights reserved.
Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis.
Gao, Meiqi; Wang, Yulong; Dong, Jie; Li, Fan; Xie, Kechang
2016-09-01
Polycyclic aromatic hydrocarbons (PAHs) are major environmental pollutants. They have attracted considerable attention due to their severe potential carcinogenic, mutagenic and genotoxic effects on human health. In this study, five different rank coals from China were pyrolyzed using pyro-probe CDS 5250 and the release behavior of 16 PAHs under different pyrolysis conditions were studied by Gas Chromatography-Mass Spectrometer (GC-MS). The structural characteristics of the five coals were determined by Cross-Polarization/Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS (13)C NMR) spectroscopy, and then the factors influencing the formation of PAHs during coal pyrolysis were discussed together with the coal structural data. It was shown that the amount of PAHs generated during coal pyrolysis was largely related to coal rank and followed the order of medium metamorphic coal > low metamorphic coal > high metamorphic coal. The amount of total PAHs varied as the temperature was increased from 400 °C to 1200 °C, which showed a trend of first increasing and then decreasing, with the maximum value at 800 °C. Moreover, the species of PAHs released varied with pyrolysis temperatures. When the temperature was lower than 800 °C, the small ring PAHs were the most abundant, while the proportion of heavy rings increased at higher temperature. The results indicate that the formation of PAHs during coal pyrolysis depends on the structure of the coal. The species and amounts of PAHs generated during coal pyrolysis are closely related to the contents of protonated aromatic carbons and bridging ring junction aromatic carbons present in the coal structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou
2018-03-01
This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.
Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A
2014-01-01
A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(–)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three-and two-aromatic ring products. The structurally similar four-and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(–)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. PMID:24325265
Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors
Engtrakul, Chaiwat; Mukarakate, Calvin; Starace, Anne K.; ...
2015-11-14
The impact of catalyst acidity on the selectivity of upgraded biomass pyrolysis products was studied by passing pine pyrolysis vapors over five ZSM-5 catalysts of varying acidity at 500 degrees C. The SiO 2-to-Al 2O 3 ratio (SAR) of the ZSM-5 zeolite was varied from 23 to 280 to control the acidity of the catalyst and the composition of upgraded products. The upgraded product stream was analyzed by GCMS. Additionally, catalysts were characterized using temperature programmed desorption, diffuse-reflectance FTIR spectroscopy, N 2 physisorption, and X-ray diffraction. The results showed that the biomass pyrolysis vapors were highly deoxygenated to form amore » slate of aromatic hydrocarbons over all of the tested ZSM-5 catalysts. As the overall acidity of the ZSM-5 increased the selectivity toward alkylated (substituted) aromatics (e.g., xylene, dimethyl-naphthalene, and methyl-anthracene) decreased while the selectivity toward unsubstituted aromatics (e.g., benzene, naphthalene, and anthracene) increased. Additionally, the selectivity toward polycyclic aromatic compounds (2-ring and 3-ring) increased as catalyst acidity increased, corresponding to a decrease in acid site spacing. The increased selectivity toward less substituted polycyclic aromatic compounds with increasing acidity is related to the relative rates of cyclization and alkylation reactions within the zeolite structure. As the acid site concentration increases and sites become closer to each other, the formation of additional cyclization products occurs at a greater rate than alkylated products. The ability to adjust product selectivity within 1-, 2-, and 3-ring aromatic families, as well as the degree of substitution, by varying ZSM-5 acidity could have significant benefits in terms creating a slate of upgraded biomass pyrolysis products to meet specific target market demands.« less
Liu, Wen; Ma, Long; Abuduwaili, Jilili; Li, Yaoming
2017-08-01
The concentration, distribution, compositional characteristics, and pollution sources of 16 polycyclic aromatic hydrocarbons (PAHs) in the topsoil of Issyk-Kul Lake Basin were studied, and their ecological risks were evaluated in this paper. The total concentration of the 16 PAHs was 68.58-475.95 ng g -1 , with an average of 134.45 ng g -1 . Four-ring PAHs accounted for 43.2% of the total PAHs, two- and three-ring PAHs accounted for 39.4%, and five- and six-ring PAHs accounted for 15.8%. The total concentration of the seven carcinogenic PAHs was 7.66-76.04 ng g -1 , with an average of 30.97 ng g -1 . An analysis of the PAH sources through diagnostic ratio analysis and principal component analysis was carried out. The results showed that the regional soil PAHs were mainly derived from coal, wood, and grass combustion, while traffic and regional industry also had small contributions to the PAHs. The pollution-free samples accounted for 75% and the slightly polluted samples accounted for 25% based on the total concentration of the 16 PAHs. An ecological risk assessment showed that 26.7% of Ac and 3.3% of Pyr and DahA might occasionally produce ecological risks. The toxicity was calculated on the basis of benzo[a]pyrene, and the toxicity equivalent was between 2.48 and 13.78 ng g -1 with an average of 6.23 ng g -1 , which currently does not pose any health risk to human life.
Zhang, Jiaquan; Qu, Chengkai; Qi, Shihua; Cao, Junji; Zhan, Changlin; Xing, Xinli; Xiao, Yulun; Zheng, Jingru; Xiao, Wensheng
2015-10-01
Thirty atmospheric dustfall samples collected from an industrial corridor in Hubei Province, central China, were analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) to investigate their concentrations, spatial distributions, sources, and health risks. Total PAH concentrations (ΣPAHs) ranged from 1.72 to 13.17 µg/g and averaged 4.91 µg/g. High molecular weight (4-5 rings) PAHs averaged 59.67% of the ΣPAHs. Individual PAH concentrations were not significantly correlated with total organic carbon, possibly due to the semi-continuous inputs from anthropogenic sources. Source identification studies suggest that the PAHs were mainly from motor vehicles and biomass/coal combustion. The incremental lifetime cancer risks associated with exposure to PAHs in the dustfall ranged from 10(-4) to 10(-6); these indicate potentially serious carcinogenic risks for exposed populations in the industrial corridor.
Ke, Chang-Liang; Gu, Yang-Guang; Liu, Qi; Li, Liu-Dong; Huang, Hong-Hui; Cai, Nan; Sun, Zhi-Wei
2017-04-15
Concentrations of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were measured in 15 marine wild organism species from South China Sea. The concentration (dry weight) of 16 PAHs ranged from 94.88 to 557.87ng/g, with a mean of 289.86ng/g. The concentrations of BaP in marine species were no detectable. The composition of PAHs was characterized by the 2- and 3-ring PAHs in marine species, and NA, PHE and FA were the dominant constituents. PAHs isomeric ratios indicated PAHs mainly originated from grass, wood and coal combustion, and petroleum. The human health risk assessment based on the excess cancer risk (ECR) suggested the probability of PAHs posing carcinogenic risk to human beings with consumption of marine organisms were negligible (probability<1×10 -6 ). Copyright © 2017 Elsevier Ltd. All rights reserved.
Syed, Khajamohiddin; Porollo, Aleksey; Miller, David; Yadav, Jagjit S
2013-09-01
A promising polycyclic aromatic hydrocarbon-oxidizing P450 CYP5136A3 from Phanerochaete chrysosporium was rationally engineered to enhance its catalytic activity. The residues W129 and L324 found to be critical in substrate recognition were transformed by single (L324F) and double (W129L/L324G, W129L/L324F, W129A/L324G, W129F/L324G and W129F/L324F) mutations, and the engineered enzyme forms were expressed in Pichia pastoris. L324F and W129F/L324F mutations enhanced the oxidation activity toward pyrene and phenanthrene. L324F also altered the regio-selectivity favoring C position 4 over 9 for hydroxylation of phenanthrene. This is the first instance of engineering a eukaryotic P450 for enhanced oxidation of these fused-ring hydrocarbons.
Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scianò, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano
2004-01-01
Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies.
Polycyclic Aromatic Hydrocarbons Adsorption onto Graphene: A DFT and AIMD Study.
Li, Bing; Ou, Pengfei; Wei, Yulan; Zhang, Xu; Song, Jun
2018-05-03
Density functional theory (DFT) calculations and ab-initio molecular dynamics (AIMD) simulations were performed to understand graphene and its interaction with polycyclic aromatic hydrocarbons (PAHs) molecules. The adsorption energy was predicted to increase with the number of aromatic rings in the adsorbates, and linearly correlate with the hydrophobicity of PAHs. Additionally, the analysis of the electronic properties showed that PAHs behave as mild n-dopants and introduce electrons into graphene; but do not remarkably modify the band gap of graphene, indicating that the interaction between PAHs and graphene is physisorption. We have also discovered highly sensitive strain dependence on the adsorption strength of PAHs onto graphene surface. The AIMD simulation indicated that a sensitive and fast adsorption process of PAHs can be achieved by choosing graphene as the adsorbent. These findings are anticipated to shed light on the future development of graphene-based materials with potential applications in the capture and removal of persistent aromatic pollutants.
Anthranilate-Activating Modules from Fungal Nonribosomal Peptide Assembly Lines†
Ames, Brian D.; Walsh, Christopher T.
2010-01-01
Fungal natural products containing benzodiazepinone- and quinazolinone-fused ring systems can be assembled by nonribosomal peptide synthetases (NRPS) using the conformationally restricted β-amino acid anthranilate as one of the key building blocks. We validated that the first module of the acetylaszonalenin synthetase of Neosartorya fischeri NRRL 181 activates anthranilate to anthranilyl-AMP. With this as starting point, we then used bioinformatic predictions about fungal adenylation domain selectivities to identify and confirm an anthranilate-activating module in the fumiquinazoline A producer Aspergillus fumigatus Af293 as well as a second anthranilate-activating NRPS in N. fischeri. This establishes an anthranilate adenylation domain code for fungal NRPS and should facilitate detection and cloning of gene clusters for benzodiazepine- and quinazoline-containing polycyclic alkaloids with a wide range of biological activities. PMID:20225828
Overman, Larry E; Tanis, Paul S
2010-01-15
Polycyclic products containing the 12-oxatricyclo[6.3.1.0(2,7)]dodecane moiety having either the trans (8a-e) or cis (9a-e) relative configuration of the oxacyclic bridge and the cis angular substituents are formed stereospecifically by Prins-pinacol cyclizations of unsaturated alpha-dithianyl acetals 14a-e or 15a-e. These results show that the topography (boat or chair) of the Prins cyclization of the sulfur-stabilized oxocarbenium ions generated from acetals 14a-e or 15a-e is controlled by the stereoelectronic influence of the allylic substituents, with steric effects playing a minor role. A complex molecular rearrangement that is terminated by a thio-Prins-pinacol reaction is also identified.
NASA Astrophysics Data System (ADS)
Lv, Yan; Li, Xiang; Xu, Ting Ting; Cheng, Tian Tao; Yang, Xin; Chen, Jian Min; Iinuma, Yoshiteru; Herrmann, Hartmut
2016-03-01
In order to better understand the particle size distribution of polycyclic aromatic hydrocarbons (PAHs) and their source contribution to human respiratory system, size-resolved PAHs have been studied in ambient aerosols at a megacity Shanghai site during a 1-year period (2012-2013). The results showed the PAHs had a bimodal distribution with one mode peak in the fine-particle size range (0.4-2.1 µm) and another mode peak in the coarse-particle size range (3.3-9.0 µm). Along with the increase in ring number of PAHs, the intensity of the fine-mode peak increased, while the coarse-mode peak decreased. Plotting of log(PAH / PM) against log(Dp) showed that all slope values were above -1, suggesting that multiple mechanisms (adsorption and absorption) controlled the particle size distribution of PAHs. The total deposition flux of PAHs in the respiratory tract was calculated as being 8.8 ± 2.0 ng h-1. The highest lifetime cancer risk (LCR) was estimated at 1.5 × 10-6, which exceeded the unit risk of 10-6. The LCR values presented here were mainly influenced by accumulation mode PAHs which came from biomass burning (24 %), coal combustion (25 %), and vehicular emission (27 %). The present study provides us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system, which can help develop better source control strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, T.R.; Lauren, D.J.; Dimitry, J.A.
1995-12-31
A bioaccumulation study was conducted following a release of Fuel Oil {number_sign}2 into Sugarland Run, a small northern Virginia stream. Caged clams (Corbicula sp.) were placed in 3 downstream locations and 2 upstream reference areas for an exposure period of approximately 28 days. In addition, resident clams from the Potomac River were sampled at the start of the study and at 4 and 8 weeks. Chemical fingerprinting techniques were employed to identify spill-related polycyclic aromatic hydrocarbons (PAHs) and to differentiate these compounds from background sources of contamination. The greatest concentration of spill-related PAHs (2 and 3-ring compounds) were measured inmore » clams placed immediately downstream of the spill site, and tissue concentrations systematically decreased with distance from the spill site. PAHs that were not related to Fuel Oil {number_sign}2 were found in all clams and accounted for up to 90% of the total body burden at downstream locations. Furthermore, the highest concentrations of 4-, 5-, and 6-ring PAH were found at the upstream reference location, and indicated an important source of PAHs into the environment. Body burdens measured in this study were compared to ambient concentrations reported for bivalves from a variety of environments. Tissue concentrations were also compared to concentrations that have been reported to cause adverse biological effects.« less
Pozdnyakova, Natalia; Dubrovskaya, Ekaterina; Chernyshova, Marina; Makarov, Oleg; Golubev, Sergey; Balandina, Svetlana; Turkovskaya, Olga
2018-05-01
The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase
Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong
2013-01-01
Nitrated polycyclic aromatic hydrocarbons are common environmental pollutants, of which many are mutagenic and carcinogenic. 1-Nitropyrene is the most abundant nitrated polycyclic aromatic hydrocarbon, which causes DNA damage and is carcinogenic in experimental animals. Error-prone translesion synthesis of 1-nitropyrene–derived DNA lesions generates mutations that likely play a role in the etiology of cancer. Here, we report two crystal structures of the human Y-family DNA polymerase iota complexed with the major 1-nitropyrene DNA lesion at the insertion stage, incorporating either dCTP or dATP nucleotide opposite the lesion. Polι maintains the adduct in its active site in two distinct conformations. dCTP forms a Watson–Crick base pair with the adducted guanine and excludes the pyrene ring from the helical DNA, which inhibits replication beyond the lesion. By contrast, the mismatched dATP stacks above the pyrene ring that is intercalated in the helix and achieves a productive conformation for misincorporation. The intra-helical bulky pyrene mimics a base pair in the active site and facilitates adenine misincorporation. By structure-based mutagenesis, we show that the restrictive active site of human polη prevents the intra-helical conformation and A-base misinsertions. This work provides one of the molecular mechanisms for G to T transversions, a signature mutation in human lung cancer. PMID:23268450
Multimedia Model for Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs in Lake Michigan
2015-01-01
Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates. PMID:25373871
Singh, Dilpreet; Schifman, Laura Arabella; Watson-Wright, Christa; Sotiriou, Georgios A; Oyanedel-Craver, Vinka; Wohlleben, Wendel; Demokritou, Philip
2017-05-02
Nano-enabled products are ultimately destined to reach end-of-life with an important fraction undergoing thermal degradation through waste incineration or accidental fires. Although previous studies have investigated the physicochemical properties of released lifecycle particulate matter (called LCPM) from thermal decomposition of nano-enabled thermoplastics, critical questions about the effect of nanofiller on the chemical composition of LCPM still persist. Here, we investigate the potential nanofiller effects on the profiles of 16 Environmental Protection Agency (EPA)-priority polycyclic aromatic hydrocarbons (PAHs) adsorbed on LCPM from thermal decomposition of nano-enabled thermoplastics. We found that nanofiller presence in thermoplastics significantly enhances not only the total PAH concentration in LCPM but most importantly also the high molecular weight (HMW, 4-6 ring) PAHs that are considerably more toxic than the low molecular weight (LMW, 2-3 ring) PAHs. This nano-specific effect was also confirmed during in vitro cellular toxicological evaluation of LCPM for the case of polyurethane thermoplastic enabled with carbon nanotubes (PU-CNT). LCPM from PU-CNT shows significantly higher cytotoxicity compared to PU which could be attributed to its higher HMW PAH concentration. These findings are crucial and make the case that nanofiller presence in thermoplastics can significantly affect the physicochemical and toxicological properties of LCPM released during thermal decomposition.
NASA Astrophysics Data System (ADS)
Kan, R.; Kaosol, T.; Tekasakul, P.; Tekasakul, S.
2017-09-01
Determination of particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) emitted from co-pelletization combustion of lignite and rubber wood sawdust in a horizontal tube furnace is investigated using High Performance Liquid Chromatography with coupled Diode Array and Fluorescence Detection (HPLC-DAD/FLD). The particle-bound PAHs based on the mass concentration and the toxicity degree are discussed in the different size ranges of the particulate matters from 0.07-11 μm. In the present study, the particle-bound PAHs are likely abundant in the fine particles. More than 70% of toxicity degree of PAHs falls into PM1.1 while more than 80% of mass concentration of PAHs falls into PM2.5. The addition of lignite amount in the co-pelletization results in the increasing concentration of either 4-6 aromatic ring PAHs or high molecular weight PAHs. The high contribution of 4-6 aromatic ring PAHs or high molecular weight PAHs in the fine particles should be paid much more attention because of high probability of human carcinogenic. Furthermore, the rubber wood sawdust pellets emit high mass concentration of PAHs whereas the lignite pellets emit high toxicity degree of PAHs. By co-pelletized rubber wood sawdust with lignite (50% lignite pellets) has significant effect to reduce the toxicity degree of PAHs by 70%.
Karaca, Gizem
2016-02-01
The objectives of this study were to identify regional variations in soil polycyclic aromatic hydrocarbon (PAH) contamination in Bursa, Turkey, and to determine the distributions and sources of various PAH species and their possible sources. Surface soil samples were collected from 20 different locations. The PAH concentrations in soil samples were analyzed using gas chromatography-mass spectrometry (GC-MS). The total PAH concentrations (∑12 PAH) varied spatially between 8 and 4970 ng/g dry matter (DM). The highest concentrations were measured in soils taken from traffic+barbecue+ residential areas (4970 ng/g DM) and areas with cement (4382 ng/g DM) and iron-steel (4000 ng/g DM) factories. In addition, the amounts of ∑7 carcinogenic PAH ranged from 1 to 3684 ng/g DM, and between 5 and 74 % of the total PAHs consisted of such compounds. Overall, 4-ring PAH compounds (Fl, Pyr, BaA and Chr) were dominant in the soil samples, with 29-82 % of the ∑12 PAH consisting of 4-ring PAH compounds. The ∑12 BaPeq values ranged from 0.1 to 381.8 ng/g DM. Following an evaluation of the molecular diagnostic ratios, it was concluded that the PAH pollution in Bursa soil was related to pyrolytic sources; however, the impact of petrogenic sources should not be ignored.
Guo, Zhigang; Lin, Tian; Zhang, Gan; Yang, Zuosheng; Fang, Ming
2006-09-01
A well-placed 210Pb-dated sediment core extracted from the distal mud in the central continental shelf of the East China Sea is used to reconstruct the high-resolution atmospheric depositional record of polycyclic aromatic hydrocarbons (PAHs), believed to be transported mainly from China in the past 200 years due to the East Asian Monsoon. Total PAHs (TPAHs), based on the 16 USEPA priority PAHs, range from 27 in 1788 to 132 ng g(-1) in 2001. TPAH variation in the core reflects energy usage changes and follows closely the historical economic development in China. PAHs in the core are dominantly pyrogenic in source, i.e., they are mainly from the incomplete combustion of coal and biomass burning. Several individual PAHs suggest that contribution from incomplete petroleum combustion has increased during recent years. Analysis of the 2 + 3 ring and the 5 + 6 ring PAHs and principle component analysis provide more evidence in the change in the energy structure, especially after 1978 when China embarked on the "Reform and Open" Policy, indicating the transformation from an agricultural to an industrial economy of China. The historical profile of PAH distribution in the study area is obviously different from the United States and Europe due to their difference in energy structure and economic development stages.
Mzoughi, Nadia; Chouba, Lassaad
2011-01-01
Under the framework of the IAEA's Technical Co-operation project RAF7/004, international research cruises were carried out in 2004 to assess the distribution of radionuclides and micropollutants in the south-western Mediterranean Sea. Sediments samples had variable concentrations of total aliphatic hydrocarbons and polycyclic aromatic hydrocarbons ranging from 0.2 to 1.8 microg g(-1) and 26.9 to 364.4 ng g(-1), respectively, in the Sicily Channel and from 0.7 to 2.8 microg g(-1) and 14.7 to 618.1 ng g(-1), respectively, in the open sea of the Gulf of Tunis. Hydrocarbon concentrations changed with depth and were relatively high at 3 cm and 10 cm depths. The use of 'fingerprint' ratios of certain isomeric pairs of polycyclic aromatic hydrocarbons (PAH) and the proportion of 2-3 ring and 4-5 ring PAH concentrations showed that the main origins are characteristic of petroleum sources. The ranges of trace metal concentrations, expressed in microgg(-1), in the Sicily Channel and in the Gulf of Tunis, respectively, were: Hg 0.009-0.2 and 0.02-0.1; Pb 9.9-26.1 and 21.2-32.5; Cd 0.06-0.1 and 0.07-0.33; Fe 23.7-28.1 and 29.9-36.2p; Zn 83-99.5 and 83-104; Mn 309.2-752.5 and 651-814; Cu 17.1-18.5 and 33.5-51.3. Sediment metal abundances were in the order: Mn > Zn > Fe > Cu > Pb > Cd > Hg. The results showed significant differences (p < 0.001) for trace metal and hydrocarbon mean concentrations between the two cores. These concentrations are generally similar to the background levels from the Mediterranean Sea and could be affected by physico-chemical conditions and sedimentation rate as well as biodegradation.
Xu, Xijin; Yekeen, Taofeek Akangbe; Xiao, Qiongna; Wang, Yuangping; Lu, Fangfang; Huo, Xia
2013-11-01
Electronic waste recycling produces Polycyclic Aromatic Hydrocarbons (PAHs) and Polybrominated Diphenyl Ethers (PBDEs) which may affect fetal growth and development by altering the insulin-like-growth factor (IGF) system. Questionnaires were administered to pregnant women (Guiyu, an e-waste site, n = 101; control, n = 53), and umbilical cord blood (UCB) and placentas were collected upon delivery. PBDEs and PAHs in UCB and placental IGF-1 and IGFBP-3 mRNA levels were analyzed using GC-MS and real-time PCR, respectively. Infant birth length and Apgar scores were lower in Guiyu. All PAHs (except Fl, Chr, IP, BbF and BP), total 16-PAHs, total/individual PBDEs, placental IGF-1 (median 0.23 vs 0.19; P < 0.05) and IGFBP-3 (median 1.91 vs 0.68; P < 0.001) levels were significantly higher in Guiyu. Spearman correlation showed that BDE-154, BDE-209 and ∑5ring-PAHs positively correlate with IGF-1 while PBDEs, 4 rings and total PAHs correlate with IGFBP-3 expression. Increased placental IGF-1 level might indirectly affect fetal growth and development. Copyright © 2013. Published by Elsevier Ltd.
Baldrian, Petr; in der Wiesche, Carsten; Gabriel, Jiří; Nerud, František; Zadražil, František
2000-01-01
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited. PMID:10831426
Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao
2016-12-01
Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.
2007-09-01
a higher crystal density, a higher heat of formation, and a better oxidizer- to-fuel ratio than conventional nitramines used in propellants. The...resembles two RDX rings joined at several carbon atoms (Larson et al. 2001). CL-20 is a polycyclic nitramine with a higher crystal density, a higher...Heilmann et al. 1996). Research performed on RDX indicates that its degradation in alkaline media was initiated by a single denitration step, which
Total Synthesis of Hyperforin.
Ting, Chi P; Maimone, Thomas J
2015-08-26
A 10-step total synthesis of the polycyclic polyprenylated acylphloroglucinol (PPAP) natural product hyperforin from 2-methylcyclopent-2-en-1-one is reported. This route was enabled by a diketene annulation reaction and an oxidative ring expansion strategy designed to complement the presumed biosynthesis of this complex meroterpene. The described work enables the preparation of a highly substituted bicyclo[3.3.1]nonane-1,3,5-trione motif in only six steps and thus serves as a platform for the construction of easily synthesized, highly diverse PPAPs modifiable at every position.
Benz[j]aceanthrylene (B[j]A), a cyclopenta-fused polycyclic aromatic hydrocarbon (CP-PAH) related to 3-methylcholanthrene, has been studied to identify the major routes of metabolic activation in transformable C3H1OT1/2CLB (C3H1OT1/2) mouse embryo fibroblasts in culture. he morph...
Ugochukwu, Uzochukwu Cornelius; Ochonogor, Alfred
2018-03-26
Diesel pollution of groundwater poses great threat to public health, mainly as a result of the constituent polycyclic aromatic hydrocarbons (PAHs). In this study, the human health risk exposure to polycyclic aromatic hydrocarbons (PAHs) in diesel contaminated groundwater used by several families at Ring Road, Jos, Nigeria (as caused by diesel spill from a telecom base station) was assessed. Prior to the groundwater being treated, the residents were using the water after scooping off the visible diesel sheen for purposes of cooking, washing, and bathing. Until this study, it is not clear whether the groundwater contamination had resulted in sub-chronic exposure of the residents using the water to polycyclic aromatic hydrocarbons (PAHs) to the extent of the PAHs posing a health risk. The diesel contaminated groundwater and uncontaminated nearby groundwater (control) were collected and analyzed for PAHs using gas chromatography-mass spectrometry (GC-MS). The dosage of the dermal and oral ingestion entry routes of PAHs was determined. The estimation of the non-carcinogenic health risk was via hazard quotients (HQ) and the associated hazard index (HI), while the estimation of the carcinogenic health risk was via lifetime cancer risks (LCR) and the associated risk index (RI). Obtained results indicate that the exposure of the residents to the PAHs may have made them susceptible to the risk of non-carcinogenic health effects of benzo(a)pyrene and the carcinogenic health effects of benzo(a)anthracene and benzo(a)pyrene.
Polycyclic aromatic hydrocarbons in sediments and mussels of Corral Bay, south central Chile.
Palma-Fleming, Hernan; P, Adalberto J Asencio; Gutierrez, Elena
2004-03-01
PAHs were measured in sediments and mussels (Mytilus chilensis) from Carboneros and Puerto Claro, located in Corral Bay, Valdivia. According to the ratio of phenanthrene/anthracene and fluoranthene/pyrene concentrations, these sites are medium polluted with PAHs originating mainly from pyrolytic sources. Fluoranthene was the major component measured in mussels (3.1-390 ng g(-1) dry weight) and sediments (6.9-74.1 ng g(-1) dry weight). In general, mussels were mainly exposed to the dissolved fraction of the lower molecular weight PAHs (tri- and tetra-aromatics) while the higher molecular ring systems (penta- and hexa-aromatics) were more bioavailable to sediments. Mussel PAHs content was relatively constant, with the exception of the 1999 summer season (March), when higher concentration values were found in both sites; however, PAHs residues in sediments showed a temporal variation.
Guigue, Catherine; Tedetti, Marc; Dang, Duc Huy; Mullot, Jean-Ulrich; Garnier, Cédric; Goutx, Madeleine
2017-10-01
Polycyclic aromatic hydrocarbons (PAHs) and organic matter contents were measured in seawater during resuspension experiments using sediments collected from Toulon Bay (Northwestern Mediterranean Sea, France). The studied sediments were very highly contaminated in PAHs, especially in 4-ring compounds emitted from combustion processes. The sediments used for resuspension experiments were collected at 0-2 cm (diagenetically new organic matter, OM) and 30-32 cm depths (diagenetically transformed OM). They were both mostly composed of fine particles (<63 μm), enriched in organic carbon (8.2 and 6.3%, respectively) and in PAHs (concentration of Σ34 PAHs: 38.2 and 35.7 × 10 3 ng g -1 , respectively). The resuspension of these sediments led to an increase in concentrations of dissolved Σ34 PAHs, dissolved organic carbon (DOC) and dissolved humic- and tryptophan-like fluorophores in seawater up to 10-, 1.3-, 4.4- and 5.7-fold, respectively. The remobilization in seawater was higher for 4-6 ring PAHs, especially benzo(g,h,i)perylene, whose concentration exceeded the threshold values of the European Water Framework Directive. This noted the potential harmful effects of sediment resuspension on marine biota. From these sediment resuspension experiments, we determined OC-normalized partition coefficients of PAHs between sediment and water (K oc ) and found that during such events, the transfer of PAHs from sediment particles to seawater was lower than that predicted from octanol-water partition coefficients (K ow ) (i.e., measured K oc > K oc predicted from K ow ). The results confirmed the sequestration role of sedimentary OC quality and grain size on PAHs; the OM diagenetic state seemed to impact the partition process but in a relatively minor way. Furthermore, differences were observed between 2-4 ring and 5-6 ring PAHs, with the latter displaying a relatively higher mobility towards seawater. These differences may be explained by the distribution of these two PAH pools within different OM moieties, such as humic substances and black carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lammel, Gerhard; Mulder, Marie D.; Shahpoury, Pourya; Kukučka, Petr; Lišková, Hana; Přibylová, Petra; Prokeš, Roman; Wotawa, Gerhard
2017-05-01
Nitro-polycyclic aromatic hydrocarbons (NPAH) are ubiquitous in polluted air but little is known about their abundance in background air. NPAHs were studied at one marine and one continental background site, i.e. a coastal site in the southern Aegean Sea (summer 2012) and a site in the central Great Hungarian Plain (summer 2013), together with the parent compounds, PAHs. A Lagrangian particle dispersion model was used to track air mass history. Based on Lagrangian particle statistics, the urban influence on samples was quantified for the first time as a fractional dose to which the collected volume of air had been exposed. At the remote marine site, the 3-4-ring NPAH (sum of 11 targeted species) concentration was 23.7 pg m-3 while the concentration of 4-ring PAHs (6 species) was 426 pg m-3. The most abundant NPAHs were 2-nitrofluoranthene (2NFLT) and 3-nitrophenanthrene. Urban fractional doses in the range of < 0.002-5.4 % were calculated. At the continental site, the Σ11 3-4-ring NPAH and Σ6 4-ring PAH were 58 and 663 pg m-3, respectively, with 9-nitroanthracene and 2NFLT being the most concentrated amongst the targeted NPAHs. The NPAH levels observed in the marine background air are the lowest ever reported and remarkably lower, by more than 1 order of magnitude, than 1 decade before. Day-night variation of NPAHs at the continental site reflected shorter lifetime during the day, possibly because of photolysis of some NPAHs. The yields of formation of 2NFLT and 2-nitropyrene (2NPYR) in marine air seem to be close to the yields for OH-initiated photochemistry observed in laboratory experiments under high NOx conditions. Good agreement is found for the prediction of NPAH gas-particle partitioning using a multi-phase poly-parameter linear free-energy relationship. Sorption to soot is found to be less significant for gas-particle partitioning of NPAHs than for PAHs. The NPAH levels determined in the south-eastern outflow of Europe confirm intercontinental transport potential.
Wang, Lijun; Zhang, Panqing; Wang, Li; Zhang, Wenjuan; Shi, Xingmin; Lu, Xinwei; Li, Xiaoping; Li, Xiaoyun
2018-03-27
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment. This study collected a total of 62 urban soil samples from the typical semi-arid city of Xi'an in Northwest. They were analyzed for the composition, distribution, and sources of PAHs as well as the relationships with soil properties. The sum of 16 individual PAHs (∑16PAHs) ranged from 390.6 to 10,652.8 μg/kg with a mean of 2052.6 μg/kg. The average ∑16PAHs decreased in the order of the third ring road (2321.1 μg/kg) > the first ring road (1893.7 μg/kg) > the second ring road (1610.0 μg/kg), and in the order of industrial areas (3125.6 μg/kg) > traffic areas (2551.6 μg/kg) > educational areas (2414.4 μg/kg) > parks (1649.5 μg/kg) > mixed commercial and traffic areas (1332.8 μg/kg) > residential areas (1031.0 μg/kg). The most abundant PAHs in the urban soil were 3- to 5-ring PAHs. Elevated levels of PAHs were found in industrial and traffic areas from the east and west suburbs and the northwest corner of Xi'an as well as the northeast corner in the urban district of Xi'an. PAHs in the urban soil were mainly related to the combustion of fossil fuel (i.e., coal, gasoline, diesel, and natural gas) and biomass (i.e., grass and wood) (variance contribution 57.2%) as well as the emissions of petroleum and its products (variance contribution 29.9%). Soil texture and magnetic susceptibility were the main factors affecting the concentration of PAHs in urban soil. Meanwhile, this study suggested that the single, rapid, and nondeductive magnetic measurements can be an indicator of soil pollution by PAHs.
Characterization of polycyclic aromatic hydrocarbons and metals in ashes released from a forest fire
NASA Astrophysics Data System (ADS)
Campos, I.; Abrantes, N.; Pereira, P.; Vale, C.; Ferreira, A.; Keizer, J. J.
2012-04-01
Wildfires have become a permanent source of environmental and societal concerns. Whilst the impacts of wildfire on hydrological and erosion processes are well documented, the stocks and export of polycyclic aromatic hydrocarbons (PAHs) and heavy metals have received considerably less research attention. The ashes produced by wildfires, which include polluting substances such as PAHs and metals, are subject to transport processes by wind and especially by overland flow and water infiltrating into the soil and possibly reaching ground water bodies. In the framework of the FIRECNUTS project, we are studying the stocks of PAHs and selected metals in recently burnt forest stands in north-central Portugal, and their subsequent export by overland flow. The present work, however, will focus on the stocks in the ashes, both immediately after wildfire and three months later. These ashes were collected at two burnt slopes with contrasting forest types, i.e. a eucalypt and a maritime pine stand, the two pre-dominant forest types in the study region. The sixteen PAHs identified by US EPA as priority contaminants were analysed by gas chromatograph, after extraction and column clean up. The contents of vanadium (V), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) were analysed by inductively coupled plasma- mass spectrometry (ICP-MS), after an acid digestion, while mercury (Hg) was analysed by pyrolysis atomic absorption spectrometry with gold amalgamation. The total concentration of PAHs immediately after the wildfire ranged from 314 ng/g dry weight in the maritime pine stand to 597 ng/g dry weight in the eucalypt stand. Three months later, the total concentration has decreased with 33% in the pine stand but only half (16%) in the eucalypt stand. The composition the PAHs by ring size was dominated by three-rings PAHs. This was true for all samples. The concentrations of various metals differed for the two sampling occasions but not in straightforward manners. Some metals (Co, Ni, Cu, Zn, Cd, Pb and Hg) revealed higher contents immediately after the fire, whereas others (V, Cr and As) did three months later. The present results underline the importance of furthering the knowledge about contamination of soil and water by ashes from wildfires and the associated risks in terms of ecotoxicological effects, both in-situ and in downstream aquatic systems. Keywords: Polycyclic aromatic hydrocarbons (PAH); heavy metals; stocks; ash; wildfires
Roseiro, L C; Gomes, A; Santos, C
2011-06-01
The concentration of 16 polycyclic aromatic hydrocarbons (PAHs) was determined in traditional dry/fermented sausage along distinct stages of processing under two different technological procedures (traditional and modified processes). The influence of product's position in the smoking room, on the variation of contaminants and in their migration dynamics from the outer into the inner part, was also followed up. Raw material mixtures presented expressive total PAH values, 106.17 μg kg(-1) in wet samples and 244.34 μg kg(-1) in dry mater (DM), expressing the frequent fire woods occurred in the regions pigs were extensively reared. Traditional processing produced a higher (p<0.01) total PAH levels comparatively to modified/industrial procedures, with mean values reaching 3237.10 and 1702.85 μg kg(-1) DM, respectively. Both, raw materials and final products, showed PAH profiles with light compounds representing about 99.0% of the total PAHs, mostly accounted by those having two rings (naphthalene-27.5%) or three rings (acenaphtene-16.9%; fluorene-27.1%; phenanthrene-19.5% and anthracene-3.9%). The benzo[a]pyrene (BaP) accumulated in traditional and modified processed products never surpassed the limit of 5 μg kg(-1) established by the EU legislation. PAHs in products hanged in bars closer to heating/smoking source speed up their transfer from the surface/outer portion to the inner part of the product. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yun, Sung Ho; Choi, Chi-Won; Lee, Sang-Yeop; Lee, Yeol Gyun; Kwon, Joseph; Leem, Sun Hee; Chung, Young Ho; Kahng, Hyung-Yeel; Kim, Sang Jin; Kwon, Kae Kyoung; Kim, Seung Il
2014-01-01
Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs). Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs) identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1. PMID:24608660
Grimmer, G; Dettbarn, G; Brune, H; Deutsch-Wenzel, R; Misfeld, J
1982-01-01
The purpose of this investigation was to identify the substances mainly responsible for the carcinogenic effect of used engine oil from gasoline engines using topical application as a carcinogen-specific bioassay. This was performed by comparison of the tumorigenic effect of single fractions with that of an unseparated sample of the lubricating oil. The probit analysis of the results shows: 1) The used engine oil, from gasoline-driven automobiles, investigated provoked local tumors after long-term application to the dorsal skin of mice. The incidence of carcinoma depended on the dose of the oil. 2) The fraction of the polycyclic aromatic hydrocarbons (PAH) containing more than three rings accounts for about 70% of the total carcinogenicity in the case of crankcase oil. This fraction constitutes only up to 1.14% by weight of the total oil sample. 3) The content of benzo(a)pyrene (216.8 mg/kg) accounts for 18% of the total carcinogenicity of the used oil. 4) Regarding the reduced carcinogenicity of the oil sample, which was reconstituted from all fractions, it seems possible that some of the carcinogenic substances were lost due to volatility, with evaporation of the solvents from the oil-fractionation processes. 5) Regarding the small effect of the PAH-free fraction, as well as the equal carcinogenic effects of the PAH-fraction (containing more than three rings) and the reconstituted oil sample, no hints for a co-carcinogenic activity were obtained.
Schifter, I; González-Macías, C; Salazar-Coria, L; Sánchez-Reyna, G; González-Lozano, C
2015-11-01
Produced water from offshore oil platforms is a major source of oil and related chemicals into the sea. The large volume and high salinity of produced water could pose severe environmental impacts upon inadequate disposal. This study is based on direct field sampling of effluents released into the ocean in the years 2003 and 2013 at the Sonda de Campeche located in the southern part of the Gulf of Mexico. Metals and hydrocarbons were characterized in water, sediments, and fish tissues at the discharge site and compared with those obtained at two reference sites. Chemicals that exceeded risk-based concentrations in the discharge included the metals As, Pb, Cd, and Cr, and a variety of compounds polycyclic aromatic hydrocarbon (PAHs), including naphthalene, fluorenes, and low molecular weight PAHs. The values of low to high molecular weight polycyclic aromatic hydrocarbon (PAHs), and carbon preference index indicate that hydrocarbons in sediments of the discharge zone are originated from the produced water and combustion sources. Fish tissues at the discharge zone and reference site are contaminated with PAHs, dominated by 2- and 3-rings; 4-ring accounted for less than 1% of total PAHs (TPAHs) in 2003, but increased to 7% in 2013. Results suggest that, from 2003 to 2013, discharges of produced water have had a non-negligible impact on ecosystems at a regional level, so the possibility of subtle, cumulative effects from operational discharges should not be ignored.
Jiao, Haihua; Wang, Qi; Zhao, Nana; Jin, Bo; Zhuang, Xuliang; Bai, Zhihui
2017-10-09
Background : Yearly the Shanxi coal chemical industry extracts many coal resources, producing at the same time many polycyclic aromatic hydrocarbons (PAHs) that are emitted as by-products of coal incomplete combustion. Methods : Sixty-six soil samples collected from 0 to 100 cm vertical sections of three different agricultural (AS), roadside (RS) and park (PS) functional soils around a chemical plant in Shanxi, China were analyzed for the presence of the 16 priority control PAHs. Results : The total concentrations (∑16PAHs) varied in a range of 35.4-116 mg/kg, 5.93-66.5 mg/kg and 3.87-76.0 mg/kg for the RS, PS and AS surface soil, respectively, and 5-ring PAHs were found to be dominant (44.4-49.0%), followed by 4-ring PAHs (15.9-24.5%). Moreover, the average value of ∑16PAHs decreased with the depth, 7.87 mg/kg (0-25 cm), 4.29 mg/kg (25-50 cm), 3.00 mg/kg (50-75 cm), 2.64 mg/kg (75-100 cm) respectively, in PS and AS soil vertical sections. Conclusions : The PAH levels in the studied soils were the serious contamination level (over 1.00 mg/kg) according to the Soils Quality Guidelines. The carcinogenic PAHs (ΣBPAHsBapeq) were approximately 14.8 times higher than the standard guideline level (0.60 mg/kg) and 90.3% of PAHs were produced by coal/wood/grass combustion processes.
NASA Astrophysics Data System (ADS)
Cochran, Richard E.; Jeong, Haewoo; Haddadi, Shokouh; Fisseha Derseh, Rebeka; Gowan, Alexandra; Beránek, Josef; Kubátová, Alena
2016-03-01
The 3- and 4-ring polycyclic aromatic hydrocarbons (PAHs) are the most abundant of PAHs in air particulate matter (PM). Thus we have investigated heterogeneous oxidation of 3- and 4-ring PAHs in a small-scale flow reactor using quartz filter as a support. Four representative PAHs, anthracene, phenanthrene, pyrene, and fluoranthene, were exposed to either NO2, O3 or NO2+O3 (NO3/N2O5) with a goal to identify and attempt quantification of major product distribution. A combination of gas chromatography with mass spectrometry (GC-MS) with/without derivatization and liquid chromatography with high resolution MS (LC-HRMS) was used for identification. For the first time, a comprehensive characterization of a broad range of products enabled identifying ketone/diketone, aldehyde, hydroxyl, and carboxylic acid PAH derivatives. Exposure to NO3/N2O5 (formed by reacting NO2 with O3, a more powerful reactant than either O3 or NO2) produced additional compounds not observed with either oxidant alone. Multiple isomers of nitrofluoranthene and, for the first time, nitrophenanthrene were identified. In addition hydroxy-nitro-PAH derivatives were observed for the reaction of anthracene with NO3/N2O5. Monitoring of specific common ions such as those of 176 and 205 m/z attributed to carbonyl phenanthrene and deprotonated phenanthrene ions respectively was shown to be a useful tool for identification of multiple pyrene oxidation products.
Dores-Silva, Paulo R; Cotta, Jussara A O; Landgraf, Maria D; Rezende, Maria O O
2018-05-04
The objective of this study was to investigate the role of stabilized organic matter (vermicompost) and tropical soils in the sorption of naphthalene, anthracene and benzo[a]pyrene. The results obtained for the three compounds were extrapolated for the priority polycyclic aromatic hydrocarbons (PAHs) pollutants according to Environmental Protection Agency (US EPA). To evaluate the sorption process, high performance liquid chromatography was employed and the data was fitted by Freundlich isotherms. The results suggest that the sorption effect generally increases with the number of benzene rings of the PAHs, and that the persistence of PAHs in the environment is possibly related to the number of benzene rings in the PAH molecule. In addition, the pH of the vermicompost can strongly affect the adsorption process in this matrix.
Polycyclic selection system for the tropical rainforests of northern Australia
Glen T. Dale; Grahame B. Applegate
1992-01-01
The polycyclic selection logging system developed and practiced for many years in the tropical rainforests of north Queensland has been successful in integrating timber production with the protection of conservation values. The system has been used by the Queensland Forest Service to manage north Queensland rainforests. The Queensland system has considerable potential...
[Polycyclic aromatic hydrocarbons (PAHs) in herbs and fruit teas].
Ciemniak, Artur
2005-01-01
Polycyclic aromatic hydrocarbons (PAHs) of which benzo[a]pyrene is the most commonly studied and measured, are fused - ring aromatic compounds formed in both natural and man made processes and are found widely distributed throughout the human environment. PAHs occur as contaminants in different food categories and beverages including water, vegetables, fruit, cereals, oils and fats, barbecued and smoked meat. The sources of PAHs in food are predominantly from environmental pollution and food processing. PAHs emissions from automobile traffic and industry activities were show to influence the PAHs levels in vegetables and fruits. The present study was carried out to determine levels of 16 basic PAHs in herbs and fruit teas. The method was based on the hexane extraction and cleaned up by florisil cartridge. The extracts were analysed by GC-MS. The levels of total PAHs varied from 48,27 microg/kg (hibiscus tea) to 1703 microg/kg (green tea). The highest level of BaP was found in lime tea (74,2 microg/kg).
Saito, E; Tanaka, N; Miyazaki, A; Tsuzaki, M
2014-06-15
The concentration and particle size distribution of 19 major polycyclic aromatic hydrocarbons (PAHs) emitted by thermal cooking were investigated. Corn, trout, beef, prawns, and pork were selected for grilling. The PAHs in the oil mist emitted when the food was grilled were collected according to particle size range and analysed by GC/MS. Much higher concentrations of PAHs were detected in the oil mist emitted by grilled pork, trout, and beef samples, which were rich in fat. The main components of the cooking exhaust were 3- and 4-ring PAHs, regardless of food type. The particle size distribution showed that almost all the PAHs were concentrated in particles with diameters of <0.43 μm. For pork, the toxic equivalent of benzo[a]pyrene accounted for 50% of the PAHs in particles with diameters of <0.43 μm. From these results, we estimated that >90% of the PAHs would reach the alveolar region of the lungs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Naidoo, Gonasageran; Naidoo, Krishnaveni
2016-12-15
The uptake of polycyclic aromatic hydrocarbons and their cellular effects were investigated in the mangrove Bruguiera gymnorrhiza. Seedlings were subjected to sediment oiling for three weeks. In the oiled treatment, the ƩPAHs was higher in roots (99%) than in leaves (1%). In roots, PAHs included phenanthrene (55%), acenaphthene (13%), fluorine (12%) and anthracene (8%). In leaves, PAHs possessed two to three rings and included acenaphthene (35%), naphthalene (33%), fluorine (18%) and phenanthrene (14%). In the roots, oil caused disorganization of cells in the root cap, meristem and conducting tissue. Oil contaminated cells were distorted and possessed large and irregularly shaped vacuoles. Ultrastructural changes included loss of cell contents and fragmentation of the nucleus and mitochondrion. In the leaves, oil caused dilation and distortion of chloroplasts and disintegration of grana and lamellae. Oil targets critical organelles such as nuclei, chloroplasts and mitochondria which are responsible for cell vitality and energy transformation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Birds and polycyclic aromatic hydrocarbons
Albers, P.H.
2006-01-01
Polycyclic aromatic hydrocarbons (PAH) are present throughout the global environment and are produced naturally and by activities of humans. Effects of PAH on birds have been determined by studies employing egg injection, egg immersion, egg shell application, single and multiple oral doses, subcutaneous injection, and chemical analysis of field-collected eggs and tissue. The four-to six-ring aromatic compounds are the most toxic to embryos, young birds, and adult birds. For embryos, effects include death, developmental abnormalities, and a variety of cellular and biochemical responses. For adult and young birds, effects include reduced egg production and hatching, increased clutch or brood abandonment, reduced growth, increased organweights, and a variety of biochemical responses. Trophic level accumulation is unlikely. Environmental exposure to PAH in areas of high human population or habitats affected by recent petroleum spills might be sufficient to adversely affect reproduction. Evidence of long-term effects of elevated concentrations of environmental PAH on bird populations is very limited and the mechanisms of effect are unclear.
NASA Technical Reports Server (NTRS)
Okada, Asahi A.
2005-01-01
Polycyclic aromatic hydrocarbons are a class of molecules composed of multiple, bonded benzene rings. As PAHS are believed to be present on Mars, positive confirmation of their presence on Mars is highly desirable. To extract PAHS, which have low volatility, a fluid extraction method is ideal, and one that does not utilize organic solvents is especially ideal for in situ instrumental analysis. The use of water as a solvent, which at subcritical pressures and temperatures is relatively non-Polar, has significant potential. As SCWE instruments have not yet been commercialized, all instruments are individually-built research prototypes: thus, initial efforts were intended to determine if extraction efficiencies on the JPL-built laboratory-scale SCWE instrument are comparable to differing designs built elsewhere. Samples of soil with certified reference concentrations of PAHs were extracted using SCWE as well as conventional Soxhlet extraction. Continuation of the work would involve extractions on JPL'S newer, portable SCWE instrument prototype to determine its efficiency in extracting PAHs.
Neira, Carlos; Cossaboon, Jennifer; Mendoza, Guillermo; Hoh, Eunha; Levin, Lisa A
2017-01-15
Polycyclic aromatic hydrocarbons (PAHs) have garnered much attention due to their bioaccumulation, carcinogenic properties, and persistence in the environment. Investigation of the spatial distribution, composition, and sources of PAHs in sediments of three recreational marinas in San Diego Bay, California revealed significant differences among marinas, with concentrations in one site exceeding 16,000ngg -1 . 'Hotspots' of PAH concentration suggest an association with stormwater outfalls draining into the basins. High-molecular weight PAHs (4-6 rings) were dominant (>86%); the average percentage of potentially carcinogenic PAHs was high in all sites (61.4-70%) but ecotoxicological risks varied among marinas. Highly toxic benzo(a)pyrene (BaP) was the main contributor (>90%) to the total toxic equivalent quantity (TEQ) in marinas. PAHs in San Diego Bay marina sediments appear to be derived largely from pyrogenic sources, potentially from combustion products that reach the basins by aerial deposition and stormwater drainage from nearby streets and parking lots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng
2014-10-01
Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.
Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1.
Kumara, Manoj; Leon, Vladimir; De Sisto Materano, Angela; Ilzins, Olaf A; Galindo-Castro, Ivan; Fuenmayor, Sergio L
2006-01-01
We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm(-1) to 35.4 dN cm(-1) and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Wu, Z.; Guo, Z.
2017-12-01
We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three- to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2 to 107.4 ng m-2 d-1, and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure, with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling Kp for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign.
Maeda, Allyn H; Nishi, Shinro; Hatada, Yuji; Ozeki, Yasuhiro; Kanaly, Robert A
2014-03-01
A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in transformation to four-, three- and two-aromatic ring products. The structurally similar four- and three-ring non-alternant PAHs fluoranthene and acenaphthylene were also biotransformed by strain KK22, and LC/ESI(-)-MS/MS analyses of these products confirmed the lower biotransformation pathway proposed for benzo[k]fluoranthene. In all, seven products from benzo[k]fluoranthene and seven products from fluoranthene were revealed and included previously unreported products from both PAHs. Benzo[k]fluoranthene biotransformation proceeded through ortho-cleavage of 8,9-dihydroxy-benzo[k]fluoranthene to 8-carboxyfluoranthenyl-9-propenic acid and 9-hydroxy-fluoranthene-8-carboxylic acid, and was followed by meta-cleavage to produce 3-(2-formylacenaphthylen-1-yl)-2-hydroxy-prop-2-enoic acid. The fluoranthene pathway converged with the benzo[k]fluoranthene pathway through detection of the three-ring product, 2-formylacenaphthylene-1-carboxylic acid. Production of key downstream metabolites, 1,8-naphthalic anhydride and 1-naphthoic acid from benzo[k]fluoranthene, fluoranthene and acenaphthylene biotransformations provided evidence for a common pathway by strain KK22 for all three PAHs through acenaphthoquinone. Quantitative analysis of benzo[k]fluoranthene biotransformation by strain KK22 confirmed biodegradation. This is the first pathway proposed for the biotransformation of benzo[k]fluoranthene by a bacterium. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Chai, Chao; Cheng, Qiqi; Wu, Juan; Zeng, Lusheng; Chen, Qinghua; Zhu, Xiangwei; Ma, Dong; Ge, Wei
2017-08-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in soil (n=196) and vegetable (n=30) collected from greenhouses, and also in the soil (n=27) collected from agriculture fields close to the greenhouses in Shandong Province, China. The total PAH concentration (∑ 16 PAH) ranged from 152.2µg/kg to 1317.7µg/kg, within the moderate range in agricultural soils of China. Three-ring PAHs were the dominant species, with Phe (16.3%), Ace (13.1%), and Fl (10.5%) as the major compounds. The concentrations of low molecular weight (LMW ≤3 rings) PAHs were high in the east and north of Shandong, while the concentrations of high molecular weight (HMW ≥4 rings) PAHs were high in the south and west of the study area. The PAH level in soils in industrial areas (IN) was higher than those in transport areas (TR) and rural areas (RR). No significant difference in concentration of ∑ 16 PAH and composition was observed in soils of vegetable greenhouses and field soils. PAH concentration exhibited a weakly positive correlation with alkaline nitrogen, available phosphorus in soil, but a weakly negative correlation with soil pH. However, no obvious correlation was observed between PAH concentration and organic matter of soil, or ages of vegetable greenhouses. ∑ 16 PAH in vegetables ranged from 89.9µg/kg to 489.4µg/kg, and LMW PAHs in vegetables positively correlated with those in soils. The sources of PAHs were identified and quantitatively assessed through positive matrix factorization. The main source of PAHs in RR was coal combustion, while the source was traffic in TR and IN. Moreover, petroleum source, coke source, biomass combustion, or mixed sources also contributed to PAH pollution. According to Canadian soil quality guidelines, exposure to greenhouse soils in Shandong posed no risk to human health. Copyright © 2017. Published by Elsevier Inc.
Wu, Zilan; Lin, Tian; Li, Zhongxia; Jiang, Yuqing; Li, Yuanyuan; Yao, Xiaohong; Gao, Huiwang; Guo, Zhigang
2017-11-01
We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, air-sea gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, air-sea exchange fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m -2 d -1 , and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logK p ) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logP L 0 ), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic air masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling K p for oceanic air masses than those for continental air masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of air-sea exchange. Meanwhile, significant linear regressions between logK p and logK oa (logK sa ) for PAHs were observed for continental air masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ayub, Rabia; Bakouri, Ouissam El; Jorner, Kjell; Solà, Miquel; Ottosson, Henrik
2017-06-16
Compounds that can be labeled as "aromatic chameleons" are π-conjugated compounds that are able to adjust their π-electron distributions so as to comply with the different rules of aromaticity in different electronic states. We used quantum chemical calculations to explore how the fusion of benzene rings onto aromatic chameleonic units represented by biphenylene, dibenzocyclooctatetraene, and dibenzo[a,e]pentalene modifies the first triplet excited states (T 1 ) of the compounds. Decreases in T 1 energies are observed when going from isomers with linear connectivity of the fused benzene rings to those with cis- or trans-bent connectivities. The T 1 energies decreased down to those of the parent (isolated) 4nπ-electron units. Simultaneously, we observe an increased influence of triplet state aromaticity of the central 4n ring as given by Baird's rule and evidenced by geometric, magnetic, and electron density based aromaticity indices (HOMA, NICS-XY, ACID, and FLU). Because of an influence of triplet state aromaticity in the central 4nπ-electron units, the most stabilized compounds retain the triplet excitation in Baird π-quartets or octets, enabling the outer benzene rings to adapt closed-shell singlet Clar π-sextet character. Interestingly, the T 1 energies go down as the total number of aromatic cycles within a molecule in the T 1 state increases.
Wei, Zhi-cheng; Chang, Biao; Qiu, Wei-xun; Wang, Yi; Wu, Shi-min; Xing, Bao-shan; Liu, Wen-xin; Tao, Shu
2007-09-01
7 gas phase PAHs components in indoor air collected from 38 families were investigated by modified passive air samplers in Beijing areas during the local heating and non-heating seasons, and the influencing factors were discussed as well. The analytical results indicate that the gasous PAHs in local indoor air are dominated by 2 and 3 rings compounds, the mean concentrations for the 7 individual gaseous components range from 1 to 40 ng/m3, and the average concentration of total gaseous PAHs is about 100 ng/m3. There is no significant difference in total gaseous PAHs concentrations between the heating and the non-heating seasons, while some apparent seasonal changes occur in ACY and FLA concentrations. Compared with heating season, contribution of 2 rings compounds decreases while the proportions of 3 and 4 rings species increase during the non-heating season. Based on household activity questionnaires and actual analytical concentrations, the main influencing factors accounted for gaseous PAHs in indoor air, identified by multifactor analysis of variance, include cigarette smoking, use of moth ball, intensity of draft, cuisine frequency and built age.
NASA Technical Reports Server (NTRS)
Adams, Nigel G.; Fondren, L. Dalila; McLain, Jason L.; Jackson, Doug M.
2006-01-01
Several ring compounds have been detected in interstellar gas clouds, ISC, including the aromatic, benzene. Polycyclic aromatic hydrocarbons, PAHs, have been implicated as carriers of diffuse interstellar bands (DIBs) and unidentified infrared (UIR) bands. Heterocyclic aromatic rings of intermediate size containing nitrogen, possibly PreLife molecules, were included in early searches but were not detected and a recent search for Pyrimidine was unsuccessful. Our laboratory investigations of routes to such molecules could establish their existence in ISC and suggest conditions under which their concentrations would be maximized thus aiding the searches. The stability of such ring compounds (C5H5N, C4H4N2, C5H11N and C4H8O2) has been tested in the laboratory using charge transfer excitation in ion-molecule reactions. The fragmentation paths, including production of C4H4(+), C3H3N(+) and HCN, suggest reverse routes to the parent molecules, which are presently under laboratory investigation as production sources.
Toward a synthesis of hirsutellone B by the concept of double cyclization
Reber, Keith P.; Tilley, S. David; Carson, Cheryl A.; Sorensen, Erik J.
2014-01-01
This account describes a strategy for directly forming three of the six rings found in the polyketide natural product hirsutellone B via a novel cyclization cascade. The key step in our approach comprises two transformations: a large-ring forming, nucleophilic capture of a transient acyl ketene and an intramolecular Diels–Alder reaction, both of which occur in tandem through thermolyses of appropriately functionalized, polyunsaturated dioxinones. These thermally induced “double cyclization” cascades generate three new bonds, four contiguous stereocenters, and a significant fraction of the polycyclic architecture of hirsutellone B. The advanced macrolactam and macrolactone intermediates that were synthesized by this process possess key features of the hirsutellone framework, including the stereochemically dense decahydrofluorene core and the strained para-cyclophane ring. However, attempts to complete the carbon skeleton of hirsutellone B via transannular carbon-carbon bond formation were undermined by competitive O-alkylation reactions. This account also documents how we adapted to this undesired outcome through an evaluation of several distinct strategies for synthesis, as well as our eventual achievement of a formal total synthesis of hirsutellone B. PMID:24032341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnokutski, Serge A., E-mail: skrasnokutskiy@yahoo.com; Huisken, Friedrich, E-mail: friedrich.huisken@uni-jena.de
The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup −1} were released in this reaction. This estimation is inmore » line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup −1}.« less
He, Bo; Dai, Jing; Zherebetskyy, Danylo; ...
2015-03-31
Combining core annulation and peripheral group modification, we have demonstrated a divergent synthesis of a family of highly functionalized coronene derivatives from a readily accessible dichlorodiazaperylene intermediate. Various reactions, such as aromatic nucleophilic substitution, Kumada coupling and Suzuki coupling proceed effectively on α-positions of the pyridine sites, giving rise to alkoxy, thioalkyl, alkyl or aryl substituted polycyclic aromatic hydrocarbons. In addition to peripheral group modulation, the aromatic core structures can be altered by annulation with thiophene or benzene ring systems. Corresponding single crystal X-ray diffraction and optical studies indicate that the heteroatom linkages not only impact the solid state packing,more » but also significantly influence the optoelectronic properties. Moreover, these azacoronene derivatives display significant acid-induced spectroscopic changes, suggesting their great potential as colorimetric and fluorescence proton sensors.« less
NASA Astrophysics Data System (ADS)
Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng
2015-10-01
This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications. Electronic supplementary information (ESI) available: Fig. S1-S8, details of optimization of the SPME condition, Tables S1-S5. See DOI: 10.1039/c5nr04624f
Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia)
NASA Astrophysics Data System (ADS)
Zhidkin, Andrey; Koshovskii, Timur; Gennadiev, Alexander
2016-04-01
It is important to study sources and concentrations of polycyclic aromatic hydrocarbons (PAHs) in the agriculture soils within areas without intensive contaminations. Our studied object was soil and snow cover in the taiga zone (Tver region, Russia). A total of 52 surface (0-30 cm) and 31 subsurface (30-50 cm) soil samples, and 13 snow samples were collected in 35 soil pits, located in forest, crop and layland soils. Studied concentrations of the following 11 individual compounds: two-ring compounds (diphenyl and naphthalene homologues); three-ring compounds (fluorene, phenanthrene, anthracene); four-ring compounds (chrysene, pyrene, tetraphene); five-ring compounds (perylene, benzo[a]pyrene); and six-ring compounds (benzo[ghi]perylene). Analyses made by specrtofluorometry method at the temperature of liquid nitrogen. The total concentrations of all PAHs in soil samples ranged from 9 to 770 ng*g-1 with a median of 96 ng*g-1. The sum of high molecular weight PAHs was significantly lower than the sum of low molecular weight PAHs in the studied soils. The phenanthrene concentration was highest and ranged from 1.2 to 720 ng*g-1 (medium 72 ng*g-1). Compared PAHs reserves in snow cover (μg*m-2) with the reserves in topsoil layer (μg*m-2 in the upper 30 cm). Low molecular weight PAHs (fluorene, phenanthrene, diphenyl, naphthalene) reserves in snow was less than 20% from the reserves in the soil surface layer. High molecular weight PAHs (benzo[a]pyrene, chrysene, perylene, pyrene and tetraphene) reserves in snow was about 50-70% from the reserves in soil surface layer. High molecular weight PAHs (benzo[ghi]perylene and anthracene) reserves in snow was more than in topsoil. PAHs vertical distribution in soil profiles was statistically examined. The total concentration of all PAHs decreased with depth in all studied forest soils. In the arable soils was no significant trend in domination of PAHs total concentrations in the plowing and subsoil layers. The ratio of topsoil to subsoil concentrations of PAHs is different for differ congeners. Contents of phenanthrene and fluorene predominantly increase with the depth. Content of high molecular weight PAHs (benzo[a]pyrene, anthracene, tetraphene, perylene and pyrene) predominantly decreased with the depth. Other PAHs congeners have indistinct profile distributions in studied pits. Based on studied results PAHs divided to associations with different concentrations, sources and vertical distribution in soils: a) phenanthrene and fluorine; b) naphthalene, diphenyl; c) pyrene, benzo(a)pyrene, tetraphene, perylene, chrysene; d) anthracene and benzo(ghi)perylene. Research is funded by Russian Science Foundation (Project 14-27-00083).
Jiao, Haihua; Wang, Qi; Zhao, Nana; Jin, Bo; Zhuang, Xuliang
2017-01-01
Background: Yearly the Shanxi coal chemical industry extracts many coal resources, producing at the same time many polycyclic aromatic hydrocarbons (PAHs) that are emitted as by-products of coal incomplete combustion. Methods: Sixty-six soil samples collected from 0 to 100 cm vertical sections of three different agricultural (AS), roadside (RS) and park (PS) functional soils around a chemical plant in Shanxi, China were analyzed for the presence of the 16 priority control PAHs. Results: The total concentrations (∑16PAHs) varied in a range of 35.4–116 mg/kg, 5.93–66.5 mg/kg and 3.87–76.0 mg/kg for the RS, PS and AS surface soil, respectively, and 5-ring PAHs were found to be dominant (44.4–49.0%), followed by 4-ring PAHs (15.9–24.5%). Moreover, the average value of ∑16PAHs decreased with the depth, 7.87 mg/kg (0–25 cm), 4.29 mg/kg (25–50 cm), 3.00 mg/kg (50–75 cm), 2.64 mg/kg (75–100 cm) respectively, in PS and AS soil vertical sections. Conclusions: The PAH levels in the studied soils were the serious contamination level (over 1.00 mg/kg) according to the Soils Quality Guidelines. The carcinogenic PAHs (ΣBPAHsBapeq) were approximately 14.8 times higher than the standard guideline level (0.60 mg/kg) and 90.3% of PAHs were produced by coal/wood/grass combustion processes. PMID:28991219
Li, Yingjie; Xian, Qiming; Li, Li
2017-05-12
Polycyclic aromatic hydrocarbons (PAHs) are present in petroleum based products and are combustion by-products of organic matters. Determination of levels of PAHs in the indoor environment is important for assessing human exposure to these chemicals. A new short path thermal desorption (SPTD) gas chromatography/mass spectrometry (GC/MS) method for determining levels of PAHs in indoor air was developed. Thermal desorption (TD) tubes packed with glass beads, Carbopack C, and Carbopack B in sequence, were used for sample collection. Indoor air was sampled using a small portable pump over 7 days at 100ml/min. Target PAHs were thermally released and introduced into the GC/MS for analysis through the SPTD unit. During tube desorption, PAHs were cold trapped (-20°C) at the front end of the GC column. Thermal desorption efficiencies were 100% for PAHs with 2 and 3 rings, and 99-97% for PAHs with 4-6 rings. Relative standard deviation (RSD) values among replicate samples spiked at three different levels were around 10-20%. The detection limit of this method was at or below 0.1μg/m 3 except for naphthalene (0.61μg/m 3 ), fluorene (0.28μg/m 3 ) and phenanthrene (0.35μg/m 3 ). This method was applied to measure PAHs in indoor air in nine residential homes. The levels of PAHs in indoor air found in these nine homes are similar to indoor air values reported by others. Copyright © 2017 Elsevier B.V. All rights reserved.
Polycyclic aromatic hydrocarbons assessment in sediment of national parks in southeast Brazil.
Meire, Rodrigo Ornellas; Azeredo, Antonio; Pereira, Márcia de Souza; Torres, João Paulo Machado; Malm, Olaf
2008-08-01
The aim of this work was to assess the levels of polycyclic aromatic hydrocarbons (PAHs) in the environment and their sources found in protected regions of southeastern Brazil. Samples of sediments were collected at four National Parks: Itatiaia National Park (PNIT), Serra da Bocaina National Park (PNSB), Serra dos Orgãos National Park (PNSO) and Jurubatiba National Park (PNJUB). The National Parks studied comprise rainforests, altitudinal fields and 'restinga' environments located in the Minas Gerais, Rio de Janeiro and São Paulo states. The sampling was conducted between 2002 and 2004 from June to September. In general, the environmental levels of PAHs found were similar to those in other remote areas around the globe. PNIT exhibited the highest median values of total PAHs in sediment (97 ng g(-1)), followed by PNJUB (89 ng g(-1)), PNSO (57 ng g(-1)) and PNSB (27 ng g(-1)). The highest levels of total PAHs (576 and 24430 ng g(-1)) could be associated to a point source contamination where are characterized for human activities. At PNSB and PNIT the PAH profiles were richer in 2 and 3 ring compounds, whereas at PNSO and PNJUB, the profiles exhibited 3 and 4 ring compounds. The phenanthrene predominance in most samples could indicate the influence of biogenic synthesis. The samples with a petrogenic pattern found in this study might be associated with the vicinity of major urban areas, highway traffic and/or industrial activities close to PNSO and PNIT. At PNIT and PNJUB, forest fires and slash and burn agricultural practices may drive the results towards a pyrolytic pattern.
Singh, Dharmendra Kumar; Gupta, Tarun
2016-04-05
We investigated the health risk from 16 polycyclic aromatic hydrocarbons (PAHs) adsorbed on submicron particles and also reported their concentrations, spatial distribution and possible sources during foggy days at Kanpur. Twenty-four urban foggy day's samples gathered from Kanpur, an urban center in North India and most densely populated city in the Indo-Gangetic plain of India, were examined for 16 PAHs (2-6 rings).The mean concentration of PM1 was found to be 160.16±37.70μg/m(3). ∑16PAHs concentrations were 529.17ng/m(3) with a mean of 33.07ng/m(3). The compounds of higher molecular weight (4-6 rings) added to 70.67% of ∑PAHs mass concentration in the foggy day's samples. The results of source identification by using principle component analysis (PCA) and diagnostic ratios proposed that the primary sources of PAHs were vehicular emission (primarily driven by diesel fuel) and coal combustion and the secondary source. Exposure to total PAHs in the ambient air resulted in, 95% probability total Incremental Lifetime Cancer Risk (TILCR) 3.57×10(-5) for adults and 2.08×10(-5) for children or (∼35 cancer case per million in adults and ∼20 cancer case per million in children) due to inhalation in terms of ILCR were higher than the baseline value of acceptable risk (one cancer case per million people) suggesting moderate health risk to resident human population. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Yu; Shen, Jimin; Chen, Zhonglin; Ren, Nanqi; Li, Yifan
2013-04-01
The levels of polycyclic aromatic hydrocarbons (PAHs) in the water and the sediment samples collected near the Mopanshan Reservoir-the most important drinking water resource of Harbin City in Northeast China-were examined. A total of 16 PAHs were concurrently identified and quantified in the three water bodies tested (Lalin River, Mangniu River, and Mopanshan Reservoir) and in the Mopanshan drinking water treatment plant during the high- and low water periods. The total PAH concentrations in the water and sediment samples ranged from 122.7 to 639.8 ng/L and from 89.1 to 749.0 ng/g dry weight, respectively. Similar spatial and temporal trends were also found for both samples. The lowest Σ16PAH concentration of the Mopanshan Reservoir was obtained during the high water period; by contrast, the Lalin River had the highest concentration during the low water period. The PAH profiles resembling the three water bodies, with high percentages of low-molecular weight PAHs and dominated by two- to three-ring PAHs (78.4 to 89.0%). Two of the molecular indices used reflected the possible PAH sources, indicating the main input from coal combustion, especially during the low water period. The conventional drinking water treatment operations resulted in a 20.7 to 67.0% decrease in the different-ringed PAHs in the Mopanshan-treated drinking water. These findings indicate that human activities negatively affect the drinking water resource. Without the obvious removal of the PAHs in the waterworks, drinking water poses certain potential health risks to people.
Mansilha, C; Carvalho, A; Guimarães, P; Espinha Marques, J
2014-01-01
Water quality alterations due to forest fires may considerably affect aquatic organisms and water resources. These impacts are cumulative as a result of pollutants mobilized from fires, chemicals used to fight fire, and postfire responses. Few studies have examined postfire transport into water resources of trace elements, including the polycyclic aromatic hydrocarbons (PAH), which are organic pollutants produced during combustion and are considered carcinogenic and harmful to humans. PAH are also known to adversely affect survival, growth, and reproduction of many aquatic species. This study assessed the effects of forest wildfires on groundwater from two mountain regions located in protected areas from north and central Portugal. Two campaigns to collect water samples were performed in order to measure PAH levels. Fifteen of 16 studied PAH were found in groundwater samples collected at burned areas, most of them at concentrations significantly higher than those found in control regions, indicating aquifer contamination. The total sum of PAH in burned areas ranged from 23.1to 95.1 ng/L with a median of 62.9 ng/L, which is one- to sixfold higher than the average level measured in controls (16.2 ng/L). In addition, in control samples, the levels of light PAH with two to four rings were at higher levels than heavy PAH with five or six rings, thus showing a different profile between control and burned sites. The contribution of wildfires to groundwater contamination by PAH was demonstrated, enabling a reliable assessment of the impacts on water quality and preparation of scientifically based decision criteria for postfire forest management practices.
Comandini, A; Malewicki, T; Brezinsky, K
2012-03-01
The implementation of techniques aimed at improving engine performance and reducing particulate matter (PM) pollutant emissions is strongly influenced by the limited understanding of the polycyclic aromatic hydrocarbons (PAH) formation chemistry, in combustion devices, that produces the PM emissions. New experimental results which examine the formation of multi-ring compounds are required. The present investigation focuses on two techniques for such an experimental examination by recovery of PAH compounds from a typical combustion oriented experimental apparatus. The online technique discussed constitutes an optimal solution but not always feasible approach. Nevertheless, a detailed description of a new online sampling system is provided which can serve as reference for future applications to different experimental set-ups. In comparison, an offline technique, which is sometimes more experimentally feasible but not necessarily optimal, has been studied in detail for the recovery of a variety of compounds with different properties, including naphthalene, biphenyl, and iodobenzene. The recovery results from both techniques were excellent with an error in the total carbon balance of around 10% for the online technique and an uncertainty in the measurement of the single species of around 7% for the offline technique. Although both techniques proved to be suitable for measurement of large PAH compounds, the online technique represents the optimal solution in view of the simplicity of the corresponding experimental procedure. On the other hand, the offline technique represents a valuable solution in those cases where the online technique cannot be implemented.
Computational Spectroscopy of Polycyclic Aromatic Hydrocarbons In Support of Laboratory Astrophysics
NASA Technical Reports Server (NTRS)
Tan, Xiaofeng; Salama, Farid
2006-01-01
Polycyclic aromatic hydrocarbons (PAHs) are strong candidates for the molecular carriers of the unidentified infrared bands (UIR) and the diffuse interstellar bands (DIBs). In order to test the PAH hypothesis, we have systematically measured the vibronic spectra of a number of jet-cooled neutral and ionized PAHs in the near ultraviolet (UV) to visible spectral ranges using the cavity ring-down spectroscopy. To support this experimental effort, we have carried out theoretical studies of the spectra obtained in our measurements. Ab initio and (time-dependent) density.functiona1 theory calculations are performed to obtain the geometries, energetics, vibrational frequencies, transition dipole moments, and normal coordinates of these PAH molecules. Franck-Condon (FC) calculations and/or vibronic calculations are then performed using the calculated normal coordinates and vibrational frequencies to simulate the vibronic spectra. It is found that vibronic interactions in these conjugated pi electron systems are often strong enough to cause significant deviations from the Born-Oppenheimer (BO) approximation. For vibronic transitions that are well described by the BO approximation, the vibronic band profiles are simulated by calculating the rotational structure of the vibronic transitions. Vibronic oscillator strength factors are calculated in the frame of the FC approximation from the electronic transition dipole moments and the FC factors. This computational effort together with our experimental measurements provides, for the first time, powerful tools for comparison with space-based data and, hence, a powerful approach to understand the spectroscopy of interstellar PAH analogs and the nature of the UIR and DIBs.
Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1.
Kweon, Ohgew; Kim, Seong-Jae; Holland, Ricky D; Chen, Hongyan; Kim, Dae-Wi; Gao, Yuan; Yu, Li-Rong; Baek, Songjoon; Baek, Dong-Heon; Ahn, Hongsik; Cerniglia, Carl E
2011-09-01
This study investigated a metabolic network (MN) from Mycobacterium vanbaalenii PYR-1 for polycyclic aromatic hydrocarbons (PAHs) from the perspective of structure, behavior, and evolution, in which multilayer omics data are integrated. Initially, we utilized a high-throughput proteomic analysis to assess the protein expression response of M. vanbaalenii PYR-1 to seven different aromatic compounds. A total of 3,431 proteins (57.38% of the genome-predicted proteins) were identified, which included 160 proteins that seemed to be involved in the degradation of aromatic hydrocarbons. Based on the proteomic data and the previous metabolic, biochemical, physiological, and genomic information, we reconstructed an experiment-based system-level PAH-MN. The structure of PAH-MN, with 183 metabolic compounds and 224 chemical reactions, has a typical scale-free nature. The behavior and evolution of the PAH-MN reveals a hierarchical modularity with funnel effects in structure/function and intimate association with evolutionary modules of the functional modules, which are the ring cleavage process (RCP), side chain process (SCP), and central aromatic process (CAP). The 189 commonly upregulated proteins in all aromatic hydrocarbon treatments provide insights into the global adaptation to facilitate the PAH metabolism. Taken together, the findings of our study provide the hierarchical viewpoint from genes/proteins/metabolites to the network via functional modules of the PAH-MN equipped with the engineering-driven approaches of modularization and rationalization, which may expand our understanding of the metabolic potential of M. vanbaalenii PYR-1 for bioremediation applications.
Ynamides in Ring Forming Transformations
WANG, XIAO-NA; YEOM, HYUN-SUK; FANG, LI-CHAO; HE, SHUZHONG; MA, ZHI-XIONG; KEDROWSKI, BRANT L.; HSUNG, RICHARD P.
2013-01-01
Conspectus The ynamide functional group activates carbon-carbon triple bonds through an attached nitrogen atom that bears an electron-withdrawing group. As a result, the alkyne has both electrophilic and nucleophilic properties. Through the selection of the electron-withdrawing group attached to nitrogen chemists can modulate the electronic properties and reactivity of ynamides, making these groups versatile synthetic building blocks. The reactions of ynamides also lead directly to nitrogen-containing products, which provides access to important structural motifs found in natural products and molecules of medicinal interest. Therefore, researchers have invested increasing time and research in the chemistry of ynamides in recent years. This Account surveys and assesses new organic transformations involving ynamides developed in our laboratory and in others around the world. We showcase the synthetic power of ynamides for rapid assembly of complex molecular structures. Among the recent reports of ynamide transformations, ring-forming reactions provide a powerful tool for generating molecular complexity quickly. In addition to their synthetic utility, such reactions are mechanistically interesting. Therefore, we focus primarily on the cyclization chemistry of ynamides. This Account highlights ynamide reactions that are useful in the rapid synthesis of cyclic and polycyclic structural manifolds. We discuss the mechanisms active in the ring formations and describe representative examples that demonstrate the scope of these reactions and provide mechanistic insights. In this discussion we feature examples of ynamide reactions involving radical cyclizations, ring-closing metathesis, transition metal and non-transition metal mediated cyclizations, cycloaddition reactions, and rearrangements. The transformations presented rapidly introduce structural complexity and include nitrogen within, or in close proximity to, a newly formed ring (or rings). Thus, ynamides have emerged as powerful synthons for nitrogen-containing heterocycles and nitrogen-substituted rings, and we hope this Account will promote continued interest in the chemistry of ynamides. PMID:24164363
Baussant, T; Sanni, S; Jonsson, G; Skadsheim, A; Børseth, J F
2001-06-01
Assessing the fate in marine biota of hydrocarbons derived from oil particles that are discharged during exploration and production is of relevant environmental concern. However, a rather complex experimental setup is required to carry out such investigations. In this study, a sophisticated tool, the continuous-flow system (CFS), was used to mimic dispersed oil exposure to marine biota. Polycyclic aromatic hydrocarbon (PAH) uptake was studied in two species, the blue mussel Mytilus edulis and juvenile of the turbot Scophthalmus maximus, and in semipermeable membrane devices (SPMD) exposed to crude oil dispersed in a flow-through system. After an exposure period of 8 to 21 d, elimination in organisms and devices was analyzed for 9 to 10 d following transfer to PAH-free seawater. Principal component analysis (PCA) revealed different PAH patterns. In mussel and SPMD, the PAH profiles were very close to that analyzed in seawater. Slight differences were, however, indicated for large molecules with log Kow above six. Nonachievement of steady-state concentration and bioavailability of PAH in oil droplets may account for these differences. The PAH composition in fish revealed only congeners with two to three aromatic rings. A combination of bioavailability and efficient metabolism of the larger PAH molecules may explain this pattern. The CFS made possible a better understanding of some critical factors governing bioconcentration in marine biota from dispersed oil. Yet the results illustrate that uptake of PAH from exposure to oil particles is complex and that different species may bioconcentrate different molecules depending on factors like life style and metabolic capability to degrade the potential harmful substances. Hence, risk assessment of the actual impact of discharges to marine biota should consider these essential biological and ecological factors.
Goyak, Katy O; Kung, Ming H; Chen, Min; Aldous, Keith K; Freeman, James J
2016-12-15
Residual aromatic extracts (RAE) are petroleum substances with variable composition predominantly containing aromatic hydrocarbons with carbon numbers greater than C25. Because of the high boiling nature of RAEs, the aromatics present are high molecular weight, with most above the range of carcinogenic polycyclic aromatic hydrocarbons (PAHs). However, refinery distillations are imperfect; some PAHs and their heteroatom-containing analogs (collectively referred to as polycyclic aromatic content or PAC) may remain in the parent stream and be extracted into the RAE, and overall PAC content is related to the carcinogenic potential of an RAE. We describe here a real-time analytical chemistry-based tool to assess the carcinogenic hazard of RAE via the development of a functional relationship between carcinogenicity and boiling point. Samples representative of steps along the RAE manufacturing process were obtained from five refineries to evaluate relationships between mutagenicity index (MI), PAC ring content and gas chromatographic distillation (GCD) curves. As expected, a positive linear relationship between MI and PAC ring content occurred, most specifically for 3-6 ring PAC (R 2 =0.68). A negative correlation was found between MI and temperature at 5% vaporization by GCD (R 2 =0.72), indicating that samples with greater amounts of lower boiling constituents were more likely to be carcinogenic. The inverse relationship between boiling range and carcinogenicity was further demonstrated by fractionation of select RAE samples (MI=0.50+0.07; PAC=1.70+0.51wt%; n=5) into low and high boiling fractions, where lower boiling fractions were both more carcinogenic than the higher boiling fractions (MI=2.36±0.55 and 0.17±0.11, respectively) and enriched in 3-6 ring PACs (5.20+0.70wt% and 0.97+0.35wt%, respectively). The criteria defining carcinogenicity was established as 479°C for the 5% vaporization points by GCD, with an approximate 95% probability of a future sample having an MI below the recommended limit of 0.4 for RAEs. Overall, these results provide a cost-efficient and real-time tool by which the carcinogenic potential of RAEs can be assessed at the refinery level, ultimately providing a means to readily monitor and minimize the carcinogenic potential of RAEs. Copyright © 2016. Published by Elsevier Ireland Ltd.
Kong, Shaofei; Li, Xuxu; Li, Li; Yin, Yan; Chen, Kui; Yuan, Liang; Zhang, Yingjie; Shan, Yunpeng; Ji, Yaqin
2015-07-01
Daily PM2.5 samples were collected at a suburban site of Nanjing around 2014 Chinese Spring Festival (SF) and analyzed for 18 kinds of polycyclic aromatic hydrocarbons (PAHs) by GC-MS. Comparison of PAH concentrations during different periods, with different air mass origins and under different pollution situations was done. Sources were analyzed by diagnostics ratios and principal component analysis (PCA). The threat of PAHs was assessed by BaP equivalent concentrations (BaPeq) and incremental lifetime cancer risk (ILCR). The averaged PAHs for pre-SF, SF and after SF periods were 50.6, 17.2 and 29 ng m(-3), indicating the variations of PAH sources, with reduced traffic, industrial and construction activities during SF and gradually re-starting of them after-SF. According to PAH mass concentrations, their relative abundance to particles, ratio of PAHs (3-ring+4-ring)/PAHs(5-ring+6-ring), mass concentrations of combustion-derived and carcinogenic PAHs, fireworks burning is an important source for PAHs during SF. The ILCR values for Chinese New Year day were 0.68 and 3.3 per 100,000 exposed children and adults. It suggested the necessity of controlling fireworks burning during Chinese SF period which was always companied with serious regional haze pollution. PAH concentrations exhibited decreasing trend when air masses coming from the following directions as North China Plain (63.9 ng m(-3))>Central China (53.0 ng m(-3))>Shandong Peninsula (46.6 ng m(-3))>Northwest China (18.8 ng m(-3))>Sea (15.8 ng m(-3)). For different pollution situations, they decreased as haze (44.5 ng m(-3))>fog-haze (28.4 ng m(-3))>clear (12.2 ng m(-3))>fog day (9.2 ng m(-3)). Coal combustion, traffic emission, industrial processes and petroleum (only for non-SF holiday periodss) were the main sources of PM2.5 associated PAHs. Fireworks burning contributed 14.0% of PAHs during SF period. Directly measurement of PAHs from fireworks burning is urgently needed for source apportionment studies in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pehnec, Gordana; Jakovljević, Ivana; Šišović, Anica; Bešlić, Ivan; Vađić, Vladimira
2016-04-01
Concentrations of ten polycyclic aromatic hydrocarbons (PAHs) in the PM10 particle fraction were measured together with ozone and meteorological parameters at an urban site (Zagreb, Croatia) over a one-year period. Data were subjected to regression analysis in order to determine the relationship between the measured pollutants and selected meteorological variables. All of the PAHs showed seasonal variations with high concentrations in winter and autumn and very low concentrations during summer and spring. All of the ten PAHs concentrations also correlated well with each other. A statistically significant negative correlation was found between the concentrations of PAHs and ozone concentrations and concentrations of PAHs and temperature, as well as a positive correlation between concentrations of PAHs and PM10 mass concentration and relative humidity. Multiple regression analysis showed that concentrations of PM10 and ozone, temperature, relative humidity and pressure accounted for 43-70% of PAHs variability. Concentrations of PM10 and temperature were significant variables for all of the measured PAH's concentrations in all seasons. Ozone concentrations were significant for only some of the PAHs, particularly 6-ring PAHs.
Shahpoury, Pourya; Hageman, Kimberly J; Matthaei, Christoph D; Alumbaugh, Robert E; Cook, Michelle E
2014-10-07
Silicone passive samplers and macroinvertebrates were used to measure time-integrated concentrations of polycyclic aromatic hydrocarbons (PAHs) in alpine streams during annual snowmelt. The three sampling sites were located near a main highway in Arthur's Pass National Park in the Southern Alps of New Zealand. A similar set of PAH congeners, composed of 2-4 rings, were found in silicone passive samplers and macroinvertebrates. The background PAH concentrations were similar at all sites, implying that proximity to the highway did not affect concentrations. In passive samplers, an increase of PAH concentrations by up to seven times was observed during snowmelt. In macroinvertebrates, the concentration changes were moderate; however, macroinvertebrate sampling did not occur during the main pulse observed in the passive samplers. The extent of vegetation in the catchment appeared to affect the concentration patterns seen at the different stream sites. A strong correlation was found between PAH concentrations in passive samplers and the amount of rainfall in the study area, indicating that the washout of contaminants from snowpack by rainfall was an important process.
Tian, Weijun; Zhao, Jing; Zhou, Yuhang; Qiao, Kaili; Jin, Xin; Liu, Qing
2017-01-01
Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs. Copyright © 2016 Elsevier Inc. All rights reserved.
Tao, Shi-Yang; Zhong, Bu-Qing; Lin, Yan; Ma, Jin; Zhou, Yongzhang; Hou, Hong; Zhao, Long; Sun, Zaijin; Qin, Xiaopeng; Shi, Huading
2017-07-01
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were measured in 128 surface soil samples from Xiangfen County, northern China. The total mass concentration of these PAHs ranged from 52 to 10,524ng/g, with a mean of 723ng/g. Four-ring PAHs contributed almost 50% of the total PAH burden. A self-organizing map and positive matrix factorization were applied to investigate the spatial distribution and source apportionment of PAHs. Three emission sources of PAHs were identified, namely, coking ovens (21.9%), coal/biomass combustion (60.1%), and anthracene oil (18.0%). High concentrations of low-molecular-weight PAHs were particularly apparent in the coking plant zone in the region around Gucheng Town. High-molecular-weight PAHs mainly originated from coal/biomass combustion around Gucheng Town, Xincheng Town, and Taosi Town. PAHs in the soil of Xiangfen County are unlikely to pose a significant cancer risk for the population. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Ying; Li, Fangmin; Li, Fanxiu; Yuan, Fuqian; Wei, Pingfang
2015-12-01
The effects of ultrasonic irradiation, the chelating agent modified Fenton reaction, and a combination of ultrasound and the Fenton method in removing petroleum contaminants from a soil were studied. The results showed that the contaminant removal rate of the Fenton treatment combined with an oxalic acid chelating agent was 55.6% higher than that without a chelating agent. The average removal rate of the contaminants using the ultrasound-Fenton treatment was 59.0% higher than that without ultrasonic treatment. A combination of ultrasound and an Fe(2+)/Fe(3+)-oxalate complex-modified Fenton reagent resulted in significantly higher removal rates of n-alkanes (C(n)H(2n+2), n < 28), isoprenoid hydrocarbons, aromatic hydrocarbons, and saturated polycyclic terpenes compared with the ultrasound treatment alone or the Fenton method. The Fenton reaction and the ultrasound-Fenton treatment can unselectively remove multiple components of residual hydrocarbons and a number of benzene rings in polycyclic aromatic hydrocarbons. The chemistry of the heterocyclic compounds and the position and number of substituents can affect the degradation process.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence
2014-09-01
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.
Kanaly, Robert A.; Harayama, Shigeaki
2010-01-01
Summary Interest in understanding prokaryotic biotransformation of high‐molecular‐weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in‐depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR‐1. New metabolites derived from prokaryotic biodegradation of four‐ and five‐ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation. PMID:21255317
Interstellar Polycyclic Aromatic Compounds and Astrophysics
NASA Technical Reports Server (NTRS)
Hodgins, Douglas M.; DeVincenzi, Donald (Technical Monitor)
1999-01-01
Polycyclic aromatic compounds (PACs), a class of organic molecules whose structures are characterized by the presence of two or more fused aromatic rings, have been the subject of astrophysical interest for nearly two decades. Large by interstellar standards (from as few as 20 to perhaps as many as several hundred atoms), it has been suggested that these species are among the most abundant interstellar molecules impacting a wide range of astrophysical phenomena including: the ubiquitous family of infrared emission bands observed in an ever-increasing assortment of astronomical objects; the subtle but rich array of discrete visible/near-infrared interstellar molecular absorption features known as the diffuse interstellar bands (DIBs); the broad near-infrared quasi-continuum observed in a number of nebulae known as excess red emission (ERE); the interstellar ultraviolet extinction curve and broad '2200 Angstrom bump'; the heating/cooling mechanisms of interstellar clouds. Nevertheless, until recently a lack of good-quality laboratory spectroscopic data on PACs under astrophysically relevant conditions (i.e. isolated, ionized molecules; ionized molecular clusters, etc.) has hindered critical evaluation and extension of this model
De La Torre-Roche, Roberto J.; Lee, Wen-Yee; Campos-Díaz, Sandra I.
2009-01-01
Ultrasonic extraction followed by Stir Bar Sorptive Extraction (SBSE) and thermal desorption inline coupled with Gas Chromatography and Mass Spectrometry (TD/GC/MS)was used to perform a comprehensive determination of soil-borne polycyclic aromatic hydrocarbons (PAHs) in El Paso, Texas. The method provided good sensitivity and faster processing time for the analysis. The total PAHs in El Paso soil ranged from 0.1 to 2225.5 µg kg−1. Although the majority of PAH concentrations did not exceed the soil screening levels regulated by the United States Environmental Protection Agency, the existence of PAHs in this ecosystem is ubiquitous. Naphthalene were found in 100% of the soil samples; while the heavy PAHs (five- and six-ring) were not often detected and mostly remained in closer proximity to industrial areas and major traffic points. The results ruled out the possibility of petroleum refining as the significant source of local soil-borne PAH contamination, but they suggested that the PAHs found in El Paso soil were closely linked to human activities and possible other industrial processes. PMID:18768257
Luo, Wei; Gao, Jiajia; Bi, Xiang; Xu, Lan; Guo, Junming; Zhang, Qianggong; Romesh, Kumar Y; Giesy, John P; Kang, Shichang
2016-05-01
To understand distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Himalayas, 77 soil samples were collected from the northern side of the Himalayas, China (NSHC), and the southern side of the Himalayas, Nepal (SSHN), based on altitude, land use and possible trans-boundary transport of PAHs driven by wind from Nepal to the Tibetan Plateau, China. Soils from the SSHN had mean PAH concentration greater than those from the NSHC. Greater concentrations of PAHs in soils were mainly distributed near main roads and agricultural and urban areas. PAHs with 2-3 rings were the most abundant PAHs in the soils from the Himalayas. Concentrations of volatile PAHs were significantly and positively correlated with altitude. Simulations of trajectories of air masses indicated that distributions of soil PAH concentrations were associated with the cyclic patterns of the monsoon. PAH emissions from traffic and combustion of biomass or coal greatly contributed to concentrations of PAHs in soils from the Himalayas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations.
Modelli, Alberto; Mussoni, Laura; Fabbri, Daniele
2006-05-25
The gas-phase experimental adiabatic electron affinities (AEAs) of the polycyclic aromatic hydrocarbons (PAHs) anthracene, tetracene, pentacene, chrysene, pyrene, benzo[a]pyrene, benzo[e]pyrene, and fluoranthene are well reproduced using the hybrid density functional method B3LYP with the 6-31+G* basis set, indicating that the smallest addition of diffuse functions to the basis set is suitable for a correct description of the stable PAH anion states. The calculated AEAs also give a very good linear correlation with available reduction potentials measured in solution. The AEAs (not experimentally available) of the isomeric benzo[ghi]fluoranthene and cyclopenta[cd]pyrene, commonly found in the environment, are predicted to be 0.817 and 1.108 eV, respectively, confirming the enhancement of the electron-acceptor properties associated with fusion of a peripheral cyclopenta ring. The calculated localization properties of the lowest unoccupied MO of cyclopenta[cd]pyrene, together with its relatively high electron affinity, account for a high reactivity at the ethene double bond of this PAH in reductive processes.
Aromatic ring generation as a dust precursor in acetylene discharges
NASA Astrophysics Data System (ADS)
De Bleecker, Kathleen; Bogaerts, Annemie; Goedheer, Wim
2006-04-01
Production of aromatic hydrocarbon compounds as an intermediate step for particle formation in low-pressure acetylene discharges is investigated via a kinetic approach. The detailed chemical reaction mechanism contains 140 reactions among 55 species. The cyclic hydrocarbon chemistry is mainly based on studies of polycyclic aromatic hydrocarbon formation in cosmic environments. The model explicitly includes organic chain, cyclic molecules, radicals, and ions up to a size of 12 carbon atoms. The calculated density profiles show that the aromatic formation yields are quite significant, suggesting that aromatic compounds play a role in the underlying mechanisms of particle formation in hydrocarbon plasmas.
The Phenalenyl Free Radical - a Jahn-Teller D3H PAH
NASA Astrophysics Data System (ADS)
O'Connor, G. D.; Troy, T. P.; Roberts, D. A.; Chalyavi, N.; Fückel, B.; Crossley, M. J.; Nauta, K.; Schmidt, T. W.; Stanton, J. F.
2012-06-01
After benzene and naphthalene, the smallest polycyclic aromatic hydrocarbon bearing six-membered rings is the threefold-symmetric phenalenyl radical. Despite the fact that it is so fundamental, its electronic spectroscopy has not been rigorously scrutinized, in spite of growing interest in graphene fragments for molecular electronic applications. Here we used complementary laser spectroscopic techniques to probe the jet-cooled phenalenyl radical in vacuo. Its spectrum reveals the interplay between four electronic states that exhibit Jahn-Teller and pseudo-Jahn-Teller (Herzberg-Teller) vibronic coupling. The coupling mechanism has been elucidated by the application of various ab initio quantum-chemical techniques.
Sun, Ming-Ming; Teng, Ying; Luo, Yong-Ming; Li, Zhen-Gao; Jia, Zhong-Jun; Zhang, Man-Yun
2013-06-01
Polycyclic aromatic hydrocarbon (PAH) polluted sites caused by abandoned coking plants have attracted great attentions. This study investigated the feasibility of using methyl-beta-cyclodextrin (MCD) solution to enhance ex situ soil washing for extracting PAHs. Treatment with elevated temperature (50 degrees C) in combination with ultrasonication (35 kHz, 30 min) at 100 g x L(-1) was effective. It was found that 96.7% +/- 2.4% of 3-ring PAH, 89.7% +/- 3.2% of 4-ring PAH, 76.3% +/- 2.2% of 5 (+6)-ring PAH and 91.3% +/- 3.1% of total PAHs were removed from soil after five successive washing cycles. The desorption kinetics of PAHs from contaminated soil was determined before and after successive washings. The 400 h Tenax extraction of PAHs from soil was decreasing gradually with increasing washing times. Furthermore, the F(r), F(sl), k(r), k(sl) and k(vl) were significantly lower than those of CK (P < 0.01). Therefore, considering the removal efficiency and potential environmental risk after soil )ashing, successive washing three times was selected as a reasonable parameter. These results have practical implications for site risk assessment and cleanup strategies.
[Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].
Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa
2015-06-01
In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture. This was caused by radiation energy transfer mechanism, in which the ultraviolet light was lost in mixtures but the fluorescence intensities were increased with the one- or two-ring PAHs adding. When the mixture only contained three- and four-ring PAHs, the fluorescence emission spectrum showed the both characteristics of three- and four-ring PAHs fluorescence. When three- and four-ring PAHs existed in mixtures at the same time, the fluorescence emission spectra were related to each concentration, so the rings number could be discriminated to a certain extent.
Proximity effects in the electron impact mass spectra of 2-substituted benzazoles
NASA Astrophysics Data System (ADS)
Chantler, Thomas; Perrin, Victoria L.; Donkor, Rachel E.; Cawthorne, Richard S.; Bowen, Richard D.
2004-08-01
The 70 eV electron impact mass spectra of a wide range of 2-substituted benzazoles are reported and discussed. Particular attention is paid to the mechanistic significance and analytical utility of [M-H]+ and [M-X]+ signals in the spectra of benzazoles in which the 2-substituent contains a terminal aryl group with one or more substituents, X. Loss of H[radical sign] or X[radical sign] occurs preferentially from an ortho-position from ionized 2-benzylbenzimidazoles, 2-phenethylbenzimidazoles, 2-styrylbenzimidazoles, 2-styrylbenzoxazoles and 2-styrylbenzothiazoles. In the three styrylbenzazole series, the [M-H]+ and/or [M-X]+ signals dominate the spectra. This unusually facile loss of H[radical sign] or X[radical sign] may be attributed to a proximity effect, in which cyclization of the ionized molecule is followed by elimination of an ortho-substituent to give an exceptionally stable polycyclic ion. Formation of a new five- or six-membered ring by the proximity effect occurs rapidly; cyclization to a seven-membered ring takes place rather less readily; but formation of a ring with only four atoms or more than seven atoms is not observed to a significant extent. The proximity effect competes effectively with loss of a methyl radical by simple cleavage of an ethyl, isopropyl and even a t-butyl group in the pendant aromatic ring of ionized 2-(4-alkylstyryl)benzazoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, W.H.
1981-02-01
Studies on the basic properties of supported sulfide catalysts showed that different supports have a profound influence on catalytic activities of CoMo catalysts. The three functions of hydrodesulfurization, hydrogenation and cracking were differently affected depending on the support used and the manner of preparation of the catalyst. Also, incorporation of additives to the support showed that the different catalytic functions can be selectively affected. A systematic study concerned with catalytic cracking of coal-derived liquids, viz., an SRC-II middle-heavy distillate and four hydrotreated SRC-II products was carried out in the range of 375 to 500/sup 0/C (LHSV, 0.2 to 3.9 h/supmore » -1/). Hydrotreatment, even to a limited extent, results in a remarkable improvement in the yield of gasoline-range products from the SRC-II distillate. This improvement is ascribed to: (a) hydrogenolysis reactions leading to lower molecular weight feedstock components and (b) limited hydrogenation of aromatic rings leading to polycyclic feed components with sufficient concentration of hydroaromatic rings needed for effective cracking. The results with model compounds and the data on hydrogen consumption during hydrotreatment of SRC-II liquids indicate that for tricyclic, tetracyclic, and pentacyclic coal-liquid components the optimal concentration of hydroaromatic rings for effective subsequent cracking is at least two rings per molecule.« less
Kolak, Jonathan J.; Burruss, Robert A.
2014-01-01
Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These findings indicate that hydrocarbon solubility does not exert a strong influence on hydrocarbon behavior in the systems studied. Other factors such as coal composition and maceral content, surface processes (physisorption), or other molecular interactions appear to affect the partitioning of hydrocarbons within the coal–supercritical CO2 system. Resolving the extent to which these factors might affect hydrocarbon behavior under different geological settings is important to efforts seeking to model petroleum generation, fractionation and expulsion from coal beds and to delineate potential hydrocarbon fate and transport in geologic CO2 sequestration settings.
Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.
Chatterjee, Kuntal; Dopfer, Otto
2017-12-13
Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.
NASA Astrophysics Data System (ADS)
Anyenda, Enoch Olando; Higashi, Tomomi; Kambayashi, Yasuhiro; Thao, Nguyen Thi Thu; Michigami, Yoshimasa; Fujimura, Masaki; Hara, Johsuke; Tsujiguchi, Hiromasa; Kitaoka, Masami; Asakura, Hiroki; Hori, Daisuke; Yamada, Yohei; Hayashi, Koichiro; Hayakawa, Kazuichi; Nakamura, Hiroyuki
2016-09-01
The specific components of airborne particulates responsible for adverse health effects have not been conclusively identified. We conducted a longitudinal study on 88 adult patients with chronic cough to evaluate whether exposure to daily ambient levels of particulate polycyclic aromatic hydrocarbons (PAH) has relationship with cough occurrence. Study participants were recruited at Kanazawa University Hospital, Japan and were physician-diagnosed to at least have asthma, cough variant asthma and/or atopic cough during 4th January to 30th June 2011. Daily cough symptoms were collected by use of cough diaries and simultaneously, particulate PAH content in daily total suspended particles collected on glass fiber filters were determined by high performance liquid chromatography coupled with fluorescence detector. Population averaged estimates of association between PAH exposure and cough occurrence for entire patients and subgroups according to doctor's diagnosis were performed using generalized estimating equations. Selected adjusted odds ratios for cough occurrence were 1.088 (95% confidence interval (CI): 1.031, 1.147); 1.209 (95% CI: 1.060, 1.379) per 1 ng/m3 increase for 2-day lag and 6-day moving average PAH exposure respectively. Likewise, 5 ring PAH had higher odds in comparison to 4 ring PAH. On the basis of doctor's diagnosis, non-asthma group had slightly higher odds ratio 1.127 (95% CI: 1.033, 1.228) per 1 ng/m3 increase in 2-day lag PAH exposure. Our findings suggest that ambient PAH exposure is associated with cough occurrence in adult chronic cough patients. The association may be stronger in non-asthma patients and even at low levels although there is need for further study with a larger sample size of respective diagnosis and inclusion of co-pollutants.
NASA Astrophysics Data System (ADS)
Quitián-Lara, Heidy M.; Fantuzzi, Felipe; Nascimento, Marco A. C.; Wolff, Wania; Boechat-Roberty, Heloisa M.
2018-02-01
Polycyclic aromatic hydrocarbons (PAHs), comprised of fused benzene (C6H6) rings, emit infrared radiation (3–12 μm) due to the vibrational transitions of the C–H bonds of the aromatic rings. The 3.3 μm aromatic band is generally accompanied by the band at 3.4 μm assigned to the vibration of aliphatic C–H bonds of compounds such as PAHs with an excess of peripheral H atoms (H n –PAHs). Herein we study the stability of fully hydrogenated benzene (or cyclohexane, C6H12) under the impact of stellar radiation in the photodissociation region (PDR) of NGC 7027. Using synchrotron radiation and time-of-flight mass spectrometry, we investigated the ionization and dissociation processes at energy ranges of UV (10–200 eV) and soft X-rays (280–310 eV). Density Functional Theory (DFT) calculations were used to determine the most stable structures and the relevant low-lying isomers of singly charged C6H12 ions. Partial Ion Yield (PIY) analysis gives evidence of the higher tendency toward dissociation of cyclohexane in comparison to benzene. However, because of the high photoabsorption cross-section of benzene at the C1s resonance edge, its photodissociation and photoionization cross-sections are enhanced, leading to a higher efficiency of dissociation of benzene in the PDR of NGC 7027. We suggest that a similar effect is experienced by PAHs in X-ray photon-rich environments, which ultimately acts as an auxiliary protection mechanism of super-hydrogenated polycyclic hydrocarbons. Finally, we propose that the single photoionization of cyclohexane could enhance the abundance of branched molecules in interstellar and circumstellar media.
POLYCYCLIC AROMATIC HYDROCARBONS ASSESSMENT IN SEDIMENT OF NATIONAL PARKS IN SOUTHEAST BRAZIL
Meire, Rodrigo Ornellas; Azeredo, Antonio; de Souza Pereira, Márcia; Paulo, João; Torres, Machado; Malm, Olaf
2008-01-01
The aim of this work was to assess the levels of polycyclic aromatic hydrocarbons (PAHs) in the environment and their sources found in protected regions of southeastern Brazil. Samples of sediments were collected at four National Parks: Itatiaia National Park (PNIT), Serra da Bocaina National Park (PNSB), Serra dos Orgãos National Park (PNSO) and Jurubatiba National Park (PNJUB). The National Parks studied comprise rainforests, altitudinal fields and ‘restinga’ environments located in the Minas Gerais, Rio de Janeiro and São Paulo states. The sampling was conducted between 2002 and 2004 from June to September. In general, the environmental levels of PAHs found were similar to those in other remote areas around the globe. PNIT exhibited the highest median values of total PAHs in sediment (97 ng·g−1), followed by PNJUB (89 ng·g−1), PNSO (57 ng·g−1) and PNSB (27 ng·g−1). The highest levels of total PAHs (576 and 24430 ng·g−1) could be associated to a point source contamination where are characterizated for human activities. At PNSB and PNIT the PAH profiles were richer in 2 and 3 ring compounds, whereas at PNSO and PNJUB, the profiles exhibited 3 and 4 ring compounds. The phenanthrene predominance in most samples could indicate the influence of biogenic synthesis. The samples with a petrogenic pattern found in this study might be associated with the vicinity of major urban areas, highway traffic and/or industrial activities close to PNSO and PNIT. At PNIT and PNJUB, forest fires and slash and burn agricultural practices may drive the results towards a pyrolytic pattern. PMID:18472130
Doong, Ruey-An; Lin, Yu-Tin
2004-04-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) in water and sediment samples collected from 12 locations in Gao-ping River, Taiwan were analyzed. Molecular ratios and principal component analysis (PCA) were used to characterize the possible pollution sources. Concentrations of total 16 PAHs (SigmaPAHs) in water samples ranged from below method detection limits (
Kreitsberg, Randel; Zemit, Irina; Freiberg, Rene; Tambets, Meelis; Tuvikene, Arvo
2010-09-15
In January 2006 an oil spill that involved approximately 40tons of heavy fuel oil affected more than 30km of the north-west coast of Estonia. The aquatic pollution of the coastal area of the Baltic Sea was monitored by measuring the content of selected polycyclic aromatic hydrocarbons (PAHs and PAH metabolites) in flounder (Platichthys flesus trachurus Duncker). One hundred and thirty-one fish were collected: muscle and liver tissues were analyzed by high-performance liquid chromatography (HPLC); bile and urine samples were analyzed using fixed wavelengths fluorescence. Fifteen different types of PAHs were analyzed in liver and muscle, and four types of PAH metabolites were analyzed in bile and urine (2-, 3-, 4- and 5-ringed PAH metabolites represented by naphthalene, phenanthrene, pyrene and benzo(a)pyrene). Fluorescence analyses were carried out using excitation/emission wavelength pairs: 290/380, 256/380, 341/383 and 380/430nm, respectively. There was a time-dependent decrease of PAH concentrations in liver (83%), bile (82%) and urine (113%). HPLC analysis of muscle tissues demonstrated low concentrations of single PAHs, but a decrease of concentrations during the study period was not observed. During the analyses concentrations of PAH metabolites in bile and urine were compared. Liver metabolic transformation activity is believed to exceed that of the kidney but the analyses demonstrated high metabolite concentration in fish urine, particularly of 4- and 5-ring PAH metabolites. The results indicate remarkable buffer capacity of hydrodynamically active sea as well as considerable importance of kidney-urine metabolic pathways in flounder physiology. 2010 Elsevier B.V. All rights reserved.
Suman, Swapnil; Sinha, Alok; Tarafdar, Abhrajyoti
2016-03-01
Present study was carried out to assess and understand potential health risk and to examine the impact of vehicular traffic on the contamination status of urban traffic soils in Dhanbad City with respect to polycyclic aromatic hydrocarbons (PAHs). Eight urban traffic sites and two control/rural site surface soils were analyzed and the contents of 13 priority PAHs was determined. Total PAH concentration at traffic sites ranged from 1.019 μg g(-1) to 10.856 μg g(-1) with an average value of 3.488 μg g(-1). At control/rural site, average concentration of total PAHs was found to be 0.640 μg g(-1). PAH pattern was dominated by four- and five-ring PAHs (contributing >50% to the total PAHs) at all the eight traffic sites. On the other hand, rural soil showed a predominance of low molecular weight three-ring PAHs (contributing >30% to the total PAHs). Indeno[123-cd]pyrene/benz[ghi]perylene (IP/BgP) ratio indicated that PAH load at the traffic sites is predominated by the gasoline-driven vehicles. The ratio of Ant/(Ant+Phe) varied from 0.03 to 0.44, averaging 0.10; Fla/(Fla+Pyr) from 0.39 to 0.954, averaging 0.52; BaA/(BaA+Chry) from 0.156 to 0.60, averaging 0.44; and IP/(IP+BgP) from 0.176 to 0.811, averaging 0.286. The results indicated that vehicular emission was the major source for PAHs contamination with moderate effect of coal combustion and biomass combustion. Carcinogenic potency of PAH load in traffic soil was nearly 6.15 times higher as compared to the control/rural soil. Copyright © 2015 Elsevier B.V. All rights reserved.
Oleszczuk, Patryk; Godlewska, Paulina; Reible, Danny D; Kraska, Piotr
2017-08-01
The aim of the present study was to determine the effect of activated carbon (AC) or biochars on the bioaccessibility (C bioacc ) of polycyclic aromatic hydrocarbons (PAHs) in soils vegetated with willow (Salix viminalis). The study determined the effect of willow on the C bioacc PAHs and the effect of the investigated amendments on changes in dissolved organic carbon (DOC), crop yield and the content of PAHs in plants. PAH-contaminated soil was amended with 2.5 wt% AC or biochar. Samples from individual plots with and without plants were collected at the beginning of the experiment and after 3, 6, 12 and 18 months. The C bioacc PAHs were determined using sorptive bioaccessibility extraction (SBE) (silicon rods and hydroxypropyl-β-cyclodextrin). Both AC and biochar caused a decrease in the C bioacc PAHs. Immediately after adding AC, straw-derived biochar or willow-derived biochar to the soil, the reduction in the sum of 16 (Σ16) C bioacc PAHs was 70.3, 38.0, and 29.3%, respectively. The highest reduction of C bioacc was observed for 5- and 6-ring PAHs (from 54.4 to 100%), whereas 2-ring PAHs were reduced only 8.0-25.4%. The reduction of C bioacc PAHs increased over time. Plants reduced C bioacc in all soils although effects varied by soil treatment and PAH. Willow grown in AC- and biochar-amended soil accumulated less phenanthrene than in the control soil. The presence of AC in the soil also affected willow yield and shoot length and DOC was reduced from 53.5 to 66.9% relative to unamended soils. In the biochars-amended soil, no changes in soil DOC content were noted nor effects on willow shoot length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiang, Nan; Jiang, Chunxia; Yang, Tinghan; Li, Ping; Wang, Haihua; Xie, Yanli; Li, Sennan; Zhou, Hailong; Diao, Xiaoping
2018-05-15
The levels of 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were investigated in corals, ambient seawater and sediments of Hainan Island, China, using gas chromatography - mass spectrometry (GC-MS). The total PAHs (∑PAHs) concentrations ranged from 273.79 to 407.82ng/L in seawater. Besides, the concentrations of ∑PAHs in corals 333.88-727.03ng/g dw) were markedly (P < 0.05) higher than ambient sediments 67.29-196.99ng/g dw), demonstrating the bioaccumulation ability of PAHs by corals. The highest concentration of ∑PAHs was detected at site S2 in Pavona decussate, which also bore the highest ∑PAHs levels in both seawater and sediments. The massive corals were more enriched with PAHs than the branching corals. Although 2 and 3-ring PAHs were predominant and accounted for 69.27-80.46% of the ∑PAHs in corals and ambient environment, the levels of high molecular weight (HMW) PAHs (4-6 ring) in corals also demonstrated their potential dangers for corals and organisms around coral reefs. Biota-sediment accumulation factor (BSAF) refers to an index of the pollutant absorbed by aquatic organisms from the surrounding sediments. The poor correlation between log BSAF and log K ow (hydrophobicity) indicated that PAHs in corals maybe not bioaccumulate from the ambient sediments but through pathways like absorbing from seawater, symbiosis, and feeding. Based on our data, long-term ecological monitoring in typical coral reef ecosystems combined with ecotoxicological tests of PAHs on corals is necessary to determine the impacts of PAHs on coral reefs. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xuxu; Kong, Shaofei; Yin, Yan; Li, Li; Yuan, Liang; Li, Qi; Xiao, Hui; Chen, Kui
2016-06-01
Eighteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected near the Nanjing Olympic Sports Center across the Asian Youth Games (AYG) period (from August 2 to August 28, 2013) were analyzed using GC-MS. Their levels, sources and health risks to human were discussed. Results showed that the total concentrations of PAHs in PM2.5 were 9.43, 7.21 and 8.83 ng m- 3 for pre- (August 3-15), during- (August 16-24) and post- (August 25-28) AYG periods, respectively. They were dominated by 5-ring and 6-ring PAHs. Total PAHs concentrations in PM2.5 during AYG period decreased by 24%, when compared with those for pre-AYG period. For combustion-derived PAHs and carcinogenic PAHs, they decreased by 26% and 21%, respectively. It implied that the pollution control measures implemented during the AYG can effectively reduce the emission of PAHs from various sources. The poor correlations between PAHs and meteorological parameters also favored that the variations of PAHs were raised by the changes of emission sources. Diagnostic ratios and principal component analysis revealed that vehicle emission and coal combustion were the predominant contributors, with minimal effects from biomass burning and petroleum. The health risks for human exposed to PAHs in PM2.5 were quantitatively assessed by BaP equivalent concentration (BaPeq) and the incremental lifetime cancer risk (ILCR). The estimated ILCR value of PAHs during the AYG periods decreased by 23% and 27% for children and adults when compared with those for the pre-AYG, respectively. It indicated that the pollution control measures reduced the risks of PAHs to sportsmen or human gathered around the Olympic Sport Center.
NASA Astrophysics Data System (ADS)
Masala, Silvia; Lim, Hwanmi; Bergvall, Christoffer; Johansson, Christer; Westerholm, Roger
2016-09-01
The concentrations of polycyclic aromatic hydrocarbons (PAHs) have been determined in the gaseous phase and in various particulate matter (PM) size fractions at different locations in and outside of Stockholm, Sweden, representative of street level, urban and rural background. The focus has been on the seldom determined but highly carcinogenic dibenzopyrene isomers (DBPs) dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene and dibenzo[a,h]pyrene. PAHs with 3 rings were found to be mainly associated with the vapor phase (>90%) whereas PAHs with 5-6 rings were mostly associated with particulate matter (>92%) and the 4-ringed PAHs partitioned between the two phases. PAH abundance was determined to be in the order street level > urban background > rural background with the PM10 street level 2010 mean of benzo[a]pyrene (B[a]P) reaching 0.24 ng/m3, well below the EU annual limit value of 1 ng/m3. In addition, higher PAH concentrations were found in the sub-micron particle fraction (PM1) as compared to the super-micron fraction (PM1-10) with the abundance in PM1 varying between 57 and 86% of the total PAHs. The B[a]P equivalent concentrations derived for DB[a,l]P and total DBPs exceeded 1-2 and 2-4 times, respectively, that of B[a]P at the four sampling sites; therefore underestimation of the cancer risk posed by PAHs in air could be made if the DBPs were not considered in risk assessment using the toxic equivalency approach, whilst the high correlation (p < 0.001) found in the relative concentrations supports the use of B[a]P as a marker substance for assessment of the carcinogenic risk associated to PAHs. However, the big difference in concentration ratios of B[a]P and the DBPs between the present study and some literature data calls for further research to evaluate the temporal and spatial invariance of the B[a]P/DBP ratios.
Tao, J.; Huggins, D.; Welker, G.; Dias, J.R.; Ingersoll, C.G.; Murowchick, J.B.
2010-01-01
This is the first part of a study that evaluates the influence of nonpoint-source contaminants on the sediment quality of five streams within the metropolitan Kansas City area, central United States. Surficial sediment was collected in 2003 from 29 sites along five streams with watersheds that extend from the core of the metropolitan area to its development fringe. Sediment was analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), 3 common polychlorinated biphenyl mixtures (Aroclors), and 25 pesticide-related compounds of eight chemical classes. Multiple PAHs were detected at more than 50% of the sites, and concentrations of total PAHs ranged from 290 to 82,150 ??g/kg (dry weight). The concentration and frequency of detection of PAHs increased with increasing urbanization of the residential watersheds. Four- and five-ring PAH compounds predominated the PAH composition (73-100%), especially fluoranthene and pyrene. The PAH composition profiles along with the diagnostic isomer ratios [e.g., anthracene/(anthracene + phenanthrene), 0.16 ?? 0.03; fluoranthene/(fluoranthene + pyrene), 0.55 ?? 0.01)] indicate that pyrogenic sources (i.e., coal-tar-related operations or materials and traffic-related particles) may be common PAH contributors to these residential streams. Historical-use organochlorine insecticides and their degradates dominated the occurrences of pesticide-related compounds, with chlordane and dieldrin detected in over or nearly 50% of the samples. The occurrence of these historical organic compounds was associated with past urban applications, which may continue to be nonpoint sources replenishing local streams. Concentrations of low molecular weight (LMW; two or three rings) and high molecular weight (HMW; four to six rings) PAHs covaried along individual streams but showed dissimilar distribution patterns between the streams, while the historical pesticide-related compounds generally increased in concentration downstream. Correlations were noted between LMW and HMW PAHs for most of the streams and between historical-use organochlorine compounds and total organic carbon and clay content of sediments for one of the streams (Brush Creek). Stormwater runoff transport modes are proposed to describe how the two groups of contaminants migrated and distributed in the streambed. ?? 2010 Springer Science+Business Media, LLC.
Multiheteromacrocycles that Complex Metal Ions. Second Progress Report, 1 May 1975 -- 30 April 1976
DOE R&D Accomplishments Database
Cram, D. J.
1976-01-15
Objective is to develop cyclic and polycyclic host organic compounds to complex and lipophilize metal ions. Macrorings were synthesized: (OCH{sub 2} CH{sub 2} O CH{sub 2}COCH{sub 2} COCH{sub 2}){sub 2} and (OCH{sub 2} CH{sub 2} O CH{sub 2} COCH{sub 2} COCH{sub 2}){sub 3}. The smaller ring complexes divalent metals 10{sup 1+9} times better than the open-chain model CH{sub 3} O CH{sub 2} CO CH{sub 2} COCH{sub 2} O CH{sub 3}, and the order in which metal ions are complexed is Cu{sup 2+}, UO{sub 2}{sup 2+} greater than Ni{sup 2+} greater than Fe{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Cd{sup 2+} greater than Mn{sup 2+}. The UO{sub 2}{sup 2+} and Cu{sup 2+} complexes were isolated and characterized. The larger ring complexes trivalent metals 10{sup 0.9-1.7} times better than the open- chain model compound, and the order is La{sup 3+}, Ce{sup 3+} greater than Cr{sup 3+}. Five other macrocycles were also synthesized, and their binding constants with Na, K, NH{sub 4}, and Cs picrates were measured. Six compounds containing one macroring and two inward-pointing ArOH or ArOCH{sub 3} groups were also prepared and tested for binding of Li, Na, K, Rb, and NH{sub 4} picrates. Racemic compounds containing two binaphthyls and its sulfur analog were prepared. Cage-shaped multiheteromacrocycles containing ten O ligand sites or four S and six O ligand sites were prepared and the binding capability of the first compound for picrates studied. Two ring systems with phosphonate ester groups were also prepared. (DLC)
Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review.
Zafra, German; Cortés-Espinosa, Diana V
2015-12-01
Fungi belonging to Trichoderma genus are ascomycetes found in soils worldwide. Trichoderma has been studied in relation to diverse biotechnological applications and are known as successful colonizers of their common habitats. Members of this genus have been well described as effective biocontrol organisms through the production of secondary metabolites with potential applications as new antibiotics. Even though members of Trichoderma are commonly used for the commercial production of lytic enzymes, as a biological control agent, and also in the food industry, their use in xenobiotic biodegradation is limited. Trichoderma stands out as a genus with a great range of substrate utilization, a high production of antimicrobial compounds, and its ability for environmental opportunism. In this review, we focused on the recent advances in the research of Trichoderma species as potent and efficient aromatic hydrocarbon-degrading organisms, as well as aimed to provide insight into its potential role in the bioremediation of soils contaminated with heavy hydrocarbons. Several Trichoderma species are associated with the ability to metabolize a variety of both high and low molecular weight polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, chrysene, pyrene, and benzo[a]pyrene. PAH-degrading species include Trichoderma hamatum, Trichoderma harzianum, Trichoderma reesei, Trichoderma koningii, Trichoderma viride, Trichoderma virens, and Trichoderma asperellum using alternate enzyme systems commonly seen in other organisms, such as multicooper laccases, peroxidases, and ring-cleavage dioxygenases. Within these species, T. asperellum stands out as a versatile organism with remarkable degrading abilities, high tolerance, and a remarkable potential to be used as a remediation agent in polluted soils.
Toxicological effects of polycyclic aromatic hydrocarbons and their derivatives on respiratory cells
NASA Astrophysics Data System (ADS)
Koike, Eiko; Yanagisawa, Rie; Takano, Hirohisa
2014-11-01
Polycyclic aromatic hydrocarbons (PAHs) are found in ambient aerosols and particulate matter. Experimental studies have shown that PAHs and related chemicals can induce toxicological effects. The present study aimed to investigate the effects of PAHs and their derivatives on the respiratory and immune systems and the underlying mechanisms. The human bronchial epithelial cell line BEAS-2B was exposed to PAHs and their derivatives, and the cytotoxicity and proinflammatory protein expression were then investigated. A cytotoxic effect was observed in BEAS-2B exposed to PAH derivatives such as naphthoquinone (NQ), phenanthrenequinone (PQ), 1-nitropyrene (1-NP), and 1-aminopyrene (1-AP). In addition, 1,2-NQ and 9,10-PQ showed more effective cytotoxicity than 1,4-NQ and 1,4-PQ, respectively. Pyrene showed a weak cytotoxic effect. On the other hand, naphthalene and phenanthrene showed no significant effects. Pyrene, 1-NP, and 1-AP also increased intercellular adhesion molecule-1 expression and interleukin-6 production in BEAS-2B. The increase was partly suppressed by protein kinase inhibitors such as the epidermal growth factor receptor-selective tyrosine kinase inhibitor and nuclear receptor antagonists such as the thyroid hormone receptor antagonist. The present study suggests that the toxicological effects of chemicals may be related to the different activities resulting from their structures, such as numbers of benzene rings and functional groups. Furthermore, the chemical-induced increase in proinflammatory protein expression in bronchial epithelial cells was possibly a result of the activation of protein kinase pathways and nuclear receptors. The increase may partly contribute to the adverse health effects of atmospheric PAHs.
Generalised Multiplicative Indices of Polycyclic Aromatic Hydrocarbons and Benzenoid Systems
NASA Astrophysics Data System (ADS)
Kulli, V. R.; Stone, Branden; Wang, Shaohui; Wei, Bing
2017-05-01
Many types of topological indices such as degree-based topological indices, distance-based topological indices, and counting-related topological indices are explored during past recent years. Among degree-based topological indices, Zagreb indices are the oldest one and studied well. In the paper, we define a generalised multiplicative version of these indices and compute exact formulas for Polycyclic Aromatic Hydrocarbons and jagged-rectangle Benzenoid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran-Nair, Kiran; Kowalski, Karol; Jarrell, Mark
2015-11-05
Polyacenes have attracted considerable attention due to their use in organic based optoelectronic materials. Polyacenes are polycyclic aromatic hydrocarbons composed of fused benzene rings. Key to understanding and design of new functional materials is an understanding of their excited state properties starting with their electron affinity (EA) and ionization potential (IP). We have developed a highly accurate and com- putationally e*fficient EA/IP equation of motion coupled cluster singles and doubles (EA/IP-EOMCCSD) method that is capable of treating large systems and large basis set. In this study we employ the EA/IP-EOMCCSD method to calculate the electron affinity and ionization potential ofmore » naphthalene, anthracene, tetracene, pentacene, hex- acene and heptacene. We have compared our results with other previous theoretical studies and experimental data. Our EA/IP results are in very good agreement with experiment and when compared with the other theoretical investigations our results represent the most accurate calculations as compared to experiment.« less
NASA Astrophysics Data System (ADS)
Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.
2015-05-01
The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.
Tejedor, David; Delgado-Hernández, Samuel; Peyrac, Jesús; González-Platas, Javier; García-Tellado, Fernando
2017-07-26
An all-pericyclic manifold is developed for the construction of topologically diverse, structurally complex and natural product-like polycyclic chemotypes. The manifold uses readily accessible tertiary propargyl vinyl ethers as substrates and imidazole as a catalyst to form up to two new rings, three new C-C bonds, six stereogenic centers and one transannular oxo-bridge. The manifold is efficient, scalable and instrumentally simple to perform and entails a propargyl Claisen rearrangement-[1,3]H shift, an oxa-6π-electrocyclization, and an intramolecular Diels-Alder reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Highly dispersed buckybowls as model carbocatalysts for C–H bond activation
Soykal, I. Ilgaz; Wang, Hui; Park, Jewook; ...
2015-03-19
Buckybowl fractions dispersed on mesoporous silica constitute an ideal model for studying the catalysis of graphitic forms of carbon since the dispersed carbon nanostructures contain a high ratio of edge defects and curvature induced by non-six-membered rings. Dispersion of the active centers on an easily accessible high surface area material allowed for high density of surface active sites associated with oxygenated structures. This report illustrates a facile method of creating model polycyclic aromatic nano-structures that are not only active for alkane C-H bond activation and oxidative dehydrogenation but also can be practical catalysts to be eventually used in industry.
Sayato, Y; Nakamuro, K; Ueno, H; Goto, R
1993-08-01
A study was made to identify polycyclic aromatic hydrocarbons (PAHs) in the mutagenic adsorbate to blue cotton recovered from the water of the Katsura River which is a tributary of the Yodo River, a typical municipal river. As blue cotton bears a covalently bound copper-phthalocyanine derivative which can adsorb PAHs over 3 rings, PAHs in the adsorbate were separated into 4 fractions (I-IV) by Sephadex LH-20 gel chromatography. Fractions III and IV showed high direct and indirect frameshift mutagenicity in strains YG1021 and YG1024, the nitroreductase- and O-acetyltransferase-overproducing derivatives of TA98, especially in YG1024 with S9 mix, whereas these fractions showed less mutagenicity in TA98NR or TA98/1,8-DNP6. These results suggest that mutagenic nitroarenes and aminoarenes are present in both fractions. The retention times of some peaks separated from both fractions using high performance liquid chromatography (HPLC) with a fluorescence detector were identical with those of authentic PAHs. Gas chromatography-mass spectrometry of some HPLC fractions demonstrated that anthraquinone, azulene derivative, quinoline derivative, chrysene and benzo[b]fluoranthene are probably contained in these fractions.
Jiang, Ping; Lucy, Charles A
2016-03-11
Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Jianling; Wang, Hanxi; Sheng, Lianxi; Liu, Xuejun; Zheng, Xiaoxue
2017-01-01
The Momoge Nature Reserve is the research object of this study. Through field sampling, laboratory experiments and analysis, the contents, distribution characteristics, source identification, pollution levels and risk levels of polycyclic aromatic hydrocarbons (PAHs) in wetland soils were studied. The results show that the sum content of 16 types of PAHs (Σ16 PAH) in the wetland soil was within the range (0.029–0.4152) mg/kg. PAHs in wetland soil are primarily 2–3-rings PAHs. PAHs in the Momoge wetland soil have multiple sources: petroleum, combustion of petroleum and coal, and others, of which petroleum and the sum of combustion of petroleum and coal account for 38.0% and 59.3%, respectively. Research, using the standard index and pollution range methods, shows that the content of the PAH labelled Nap, found in the Momoge wetland soil, is excessive; some sampling sites exhibit a low level of pollution. The result of a biotoxicity assessment shows that there are two sampling sites that occasionally present an ecological toxicity hazard. The result of the organic carbon normalization process shows that an ecological risk exists only at sampling site No. 10. PMID:28106776
Pongpiachan, Siwatt; Tipmanee, Danai; Khumsup, Chukkapong; Kittikoon, Itthipon; Hirunyatrakul, Phoosak
2015-03-01
To investigate the potential cancer risk resulting from biomass burning, polycyclic aromatic hydrocarbons (PAHs) bound to fine particles (PM2.5) were assessed in nine administrative northern provinces (NNP) of Thailand, before (N-I) and after (N-II) a haze episode. The average values of Σ 3,4-ring PAHs and B[a] P Equivalent concentrations in world urban cities were significantly (p<0.05) much higher than those in samples collected from northern provinces during both sampling periods. Application of diagnostic binary ratios of PAHs underlined the predominant contribution of vehicular exhaust to PM2.5-bound PAH levels in NNP areas, even in the middle of the agricultural waste burning period. The proximity of N-I and N-II values in three-dimensional (3D) principal component analysis (PCA) plots also supports this conclusion. Although the excess cancer risk in NNP areas is much lower than those of other urban area and industrialized cities, there are nevertheless some concerns relating to adverse health impacts on preschool children due to non-dietary exposure to PAHs in home environments. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Jian-Dong; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Sun, Cui-Ci; Wu, Mei-Lin
2015-10-01
The Pearl River delta, one of the most prosperous economically region in China, has experienced significant contaminant inputs. However, the dynamics of pollutants in the Pearl River estuary and the adjacent coastal areas are still unclear at present. In the paper, distribution and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in the surface sediments of the Pearl River estuary. The total PAHs concentrations ranged from 126.08 to 3828.58 ng/g with a mean value of 563.52 ng/g, whereas the highest PAHs were observed in Guangzhou channel. Among the U.S. Environmental Protection Agency's 16 priority PAHs, PAHs with 3-4 rings exhibited relative higher levels. A positive relationship was found between PAHs and total organic carbon. The source analysis further showed that the major sources of PAHs in the Pearl River estuary were originated from the pyrolytic inputs, reflecting a mixed energy structure such as wood, coal and petroleum combustion. In summary, although PAHs in Lingding Bay and the adjacent coastal areas of the Pearl River estuary exhibited a relatively low pollution level, the relatively high pollution level of PAHs in Guangzhou channel will be attended.
Wang, Shuang; Ni, Hong-Gang; Sun, Jian-Lin; Jing, Xin; He, Jin-Sheng; Zeng, Hui
2013-03-01
Thirty four sampling sites along an elevation transect in the Tibetan Plateau region were chosen. Soil cores were divided into several layers and a total of 175 horizon soil samples were collected from July to September 2011, for determination of polycyclic aromatic hydrocarbons (PAHs). The measured PAHs concentration in surface soils was 56.26 ± 45.84 ng g(-1), and the low molecular weight PAHs (2-3 rings) predominated, accounting for 48% and 35%. We analyzed the spatial (altitudinal and vertical) distribution of PAHs in soil, and explored the influence of related environmental factors. Total organic carbon (TOC) showed a controlling influence on the distribution of PAHs. PAH concentrations declined with soil depth, and the composition patterns of PAHs along soil depth indicated that the heavy PAHs tended to remain in the upper layers (0-10 cm), while the light fractions were transported downward more easily. PAHs inventories (8.77-57.92 mg m(-2)) for soil cores increased with mean annual precipitation, while the topsoil concentrations decreased with it. This implies that an increase in precipitation could transfer more PAHs from the atmosphere to the soil and further transport PAHs from the topsoil to deeper layers.
Yu, Zi-Ling; Lin, Qin; Gu, Yang-Guang; Ke, Chang-Liang; Sun, Run-Xia
2016-09-15
Spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) were investigated in Eastern Guangdong coast, China. Total PAH concentrations in oysters ranged from 231 to 1178ng/g with a mean concentration of 622ng/g dry weight. Compared with other bays and estuaries, PAH levels in oysters were moderate. Spatial distribution of PAHs was site specific, with relatively high PAH concentrations observed in Zhelin Bay and Kaozhouyang Bay. Based on the Spearman test analysis, only PAH concentration in oysters from Jiazi Harbor showed a significant increasing trend (P<0.05). Three-ring PAHs were the most abundant, accounting for 54.2%-88.4% of total PAHs. Diagnostic ratios suggested that PAHs were derived mainly from petroleum origin. BaP and ∑4PAH concentrations were well within the European Union limits (5ng/g and 30ng/g wet weight, respectively). The incremental lifetime cancer risks (ILCR) for PAHs were <10(-5), indicating that the adverse health risks associated with oyster consumption in this area were minimal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grimmer, G; Brune, H; Deutsch-Wenzel, R; Naujack, K W; Misfeld, J; Timm, J
1983-11-01
The objective of this investigation was to identify the substances chiefly responsible for the carcinogenicity of automobile exhaust condensate using topical application onto the skin of mice. This was performed by comparing the carcinogenic effect of various fractions with that of an unseparated sample of automobile exhaust condensate, tested in 3 different doses. The probit and Weibull analysis of the result shows: (a) The condensate, emitted from a gasoline-driven automobile provokes local tumors after long-term application to the dorsal skin of mice. The tumor incidence demonstrates a clear cut dose-response relationship. (b) The fraction of polycyclic aromatic hydrocarbons (PAH) containing more than 3 rings accounts for about 84-91% of the total carcinogenicity of automobile exhaust condensate. This fraction represents only about 3.5% by wt of the condensate. (c) The content of benzo[a]pyrene (BaP) (0.414 mg/g) accounts for 6-7.6% of the total carcinogenicity of automobile exhaust condensate, 15 selected PAHs for about 41%. (d) Regarding the minor effect of the PAH-free fraction (about 83% by wt), no hints for a cocarcinogenic activity were observed.
Amezcua-Allieri, M A; Ávila-Chávez, M A; Trejo, A; Meléndez-Estrada, J
2012-03-01
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances which are resistant to environmental degradation due to their highly hydrophobic nature. Soils contaminated with PAHs pose potential risks to human and ecological health, therefore concern over their adverse effects have resulted in extensive studies on their removal from contaminated soils. The main purpose of this study was to compare experimental results of PAHs removal, from a natural certified soil polluted with PAHs, by biological methods (using bioaugmentation and biostimulation in a solid-state culture) with those from supercritical fluid extraction (SFE), using supercritical ethane as solvent. The comparison of results between the two methods showed that maximal removal of naphthalene, acenaphthene, fluorene, and chrysene was performed using bioremediation; however, for the rest of the PAHs considered (fluoranthene, pyrene, and benz(a)anthracene) SFE resulted more efficient. Although bioremediation achieved higher removal ratios for certain hydrocarbons and takes advantage of the increased rate of natural biological processes, it takes longer time (i.e. 36 d vs. half an hour) than SFE and it is best for 2-3 PAHs rings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Adekunle, Abolanle Saheed; Oyekunle, John Adekunle Oyedele; Ojo, Oluwaseyi Samson; Maxakato, Nobanathi W; Olutona, Godwin Oladele; Obisesan, Olaoluwa Ruth
2017-01-01
This study determined the presence and levels of Polycyclic Aromatic Hydrocarbons (PAHs) of groundwater in Moro, Edun-Abon, Yakoyo and Ipetumodu communities in Ife-North Local Government Area of Osun State. This was with a view to create public awareness about the safety of groundwater as a source for domestic purposes (e.g., drinking, cooking etc.) in non-industrial area. Water samples were collected on seasonal basis, comprising of three months (August-October) in the wet season and three months (December-February) in the dry season. The PAHs in the water samples were extracted with n -hexane using liquid-liquid extraction method, while their qualitative identifications and quantitative estimations were carried out with the use of gas chromatography. Levels of PAHs detected showed predominance of light PAHs (less than four fused rings) for both wet and the dry seasons. Higher concentrations of PAHs were recorded during the wet season than the dry season. The study concluded that the groundwater in the communities was contaminated with light PAHs and the total PAHs in this area exceeded the maximum permissible limit of 10 μg L -1 recommended by World Health Organization (WHO) for safety of groundwater.
The hazard for photoactivated toxicity of polycyclic aromatic hydrocarbons (PAHs) has been clearly demonstrated; however, to our knowledge, the risk in contaminated systems has not been characterized. To address this question, a median lethal dose (LD50) for fluoranthene photoa...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of polycyclic aromatic hydrocarbon (PAH) mixtures that when finalized will appear on the Integrated Risk Information System (IRIS) database. ...
NASA Astrophysics Data System (ADS)
Zhu, Xianlei; Deng, Changjiang; Biandan, Luobu; Fu, Xianqiang; Mu, Xilong
2015-04-01
Polycyclic aromatic hydrocarbons (PAHs) are well-known air pollutants of health concern. However, they are not listed as routinely measured pollutants in China, in spite of benzo[a]pyrene (BaP) being included in the National Ambient Air Quality Standard (NAAQS). Thus, very limited continuous measurements are available for PAHs, which would hinder the understanding of long-term pollution characteristics of PAHs in context of rapid development of economy and intensive urbanization in China. To investigate annual variation and its causes of airborne particulate-associated PAHs, a total of 18 PAHs (including 16 USEPA priority species) in PM10 and PM2.5 were measured in Beijing, the capital and one of megacities of China, for a decade (from the year of 2004 to 2013) with meteorological data simultaneously recorded. The long-term measurements of PAHs showed significant annual and seasonal variations for the total concentration of PAHs (ΣPAH18) and individual PAH species. The ΣPAH18 in PM10 was highest in 2010 and lowest in 2006. Likewise, the ΣPAH18 in PM2.5 reached the highest level in 2010 and dropped to the lowest level in 2005. The annual concentration varied insignificantly for 2- and 3-ring PAHs, were relatively high in the year of 2004, 2007 and 2010 for 4-ring PAHs, and increased gradually with year for 5- to 7-ring PAHs, the markers of motor vehicle emission. As for seasonal variation, the concentrations in winter (heating period) was higher than those in summer, while concentrations in spring and autumn ranked in the middle. As for BaP, one of criteria pollutants, its concentration exceeded NAAQS of China in winter. Source apportionment by factor analysis suggested the contributions of coal combustion, vehicle emissions, fugitive dust and straw burning. Especially, the great contributions of coal combustion and vehicle emission were also supported by diagnostic ratios. The backward trajectories showed air mass crossing polluted cities and transporting in low atmospheric boundary layer (ABL) along with local stagnant condition would lead to severe pollution of PAHs at the study area. Correlation analysis between the concentrations of PAHs with socio-economic status (SES) indicated the significant impacts of population, vehicle fleet and Gross Domestic Products (GDP). With growing vehicle fleet and GDP (indicating ecomonic development) and increasing population (indicating urbanization level), the ΣPAH18 showed an increasing tendency. In the decade covered by the study, China has been optimizing energy structure and implementing policy encouraging more efficient energy use. The remarkable improvement of air quality by the policies, with the data collected in this study, would unfortunatley not be noticed in a short period but could be expected in long-term. Key Words: Polycyclic Aromatic Hydrocarbons; Airborne Particulate Matter; Annual Variation; Source; Socioeconomic status; Beijing Acknowledgments: The study has been supported by Beijing Excellent Talents Project of the year of 2012 (No. 2012D009051000001) and by National Science Foundation (No.41175102)
Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis.
Hotta, Kinya; Chen, Xi; Paton, Robert S; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N; Kim, Chu-Young
2012-03-04
Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A to form lasalocid A. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue to provide the first atomic structure-to our knowledge-of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. © 2012 Macmillan Publishers Limited. All rights reserved
Estuaries of the southeastern United States not only serve an important nursery function but also are common repositories of polycyclic aromatic hydrocarbons (PAHs) derived from upland activities. Thus, these habitats may be at risk for PAHphototoxicity. To better characterize ...
2015-01-01
The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID:24617538
NASA Astrophysics Data System (ADS)
Estrada-Izquierdo, Irma; Sánchez-Espindola, Esther; Uribe-Hernández, Raúl; Ramón-Gallegos, Eva
2012-10-01
Each cigarette can generate 1149 ng of a mixture of 14 polycyclic aromatic hydrocarbons, of which there are a lot of information about its harmful effects on the environment and human health, they are considered mutagenic, teratogenic and carcinogenic. In this paper we tested ZnO:Mn2+ nanoparticles, attached to the filters of cigarettes. The first results showed that the filtration system was able to catch the Benzo(a)pyrene contained in cigarette smoke; but more tests are needed to quantify the efficiency with greater accuracy over other polycyclic aromatic hydrocarbons.
Li, Jun; Pignatello, Joseph J; Smets, Barth F; Grasso, Domenico; Monserrate, Esteban
2005-03-01
We examined the biodegradation and desorption of a set of 15 polycyclic aromatic hydrocarbon (PAH) compounds in coal tar-contaminated soil at a former manufactured gas plant site to evaluate the feasibility of in situ bioremediation. Experiments were conducted in well-mixed aerobic soil suspensions containing various additives over a 93- to 106-d period. In general, both biotransformation and desorption decreased with PAH ring size, becoming negligible for the six-ring PAH compounds. Biodegradation by indigenous microorganisms was strongly accelerated by addition of inorganic nutrients (N, P, K, and trace metals). The rates of biotransformation of PAH compounds by indigenous microorganisms in nutrient-amended flasks outpaced their maximum (i.e., chelate-enhanced) rates of desorption to an infinite sink (Tenax) in sterilized systems run in parallel, suggesting that indigenous organisms facilitated desorption. Biodegradation by indigenous organisms in nutrient-amended flasks appeared to be unaffected by the addition of a site-derived bacterial enrichment culture, resulting in approximately 100-fold higher aromatic dioxygenase levels, and by the addition of 0.01 M chelating agent (citrate or pyrophosphate), although such chelating agents greatly enhanced desorption in microbially inactivated flasks. The strong ability of nutrients to enhance degradation of the bioavailable PAHs indicates that their persistence for many decades at this site likely results from nutrient-limited natural biodegradation, and it also suggests that an effective strategy for their bioremediation could consist simply of adding inorganic nutrients.
Anaerobic biodegradation of PAHs in mangrove sediment with amendment of NaHCO3.
Li, Chun-Hua; Wong, Yuk-Shan; Wang, Hong-Yuan; Tam, Nora Fung-Yee
2015-04-01
Mangrove sediment is unique in chemical and biological properties. Many of them suffer polycyclic aromatic hydrocarbon (PAH) contamination. However, the study on PAH biological remediation for mangrove sediment is deficient. Enriched PAH-degrading microbial consortium and electron acceptor amendment are considered as two effective measures. Compared to other electron acceptors, the study on CO2, which is used by methanogens, is still seldom. This study investigated the effect of NaHCO3 amendment on the anaerobic biodegradation of four mixed PAHs, namely fluorene (Fl), phenanthrene (Phe), fluoranthene (Flua) and pyrene (Pyr), with or without enriched PAH-degrading microbial consortium in mangrove sediment slurry. The trends of various parameters, including PAH concentrations, microbial population size, electron-transport system activities, electron acceptor and anaerobic gas production were monitored. The results revealed that the inoculation of enriched PAH-degrading consortium had a significant effect with half lives shortened by 7-13 days for 3-ring PAHs and 11-24 days for 4-ring PAHs. While NaHCO3 amendment did not have a significant effect on the biodegradation of PAHs and other parameters, except that CO2 gas in the headspace of experimental flasks was increased. One of the possible reasons is that mangrove sediment contains high concentrations of other electron acceptors which are easier to be utilized by anaerobic bacteria, the other one is that the anaerobes in mangrove sediment can produce enough CO2 gas even without adding NaHCO3. Copyright © 2015. Published by Elsevier B.V.
Adrion, Alden C.; Singleton, David R.; Nakamura, Jun; Shea, Damian; Aitken, Michael D.
2016-01-01
Abstract Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high–molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high–molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility. PMID:27678476
Goodale, Britton C.; Tilton, Susan C.; Wilson, Glenn; Corvi, Margaret M.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert L.
2014-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the Aryl Hydrocarbon Receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and-independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 hours post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. PMID:23656968
NASA Astrophysics Data System (ADS)
Chen, Yu-Cheng; Lee, Wen-Jhy; Uang, Shi-Nian; Lee, Su-Hsing; Tsai, Perng-Jy
The objective of this study is to characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from a UH-1H helicopter turboshaft engine and its impact on the ambient environment. Five power settings of the ground idle (GI), fly idle (FI), beed band check (BBC), inlet guide vane (IGV), and take off (TO) were selected and samples were collected from the exhaust by using an isokinetic sampling system. Twenty-two PAH compounds were analyzed by gas chromatograph (GC)/MS. We found the mean total PAH concentration in the exhaust of the UH-1H engine (843 μg m -3) is 1.05-51.7 times in magnitude higher than those of the heavy-duty diesel (HDD) engine, motor vehicle engine, and F101 aircraft engine. Two- and three-ringed PAHs account for 97.5% of total PAH emissions from the UH-1H engine. The mean total PAH and total BaP eq emission factors for the UH-1H engine (63.4 and 0.309 mg L -1·fuel) is 1.65-23.4 and 1.30-7.54 times in magnitude higher than those for the motor vehicle engine, HDD engine, and F101 aircraft engine. The total emission level of the single PAH compound, BaP, for the UH-1H engine (EL BaP) during one landing and take off (LTO) cycle (2.19 mg LTO -1) was higher than the European Commission standard (1.24 mg LTO -1) suggesting that appropriate measures should be taken to reduce PAH emissions from UH-1H engines in the future.
Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D
2016-09-01
Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.
Baussant, T; Sanni, S; Skadsheim, A; Jonsson, G; Børseth, J F; Gaudebert, B
2001-06-01
Within the frame of a large environmental study, we report on a research program that investigated the potential for bioaccumulation and subsequent effect responses in several marine organisms exposed to chronic levels of dispersed crude oil. Body burden can be estimated from kinetic parameters (rate constants for uptake and elimination), and appropriate body burden-effect relationships may improve assessments of environmental risks or the potential for such outcomes following chronic discharges at sea. We conducted a series of experiments in a flow-through system to describe the bioaccumulation kinetics of polycyclic aromatic hydrocarbons (PAH) at low concentrations of dispersed crude oils. Mussels (Mytilus edulis) and juvenile turbot (Scophthalmus maximus) were exposed for periods ranging from 8 to 21 d. Postexposure, the organisms were kept for a period of 9 to 10 d in running seawater to study elimination processes. Rate constants of uptake (k1) and elimination (k2) of the PAHs during and following exposure were calculated using a first-order kinetic model that assumed a decrease of the substances in the environment over time. The estimated bioconcentration factor was calculated from the ratio of k1/k2. The kinetic parameters of two-, three-, and four-ring PAHs in mussel and fish are compared with estimates based on hydrophobicity alone, expressed by the octanol-water partition coefficient, Kow (partitioning theory). A combination of reduced bioavailability of PAHs from oil droplets and degradation processes of PAHs in body tissues seems to explain discrepancies between kinetic rates based on Kow and actual kinetic rates measured in fish. Mussels showed a pattern more in compliance with the partitioning theory.
Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Cloutis, Edward; Szymanski, Paul; Applin, Daniel; Goltz, Douglas
2016-08-01
Polycyclic aromatic hydrocarbons (PAHs) are widely present throughout the Solar System and beyond. They have been implicated as a contributor to unidentified infrared emission bands in the interstellar medium, comprise a substantial portion of the insoluble organic matter in carbonaceous chondrites, are expected stable components of organic matter on Mars, and are present in a wide range of terrestrial hydrocarbons and as components of biomolecules. However, PAH structures can be very complicated, making their identification challenging. Raman spectroscopy is known to be especially sensitive to the highly polarizable C-C and C=C bonds found in PAHs, and therefore, can be a powerful tool for PAH structural and compositional elucidation. This study examined Raman spectra of 48 different PAHs to determine the degree to which Raman spectroscopy could be used to uniquely identify different species, factors that control the positions of major Raman peaks, the degree to which induced fluorescence affects the intensity of Raman peaks, its usefulness for PAH discrimination, and the effects of varying excitation wavelength on some PAH Raman spectra. It was found that the arrangement and composition of phenyl (benzene) rings, and the type and position of functional groups can greatly affect fluorescence, positions and intensities of Raman peaks associated with the PAH backbone, and the introduction of new Raman peaks. Among the functional groups found on many of the PAHs that were analyzed, only a few Raman peaks corresponding to the molecular vibrations of these groups could be clearly distinguished. Comparison of the PAH Raman spectra that were acquired with both 532 and 785 nm excitation found that the longer wavelength resulted in reduced fluorescence, consistent with previous studies.
Škrbić, Biljana D; Đurišić-Mladenović, Nataša; Tadić, Đorđe J; Cvejanov, Jelena Đ
2017-07-01
Contents of 16 polycyclic aromatic hydrocarbons were analyzed in 30 soil samples from 15 locations in Novi Sad, Serbia, assessing for the first time the corresponding health risks in the Serbian urban zone. Total concentrations were in the range of 22-2247 μg kg -1 , with a mean and median value of 363 and 200 μg kg -1 , respectively. Comparison with the relevant maximum allowed contents proposed by the Serbian government and with the Dutch target values implied that soils from the urban area of Novi Sad were "suitable as residential soils" and that no intervention would be needed if the current levels were retained. Seven diagnostic ratios were calculated, indicating the pyrogenic sources of PAHs as the dominant. Cancer risks in humans via accidental ingestion, inhalation of soil particles, and dermal contact with soil were estimated. Cancer risk for soil ingestion by children was the highest. The total lifetime carcinogenic risk as sum of individual cancer risks for seven carcinogenic polycyclic aromatic hydrocarbons was within the range 10 -4 to 10 -6 , indicating acceptable risks at 30 and 47% of sites for children and adults, respectively. However, for the rest of the samples, total lifetime cancer risk was >10 -4 indicating over the acceptable risk, even though the contents in soil were not of concern as the comparison with the environmental guidance previously showed. This could be explained by (a) the dominant concentrations of higher molecular weight compounds with 4 to 6 rings, among which there are compounds with higher toxicity equivalents, but also with (b) the extreme conditions used for the conservative risk assessment under maximal exposure frequency, exposure time, and ingestion rates.
Tandem enyne metathesis-Diels-Alder reaction for construction of natural product frameworks.
Rosillo, Marta; Domínguez, Gema; Casarrubios, Luis; Amador, Ulises; Pérez-Castells, Javier
2004-03-19
Enynes connected through aromatic rings are used as substrates for metathesis reactions. The reactivity of three ruthenium carbene complexes is compared. The resulting 1,3-dienes are suitable precursors of polycyclic structures via a Diels-Alder process. Some domino RCM-Diels-Alder reactions are performed, suggesting a possible beneficial effect of the ruthenium catalyst in the cycloaddition process. Other examples require Lewis acid cocatalyst. When applied to aromatic ynamines or enamines, a new synthesis of vinylindoles is achieved. Monitorization of several metathesis reactions with NMR shows the different behavior for ruthenium catalysts. New carbenic species are detected in some reactions with an important dependence on the solvent used.
Müller, Erich A; Mejía, Andrés
2017-10-24
The statistical associating fluid theory of variable range employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al. (J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the SAFT family. This particular version has been shown to have a remarkable capability to connect experimental determinations, theoretical calculations, and molecular simulations results. However, the theoretical development restricts the model to chains of beads connected in a linear fashion. In this work, the capabilities of the SAFT-VR Mie equation of state for modeling phase equilibria are extended for the case of planar ring compounds. This modification proposed replaces the Helmholtz energy of chain formation by an empirical contribution based on a parallelism to the second-order thermodynamic perturbation theory for hard sphere trimers. The proposed expression is given in terms of an extra parameter, χ, that depends on the number of beads, m s , and the geometry of the ring. The model is used to describe the phase equilibrium for planar ring compounds formed of Mie isotropic segments for the cases of m s equals to 3, 4, 5 (two configurations), and 7 (two configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran, sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene, pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and tetrahydro-2H-pyran (ring fluid).
Bayer, Débora M; Chagas-Spinelli, Alessandra C O; Gavazza, Sávia; Florencio, Lourdinha; Kato, Mario T
2013-09-01
We evaluated the bioremediation, by natural attenuation (NA) and by natural attenuation stimulated (SNA) using a rhamnolipid biosurfactant, of estuarine sediments contaminated with diesel oil. Sediment samples (30 cm) were put into 35 cm glass columns, and the concentrations of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by the US Environmental Protection Agency were monitored for 111 days. Naphthalene percolated through the columns more than the other PAHs, and, in general, the concentrations of the lower molecular weight PAHs, consisting of two and three aromatic rings, changed during the first 45 days of treatment, whereas the concentrations of the higher molecular weight PAHs, consisting of four, five, and six rings, were more stable. The higher molecular weight PAHs became more available after 45 days, in the deeper parts of the columns (20-30 cm). Evidence of degradation was observed only for some compounds, such as pyrene, with a total removal efficiency of 82 and 78 % in the NA and SNA treatments, respectively, but without significant difference. In the case of total PAH removal, the efficiencies were significantly different of 82 and 67 %, respectively.
Mechanistic and kinetic studies on the OH-initiated atmospheric oxidation of fluoranthene.
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing
2014-08-15
The atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) can generate toxic derivatives which contribute to the carcinogenic potential of particulate organic matter. In this work, the mechanism of the OH-initiated atmospheric oxidation of fluoranthene (Flu) was investigated by using high-accuracy molecular orbital calculations. All of the possible oxidation pathways were discussed, and the theoretical results were compared with the available experimental observation. The rate constants of the crucial elementary reactions were evaluated by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The main oxidation products are a range of ring-retaining and ring-opening chemicals containing fluoranthols, fluoranthones, fluoranthenequinones, nitro-fluoranthenes, dialdehydes and epoxides. The overall rate constant of the OH addition reaction is 1.72×10(-11) cm(3) molecule(-1) s(-1) at 298 K and 1 atm. The atmospheric lifetime of Flu determined by OH radicals is about 0.69 days. This work provides a comprehensive investigation of the OH-initiated oxidation of Flu and should help to clarify its atmospheric conversion. Copyright © 2014 Elsevier B.V. All rights reserved.
Conformational Study of Dibenzyl Ether
NASA Astrophysics Data System (ADS)
Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hewett, Daniel M.; Zwier, Timothy S.
2017-06-01
Understanding the initial stages of polycyclic aromatic hydrocarbon (PAH) aggregation, the onset of soot formation, is an important goal on the pathway to cleaner combustion processes. PAHs with short alkyl chains, present in fuel-rich combustion environments, can undergo reactions that will chemically link aromatic rings together. One such example of a linked diaryl compound is dibenzyl ether, C_{6}H_{5}-CH_{2}-O-CH_{2}-C_{6}H_{5}. The -CH_{2}-O-CH_{2}- linkage has a length and flexibility well-suited to forming a π-stacked conformation between the two phenyl rings. In this talk, we will explore the single-conformation spectroscopy of dibenzyl ether under jet-cooled conditions in the gas phase. Laser-induced fluorescence, chirped pulse Fourier transform microwave (8-18 GHz region), and single-conformation infrared spectroscopy in the alkyl CH stretch region were all carried out on the molecule, thereby interrogating its full array of electronic, vibrational and rotational degrees of freedom. This work is the first step in a broader study to determine the extent of π-stacking in linked aryl compounds as a function of linkage and PAH size.
Vidal-Martínez, V M; Aguirre-Macedo, M L; Del Rio-Rodríguez, R; Gold-Bouchot, G; Rendón-von Osten, J; Miranda-Rosas, G A
2006-06-01
The pink shrimp Farfantepenaeus duorarum may acquire pollutants, helminths and symbionts from their environment. Statistical associations were studied between the symbionts and helminths of F. duorarum and pollutants in sediments, water and shrimps in Campeche Sound, Mexico. The study area spatially overlapped between offshore oil platforms and natural shrimp mating grounds. Spatial autocorrelation of data was controlled with spatial analysis using distance indices (SADIE) which identifies parasite or pollutant patches (high levels) and gaps (low levels), expressing them as clustering indices compared at each point to produce a measure of spatial association. Symbionts included the peritrich ciliates Epistylis sp. and Zoothamnium penaei and all symbionts were pooled. Helminths included Hysterothylacium sp., Opecoeloides fimbriatus, Prochristianella penaei and an unidentified cestode. Thirty-five pollutants were identified, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and heavy metals. The PAHs (2-3 ring) in water, unresolved complex mixture (UCM), Ni and V in sediments, and Zn, Cr and heptachlor in shrimps were significantly clustered. The remaining pollutants were randomly distributed in the study area. Juvenile shrimps acquired pesticides, PAHs (2-3 rings) and Zn, while adults acquired PAHs (4-5 rings), Cu and V. Results suggest natural PAH spillovers, and continental runoff of dichlorodiphenyltrichloroethane (DDT), PCBs and PAHs (2-3 ring). There were no significant associations between pollutants and helminths. However, there were significant negative associations of pesticides, UCM and PCBs with symbiont numbers after controlling shrimp size and spatial autocorrelation. Shrimps and their symbionts appear to be promising bioindicators of organic chemical pollution in Campeche Sound.
NASA Astrophysics Data System (ADS)
Mu, Qing; Lammel, Gerhard; Cheng, Yafang
2015-04-01
Semi-volatile PAHs are major pollutants of urban air, mostly regionally transported and reaching remote environments[1]. Some semi-volatile PAHs are carcinogenic. About 22% of global PAHs emissions are in China. The transport and sinks (atmospheric reactions, deposition) of semi-volatile PAHs in East Asia are studied using a modified version of the Weather Research and Forecasting model coupled with chemistry (WRF/Chem [2]). For this purpose, PAHs' gas and particulate phase chemical reactions and dry and wet deposition processes are included. We use emissions of 2008 [3] which include technical combustion processes (coal, oil, gas, waste and biomass) and open fires and apply diurnal time functions as those of black carbon. The model was run for phenanthrene (3-ring PAH, p = 1.5×10-2 Pa at 298 K) and benzo(a)pyrene (5-ring PAH, p = 7×10-7 Pa) for July 2013 with hourly output and 27 km horizontal grid spacing. The comparison of model predicted phenanthrene concentrations with measurements at a rural site near Beijing (own data, unpublished) validates the model's ability to simulate diurnal variations of gaseous PAHs. The model's performance is better in simulating day time than night time gaseous PAHs. The concentrations of PAHs had experienced significant diurnal variations in rural and remote areas of China. Elevated concentration levels of 40-60 ng m-3 for phenanthrene and 1-10 ng m-3 for benzo(a)pyrene are predicted in Shanxi, Guizhou, the North China Plain, the Sichuan Basin and Chongqing metropolitan areas due to the high emission densities at those locations. References [1] Keyte, I.J., Harrison, R.M., and Lammel, G., 2013: Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons - a review, Chem. Soc. Rev., 42, 9333-9391. [2] Grell, G.A, Peckham, S.E, Schmitz, R, McKeen, S.A, Frost, G, Skamarock, W.C, and Eder, B., 2005: Fully coupled online chemistry within the WRF model, Atmos. Environ., 39, 6957-6975. [3] Shen, H. Z., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G. F., Wang, B., Zhang, Y. Y., Chen, Y. C., Lu, Y., Chen, H., Li, T. C., Sun, K., Li, B. G., Liu, W. X., Liu, J. F., and Tao, S., 2013: Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions, Environ. Sci. Technol., 47, 6415-6424.
Ariyasena, Thiloka C; Poole, Colin F
2014-09-26
Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation.
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Polycyclic Aromatic Hydrocarbons: A Critical Review of Environmental Occurrence and Bioremediation
NASA Astrophysics Data System (ADS)
Alegbeleye, Oluwadara Oluwaseun; Opeolu, Beatrice Oluwatoyin; Jackson, Vanessa Angela
2017-10-01
The degree of polycyclic aromatic hydrocarbon contamination of environmental matrices has increased over the last several years due to increase in industrial activities. Interest has surrounded the occurrence and distribution of polycyclic aromatic hydrocarbons for many decades because they pose a serious threat to the health of humans and ecosystems. The importance of the need for sustainable abatement strategies to alleviate contamination therefore cannot be overemphasised, as daily human activities continue to create pollution from polycyclic aromatic hydrocarbons and impact the natural environment. Globally, attempts have been made to design treatment schemes for the remediation and restoration of contaminated sites. Several techniques and technologies have been proposed and tested over time, the majority of which have significant limitations. This has necessitated research into environmentally friendly and cost-effective clean-up techniques. Bioremediation is an appealing option that has been extensively researched and adopted as it has been proven to be relatively cost-effective, environmentally friendly and is publicly accepted. In this review, the physicochemical properties of some priority polycyclic aromatic hydrocarbons, as well as the pathways and mechanisms through which they enter the soil, river systems, drinking water, groundwater and food are succinctly examined. Their effects on human health, other living organisms, the aquatic ecosystem, as well as soil microbiota are also elucidated. The persistence and bioavailability of polycyclic aromatic hydrocarbons are discussed as well, as they are important factors that influence the rate, efficiency and overall success of remediation. Bioremediation (aerobic and anaerobic), use of biosurfactants and bioreactors, as well as the roles of biofilms in the biological treatment of polycyclic aromatic hydrocarbons are also explored.
Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5
NASA Astrophysics Data System (ADS)
Khan, Md Firoz; Latif, Mohd Talib; Lim, Chee Hou; Amil, Norhaniza; Jaafar, Shoffian Amin; Dominick, Doreena; Mohd Nadzir, Mohd Shahrul; Sahani, Mazrura; Tahir, Norhayati Mohd
2015-04-01
This study aims to investigate distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) bound to fine particulate matter (PM2.5) captured in a semi-urban area in Malaysia during different seasons, and to assess their health risks. PM2.5 samples were collected using a high volume air sampler on quartz filter paper at a flow rate of 1 m3 min-1 for 24 h. PAHs on the filter paper were extracted with dichloromethane (DCM) using an ultrasonic centrifuge solid-phase extraction method and measured by gas chromatography-mass spectroscopy. The results showed that the range of PAHs concentrations in the study period was between 0.21 and 12.08 ng m-3. The concentrations of PAHs were higher during the south-west monsoon (0.21-12.08 ng m-3) compared to the north-east monsoon (0.68-3.80 ng m-3). The high molecular weight (HMW) PAHs (≥5 ring) are significantly prominent (>70%) compared to the low molecular weight (LMW) PAHs (≤4 ring) in PM2.5. The Spearman correlation indicates that the LMW and HMW PAHs correlate strongly among themselves. The diagnostic ratios (DRs) of I[c]P/I[c]P + BgP and B[a]P/B[g]P suggest that the HMW PAHs originated from fuel combustion sources. The source apportionment analysis of PAHs was resolved using DRs-positive matrix factorization (PMF)-multiple linear regression (MLR). The main sources identified were (a) gasoline combustion (65%), (b) diesel and heavy oil combustion (19%) and (c) natural gas and coal burning (15%). The health risk evaluation, by means of the lifetime lung cancer risk (LLCR), showed no potential carcinogenic risk from the airborne BaPeq (which represents total PAHs at the present study area in Malaysia). The seasonal LLCR showed that the carcinogenic risk of total PAHs were two fold higher during south-westerly monsoon compared to north-easterly monsoon.
Ali, Nadeem; Ismail, Iqbal Mohammad Ibrahim; Khoder, Mamdouh; Shamy, Magdy; Alghamdi, Mansour; Costa, Max; Ali, Lulwa Naseer; Wang, Wei; Eqani, Syed Ali Musstjab Akber Shah
2016-12-15
This study reports levels and profiles of polycyclic aromatic hydrocarbons (PAHs) in dust samples collected from three different microenvironments (cars, air conditioner (AC) filters and household floor dust) of Jeddah, Saudi Arabia (KSA) and Kuwait. To the best of our knowledge, this is first study reporting PAHs in indoor microenvironments of KSA, which makes these findings important. Benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), phenanthrene (Phe), and pyrene (Pyr) were found to be the major chemicals in dust samples from all selected microenvironments. ΣPAHs occurred at median concentrations (ng/g) of 3450, 2200, and 2650 in Saudi AC filter, car and household floor dust, respectively. The median levels (ng/g) of ΣPAHs in Kuwaiti car (950) and household floor (1675) dust samples were lower than Saudi dust. The PAHs profile in Saudi dust was dominated by high molecular weight (HMW) (4-5 ring) PAHs while in Kuwaiti dust 3 ring PAHs have marked contribution. BaP equivalent, a marker for carcinogenic PAHs, was high in Saudi household floor and AC filter dust with median levels (ng/g) of 370 and 455, respectively. Different exposure scenarios, using 5th percentile, median, mean, and 95th percentile levels, were estimated for adults and toddlers. For Saudi and Kuwaiti toddlers worst exposure scenario of ΣPAHs was calculated at 175 and 85ng/kg body weight/day (ng/kgbw/d), respectively. For Saudi toddlers, the calculated worst exposure scenarios for carcinogenic BaP (27.7) and BbF (29.3ng/kgbw/d) was 2-4 times higher than Kuwaiti toddlers. This study is based on small number of samples which necessitate more detailed studies for better understanding of dynamics of PAHs in the indoor environments of this region. Nevertheless, our finding supports the ongoing exposure of organic pollutants to population that accumulates indoor. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong
2018-04-01
In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.
Hussain, Karishma; Balachandran, S; Rafiqul Hoque, Raza
2015-12-01
Analysis of riverine sediments offers important information regarding anthropogenic activities in the adjacent watershed. In this study, we provide polycyclic aromatic hydrocarbon (PAH) levels, their possible sources and potential hazards in the Bharalu tributary of the Brahmaputra River flowing through Guwahati city in India. The USEPA's 16 priority PAHs were determined in river bank sediments during two distinct seasons viz. pre- and post-monsoon. The ∑PAHs concentrations varied between 338 and 23,100 ng g(-1) during post-monsoon and between 609 and 8620 ng g(-1) during pre-monsoon. Mean benzo(a)pyrene (BaP) levels were between 17.8 ± 12 and 21.9 ± 27 ng g(-1) during post- and pre-monsoon seasons respectively. Spatial variations were observed. Interestingly, bank sediment samples from the sites near the confluence of the Bharalu River with the Brahmaputra River were found to have maximum concentrations of PAHs during post-monsoon season. The profile of the PAHs was dominated by 3-, 4- and 6-ring compounds. We estimated hazards of PAHs as RQ∑PAHs, which showed seasonal variation: 3 times higher during post-monsoon than pre-monsoon. 3-and 4-ring PAHs were the major PAHs of concern. The Bharalu River sediment was found to pose medium to high hazards to ecosystem. The individual PAHs including Acy, Phen and Pyr were observed with RQ(MPCs) value >1 indicating severe hazards during post-monsoon and pre-monsoon season. A very high percentage of coefficient of variation (CV) for PAHs during post-monsoon also revealed great variation in hazards and sources in this season. The diagnostic ratios indicated both petrogenic and pyrogenic origin of the PAHs. The pyrogenic contributions were mainly attributed to emissions from diesel, gasoline and wood combustion which are mainly from anthropogenic sources. Copyright © 2015 Elsevier Inc. All rights reserved.
2014-01-01
Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695
Yamada, Mihoko; Takada, Hideshige; Toyoda, Keita; Yoshida, Akihiro; Shibata, Akira; Nomura, Hideaki; Wada, Minoru; Nishimura, Masahiko; Okamoto, Ken; Ohwada, Kouichi
2003-01-01
Polycyclic Aromatic Hydrocarbons (PAHs) are one of the components found in oil and are of interest because some are toxic. We studied the environmental fate of PAHs and the effects of chemical dispersants using experimental 500 l mesocosm tanks that mimic natural ecosystems. The tanks were filled with seawater spiked with the water-soluble fraction of heavy residual oil. Water samples and settling particles in the tanks were collected periodically and 38 PAH compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Low molecular weight (LMW) PAHs with less than three benzene rings disappeared rapidly, mostly within 2 days. On the other hand, high molecular weight (HMW) PAHs with more than four benzene rings remained in the water column for a longer time, up to 9 days. Also, significant portions (10-94%) of HMW PAHs settled to the bottom and were caught in the sediment trap. The addition of chemical dispersant accelerated dissolution and biodegradation of PAHs, especially HMW PAHs. The dispersant amplified the amounts of PAHs found in the water column. The amplification was the greater for the more hydrophobic PAHs, with an enrichment factor of up to six times. The increased PAHs resulting from dispersant use overwhelmed the normal degradation and, as a result, higher concentrations of PAHs were observed in water column throughout the experimental period. We conclude that the addition of the dispersant could increase the concentration of water column PAHs and thus increase the exposure and potential toxicity for organisms in the natural environment. By making more hydrocarbon material available to the water column, the application of dispersant reduced the settling of PAHs. For the tank with dispersant, only 6% of chrysene initially introduced was detected in the sediment trap whereas 70% was found in the trap in the tank without dispersant.
Zhao, Xuesong; Ding, Jing; You, Hong
2014-02-01
The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.
Sholts, Sabrina B; Smith, Kevin; Wallin, Cecilia; Ahmed, Trifa M; Wärmländer, Sebastian K T S
2017-06-23
Polycyclic aromatic hydrocarbons (PAHs) are the main toxic compounds in natural bitumen, a fossil material used by modern and ancient societies around the world. The adverse health effects of PAHs on modern humans are well established, but their health impacts on past populations are unclear. It has previously been suggested that a prehistoric health decline among the native people living on the California Channel Islands may have been related to PAH exposure. Here, we assess the potential health risks of PAH exposure from the use and manufacture of bitumen-coated water bottles by ancient California Indian societies. We replicated prehistoric bitumen-coated water bottles with traditional materials and techniques of California Indians, based on ethnographic and archaeological evidence. In order to estimate PAH exposure related to water bottle manufacture and use, we conducted controlled experiments to measure PAH contamination 1) in air during the manufacturing process and 2) in water and olive oil stored in a completed bottle for varying periods of time. Samples were analyzed with gas chromatography/mass spectrometry (GC/MS) for concentrations of the 16 PAHs identified by the US Environmental Protection Agency (EPA) as priority pollutants. Eight PAHs were detected in concentrations of 1-10 μg/m 3 in air during bottle production and 50-900 ng/L in water after 2 months of storage, ranging from two-ring (naphthalene and methylnaphthalene) to four-ring (fluoranthene) molecules. All 16 PAHs analyzed were detected in olive oil after 2 days (2 to 35 μg/kg), 2 weeks (3 to 66 μg/kg), and 2 months (5 to 140 μg/kg) of storage. For ancient California Indians, water stored in bitumen-coated water bottles was not a significant source of PAH exposure, but production of such bottles could have resulted in harmful airborne PAH exposure.
Generation and distribution of PAHs in the process of medical waste incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying, E-mail: echochen327@163.com; National Center of Solid Waste Management, Ministry of Environmental Protection, Beijing 100029; Zhao, Rongzhi
Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs)more » during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.« less
Fu, Xiao-Wen; Li, Tian-Yuan; Ji, Lei; Wang, Lei-Lei; Zheng, Li-Wen; Wang, Jia-Ning; Zhang, Qiang
2018-08-15
The Yellow River Delta (YRD) is a typical region where oil fields generally overlap cities and towns, leading to complex soil contamination from both the oil fields and human activities. To clarify the distribution, speciation, potential sources and health risk of polycyclic aromatic hydrocarbons (PAHs) in soils of border regions between oil fields and suburbs of the YRD, 138 soil samples (0-20 cm) were collected among 12 sampling sites located around oil wells with different extraction histories. The 16 priority control PAHs (16PAHs), as selected by the United States Environmental Protection Agency (USEPA), were extracted via an accelerated solvent extraction and detected by GC-MS. The results showed that soils of the study area were generally polluted by the 16PAHs. Among these pollutions, chrysene and phenanthrene were the dominant components, and 4-ring PAHs were the most abundant. A typical temporal distribution pattern of the 16PAHs was revealed in soils from different sampling sites around oil wells with different exploitation histories. The concentrations of total 16PAHs and high-ring PAHs (HPAHs) both increased with the extraction time of the nearby oil wells. Individual PAH ratios and PCA method revealed that the 16PAHs in soil with newly developed oil wells were mainly from petroleum pollutants, whereas PAHs in soils around oil wells with a long exploitation history were probably from petroleum contamination; combustion of petroleum, fuel, and biomass; and degradation and migration of PAHs from petroleum. Monte Carlo simulation was used to evaluate the health risks of the 7 carcinogenic PAHs and 9 non-carcinogenic PAHs in the study area. The results indicated that ingestion and dermal contact were the predominant pathways of exposure to PAH residues in soils. Both the carcinogenic and non-carcinogenic burden of the 16PAHs in soils of the oil field increased significantly with exploitation time of nearby oil wells. Copyright © 2018 Elsevier Inc. All rights reserved.
Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons.
Zhao, Xiaohui; Fan, Fuqiang; Zhou, Huaidong; Zhang, Panwei; Zhao, Gaofeng
2018-06-01
In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index (H') of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1-12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.
Ma, Yukun; Liu, An; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha
2017-01-01
Among the numerous pollutants present in urban road dust, polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants and can pose cancer risk to humans. The primary aim of the study was to develop a quantitative model to assess the cancer risk from PAHs in urban road dust based on traffic and land use factors and thereby to characterise the risk posed by PAHs in fine (<150μm) and coarse (>150μm) particles. The risk posed by PAHs was quantified as incremental lifetime cancer risk (ILCR), which was modelled as a function of traffic volume and percentages of different urban land uses. The study outcomes highlighted the fact that cancer risk from PAHs in urban road dust is primarily influenced by PAHs associated with fine solids. Heavy PAHs with 5 to 6 benzene rings, especially dibenzo[a,h]anthracene (D[a]A) and benzo[a]pyrene (B[a]P) in the mixture contribute most to the risk. The quantitative model developed based on traffic and land use factors will contribute to informed decision making in relation to the management of risk posed by PAHs in urban road dust. Copyright © 2016 Elsevier B.V. All rights reserved.
Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere
NASA Technical Reports Server (NTRS)
Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.
2013-01-01
In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.
Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J
2017-08-15
Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.
Zhou, Jie-Cheng; Bi, Chun-Juan; Chen, Zhen-Lou; Wang, Lu; Xu, Shi-Yuan; Pan, Qi
2012-12-01
Twenty one riparian soil samples along Jiushanwai River and Shanxia River of Wenzhou city were collected in August 2010 to investigate the pollution characteristics of polycyclic aromatic hydrocarbons (PAHs). The samples were extracted by an accelerated solvent extractor (ASE), purified by a purification column and determined by GC-MS. Results showed that the total concentrations of PAHs in the riparian soils ranged from 60.7 ng x g(-1) to 3 871.3 ng x g(-1), and the concentrations of sigma PAHs in soils along the Shanxia River were significantly lower than the levels along Jiushanwai River. The dominant compounds were 2 to 3 rings in the riparian soils along both rivers, which in average accounted for 62.47% - 72.51% in sigma PAHs. Compared with the PAHs concentrations in soils of other areas in the world, the riparian soils of the studied rivers were moderately polluted by PAHs, but the concentrations of BaP in three soil samples were much higher than the soil standard value of the former Soviet Union, which should be paid more attention. Based on the ratios of Ant/(Ant + Phe) and Fla/(Fla + Pyr) and principal component analysis results, PAHs in riparian soils of the studied rivers were mainly derived from both the petroleum and combustion.
Karaca, Gizem; Tasdemir, Yucel
2013-01-01
Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage.
Guo, Wei; He, Mengchang; Yang, Zhifeng; Lin, Chunye; Quan, Xiangchun
2011-02-28
The characteristics of petroleum hydrocarbons and the risks they pose to the ecosystem were studied in the Xihe River, which is an urban river located in Shenyang, China. High levels of aliphatic hydrocarbons (AHc) and polycyclic aromatic hydrocarbons (PAHs) were observed in the river due to the discharge of wastewater from industrial and municipal facilities for a long period of time. High-molecular-weight hydrocarbons, including unresolved complex mixtures (UCM) of n-alkanes between n-C16 and n-C32 and of PAHs with four to six rings, were the dominant hydrocarbons in the river, particularly in suspended particulate matter (SPM) and sediments. The AHc was mainly from petrogenic sources, whereas PAHs was from both pyrolytic and petrogenic source inputs. Our results suggest that there is a high risk of toxicity for the soils and groundwater of the study area. The overall toxicity in the sediments can be described using the toxic equivalent (TEQ) of dibenzo[a,h]anthracene (DBA) based on benzo(a)pyrene (TEQ(BaP)) and dioxins (TEQ(TCDD)) toxic equivalent concentrations. The TEQ values for benzo(a)pyrene (TEQ(BaP)) and dioxins (TEQ(TCDD)) presented a consistent assessment of sediment PAHs. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Ning, Xun-An; Lin, Mei-Qing; Shen, Ling-Zhi; Zhang, Jian-Hao; Wang, Jing-Yu; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong
2014-07-01
As components of synthetic dyes, polycyclic aromatic hydrocarbons (PAHs) are present as contaminants in textile dyeing sludge due to the recalcitrance in wastewater treatment process, which may pose a threat to environment in the process of sludge disposal. In order to evaluate PAHs in textile dyeing sludge, comprehensive investigation comprising 10 textile dyeing plants was undertaken. Levels, composition profiles and risk assessment of 16 EPA-priority PAHs were analyzed in this study. The total concentrations of 16 PAHs (∑16 PAHs) varied from 1463 ± 177 ng g(-1) to 16,714 ± 1,507 ng g(-1) with a mean value of 6386 ng g(-1). The composition profiles of PAHs were characterized by 3- and 4-ring PAHs, among which phenanthrene, anthracene and fluoranthene were the most dominant components. The mean benzo[a]pyrene equivalent (BaPeq) concentration of ∑16 PAHs in textile dyeing sludge was 423 ng g(-1), which was 2-3 times higher than concentrations reported for urban soil. According to ecological risk assessment, the levels of PAHs in the textile dyeing sludge may cause a significant risk to soil ecosystem after landfill or dumping on soil. Copyright © 2014 Elsevier Inc. All rights reserved.
Biache, Coralie; Ouali, Salma; Cébron, Aurélie; Lorgeoux, Catherine; Colombano, Stéfan; Faure, Pierre
2017-05-05
A bioslurry batch experiment was carried out over five months on three polycyclic aromatic compound (PAC) contaminated soils to study the PAC (PAH and polar-PAC) behavior during soil incubation and to evaluate the impact of PAC contamination on the abundance of microbial communities and functional PAH-degrading populations. Organic matter characteristics and reactivity, assessed through solvent extractable organic matter and PAC contents, and soil organic matter mineralization were monitored during 5 months. Total bacteria and fungi, and PAH-ring hydroxylating dioxygenase genes were quantified. Results showed that PAHs and polar-PACs were degraded with different degradation dynamics. Differences in degradation rates were observed among the three soils depending on PAH distribution and availability. Overall, low molecular weight compounds were preferentially degraded. Degradation selectivity between isomers and structurally similar compounds was observed which could be used to check the efficiency of bioremediation processes. Bacterial communities were dominant over fungi and were most likely responsible for PAC degradation. Abundance of PAH-degrading bacteria increased during incubations, but their proportion in the bacterial communities tended to decrease. The accumulation of some oxygenated-PACs during the bioslurry experiment underlines the necessity to monitor these compounds during application of remediation treatment on PAH contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.
Enzymatic catalysis of anti-Baldwin ring closure in polyether biosynthesis
Hotta, Kinya; Chen, Xi; Paton, Robert S.; Minami, Atsushi; Li, Hao; Swaminathan, Kunchithapadam; Mathews, Irimpan I.; Watanabe, Kenji; Oikawa, Hideaki; Houk, Kendall N.; Kim, Chu-Young
2012-01-01
Polycyclic polyether natural products have fascinated chemists and biologists alike owing to their useful biological activity, highly complex structure and intriguing biosynthetic mechanisms. Following the original proposal for the polyepoxide origin of lasalocid and isolasalocid1 and the experimental determination of the origins of the oxygen and carbon atoms of both lasalocid and monensin, a unified stereochemical model for the biosynthesis of polyether ionophore antibiotics was proposed2. The model was based on a cascade of nucleophilic ring closures of postulated polyepoxide substrates generated by stereospecific oxidation of all-trans polyene polyketide intermediates2. Shortly thereafter, a related model was proposed for the biogenesis of marine ladder toxins, involving a series of nominally disfavoured anti-Baldwin, endo-tet epoxide-ring-opening reactions3–5. Recently, we identified Lsd19 from the Streptomyces lasaliensis gene cluster as the epoxide hydrolase responsible for the epoxide-opening cyclization of bisepoxyprelasalocid A6 to form lasalocid A7,8. Here we report the X-ray crystal structure of Lsd19 in complex with its substrate and product analogue9 to provide the first atomic structure—to our knowledge—of a natural enzyme capable of catalysing the disfavoured epoxide-opening cyclic ether formation. On the basis of our structural and computational studies, we propose a general mechanism for the enzymatic catalysis of polyether natural product biosynthesis. PMID:22388816
The effect of sewage sludge fertilization on the concentration of PAHs in urban soils.
Wołejko, Elżbieta; Wydro, Urszula; Jabłońska-Trypuć, Agata; Butarewicz, Andrzej; Łoboda, Tadeusz
2018-01-01
This paper analyses sources of sixteen PAHs - polycyclic aromatic hydrocarbons in urbanized areas by using selected diagnostic ratios. Simultaneously, an attempt was made to determine how sewage sludge changes PAHs content in urbanized areas soils. In the experiment three lawns along the main roads in Bialystok with different traffic intensity, three doses of sewage sludge and two years of study were considered. There was no effect of fertilization with sewage sludge on the sum of 16 PAHs in urban soil samples, nevertheless, the sum of 16 PAHs was reduced from 2.6 in 2011 to 2.3 mg/kg in 2012. Among 16 tested PAHs compounds, benzo[a]pyrene was the most dominant compound in samples collected in both years - about 15% of all PAHs. The results suggest that application of sludge into the soil did not influence the concentration of 2-3-ring, 4-ring and 5-6-ring PAHs. For the objects fertilized with a dose 150.0 Mg/ha, of sludge the total sum of potentially carcinogenic PAHs in the urban soil lowered by approximately 68% in comparison with the control plots. PAHs contamination of the urban soil samples resulted from the influence of coal, petroleum and biomass combustion. Moreover, PAHs can enter soil via at mospheric deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Enhanced bioavailability of polyaromatic hydrocarbons in the form of mucin complexes.
Drug, Eyal; Landesman-Milo, Dalit; Belgorodsky, Bogdan; Ermakov, Natalia; Frenkel-Pinter, Moran; Fadeev, Ludmila; Peer, Dan; Gozin, Michael
2011-03-21
Increasing exposure of biological systems to large amounts of polycyclic aromatic hydrocarbons is of great public concern. Organisms have an array of biological defense mechanisms, and it is believed that mucosal gel (which covers the respiratory system, the gastrointestinal tract, etc.) provides an effective chemical shield against a range of toxic materials. However, in this work, we demonstrate, for the first time, that, upon complexation of polyaromatic hydrocarbons with mucins, enhanced bioavailability and, therefore, toxicity are obtained. This work was aimed to demonstrate how complexation of various highly hydrophobic polycyclic aromatic hydrocarbons with representative mucin glycoprotein could lead to the formation of previously undescribed materials, which exhibit increased toxicity versus pristine polycyclic aromatic hydrocarbons. In the present work, we show that a representative mucin glycoprotein, bovine submaxillary mucin, has impressive and unprecedented capabilities of binding and solubilizing water-insoluble materials in physiological solution. The complexes formed between the mucin and a series of polycyclic aromatic hydrocarbons were comprehensively characterized, and their toxicity was evaluated by both in vivo and in vitro assays. In addition, the bioavailability and membrane-penetration capabilities were tested using an internalization assay. Our results provide, for the first time, evidence of an unknown route by which hydrophobic materials may achieve higher bioavailability, penetrating some of the biological defense systems, in the form of water-soluble complexes with mucosal proteins.
Radiolysis and Ageing of C2-BTP in Cinnamaldehyde/Hexanol Mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermvik, Anna; Ekberg, Christian; Retegan, Teodora
2007-07-01
The separation of actinides from lanthanides is an important step in the alternative methods for nuclear waste treatment currently under development. Polycyclic molecules containing nitrogen are synthesised and used for solvent extraction. A potential problem in the separation process is the degradation of the molecule due to irradiation or ageing. An addition of nitrobenzene has proved to have an inhibitory effect on degradation when added to a system containing C2-BTP in hexanol before irradiation. In this study, 2,6-di(5,6-diethyl-1,2,4-triazine-3-yl)pyridine (C2-BTP) was dissolved in different mixtures of cinnamaldehyde and hexanol and the effects on extraction after ageing and irradiation were investigated. Similarmore » to nitrobenzene, cinnamaldehyde contains an aromatic ring which generally has a relatively high resistance towards radiolysis. Both C2-BTP in cinnamaldehyde and C2-BTP in hexanol seem to degrade with time. The system with C2-BTP in pure hexanol is relatively stable up to 17 days but then starts slowly to degrade. The solution with pure cinnamaldehyde as diluent started to degrade after only {approx}20 hours. The opposite is true for degradation caused by radiolysis; hexanol systems are more sensitive to radiolysis than cinnamaldehyde systems. Most of the radiolytic degradation took place during the first days of irradiation, up to a dose of 4 kGy. (authors)« less
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
Kotha, Sambasivarao; Chavan, Arjun S; Goyal, Deepti
2015-05-11
We describe diverse approaches to various dienes and their utilization in the Diels-Alder reaction to produce a variety of polycycles. The dienes covered here are prepared by simple alkylation reaction or via the Claisen rearrangement or by enyne metathesis of alkyne or enyne building blocks. Here, we have also included the Diels-Alder chemistry of dendralenes, a higher analog of cross-conjugated dienes. The present article is inclusive of o-xylylene derivatives that are generated in situ starting with benzosultine or benzosulfone derivatives. The Diels-Alder reaction of these dienes with various dienophiles gave diverse polycyclic systems and biologically important targets.
Sahn, James J; Granger, Brett A; Martin, Stephen F
2014-10-21
A strategy for generating diverse collections of small molecules has been developed that features a multicomponent assembly process (MCAP) to efficiently construct a variety of intermediates possessing an aryl aminomethyl subunit. These key compounds are then transformed via selective ring-forming reactions into heterocyclic scaffolds, each of which possesses suitable functional handles for further derivatizations and palladium-catalyzed cross coupling reactions. The modular nature of this approach enables the facile construction of libraries of polycyclic compounds bearing a broad range of substituents and substitution patterns for biological evaluation. Screening of several compound libraries thus produced has revealed a large subset of compounds that exhibit a broad spectrum of medicinally-relevant activities.
Mikušek, Jiří; Jansa, Petr; Jagtap, Pratap R; Vašíček, Tomáš; Císařová, Ivana; Matoušová, Eliška
2018-05-18
Enantioselective synthesis of all-carbon quaternary centers remains a considerable challenge for synthetic organic chemists. Here, we report a two-step protocol to synthesize such centers including tandem cyclization/Suzuki cross-coupling followed by halocarbocyclization. During this process, two rings, three new C-C bonds and a stereochemically defined all-carbon quaternary center are formed. The absolute configuration of this center is controlled by the stereochemistry of the adjacent stereocenter, which derives from an appropriate enantioenriched starting material. Using this method, we synthesized polycyclic compounds structurally similar to Amaryllidaceae alkaloids in high enantiomeric excesses. Because these products resemble naturally occurring compounds, our protocol can be used to synthesize various potentially bioactive compounds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent aromatic sensors and their methods of use
NASA Technical Reports Server (NTRS)
Meador, Michael A. (Inventor); Tyson, Daniel S. (Inventor); Ilan, Ulvi F. (Inventor)
2012-01-01
Aromatic molecules that can be used as sensors are described. The aromatic sensors include a polycyclic aromatic hydrocarbon core with a five-membered imide rings fused to the core and at least two pendant aryl groups. The aromatic sensor molecules can detect target analytes or molecular strain as a result of changes in their fluorescence, in many cases with on-off behavior. Aromatic molecules that fluoresce at various frequencies can be prepared by altering the structure of the aromatic core or the substituents attached to it. The aromatic molecules can be used as sensors for various applications such as, for example, the detection of dangerous chemicals, biomedical diagnosis, and the detection of damage or strain in composite materials. Methods of preparing aromatic sensor molecules are also described.
Morgan, Matthew M; Piers, Warren E
2016-04-14
Polycyclic aromatic hydrocarbons in which one or more CC units have been replaced by isoelectronic BN units have attracted interest as potentially improved organic materials in various devices. This promise has been hampered by a lack of access to gram quantities of these materials. However, the exploitation of keystone reactions such as ring closing metathesis, borylative cyclization of amino styrenes and electrophilic borylation has lead to strategies for access to workable amounts of material. These strategies can be augmented by judicious postfunctionalization reactions to diversify the library of materials available. This Frontier article highlights some of the recent successes and shows that the long promised applications of BN-doped PAHs are beginning to be explored in a meaningful way.
Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M
2018-03-01
The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
The influence of sunlight and oxidative treatment on measured PAH concentrations in biochar.
Khalid, Fathima N M; Klarup, Doug
2015-09-01
The concentration changes of 18 different polycyclic aromatic hydrocarbons (PAHs) in two different biochars were assessed after (1) chemical oxidative treatment with a solution of H2O2 and Na2S2O8, (2) exposure to sunlight with intermittent wetting, and (3) exposure to sunlight with intermittent wetting after mixing in ZnO and Na2S2O8. Chemical oxidative treatment of biochars derived from gasified wood biochar and a gasified wood/Arundo donax mixture led to decreases in six-ring PAHs, but overall significant increases in measured PAH concentration sums for both biochars (from 225 ± 7 to 312 ± 18 μg g(-1) for wood-derived and 165 ± 3 to 244 ± 7 μg g(-1) for mixture-derived). Sunlight exposure of the mixture-derived biochar led to increases in some three- and four-ring PAHs, but overall decreases in summed PAH concentrations (165 ± 3 to 60 ± 1 μg g(-1) with wetting only and 165 ± 3 to 41 ± 4 μg g(-1) when Na2S2O8 and ZnO were included). The mass losses in the sunlight-exposed samples primarily were due to losses of low molar mass (two-ring) PAHs, though high molar mass (five- and six-ring) PAH concentrations also decreased. This result implies sun and rain exposure to biochar, prior to agricultural application, will help reduce potential PAH soil contamination from the biochar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Richard F.; Anderson, Jack W.
2005-07-01
The relationships among cytochrome P450 induction in marine wildlife species, levels of fluorescent aromatic compounds (FAC) in their bile, the chemical composition of the inducing compounds, the significance of the exposure pathway, and any resulting injury, as a consequence of exposure to crude oil following a spill, are reviewed. Fish collected after oil spills often show increases in cytochrome P450 system activity, cytochrome P4501A (CYP1A) and bile fluorescent aromatic compounds (FAC), that are correlated with exposure to polycyclic aromatic hydrocarbons (PAH) in the oil. There is also some evidence for increases in bile FAC and induction of cytochrome P450 inmore » marine birds and mammals after oil spills. However, when observed, increases in these exposure indicators are transitory and generally decrease to background levels within one year after the exposure. Laboratory studies have shown induction of cytochrome P450 systems occurs after exposure of fish to crude oil in water, sediment or food. Most of the PAH found in crude oil (dominantly 2- and 3-ring PAH) are not strong inducers of cytochrome P450. Exposure to the 4-ring chrysenes or the photooxidized products of the PAH may account for the cytochrome P450 responses in fish collected from oil-spill sites. The contribution of non-spill background PAH, particularly combustion-derived (pyrogenic) PAH, to bile FAC and cytochrome P450 system responses can be confounding and needs to be considered when evaluating oil spill effects. The ubiquity of pyrogenic PAH makes it important to fully characterize all sources of PAH, including PAH from natural resources, e.g. retene, in oil spill studies. In addition, such parameters as species, sex, age, ambient temperature and season need to be taken into account. While increases in fish bile FAC and cytochrome P450 system responses, can together, be sensitive general indicators of PAH exposure after an oil spill, there is little unequivocal evidence to suggest a linkage to higher order biological effects, e.g. toxicity, lesions, reproductive failure.« less
Infrared Spectra of Substituted Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Hudgins, Douglas M.; Sandford, Scott A.; Allamandola, Louis J.; Arnold, James O. (Technical Monitor)
1997-01-01
Calculations are carried out using density functional theory (DFT) to determine the harmonic frequencies and intensities of 1-methylanthracene, 9-methylanthracene, 9-cyanoanthracene, 2-aminoanthracene, acridine, and their positive ions. The theoretical data are compared with matrix-isolation spectra for these species also reported in this work. The theoretical and experimental frequencies and relative intensities for the neutral species are in generally good agreement, whereas the positive ion spectra are only in qualitative agreement. Relative to anthracene, we find that substitution of amethyl or CN for a hydrogen does not significantly affect the spectrum other than to add the characteristic methyl C-H stretch and C-N stretch (near 2200/cm), respectively. However, addition of NH2 dramatically affects the spectrum of the neutral. Not only are the NH2 modes themselves strong, but this electron withdrawing group induces sufficient partial charge on the ring to give the neutral molecule characteristics of the anthracene cation spectrum. The sum of the absolute intensities is about four times larger for 2-aminoanthracene than for 9-cyanoanthracene. Substituting nitrogen in the ring at the nine position (acridine) does not greatly alter the spectrum compared with anthracene.
Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Wang, Wenxing
2015-02-01
Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl₂Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl₂Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10(-12)cm(3) molecule(-1)s(-1) at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl₂Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl₂Phe and should contribute to clarifying its atmospheric fate. Copyright © 2014 Elsevier B.V. All rights reserved.
25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil.
Harmsen, Joop; Rietra, René P J J
2018-05-10
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPH) in sediment and soil has been monitored on seven experimental fields during periods up to 25 years. With this unique dataset, we investigated long-term very slow biodegradation under field conditions. . The data show that three biodegradation rates can be distinguished for PAHs: 1) rapid degradation during the first year, 2) slow degradation during the following 6 years and 3), subject of this paper, a very slow degradation after 7 years until at least 25 years. Beside 2-, 3- and 4-ring PAHs, also 5- and 6-ring PAHs (aromatic rings) were degraded, all at the same rate during very slow degradation. In the period of very slow degradation, 6% yr -1 of the PAHs present were removed in five fields and 2% yr -1 in two other fields, while in the same period no very slow degradation of TPH could be observed. The remaining petroleum hydrocarbons were high boiling and non-toxic. Using the calculated degradation rates and the independently measured bioavailability of the PAHs (Tenax-method), the PAHs degradation curves of all seven monitored fields could be modelled. Applying the model and data obtained with the Tenax-method for fresh contaminated material, results of long-term biodegradation can be predicted, which can support the use of bioremediation in order to obtain a legally acceptable residual concentration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tang, Guowen; Liu, Mengyang; Zhou, Qian; He, Haixia; Chen, Kai; Zhang, Haibo; Hu, Jiahui; Huang, Qinghui; Luo, Yongming; Ke, Hongwei; Chen, Bin; Xu, Xiangrong; Cai, Minggang
2018-09-01
Microplastics and polycyclic aromatic hydrocarbons (PAHs) were investigated to study the influence of human activities and to find their possible relationship on the coastal environments, where the coastal areas around Xiamen are undergoing intensive processes of industrialization and urbanization in the southeast China. The abundance of microplastics in Xiamen coastal areas was 103 to 2017particles/m 3 in surface seawater and 76 to 333 particles/kg in sediments. Concentrations of dissolved PAHs varied from 18.1 to 248ng/L in surface seawater. The abundances of microplastics from the Western Harbor in surface seawater and sediments were higher than those from other areas. Foams were dominated in surface seawater samples, however, no foams were found in sediments samples. The microscope selection and FTIR analysis suggested that polyethylene (PE) and polypropylene (PP) were dominant microplastics. The cluster analysis results demonstrated that fibers and granules had the similar sources, and films had considerably correlation with all types of PAHs (3 or 4-ring PAHs and alkylated PAHs). Plastic film mulch from agriculture practice might be a potential source of microplastics in study areas. Results of our study support that river runoff, watershed area, population and urbanization rate influence the distribution of microplastics in estuarine surface water, and the prevalence of microplastic pollution calls for monitoring microplastics at a national scale. Copyright © 2018 Elsevier B.V. All rights reserved.
Kobayashi, Takayuki; Kaminaga, Hirohisa; Navarro, Ronald R; Iimura, Yosuke
2012-01-01
The aim of this research was to evaluate the feasibility of aqueous saponin for the removal and biodegradation of polycyclic aromatic hydrocarbons (PAHs) from contaminated soil. Dissolution test confirmed the ability of saponin to increase the apparent solubility of the tested 3-5 rings PAH above the critical micelle concentration (approximately 1000 mg/L). Microbial test with pure culture of Sphingomonas sp. showed that saponin significantly enhanced the degradation of pyrene. For example, the percent degradation was 2.1 times higher in the presence of 2500 mg/L saponin than that of control without saponin after 60 hours incubation at around 10(8) CFU/mL initial cell loading. These results suggest that the binding of pyrene with saponin does not pose a serious constraint to bacterial uptake. Contrary to pyrene, saponin was chemically stable against the PAHs degrader. It is also not toxic to the cell at least up to 2500 mg/L. Finally, using a spiked soil sample, extraction tests with 10,000 mg/L of saponin showed that around 52.7% and 0.3% of pyrene was removed from low and high organic spiked soils, respectively. The results from this study indicate that aqueous saponin is appropriate as a washing agent as well as biodegradation enhancer for the detoxification of PAHs-contaminated low organic carbon soil.
Rachwał, Marzena; Magiera, Tadeusz; Wawer, Małgorzata
2015-11-01
Application of integrated magnetic, geochemical and mineralogical methods for qualitative and quantitative assessment of forest topsoils exposed to the industrial emissions was the objective of this manuscript. Volume magnetic susceptibility (κ) in three areas of southern Poland close to the coke and metallurgical plants was measured directly in the field. Representative topsoil samples were collected for further chemical and mineralogical analyses. Topsoil magnetic susceptibility in the studied areas depended mainly on the content of technogenic magnetic particles (TMPs) and decreased downwind at increasing distance from the emitters. In the vicinity of coking plants a high amount of polycyclic aromatic hydrocarbons (PAHs) was observed, especially the most carcinogenic ones with four- and five-member rings. No significant concentration of TMPs (estimated on the base of κ values) and heavy metals (HM) was observed in area where the coke plant was the only pollution source. In areas with both coke and metallurgical industry, higher amounts of TMPs, PAHs and HM were detected. Morphological and mineralogical analyses of TMPs separated from contaminated soil samples revealed their high heterogeneity in respect of morphology, grain size, mineral and chemical constitution. Pollution load index and toxicity equivalent concentration of PAHs used for soil quality assessment indicated its high level of pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Baizhan
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) were analyzed for 136 indoor dust samples collected from Guizhou province, southwest of China. The ∑18PAHs concentrations ranged from 2.18 μg•g-1 to 14.20 μg•g-1 with the mean value of 6.78 μg•g-1. The highest Σ18PAHs concentration was found in dust samples from orefields, followed by city, town and village. Moreover, the mean concentration of Σ18PAHs in indoor dust was at least 10% higher than that of outdoors. The 4–6 rings PAHs, contributing more than 70% of ∑18PAHs, were the dominant species. PAHs ratios, principal component analysis with multiple linear regression (PCA-MLR) and hierarchical clustering analysis (HCA) were applied to evaluate the possible sources. Two major origins of PAHs in indoor dust were identified as vehicle emissions and coal combustion. The mean incremental lifetime cancer risk (ILCR) due to human exposure to indoor dust PAHs in city, town, village and orefield of Guizhou province, China was 6.14×10−6, 5.00×10−6, 3.08×10−6, 6.02×10−6 for children and 5.92×10−6, 4.83×10−6, 2.97×10−6, 5.81×10−6 for adults, respectively. PMID:25719362
Cho, Sung-Hee; Lee, Sun-Kyung; Kim, Chong Hyeak
2018-05-01
Polycyclic aromatic hydrocarbons (PAHs), organic compounds formed by at least two condensed aromatic rings, are ubiquitous environmental pollutants that are produced by incomplete combustion of organic materials. PAHs have been classified as carcinogenIC to humans by the International Agency for Research on Cancer, because they can bind to DNA, causing mutations. Therefore, the levels of PAHs in human urine can be used as an indicator for potential carcinogenesis and cell mutation. An analytical method was developed for the accurate measurement of PAHs in urine using high-resolution gas chromatography-mass spectrometry. Urine samples were extracted by an Oasis HLB extraction cartridge after enzymatic hydrolysis with a β-glucuronidase/arylsulfatase cocktail. The 18 PAHs were separated using an Agilent DB-5 MS capillary column (30 m × 0.25 mm, 0.25 μm) and monitored by time-of-flight mass spectrometry. Under the optimized method, the linearity of calibration curves was >0.994. The limits of detection at a signal-to-noise ratio of 3 were 10-100 ng/L. The coefficients of variation were in the range of 0.4-9.0%. The present method was highly accurate for simultaneous determination of 18 PAHs in human urine and could be applied to monitoring and biomedical investigations to check exposure of PAHs. Copyright © 2017 John Wiley & Sons, Ltd.
Bacosa, Hernando Pactao; Inoue, Chihiro
2015-01-01
The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils. Copyright © 2014 Elsevier B.V. All rights reserved.
Cox, N. L. J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C.
2015-01-01
Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μm aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7–8 μm range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules. PMID:26924856
Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia.
Alghamdi, Mansour A; Alam, Mohammed S; Yin, Jianxin; Stark, Christopher; Jang, Eunhwa; Harrison, Roy M; Shamy, Magdy; Khoder, Mamdouh I; Shabbaj, Ibrahim I
2015-02-15
Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. Copyright © 2014 Elsevier B.V. All rights reserved.
Hussain, Imran; Syed, Jabir Hussain; Kamal, Atif; Iqbal, Mehreen; Eqani, Syed-Ali-Mustjab-Akbar-Shah; Bong, Chui Wei; Taqi, Malik Mumtaz; Reichenauer, Thomas G; Zhang, Gan; Malik, Riffat Naseem
2016-06-01
Chenab River is one of the most important rivers of Punjab Province (Pakistan) that receives huge input of industrial effluents and municipal sewage from major cities in the Central Punjab, Pakistan. The current study was designed to evaluate the concentration levels and associated ecological risks of USEPA priority polycyclic aromatic hydrocarbons (PAHs) in the surface sediments of Chenab River. Sampling was performed from eight (n = 24) sampling stations of Chenab River and its tributaries. We observed a relatively high abundance of ∑16PAHs during the summer season (i.e. 554 ng g(-1)) versus that in the winter season (i.e. 361 ng g(-1)), with an overall abundance of two-, five- and six-ring PAH congeners. Results also revealed that the nitrate and phosphate contents in the sediments were closely associated with low molecular weight (LMW) and high molecular weight (HMW) PAHs, respectively. Source apportionment results showed that the combustion of fossil fuels appears to be the key source of PAHs in the study area. The risk quotient (RQ) values indicated that seven PAH congeners (i.e. phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene, chrysene and benzo(a)anthracene) could pose serious threats to the aquatic life of the riverine ecosystem in Pakistan.
Sun, Runxia; Sun, Yue; Li, Qing X; Zheng, Xiaobo; Luo, Xiaojun; Mai, Bixian
2018-05-30
Intensive human activities aggravate environmental pollution, particularly in the coastal environment. Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were determined in the sediments and marine species from Zhanjiang Harbor, a large harbor in China. The total PAH concentrations ranged from 151 to 453 ng/g dry weight (dw) in sediments and from 86.7 to 256 ng/g wet weight (ww) in organism tissues. High levels of PAHs occurred in the sample sites next to the estuary. A decrease in PAH levels was observed in comparison to the previous survey prior to 2012. Fish exhibited lower lipid weight normalized PAH concentrations than the other species, which may be related to their efficient metabolic transformation. Three ring PAHs dominated both in marine sediments and species, but low molecular weight PAHs exhibited higher proportions in biota than in sediments (p < 0.05). Petrogenic and pyrolytic sources both contributed to the occurrence of PAHs, and the latter became increasingly important in the study area. The ecological risk from PAHs in the sediments was relatively low (9% incidence of adverse biological effect) according to the effects-based sediment quality guideline values. Exposure to PAHs via consuming seafoods might pose a health risk to local residents. Overall, these results revealed anthropogenic activities in the coastal area have an impact on the local ecosystem. Copyright © 2018 Elsevier B.V. All rights reserved.
Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok
2011-11-01
To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.
Zhao, Jian-Kang; Li, Xiao-Ming; Ai, Guo-Min; Deng, Ye; Liu, Shuang-Jiang; Jiang, Cheng-Ying
2016-11-15
Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the primary process of removing PAHs from environments. The metabolic pathway of PAHs in pure cultures has been intensively studied, but cooperative metabolisms at community-level remained to be explored. In this study, we determined the dynamic composition of a microbial community and its metabolic intermediates during fluoranthene degradation using high-throughput metagenomics and gas chromatography-mass spectrometry (GC-MS), respectively. Subsequently, a cooperative metabolic network for fluoranthene degradation was constructed. The network shows that Mycobacterium contributed the majority of ring-hydroxylating and -cleavage dioxygenases, while Diaphorobacter contributed most of the dehydrogenases. Hyphomicrobium, Agrobacterium, and Sphingopyxis contributed to genes encoding enzymes involved in downstream reactions of fluoranthene degradation. The contributions of various microbial groups were calculated with the PICRUSt program. The contributions of Hyphomicrobium to alcohol dehydrogenases were 62.4% in stage 1 (i.e., when fluoranthene was rapidly removed) and 76.8% in stage 3 (i.e., when fluoranthene was not detectable), respectively; the contribution of Pseudomonas were 6.6% in stage 1 and decreased to 1.2% in subsequent stages. To the best of the author's knowledge, this report describes the first cooperative metabolic network to predict the contributions of various microbial groups during PAH-degradation at community-level. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.E.; Dickhut, R.M.
1997-03-01
Gas sparging, semipermeable-membrane devices (SPMDs), and filtration with sorption of dissolved polycyclic aromatic hydrocarbons (PAHs) to XAD-2 resin were evaluated for determining the concentrations of freely dissolved PAHs in estuarine waters of southern Chesapeake Bay at sites ranging from rural to urban and highly industrialized. Gas sparging had significant sampling artifacts due to particle scavenging by rising bubbles, and SPMDs were kinetically limited for four-ring and larger PAHs relative to short-term temporal changes in water concentrations. Filtration with sorption of the dissolved contaminant fraction to XAD-2 resin was found to be the most accurate and feasible method for determining concentrationsmore » of freely dissolved PAHs in estuarine water. Concentrations and distribution coefficients of dissolved and particulate PAHs were measured using the filtration/XAD-2 method. Concentrations of PAHs in surface waters of southern Chesapeake Bay were higher than those reported for the northern bay; concentrations in the Elizabeth River were elevated relative to all other sites. A gradient for particulate PAHs was observed from urban to remote sites. No seasonal trends were observed in dissolved or particle-bound PAH fractions at any site. Distributions of dissolved and particulate PAHs in surface waters of the Chesapeake Bay are near equilibrium at all locations and during all seasons.« less
Campo, Laura; Fustinoni, Silvia; Consonni, Dario; Pavanello, Sofia; Kapka, Lucyna; Siwinska, Ewa; Mielzyňska, Danuta; Bertazzi, PierAlberto
2014-03-01
A new solid phase microextraction-gas chromatography-mass spectrometry method (SPME-GC-MS) to detect urinary unmetabolized 3-, 6-ring polycyclic aromatic hydrocarbons (PAHs) was applied to coke oven workers and general population subjects with the aim to assess exposure to carcinogenic PAHs, to evaluate the role of occupational and environmental variables on PAHs levels, and to compare present results with those previously obtained with a less sensitive method. A total of 104 coke oven workers (CW) from Poland [recruited in 2000 (CW-2000; n=55) and 2006 (CW-2006; n=49)], and 45 control subjects from the same area, provided urine spot samples for measurement of 10 PAHs (from phenanthrene to benzo[g,h,i]perylene). The comparison between the two methods was performed only on CW-2000 subjects. Information regarding personal characteristics and job variables was collected by a questionnaire. The new method enables the quantification of 5-, 6-ring PAHs; precision and accuracy were in the 7.3-20.8% and 89.4-110% range, respectively; in CW-2000 samples results obtained with the new and the old method were highly correlated (Lin's concordance correlation coefficients: from 0.790 to 0.965); the mean difference between measured PAHS increased with the molecular weight of the analytes (from +5 to +27%). Urinary PAHs were above or equal to the quantification limit, depending on the compound, in 67-100% (min-max), 26-100% and 6-100% of samples from CW-2000, CW-2006 and controls, respectively. Chrysene and benz[a]anthracene were the most abundant carcinogenic PAHs with median levels of 43.4, 13.4, and 2.3 ng/L and 45.9, 14.9, and 0.7 ng/L in CW-2000, CW-2006, and controls, respectively, while benzo[a]pyrene levels were 6.5, 0.7 and <0.5 ng/L. The multiple linear regression model showed that the determinants of exposure were the use of wood and/or coke for house heating for controls, and job title or the plant for CW-2006. Urinary benzo[a]pyrene and other carcinogenic PAHs were, for the first time, quantified in urine samples from both occupationally and environmentally exposed subjects. These results show that urinary PAHs can discriminate exposure at different levels. Moreover, the simultaneous determination of several PAHs allows for the development of excretion profiles to assess exposure to specific compounds. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Qingqing; Gao, Bo; Li, Guanghui; Zhang, Yanli; He, Quanfu; Deng, Wei; Huang, Zhonghui; Ding, Xiang; Hu, Qihou; Huang, Zuzhao; Wang, Yujun; Bi, Xinhui; Wang, Xinming
2016-10-01
Polycyclic aromatic hydrocarbons (PAHs) have attracted an increasing concern in China's megacities. However, rare information is available on the spatial and seasonal variations of inhalation cancer risk (ICR) due to PAH exposure and their relations to specific sources. In this study, year-round PM2.5 samples were collected from 2013 to 2014 by high-volume samplers at four sites (one urban, two rural and one roadside station) in Guangzhou in the highly industrialized and densely populated Pearl River Delta (PRD) region and analyzed for 26 polycyclic aromatic hydrocarbons (PAHs) together with molecular tracers including levoglucosan, hopanes and elemental carbon. Higher molecular weight PAHs (5-ring or above) accounted for 64.3-87.5% of total PAHs. Estimated annual averages of benzo(a)pyrene-equivalent carcinogenic potency (BaPeq) were 1.37, 2.31 and 1.56 ng/m3 at urban SZ, rural JL and rural WQS, respectively, much higher than that at the roadside station YJ in an urban street canyon. ICR of PAHs in wintertime reached 2.2 × 10-4, nearly 3 times that in summer; and cancer risk of PAHs was surprisingly higher at the rural site than at other sites. Source contributions by positive matrix factorization (PMF) in the aid of molecular tracers revealed that overall coal combustion and biomass burning altogether contributed 73.8% of total PAHs and 85.2% of BaPeq, and particularly in winter biomass burning became the most significant source of total PAHs and BaPeq (51.8% and 52.5%), followed by coal combustion (32.0% and 39.1%) and vehicle emission (16.2% and 8.4%). The findings of this work suggest that even in China's megacities like Guangzhou, limiting biomass burning may benefit PAHs pollution control and cancer risk reduction.
Fullerenes in Allende Meteorite
NASA Technical Reports Server (NTRS)
Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.
1994-01-01
The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in meteorites. Although fullerenes have not previously been detected in the Murchison and Allende meteorites, the Allende meteorite is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende meteorite. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.
Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system
Rostad, C.E.; Pereira, W.E.; Hult, M.F.
1985-01-01
Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.
Yang, Ruifang; Zhao, Nanjing; Xiao, Xue; Yu, Shaohui; Liu, Jianguo; Liu, Wenqing
2016-01-05
There is not effective method to solve the quenching effect of quencher in fluorescence spectra measurement and recognition of polycyclic aromatic hydrocarbons in aquatic environment. In this work, a four-way dataset combined with four-way parallel factor analysis is used to identify and quantify polycyclic aromatic hydrocarbons in the presence of humic acid, a fluorescent quencher and an ubiquitous substance in aquatic system, through modeling the quenching effect of humic acid by decomposing the four-way dataset into four loading matrices corresponding to relative concentration, excitation spectra, emission spectra and fluorescence quantum yield, respectively. It is found that Phenanthrene, pyrene, anthracene and fluorene can be recognized simultaneously with the similarities all above 0.980 between resolved spectra and reference spectra. Moreover, the concentrations of them ranging from 0 to 8μgL(-1) in the test samples prepared with river water could also be predicted successfully with recovery rate of each polycyclic aromatic hydrocarbon between 100% and 120%, which were higher than those of three-way PARAFAC. These results demonstrate that the combination of four-way dataset with four-way parallel factor analysis could be a promising method to recognize the fluorescence spectra of polycyclic aromatic hydrocarbons in the presence of fluorescent quencher from both qualitative and quantitative perspective. Copyright © 2015 Elsevier B.V. All rights reserved.
Pleil, Joachim D; Stiegel, Matthew A; Fent, Kenneth W
2014-09-01
Firefighters wear fireproof clothing and self-contained breathing apparatus (SCBA) during rescue and fire suppression activities to protect against acute effects from heat and toxic chemicals. Fire services are also concerned about long-term health outcomes from chemical exposures over a working lifetime, in particular about low-level exposures that might serve as initiating events for adverse outcome pathways (AOP) leading to cancer. As part of a larger US National Institute for Occupational Safety and Health (NIOSH) study of dermal exposure protection from safety gear used by the City of Chicago firefighters, we collected pre- and post-fire fighting breath samples and analyzed for single-ring and polycyclic aromatic hydrocarbons as bioindicators of occupational exposure to gas-phase toxicants. Under the assumption that SCBA protects completely against inhalation exposures, any changes in the exhaled profile of combustion products were attributed to dermal exposures from gas and particle penetration through the protective clothing. Two separate rounds of firefighting activity were performed each with 15 firefighters per round. Exhaled breath samples were collected onto adsorbent tubes and analyzed with gas-chromatography-mass spectrometry (GC-MS) with a targeted approach using selective ion monitoring. We found that single ring aromatics and some PAHs were statistically elevated in post-firefighting samples of some individuals, suggesting that fire protective gear may allow for dermal exposures to airborne contaminants. However, in comparison to a previous occupational study of Air Force maintenance personnel where similar compounds were measured, these exposures are much lower suggesting that firefighters' gear is very effective. This study suggests that exhaled breath sampling and analysis for specific targeted compounds is a suitable method for assessing systemic dermal exposure in a simple and non-invasive manner.
Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China.
Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan
2017-10-14
Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.
Binding effect of polychlorinated compounds and environmental carcinogens on rice bran fiber.
Sera, Nobuyuki; Morita, Kunimasa; Nagasoe, Masami; Tokieda, Hisako; Kitaura, Taeko; Tokiwa, Hiroshi
2005-01-01
To accelerate the fecal excretion of polycyclic biphenyl (PCB), polychlorinated dibenzofurans (PCDFs), polychlorinated-p-dioxines (PCDDs) and various mutagens and carcinogens, their binding effect on rice bran fiber (RBF) was investigated for nine heterocyclic amines, six nitroarenes, 4-nitroquinoline-N-oxide, benzo[a]pyrene, furylfuramide, two kinds of flavonoid compounds and formaldehyde and ascorbic acid. PCBs, PCDFs and PCDDs suspended in nonane were incubated with RBF (10 mg/ml) at 37 degrees C and after centrifugation, unbound chemicals in the supernatant were analyzed by high-performance liquid chromatography (HPLC) and gas chromatography (GC). The binding effects on RBF were enhanced more than other dietary fibers (DFs), which were tested including corn, wheat bran, spinach, Hijiki (a kind of seaweed), sweet potatoes and burdock fibers. It was found that the binding effects were related to lignin contents. Binding of 3-amino-1(or 1,4)-dimethyl-5H-pyrido[4,3-b]indole (Trp-p-1 and Trp-p-2), food-derived carcinogens and 1-nitropyrene (1-NP), suspended in methanol, to RBF occurred within 10 min of incubation at 37 degrees C at pH 5-7, and decreased below pH 4; binding of food-derived carcinogens was pH dependent. The binding effects to RBF and pulp lignin were obtained at ratio of over 90%, while corn fiber and cellulose were at ratios of 4-30%. Polycyclic aromatic compounds were related to the number of rings, showing high binding effects to chemical structures with triple rings. Binding of 1-NP and PCB to RBF was not influenced in any aerobic and anaerobic bacterial cultures. It was also found that RBF was capable of binding even conjugates containing mutagens such as glucuronides and sulfates, as well as metabolites in urine. It was suggested, therefore, that mutagens and carcinogens were available for the fecal excretion of residual chemicals and their metabolites, and also for the fecal excretion of PCBs, PCDFs and related compound residues in patients of Yusho disease, who suffered food poisoning due to rice oil contaminated with PCB in Japan.
Kargar, Navid; Matin, Golnar; Matin, Amir Abbas; Buyukisik, Hasan Baha
2017-11-01
In this study, to identify and quantify the sources of airborne polycyclic aromatic hydrocarbons (PAHs), we gathered honeybee, pine tree leaf, and propolis samples to serve as bioindicators from five stations in the village of "Bozkoy" in the Aliaga industrial district of Izmir (Turkey) during April-May 2014. The PAH concentrations which measured by gas chromatography (GC) varied from 261.18 to 553.33 μg kg -1 dry weight (dw) in honeybee samples, 138.57-853.67 μg kg -1 dw in pine leaf samples, and 798.61-2905.53 μg kg -1 dw in propolis samples. The total PAH concentrations can be ranked as follows: propolis > pine leaves > honeybees. The ring sequence pattern was 5 > 3 > 6 > 4 > 2 for honeybees, 5 > 3 > 4 > 6 > 2 for pine leaves, and 5 > 4 > 6 > 3 > 2 for propolis. The diagnostic ratios [fluoranthene/fluoranthene + pyrene], [indeno(1,2,3-c,d)pyrene/indeno(1,2,3-c,d)pyrene + benzo(g,h,i)perylene], and [benzo(a)anthracene/benzo(a)anthracene + chrysene] indicate coal and biomass combustion to be the dominant PAH source in the study area. In biomonitoring studies of airborne PAHs based on honeybees, fluoranthene is considered to be a characteristic PAH compound. Distribution maps with different numbers of PAH rings among the sampling sites show the advantages of honeybee samples as indicators due to the honeybee's provision of a broader range of information with respect to heavier pollutants that are typically not in the gas or suspended phase for long periods of time. Our correlation, factor analysis, and principal components analysis (PCA) results indicate potential sources of PAH pollution in pine leaves and honeybees from airborne emissions, but we found propolis to be contaminated by PAHs due to the replacement of herbal sources of resins with synthetic gummy substances from paving materials (e.g., asphalt and tar leaks). Copyright © 2017 Elsevier Ltd. All rights reserved.
Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H.; Cai, Yuqin; Rodriguez, Fabian A.; Sayer, Jane M.; Jerina, Donald M.; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.
2012-01-01
The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the non-planar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely-studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14-position with the exocyclic amino group of guanine. Here, we present the first NMR solution structure of a DB[a,l]P-derived adduct, the 14R (+)-trans-anti-DB[a,l]P–N2-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N2-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3’-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3’-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE - DNA adduct conformation differs from: (1) the classical intercalation motif where Watson-Crick base-pairing is intact at the lesion site, and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix . The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed. PMID:23121427
Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E
2012-12-04
The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.
A Resolved and Asymmetric Ring of PAHs within the Young Circumstellar Disk of IRS 48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schworer, Guillaume; Lacour, Sylvestre; Du Foresto, Vincent Coudé
2017-06-20
For one decade, the spectral type and age of the ρ Oph object IRS-48 were subject to debate and mystery. Modeling its disk with mid-infrared to millimeter observations led to various explanations to account for the complex intricacy of dust holes and gas-depleted regions. We present multi-epoch high-angular-resolution interferometric near-infrared data of spatially resolved emissions in the first 15 au of IRS-48, known to have very strong polycyclic aromatic hydrocarbon (PAH) emissions within this dust-depleted region. We make use of new Sparse-Aperture-Masking data to instruct a revised radiative-transfer model, where spectral energy distribution fluxes and interferometry are jointly fitted. Neutralmore » and ionized PAH, very small grains (VSG), and classical silicates are incorporated into the model; new stellar parameters and extinction laws are explored. A bright (42 L {sub ⊙}) and hence large (2.5 R {sub ⊙}) central star with A {sub v} = 12.5 mag and R {sub v} = 6.5 requires less near-infrared excess: the inner-most disk at ≈1 au is incompatible with the interferometric data. The revised stellar parameters place this system on a 4 Myr evolutionary track, four times younger than the previous estimations, which is in better agreement with the surrounding ρ Oph region and disk-lifetime observations. The disk-structure solution converges to a classical-grain outer disk from 55 au combined with an unsettled and fully resolved VSG and PAH ring, between 11 and 26 au. We find two overluminosities in the PAH ring at color-temperatures consistent with the radiative transfer simulations; one follows a Keplerian circular orbit at 14 au. We show a depletion of a factor of ≈5 of classical dust grains up to 0.3 mm compared to very small particles: the IRS-48 disk is nearly void of dust grains in the first 55 au. A 3.5 M {sub Jup} planet on a 40 au orbit can qualitatively explain the new disk structure.« less
Albers, P.H.; Kennish, Michael J.
2002-01-01
Polycyclic aromatic hydrocarbons (PAHs) are aromatic hydrocarbons with two to seven fused carbon (benzene) rings that can have substituted groups attached. Shallow coastal, estuarine, lake, and river environments receive PAHs from treated wastewater, stormwater runoff, petroleum spills and natural seeps, recreational and commercial boats, natural fires, volcanoes, and atmospheric deposition of combustion products. Abiotic degradation of PAHs is caused by photooxidation, photolysis in water, and chemical oxidation. Many aquatic microbes, plants, and animals can metabolize and excrete ingested PAHs; accumulation is associated with poor metabolic capabilities, high lipid content, and activity patterns or distributions that coincide with high concentrations of PAHs. Resistance to biological transformation increases with increasing number of carbon rings. Four- to seven-ring PAHs are the most difficult to metabolize and the most likely to accumulate in sediments. Disturbance by boating activity of sediments, shorelines, and the surface microlayer of water causes water column re-entry of recently deposited or concentrated PAHs. Residence time for PAHs in undisturbed sediment exceeds several decades. Toxicity of PAHs causes lethal and sublethal effects in plants and animals, whereas some substituted PAHs and metabolites of some PAHs cause mutations, developmental malformations, tumors, and cancer. Environmental concentrations of PAHs in water are usually several orders of magnitude below levels that are acutely toxic, but concentrations can be much higher in sediment. The best evidence for a link between environmental PAHs and induction of cancerous neoplasms is for demersal fish in areas with high concentrations of PAHs in the sediment.
Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions.
Ugochukwu, Uzochukwu C; Fialips, Claire I
2017-05-01
Clay minerals are quite vital in biogeochemical processes but the effect of organo-clays in the microbial degradation of crude oil polycyclic aromatic hydrocarbons is not well understood. The role of organo-saponite and organo-montmorillonite in comparison with the unmodified clays in crude oil polycyclic aromatic hydrocarbons (PAHs) removal via adsorption and biodegradation was studied by carrying out microcosm experiments in aqueous clay/oil systems with a hydrocarbon degrading microbial community that is predominantly alcanivorax spp. Montmorillonite and saponite samples were treated with didecyldimethylammonium bromide to produce organo-montmorillonite and organo-saponite used in this study. Obtained results indicate that clays with high cation exchange capacity (CEC) such as montmorillonite produced organo-clay (organomontmorillonite) that was not stimulatory to biodegradation of crude oil polycyclic aromatic compounds, especially the low molecular weight (LMW) ones, such as dimethylnaphthalenes. It is suggested that interaction between the organic phase of the organo-clay and the crude oil PAHs which is hydrophobic in nature must have reduced the availability of the polycyclic aromatic hydrocarbons for biodegradation. Organo-saponite did not enhance the microbial degradation of dimethylnaphthalenes but enhanced the biodegradation of some other PAHs such as phenanthrene. The unmodified montmorillonite enhanced the microbial degradation of the PAHs and is most likely to have done so as a result of its high surface area that allows the accumulation of microbes and nutrients enhancing their contact. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jincui; Zhao, Yongsheng; Sun, Jichao; Zhang, Ying; Liu, Chunyan
2018-06-01
This paper has investigated the concentration and distribution of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China. Results show that the concentration levels of 16 priority polycyclic aromatic hydrocarbons range from 0 to 92.06 ng/L, do not conform to drinking water quality standards in China (GB 5749- 2006). However, the concentration figures of priority polycyclic aromatic hydrocarbons are much lower than that of other studies conducted elsewhere in China. In addition, highly-concentrated polycyclic aromatic hydrocarbons (50-92 ng/L) are fragmentarily distributed. The composition of polycyclic aromatic hydrocarbons from this study indicates that low molecular polycyclic aromatic hydrocarbons are predominant in groundwater samples, medium molecular compounds occur at low concentrations, and high molecular hydrocarbons are not detected. The polycyclic aromatic hydrocarbon composition in groundwater samples is basically the same as that of gaseous samples in the atmosphere in this study. Therefore, the atmospheric input is assumed to be an important source of polycyclic aromatic hydrocarbons, no less than wastewater discharge, adhesion on suspended solids, and surface water leakage. Ratios of specific polycyclic aromatic hydrocarbons demonstrate that they mainly originate from wood or coal combustion as well as natural gas and partially from petroleum according to the result of principal component analysis. On the whole, conclusions are drawn that the contamination sources of these polycyclic aromatic hydrocarbons are likely petrogenic and pyrolytic inputs. Future investigations by sampling topsoil, vadose soil, and the atmosphere can further verify aforementioned conclusions.
Performance of PAHs emission from bituminous coal combustion.
Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa
2004-12-01
Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.
Influence of Benzene on the Optical Properties of Titan Haze Laboratory Analogs in the Mid-Visible
NASA Technical Reports Server (NTRS)
Yoon, Y. Heidi; Trainer, Melissa G.; Tolbert, Margaret A.
2012-01-01
The Cassini Ion and Neutral Mass Spectrometer (Waite, Jr., et al., 2007) and the Composite Infrared Spectrometer (Coustenis, A., et al., 2007) have detected benzene in the upper atmosphere and stratosphere of Titan. Photochemical reactions involving benzene in Titan's atmosphere may influence polycyclic aromatic hydrocarbon formation, aerosol formation, and the radiative balance of Titan's atmosphere. We measure the effect of benzene on the optical properties of Titan analog particles in the laboratory. Using cavity ring-down aerosol extinction spectroscopy, we determine the real and imaginary refractive index at 532 nm of particles formed by benzene photolysis and Titan analog particles formed with ppm-levels of benzene. These studies are compared to the previous study by Hasenkopf, et a1. (2010) of Titan analog particles formed by methane photolysis.
Analog detection for cavity lifetime spectroscopy
Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.
2001-05-15
An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
Analog detection for cavity lifetime spectroscopy
Zare, Richard N.; Harb, Charles C.; Paldus, Barbara A.; Spence, Thomas G.
2003-01-01
An analog detection system for determining a ring-down rate or decay rate 1/.tau. of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.C.; Gallagher, J.E.; Lewtas, J.
The {sup 32}P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO{sub 2}-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO{sub 2}-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO{sub 2}-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. Amore » second NO{sub 2}-PAH HPLC gradient system was developed to separate NO{sub 2}-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO{sub 2}-PAH-DNA adducts were compared using both adduct enhancement versions of the {sup 32}P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO{sub 2}-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the {sup 32}P-postlabeled DNA adduct standards (PAHs and NO{sub 2}-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO{sub 2}-PAH standards used in this study. HPLC analyses of the NO{sub 2}-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.« less
NASA Technical Reports Server (NTRS)
Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2017-01-01
In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.
Fluorescence Spectroscopy of Gas-phase Polycyclic Aromatic Hydrocarbons
NASA Technical Reports Server (NTRS)
Thomas, J. D.; Witt, A. N.
2006-01-01
The purpose of this investigation was to produce fluorescence spectra of polycyclic aromatic hydrocarbon (PAH) molecules in the gas-phase for comparison with blue luminescence (BL) emission observed in astrophysical sources Vijh et al. (2004, 2005a,b). The BL occurs roughly from 350 to 450 nm, with a sharp peak near 380 nm. PAHs with three to four rings, e.g. anthracene and pyrene, were found to produce luminescence in the appropriate spectral region, based on existing studies. Relatively few studies of the gas-phase fluorescence of PAHs exist; those that do exist have dealt primarily with the same samples commonly available for purchase such as pyrene and anthracene. In an attempt to understand the chemistry of the nebular environment we also obtained several nitrogen substituted PAHs from our colleagues at NASA Ames. In order to simulate the astrophysical environment we also took spectra by heating the PAHs in a flame. The flame environment counteracts the formation of eximers and permits the spectroscopy of free-flying neutral molecules. Experiments with coal tar demonstrate that fluorescence spectroscopy reveals primarily the presence of the smallest molecules, which are most abundant and which possess the highest fluorescence efficiencies. One gas-phase PAH that seems to fit the BL spectrum most closely is phenanthridine. In view of the results from the spectroscopy of coal tar, a compound containing a mixture of PAHs ranging from small to very large PAH molecules, we can not preclude the presence of larger PAHs in interstellar sources exhibiting BL.
Emission of polycyclic aromatic hydrocarbons from diesel engine in a bus station, Londrina, Brazil
NASA Astrophysics Data System (ADS)
Tavares, Moacir; Pinto, Jurandir P.; Souza, Alexandre L.; Scarmínio, Ieda S.; Cristina Solci, Maria
2004-09-01
The concentrations of vapor phase polycyclic aromatic hydrocarbons (PAHs) were measured at the Central Bus Station of Londrina, where only diesel-powered vehicles circulate. The samples were collected within a period of 24 h for 14 consecutive days in January 2002. The semi-volatile PAHs were collected using a cartridge packed with XAD-2 resin, extracted under sonication and subsequently analyzed by gas chromatograph equipped with the flame ionization and mass spectrometer detectors (GC-FID and GC/MS). Ten PAH compounds were found (naphthalene, acenapthylene, acenapthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene and chrysene). The average concentrations ranged from 1.4±0.3 ng m-3 for benzo(a)anthracene to 348.0±32.7 ng m-3 for phenanthrene. The species that presented higher concentration were phenanthrene (348.0±32.7 ng m-3), fluorene (140.2±17.3 ng m-3) and naphthalene (97.7±10.3 ng m-3). The PAHs with two and three rings were responsible by 90.2% of the total concentration among 10 PAHs. The concentrations of PAHs were lower on Sunday in comparison with the workdays, due to the reduction of bus traffic in the station. Correlations and principal component analysis with Varimax rotation were used to estimate the local PAH emission source profile originating from the diesel exhaust. The ratio PHEN/FLU of 2.5 calculated from the results is suggested as indication from diesel combustion exhaust.
NASA Astrophysics Data System (ADS)
Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan
2016-11-01
In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.
Oliveira, Marta; Slezakova, Klara; Alves, Maria José; Fernandes, Adília; Teixeira, João Paulo; Delerue-Matos, Cristina; Pereira, Maria do Carmo; Morais, Simone
2017-02-05
This work characterizes levels of eighteen polycyclic aromatic hydrocarbons (PAHs) in the breathing air zone of firefighters during their regular work shift at eight Portuguese fire stations, and the firefighters' total internal dose by six urinary monohydroxyl metabolites (OH-PAHs). Total PAHs (ΣPAHs) concentrations varied widely (46.4-428ng/m 3 ), mainly due to site specificity (urban/rural) and characteristics (age and layout) of buildings. Airborne PAHs with 2-3 rings were the most abundant (63.9-95.7% ΣPAHs). Similarly, urinary 1-hydroxynaphthalene and 1-hydroxyacenaphthene were the predominant metabolites (66-96% ΣOH-PAHs). Naphthalene contributed the most to carcinogenic ΣPAHs (39.4-78.1%) in majority of firehouses; benzo[a]pyrene, the marker of carcinogenic PAHs, accounted with 1.5-10%. Statistically positive significant correlations (r≥0.733, p≤0.025) were observed between ΣPAHs and urinary ΣOH-PAHs for firefighters of four fire stations suggesting that, at these sites, indoor air was their major exposure source of PAHs. Firefighter's personal exposure to PAHs at Portuguese fire stations were well below the existent occupational exposure limits. Also, the quantified concentrations of post-shift urinary 1-hydroxypyrene in all firefighters were clearly lower than the benchmark level (0.5μmol/mol) recommended by the American Conference of Governmental Industrial Hygienists. Copyright © 2016 Elsevier B.V. All rights reserved.
Shih, Yu-Jen; Binh, Nguyen Thanh; Chen, Chiu-Wen; Chen, Chih-Feng; Dong, Cheng-Di
2016-05-01
Various chemical oxidation techniques, such as potassium permanganate (KMnO4), sodium persulfate (Na2S2O8), Fenton (H2O2/Fe(2+)), and the modified persulfate and Fenton reagents (activated by ferrous complexes), were carried out to treat marine sediments that were contaminated with polycyclic aromatic hydrocarbons (PAHs) and dredged from Kaohsiung Harbor in Taiwan. Experimental results revealed that KMnO4 was the most effective of the tested oxidants in PAH degradation. Owing to the high organic matter content in the sediment that reduced the efficiencies of Na2S2O8 and regular Fenton reactions, a large excess of oxidant was required. Nevertheless, KH2PO4, Na4P2O7 and four chelating agents (EDTA, sodium citrate, oxalic acid, and sodium oxalate) were utilized to stabilize Fe(II) in activating the Na2S2O8 and Fenton oxidations, while Fe(II)-citrate remarkably promoted the PAH degradation. Increasing the molecular weight and number of rings of PAH did not affect the overall removal efficiencies. The correlation between the effectiveness of the oxidation processes and the physicochemical properties of individual PAH was statistically analyzed. The data implied that the reactivity of PAH (electron affinity and ionization potential) affected its treatability more than did its hydrophobicity (Kow, Koc and Sw), particularly using experimental conditions under which PAHs could be effectively oxidized. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Shaoda; Xia, Xinghui; Yang, Lingyan; Shen, Mohai; Liu, Ruimin
2010-05-15
A total of 127 surface soil samples (0-20 cm) were collected from Beijing's urban district and determined for 16 polycyclic aromatic hydrocarbons (PAHs). The mean concentration of summation SigmaPAHs was 1802.6 ng g(-1) with a standard deviation of 1824.2 ng g(-1). Average summation SigmaPAHs concentration and the percentage of high-molecular weight PAHs (4-6-rings) decreased from inner city to exterior areas. This correlated with the urbanization history of Beijing's urban district and inferred an increasing trend of soil PAHs with accumulation time and age of the urban area. summation SigmaPAHs in different land uses decreased in an order as: culture and education area (CEA)>classical garden (CG), business area (BA)>residential area (RA), roadside area (RSA)>public green space (PGS). PAHs in CEA mainly came from coal combustion, while soils of RSA exhibited clear traffic emission characteristics. PAHs in other land uses came from mixed sources. Principle component analysis followed by multivariate linear regression indicated that coal combustion and vehicle emission contributed about 46.0% and 54.0% to PAHs in Beijing's urban soils, respectively. Risk assessment based on the Canadian soil criterion indicated a low contamination level of PAHs. However, higher contents in some sensitive land uses such as CEA and CG should draw enough attention. Copyright (c) 2010 Elsevier B.V. All rights reserved.
The Study of Acenaphthene and its Complexation with Water
NASA Astrophysics Data System (ADS)
Steber, Amanda; Perez, Cristobal; Rijs, Anouk; Schnell, Melanie
2016-06-01
Acenaphthene (Ace) is a three ring polycyclic aromatic hydrocarbon (PAH), which consists of naphthalene and a non-aromatic five member ring. Ace has been previously been studied by microwave spectroscopy where the rotational constants were reported[1]. New measurements from 2-8 GHz using chirped pulse-Fourier transform microwave spectroscopy (CP-FTMW) will be presented. The high sensitivity achieved enabled us to observe all 13C isotopologues in natural abundance and determine the Kraitchman substitution structure. The spectra of Ace complexed with water and H218O were also recorded at this frequency range. From these spectra, we have been able to assign the complexes Ace-(H2O)n, n=1-3 and (Ace)2-H2O and experimentally derive the O-atom position of the H2O. The Ace-(H2O)3 complex is especially interesting as the water aggregate forms a slightly distorted cyclic water trimer from that observed in the IR[2]. These complexes could give insight about the formation of ice grains in the interstellar medium. [1] Thorwirth, S., Theulé, P., Gottlieb, C.A., McCarthy, M.C., Thaddeus, P. Astrophys. J., 662, 1309-1314, 2007. [2] Keutsch, F.N., Cruzan, J.D., Saykally, R.J. Chem. Rev., 103, 2533-2577, 2003.
NASA Astrophysics Data System (ADS)
Rauert, Cassandra; Harner, Tom
2016-09-01
The suitability of Red Pine trees (Pinus Resinosa) to act as passive samplers for persistent organic pollutants (POPs) in outdoor air and to provide historic information on air concentration trends was demonstrated in this preliminary investigation. Red Pine tree cores from Toronto, Canada, were tested for polycyclic aromatic hydrocarbon (PAHs), alkylated-PAHs, nitro and oxy-PAHs, polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (novel BFRs). The PBDEs and novel BFRs demonstrated a similar relative contribution in cores representing 30 years of tree growth, to that reported in contemporary air samples. Analysis of tree ring segments of 5-15 years resulted in detectable concentrations of some PAHs and alk-PAHs and demonstrated a transition from petrogenic sources to pyrogenic sources over the period 1960-2015. A simple uptake model was developed that treats the tree rings as linear-phase passive air samplers. The bark infiltration factor, IFBARK, is a key parameter of the model that reflects the permeability of the bark to allow chemicals to be transferred from ambient air to the outer tree layer (cambium). An IFBARK of about 2% was derived for the Red Pine trees based on tree core and air monitoring data.
Khan, Sardar; Cao, Qing; Lin, Ai-Jun; Zhu, Yong-Guan
2008-06-01
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of soil environment. Soil ingestion is of increasing concern for assessing health risk from PAH-contaminated soils because soil ingestion is one of the potentially important pathways of exposure to environmental pollutants, particularly relevant for children playing at contaminated sites due to their hand-to-mouth activities. In vitro gastro-intestinal tests imitate the human digestive tract, based on the physiology of humans, generally more simple, less time-consuming, and especially more reproducible than animal tests. This study was conducted to investigate the level of PAH contamination and oral bioaccessibility in surface soils, using physiologically based in vitro gastro-intestinal tests regarding both gastric and small intestinal conditions. Wastewater-irrigated soils were sampled from the metropolitan areas of Beijing and Tianjin, China, which were highly contaminated with PAHs. Reference soil samples were also collected for comparisons. At each site, four soils were sampled in the upper horizon at the depth of 0-20 cm randomly and were bulked together to form one composite sample. PAH concentrations and origin were investigated and a physiologically based in vitro test was conducted using all analytical grade reagents. Linear regression model was used to assess the relationship between total PAH concentrations in soils and soil organic carbon (SOC). A wide range of total PAH concentrations ranging from 1,304 to 3,369 mug kg(-1) in soils collected from different wastewater-irrigated sites in Tianjin, while ranging from 2,687 to 4,916 mug kg(-1) in soils collected from different wastewater-irrigated sites in Beijing, was detected. In general, total PAH concentrations in soils from Beijing sites were significantly higher than those from Tianjin sites, indicating a dominant contribution from both pyrogenic and petrogenic sources. Results indicated that the oral bioaccessibility of PAHs in small intestinal was significantly higher (from P < 0.05 to P < 0.001) than gastric condition. Similarly, the oral bioaccessibility of PAHs in contaminated sites was significantly higher (from P < or = 0.05 to P < 0.001) than in reference sites. Individual PAH ratios (three to six rings), a more accurate and reliable estimation about the emission sources, were used to distinguish the natural and anthropogenic PAH inputs in the soils. Results indicated that PAHs were both pyrogenic and petrogenic in nature. The identification of PAH sources and importance of in vitro test for PAH bioaccessibility were emphasized in this study. The oral bioaccessibility of individual PAHs in soils generally decreased with increasing ring numbers of PAHs in both the gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric conditions to that in the small intestinal condition generally increased with increasing ring numbers, indicating the relatively pronounced effect of bile extract on improving the bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ( ow ) values. Similarly, total PAH concentrations in soils were strongly correlated with SOC, indicating that SOC was the key factor determining the retention of PAHs in soils. Soils were contaminated with PAHs due to long-term wastewater irrigation. PAHs with two to six rings showed high concentrations with a significant increase over reference soils. Based on the molecular indices, it was suggested that PAHs in soils had both pyrogenic and petrogenic sources. It was also concluded that the oral bioaccessibility of total PAHs in the small intestinal condition was significantly higher than that in the gastric condition. Furthermore, the bioaccessibility of individual PAHs in soils generally decreased with the increasing ring numbers in both the gastric and small intestinal conditions. It is suggested that more care should be given while establishing reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-to-mouth activities.
Lv, Jungang; Shi, Rongguang; Cai, Yanming; Liu, Yong
2010-07-01
Soil contamination with polycyclic aromatic hydrocarbons is an increasing problem and has aroused more and more concern in many countries, including China. In this study, representative soil samples (n = 87) of suburban areas in Tianjin (Xiqing, Dongli, Jinnan, Beichen) were evaluated for 16 polycyclic aromatic hydrocarbons. Surface soil samples were air-dried and sieved. Microwave assisted extraction was used for polycyclic aromatic hydrocarbons preparation prior to analysis with gas chromatography-mass spectrometry. The total concentrations of tested polycyclic aromatic hydrocarbons in Xiqing, Dongli, Jinnan, Beichen ranged in 58.5-2,748.3, 36.1-6,734.7, 58.5-4,502.5, 29.7-852.5 ng/g and the averages of total concentration of polycyclic aromatic hydrocarbons were 600.5, 933.6, 640.8, 257.3 ng/g, respectively. Spatial variation of polycyclic aromatic hydrocarbons in soil was illustrated; Pollution status and comparison to other cities were also investigated. Serious polycyclic aromatic hydrocarbons soil pollution was found in Dongli district, on the contrary, Bap in most sites in Beichen did not exceed relative standards and most sites in Beichen should be classified as non-contaminated soil. Principal component analysis was used to identify the possible sources of different districts. It turned out that coal combustion still was the most important sources in three districts except Beichen. Coking, traffic, cooking, biomass combustion also accounted for polycyclic aromatic hydrocarbons pollution to certain extent in different districts. These data can be further used to assess the health risk associated with soils polluted with polycyclic aromatic hydrocarbons and help local government find proper way to reduce polycyclic aromatic hydrocarbons pollution in soils.
A Pauson-Khand and ring-expansion approach to the aquariane ring system.
Thornton, Paul D; Burnell, D Jean
2006-07-20
[Structure: see text] The carbocyclic ring system of the aquariolide diterpenes has been synthesized by two routes involving a diastereoselective Pauson-Khand reaction and subsequent ring expansion. In one route, a tetracyclic enone was elaborated to generate the nine-membered ring by Grob fragmentation. In the second approach, a spirocyclic tricycle underwent a facile anionic oxy-Cope rearrangement to complete the synthesis of the desired ring system.
NASA Astrophysics Data System (ADS)
Tiscareno, Matthew S.
Planetary rings are the only nearby astrophysical disks and the only disks that have been investigated by spacecraft (especially the Cassini spacecraft orbiting Saturn). Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 10- 7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close range and in real time in planetary rings.We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The A, B, and C rings of Saturn, plus the Cassini Division, comprise our solar system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are found both at Uranus (where they comprise the main rings entirely) and at Saturn (where they are embedded in the broad disk) and are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally confined arcs at Neptune, Saturn, and Jupiter. Finally, every known ring system includes a substantial component of diffuse dusty rings.Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.
2004-06-28
NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light. The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to "read" this story by dissecting the galaxy into its separate components. The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye. The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation. One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at sub-millimeter and radio wavelengths. It is made up in large part of polycyclic aromatic hydrocarbons. Spitzer measurements suggest that the ring contains enough gas to produce four billion stars like the Sun. Three other galaxies are seen below NGC 7331, all about 10 times farther away. From left to right are NGC 7336, NGC 7335 and NGC 7337. The blue dots scattered throughout the images are foreground stars in the Milky Way; the red ones are galaxies that are even more distant. The Spitzer observations of NGC 7331 are part of a large 500-hour science project, known as the Spitzer Infrared Nearby Galaxy Survey, which will comprehensively study 75 nearby galaxies with infrared imaging and spectroscopy. http://photojournal.jpl.nasa.gov/catalog/PIA06322
Morphology of Our Galaxy's 'Twin'
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Spitzer Space Telescope has captured these infrared images of a nearby spiral galaxy that resembles our own Milky Way. The targeted galaxy, known as NGC 7331 and sometimes referred to as our galaxy's twin, is found in the constellation Pegasus at a distance of 50 million light-years. This inclined galaxy was discovered in 1784 by William Herschel, who also discovered infrared light. The evolution of this galaxy is a story that depends significantly on the amount and distribution of gas and dust, the locations and rates of star formation, and on how the energy from star formation is recycled by the local environment. The new Spitzer images are allowing astronomers to 'read' this story by dissecting the galaxy into its separate components. The image, measuring 12.6 by 8.2 arcminutes, was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). These wavelengths are roughly 10 times longer than those seen by the human eye. The infrared light seen in this image originates from two very different sources. At shorter wavelengths (3.6 to 4.5 microns), the light comes mainly from stars, particularly ones that are older and cooler than our Sun. This starlight fades at longer wavelengths (5.8 to 8.0 microns), where instead we see the glow from clouds of interstellar dust. This dust consists mainly of a variety of carbon-based organic molecules known collectively as polycyclic aromatic hydrocarbons. Wherever these compounds are found, there will also be dust granules and gas, which provide a reservoir of raw materials for future star formation. One feature that stands out in the Spitzer image is the ring of actively forming stars that surrounds the galaxy center (yellow). This ring, with a radius of nearly 20,000 light-years, is invisible at shorter wavelengths, yet has been detected at sub-millimeter and radio wavelengths. It is made up in large part of polycyclic aromatic hydrocarbons. Spitzer measurements suggest that the ring contains enough gas to produce four billion stars like the Sun. Three other galaxies are seen below NGC 7331, all about 10 times farther away. From left to right are NGC 7336, NGC 7335 and NGC 7337. The blue dots scattered throughout the images are foreground stars in the Milky Way; the red ones are galaxies that are even more distant. The Spitzer observations of NGC 7331 are part of a large 500-hour science project, known as the Spitzer Infrared Nearby Galaxy Survey, which will comprehensively study 75 nearby galaxies with infrared imaging and spectroscopy.Tholins as Coloring Agents on Solar System Bodies
NASA Technical Reports Server (NTRS)
Cruikshank, D. P.; Ore, C. M. Dalle; Imanaka, H.
2004-01-01
Pre-biotic organic materials appear to be common on many small bodies in the outer Solar System, as evidenced by the color properties of these objects. We report on our continuing study of color properties in connection with the presence of complex organic solids (tholins) among the planets and their satellites, the asteroids, and the trans- Neptunian objects (Kuiper Belt objects). Most small, icy bodies in the Solar System, whether they have high or low surface reflectance (albedo), show a pronounced downward slope in reflectance at wavelengths shorter than approx. 1 micron. This increasing absorption of sunlight toward shorter wavelengths is characteristic of pi-bonds in hydrocarbons having chains or rings of conjugated C atoms. Tholins, which contain polycyclic aromatic and aliphatic hydrocarbons, exhibit these color properties. Using the complex refractive indices of tholins in models of the reflectance spectra of icy bodies in the Solar System, we find that these complex organic materials satisfactorily account for the coloration so widely observed. The new results presented here show that the wide variety of colors of Kuiper Belt objects can be fit very well with tholins, as can the colors of Pluto and Triton. The implications of these fits of Kuiper Belt objects is that complex organic material is created on their surfaces by energetic particle bombardment of native ices, and also may be accreted from external sources. In the cases of Pluto and Triton, photochemistry of their weak N2 + CH4 + CO atmospheres produces complex organic molecules that precipitate to the surface, providing local color.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipsky, S.R.; Alexander, G.; McMurray, W.
1977-02-01
Techniques were developed to produce excellent high performance glass capillary columns for gas chromatographic analyses of a wide range of complex mixtures of organic compounds, including those containing a wide array of polycyclic aromatic hydrocarbons (PAH) derived from a coal liquefaction process. Work was begun to assess the potential mutogenicity and/or carcinogenicity of the various isolated PAH fractions utilizing a unique host mediated bioassay system. Preliminary results indicate that further efforts will be required to determine dose response parameters of cultured mouse leukemia cells, as well as suitable vehicles for the satisfactory introduction of certain PAH fractions into this particularmore » bioassay system.« less
Amperometric Immunosensors for screening of Polycyclic Aromatic Hydrocarbons in water
NASA Astrophysics Data System (ADS)
Ahmad, A.; Paschero, A.; Moore, E.
2011-08-01
An amperometric immunosensor with low limit detection was developed for the screening of polycyclic aromatic hydrocarbons (PAHs) in water. The system was based on detecting the specific substance using an immunological reaction by measuring the chemical responses to specific antibodies. An integrated biochip with a three electrode system was fabricated. Gold was used as the working electrode with platinum was used as the counter electrode. A modified Ag/AgCl reference electrode was employed to enhance the stability of the immunosensors. Indirect competition enzyme-linked immunosorbent assay (ELISA) was carried out within the electrode using alkaline phosphatase (AP) as the labelled-enzyme. The system shows acceptable reproducibility and good stability. The immunosensor exhibited a wide linear response to PAHs. A limit of detection for this sensor was in the range of 1 to 10 ng ml-1 in aqueous sample.
Keyte, Ian J; Albinet, Alexandre; Harrison, Roy M
2016-10-01
Vehicular emissions are a key source of polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and their oxygenated (OPAH) and nitrated (NPAH) derivatives, in the urban environment. Road tunnels are a useful environment for the characterisation of on-road vehicular emissions, providing a realistic traffic fleet and a lack of direct sunlight, chemical reactivity and non-traffic sources. In the present investigation the concentrations of selected PAHs, OPAHs and NPAHs have been measured in the Parc des Princes Tunnel in Paris (PdPT, France), and at the Queensway Road Tunnel and an urban background site in Birmingham (QT, U.K). A higher proportion of semi-volatile (3-4 ring) PAH, OPAH and NPAH compounds are associated with the particulate phase compared with samples from the ambient environment. A large (~85%) decline in total PAH concentrations is observed between 1992 and 2012 measurements in QT. This is attributed primarily to the introduction of catalytic converters in the U.K as well as increasingly stringent EU vehicle emissions legislation. In contrast, NPAH concentrations measured in 2012 are similar to those measured in 1996. This observation, in addition to an increased proportion of (Phe+Flt+Pyr) in the observed PAH burden in the tunnel, is attributed to the increased number of diesel passenger vehicles in the U.K during this period. Except for OPAHs, comparable PAH and NPAH concentrations are observed in both investigated tunnels (QT and PdP). Significant differences are shown for specific substances between PAC chemical profiles in relation with the national traffic fleet differences (33% diesel passenger cars in U.K. vs 69% in France and up to 80% taking into account all vehicle categories). The dominating and sole contribution of 1-Nitropyrene observed in the PdPT NPAH profile strengthens the promising use of this compound as a diesel exhaust marker for PM source apportionment studies. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
A survey of candidate missions to explore Saturn's rings
NASA Technical Reports Server (NTRS)
Wells, W. C.; Price, M. J.
1972-01-01
The ring system around Saturn is discussed. Exploration of the rings is required for an understanding of their origin and the hazard they represent to spacecraft near Saturn. In addition the rings may provide useful clues to the origin of the solar system. This study examines the problem of ring system exploration and recommends a sequence of missions which will collect the data required.
A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant
NASA Astrophysics Data System (ADS)
Brette, Fabien; Shiels, Holly A.; Galli, Gina L. J.; Cros, Caroline; Incardona, John P.; Scholz, Nathaniel L.; Block, Barbara A.
2017-01-01
The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible,more » using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.« less
Su, Bo; Hartwig, John F
2018-05-20
peri-Disubstituted naphthalenes exhibit interesting physical properties and unique chemical reactivity, due to the parallel arrangement of the bonds to the two peri-disposed substituents. Regioselective installation of a functional group at the position peri to 1-substituted naphthalenes is challenging due to the steric interaction between the existing substituent and the position at which the second one would be installed. We report an iridium-catalyzed borylation of the C-H bond peri to a silyl group in naphthalenes and analogous polyaromatic hydrocarbons. The reaction occurs under mild conditions with wide functional group tolerance. The silyl group and the boryl group in the resulting products are precursors to a range of functional groups bound to the naphthalene ring through C-C, C-O, C-N, C-Br and C-Cl bonds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Osborne, David; Lawson, Patrick; Adams, Nigel
2014-01-01
Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.
NASA Technical Reports Server (NTRS)
Plows, F. L.; Elsila, J. E.; Zare, R. N.; Buseck, P. R.
2003-01-01
Organic material in meteorites provides insight into the cosmochemistry of the early solar system. The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende and Murchison carbonaceous chondrites was investigated using spatially resolved microprobe laser-desorption laser-ionization mass spectrometry. Sharp chemical gradients of PAHs are associated with specific meteorite features. The ratios of various PAH intensities relative to the smallest PAH, naphthalene, are nearly constant across the sample. These findings suggest a common origin for PAHs dating prior to or contemporary with the formation of the parent body, consistent with proposed interstellar formation mechanisms.
Optical heterodyne detection for cavity ring-down spectroscopy
Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.
2000-07-25
A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubet, R.A.; Kouri, R.E.; Curren, R.A.
1990-01-01
BALB/c-3T3 cells were employed to examine the genotoxic potential of a variety of known chemical carcinogens. BALB/c-3T3 cells displayed a dose-dependent transformation response to a variety of carcinogens (polycyclic hydrocarbons, methylating agents, ethylating agents, aflatoxin B{sub 1} (AFT{sub 1}), and 4-nitroquinoline-N-oxide (4-NQO)). When the ability of these compounds to induce mutagenesis to resistance to the cardiac glycoside ouabain (OUA{sup R}) was examined, the authors found the short chain alkylating agents to be particularly effective mutagens, causing biologic effects at doses below those necessary to induce a transformation response. In contrast, the polycyclic hydrocarbons which were potent transforming agents were weaker,more » albeit significant, mutagens for the OUA{sup R} locus in this system, while AFB{sub 1} was quite weak. Further studies were performed with 5-azacytidine (5-AZA) and the nongenotoxic carcinogen cinnamyl anthranilate (CIN). 5-AZA was a potent transforming agent, but failed to cause mutagenesis. CIN similarly caused in vitro transformation. When a series of eight structurally diverse compounds were examined in both the BALB/c-3T3 and C3H10T1/2 mouse fibroblast transformation systems, the BALB/c-3T3 system was shown to be sensitive to a wide variety of potential carcinogens, whereas the C3H10T1/2 system proved routinely sensitive only to the polycyclic hydrocarbons.« less
Dual annular rotating "windowed" nuclear reflector reactor control system
Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.
1994-01-01
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.
The Crystal Structure of the Ring-Hydroxylating Dioxygenase from Sphingomonas CHY-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakoncic,J.; Jouanneau, Y.; Meyer, C.
The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 {angstrom} by molecular replacement revealed the enzyme to share the same global {alpha}{sub 3}{beta}{sub 3} structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate bindingmore » pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 {angstrom}. An 11 {angstrom} long water channel extends from the interface between the {alpha} and {beta} subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism.« less
ANAEROBIC TREATMENT OF SOIL WASH FLUIDS FROM A WOOD PRESERVING SITE
An integrated system has been developed to remediate sols contaminated with pentachlorophenol (PCP) and polycyclic aromatic hydrocarbons (PAHs). This system involves the coupling of two treatment technologies, soil solvent washing and anaerobic biotreatment of the extract. Specif...
Development of an Acoustic Levitation Linear Transportation System Based on a Ring-Type Structure.
Thomas, Gilles P L; Andrade, Marco A B; Adamowski, Julio Cezar; Silva, Emilio Carlos Nelli
2017-05-01
A linear acoustic levitation transportation system based on a ring-type vibrator is presented. The system is composed by two 21-kHz Langevin transducers connected to a ring-shaped structure formed by two semicircular sections and two flat plates. In this system, a flexural standing wave is generated along the ring structure, producing an acoustic standing wave between the vibrating ring and a plane reflector located at a distance of approximately a half wavelength from the ring. The acoustic standing wave in air has a series of pressure nodes, where small particles can be levitated and transported. The ring-type transportation system was designed and analyzed by using the finite element method. Additionally, a prototype was built and the acoustic levitation and transport of a small polystyrene particle was demonstrated.
The composition and structure of planetary rings
NASA Technical Reports Server (NTRS)
Burns, J. A.
1985-01-01
The properties of planetary ring systems are summarized herein; emphasis is given to the available evidence on their compositions and to their dynamical attributes. Somewhat contaminated water ice makes up the vast expanse of Saturn's rings. Modified methane ice may comprise Uranus' rings while silicates are the likely material of the Jovian ring. Saturn's rings form an elaborate system whose characteristics are still being documented and whose nature is being unravelled following the Voyager flybys. Uranus' nine narrow bands display an intriguing dynamical structure thought to be caused by unseen shephard satellites. Jupiter's ring system is a mere wisp, probably derived as ejecta off hidden parent bodies.
Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun
2014-07-15
Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
NASA Astrophysics Data System (ADS)
Hesselbrock, Andrew; Minton, David A.
2017-10-01
We recently reported that the orbital architecture of the Martian environment allows for material in orbit around the planet to ``cycle'' between orbiting the planet as a ring, or as coherent satellites. Here we generalize our previous analysis to examine several factors that determine whether satellites accreting at the edge of planetary rings will cycle. In order for the orbiting material to cycle, tidal evolution must decrease the semi-major axis of any accreting satellites. In some systems, the density of the ring/satellite material, the surface mass density of the ring, the tidal parameters of the system, and the rotation rate of the primary body contribute to a competition between resonant ring torques and tidal dissipation that prevent this from occurring, either permanently or temporarily. Analyzing these criteria, we examine various bodies in our solar system (such as Saturn, Uranus, and Eris) to identify systems where cycling may occur. We find that a ring-satellite cycle may give rise to the current Uranian ring-satellite system, and suggest that Miranda may have formed from an early, more massive Uranian ring.
THE PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS
The U.S. Environmental Protection Agency (EPA) continues to be interested in developing methods for the detection of polycyclic aromatic hydrocarbons (PAHS) in the environment. Polycyclic aromatic hydrocarbons (PAHS) are common contaminants in our environment. Being major product...
QSAR and 3D QSAR of inhibitors of the epidermal growth factor receptor
NASA Astrophysics Data System (ADS)
Pinto-Bazurco, Mariano; Tsakovska, Ivanka; Pajeva, Ilza
This article reports quantitative structure-activity relationships (QSAR) and 3D QSAR models of 134 structurally diverse inhibitors of the epidermal growth factor receptor (EGFR) tyrosine kinase. Free-Wilson analysis was used to derive the QSAR model. It identified the substituents in aniline, the polycyclic system, and the substituents at the 6- and 7-positions of the polycyclic system as the most important structural features. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used in the 3D QSAR modeling. The steric and electrostatic interactions proved the most important for the inhibitory effect. Both QSAR and 3D QSAR models led to consistent results. On the basis of the statistically significant models, new structures were proposed and their inhibitory activities were predicted.
Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system
Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.
1994-03-29
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.
Olson, Paul E; Castro, Ana; Joern, Mark; DuTeau, Nancy M; Pilon-Smits, Elizabeth A H; Reardon, Kenneth F
2007-01-01
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, recalcitrant, and potentially carcinogenic pollutants. Plants and their associated rhizosphere microbes can promote PAH dissipation, offering an economic and ecologically attractive remediation technique. This study focused on the effects of different types of vegetation on PAH removal and on the interaction between the plants and their associated microorganisms. Aged PAH-polluted soil with a total PAH level of 753 mg kg(-1) soil dry weight was planted with 18 plant species representing eight families. The levels of 17 soil PAHs were monitored over 14 mo. The size of soil microbial populations of PAH degraders was also monitored. Planting significantly enhanced the dissipation rates of all PAHs within the first 7 mo, but this effect was not significant after 14 mo. Although the extent of removal of lower-molecular-weight PAHs was similar for planted and unplanted control soils after 14 mo, the total mass of five- and six-ring PAHs removed was significantly greater in planted soils at the 7- and 14-mo sampling points. Poaceae (grasses) were the most effective of the families tested, and perennial ryegrass was the most effective species; after 14 mo, soils planted with perennial ryegrass contained 30% of the initial total PAH concentration (compared with 51% of the initial concentrations in unplanted control soil). Although the presence of some plant species led to higher populations of PAH degraders, there was no correlation across plant species between PAH dissipation and the size of the PAH-degrading population. Research is needed to understand differences among plant families for stimulating PAH dissipation.
Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi
2017-10-01
Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies.
Broniatowski, Marcin; Binczycka, Martyna; Wójcik, Aneta; Flasiński, Michał; Wydro, Paweł
2017-12-01
High molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) are persistent organic pollutants which due to their limited biodegradability accumulate in soils where their increased presence can lead to the impoverishment of the decomposer organisms. As very hydrophobic PAHs easily penetrate cellular membranes of soil bacteria and can be incorporated therein, changing the membrane fluidity and other functions which in consequence can lead to the death of the organism. The structure and size of PAH molecule can be crucial for its membrane activity; however the correlation between PAH structure and its interaction with phospholipids have not been investigated so far. In our studies we applied phospholipid Langmuir monolayers as model bacterial membranes and investigated how the incorporation of six structurally different PAH molecules change the membrane texture and physical properties. In our studies we registered surface pressure and surface potential isotherms upon the monolayer compression, visualized the monolayer texture with the application of Brewster angle microscopy and searched the ordering of the film-forming molecules with molecular resolution with the application of grazing incidence X-ray diffraction (GIXD) method. It turned out that the phospholipid-PAH interactions are strictly structure dependent. Four and five-ring PAHs of the angular or cluster geometry can be incorporated into the model membranes changing profoundly their textures and fluidity; whereas linear or large cluster PAHs cannot be incorporated and separate from the lipid matrix. The observed phenomena were explained based on structural similarities of the applied PAHs with membrane steroids and hopanoids. Copyright © 2017. Published by Elsevier B.V.
Hayakawa, Kazuichi; Tang, Ning; Nagato, Edward Gou; Toriba, Akira; Sakai, Shigekatsu; Kano, Fumio; Goto, Sumio; Endo, Osamu; Arashidani, Kei-Ichi; Kakimoto, Hitoshi
2018-02-01
Total suspended particulate matter (TSP) was collected during the summer and winter in five Japanese cities spanning Hokkaido to Kyushu (Sapporo, Kanazawa, Tokyo, Sagamihara and Kitakyushu) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) and benzo[a]pyrene (BaP), were identified using high-performance liquid chromatography (HPLC) with fluorescence detection. Two nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (1-NP) and 6-nitrobenzo[a]pyrene (6-NBaP), were identified by HPLC with chemiluminescence detection. A comparison of PAH and NPAH concentrations and [NPAH]/[PAH] ratios such as [1-NP]/[Pyr] and [6-NBaP]/[BaP] revealed the following characteristics in the five cities: (1) In Sapporo, Kanazawa, Tokyo and Sagamihara, the concentrations of PAHs and NPAHs were high at the beginning of the sampling period and then steadily decreased, with NPAHs decreasing faster than PAHs. The large initial [1-NP]/[Pyr] ratios suggest that the major contributor was automobiles but subsequent decreases in this ratio suggest decreased automobile contributions. (2) By contrast, PAH concentrations in Kitakyushu did not decrease during the sampling period, though concentrations of NPAHs decreased. The consistently smaller [1-NP]/[Pyr] ratio and larger [6-NBaP]/[BaP] ratio in Kitakyushu suggests that the major contributor of PAHs was not automobiles but iron manufacturing which uses a large amount of coal. The sudden increase in atmospheric PAH concentrations in the winter of 2014 may also be due to iron manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phoungthong, Khamphe; Tekasakul, Surajit; Tekasakul, Perapong; Prateepchaikul, Gumpon; Jindapetch, Naret; Furuuchi, Masami; Hata, Mitsuhiko
2013-04-01
Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long-term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1 microm, while the last stage collected all particles smaller than 1 microm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 microm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaP(eq)) for all particle size ranges. As the palm oil was increased, the BaP(eq) decreased gradually. Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.
Gale, Sara L.; Noth, Elizabeth M.; Mann, Jennifer; Balmes, John; Hammond, S. Katharine; Tager, Ira B.
2014-01-01
Polycyclic aromatic hydrocarbons (PAHs) are found widely in the ambient air and result from combustion of various fuels and industrial processes. PAHs have been associated with adverse human health effects such as cognitive development, childhood IQ, and respiratory health. The Fresno Asthmatic Children’s Environment Study (FACES) enrolled 315 children ages 6-11 years with asthma in Fresno, CA and followed the cohort from 2000 to 2008. Subjects were evaluated for asthma symptoms in up to three 14-day panels per year. Detailed ambient pollutant concentrations were collected from a central site and outdoor pollutants were measured at 83 homes for at least one 5-day period. Measurements of particle-bound PAHs were used with land use regression models to estimate individual exposures to PAHs with 4-, 5- or 6-member rings (PAH456) and phenanthrene for the cohort (approximately 22 000 individual daily estimates). We used a cross-validation based algorithm for model fitting and a generalized estimated equation approach to account for repeated measures. Multiple lags and moving averages of PAH exposure were associated with increased wheeze for each of the three types of PAH exposure estimates. The odds ratios for asthmatics exposed to PAHs (ng/m3) ranged from 1.01 (95% CI, 1.00-1.02) to 1.10 (95% CI, 1.04-1.17)]. This trend for increased wheeze persisted among all PAHs measured. Phenanthrene was found to have a higher relative impact on wheeze. These data provide further evidence that PAHs contribute to asthma morbidity. PMID:22549720
Gale, Sara L; Noth, Elizabeth M; Mann, Jennifer; Balmes, John; Hammond, S Katharine; Tager, Ira B
2012-07-01
Polycyclic aromatic hydrocarbons (PAHs) are found widely in the ambient air and result from combustion of various fuels and industrial processes. PAHs have been associated with adverse human health effects such as cognitive development, childhood IQ, and respiratory health. The Fresno Asthmatic Children's Environment Study enrolled 315 children aged 6-11 years with asthma in Fresno, CA and followed the cohort from 2000 to 2008. Subjects were evaluated for asthma symptoms in up to three 14-day panels per year. Detailed ambient pollutant concentrations were collected from a central site and outdoor pollutants were measured at 83 homes for at least one 5-day period. Measurements of particle-bound PAHs were used with land-use regression models to estimate individual exposures to PAHs with 4-, 5-, or 6-member rings (PAH456) and phenanthrene for the cohort (approximately 22,000 individual daily estimates). We used a cross-validation-based algorithm for model fitting and a generalized estimated equation approach to account for repeated measures. Multiple lags and moving averages of PAH exposure were associated with increased wheeze for each of the three types of PAH exposure estimates. The odds ratios for asthmatics exposed to PAHs (ng/m(3)) ranged from 1.01 (95% CI, 1.00-1.02) to 1.10 (95% CI, 1.04-1.17). This trend for increased wheeze persisted among all PAHs measured. Phenanthrene was found to have a higher relative impact on wheeze. These data provide further evidence that PAHs contribute to asthma morbidity.
Ambient polycyclic aromatic hydrocarbons and pulmonary function in children
Padula, Amy M.; Balmes, John R.; Eisen, Ellen A.; Mann, Jennifer; Noth, Elizabeth M.; Lurmann, Frederick W.; Pratt, Boriana; Tager, Ira B.; Nadeau, Kari; Hammond, S. Katharine
2014-01-01
Few studies have examined the relationship between ambient polycyclic aromatic hydrocarbons (PAHs) and pulmonary function in children. Major sources include vehicular emissions, home heating, wildland fires, agricultural burning, and power plants. PAHs are an important component of fine particulate matter that has been linked to respiratory health. This cross-sectional study examines the relationship between estimated individual exposures to the sum of PAHs with 4, 5, or 6 rings (PAH456) and pulmonary function tests (forced expiratory volume in one second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity) in asthmatic and non-asthmatic children. We applied land-use regression to estimate individual exposures to ambient PAHs for averaging periods ranging from 1 week to 1 year. We used linear regression to estimate the relationship between exposure to PAH456 with pre- and postbronchodilator pulmonary function tests in children in Fresno, California (N =297). Among non-asthmatics, there was a statistically significant association between PAH456 during the previous 3 months, 6 months, and 1 year and postbronchodilator FEV1. The magnitude of the association increased with the length of the averaging period ranging from 60 to 110 ml decrease in FEV1 for each 1 ng/m3 increase in PAH456. There were no associations with PAH456 observed among asthmatic children. We identified an association between annual PAHs and chronic pulmonary function in children without asthma. Additional studies are needed to further explore the association between exposure to PAHs and pulmonary function, especially with regard to differential effects between asthmatic and non-asthmatic children. PMID:24938508
Studies of the effect of selected nondonor solvents on coal liquefaction yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.
The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol andmore » two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.« less
Sun, Caiyun; Zhang, Jiquan; Ma, Qiyun; Chen, Yanan
2015-01-01
Reservoirs play an important role in living water supply and irrigation of farmlands, thus the water quality is closely related to public health. However, studies regarding human health and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the waters of reservoirs are very few. In this study, Shitou Koumen Reservoir which supplies drinking water to 8 million people was investigated. Sixteen priority PAHs were analyzed in a total of 12 water samples. In terms of the individual PAHs, the average concentration of Fla, which was 5.66 × 10−1 μg/L, was the highest, while dibenz(a,h)anthracene which was undetected in any of the water samples was the lowest. Among three PAH compositional patterns, the concentration of low-molecular-weight and 4-ring PAHs was dominant, accounting for 94%, and the concentration of the total of 16 PAHs was elevated in constructed-wetland and fish-farming areas. According to the calculated risk quotients, little or no adverse effects were posed by individual and complex PAHs in the water on the aquatic ecosystem. In addition, the results of hazard quotients for non-carcinogenic risk also showed little or no negative impacts on the health of local residents. However, it could be concluded from the carcinogenic risk results that chrysene and complex PAHs in water might pose a potential carcinogenic risk to local residents. Moreover, the possible sources of PAHs were identified as oil spills and vehicular emissions, as well as the burning of biomass and coal. PMID:26529001
Folwell, Benjamin D.
2016-01-01
High-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) are natural components of fossil fuels that are carcinogenic and persistent in the environment, particularly in oil sands process-affected water (OSPW). Their hydrophobicity and tendency to adsorb to organic matter result in low bioavailability and high recalcitrance to degradation. Despite the importance of microbes for environmental remediation, little is known about those involved in HMW-PAH transformations. Here, we investigated the transformation of HMW-PAHs using samples of OSPW and compared the bacterial and fungal community compositions attached to hydrophobic filters and in suspension. It was anticipated that the hydrophobic filters with sorbed HMW-PAHs would select for microbes that specialize in adhesion. Over 33 days, more pyrene was removed (75% ± 11.7%) than the five-ring PAHs benzo[a]pyrene (44% ± 13.6%) and benzo[b]fluoranthene (41% ± 12.6%). For both bacteria and fungi, the addition of PAHs led to a shift in community composition, but thereafter the major factor determining the fungal community composition was whether it was in the planktonic phase or attached to filters. In contrast, the major determinant of the bacterial community composition was the nature of the PAH serving as the carbon source. The main bacteria enriched by HMW-PAHs were Pseudomonas, Bacillus, and Microbacterium species. This report demonstrates that OSPW harbors microbial communities with the capacity to transform HMW-PAHs. Furthermore, the provision of suitable surfaces that encourage PAH sorption and microbial adhesion select for different fungal and bacterial species with the potential for HMW-PAH degradation. PMID:26850299
Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in urban air, Japan
NASA Astrophysics Data System (ADS)
Ohura, Takeshi; Horii, Yuichi; Kojima, Mitsuhiro; Kamiya, Yuta
2013-12-01
Concentrations of 3- to 5-ring chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and corresponding PAHs were quantified in 3-h integrated air samples, taken serially over 3-day periods in December 2009 (winter) and August 2010 (summer) in the urban area of Shizuoka, Japan. Twenty species of targeted ClPAHs were detected in both gas and particle phases throughout each campaign. Mean concentrations of total ClPAHs in the winter and summer campaigns were 133 ± 53 pg m-3 and 32 ± 27 pg m-3, respectively. Throughout the campaigns, diurnal variations of total ClPAHs concentrations did not have periodic fluctuation such as decreasing in daytime and increasing in nighttime, observed in PAHs. However, the mean concentrations of particulate ClPAHs trended to be slightly higher in nighttime than in daytime, but not for gaseous ClPAHs. Significant correlations were observed between the concentrations of total ClPAHs and total PAHs in particulate phase, but not in gaseous phase. In addition, for particulate phase, there were significant correlations between the concentrations of individual ClPAHs and corresponding parent PAHs, nitrate, and chlorine in summer, but not in winter. Considering these behaviors of ClPAHs in the air, the emission sources could have features of as follows: (i) specific emission sources emitted both ClPAHs and PAHs in particulate phase could be present in the area; (ii) particulate ClPAHs could be more strongly influenced by local sources and photochemical reactions rather than by transboundary air pollution; (iii) the possible sources could be combustion processes included biomass and fossil fuels.
Sinha, Sourab; Rahman, Ramees K; Raj, Abhijeet
2017-07-26
Resonantly stabilized radicals, such as propargyl, cyclopentadienyl, benzyl, and indenyl, play a vital role in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) that are soot precursors in engines and flames. Pyrene is considered to be an important PAH, as it is thought to nucleate soot particles, but its formation pathways are not well known. This paper presents a reaction mechanism for the formation of four-ring aromatics, pyrene and fluoranthene, through the combination of benzyl and indenyl radicals. The intermediate species and transition structures involved in the elementary reactions of the mechanism were studied using density functional theory, and the reaction kinetics were evaluated using transition state theory. The barrierless addition of benzyl and indenyl to form the adduct, 1-benzyl-1H-indene, was found to be exothermic with a reaction energy of 204.2 kJ mol -1 . The decomposition of this adduct through H-abstraction and H 2 -loss was studied to determine the possible products. The rate-of-production analysis was conducted to determine the most favourable reactions for pyrene and fluoranthene formation. The premixed laminar flames of toluene, ethylbenzene, and benzene were simulated using a well-validated hydrocarbon fuel mechanism with detailed PAH chemistry after adding the proposed reactions to it. The computed and experimentally observed species profiles were compared to determine the effect of the new reactions for pyrene and fluoranthene formation on their concentration profiles. The role of benzyl and indenyl combination in PAH formation and growth is highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maltseva, Elena; Petrignani, Annemieke; Buma, Wybren Jan
2016-11-01
In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μ m absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950–3150 cm{sup −1} range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μmore » m region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μ m band, and on features such as the two-component emission character of this band and the 3 μ m emission plateau.« less
Concentrations and sources of polycyclic aromatic hydrocarbons in indoor dust in China.
Qi, Hong; Li, Wen-Long; Zhu, Ning-Zheng; Ma, Wan-Li; Liu, Li-Yan; Zhang, Feng; Li, Yi-Fan
2014-09-01
Indoor dust samples were collected across China in the winter of 2010 from 45 private domiciles and 36 public buildings. 16 polycyclic aromatic hydrocarbons (PAHs) were determined by GC-MS. Total concentrations of PAHs ranged from 1.00 μg/g to 470 μg/g with a mean value of 30.9 μg/g. High-molecular weight (HMW) PAHs (4 to 6 rings) are the predominant PAHs found in indoor dust, accounting for 68% of the total PAH concentration in private domiciles, and 84.6% in public buildings. Traffic conditions and cooking methods were the two key factors controlling PAH levels, especially for coal combustion and vehicular traffic emission sources. A significant positive correlation was observed between PAH concentrations in indoor dust and based on location (latitude and longitude). The latitudinal distribution indicated a higher usage of coal for heating in Northern China than in Southern China. The longitudinal distribution indicated that the usage of oil and mineral fuels as well as economic development and population density increased from West China to East China. In addition, diagnostic ratios and principal component analysis (PCA) were used to explore source apportion, as indicated in both the pyrogenic and petrogenic sources of PAHs in indoor dust in China. Furthermore, the BaP equivalent was applied to assess the carcinogenic risk of PAHs, which also indicated that traffic emissions and coal combustion were the two major contributions to carcinogenic risk of PAHs in indoor dust in China. Copyright © 2014 Elsevier B.V. All rights reserved.
Han, Bin; Ding, Xiao; Bai, Zhipeng; Kong, Shaofei; Guo, Guanghuan
2011-09-01
Particle-associated polycyclic aromatic hydrocarbon (PAH) concentrations were investigated at eight sampling sites during cold periods where heating is used (heating period) (February to March, 2005) and warm periods where heating is not required (non-heating periods) (August to September 2006) in the urban area of Anshan, an iron and steel city in northeastern China. Eleven PAH species were measured using GC-MS. The total average concentrations of PAHs ranged from 46.14 to 385.60 ng m(-3) in the heating period and from 5.28 to 146.40 ng m(-3) in the non-heating period. The lowest concentration of ∑PAHs was observed at Qianshan, a monitoring site far from the city and industrial area, and the highest concentration occurred in the site located at the factory area of Anshan Iron and Steel Incorporation. Moreover, ambient PAH profiles were studied and high molecular weight PAH (including 4-6 rings) species occurred in the high fractions. Toxic equivalent factors analysis gave the potential carcinogenic risks in Anshan. For the heating sampling period, BaP equivalent concentration is in the range of 41.98 to 220.83 ng m(-3), and 9.23 to 126.00 ng m(-3) for the non-heating sampling period. By diagnostic ratio analysis, traffic emission and combustion (coal or biomass) were potential sources for PAHs in Anshan. Finally, PCA results indicated the major sources were vehicle emission, steel industry emission, and coal combustion for both heating and non-heating seasons, which agreed with the results from the diagnostic ratio analysis.
Cai, Minggang; Liu, Mengyang; Hong, Qingquan; Lin, Jing; Huang, Peng; Hong, Jiajun; Wang, Jun; Zhao, Wenlu; Chen, Meng; Cai, Minghong; Ye, Jun
2016-09-06
Semivolatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have the potential to reach pristine environments through long-range transport. To investigate the long-range transport of the PAHs and their fate in Antarctic seawater, dissolved PAHs in the surface waters from the western Pacific to the Southern Ocean (17.5°N to 69.2°S), as well as down to 3500 m PAH profiles in Prydz Bay and the adjacent Southern Ocean, were observed during the 27th Chinese National Antarctic Research Expedition in 2010. The concentrations of Σ9PAH in the surface seawater ranged from not detected (ND) to 21 ng L(-1), with a mean of 4.3 ng L(-1); and three-ring PAHs were the most abundant compounds. Samples close to the Australian mainland displayed the highest levels across the cruise. PAHs originated mainly from pyrogenic sources, such as grass, wood, and coal combustion. Vertical profiles of PAHs in Prydz Bay showed a maximum at a depth of 50 m and less variance with depth. In general, we inferred that the water masses as well as the phytoplankton were possible influencing factors on PAH surface-enrichment depth-depletion distribution. Inventory estimation highlighted the contribution of intermediate and deep seawater on storing PAHs in seawater from Prydz Bay, and suggested that climate change rarely shows the rapid release of the PAHs currently stored in the major reservoirs (intermediate and deep seawater).
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Yadav, Jagjit S.
2011-01-01
The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3–4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp129 and Leu324 in the oxidation mechanism of CYP5136A3. Replacing Trp129 with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83–90%) was observed for the W129L mutation as compared to W129F (28–41%). However, the two mutations showed a comparable loss (60–67%) in C9-AP oxidation. Replacement of Leu324 with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20–58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp129 and Leu324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates. PMID:22164262
Gao, Jia-Jia; Luo, Wei; Xi, Xiao-Xia
2014-12-01
The Yanghe Watershed, situated at the upwind of Beijing, is an important water-source site and ecologic protection barrier for Beijing and Zhangjiakou cities. The Yanghe Watershed is also a farming-pastoral transitional area and an ecologically vulnerable and sensitive region, as well as the place applying for Winter Olympic Game in 2022. Establishment of atmospheric emissions inventory of polycyclic aromatic hydrocarbons (PAHs) and identification of its sources within the Yanghe Watershed and its possible transportation paths to Beijing can help us get a better understanding of regional environmental pollution (especially air environmental pollution) in Beijing-Zhangjiakou area. In the present study, PAHs emission from different counties and cities within the Yanghe Watershed in 2012 was calculated based on the statistical data of local industries, agriculture and resident living while PAHs emission factors were estimated. According to the cluster analysis for air transport trajectories, main categories of air masses were obtained. Results indicated that total emission of PAHs in 2012 was 4.4 x 10(2) t. Coal combustion and crop-straw burning were the most important emission sources of PAHs, accounting for 76% and 16% of total emission of PAHs, respectively. Xuanhua county had the greatest emission of PAHs (49 t), followed by Xinghe (36 t), Tianzhen (32 t), Huailai (24 t) and Wanquan (15 t). In emission of 16 isomers of PAHs, the emission of high molecular weight isomers containing 4-6 rings was approximate to that of low molecular weight isomers containing 2-3 rings, accounting for approximately 50% of total emission of PAHs. Emission of PAHs had positive correlations with gross industrial production (GIP) (r = 0.96, P < 0.05) and resident income (RI) (r = 0.94, P < 0.05) and population density (PD) (r = 0.92, P < 0.05), but negatively correlated with land area (LA) (r = - 0.9, P < 0.05) and no significant correlationship with gross output value of agriculture (GOA) (r = 0.026, P > 0.01). The high emission of PAHs within the Yanghe Watershed was associated with local energy structure and residents' consumption level. Combined the back trajectory analysis with PAHs emission, high amount of PAHs could be transported to Beijing by northwest airflow, suggesting its potential ecological risk and human health effect in Beijing.
Daso, Adegbenro P; Akortia, Eric; Okonkwo, Jonathan O
2016-06-01
The concentrations of eighteen (18) polycyclic aromatic hydrocarbons (PAHs), including the 16 USEPA's priority PAHs as well as two alkyl-substituted naphthalenes were determined in dumpsite soils collected from different sampling sites within the Agbogbloshie e-waste dismantling site in Accra, Ghana. Following their isolation with ultrasonic-assisted extraction technique, the concentrations of the PAHs were determined by gas chromatography mass spectrometry (GC-MS). Loss-on-ignition (LOI) method was employed for the determination of total organic carbon (TOC) of the soil samples. The mean Σ18PAHs obtained were 3006, 5627, 3046, 5555, and 7199 ng g(-1) dry weight (dw) for sampling sites A (mosque), B (dismantling site), C (residential house/police station), D (personal computer repairers' shop) and E (e-waste open burning area), respectively. In all cases, the prevalence of phenanthrene, fluoranthene and pyrene was generally observed across the sampling sites. In this study, PAHs with two to three rings and four to six rings exhibited strong positive correlations, whereas BbF and BkF showed weak positive and negative correlations with other PAHs investigated. With the exception of BbF and BkF, all the PAHs had moderate to strong positive correlations with the TOC. Benzo[a]pyrene equivalent (BaPeq) concentration is a useful indicator of the carcinogenic potency of environmental matrices and these ranged between 111 and 454 ng g(-1), which are generally below the 'safe' level of 600 ng g(-1) established for the protection of the environment and human health. Interestingly, the seven carcinogenic PAHs were the major contributors to the BaPeq concentrations accounting between 97.7 and 98.3 %. Despite the minimal risk to cancer via exposure to the investigated dumpsite soil as indicated in the present study, the prolonged exposure to these pollutants via various exposure pathways may result in increased risk to cancer over time. The application of several methodological approaches for PAH source apportionment, including the use of molecular diagnostic ratios, mostly implicated pyrogenic processes as the main sources of PAHs into the investigated dumpsite soils. Furthermore, their compositional profiles across the sampling sites also suggest similar sources of PAHs into the dumpsite soil.
Campo, Laura; Hanchi, Mariem; Olgiati, Luca; Polledri, Elisa; Consonni, Dario; Zrafi, Ines; Saidane-Mosbahi, Dalila; Fustinoni, Silvia
2016-07-01
Occupational exposures during iron and steel founding have been classified as carcinogenic to humans, and the exposure to polycyclic aromatic hydrocarbons (PAHs) in this industrial setting may contribute to cancer risk. The occupational exposure to PAHs was assessed in 93 male workers at an electric steel foundry in Tunisia by biomonitoring, with the aims of characterizing the excretion profile and investigating the influence of job title and personal characteristics on the biomarkers. Sixteen 2-6 ring unmetabolized PAHs (U-PAHs) and eight hydroxylated PAH metabolites (OHPAHs) were analyzed by gas chromatography-triple quadrupole tandem mass spectrometry and liquid chromatography triple quadrupole tandem mass spectrometry, respectively. Among U-PAHs, urinary naphthalene (U-NAP) was the most abundant compound (median level: 643ng l(-1)), followed by phenanthrene (U-PHE, 18.5ng l(-1)). Urinary benzo[a]pyrene (U-BaP) level was <0.30ng l(-1) Among OHPAHs, 2-hydroxynaphthalene (2-OHNAP) was the most abundant metabolite (2.27 µg l(-1)). Median 1-hydroxypyrene (1-OHPYR) was 0.52 µg l(-1) Significant correlations among urinary biomarkers were observed, with Pearson's r ranging from 0.177 to 0.626. 1-OHPYR was correlated to benzo[a]pyrene, but not to five- and six-rings PAHs. A multiple linear regression model showed that job title was a significant determinant for almost all U-PAHs. In particular, employees in the steel smelter workshop had higher levels of high-boiling U-PAHs and lower levels of low-boiling U-PAHs than those of workers with other job titles. Among OHPAHs, this model was significant only for naphthols and 1-hydroxyphenanthrene (1-OHPHE). Smoking status was a significant predictor for almost all biomarkers. Among all analytes, U-PHE and 1-OHPHE were the less affected by tobacco smoke, and they were significantly correlated with both low- and high-molecular-weight compounds, and their levels were related to job titles, so they could be proposed as suitable biomarkers of PAH exposure at steel foundries. Based on 1-OHPYR levels, our findings show that occupational exposure of these workers was similar to that reported in recent studies of electric steel foundry workers. The multianalytic approach is useful in revealing different exposure levels among job titles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne
2015-09-01
The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (β-Proteobacteria) and Steroidobacter (γ-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column
NASA Astrophysics Data System (ADS)
Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan
2015-12-01
The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.
Ratola, Nuno; Amigo, José Manuel; Alves, Arminda
2010-04-01
Pine needle samples from two pine species (Pinus pinaster Ait. and Pinus pinea L.) were collected at 29 sites scattered throughout Portugal, in order to biomonitor the levels and trends of 16 polycyclic aromatic hydrocarbons (PAHs). The values obtained for the sum of all PAHs ranged from 76 to 1944 ng/g [dry weight (dw)]. Despite the apparent matrix similarities between both pine species, P. pinaster needles revealed higher mean entrapment levels than P. pinea (748 and 399 ng/g (dw) per site, respectively). The urban and industrial sites have the highest average of PAH incidence [for P. pinea, 465 and 433 ng/g (dw) per site, respectively, and for P. pinaster, 1147 and 915 ng/g (dw)], followed by the rural sites [233 ng/g and 711 ng/g (dw) per site, for P. pinea and P. pinaster, respectively]. The remote sites, both from P. pinaster needles, show the least contamination, with 77 ng/g (dw) per site. A predominance of 3-ring and 4-ring PAHs was observed in most samples, with phenanthrene having 30.1% of the total. Naphthalene prevailed in remote sites. Rainfall had no influence on the PAHs levels, but there was a relationship between higher wind speeds and lower concentrations. PAH molecular ratios revealed the influence of both petrogenic and pyrogenic sources.
Shokri, Siamak; Li, Jingbai; Manna, Manoj K.; ...
2017-08-24
In this paper, we report a novel reductive desulfurization reaction involving π-acidic naphthalene diimides 1 (NDI) using thionating agents such as Lawesson’s reagent. Along with the expected thionated NDI derivatives 2-6, new heterocyclic naphtho-p-quinodimethane compounds 7 depicting broken/reduced symmetry were successfully isolated and fully characterized. Empirical studies and theoretical modeling suggest that was formed via a six-membered ring oxathiaphosphenine intermediate rather than the usual four-membered ring oxathiaphosphetane of 2-6. Aside from the reduced symmetry in 7 as confirmed by single-crystal XRD analysis, we established that the ground state UV-vis absorption of 7 is red-shifted in comparison to the parent NDImore » 1. This result was expected in the case of thionated polycyclic diimides. However, unusual low energy transitions originate from Baird 4nπ aromaticity of compounds 7 in lieu of the intrinsic Huckel (4n + 2)π aromaticity as encountered in NDI 1. Moreover, complementary theoretical modeling results also corroborate this change in aromaticity of 7. Consequently, photophysical investigations show that, compared to parent NDI 1, 7 can easily access and emit from its T 1 state with a phosphorescence 3(7a)* lifetime of τ P = 395 μs at 77 K indicative of the formation of the corresponding “aromatic triplet” species according to the Baird’s rule of aromaticity.« less
Lin, Qianxin; Mendelssohn, Irving A; Carney, Kenneth; Miles, Scott M; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of spilled oil, which receives considerable attention in marine conditions, could be an effective way to cleanup wetland oil spills. An experimental in-situ burn was conducted to study the effects of oil type, marsh type, and water depth on oil chemistry and oil removal efficiency from the water surface and sediment. In-situ burning decreased the totaltargeted alkanes and total targeted polycyclic aromatic hydrocarbons (PAHs) in the burn residues as compared to the pre-burn diesel and crude oils. Removal was even more effective for short-chain alkanes and low ring-number PAHs. Removal efficiencies for alkanes and PAHs were >98% in terms of mass balance although concentrations of some long-chain alkanes and high ring-number PAHs increased in the burn residue as compared to the pre-burn oils. Thus, in-situ burning potentially prevents floating oil from drifting into and contaminating adjacent habitats and penetrating the sediment. In addition, in-situ burning significantly removed diesel oil that had penetrated the sediment for all water depths. Furthermore, in-situ burning at a water depth 2 cm below the soil surface significantly removed crude oil that had penetrated the sediment. As a result, in-situ burning may reduce the long-term impacts of oil on benthic organisms.
System for RFID-Enabled Information Collection
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor)
2017-01-01
A sensor and system provide for radio frequency identification (RFID)-enabled information collection. The sensor includes a ring-shaped element and an antenna. The ring-shaped element includes a conductive ring and an RFID integrated circuit. The antenna is spaced apart from the ring-shaped element and defines an electrically-conductive path commensurate in size and shape to at least a portion of the conductive ring. The system may include an interrogator for energizing the ring-shaped element and receiving a data transmission from the RFID integrated circuit that has been energized for further processing by a processor.
Saturn's Ring: Pre-Cassini Status and Mission Goals
NASA Astrophysics Data System (ADS)
Cuzzi, Jeff N.
1999-01-01
In November 1980, and again in August 1981, identical Voyager spacecraft flew through the Saturn system, changing forever the way we think about planetary rings. Although Saturn's rings had been the only known ring system for three centuries, a ring system around Uranus had been discovered by stellar occultations from Earth in 1977, and the nearly transparent ring of Jupiter was imaged by Voyager in 1979 (the presence of material there had been inferred from charged particle experiments on Pioneer 10 and 11 several years earlier). While Saturn had thus temporarily lost its uniqueness as having the only ring system, with Voyager it handily recaptured the role of having the most fascinating one. The Voyager breakthroughs included spiral density and bending waves such as cause galactic structure; ubiquitous fine-scale radial 'irregular' structure, with the appearance of record-grooves; regional and local variations in particle color; complex, azimuthally variable ring structure; empty gaps in the rings, some containing very regular, sharp-edged, elliptical rings and one containing both a small moonlet and incomplete arcs of dusty material; and shadowy 'spokes' that flicker across the main rings. One of the paradigm shifts of this period was the realization that many aspects of planetary rings, and even the ring systems themselves, could be 'recent' on geological timescales. These early results are reviewed and summarized in the Arizona Space Science series volumes 'Saturn'. (An excellent review of ring dynamics at a formative stage is by Goldreich and Tremaine.) From the mid 1980's to the time of this writing, progress has been steady, while at a less heady pace, and some of the novel ring properties revealed by Voyager 1 and 2 are beginning to be better understood. It is clearly impossible to cite, much less review, every advance over the last decade; however, below we summarize the main advances in understanding of Saturn's rings since the mid 1980's, in the context of the Cassini Science Objectives.
NASA Astrophysics Data System (ADS)
Cao, Xinyue; Hao, Xuewei; Shen, Xianbao; Jiang, Xi; Wu, Bobo; Yao, Zhiliang
2017-01-01
Polycyclic aromatic hydrocarbon (PAH) and nitro-polycyclic aromatic hydrocarbon (NPAH) emissions from 18 diesel trucks of different sizes and with different emission standards were tested in Beijing using a portable emission measurement system (PEMS). Both the gaseous- and particulate-phase PAHs and NPAHs were quantified by high-performance liquid chromatography (HPLC) in the laboratory. The emission factors (EFs) of the total PAHs from light-duty diesel trucks (LDDTs), medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs) were 82229.11 ± 41906.06, 52867.43 ± 18946.47 and 93837.35 ± 32193.14 μg/km, respectively, much higher than the respective values of total NPAHs from their counterpart vehicles. The gaseous phase had an important contribution to the total PAHs and NPAHs, with a share rate of approximately 69% and 97% on average, respectively. The driving cycle had important impacts on the emissions of PAHs and NPAHs, especially for LDDTs and HDDTs. Higher emissions of PAHs and NPAHs were detected on non-highway roads compared to that on highways for these two types of vehicles. Compared to the results of different studies, the difference in the EFs of PAHs and NPAHs can reach several orders of magnitudes, which would introduce errors in the development of an emission inventory of PAHs and NPAHs.
The narrow rings of Jupiter, Saturn and Uranus
NASA Technical Reports Server (NTRS)
Dermott, S. F.; Murray, C. D.; Sinclair, A. T.
1980-01-01
The origin of the newly discovered narrow ring systems around Jupiter, Saturn and Uranus is considered. It is pointed out that both the Uranian and Jovian ring systems have mean orbital radii of 1.8 planetary radii and lie within the Roche zones of their respective planets, and it is suggested that the Jovian ring is the product of the disintegration of a satellite that entered the Roche zone, and that large numbers of small particles are now in horseshoe orbits about the Lagrangian equilibrium points of the remnant chunks. Analysis of the path of a ring particle in a horseshoe orbit is shown to result in ring structures in agreement with those observed for the circular rings of Jupiter and the highly eccentric ring of Uranus. The stability of these ring systems is then considered, and it is suggested that the F ring of Saturn, which lies outside the Roche zone, represents primordial matter not yet accreted by small satellites just inside the Mimas first-order resonances.
Image processing and analysis of Saturn's rings
NASA Technical Reports Server (NTRS)
Yagi, G. M.; Jepsen, P. L.; Garneau, G. W.; Mosher, J. A.; Doyle, L. R.; Lorre, J. J.; Avis, C. C.; Korsmo, E. P.
1981-01-01
Processing of Voyager image data of Saturn's rings at JPL's Image Processing Laboratory is described. A software system to navigate the flight images, facilitate feature tracking, and to project the rings has been developed. This system has been used to make measurements of ring radii and to measure the velocities of the spoke features in the B-Ring. A projected ring movie to study the development of these spoke features has been generated. Finally, processing to facilitate comparison of the photometric properties of Saturn's rings at various phase angles is described.
Daniels, Blake E.; Ni, Jane; Reisman, Sarah E.
2016-01-01
A conjugate addition/asymmetric protonation/aza-Prins cascade reaction has been developed for the enantioselective synthesis of fused polycyclic indolines. A catalyst system generated from ZrCl4 and 3,3’-dibromo-BINOL enables the synthesis of a range of polycyclic indolines in good yields and high enantioselectivity. A key finding is the use of TMSCl and 2,6-dibromophenol as a stoichiometric source of HCl to facilitate catalyst turnover. This transformation is the first in which a ZrCl4•BINOL complex serves as a chiral Lewis acid-assisted Brønsted acid. PMID:26844668
Pla, Daniel; Tan, Derek S.; Gin, David Y.
2014-01-01
A key thioether substituent in readily accessible 2-alkyl-5-(methylthio)tetrazoles enables facile photoinduced denitrogenation and intramolecular nitrile imine 1,3-dipolar cycloaddition to afford a wide range of polycyclic pyrazoline products with excellent diastereoselectivity. The methylthio group red-shifts the UV absorbance of the tetrazole, obviating the requirement in all previous substrate systems for at least one aryl substituent, and can subsequently be converted into a variety of other functionalities. This synthetic platform has been applied to the concise total syntheses of the alkaloid natural products (±)-newbouldine and withasomnine. PMID:25114776
Central circuitry in the jellyfish Aglantha. II: The ring giant and carrier systems
Mackie; Meech
1995-01-01
1. The ring giant axon in the outer nerve ring of the jellyfish Aglantha digitale is a multinucleate syncytium 85 % of which is occupied by an electron-dense fluid-filled vacuole apparently in a GibbsDonnan equilibrium with the surrounding band of cytoplasmic cortex. Micropipette recordings show small (-15 to -25 mV) and large (-62 to -66 mV) resting potentials. Low values, obtained with a high proportion of the micropipette penetrations, are assumed to be from the central vacuole; high values from the cytoplasmic cortex. Background electrical activity includes rhythmic oscillations and synaptic potentials representing hair cell input caused by vibration. 2. After the ring giant axon has been cut, propagating action potentials evoked by stimulation are conducted past the cut and re-enter the axon on the far side. The system responsible (the carrier system) through-conducts at a velocity approximately 25 % of that of the ring giant axon and is probably composed of small neurones running in parallel with it. Numerous small neurones are seen by electron microscopy, some making one-way and some two-way synapses with the ring giant. 3. Despite their different conduction velocities, the two systems normally appear to fire in synchrony and at the velocity of the ring giant axon. We suggest that, once initiated, ring giant spikes propagate rapidly around the margin, firing the carrier neurones through serial synapses and giving them, in effect, the same high conduction velocity. Initiation of ring giant spikes can, however, require input from the carrier system. The spikes are frequently seen to be mounted on slow positive potentials representing summed carrier postsynaptic potentials. 4. The carrier system fires one-for-one with the giant axons of the tentacles and may mediate impulse traffic between the latter and the ring giant axon. We suggest that the carrier system may also provide the pathways from the ring giant to the motor giant axons used in escape swimming. 5. The findings show that the ring giant axon functions in close collaboration with the carrier system, increasing the latter's effective conduction velocity, and that interactions with other neuronal sub-systems are probably mediated exclusively by the carrier system.
HST Observations of the Uranian Ring Plane Crossing: Early Results
NASA Astrophysics Data System (ADS)
Showalter, Mark R.; Lissauer, J. J.; French, R. G.; Hamilton, D. P.; Nicholson, P. D.; de Pater, I.
2007-10-01
Between early May and mid-August 2007, Earth was on the north side of the Uranian ring plane while the Sun was still shining on the rings’ southern face. This has provided an exceedingly rare opportunity to view the ring system via transmitted light. The ɛ ring, which typically out-shines every other component of the inner ring-moon system, has been rendered essentially invisible. We have been conducting regular imaging of the Uranian system throughout this period with the Wide Field/Planetary Camera on HST to address numerous scientific goals. (1) To search the inner Uranian system for the "shepherding” moons long believed to confine the narrow rings; (2) to study the packing density of the main rings via direct observations of their vertical thickness; (3) to search for the inner dust rings that appeared in a few Voyager images; (4) to determine the vertical thickness of the faint outer rings μ and ν (5) to obtain the most sensitive determinations of the outer rings’ colors and try to understand why ring ν is red but ring μ is blue; (6) to search for additional outer dust rings under optimal viewing geometry; and (7) to continue monitoring the seemingly chaotic orbital variations of the inner Uranian moons, particularly Mab. HST observations span mid-May to mid-September. We will present our initial results from this observing program.
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2011-07-01
Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.
NASA Astrophysics Data System (ADS)
Esposito, Larry
2014-03-01
Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.
Wang, Xianli; Kang, Haiyan; Wu, Junfeng
2016-05-01
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid-phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid-phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0-1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015-0.591 and 0.045-1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1-monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m(-3) . 9,10-Dichloroanthracene and 1-monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural Mediators in the Oxidation of Polycyclic Aromatic Hydrocarbons by Laccase Mediator Systems
Johannes, Christian; Majcherczyk, Andrzej
2000-01-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter with redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds. PMID:10653713
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section. POM = Polycyclic organic matter emissions in terms of milligrams per mile, as determined in... milligrams per mile, as determined in paragraph (e)(7) of this section. POM = Polycyclic organic matter... equations given in paragraphs (e)(7) (i) and (ii) of this section. (8) Polycyclic organic matter mass...
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section. POM = Polycyclic organic matter emissions in terms of milligrams per mile, as determined in... milligrams per mile, as determined in paragraph (e)(7) of this section. POM = Polycyclic organic matter... equations given in paragraphs (e)(7) (i) and (ii) of this section. (8) Polycyclic organic matter mass...
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section. POM = Polycyclic organic matter emissions in terms of milligrams per mile, as determined in... milligrams per mile, as determined in paragraph (e)(7) of this section. POM = Polycyclic organic matter... equations given in paragraphs (e)(7) (i) and (ii) of this section. (8) Polycyclic organic matter mass...
Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C
2007-06-01
Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed to treat a PAH-polluted plume showed that 0.1-1 m of sorption media is enough even for high water fluxes such as 0.1-2 m(3)/m(2)/day for both sorbents.
NASA Astrophysics Data System (ADS)
Hancock, L. O.
2013-12-01
G. Jones (1856) was first to suggest that the Earth might have its own ring, noting that an Earth ring in the ecliptic plane would account for the latitude dependence of the zodiacal light. Jones's proposal was not accepted: it is difficult to see why the ecliptic would accumulate mass within the Earth-Moon system. Very recently, however, this objection has been mitigated by the discovery of Saturn's Phoebe ring: evidently, the plane of a planetary moon's orbit has now been observed as the site of mass accumulation. An adjustment of just a few degrees from ecliptic to the plane of the lunar orbit gives Jones's proposal the boost of an existing Solar System analogue, mysterious though the analogue is. J. O'Keefe (1980) was first to suggest that an Earth ring system could drive climate: a ring in the equatorial plane, waxing and waning in optical depth, could drive the alternation of Ice Age and interglacial climates. This driver would account for the observation that the Ice Age climate was mainly a difference in winter only. Could Earth have a ring system with one or both elements? Even if light and unstable, it would be important to assess, as it could drive climate change. Dust assessments have not discovered a ring system, but they do not cover low orbits well, nor rule out very small particles stringently. Yet tiny particles can be optically important. There are many difficulties with this hypothesis: Why have ground-based observers never identified an equatorial ring, which after all should be the brightest element of a ring system? Why should a ring system be made of very small particles only? The material must be constantly falling to Earth - where is it? Finally, can we believe in the level of lunar geological activity needed to sustain an Earth ring system? This presentation addresses only one issue: Could ground-based observers have seen but misidentified an equatorial ring? To support consideration of that question, herewith a simple geometric exercise: a schema of ring effects on the southern sky: (i) extinction of extra-terrestrial light between celestial equator and horizon; (ii) brightening of extra-terrestrial light via light-through-dust effects near the southern horizon; and (iii) reflection of sunlight from celestial equator to horizon. These effects would be modulated by season (due to ring self-shadowing) and hour of the night (because of Earth's shadow). We suggest that the expected effects are not "missing" at all - similar effects are well known to observers but are taken to be fully accounted for by skyglow, airglow and light pollution, qualitatively similar phenomena that certainly exist. We conclude that ground-based observers' non-identification of an equatorial ring is not a counter-indicator of a ring's existence. As far as this consideration goes, the question of an Earth ring system is open.
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.
1994-01-01
Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system
O-Ring sealing arrangements for ultra-high vacuum systems
Kim, Chang-Kyo; Flaherty, Robert
1981-01-01
An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.
Superfluid qubit systems with ring shaped optical lattices
Amico, Luigi; Aghamalyan, Davit; Auksztol, Filip; Crepaz, Herbert; Dumke, Rainer; Kwek, Leong Chuan
2014-01-01
We study an experimentally feasible qubit system employing neutral atomic currents. Our system is based on bosonic cold atoms trapped in ring-shaped optical lattice potentials. The lattice makes the system strictly one dimensional and it provides the infrastructure to realize a tunable ring-ring interaction. Our implementation combines the low decoherence rates of neutral cold atoms systems, overcoming single site addressing, with the robustness of topologically protected solid state Josephson flux qubits. Characteristic fluctuations in the magnetic fields affecting Josephson junction based flux qubits are expected to be minimized employing neutral atoms as flux carriers. By breaking the Galilean invariance we demonstrate how atomic currents through the lattice provide an implementation of a qubit. This is realized either by artificially creating a phase slip in a single ring, or by tunnel coupling of two homogeneous ring lattices. The single qubit infrastructure is experimentally investigated with tailored optical potentials. Indeed, we have experimentally realized scaled ring-lattice potentials that could host, in principle, n ~ 10 of such ring-qubits, arranged in a stack configuration, along the laser beam propagation axis. An experimentally viable scheme of the two-ring-qubit is discussed, as well. Based on our analysis, we provide protocols to initialize, address, and read-out the qubit. PMID:24599096
NASA Astrophysics Data System (ADS)
Hancock, L. O.; Povenmire, H.
2010-12-01
Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring system’s orbital elements and structure. Our work concludes that rings may exist in Earth’s equatorial plane and in the plane of the lunar orbit, that such rings are filamentary structures comprising segments of geologically homogeneous material flung into earth’s orbit at distinct periods of lunar volcanism, and that earth’s weather may indeed be very strongly affected by the rings. In closing, until the time of the lunar landing in 1969, the moon was considered geologically dead. But today, we have multiple lines of evidence that the Moon is still volcanically active. According to our study, this volcanism may affect weather and climate considerably. If lunar volcanism and weather on Earth are linked, then a satisfactory understanding of lunar volcanism is called for by considerations of human welfare. The subsistence farmer has an immediate need to know what is true about our Moon; food security depends on it.
Evolution of Planetary Ringmoon Systems
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey N.
1995-01-01
The last few decades have seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of these systems as our intuition (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.
NASA Astrophysics Data System (ADS)
Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.
2002-08-01
The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.
Kok, H P; de Greef, M; Borsboom, P P; Bel, A; Crezee, J
2011-01-01
Regional hyperthermia systems with 3D power steering have been introduced to improve tumour temperatures. The 3D 70-MHz AMC-8 system has two rings of four waveguides. The aim of this study is to evaluate whether T(90) will improve by using a higher operating frequency and whether further improvement is possible by adding a third ring. Optimised specific absorption rate (SAR) distributions were evaluated for a centrally located target in tissue-equivalent phantoms, and temperature optimisation was performed for five cervical carcinoma patients with constraints to normal tissue temperatures. The resulting T(90) and the thermal iso-effect dose (i.e. the number of equivalent min at 43°C) were evaluated and compared to the 2D 70-MHz AMC-4 system with a single ring of four waveguides. FDTD simulations were performed at 2.5 × 2.5 × 5 mm(3) resolution. The applied frequencies were 70, 100, 120, 130, 140 and 150 MHz. Optimised SAR distributions in phantoms showed an optimal SAR distribution at 140 MHz. For the patient simulations, an optimal increase in T(90) was observed at 130 MHz. For a two-ring system at 70 MHz the gain in T(90) was about 0.5°C compared to the AMC-4 system, averaged over the five patients. At 130 MHz the average gain in T(90) was ~1.5°C and ~2°C for a two and three-ring system, respectively. This implies an improvement of the thermal iso-effect dose with a factor ~12 and ~30, respectively. Simulations showed that a 130-MHz two-ring waveguide system yields significantly higher tumour temperatures compared to 70-MHz single-ring and double-ring waveguide systems. Temperatures were further improved with a 130-MHz triple-ring system.
NASA Technical Reports Server (NTRS)
1989-01-01
This pair of Voyager 2 images (FDS 11446.21 and 11448.10), two 591-s exposures obtained through the clear filter of the wide angle camera, show the full ring system with the highest sensitivity. Visible in this figure are the bright, narrow N53 and N63 rings, the diffuse N42 ring, and (faintly) the plateau outside of the N53 ring (with its slight brightening near 57,500 km).
Enriching screening libraries with bioactive fragment space.
Zhang, Na; Zhao, Hongtao
2016-08-01
By deconvoluting 238,073 bioactive molecules in the ChEMBL library into extended Murcko ring systems, we identified a set of 2245 ring systems present in at least 10 molecules. These ring systems belong to 2221 clusters by ECFP4 fingerprints with a minimum intracluster similarity of 0.8. Their overlap with ring systems in commercial libraries was further quantified. Our findings suggest that success of a small fragment library is driven by the convergence of effective coverage of bioactive ring systems (e.g., 10% coverage by 1000 fragments vs. 40% by 2million HTS compounds), high enrichment of bioactive ring systems, and low molecular complexity enhancing the probability of a match with the protein targets. Reconciling with the previous studies, bioactive ring systems are underrepresented in screening libraries. As such, we propose a library of virtual fragments with key functionalities via fragmentation of bioactive molecules. Its utility is exemplified by a prospective application on protein kinase CK2, resulting in the discovery of a series of novel inhibitors with the most potent compound having an IC50 of 0.5μM and a ligand efficiency of 0.41kcal/mol per heavy atom. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei
2017-11-30
High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.
Planetary rings: Structure and history
NASA Astrophysics Data System (ADS)
Esposito, L.
The composition and structure of planetary rings provide the key evidence to understand their origin and evolution. Before the first space observations, we were able to maintain an idealized view of the rings around Saturn, the only known ring system at that time. Rings were then discovered around Jupiter, Uranus and Neptune. Saturn's F ring was discovered by Pioneer 11. Our ideal view of circular, planar, symmetric and unchanging rings was shattered by observations of inclined, eccentric rings, waves and wavy edges, and numerous processes acting at rates that give timescales much younger than the solar system. Moons within and near the rings sculpt them and are the likely progenitors of future rings. The moonlet lifetimes are much less than Saturn's age. The old idea of ancient rings gave rise to youthful rings, that are recently created by erosion and destruction of small nearby moons. Although this explanation may work well for most rings, Saturn's massive ring system provides a problem. It is extremely improbable that Saturn's rings were recently created by the destruction of a moon as large as Mimas, or even by the breakup of a large comet that passed too close to Saturn. The history of Saturn's rings has been a difficult problem, now made even more challenging by the close-up Cassini measurements. Cassini observations show unexpected ring variability in time and space. Time variations are seen in ring edges, in the thinner D and F rings, and in the neutral oxygen cloud, which outweighs the E ring in the same region around Saturn. The rings are inhomogeneous, with structures on all scales, sharp gradients and edges. Compositional gradients are sharper than expected, but nonetheless cross structural boundaries. This is evidence for ballistic transport that has not gone to completion. The autocovariance maximizes in the middle of the A ring, with smaller structure near the main rings' outer edge. Density wave locations have a fresher ice composition. The processes of collisions, diffusion and transport should have homogenized the rings over the age of the solar system. Instead, these differences persist. The mass density in the Cassini division inferred from density waves is so low, that the material there would be ground to 1 dust in 30,000 years. The observed moons that cause such interesting structure in the rings have short lifetimes against disruption by cometary bombardment and against the angular momentum transfers that push them away from the rings. These rapid processes evident in the Cassini data have been taken as evidence that the rings were recently created, perhaps from a comet that passed too close to Saturn. Instead, an alternative is that primordial material may have been re-used and recycled. In the zone near the Roche limit where rings are found, limited accretion is possible, with the larger bodies able to recapture smaller fragments. The `propeller' structures, the self-gravity wakes, and the size distribution of clumps in Saturn's F ring are all indications of the accretion process. Recycling could extend the ring lifetime almost indefinitely. The variety evident in the latest observations and the low mass density inferred for the largest bodies are both consistent with extensive recycling of ring material as the explanation of the apparent youth of Saturn's rings. Similar processes are likely occurring tin the other ring systems and in the formation of planets around other stars. 2
Results from a survey of the dynamics shaping Uranus' Mab/μ-ring system
NASA Astrophysics Data System (ADS)
Kumar, Kartik; de Pater, Imke; Showalter, Mark R.
2014-11-01
Based on Hubble Space Telescope (HST) data, Showalter and Lissauer (2006) reported the discovery of two faint rings beyond Uranus’ main rings: the ν- and μ- rings. They constitute Uranus' outer ring system and are located beyond the ɛ-ring but interior to the large classical moons. After co-adding a series of HST images, Showalter and Lissauer (2006) obtained radial profiles for both new rings. They discovered that the peak radial intensity of the μ-ring aligns closely with the orbit of Mab. Along with numerous other observations, this points to the fact that the Mab/μ-ring system is highly coupled.The discovery of the μ-ring has led to open questions about dust dynamics beyond Uranus' main rings. Like Saturn's E-ring, observations reveal that the μ-ring is blue, indicative of a pre-dominance of sub-micron-sized particles (de Pater et al., 2006). The E-ring results from plumes on Enceladus' south pole, however the origin of the μ-ring remains a mystery. The latter is likely fed by ejecta from micro-meteorite impacts with Mab, much like Jupiter's faint rings are regenerated by companion (small) moons (Burns et al., 1999). The μ-ring's steep size-distribution suggests that there is an unknown mechanism at play that hides or removes large dust particles. We present results from an investigation into the forces shaping the μ-ring. To simulate the motion of dust in the Mab/μ-ring system, we developed a numerical toolbox (Dustsim; Kumar et al., 2015) that uses Tudat (Kumar et al., 2012). We performed integrations using Dustsim that included the effects of Uranus' gravity field, titled magnetic moment, solar radiation pressure, and collisions with a putative suite of large μ-ring bodies, hypothesized as the cause of Mab's anomalous orbital motion (Kumar et al., 2014). Following on from previous studies (e.g., Sfair and Giuliatti Winter, 2009; Sfair and Giuliatti Winter, 2012), we present a survey of the expected lifetime of μ-ring dust, as a function of particle size. Our results lay the basis for further research into the hypothesis that the blueness of the μ-ring is a manifestation of size-based sorting, resulting from the natural environment.
Galano, Annia
2007-03-08
Physisorption and chemisorption processes of thiophene on coronene and 2Si-coronene have been studied using density functional theory and MP2 methods. These systems have been chosen as the simplest models to describe the adsorption of thiophene-like compounds on polycyclic aromatic hydrocarbons (PAHs). The calculated data suggest that the presence of silicon atoms in PAHs could favor their interaction with thiophene and similar compounds. Small stabilization energies have been found for several physisorbed complexes. The thiophene chemisorption on coronene seems very unlikely to occur, while that on 2Si-coronene leads to addition products which are very stable, with respect to the isolated reactants. These chemisorption processes were found to be exoergic (DeltaG < 0) in the gas phase and in the nonpolar liquid phase. The results reported in this work suggest that silicon defects on extended polycyclic aromatic hydrocarbons, such as graphite, soot, and large-diameter carbon nanotubes, could make them useful in the removal processes of aromatic sulfur compounds from oil hydrocarbons.
Yang, Minmin; Wang, Yan; Li, Hongli; Li, Tao; Nie, Xiaoling; Cao, Fangfang; Yang, Fengchun; Wang, Zhe; Wang, Tao; Qie, Guanghao; Jin, Tong; Du, Lili; Wang, Wenxing
2018-06-15
A study of PM 2.5 -associated PAHs analysis at Mount Lushan (1165m) was conducted to investigate the distributions of PAHs in PM 2.5 and influences of cloud/fog. The main purpose was to quantify the main emission sources of PAHs and estimate regional transport effects within the boundary layer. Mount Lushan is located between the boundary layer and troposphere, which is an ideal site for atmosphere transport investigation. The concentrations of PAHs in PM 2.5 were analyzed with GC-MS. The results showed that the volume concentration was 6.98ng/m 3 with a range from 1.47 to 25.17ng/m 3 and PAHs mass were 160.24μg/g (from 63.86 to 427.97μg/g) during the sampling time at Mount Lushan. The dominant compounds are BbF, Pyr and BP. In terms of aromatic-ring PAHs distributions, 4-6-ring PAHs are predominant, indicating that the high-ring PAHs tend to contribute more than low-ring PAHs in particulates. Due to frequent cloud/fog days at Mount Lushan, PAHs concentrations in the PM 2.5 were determined before and after cloud/fog weather. The results demonstrated that the cloud/fog and rain conditions cause lower PAHs levels. Regression analysis was used for studying the relationship of PAHs distributions with meteorological conditions like temperature, humidity and wind. The results showed that the temperature and wind speed were inversely related with PAHs concentration but humidity had no significant relationship. Furthermore, backward trajectories and PCA combined with DR (diagnostic ratio analysis) were employed to identify the influences of regional transport and main emission sources. The results revealed that PAHs in PM 2.5 were mainly affected by regional transport with the main emissions by mobile vehicle and steel industry, which contributed about 56.0% to the total PAHs in the area of Mount Lushan. In addition, backward trajectories revealed that the dominant air masses were from the northwest accounting for about one third of total PAHs. Copyright © 2018. Published by Elsevier B.V.
Sun, Jian; Shen, Zhenxing; Zeng, Yaling; Niu, Xinyi; Wang, Jinhui; Cao, Junji; Gong, Xuesong; Xu, Hongmei; Wang, Taobo; Liu, Hongxia; Yang, Liu
2018-05-28
The emission factors (EFs) of polycyclic aromatic hydrocarbons (PAHs) in PM 2.5 were measured from commonly used stoves and fuels in the rural Guanzhong Plain, China. The toxicity of the PM 2.5 also was measured using in vitro cellular tests. EFs of PAHs varied from 0.18 mg kg -1 (maize straw charcoal burning in a clean stove) to 83.3 mg kg -1 (maize straw burning in Heated Kang). The two largest influencing factors on PAH EFs were air supply and volatile matter proportion in fuel. Improvements in these two factors could decrease not only EFs of PAHs but also the proportion of 3-ring to 5-ring PAHs. Exposure to PM 2.5 extracts caused a concentration-dependent decline in cell viability but an increase in reactive oxygen species (ROS), tumor necrosis factor a (TNF-α) and interleukin 6 (IL-6). PM 2.5 emitted from maize burning in Heated Kang showed the highest cytotoxicity, and EFs of ROS and inflammatory factors were the highest as well. In comparison, maize straw charcoal burning in a clean stove showed the lowest cytotoxicity, which indicated a clean stove and fuel treatment were both efficient methods for reducing cytotoxicity of primary PM 2.5 . The production of these bioreactive factors were highly correlated with 3-ring and 4-ring PAHs. Specifically, pyrene, anthracene and benzo(a)anthracene had the highest correlations with ROS production (R = 0.85, 0.81 and 0.80, respectively). This study shows that all tested stoves emitted PM 2.5 that was cytotoxic to human cells; thus, there may be no safe levels of exposure to PM 2.5 emissions from cooking and heating stoves using solid fuels. The study may also provide a new approach for evaluating the cytotoxicity of primary emitted PM 2.5 from solid fuel burning as well as other PM 2.5 sources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biodegradation and photooxidation of crude oil under natural sunlight in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Bacosa, H. P.; Erdner, D.; Liu, Z.
2016-02-01
An enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico (nGoM) following the Deepwater Horizon (DWH) spill. While the oil degradation and bacterial communities in the deep-sea plume have been widely investigated, the effect of sunlight on oil and bacterial assemblages in surface waters have received less attention. In this study, we amended surface water collected near the DWH site with crude oil and/or Corexit dispersant and incubated under natural sunlight in the nGoM for 36 d in summer of 2013. The residual alkanes, polycyclic aromatic hydrocarbons (PAHs), and alkalyted PAHs were analyzed by GC-MS, and bacterial community was determined via pyrosequencing. The results show that n-alkane biodegradation rate constants (first order) were ca. ten-fold higher than the photooxidation rate constants. While biodegradation was characterized by a lag phase, photooxidation rate constants for the 2-3 ring and 4-5 ring PAHs, were 0.08-0.98 day-1 and 0.01-0.07 day-1, respectively. Compared to biodegradation, photooxidation increased the transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. Sunlight significantly reduced bacterial diversity and a driver of shifts in bacterial community structure in oil and Corexit treatments. In amended treatments, sunlight increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Halomonas and Bartonella, while the dark treatments enriched Thalassobius, Winogradskyella, Alcanivorax, Formosa, Eubacterium, Erythrobacter, Natronocella, and Pseudomonas. This suggests that different bacteria are degrading the hydrocarbons in the dark and under light exposure. In a follow up study using DNA-Stable isotope probing (SIP), we identified the alkane and PAH degraders using 13C-labeled hexadecane and phenanthrene, respectively. The results of metagenomic and metatranscriptomic analyses in the light and dark incubations will be presented. For the first time, we demonstrated the effects of sunlight in structuring microbial communities oil polluted water. This study provides quantitative measures of oil degradation under relevant field conditions, and improves our understanding of the role of sunlight on the fate of spilled oil and microbial community composition in the nGoM.
Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di
2016-03-01
Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.
NASA Technical Reports Server (NTRS)
Hermans, Thomas C. (Inventor); Wakeman, Thomas G. (Inventor); Hauser, Ambrose A. (Inventor)
1993-01-01
In one type of aircraft propulsion system, propeller blades are mounted on a ring which surrounds a turbine. An annular space exists between the turbine and the ring. If a propeller blade should break free, the unbalanced centrifugal load tends to deform the ring. The invention reduces the deformation, as by locating spacers between the turbine and the ring.
Zhang, Xiaotao; Hou, Hongwei; Chen, Huan; Liu, Yong; Wang, An; Hu, Qingyuan
2015-09-17
A stable isotope dilution liquid chromatography with tandem mass spectrometry method for the analysis of 16 polycyclic aromatic hydrocarbons in cigarette smoke condensate was developed and validated. Compared with previously reported methods, this method has lower limits of detection (0.04-1.35 ng/cig). Additionally, the proposed method saves time, reduces the number of separation steps, and reduces the quantity of solvent needed. The new method was applied to evaluate polycyclic aromatic hydrocarbon content in 213 commercially available cigarettes in China, under the International Standardization Organization smoking regime and the Health Canadian intense smoking regime. The results showed that the total polycyclic aromatic hydrocarbon content was more than two times higher in samples from the Health Canadian intense smoking regime than in samples from the International Standardization Organization smoking regime (1189.23 vs. 2859.50 ng/cig, p<0.05). Meanwhile, the concentration of individual polycyclic aromatic hydrocarbons (and total polycyclic aromatic hydrocarbons) increased with labeled tar content in both of the tested smoking regimes. There was a positive correlation between total polycyclic aromatic hydrocarbons under the International Standardization Organization smoking regime with that under the Health Canadian intense smoking regime. The proposed liquid chromatography with tandem mass spectrometry method is satisfactory for the rapid, sensitive, and accurately quantitative evaluation of polycyclic aromatic hydrocarbon content in cigarette smoke condensate, and it can be applied to assess potential health risks from smoking. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Composite correlation filter for O-ring detection in stationary colored noise
NASA Astrophysics Data System (ADS)
Hassebrook, Laurence G.
2009-04-01
O-rings are regularly replaced in aircraft and if they are not replaced or if they are installed improperly, they can result in catastrophic failure of the aircraft. It is critical that the o-rings be packaged correctly to avoid mistakes made by technicians during routine maintenance. For this reason, fines may be imposed on the o-ring manufacturer if the o-rings are packaged incorrectly. That is, a single o-ring must be packaged and labeled properly. No o-rings or more than one o-ring per package is not acceptable. We present an industrial inspection system based on real-time composite correlation filtering that has successfully solved this problem in spite of opaque paper o-ring packages. We present the system design including the composite filter design.
NASA Technical Reports Server (NTRS)
Cuzzi, J. N.; Morrison, David (Technical Monitor)
1994-01-01
The last decade has seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Much of the structure revealed was thoroughly puzzling and fired the imagination of workers in a variety of disciplines. Consequently, we have also seen steady progress in our understanding of these systems as our intuitions (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron to-several-meter size particles which comprise ring systems (refs 1-5). The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems and families of regular satellites are invariably found together, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.
Reciprocating down-hole sand pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhle, J.L.
1987-04-28
This patent describes the invention of a continuously-operated reciprocating down-hole sand pump comprising: a steel polished plunger pipe that strokes back and forth within a steel honed pump barrel, and is equipped with a self-lubricating fluorocarbon V-ring system that is pressure-actuated during compression strokes; the self-lubricating fluorocarbon V-ring system also is self-actuated by means of coil springs to provide wiping action to the polished plunger pipe during suction strokes; the self-lubricating fluorocarbons V-ring system also self-adjusts by means of coil springs located adjacent the fluorocarbon V-ring so as to automatically compensate for V-ring wear; and the self-lubricating fluorocarbon V-ring systemmore » also is designed in such a manner so as to eliminate voids and discourage the extrusion of V-rings in high temperature and high-pressure applications.« less
Voyager Saturnian ring measurements and the early history of the solar system
NASA Technical Reports Server (NTRS)
Alfven, H.; Axnaes, I.; Brenning, N.; Lindquist, P. A.
1985-01-01
The mass distribution in the Saturnian ring system is investigated and compared with predictions from plasma cosmogony. According to this theory, the matter in the rings was once a magnetized plasma, in which gravitation is balanced by the centrifugal and electromagnetic forces. As the plasma is neutralized, the electromagnetic forces disappear and the matter falls in to 2/3 of the original saturnocentric distance. This causes the cosmogonic shadow effect, demonstrated for the large scale structure of the Saturnian ring system. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature. Voyager data agree with an accuracy 1%.
Design of illumination system in ring field capsule endoscope
NASA Astrophysics Data System (ADS)
Jeng, Wei-De; Mang, Ou-Yang; Chen, Yu-Ta; Wu, Ying-Yi
2011-03-01
This paper is researching about the illumination system in ring field capsule endoscope. It is difficult to obtain the uniform illumination on the observed object because the light intensity of LED will be changed along its angular displacement and same as luminous intensity distribution curve. So we use the optical design software which is Advanced Systems Analysis Program (ASAP) to build a photometric model for the optimal design of LED illumination system in ring field capsule endoscope. In this paper, the optimal design of illumination uniformity in the ring field capsule endoscope is from origin 0.128 up to optimum 0.603 and it would advance the image quality of ring field capsule endoscope greatly.
Further explorations of cosmogonic shadow effects in the Saturnian rings
NASA Technical Reports Server (NTRS)
Alfven, H.; Axnaes, I.; Brenning, N.; Lindqvist, P. A.
1985-01-01
The mass distribution in the Saturnian ring system is compared with predictions from the cosmogonic theory of Alfven and Arrhenius (1975) in which matter in the rings was once a magnetized plasma, with gravitation balanced by centrifugal force and by the magnetic field. As the plasma is neutralized, the magnetic force disappears and the matter can be shown to fall in to a distance 2/3 of the original. This supports the cosmogonic shadow effect, also demonstrated for the astroidal belt and in the large scale structure of the Saturnian ring system. The relevance of the comogonic shadow effect for parts of the finer structures of the Saturnian ring system is investigated. It is shown that many structures of the present ring system can be understood as shadows and antishadows of cosmogonic origin. These appear in the form of double rings centered around a position a factor 0.64 (slightly 2/3) closer to Saturn than the causing feature.
Jupiter's ring system - New results on structure and particle properties
NASA Technical Reports Server (NTRS)
Showalter, Mark R.; Burns, Joseph A.; Cuzzi, Jeffrey N.; Pollack, James B.
1987-01-01
Jupiter's diffuse ring system is upon reexamination of Voyager images noted to be composed of a relatively bright narrow ring and an inner toroidal halo as well as the 'gossamer' exterior ring, while the previously suspected inner disk is missing. Several narrow, bright features are visible in the main ring, and are suggested to be related in some way to Adrastea and Metis. The smallest ring particles and the dark, rough, red largest bodies both have total optical depths of 1-6 x 10 to the -6th. After arising at the bright ring's inner boundary, the halo rapidly expands inward to a 20,000-km thickness, and disappears at a radius of 90,000 km halfway between the main ring and the planet's cloudtops.
Polycyclic Aromatic Hydrocarbon Ionization Energy Lowering in Water Ices
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Allamandola, Louis J.
2004-01-01
In studying various interstellar and solar system ice analogs, we have recently found that upon vacuum ultraviolet photolysis, polycyclic aromatic hydrocarbons (PAHs) frozen in water ice at low temperatures are easily ionized and indefinitely stabilized as trapped ions (Gudipati; Gudipati & Allamandola). Here we report the first experimental study that shows that PAH ionization energy is significantly lowered in PAH/H2O ices, in agreement with recent theoretical work (Woon & Park). The ionization energy (IE) of the PAH studied here, quaterrylene (C40H20, IE = 6.11 eV), is lowered by up to 2.11 eV in water ice. PAH ionization energy reduction in low-temperature water ice substantially expands the astronomical regions in which trapped ions and electrons may be important. This reduction in ionization energy should also hold for other types of trapped species in waterrich interstellar, circumstellar, and solar system ices. Subject headings: ISM: clouds - methods: laboratory - molecular processes - radiation mechanisms: nonthermal -ultraviolet: ISM - ultraviolet: solar system
Demeter, Marc A; Lemire, Joseph A; Mercer, Sean M; Turner, Raymond J
2017-03-01
Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
He, Yun-feng; Zhang, Wang-zhen; Kuang, Dan; Deng, Hua-xin; Li, Xiao-hai; Lin, Da-feng; Deng, Qi-fei; Huang, Kun; Wu, Tang-chun
2012-12-01
To explore the effects of smoking on urinary 10 metabolites of polycyclic aromatic hydrocarbons (PAHs) in the coke oven workers. Occupational health examination was performed on 1401 coke oven workers in one coking plant, their urine were collected respectively. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons in urine were detected by gas chromatography/mass spectrometry. The 1401 workers were divided into four groups, namely control, adjunct workplaces, bottom and side, top group according to their workplaces and the different concentrations of PAHs in the environment. The concentrations of the ten monohydroxy polycyclic aromatic hydrocarbons between smokers and nonsmokers in each workplace group were compared using analysis of covariance, respectively. The levels of concentrations of the sixteen polycyclic aromatic hydrocarbons we detected at control were significantly higher than those at other areas (P < 0.05). Comparing the ten monohydroxy polycyclic aromatic hydrocarbons levels between smokers and nonsmokers, the levels of 1-hydroxynaphthalene and 2-hydroxynaphthalene among smokers were higher than nonsmokers with statistically significance in control, adjunct workplaces, bottom and side and top groups (P < 0.05). However, the levels of 1-hydroxypyrene had no statistically significant differences between the four areas. Urinary 1-hydroxynaphthalene and 2-hydroxynaphthalene may be used as biomarkers for the impact of smoking on monohydroxy polycyclic aromatic hydrocarbons in the coke oven workers.
Zhu, Linli; Xu, Hui
2014-09-01
Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johannes, C.; Majcherczyk, A.
2000-02-01
The oxidation of polycyclic aromatic compounds was studied in systems consisting of laccase from Trametes versicolor and so-called mediator compounds. The enzymatic oxidation of acenaphthene, acenaphthylene, anthracene, and fluorene was mediated by various laccase substrates (phenols and aromatic amines) or compounds produced and secreted by white rot fungi. The best natural mediators, such as phenol, aniline, 4-hydroxybenzoic acid, and 4-hydroxybenzyl alcohol were as efficient as the previously described synthetic compounds ABTS [2,2{prime}-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)] and 1-hydroxybenzotriazole. The oxidation efficiency increased proportionally with the redox potentials of the phenolic mediators up to a maximum value of 0.9 V and decreased thereafter withmore » redox potentials exceeding this value. Natural compounds such as methionine, cysteine, and reduced glutathione, containing sulfhydryl groups, were also active as mediator compounds.« less
NASA Astrophysics Data System (ADS)
Mu, Ling; Peng, Lin; Liu, Xiaofeng; Song, Chongfang; Bai, Huiling; Zhang, Jianqiang; Hu, Dongmei; He, Qiusheng; Li, Fan
2014-02-01
Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. However, there is little information available on the emission characteristics of PAHs from fugitive emission during coking, especially on the specific processes dominating the gas-particle partitioning of PAHs. In this study, emission characteristics and gas-particle partitioning of PAHs from fugitive emission in four typical coke plants (CPs) with different scales and techniques were investigated. The average concentrations of total PAHs from fugitive emission at CP2, CP3 and CP4 (stamp charging) were 146.98, 31.82, and 35.20 μg m-3, which were 13.38-, 2.90- and 3.20-fold higher, respectively, than those at CP1 (top charging, 10.98 μg m-3). Low molecular weight PAHs with 2-3 rings made up 75.3% of the total PAHs on average, and the contributions of particulate PAH to the total BaP equivalent concentrations (BaPeq) in each plant were significantly higher than the corresponding contributions to the total PAH mass concentrations. The calculated total BaPeq concentrations varied from 0.19 to 10.86 μg m-3 with an average of 3.14 μg m-3, and more efficient measures to control fugitive emission in coke plants should be employed to prevent or reduce the health risk to workers. Absorption into organic matter dominated the gas-particle partitioning for most of the PAHs including PhA, FluA, Chr, BbF, BkF and BaP, while adsorption on elemental carbon appeared to play a dominant role for AcPy, AcP and Flu.
Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun
2013-09-01
Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.
Lao, Jia-Yong; Wu, Chen-Chou; Bao, Lian-Jun; Liu, Liang-Ying; Shi, Lei; Zeng, Eddy Y
2018-10-15
Barbecue (BBQ) is one of the most popular cooking activities with charcoal worldwide and produces abundant polycyclic aromatic hydrocarbons (PAHs) and particulate matter. Size distribution and clothing-air partitioning of particle-bound PAHs are significant for assessing potential health hazards to humans due to exposure to BBQ fumes, but have not been examined adequately. To address this issue, particle and gaseous samples were collected at 2-m and 10-m distances from a cluster of four BBQ stoves. Personal samplers and cotton clothes were carried by volunteers sitting near the BBQ stoves. Particle-bound PAHs (especially 4-6 rings) derived from BBQ fumes were mostly affiliated with fine particles in the size range of 0.18-1.8 μm. High molecular-weight PAHs were mostly unimodal peaking in fine particles and consequently had small geometric mean diameters and standard deviations. Source diagnostics indicated that particle-bound PAHs in BBQ fumes were generated primarily by combustion of charcoal, fat content in food, and oil. The influences of BBQ fumes on the occurrence of particle-bound PAHs decreased with increasing distance from BBQ stoves, due to increased impacts of ambient sources, especially by petrogenic sources and to a lesser extent by wind speed and direction. Octanol-air and clothing-air partition coefficients of PAHs obtained from personal air samples were significantly correlated to each other. High molecular-weight PAHs had higher area-normalized clothing-air partition coefficients in cotton clothes, i.e., cotton fabrics may be a significant reservoir of higher molecular-weight PAHs. Particle-bound PAHs from barbecue fumes are generated largely from charcoal combustion and food-charred emissions and mainly affiliated with fine particles. Copyright © 2018. Published by Elsevier B.V.
Liu, Geng; Niu, Junjie; Guo, Wenjiong; An, Xiangsheng; Zhao, Long
2016-11-01
Polycyclic aromatic hydrocarbons (PAHs) from chemical plants can cause serious pollution of surrounding agricultural soils. A comprehensive study of agricultural soils was conducted in the vicinity of a chemical plant in China to characterize the soil PAH concentration, as well as their composition and sources. Human health and a screening-level ecological risk assessment were conducted for PAH contamination in agricultural soils. The results showed that the total concentrations of 16 priority PAHs ranged from 250.49 to 9387.26 ng g(-1), with an average of 2780.42 ng g(-1). High molecular weight PAHs (four to six rings) were the dominant component, accounting for more than 60% of all PAHs. Principal component analysis (PCA) and positive matrix factorization model (PMF) suggested that diesel emissions, coal combustion, coke ovens, and fuel combustion and gasoline emissions were the main sources of PAHs in agricultural soils. The ecological risk assessment results based on the effects range-low (ERL), the effects range-median (ERM), and the ecological screening levels (ESL) indicated that the exposure to ∑PAH16 was >ERL, >ERM, and ≥ERL and
Singleton, David R.; Guzmán Ramirez, Liza; Aitken, Michael D.
2009-01-01
Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels. PMID:19270134
Ringelberg, David B.; Talley, Jeffrey W.; Perkins, Edward J.; Tucker, Samuel G.; Luthy, Richard G.; Bouwer, Edward J.; Fredrickson, Herbert L.
2001-01-01
Dredged harbor sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) was removed from the Milwaukee Confined Disposal Facility and examined for in situ biodegradative capacity. Molecular techniques were used to determine the successional characteristics of the indigenous microbiota during a 4-month bioslurry evaluation. Ester-linked phospholipid fatty acids (PLFA), multiplex PCR of targeted genes, and radiorespirometry techniques were used to define in situ microbial phenotypic, genotypic, and metabolic responses, respectively. Soxhlet extractions revealed a loss in total PAH concentrations of 52%. Individual PAHs showed reductions as great as 75% (i.e., acenapthene and fluorene). Rates of 14C-PAH mineralization (percent/day) were greatest for phenanthrene, followed by pyrene and then chrysene. There was no mineralization capacity for benzo[a]pyrene. Ester-linked phospholipid fatty acid analysis revealed a threefold increase in total microbial biomass and a dynamic microbial community composition that showed a strong correlation with observed changes in the PAH chemistry (canonical r2 of 0.999). Nucleic acid analyses showed copies of genes encoding PAH-degrading enzymes (extradiol dioxygenases, hydroxylases, and meta-cleavage enzymes) to increase by as much as 4 orders of magnitude. Shifts in gene copy numbers showed strong correlations with shifts in specific subsets of the extant microbial community. Specifically, declines in the concentrations of three-ring PAH moieties (i.e., phenanthrene) correlated with PLFA indicative of certain gram-negative bacteria (i.e., Rhodococcus spp. and/or actinomycetes) and genes encoding for naphthalene-, biphenyl-, and catechol-2,3-dioxygenase degradative enzymes. The results of this study suggest that the intrinsic biodegradative potential of an environmental site can be derived from the polyphasic characterization of the in situ microbial community. PMID:11282603
NASA Astrophysics Data System (ADS)
Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua
Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.
John, Gerald F; Han, Yuling; Clement, T Prabhakar
2016-12-15
The Deepwater Horizon (DWH) oil spill event released a large amount of sweet crude oil into the Gulf of Mexico (GOM). An unknown portion of this oil that arrived along the Alabama shoreline interacted with nearshore sediments and sank forming submerged oil mats (SOMs). A considerable amount of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), were trapped within these buried SOMs. Recent studies completed using the oil spill residues collected along the Alabama shoreline have shown that several PAHs, especially higher molecular weight PAHs (four or more aromatic rings), are slowly weathering compared to the weathering levels experienced by the oil when it was floating over the GOM. In this study we have hypothesized that the weathering rates of PAHs in SOMs have slowed down because the buried oil was isolated from direct exposure to sunlight, thus hindering the photodegradation pathway. We further hypothesized that re-exposing SOMs to sunlight can reactivate various weathering reactions. Also, SOMs contain 75-95% sand (by weight) and the entrapped sand could either block direct sunlight or form large oil agglomerates with very little exposed surface area; these processes could possibly interfere with weathering reactions. To test these hypotheses, we completed controlled experiments to study the weathering patterns of PAHs in a field recovered SOM sample after re-exposing it to sunlight. Our experimental results show that the weathering levels of several higher molecular weight PAHs have slowed down primarily due to the absence of sunlight-induced photodegradation reactions. The data also show that sand particles in SOM material could potentially interfere with photodegradation reactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Szewczyńska, Małgorzata; Pośniak, Małgorzata
2012-01-01
This paper presents the results of investigations into the distribution of fine particles in the biodiesel exhaust fumes (bio-DEP), as well as into the content of polycyclic aromatic hydrocarbons (PAHs) and soluble organic fraction (SOF) in the study fractions. Samples of biodiesel B20 and B40 exhaust combustion fumes were generated at the model station composed of a diesel engine from Diesel TDI 2007 Volkswagen. Sioutas personal cascade impactor (SPCI) with Teflon filters and low-pressure impactor ELIPI (Dekati Low Pressure Impactor) were used for sampling diesel exhaust fine particles. The analysis of PAHs adsorbed on particulate fractions was performed by high performance liquid chromatography with fluorescence detection (HPLC/FL). For the determination of dry residue soluble organic fraction of biodiesel exhaust particles the gravimetric method was used. The combustion exhaust fumes of 100% ON contained mainly naphthalene, acenaphthalene, fluorene, phenanthrene, fluoranthene, pyrene, benzo(a)anthracene and chrysene, whilst the exhaust of B40-single PAHs of 4 and 5 rings, such as chrysene, benzo(k)fluoranthene, dibenzo (ah)anthracene and benzo(ghi)perylene. The total content of PAHs in diesel exhaust particles averaged 910 ng/m3 for 100% ON and 340 ng/m3 for B40. The concentrations of benzo(a)antarcene were at the levels of 310 ng/m3 (100% ON) and 90 ng/m3 (B40). The investigations indicated that a fraction < 025 microm represents the main component of diesel exhaust particles, regardless of the used fuel. Bioester B 100 commonly added to diesel fuel (ON) causes a reduction of the total particulates emission and thus reduces the amount of toxic substances adsorbed on their surface.
Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes
Reilly, Peter T. A.
2004-10-19
The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.
Adrion, Alden C; Nakamura, Jun; Shea, Damian; Aitken, Michael D
2016-04-05
A total of five nonionic surfactants (Brij 30, Span 20, Ecosurf EH-3, polyoxyethylene sorbitol hexaoleate, and R-95 rhamnolipid) were evaluated for their ability to enhance PAH desorption and biodegradation in contaminated soil after treatment in an aerobic bioreactor. Surfactant doses corresponded to aqueous-phase concentrations below the critical micelle concentration in the soil-slurry system. The effect of surfactant amendment on soil (geno)toxicity was also evaluated for Brij 30, Span 20, and POESH using the DT40 B-lymphocyte cell line and two of its DNA-repair-deficient mutants. Compared to the results from no-surfactant controls, incubation of the bioreactor-treated soil with all surfactants increased PAH desorption, and all except R-95 substantially increased PAH biodegradation. POESH had the greatest effect, removing 50% of total measured PAHs. Brij 30, Span 20, and POESH were particularly effective at enhancing biodegradation of four- and five-ring PAHs, including five of the seven carcinogenic PAHs, with removals up to 80%. Surfactant amendment also significantly enhanced the removal of alkyl-PAHs. Most treatments significantly increased soil toxicity. Only the no-surfactant control and Brij 30 at the optimum dose significantly decreased soil genotoxicity, as evaluated with either mutant cell line. Overall, these findings have implications for the feasibility of bioremediation to achieve cleanup levels for PAHs in soil.
NASA Astrophysics Data System (ADS)
Hedman, Matthew M.; Burns, Joseph A.; Nicholson, Philip D.; Tiscareno, Matthew S.; Evans, Michael W.; Baker, Emily
2017-10-01
Around the start of Cassini's Grand Finale, the spacecraft passed a dozen times through Saturn's shadow, enabling its cameras and spectrometers to observe the ring system at extremely high phase angles. These opportunities yielded the best combination of signal-to-noise and resolution for many parts of Saturn's fainter dusty rings, and allowed the main rings to be viewed from previously inaccessible lighting geometries. We will highlight some of the surprising features found in the data obtained by Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) during these time periods, and discuss what they might be able to tell us about the structure and dynamics of Saturn's various ring systems. For example, ISS captured global views of the entire ring system that reveal previously unseen structures in dust-filled regions like the D ring and the zone between Saturn's F and G rings, as well as novel fine-scale structures in the core of the E ring near Enceladus' orbit. These structures provide new insights into the forces that sculpt these tenuous rings. ISS and VIMS also detected an unexpected brightening and highly unusual spectra of the main rings at extremely high phase angles. These data may provide novel information about the distribution of small grains and particles in these denser rings.
A pilot investigation to constrain the presence of ring systems around transiting exoplanets
NASA Astrophysics Data System (ADS)
Hatchett, W. Timothy; Barnes, Jason W.; Ahlers, John P.; MacKenzie, Shannon M.; Hedman, Matthew M.
2018-04-01
We demonstrate a process by which to evaluate the presence of large, Saturn-like ring systems around transiting extrasolar giant planets. We use extrasolar planet candidate KOI-422.01 as an example around which to establish limits on the presence of ring systems. We find that the spherical-planet (no-rings) fit matches the lightcurve of KOI-422.01 better than a lightcurve with a planet having obliquity angles 90°, 60°, 45°, or 20°. Hence we find no evidence for rings around KOI-422.01, but the methods that we have developed can be used for more comprehensive ring searches in the future. If the Hedman (2015) low-temperature rings hypothesis is correct, then the first positive detection of exorings might require transits of very long period ( ≳ 10 yr) giant planets outside their stars' ice lines.
Integration of RAM-SCB into the Space Weather Modeling Framework
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...
2018-02-07
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Integration of RAM-SCB into the Space Weather Modeling Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Discovery of multi-ring basins - Gestalt perception in planetary science
NASA Technical Reports Server (NTRS)
Hartmann, W. K.
1981-01-01
Early selenographers resolved individual structural components of multi-ring basin systems but missed the underlying large-scale multi-ring basin patterns. The recognition of multi-ring basins as a general class of planetary features can be divided into five steps. Gilbert (1893) took a first step in recognizing radial 'sculpture' around the Imbrium basin system. Several writers through the 1940's rediscovered the radial sculpture and extended this concept by describing concentric rings around several circular maria. Some reminiscences are given about the fourth step - discovery of the Orientale basin and other basin systems by rectified lunar photography at the University of Arizona in 1961-62. Multi-ring basins remained a lunar phenomenon until the fifth step - discovery of similar systems of features on other planets, such as Mars (1972), Mercury (1974), and possibly Callisto and Ganymede (1979). This sequence is an example of gestalt recognition whose implications for scientific research are discussed.
2-(Naphthalen-1-yl)-4-(naphthalen-1-ylmethylidene)-1,3-oxazol-5(4H)-one
Gündoğdu, Cevher; Alp, Serap; Ergün, Yavuz; Tercan, Barış; Hökelek, Tuncer
2011-01-01
In the title compound, C24H15NO2, the oxazole ring is oriented at dihedral angles of 10.09 (4) and 6.04 (4)° with respect to the mean planes of the naphthalene ring systems, while the two naphthalene ring systems make a dihedral angle of 4.32 (3)°. Intramolecular C—H⋯N hydrogen bonds link the oxazole N atom to the naphthalene ring systems. In the crystal, intermolecular weak C—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers. π–π contacts between the oxazole and naphthalene rings and between the naphthalene ring systems [centroid–centroid distances = 3.5947 (9) and 3.7981 (9) Å] may further stabilize the crystal structure. Three weak C—H⋯π interactions also occur. PMID:21754548
Radiation Processing of Polycyclic Aromatic Hydrocarbons (PAHs) in Space: ICEE PoC
NASA Technical Reports Server (NTRS)
Mattioda, Andrew; Cruz-Diaz, Gustavo; Barnhardt, Michael; Ging, Andrew; Schneider, Todd; Vaughn, Jason; Quigley, Emmett; Phillips, Brandon
2017-01-01
Small Polycyclic Aromatic Hydrocarbon molecules or PAHs (<30 carbon atoms) have been identified in comets, meteorites, asteroids, and interplanetary dust particles in our Solar System, while PAHs in the Interstellar Medium (ISM) tend to be much larger, usually between 50 to 100 carbon atoms in size. The cause of the size disparity between PAHs found in the ISM and Solar System as well as their influence on Solar System organics is not yet understood. Two chemical evolutionary paths have been proposed to explain the inventory of solar system organics. In one the prebiotic material was formed from the radiation induced modification of large pre-solar carbon-bearing species (e.g. ISM PAHs). The second path suggests that Solar System prebiotic matter is the result of bottom-up synthesis from small reactive molecules after the Solar System was formed. In this second scenario very few ISM PAHs survived the harsh pre-solar radiation as aromatic structures. ICEE PoC (ICEE Proof of Concept) investigated factors impacting the chemical evolution of large PAHs irradiated under conditions similar to the proto-solar nebula. Likewise ICEE PoC will refine the technical parameters of the proposed ICEE (Institute for Carbon Evolution Experiment) laboratory.
Rings Research in the Next Decade
NASA Astrophysics Data System (ADS)
Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.; Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.; Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.; Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi, M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P.
2009-12-01
The study of planetary ring systems is a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real "ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies. Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey. However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations.
Biodegradation of dispersed oil in seawater is not inhibited by a commercial oil spill dispersant.
Brakstad, Odd G; Ribicic, Deni; Winkler, Anika; Netzer, Roman
2018-04-01
Chemical dispersants are well-established as oil spill response tools. Several studies have emphasized their positive effects on oil biodegradation, but recent studies have claimed that dispersants may actually inhibit the oil biodegradation process. In this study, biodegradation of oil dispersions in natural seawater at low temperature (5°C) was compared, using oil without dispersant, and oil premixed with different concentrations of Slickgone NS, a widely used oil spill dispersant in Europe. Saturates (nC10-nC36 alkanes), naphthalenes and 2- to 5-ring polycyclic aromatic hydrocarbons (PAH) were biotransformed at comparable rates in all dispersions, both with and without dispersant. Microbial communities differed primarily between samples with or without oil, and they were not significantly affected by increasing dispersant concentrations. Our data therefore showed that a common oil spill dispersant did not inhibit biodegradation of oil at dispersant concentrations relevant for response operations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of dispersants on the biodegradation of South Louisiana crude oil at 5 and 25 °C.
Zhuang, Mobing; Abulikemu, Gulizhaer; Campo, Pablo; Platten, William E; Suidan, Makram T; Venosa, Albert D; Conmy, Robyn N
2016-02-01
This article reports biodegradation rates for a commercial dispersant, JD-2000, South Louisiana crude oil (SLC) alone, and SLC dispersed with JD-2000 at 5 and 25 °C. Results from the biodegradation experiments revealed that Component X, a chemical marker for JD-2000, rapidly degraded at both temperatures. The application of JD-2000 decreased by half the overall biodegradation rate of aliphatic compounds at 25 °C. At 5 °C, a residual fraction consisting of iso- and n-alkanes (C29-C35) persisted after 56 d. The combination of dispersant and higher temperature resulted in faster removal rates for 2- and 3-ring polycyclic aromatic hydrocarbons. When compared with Corexit 9500, our results suggest that the chemistry of the surfactant (or surfactants) in JD-2000 might have favored oil dissolution (substrate transport to the aqueous phase) as an uptake mechanism over adhesion, which requires direct contact of the biomass with the oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Approach for Expanding Triterpenoid Complexity via Divergent Norrish-Yang Photocyclization
Ignatenko, Vasily A.; Tochtrop, Gregory P.
2013-01-01
Triterpenoids comprise a very diverse family of polycyclic molecules that is well-known to possess a myriad of medicinal properties. Therefore, triterpenoids constitute an attractive target for medicinal chemistry and diversity-oriented synthesis. Photochemical transformations provide a promising tool for the rapid, green and inexpensive generation of skeletal diversity in the construction of natural product-like libraries. With this in mind, we have developed a diversity-oriented strategy, whereby the parent triterpenoids bryonolic acid and lanosterol are converted to the pseudo-symmetrical polyketones by sequential allylic oxidation and oxidative cleavage of the bridging double bond at the B/C-ring fusion. The resultant polyketones were hypothesized to undergo divergent Norrish-Yang cyclization to produce unique 6/4/8-fused triterpenoid analogs. The subtle differences between parent triterpenoids led to dramatically different spatial arrangements of reactive functionalities. This finding was rationalized through conformational analysis to explain unanticipated photoinduced pinacolization, as well as the regio- and stereochemical outcome of the desired Norrish-Yang cyclization. PMID:23544445
Biodegradation of oil refinery wastes under OPA and CERCLA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamblin, W.W.; Banipal, B.S.; Myers, J.M.
1995-12-31
Land treatment of oil refinery wastes has been used as a disposal method for decades. More recently, numerous laboratory studies have been performed attempting to quantify degradation rates of more toxic polycyclic aromatic hydrocarbon compounds (PAHs). This paper discusses the results of the fullscale aerobic biodegradation operations using land treatment at the Macmillan Ring-Free Oil refining facility. The tiered feasibility approach of evaluating biodegradation as a treatment method to achieve site-specific cleanup criteria, including pilot biodegradation operations, is discussed in an earlier paper. Analytical results of biodegradation indicate that degradation rates observed in the laboratory can be met and exceededmore » under field conditions and that site-specific cleanup criteria can be attained within a proposed project time. Also prevented are degradation rates and half-lives for PAHs for which cleanup criteria have been established. PAH degradation rates and half-life values are determined and compared with the laboratory degradation rates and half-life values which used similar oil refinery wastes by other in investigators (API 1987).« less
Sayato, Y; Nakamuro, K; Ueno, H; Goto, R
1990-12-01
Blue cotton, bearing a covalently bound copper-phthalocyanine derivative capable of adsorbing polycyclic aromatic hydrocarbons (PAHs) over 3 rings, was applied to recover mutagens from the Katsura River which is a tributary of the Yodo River. The Ames Salmonella/microsome assay with TA98 and TA100 of the blue cotton concentrate recovered from the river water demonstrated indirect mutagenicity toward TA98. The subfractions separated by Sephadex G-25 gel chromatography also showed direct mutagenicity in strains YG1021 and YG1024, the nitroreductase- and O-acetyltransferase-overproducing derivatives of TA98; this activity was greatly increased by the addition of S9 mix, especially in YG1024. However, these subfractions were less mutagenic with TA98NR or TA98/1,8-DNP6, regardless of whether S9 mix was present or not. The behaviors of these mutagenic activities therefore suggested that frameshift mutagens of both directly mutagenic nitroarenes and indirectly mutagenic aminoarenes were present in the blue cotton concentrate from the river water.
Evaluation of PAH contamination in soil treated with solid by-products from shale pyrolysis.
Nicolini, Jaqueline; Khan, Muhammad Y; Matsui, M; Côcco, Lílian C; Yamamoto, Carlos I; Lopes, Wilson A; de Andrade, Jailson B; Pillon, Clenio N; Arizaga, Gregorio G Carbajal; Mangrich, Antonio S
2015-01-01
The aim of this work was to evaluate the concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils to which solid shale materials (SSMs) were added as soil conditioners. The SSMs were derived from the Petrosix pyrolysis process developed by Petrobras (Brazil). An improved ultrasonic agitation method was used to extract the PAHs from the solid samples (soils amended with SSMs), and the concentrations of the compounds were determined by gas chromatography coupled to mass spectrometry (GC-MS). The procedure provided satisfactory recoveries, detection limits, and quantification limits. The two-, three-, and four-ring PAHs were most prevalent, and the highest concentration was obtained for phenanthrene (978 ± 19 μg kg(-1) in a pyrolyzed shale sample). The use of phenanthrene/anthracene and fluoranthene/pyrene ratios revealed that the PAHs were derived from petrogenic rather than pyrogenic sources. The measured PAH concentrations did not exceed national or international limit values, suggesting that the use of SSMs as soil conditioners should not cause environmental damage.
Liu, Feng; Niu, Lixia; Chen, Hui; Li, Ping; Tian, Feng; Yang, Qingshu
2017-04-15
The behaviours of PAHs (containing 2-6 aromatic rings) in the Pearl River estuary were examined each month in 2011. This study was designed to investigate the abundance of 16 priority PAHs and their response to the seasonal dynamics of anthropogenic activities and hydrological cycles. Monthly mean concentrations of ∑ 16 PAHs in water and suspended particulate matter (SPM) were 88.31ng/L and 252.31ng/L respectively, with higher concentrations in the wet season (April to September). Heavy precipitation in the wet season resulted in relatively increased PAH input via riverine discharges and atmospheric deposition. Seasonal variations in suspended sediment concentration (SSC), temperature and salinity have considerably affected the PAH phase association. Higher SSC in the wet season contributed to higher concentration of the PAHs in SPM, and higher temperature and lower salinity facilitated desorption from SPM. The PAH sources were largely attributed to vehicular emissions, coal combustion and coke ovens. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Mathew D.; Spencer, Michelle J. S., E-mail: t-morishita@aist.go.jp, E-mail: michelle.spencer@rmit.edu.au; Morishita, Tetsuya, E-mail: t-morishita@aist.go.jp, E-mail: michelle.spencer@rmit.edu.au
Silicene is a relatively new material consisting of a two-dimensional sheet of silicon atoms. Functionalisation of silicene with different chemical groups has been suggested as a way to tune its electronic properties. In this work, density functional theory calculations and ab initio molecular dynamics simulations are used to examine the effects of functionalisation with naphthyl or anthracyl groups, which are two examples of small polycyclic aromatic hydrocarbons (PAHs). Different attachment positions on the naphthyl and anthracyl groups were compared, as well as different thicknesses of the silicene nanosheet. It was found that the carbon attachment position farthest from the bondmore » fusing the aromatic rings gave the more stable structures for both functional groups. All structures showed direct band gaps, with tuning of the band gap being achievable by increasing the length of the PAH or the thickness of the silicene. Hence, modifying the functional group or thickness of the silicene can both be used to alter the electronic properties of silicene making it a highly promising material for use in future electronic devices and sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Frenklach, M.
1997-07-01
A computational study was performed for the formation and growth of polycyclic aromatic hydrocarbons (PAHs) in laminar premixed acetylene and ethylene flames. A new detailed reaction mechanism describing fuel pyrolysis and oxidation, benzene formation, and PAH mass growth and oxidation is presented and critically tested. It is shown that the reaction model predicts reasonably well the concentration profiles of major and intermediate species and aromatic molecules in a number of acetylene and ethylene flames reported in the literature. It is demonstrated that reactions of n-C{sub 4}H{sub x} + C{sub 2}H{sub 2} leading to the formation of one-ring aromatics are asmore » important as the propargyl recombination, and hence must be included in kinetic modeling of PAH formation in hydrocarbon flames. It is further demonstrated that the mass growth of PAHs can be accounted for by the previously proposed H-abstraction-C{sub 2}H{sub 2}-addiction mechanism.« less
Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Long; Kaiser, Ralf I.; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Joshi, Dharati; Veber, Gregory; Fischer, Felix R.; Mebel, Alexander M.
2018-05-01
For the past decades, the hydrogen-abstraction/acetylene-addition (HACA) mechanism has been instrumental in attempting to untangle the origin of polycyclic aromatic hydrocarbons (PAHs) as identified in carbonaceous meteorites such as Allende and Murchison. However, the fundamental reaction mechanisms leading to the synthesis of PAHs beyond phenanthrene (C14H10) are still unknown. By exploring the reaction of the 4-phenanthrenyl radical (C14H9•) with acetylene (C2H2) under conditions prevalent in carbon-rich circumstellar environments, we show evidence of a facile, isomer-selective formation of pyrene (C16H10). Along with the hydrogen-abstraction/vinylacetylene-addition (HAVA) mechanism, molecular mass growth processes from pyrene may lead through systematic ring expansions not only to more complex PAHs, but ultimately to 2D graphene-type structures. These fundamental reaction mechanisms are crucial to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of carbon in our Galaxy.
Capozzi, F; Giordano, S; Di Palma, A; Spagnuolo, V; De Nicola, F; Adamo, P
2016-04-01
In this paper we investigated the possibility to use moss bags to detect pollution inputs - metals, metalloids and polycyclic aromatic hydrocarbons (PAHs) - in sites chosen for their different land use (agricultural, urban/residential scenarios) and proximity to roads (sub-scenarios), in a fragmented conurbation of Campania (southern Italy). We focused on thirty-nine elements including rare earths. For most of them, moss uptake was higher in agricultural than in urban scenarios and in front road sites. Twenty PAHs were analyzed in a subset of agricultural sites; 4- and 5-ringed PAHs were the most abundant, particularly chrysene, fluoranthene and pyrene. Overall results indicated that investigated pollutants have a similar spatial distribution pattern over the entire study area, with road traffic and agricultural practices as the major diffuse pollution sources. Moss bags proved a very sensitive tool, able to discriminate between different land use scenarios and proximity to roads in a mixed rural-urban landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.
Degradation of phenanthrene by Trametes versicolor and its laccase.
Han, Mun-Jung; Choi, Hyoung-Tae; Song, Hong-Gyu
2004-06-01
Phenanthrene is a three-ring polycyclic aromatic hydrocarbon and commonly found as a pollutant in various environments. Degradation of phenanthrene by white rot fungus Trametes versicolor 951022 and its laccase, isolated in Korea, was investigated. After 36 h of incubation, about 46% and 65% of 100 mg/l of phenanthrene added in shaken and static fungal cultures were removed, respectively. Phenanthrene degradation was maximal at pH 6 and the optimal temperature for phenanthrene removal was 30 degrees C. Although the removal percentage of phenanthrene was highest (76.7%) at 10 mg/l of phenanthrene concentration, the transformation rate was maximal (0.82 mg/h) at 100 mg/L of phenanthrene concentration in the fungal culture. When the purified laccase of T versicolor 951022 reacted with phenanthrene, phenanthrene was not transformed. The addition of redox mediator, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) or 1-hydroxybenzotriazole (HBT) to the reaction mixture increased oxidation of phenanthrene by laccase about 40% and 30%, respectively.
Formation of highly oxygenated organic molecules from aromatic compounds
NASA Astrophysics Data System (ADS)
Molteni, Ugo; Bianchi, Federico; Klein, Felix; El Haddad, Imad; Frege, Carla; Rossi, Michel J.; Dommen, Josef; Baltensperger, Urs
2018-02-01
Anthropogenic volatile organic compounds (AVOCs) often dominate the urban atmosphere and consist to a large degree of aromatic hydrocarbons (ArHCs), such as benzene, toluene, xylenes, and trimethylbenzenes, e.g., from the handling and combustion of fuels. These compounds are important precursors for the formation of secondary organic aerosol. Here we show that the oxidation of aromatics with OH leads to a subsequent autoxidation chain reaction forming highly oxygenated molecules (HOMs) with an O : C ratio of up to 1.09. This is exemplified for five single-ring ArHCs (benzene, toluene, o-/m-/p-xylene, mesitylene (1,3,5-trimethylbenzene) and ethylbenzene), as well as two conjugated polycyclic ArHCs (naphthalene and biphenyl). We report the elemental composition of the HOMs and show the differences in the oxidation patterns of these ArHCs. A potential pathway for the formation of these HOMs from aromatics is presented and discussed. We hypothesize that AVOCs may contribute substantially to new particle formation events that have been detected in urban areas.
Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto
2017-02-01
Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4-37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2-7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8-28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.
NASA Astrophysics Data System (ADS)
Barakat, Assem; Soliman, Saied M.; Al-Majid, Abdullah Mohammed; Ali, M.; Islam, Mohammad Shahidul; Elshaier, Yaseen A. M. M.; Ghabbour, Hazem A.
2018-01-01
In this work, polycyclic heterocycles containing spirooxindole, pyrrolidine, and thioxothiazolidin-4-one rings have been synthesized via the regioselective 1,3-dipolar cycloaddition of azomethine ylide, which is generated in situ by the condensation of the dicarbonyl compound isatin and the secondary amino acid (L-proline), with 5-arylidine-2-thioxothiazolidin-4-one as the dipolarophile. The structure of the synthesized compounds 4a and 4b were determined by using X-ray single crystal diffraction, and also, Hirshfeld surface analysis were reported. Their geometric parameters were calculated using density functional theory at the B3LYP/6-311G (d,p) level of theory. Both compounds showed antimicrobial and antifungal activity better than selected standards (ampicillin and gentamicin in case of antibacterial activity and Amphotericin A and fluconazole in case of antifungal activity). Molecular docking study of the synthesized compounds indicated that phenyl group plays an important role in determination of compound interaction inside the receptors.
Annular ring zoom system using two positive axicons
NASA Astrophysics Data System (ADS)
Dickey, Fred M.; Conner, Jacob D.
2011-10-01
The production of an annular ring of light with a variable diameter has applications in laser material processing and machining, particle manipulation, and corneal surgery. This can readily be accomplished using a positive and negative axicon pair. However, negative axicons are very expensive and difficult to obtain with small diameters. In this paper, we present a design of an annular ring zoom system using two positive axicons. One axicon is placed a distance before a primary lens that is greater than some prescribed minimum, and the second axicon is placed after the primary lens. The position of the second axicon determines the ring diameter. The ring diameter can be zoomed from some maximum design size to a zero diameter ring (spot). Experimental results from a developmental system will be presented.
Gworek, Barbara; Klimczak, Katarzyna; Kijeńska, Marta; Gozdowski, Dariusz
2016-10-01
The study was focused on two goals: (i) the confirmation of the existence of a general relation between the content of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge and in plants growing in it, regardless of the type and content of sewage sludge, and (ii) if so, the answer to the question whether the uptake of PAHs by plants depends on their type. To realize the set aims, the contents of PAHs in four differentiated plant species were measured, two belonging to the Monocotyledones and two belonging to Dicotyledones group, growing in municipal and industrial sewage sludge in two locations. All the investigations were carried out during the period of 3 years. The results clearly demonstrated that the uptake of PAHs by a plant depended on polyaromatic hydrocarbon concentration in the sewage sludge. The relation between accumulation coefficient of PAHs in plant material vs. the content of PAH in sewage sludge was of exponential character. The results indicate that in case of four- and five-ring PAHs, the root uptake mechanism from soil solution occurs, regardless of the type and origin of sewage sludge and the type of plant. For three-ring PAHs, we can assume for Monocotyledones that the root uptake mechanism occurs because we observe a significant correlation between the content of fluorene, phenanthrene, and anthracene in plant material and in the sewage sludge. For Dicotyledones, the correlation is insignificant, and in this case probably two mechanisms occur-the uptake by roots and by leaves.
NASA Astrophysics Data System (ADS)
Zhu, Yanhong; Yang, Lingxiao; Meng, Chuanping; Yuan, Qi; Yan, Chao; Dong, Can; Sui, Xiao; Yao, Lan; Yang, Fei; Lu, Yaling; Wang, Wenxing
2015-02-01
Indoor/outdoor and diurnal/nocturnal variations in PM2.5 and associated water-soluble ions and polycyclic aromatic hydrocarbons (PAHs) were examined in a business office during the summer and autumn of 2010 in Jinan, China. Both indoor and outdoor PM2.5 levels were higher than the value recommended by the WHO, and outdoor sources were found to be the major contributors to indoor PM2.5. SO42-, NO3- and NH4+ were the dominant water-soluble ions in both indoor and outdoor particles. During daytime, NO3- mainly came from indoor sources, which was related to the temperature difference between the indoor and outdoor air. During daytime, the 15 monitored PAHs were all largely from indoor sources, while during nighttime, the 3 -4-ring PAHs were mainly generated indoors and the 5-6-ring PAHs predominantly came from the outdoor air. The diurnal/nocturnal variations of PAHs suggested that gas/particle partitioning driven by temperature makes a significant contribution to the variation in PAH concentrations. The diagnostic ratios revealed that biomass burning had an important contribution to outdoor PAH concentrations in autumn. The results of a risk assessment of PAH pollution suggested that indoor PAHs present more carcinogenic and mutagenic risks during daytime. Our results indicated that serious indoor air pollution in a business office presents a high health risk for workers.
Mu, Jingli; Jin, Fei; Ma, Xindong; Lin, Zhongsheng; Wang, Juying
2014-11-01
The authors assessed the bioavailability and chronic toxicity of water-accommodated fractions of crude oil (WAFs) and 2 dispersants plus dispersed crude oil (chemical dispersant + crude oil [CE-WAF] and biological dispersant + crude oil [BE-WAF]) on the early life stages of marine medaka, Oryzias melastigma. The results showed that the addition of the 2 dispersants caused a 3- and 4-fold increase in concentrations of summed priority polycyclic aromatic hydrocarbons (PAHs) and high-molecular-weight PAHs with 3 or more benzene rings. The chemical and biological dispersants increased the bioavailability (as measured by ethoxyresorufin-O-dethylase activity) of crude oil 6-fold and 3-fold, respectively. Based on nominal concentrations, chronic toxicity (as measured by deformity) in WAFs exhibited a 10-fold increase in CE-WAF and a 3-fold increase in BE-WAF, respectively. When total petroleum hydrocarbon was measured, the differences between WAF and CE-WAF treatments disappeared, and CE-WAF was approximately 10 times more toxic than BE-WAF. Compared with the chemical dispersant, the biological dispersant possibly modified the toxicity of oil hydrocarbons because of the increase in the proportion of 2- and 3-ringed PAHs in water. The chemical and biological dispersants enhanced short-term bioaccumulation and toxicity, through different mechanisms. These properties should be considered in addition to their efficacy in degrading oil when oil spill management strategies are selected. © 2014 SETAC.
Synthesis and Structural Data of Tetrabenzo[8]circulene
Miller, Robert W.; Duncan, Alexandra K.; Schneebeli, Severin T.; Gray, Danielle L.; Whalley, Adam C.
2015-01-01
In 1976, the first attempted synthesis of the saddle-shaped molecule [8]circulene was reported. The next 37 years produced no advancement towards the construction of this complicated molecule. Remarkably, however, over the last six months a flurry of progress has been made with two groups reporting independent and strikingly different strategies for the synthesis of [8]circulene derivatives. Herein, we present a third synthetic method in which we target tetrabenzo[8]circulene. Our approach employs a Diels-Alder reaction and a palladium-catalyzed arylation reaction as the key steps. Despite calculations describing the instability of [8]circulene, coupled with the reported instability of synthesized derivatives of the parent molecule, the addition of four fused benzenoid rings around the periphery of the molecule provides a highly stable structure. This increased stability over the parent [8]circulene was predicted using Clar’s theory of aromatic sextets and is a result of the compound becoming fully benzenoid upon incorporation of these additional rings. The synthesized compound exhibits remarkable stability under ambient conditions – even at elevated temperatures – with no signs of decomposition over several months. The solid-state structure of this compound is significantly twisted compared to the calculated structure primarily as a result of crystal packing forces in the solid state. Despite this contortion from the lowest energy structure, a range of structural data is presented confirming the presence of localized aromaticity in this large polycyclic aromatic hydrocarbon. PMID:24615957
Yu, He-Lin; Jiang, Shu-Heng; Bu, Xu-Liang; Wang, Jia-Hua; Weng, Jing-Yi; Yang, Xiao-Mei; He, Kun-Yan; Zhang, Zhi-Gang; Ao, Ping; Xu, Jun; Xu, Min-Juan
2017-01-01
Polycyclic tetramate macrolactams (PTMs) were identified as distinct secondary metabolites of the mangrove-derived Streptomyces xiamenensis 318. Together with three known compounds—ikarugamycin (1), capsimycin (2) and capsimycin B (3)—two new compounds, capsimycin C (4) with trans-diols and capsimycin D (5) with trans-configurations at C-13/C-14, have been identified. The absolute configurations of the tert/tert-diols moiety was determined in 4 by NMR spectroscopic analysis, CD spectral comparisons and semi-synthetic method. The post-modification mechanism of the carbocyclic ring at C-14/C-13 of compound 1 in the biosynthesis of an important intermediate 3 was investigated. A putative cytochrome P450 superfamily gene, SXIM_40690 (ikaD), which was proximally localized to the ikarugamycin biosynthetic pathway, was characterized. In vivo gene inactivation and complementation experiment confirmed that IkaD catalysed the epoxide-ring formation reaction and further hydroxylation of ethyl side chain to form capsimycin G (3′). Binding affinities and kinetic parameters for the interactions between ikarugamycin (1) and capsimycin B (3) with IkaD were measured with Surface Plasmon Resonance. The intermediate compound 3′ was isolated and identified as 30-hydroxyl-capsimycin B. The caspimycins 2 and 3, were transferred to methoxyl derivatives, 6 and 7, under acidic and heating conditions. Compounds 1–3 exhibited anti-proliferative activities against pancreatic carcinoma with IC50 values of 1.30–3.37 μM. PMID:28098172
Epoxide-Opening Cascades in the Synthesis of Polycyclic Polyether Natural Products
2009-01-01
The group of polycyclic polyether natural products is of special interest due to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, as well as extreme lethality. The polycyclic structural features of this family can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide–opening cascades. In this review we summarize how such epoxide–opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products. PMID:19572302
Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I
2014-09-01
Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Search for Ringed Exoplanets
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-04-01
Are planetary rings as common in our galaxy as they are in our solar system? A new study demonstrates how we might search for ringed exoplanets and then possibly finds one!Saturns Elsewhere?Artists illustration of the super ring system around exoplanet J1407b. This is the only exoplanet weve found with rings, but its not at all like Saturn. [Ron Miller]Our solar system is filled with moons and planetary rings, so it stands to reason that exoplanetary systems should exhibit the same features. But though weve been in the planet-hunting game for decades, weve only found one exoplanet thats surrounded by a ring system. Whats more, that system J1407b has enormous rings that are vastly different from the modest, Saturn-like rings that we might expect to be more commonplace.Have we not discovered ringed exoplanets just because theyre hard to identify? Or is it because theyre not out there? A team of scientists led by Masataka Aizawa (University of Tokyo) has set out to answer this question by conducting a systematic search for rings around long-period planet candidates.The transit light curve of KIC 10403228, shown with three models: the best-fitting planet-only model (blue) and the two best-fitting planet+ring models (green and red). [Aizawa et al. 2017]The Hunt BeginsWhy long-period planets? Rings are expected to be unstable as the planet gets closer to the central star. Whats more, the planet needs to be far enough away from the stars warmth for the icy rings to exist. The authors therefore select from the collection of candidate transiting planets 89 long-period candidates that might be able to host rings.Aizawa and collaborators then fit single-planet models (with no rings) to the light curves of these planets and search for anomalies curves that arent fit well by these standard models. Particularly suspicious characteristics include a long ingress/egress as the planet moves across the face of the star, and asymmetry of the transit shape.After applying a series of checks to eliminate false positives, the authors are left with one candidate: KIC 10403228.Rings or Not?Schematics of the two best-fitting ringed-exoplanet models for KIC 10403228, and the possible parameters of the system. The planet crosses the disk of the star from left to right with a grazing transit. [Adapted from Aizawa et al. 2017]Next, the authors apply a wide range of ringed-exoplanet models to KIC 10403228s light curve. They find two different scenarios that fit the data well: one in which the ring is significantly tilted with respect to the orbital plane, and another in which its only slightly tilted.The authors conclude by testing a variety of other scenarios that could explain the anomalies in the light curve instead. They find that two other scenarios are plausible: 1) the star is in an eclipsing binary system, with the second star surrounded by a circumstellar disk, and 2) the star is part of a hierarchical triple, and the transits are caused by a binary star system as it orbits KIC 10403228.Though Aizawa and collaborators arent able to rule either of these other two scenarios out, they suggest that follow-up spectroscopy or high-resolution imaging may help distinguish between the different scenarios. In the meantime, their methodology for systematically searching for ringed exoplanets has proven worthwhile, and they plan to extend it now to a larger data set. Perhaps well soon find other Saturn-like planets in our galaxy!CitationMasataka Aizawa () et al 2017 AJ 153 193. doi:10.3847/1538-3881/aa6336
Improved piston ring materials for 650 deg C service
NASA Technical Reports Server (NTRS)
Bjorndahl, W. D.
1986-01-01
A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.
Automatic flatness detection system for micro part
NASA Astrophysics Data System (ADS)
Luo, Yi; Wang, Xiaodong; Shan, Zhendong; Li, Kehong
2016-01-01
An automatic flatness detection system for micro rings is developed. It is made up of machine vision module, ring supporting module and control system. An industry CCD camera with the resolution of 1628×1236 pixel, a telecentric with magnification of two, and light sources are used to collect the vision information. A rotary stage with a polished silicon wafer is used to support the ring. The silicon wafer provides a mirror image and doubles the gap caused by unevenness of the ring. The control system comprise an industry computer and software written in LabVIEW Get Kernel and Convolute Function are selected to reduce noise and distortion, Laplacian Operator is used to sharp the image, and IMAQ Threshold function is used to separate the target object from the background. Based on this software, system repeating precision is 2.19 μm, less than one pixel. The designed detection system can easily identify the ring warpage larger than 5 μm, and if the warpage is less than 25 μm, it can be used in ring assembly and satisfied the final positionary and perpendicularity error requirement of the component.
BIODEGRADATION OF SEDIMENT-BOUND PAHS IN FIELD-CONTAMINATED SEDIMENT
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been reported to occur under aerobic, sulfate reducing, and denitrifying conditions. PAHs present in contaminated sites, however, are known for their persistence. Most published studies were conducted in systems wh...
Kronenberg, Maria; Trably, Eric; Bernet, Nicolas; Patureau, Dominique
2017-12-01
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
You, Y.; Wang, L.; Poulson, S.; Wang, X.; Xing, B.; Yang, Y.
2015-12-01
Due to their unique electrical, optical and mechanical properties, carbon nanotubes (CNTs) have been substantially produced and widely applied during the past decades, leading to their increased probability of entering the environment. Some estimation suggests that CNTs are accumulated in agricultural systems with their soil concentration increasing by 0.4-157 ng/kg/year. This has raised concerns about environmental impacts of these emerging contaminants including their ecotoxicity. Meanwhile, transformation of CNTs in the environment can significantly affect their transport, bioavailability and thereby ecotoxicity. So far, environmental biodegradation of CNTs remains obscure. Given the high diversity of soil microorganisms and their metabolic potentials, it is important to investigate microbial biodegradation of CNTs under various environmental conditions. This study focuses on an aromatic hydrocarbon-degrading bacterium, Mycobacterium vanbaalenii PYR-1, as a model microorganism capable of ring cleavage. We hypothesize that bacterial activities could transform CNTs to more hydrophilic forms, increasing their aqueous stability and environmental reactivity. We incubated M. vanbaalenii PYR-1 with 13C-labeded multiwall carbon nanotubes (MWCNTs) for 30 days, monitored δ13C in the system, characterized MWCNTs before and after the reaction, and compared the results with culture-negative controls. To investigate effects of various environmental conditions, including the presence of extracellular oxidative enzymes from white-rot fungi, additional experiments will be conducted and results compared will be compared among different setups. Moreover, we will measure adverse impacts of CNTs on the metabolic activities of M. vanbaalenii PYR-1, particularly its biodegradation of polycyclic aromatic hydrocarbons.
Goodale, B. C.; La Du, J.; Tilton, S. C.; Sullivan, C. M.; Bisson, W. H.; Waters, K. M.; Tanguay, R. L.
2015-01-01
Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. PMID:26141390