Science.gov

Sample records for polydimethylsiloxane-based conducting composites

  1. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication

    PubMed Central

    Gong, Xiuqing; Wen, Weijia

    2009-01-01

    This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip. PMID:19693388

  2. Polydimethylsiloxane-based self-healing composite and coating materials

    NASA Astrophysics Data System (ADS)

    Cho, Soo Hyoun

    This thesis describes the science and technology of a new class of autonomic polymeric materials which mimic some of the functionalities of biological materials. Specifically, we demonstrate an autonomic self-healing polymer system which can heal damage in both coatings and bulk materials. The new self-healing system we developed greatly extends the capability of self-healing polymers by introducing tin catalyzed polycondensation of hydroxyl end-functionalited polydimethylsiloxane and polydiethoxysiloxane based chemistries. The components in this system are widely available and comparatively low in cost, and the healing chemistry also remains stable in humid or wet environments. These achievements significantly increase the probability that self-healing could be extended not only to polymer composites but also to coatings and thin films in harsh environments. We demonstrate the bulk self-healing property of a polymer composite composed of a phase-separated PDMS healing agent and a microencapsulated organotin catalyst by chemical and mechanical testing. Another significant research focus is on self-healing polymer coatings which prevent corrosion of a metal substrate after deep scratch damage. The anti-corrosion properties of the self-healing polymer on metal substrates are investigated by corrosion resistance and electrochemical tests. Even after scratch damage into the substrate, the coating is able to heal, while control samples which do not include all the necessary healing components reveal rapid corrosion propagation. This self-healing coating solution can be easily applied to most substrate materials, and is compatible with most common polymer matrices. Self-healing has the potential to extend the lifetime and increase the reliability of thermosetting polymers used in a wide variety of applications ranging from microelectronics to aerospace.

  3. Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane.

    PubMed

    Han, Zhongyou; Xi, Yukun; Kwon, Younghwan

    2016-02-01

    Series of polydimethylsiloxane (PDMS)-based polyurethane (PU)/polyhedral oligomeric silsesquioxane (POSS) composites are prepared using ether or polyether modified diol/polyol PDMS prepolymers, isophorone diisocyanate (IPDI) and either non-reactive or reactive POSS. The effect of POSS incorporated chemically or physically, number of ethylene oxide units and crosslinking on PDMS based PU is investigated in terms of thermal stability and ablation properties. The ablation property is measured using an oxyacetylene torch test, and the ablation rate is evaluated. The results show that POSS molecules make a considerable influence on the ablative resistance, because they act as protective silica forming precursors under oxyacetylene condition. POSS molecules, especially methyl POSS, in PU matrix leads to the formation of densely accumulated spherical silica layers on the top of the ablated surface, resulting in improved ablation resistance.

  4. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    1999-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  5. Conducting Compositions of Matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2001-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  6. Conducting compositions of matter

    NASA Technical Reports Server (NTRS)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  7. Electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  8. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  9. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  10. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  11. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  12. Electrical conductive composite lubricants

    NASA Astrophysics Data System (ADS)

    Tatarchuk, Bruce J.; Wehrman, Ken A.; Yang Zhang, Teh-Shing Lee, Krishnagopalan, Gopal A.

    1995-01-01

    In power and electronic systems, electrical contact resistance is a major issue. For mechanical connections and sliding contacts, power losses and electrical noise are critical concerns. These issues are of particular interest to all industrial members of the Auburn CCDS. Research has been conducted to develop a variety of contact materials, both for solid lubricant films and composite paper lubricants. A combination of low electrical resistance, good lubricating properties, long wear-life, and low sliding electrical noise was achieved using a metal-cellulose composite paper with dichalcogenide powders entrapped in the porous paper matrix. Advancements in developing these conductive lubricants can increase contact lifetime and reliability in many space and terrestrial applications.

  13. High conductivity composite metal

    DOEpatents

    Zhou, Ruoyi; Smith, James L.; Embury, John David

    1998-01-01

    Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

  14. High conductivity composite metal

    DOEpatents

    Zhou, R.; Smith, J.L.; Embury, J.D.

    1998-01-06

    Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

  15. Lightweight, Thermally Conductive Composite Material

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Loftin, Timothy A.

    1990-01-01

    Aluminum reinforced with carbon fibers superior to copper in some respects. Lightweight composite material has high thermal conductivity. Consists of aluminum matrix containing graphite fibers, all oriented in same direction. Available as sheets, tubes, and bars. Thermal conductivity of composite along fibers rises above that of pure copper over substantial range of temperatures. Graphite/aluminum composite useful in variety of heat-transfer applications in which reduction of weight critical. Used to conduct heat in high-density, high-speed integrated-circuit packages for computers and in base plates for electronic equipment. Also used to carry heat away from leading edges of wings in high-speed airplanes.

  16. Electrically conductive reticulated carbon composites

    SciTech Connect

    Sylwester, A.P.; Clough, R.L.

    1988-01-01

    This paper reports a new type of electrically conductive composite which offers advantageous properties and controlled processing. These new composites consist of a conductive open-celled, low-density, microcellular, carbonized foam filled with a nonconductive polymer or resin. The open-celled nature of the carbon foam provides a porous three-dimensional reticulated carbon structure. The large continuous-void volume can be readily filled with an insulating polymer or resin resulting in a three-dimensional conductive composite material. 9 refs., 3 figs.

  17. Polydimethylsiloxane-based Self healing Composite and Coating Materials

    DTIC Science & Technology

    2006-01-01

    interfacial polymerization for catalyst microencapsulation . ...........26 Figure 2.14: Microscopic images of synthesized microcapsules : (a) Optical...control b, matrix, adhesion promoter, and microencapsulated tin catalyst (dimethyldineodecanoate tin, 3 wt% of total microcapsules ); control c... microencapsulated monomer, which can be dispersed through the matrix, is used. Using microcapsules enables self-healing polymer mass production, even

  18. Conductive Composites Made Less Expensively

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    The use of electrically conductive composite structures for electrostatic dissipation, electromagnetic interference shielding, and ground return planes could save between 30 and 90 percent of the mass of the structure, in comparison to aluminum. One strategy that has been shown to make conducting composites effectively uses intercalated graphite fiber as the reinforcement. Intercalation--the insertion of guest atoms or molecules between the graphene planes--can lower the electrical resistivity of graphite fibers by as much as a factor of 10, without sacrificing mechanical or thermal properties.

  19. Thermal Conductivity of Diamond Composites

    PubMed Central

    Kidalov, Sergey V.; Shakhov, Fedor M.

    2009-01-01

    A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m·K) and 400 W/(m·K), respectively. Significantly, the thermal expansion coefficient of metals differs markedly from those of the materials employed in semiconductor electronics (mostly silicon); one should add here the low electrical resistivity metals possess. By contrast, natural single-crystal diamond is known to feature the highest thermal conductivity of all the bulk materials studied thus far, as high as 2,200 W/(m·K). Needless to say, it cannot be applied in heat removal technology because of high cost. Recently, SiC- and AlN-based ceramics have started enjoying wide use as heat sink materials; the thermal conductivity of such composites, however, is inferior to that of metals by nearly a factor two. This prompts a challenging scientific problem to develop diamond-based composites with thermal characteristics superior to those of aluminum and copper, adjustable thermal expansion coefficient, low electrical conductivity and a moderate cost, below that of the natural single-crystal diamond. The present review addresses this problem and appraises the results reached by now in studying the possibility of developing composites in diamond-containing systems with a view of obtaining materials with a high thermal conductivity.

  20. Electronically Conductive Composite Polymer Membranes.

    DTIC Science & Technology

    1985-09-20

    coats the individual fibers which make up the webs. Clearly, at this loading level ( 10 w/w S Nafion in the Gr), only a small fraction of the...NOO014-82K-0612 Task No. NR 627-838 cc TECHNICAL REPORT NO. 10 Mn Electronically Conductive Composite Polymer Membranes I- I by 0 Reginald M. Penner... 10 of Document Control Data - DO Form 1473. Copies of form available from cognizant contract administrator 85 IV, 03 O88 UNCLASSI FIED SECURITY

  1. Composites incorporated a conductive polymer nanofiber network

    DOEpatents

    Pozzo, Lilo Danielle; Newbloom, Gregory

    2017-04-11

    Methods of forming composites that incorporate networks of conductive polymer nanofibers are provided. Networks of less-than conductive polymers are first formed and then doped with a chemical dopant to provide networks of conductive polymers. The networks of conductive polymers are then incorporated into a matrix in order to improve the conductivity of the matrix. The formed composites are useful as conductive coatings for applications including electromagnetic energy management on exterior surfaces of vehicles.

  2. Characterization of Newly Developed Conductive Composites.

    DTIC Science & Technology

    1984-03-01

    nmmber) Conductive Composites Electromagnetic Interference (EMI) Polyphenylene Sulfide (PPS) Chopped Fiber Composites Corrosion Resistance Drop Weight...filled with conductive chopped fibers have been studied. The thermoplastics chosen were polyphenylene sulfide (PPS), polyetherimide (PEI...Polycarbonate PPS - Polyphenylene Sulfide PPS# - High Elongation PPS EXPERIMENTAL PROCEDURE ELECTRICAL PROPERTIES Resistivity measurements were conducted on the

  3. Transparent conductive nano-composites

    SciTech Connect

    Geohegan, David Bruce; Ivanov, Ilia N.; Puretzky, Alexander A.; Jesse, Stephen; Hu, Bin; Garrett, Matthew; Zhao, Bin

    2011-04-12

    The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.

  4. Transparent conductive nano-composites

    SciTech Connect

    Geohegan, David Bruce; Ivanov, Ilia N; Puretzky, Alexander A; Jesse, Stephen; Hu, Bin; Garrett, Matthew; Zhao, Bin

    2013-09-24

    The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.

  5. High Thermal Conductivity Carbon/Carbon Composites.

    DTIC Science & Technology

    1995-09-30

    The objective of this project was to develop a lowcost, high thermal conductivity carbon/carbon composite with a mesophase pitch -based matrix. A low...carbonization technique and heat treatment of the mesophase pitch was utilized to enhance composite properties by increasing the composite density...Three different fibers, T300 PAN-based, P55 pitch -based, and an experimental high thermal conductivity mesophase pitch -based, were incorporated as the

  6. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  7. Ionic conduction in polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Dam, Tapabrata; Tripathy, Satya N.; Paluch, M.; Jena, S.; Pradhan, D. K.

    2016-05-01

    Conductivity and structural relaxation has been explored from modulus and dielectric loss formalisms respectively for a series of polymer composite electrolytes with zirconia as filler. The temperature dependence of conductivity followed Vogel-Tamman-Fulcher (VTF) behavior, which suggested a close correlation between conductivity and the segmental relaxation process in polymer electrolytes. Vogel temperature (T0) plays significant role in ion conduction process in these kind of materials.

  8. Conductive composites based on exfoliated graphite

    SciTech Connect

    Afanasov, I.M.; Morozov, V.A.; Seleznev, A.N.; Avdeev, V.V.

    2008-06-15

    Conductive composites of exfoliated graphite (EG) and coal-tar pitch have been prepared by mixing the components. The electrical properties of the composites have been studied, and the results have been interpreted in terms of the percolation theory. The threshold EG content for electrical conduction is determined to be similar or equal to 1.5 wt %, independent of the properties of the pitch and EG.

  9. Composite Solid Electrolyte Containing Li+- Conducting Fibers

    NASA Technical Reports Server (NTRS)

    Appleby, A. John; Wang, Chunsheng; Zhang, Xiangwu

    2006-01-01

    Improved composite solid polymer electrolytes (CSPEs) are being developed for use in lithium-ion power cells. The matrix components of these composites, like those of some prior CSPEs, are high-molecular-weight dielectric polymers [generally based on polyethylene oxide (PEO)]. The filler components of these composites are continuous, highly-Li(+)-conductive, inorganic fibers. PEO-based polymers alone would be suitable for use as solid electrolytes, were it not for the fact that their room-temperature Li(+)-ion conductivities lie in the range between 10(exp -6) and 10(exp -8) S/cm, too low for practical applications. In a prior approach to formulating a CSPE, one utilizes nonconductive nanoscale inorganic filler particles to increase the interfacial stability of the conductive phase. The filler particles also trap some electrolyte impurities. The achievable increase in conductivity is limited by the nonconductive nature of the filler particles.

  10. Conducting polyheterocycle composites based on porous hosts

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Ruckenstein, E.

    1992-02-01

    Conducting composites based on porous substrates (cotton fiber, non-woven polypropylene mat and porous crosslinked polystyrene) have been prepared by a two step imbibition technique. First, the substrate was imbibed with a solution of monomer (pyrrole or bithiophene) in acetonitrile, followed by partial drying. Subsequently, the substrate was again imbibed, this time with an oxidant dissolved in a suitable solvent. The polymerization of the monomer inside the host in the presence of the oxidant and the doping of the polymer with the oxidant leads to the conducting composite. The highly hydrophobic and porous crosslinked polystyrene, prepared by the concentrated emulsion polymerization method, is the most efficient. The solvent employed for the oxidant plays a major role. A FeCl3-methanol system and porous crosslinked polystyrene lead to conductivities of polythiophene and polypyrrole based composites of 3.63 and 0.65 S/cm, respectively. Copper perchlorate and iron perchlorate are also suitable oxidants. The environmental and thermal stabilities of polypyrrole based composites are lower than those of polythiophene based composites. The thermal stability of polypyrrole based composites can be enhanced by including a small amount of an organic antioxidant, such as amides or substituted phenols, in the composite.

  11. Thermal Conductivity of Carbon Nanotube Composite Films

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.

    2004-01-01

    State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.

  12. Conductivity simulations of field-grading composites

    NASA Astrophysics Data System (ADS)

    Nilsson, Fritjof; Unge, Mikael

    2016-08-01

    The electrical conductivity and the percolation threshold of field grading polymer composites intended for high voltage applications were examined with representative elementary volume simulation methods based on percolation threshold modeling (PTM) and electrical network modeling (ENM). Comparisons were made with experimental conductivity data for SiC-EPDM composites with spherical and angular particles, using different filler fractions and electrical field strengths. With a known conductivity of the filler particles (powder), the simulations could predict the percolation threshold and the composite conductivity as functions of the electrical field for a wide range of SiC-filler fractions. The effects of morphology, dispersion and filler shape were examined and the simulations were able to explain the experimental difficulty of reaching sufficient reproducibility when designing composites with filler fractions close to a percolation threshold. PTM of composites containing hard-core/soft-shell spheres revealed a y  =  (a  +  bx)(-1/c) relationship (R 2  =  0.9997) between filler fraction and relative soft-shell thickness.

  13. Nickel coated graphite fiber conductive composites

    SciTech Connect

    Evans, R.E.; Hall, D.E.; Luxon, B.A.

    1986-07-01

    Nickel coated graphite (NCG) fiber, consisting of a thin continuous plating of high purity nickel over an aerospace-grade graphite core, offers performance added features by combining the lightweight and high structural reinforcement of graphite fiber with the thermal and electrical conductivity of nickel. These NCG filaments, which are composite constructions in their own right, can be processed and impregnated with thermosetting or thermoplastic resins in the same manner that graphite fiber tows are processed and impregnated to produce roving, tape or fabric prepreg. Therefore, NCG fibers can be readily integrated into structural laminate assemblies using established composites-manufacturing practices.

  14. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  15. Conductive ceramic composition and method of preparation

    DOEpatents

    Smith, James L.; Kucera, Eugenia H.

    1991-01-01

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

  16. Conductive ceramic composition and method of preparation

    DOEpatents

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  17. Tunneling conductivity in composites of attractive colloids.

    PubMed

    Nigro, B; Grimaldi, C; Miller, M A; Ryser, P; Schilling, T

    2012-04-28

    In conductor-insulator nanocomposites in which conducting fillers are dispersed in an insulating matrix, the electrical connectedness is established by inter-particle tunneling or hopping processes. These systems are intrinsically non-percolative and a coherent description of the functional dependence of the conductivity σ on the filler properties, and in particular of the conductor-insulator transition, requires going beyond the usual continuum percolation approach by relaxing the constraint of a fixed connectivity distance. In this article, we consider dispersions of conducting spherical particles which are connected to all others by tunneling conductances and which are subjected to an effective attractive square-well potential. We show that the conductor-insulator transition at low contents φ of the conducting fillers does not determine the behavior of σ at larger concentrations, in striking contrast to what is predicted by percolation theory. In particular, we find that at low φ the conductivity is governed almost entirely by the stickiness of the attraction, while at larger φ values σ depends mainly on the depth of the potential well. As a consequence, by varying the range and depth of the potential while keeping the stickiness fixed, composites with similar conductor-insulator transitions may display conductivity variations of several orders of magnitude at intermediate and large φ values. By using a recently developed effective medium theory and the critical path approximation, we explain this behavior in terms of dominant tunneling processes which involve inter-particle distances spanning different regions of the square-well fluid structure as φ is varied. Our predictions could be tested in experiments by changing the potential profile with different depletants in polymer nanocomposites.

  18. Effective thermal conductivity of a thin, randomly oriented composite material

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.

    1997-10-01

    The thermal conductivity of a randomly oriented composite material is modeled using a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at small composite thicknesses. The numerical scheme employs a random number generator to position the filler elements, which have a relatively high thermal conductivity, within a matrix having a relative low thermal conductivity. The results indicate that, below some threshold thickness, the composite thermal conductivity is independent of thickness. The threshold thickness increases for increasing filler fraction and increasing k{sub f}/k{sub m}, the ratio between the filler and matrix thermal conductivities.

  19. Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor

    DTIC Science & Technology

    2013-05-01

    Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor by Padraig G. Moloney and Enrique V. Barrera ARL-CR-0714 May...2013 Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor Padraig G. Moloney and Enrique V. Barrera Dept. of...From - To) June 2011 to April 2012 4. TITLE AND SUBTITLE Application of Conductive Carbon Nanotube Fibers and Composites: Gas Sensor 5a

  20. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2011-11-22

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  1. Anion-Conducting Polymer, Composition, and Membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2008-10-21

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  2. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2010-12-07

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  3. Anion-conducting polymer, composition, and membrane

    DOEpatents

    Pivovar, Bryan S.; Thorn, David L.

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  4. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  5. Method of forming an electrically conductive cellulose composite

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Woodward, Jonathan [Ashtead, GB

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  6. CONDUCTION OF HEAT IN LIGHTWEIGHT COMPOSITE HONEYCOMB STRUCTURES,

    DTIC Science & Technology

    COMPOSITE MATERIALS, *HONEYCOMB CORES, THERMAL PROPERTIES, THERMAL CONDUCTIVITY, THERMAL STRESSES, TEMPERATURE, DISTRIBUTION, ALUMINUM ALLOYS, ISOCYANATES, VOLTAGE, MATHEMATICAL PREDICTION, EXPANDED PLASTICS, HEAT TRANSFER.

  7. Conductive polymeric compositions for lithium batteries

    DOEpatents

    Angell, Charles A [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-03-17

    Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

  8. Modeling of radiative - conductive heat transfer in compositing materials

    NASA Astrophysics Data System (ADS)

    Luchnikov, P. A.; Nefedov, V. I.; Trefilov, N. A.; Dementiev, A. N.; Surzhikov, A. P.

    2017-01-01

    A layer of composite material is investigated, which is heated one-sidedly with one-dimensional energy transfer accounting for thermal conductivity and radiation. A mathematical model is suggested for non-stationary coefficient thermophysical problem under radiative-conductive heat transfer in a material layer. Temperature dependencies of thermal capacity and thermal conductivity coefficient of composite radio-transparent material have been determined through numerical modeling by solving the coefficient reverse problem of thermal conductivity.

  9. Thermal conductivity of boron nitride reinforced polyethylene composites

    SciTech Connect

    Zhou Wenying Qi Shuhua; An Qunli; Zhao Hongzhen; Liu Nailiang

    2007-10-02

    The thermal conductivity of boron nitride (BN) particulates reinforced high density polyethylene (HDPE) composites was investigated under a special dispersion state of BN particles in HDPE, i.e., BN particles surrounding HDPE particles. The effects of BN content, particle size of HDPE and temperature on the thermal conductivity of the composites were discussed. The results indicate that the special dispersion of BN in matrix provides the composites with high thermal conductivity; moreover, the thermal conductivity of composites is higher for the larger size HDPE than for the smaller size one. The thermal conductivity increases with increasing filler content, and significantly deviates the predictions from the theoretic models. It is found also that the combined use of BN particles and alumina short fiber obtains higher thermal conductivity of composites compared to the BN particles used alone.

  10. Conductivity of carbon nanotube polymer composites

    SciTech Connect

    Wescott, J T; Kung, P; Maiti, A

    2006-11-20

    Dissipative Particle Dynamics (DPD) simulations were used to investigate methods of controlling the assembly of percolating networks of carbon nanotubes (CNTs) in thin films of block copolymer melts. For suitably chosen polymers the CNTs were found to spontaneously self-assemble into topologically interesting patterns. The mesoscale morphology was projected onto a finite-element grid and the electrical conductivity of the films computed. The conductivity displayed non-monotonic behavior as a function of relative polymer fractions in the melt. Results are compared and contrasted with CNT dispersion in small-molecule fluids and mixtures.

  11. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite

    NASA Technical Reports Server (NTRS)

    Kuniya, Keiichi; Arakawa, Hideo; Kanai, Tsuneyuki; Chiba, Akio

    1988-01-01

    A new material of copper/carbon fiber composite is developed which retains the properties of copper, i.e., its excellent electrical and thermal conductivity, and the property of carbon, i.e., a small thermal expansion coefficient. These properties of the composite are adjustable within a certain range by changing the volume and/or the orientation of the carbon fibers. The effects of carbon fiber volume and arrangement changes on the thermal and electrical conductivity, and specific heat of the composite are studied. Results obtained are as follows: the thermal and electrical conductivity of the composite decrease as the volume of the carbon fiber increases, and were influenced by the fiber orientation. The results are predictable from a careful application of the rule of mixtures for composites. The specific heat of the composite was dependent, not on fiber orientation, but on fiber volume. In the thermal fatigue tests, no degradation in the electrical conductivity of this composite was observed.

  12. Anionically-Conductive Ultrathin Film Composite Membranes

    DTIC Science & Technology

    1994-08-19

    these polymers in pervaporation separations. The interfacial polymerizations we have developed are used to prepare ultrathin films of conductive... pervaporation -separations, etc. We are continuing this research effort by exploring in particular sensor and pervaporation applications of these coated...particular emphasis are in novel biosensors and novel membranes for pervaporation separations. IV. Research Articles. 1. Lei, J.; Menon, V. P.; Martin, C. R

  13. Electrical conductivity of carbon-nanotube/cellulose composite paper

    NASA Astrophysics Data System (ADS)

    Tanaka, Tomo; Sano, Eiichi; Imai, Masanori; Akiyama, Kousuke

    2010-03-01

    We fabricated multiwalled carbon-nanotube/cellulose composite papers and measured their temperature dependences of electrical conductivity. The dependences were described with the Sheng's fluctuation-induced tunneling (FIT) model. A possible mechanism of the electrical conduction in the composite paper was discussed in the context of the FIT model.

  14. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    SciTech Connect

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  15. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  16. Tunneling Conductivity and Piezoresistivity of Composites Containing Randomly Dispersed Conductive Nano-Platelets

    PubMed Central

    Oskouyi, Amirhossein Biabangard; Sundararaj, Uttandaraman; Mertiny, Pierre

    2014-01-01

    In this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined. The piezoresistivity behavior of conductive composites was studied employing a reoriented resistor network emulating a conductive composite subjected to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, conductive particle aspect ratio and size effects on conductivity behavior were examined. PMID:28788580

  17. A Simulation Study of Electrical Fiber Composite Conductivity

    NASA Astrophysics Data System (ADS)

    Mezdour, D.; Sahli, S.

    2008-11-01

    Percolation concept has been used in this study to estimate the amount of conductive fibers embedded in polymeric matrix, necessary to establish conduction in this kind of composites. The resistance of composite materials is calculated by simulating composite samples with different size, containing conductive fibers with various lengths Calculation is based on detecting conductive pathways through the insulating matrix, these pathways are assumed to be resistances in parallel. Electrical resistance curves showed a percolative behavior of the samples versus volume fraction of filler. Lower conduction thresholds are obtained for fiber aspect ratio of 20 and sample size of 100. The electrical resistivity and the conduction thresholds of the carbon fiber reinforced polycarbonate composites have been characterized. Simulation results are in good agreement with an experimental result found in the literature.

  18. Effective thermal conductivity of composites with fibre-matrix debonding

    NASA Technical Reports Server (NTRS)

    Fadale, T. D.; Taya, M.

    1991-01-01

    Debonding of the fiber-matrix interface is a major cause for the degradation of the mechanical properties and the loss of thermal conductivity of fiber-reinforced composites. This paper discusses two analytical approaches for modeling the thermal conduction problem of composites. One is based on the concept of modeling the thermal barrier by an equivalent heat transfer coefficient at the fiber-matrix interface, as described by Hasselman and Johnson (1987) and Benveniste and Miloh (1986). The other approach, suggested by Hatta and Taya (1986), is by treating a composite with debonded interface as a coated-fiber composite. The major advantage of the latter aproach is that the thickness of the fiber coating can be realistically modeled depending upon the extent of degradation of the composite with the thermal conductivity of the coating as that of air.

  19. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  20. Electrical conductivity of a bulk metallic glass composite

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fujita, T.; Chen, M. W.; Nieh, T. G.; Okada, H.; Koyama, K.; Zhang, W.; Inoue, A.

    2007-10-01

    The authors report the electrical conductivity of a bulk metallic glass (BMG) based composite fabricated by warm extrusion of a mixture of gas-atomized glassy powders and ductile α-brass powders. The conductivity of the BMG composite can be well modeled by the percolation theory and the critical percolation threshold volume of the high-conductive brass phase was estimated to be about 10%. It was found that the short irregular brass fibers can dramatically reduce the resistivity of the BMG, leading to an improved material with both high strength and good conductivity for functional applications.

  1. Development of a high conductivity intercalated graphite composite wire

    NASA Astrophysics Data System (ADS)

    Singhal, S. C.

    1982-02-01

    Composite wires previously fabricated by swaging and claimed to possess conductivity equal to or greater than that of copper were analyzed. Intercalation of HOPG crystals with SbF5+HF mixtures was studied to assess the effect of defects in the starting graphite on the final conductivity and also to determine the conductivity as a function of the stage of the compound. Composite wires consisting of copper, aluminum or lead outer sheath and SbF5+HF-or AsF5-intercalated graphite in the core were fabricated by swaging and/or drawing and then analyzed for their electrical conductivity.

  2. Three-dimensional compressible and stretchable conductive composites.

    PubMed

    Yu, You; Zeng, Jifang; Chen, Chaojian; Xie, Zhuang; Guo, Ruisheng; Liu, Zhilu; Zhou, Xuechang; Yang, Yong; Zheng, Zijian

    2014-02-01

    Three-dimensional (3D) conductive composites with remarkable flexibility, compressibility, and stretchability are fabricated by solution deposition of thin metal coatings on chemically modified, macroscopically continuous, 3D polyurethane sponges, followed by infiltration of the metallic sponges with polydimethylsiloxane (PDMS). These low-cost conductive composites are used as high-performance interconnects for flexible and stretchable light-emitting diode (LED) arrays, even with severe surface abrasion or cutting.

  3. Affordable, Lightweight, Highly Conductive Polymer Composite Electronic Packaging Structures

    DTIC Science & Technology

    1996-06-01

    matrix composite materials and how various material designs can be utilized in various structural/thermal configurations to produce electronic housings and...conductive polymer composite electronic packaging (i.e., electronic housings and heat sinks). The research will center on predominately polymer

  4. Thermal Conductivity Changes in Titanium-Graphene Composite upon Annealing

    NASA Astrophysics Data System (ADS)

    Jagannadham, Kasichainula

    2016-02-01

    Ti-graphene composite films were prepared on polished Ti substrates by deposition of graphene platelets from suspension followed by deposition of Ti by magnetron sputtering. The films were annealed at different temperatures up to 1073 K (800 °C) and different time periods in argon atmosphere. The annealed films were characterized by X-ray diffraction for phase identification, scanning electron microscopy for microstructure, energy-dispersive spectrometry for chemical analysis, atomic force microscopy for surface roughness, and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the interface between the composite film and Ti substrate remained continuous with the absence of voids. Oxygen concentration in the composite films has increased for higher temperature and time of annealing. TiO2 and TiC phases are formed only in the film annealed at 1073 K (800 °C). The thermal conductivity of the composite film decreased with increasing oxygen concentration. The effective thermal conductance of the film annealed at 1073 K (800 °C) was significantly lower. The interface thermal conductance between the composite film and the Ti substrate is also reduced for higher oxygen concentration. Formation of microscopic TiO2 phase bound by interface boundaries and oxygen incorporation is considered responsible for the lower thermal conductance of the Ti-graphene composite annealed at 1073 K (800 °C).

  5. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  6. Electrostatic Discharge Sensitivity and Electrical Conductivity of Composite Energetic Materials

    SciTech Connect

    Michael A. Daniels; Daniel J. Prentice; Chelsea Weir; Michelle L. Pantoya; Gautham Ramachandran; Tim Dallas

    2013-02-01

    Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum with copper oxide was the only mixture to ignite by electrostatic discharge with minimum ignition energy (MIE) of 25 mJ and an electrical conductivity of 1246.25 nS; two orders of magnitude higher than the next composite. This study showed a similar trend in MIE for ignition triggered by a discharged spark compared with a thermal hot wire source.

  7. Synthesis and characterization of conducting polyaniline-copper composites.

    PubMed

    Liu, Aijie; Bac, Luong Huu; Kim, Ji-Soon; Kim, Byoung-Kee; Kim, Jin-Chun

    2013-11-01

    Conducting polymer composites have many interesting physical properties and important application potentials. Suitable combinations of metal nanoparticles with conductive polymers can result in composite materials having unique physical and chemical properties that can have wide application potential in diverse areas. In this work, copper nanoparticles were fabricated by electrical explosion of wire (EEW) in solution of polyacrylic acid (PAA) and ethanol. Conductive polyaniline-copper (PANI-Cu) composites have been synthesized by in-situ polymerization of aniline in the fabricated copper suspension. Optical absorption in the UV-visible region of these suspensions was measured in the range of 200-900 nm. Morphology and structure of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectra (FTIR). Pure copper nanoparticles were uniformly dispersed into the polymer matrix. Thermal stability of the composites was characterized by thermogravimetric analysis (TGA). Electrical conductivity measurements indicated that the conductivity of the composites was higher than that of pure polyaniline and increased with increasing content of copper.

  8. Studies on conducting polymer and conducting polymerinorganic composite electrodes prepared via a new cathodic polymerization method

    NASA Astrophysics Data System (ADS)

    Singh, Nikhilendra

    A novel approach for the electrodeposition of conducting polymers and conducting polymer-inorganic composite materials is presented. The approach shows that conducting polymers, such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) can be electrodeposited by the application of a cathodic bias that generates an oxidizing agent, NO+, via the in-situ reduction of nitrate anions. This new cathodic polymerization method allows for the deposition of PPy and PEDOT as three dimensional, porous films composed of spherical polymer particles. The method is also suitable for the co-deposition of inorganic species producing conducting polymer-inorganic composite electrodes. Such composites are used as high surface area electrodes in Li-ion batteries, electrochemical hydrogen evolution and in the development of various other conducting polymer-inorganic composite electrodes. New Sn-PPy and Sb-PPy composite electrodes where Sn and Sb nanoparticles are well dispersed among the PPy framework are reported. These structures allow for decreased stress during expansion and contraction of the active material (Sn, Sb) during the alloying and de-alloying processes of a Li-ion battery anode, significantly alleviating the loss of active material due to pulverization processes. The new electrochemical synthesis mechanism allows for the fabrication of Sn-PPy and Sb-PPy composite electrodes directly from a conducting substrate and eliminates the use of binding materials and conducting carbon used in modern battery anodes, which significantly simplifies their fabrication procedures. Platinum (Pt) has long been identified as the most efficient catalyst for electrochemical water splitting, while nickel (Ni) is a cheaper, though less efficient alternative to Pt. A new morphology of PPy attained via the aforementioned cathodic deposition method allows for the use of minimal quantities of Pt and Ni dispersed over a very high surface area PPy substrate. These composite electrodes

  9. Unusually conductive carbon-inherently conducting polymer (ICP) composites: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Bourdo, Shawn Edward

    Two groups of materials that have recently come to the forefront of research initiatives are carbon allotropes, especially nanotubes, and conducting polymers-more specifically inherently conducting polymers. The terms conducting polymers and inherently conducting polymers sometimes are used interchangeably without fully acknowledging a major difference in these terms. Conducting polymers (CPs) and inherently conducting polymers (ICPs) are both polymeric materials that conduct electricity, but the difference lies in how each of these materials conducts electricity. For CPs of the past, an electrically conductive filler such as metal particles, carbon black, or graphite would be blended into a polymer (insulator) allowing for the CP to carry an electric current. An ICP conducts electricity due to the intrinsic nature of its chemical structure. The two materials at the center of this research are graphite and polyaniline. For the first time, a composite between carbon allotropes (graphite) and an inherently conducting polymer (PANI) has exhibited an electrical conductivity greater than either of the two components. Both components have a plethora of potential applications and therefore the further investigation could lead to use of these composites in any number of technologies. Touted applications that use either conductive carbons or ICPs exist in a wide range of fields, including electromagnetic interference (EMI) shielding, radar evasion, low power rechargeable batteries, electrostatic dissipation (ESD) for anti-static textiles, electronic devices, light emitting diodes (LEDs), corrosion prevention, gas sensors, super capacitors, photovoltaic cells, and resistive heating. The main motivation for this research has been to investigate the connection between an observed increase in conductivity and structure of composites. Two main findings have resulted from the research as related to the observed increase in conductivity. The first was the structural evidence from

  10. Impedance characterization of epoxy composite containing conductive hybrid carbon fillers

    NASA Astrophysics Data System (ADS)

    Othman, Raja Nor; Tawil, Siti Nooraya; Zailan, Suhaila

    2017-08-01

    Epoxy composites containg carbon fillers are prepared in this work with an intention to characterise their electrical properties. The performance of electrical conductivity of epoxy composites is assessed by adding various loadings of conductive carbon fillers into the neat epoxy. First, Carbon Black (CB) was incorporated within epoxy matrix at several loadings. The increase in the specific conductivity of more than five orders of magnitude was observed between 3 wt. % and 4 wt.% CB loading, recorded at 10 kHz frequency. As such, the critical percolation loading, pc was recorded in between 3 wt.% and 4 wt.%. For the samples containing CB at loading 4 wt.% and above, the conductivity remains independent of the frequency, indicating a purely ohmic behaviour. It is also observed that the specific conductivity values can be altered by increasing the hardener stirring time up to 15 minutes, where the pc was successfully lowered down to < 3 wt. % It was further intended to study the hybrid effects by adding CNT to the composites. The conductivity data showed that the composite becomes frequency independent, even at 2 wt. % carbon loading (1 wt. % CB + 1 wt. % CNT), demonstrating the roles contributed by high aspect ratio conductive CNT in enhancing the formation of percolated path at much lower loading.

  11. Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    NASA Technical Reports Server (NTRS)

    De Groh, Henry C., III

    2016-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  12. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    NASA Astrophysics Data System (ADS)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  13. Radiation-induced conductivity control in polyaniline blends/composites

    NASA Astrophysics Data System (ADS)

    Güven, Olgun

    2007-08-01

    Polyaniline (PANI) blends with chlorine-containing polymers and copolymers and composites with HCl-releasing compounds were prepared to investigate their radiation response in terms of induced conductivities. Blends of non-conductive PANI with poly(vinyl chloride) (PVC), poly(vinylidene chloride- co-vinyl acetate), [P(VDC- co-VAc)], poly(vinylidene chloride- co-vinyl chloride), [P(VDC- co-VC)] were prepared in the form of as-cast films. A number of blends which are different in composition were exposed to gamma radiation and accelerated electrons to various doses, and the effects of irradiation type and composition of polymers on the conductivity of films were investigated by using conductivity measurements and UV-vis and FT-IR spectroscopy. The results clearly showed that ionizing radiation is an effective tool to induce and control conductivity in the blends of PANI-base with chlorine-carrying polymers as well as its composites prepared from HCl-releasing compounds such as chloral hydrate. The main mechanism behind this radiation-induced conductivity is in situ doping of PANI-base with HCl released from partner polymers and low molecular weight compounds by the effect of radiation.

  14. Development of a high conductivity intercalated graphite composite wire

    SciTech Connect

    Singhal, S.C.

    1982-02-01

    Beginning in May 1979, the Department of Energy initiated the present program entitled, Development of a High Conductivity Intercalated Graphite Composite Wire, to develop the scientific base and technology for reproducibly fabricating high conductivity intercalated graphite composite wires. Toward achieving this objective, the following work was carried out in this program: (1) composite wires previously fabricated by swaging at the University of Pennsylvania and claimed to possess conductivity equal to or greater than that of copper were analyzed, (2) intercalation of HOPG crystals with SbF/sub 5/+HF mixtures was studied to assess the effect of defects in the starting graphite on the final conductivity and also to determine the conductivity as a function of the stage of the compound, and (3) composite wires consisting of copper, aluminum or lead outer sheath and SbF/sub 5/+HF- or AsF/sub 5/-intercalated graphite in the core were fabricated by swaging and/or drawing and then analyzed for their electrical conductivity.

  15. Thermal Conductivity of Single Wall Carbon Nanotube (SWNT) Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Bryning, M. B.

    2005-03-01

    Pristine SWNTs were dispersed in epoxy to create composites. Our dispersion procedure achieved fairly uniform SWNT distributions without introducing stabilizing agents that could affect composite performance. We measured thermal and electrical conductivity of the resulting composites. Thermal conductivity increased continuously with increasing SWNT concentration, exhibiting an enhancement of about 30% at a volume fraction of ˜0.01. In similar composites made with surfactant stabilized SWNTs, the thermal enhancement was weaker; volume fractions of ˜0.03 were needed to achieve a 30% increase. We contrast these findings with electrical measurements on the same samples, which show a percolation-like behavior with a sharp insulator-conductor transition. This work has been partially supported by the NSF through MRSEC grant DMR-0079909 and DMR-0203378, by DARPA/ONR grant N00015-01-1- 0831, and by NASA through grant NAG8-2172.

  16. Ink composition for making a conductive silver structure

    DOEpatents

    Walker, Steven B.; Lewis, Jennifer A.

    2016-10-18

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.

  17. Highly Conductive Wire: Cu Carbon Nanotube Composite Ampacity and Metallic CNT Buckypaper Conductivity

    NASA Technical Reports Server (NTRS)

    de Groh, Henry C.

    2017-01-01

    NASA is currently working on developing motors for hybrid electric propulsion applications in aviation. To make electric power more feasible in airplanes higher power to weight ratios are sought for electric motors. One facet to these efforts is to improve (increase) the conductivity and (lower) density of the magnet wire used in motors. Carbon nanotubes (CNT) and composites containing CNT are being explored as a possible way to increase wire conductivity and lower density. Presented here are measurements of the current carrying capacity (ampacity) of a composite made from CNT and copper. The ability of CNT to improve the conductivity of such composites is hindered by the presence of semiconductive CNT (s-CNT) that exist in CNT supplies naturally, and currently, unavoidably. To solve this problem, and avoid s-CNT, various preferential growth and sorting methods are being explored. A supply of sorted 95 metallic CNT (m-CNT) was acquired in the form of thick film Buckypaper (BP) as part of this work and characterized using Raman spectroscopy, resistivity, and density measurements. The ampacity (Acm2) of the Cu-5volCNT composite was 3.8 lower than the same gauge pure Cu wire similarly tested. The lower ampacity in the composite wire is believed to be due to the presence of s-CNT in the composite and the relatively low (proper) level of longitudinal cooling employed in the test method. Although Raman spectroscopy can be used to characterize CNT, a strong relation between the ratios of the primary peaks GGand the relative amounts of m-CNT and s-CNT was not observed. The average effective conductivity of the CNT in the sorted, 95 m-CNT BP was 2.5 times higher than the CNT in the similar but un-sorted BP. This is an indication that improvements in the conductivity of CNT composites can be made by the use of sorted, highly conductive m-CNT.

  18. Electroactivity of transparent composite films from conducting poly(thiophenes)

    SciTech Connect

    Roncali, J.; Garnier, F.

    1988-02-11

    Conducting composite films containing an electropolymerizable conducting polymer such as poly(3-methylthiophene) (PMeT) alloyed with poly(vinyl chloride) (PVC) have been prepared in a one-step process from synthesis media already containing dissolved PVC. This procedure based on the simultaneous electropolymerization and dip-cutting processes allows a large control of the composition, morphology, optical transmittance, conductivity, and electroactivity of the composite films. The growth of PMeT in synthesis media containing dissolved PVC has been analyzed. Increasing the PVC concentration produces a slight decrease of the MeT electropolymerization rate with no apparent modification of the polymerization mechanism. The electrochemical properties of the composite films have been investigated in acetonitrile by using cyclic voltammetry and chronoamperometry. At low scan rate (10 mV/s), the electrochemical responses of the composite films are identical with that of bare PMeT films prepared under the same conditions. At higher scan rates, a dependence of the electroactivity of the films on their PVC content is observed and the electrochemical response turns progressively from an adsorption-like behavior to a diffusion-controlled one. It is shown that the electrolyte concentration used for the synthesis of the composite films is the key factor controlling their electrochemical behavior. The incorporation of PMeT within the PVC matrix does not affect its spectroelectrochemical properties and furthermore leads to an improved electrochemical stability of the film under redox cycling.

  19. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    NASA Astrophysics Data System (ADS)

    Kanagaraj, S.; Pattanayak, S.

    2004-06-01

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  20. Low Temperature Thermal Conductivity of Woven Fabric Glass Fibre Composites

    SciTech Connect

    Kanagaraj, S.; Pattanayak, S.

    2004-06-28

    Fibre reinforced composites are replacing conventional materials due to its compatible and superior properties at low temperatures. Transverse thermal conductivity of plain fabric E-glass/Epoxy composites with the fibre concentrations of 32.5%, 35.2%, 39.2% and 48.9% has been studied in a GM-refrigerator based experimental setup using guarded hotplate technique. Experiments are carried out with the sets of stability criteria. This paper presents the investigation of the influence of the fibre concentration and temperature on the thermal conductivity of fabric composites from 30 K to 300K. It is observed from the experimental results that thermal conductivity increases with the increase of temperature and also with fibre concentration with different rate in different temperature range. The series model has been used to predict the thermal conductivity and compared with the experimental results. It is observed that below the crossover temperature of the composites, which varies from 150-225K depending upon their fibre concentration, the experimental results are within 10% with that of predicted values. The possible causes of variation are analyzed. The physical phenomenon behind the temperature dependence of thermal conductivity is discussed in detail.

  1. High conductivity, low cost aluminum composite for thermal management

    SciTech Connect

    Sommer, J.L.

    1997-04-01

    In order to produce an inexpensive packaging material that exhibits high thermal conductivity and low CTE, Technical Research Associates, Inc. (TRA) has shown in Phase I the feasibility of incorporating natural flake graphite in an aluminum matrix. TRA has developed a proprietary coating technique where graphite flakes have been coated with a thin layer of molybdenum/molybdenum carbide (approximately 0.2 microns). This barrier coating can protect the graphite flake from chemical reaction and high temperature degradation in molten aluminum silicon alloys. Methods to successfully vacuum infiltrate coated flake with molten aluminum alloys were developed. The resulted metal matrix composites exhibited lower CTE than aluminum metal. The CTE of the composites were significantly lower than aluminum and its alloys. The CTE can potentially be tailored for specific applications. The in plane thermal conductivity was higher than the aluminum matrix alloy. The thermal conductivity and CTE of the composite may be significantly improved by improving the bond strength of the molybdenum coating on the graphite flake. The flake can potentially be incorporated in the molten aluminum and pressure die cast to align the flakes within the aluminum matrix. By preferentially aligning high conductivity graphite flakes within a plane or direction, the thermal conductivity of the resulting composite will be above pure aluminum in the alignment direction.

  2. Bulk thermal conductivity of composites with spherical inclusions

    NASA Astrophysics Data System (ADS)

    Sangani, A. S.; Yao, C.

    1988-03-01

    The problem of determining the bulk or effective thermal conductivity of a two-phase composite material whose unit cells contain N(N>1) spherical particles of thermal conductivity αk suspended in a medium of thermal conductivity k has been treated by extending an earlier analysis of McPhedran and Milton [Appl. Phys. A 26, 207 (1981)] who considered the case N=1. The technique is applied to computer-generated two-phase composites with N=16 whose radial distribution functions approximately satisfy the Percus-Yevick equation. The results, which are presented for a wide range of α and φ (the volume fraction of the spheres), are shown to be in good agreement with the experimental values of conductivity of fluidized beds reported by Turner [Chem. Eng. Sci. 31, 487 (1976)].

  3. Conducting MWNT/poly (vinyl acetate) Composite Nanofibers by Electrospinning

    SciTech Connect

    Wang,G.; Tan, Z.; Liu, X.; Chawda, S.; Koo, J.; Samuilov, V.; Dudley, M.

    2006-01-01

    Electrospinning is a relatively simple and versatile method to produce polymer nanofibres and their composites. In this work, functionalized multiwalled carbon nanotubes (f-MWNTs) were used for the fabrication of conducting nanocomposite fibres, in comparison with the composite nanofibres made of unfunctionalized MWNTs (u-MWNTs). Our results showed that the addition of f-MWNTs could improve the dispersion of carbon nanotubes in the polymer solution and therefore result in composite nanofibres with uniform diameters by electrospinning. Alignment of the composite nanofibres was achieved by using a rotating drum as the collector. F-MWNTs were found to align parallel to the axis direction of the nanofibres. DC electrical properties of a single composite fibre were investigated at room temperature as well as cryogenic states (100-300 K). An electrical percolation phenomenon was observed for nanofibres with different mass fractions of MWNTs. It was shown that the conductivity of the material could be significantly improved above the percolation threshold. The conductivity could be of several orders of magnitude higher than the pure PVAc.

  4. Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba

    2017-06-01

    The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.

  5. Electrically Conductive Bulk Composites through a Contact-Connected Aggregate

    PubMed Central

    Nawroj, Ahsan I.; Swensen, John P.; Dollar, Aaron M.

    2013-01-01

    This paper introduces a concept that allows the creation of low-resistance composites using a network of compliant conductive aggregate units, connected through contact, embedded within the composite. Due to the straight-forward fabrication method of the aggregate, conductive composites can be created in nearly arbitrary shapes and sizes, with a lower bound near the length scale of the conductive cell used in the aggregate. The described instantiation involves aggregate cells that are approximately spherical copper coils-of-coils within a polymeric matrix, but the concept can be implemented with a wide range of conductor elements, cell geometries, and matrix materials due to its lack of reliance on specific material chemistries. The aggregate cell network provides a conductive pathway that can have orders of magnitude lower resistance than that of the matrix material - from 1012 ohm-cm (approx.) for pure silicone rubber to as low as 1 ohm-cm for the silicone/copper composite at room temperature for the presented example. After describing the basic concept and key factors involved in its success, three methods of implementing the aggregate into a matrix are then addressed – unjammed packing, jammed packing, and pre-stressed jammed packing – with an analysis of the tradeoffs between increased stiffness and improved resistivity. PMID:24349239

  6. Multifunctional Nanofibers Comprised of Conducting and Ferroelectric Polymer Composites

    DTIC Science & Technology

    2015-08-04

    SECURITY CLASSIFICATION OF: Work on this proposal concentrated on studying the following polymers : poly(vinylidene fluoride-trifluoroethylene) (PVDF...prepare thin films and electrospinning to prepare fine fibers of these polymers . The goal was to make devices and sensors. Using an atomic force...2014 Approved for Public Release; Distribution Unlimited Multifunctional nanofibers comprised of conducting and ferroelectric polymer composites The

  7. Thermally Conductive Metal-Tube/Carbon-Composite Joints

    NASA Technical Reports Server (NTRS)

    Copeland, Robert J.

    2004-01-01

    An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.

  8. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires.

    PubMed

    Liu, Wei; Lin, Dingchang; Sun, Jie; Zhou, Guangmin; Cui, Yi

    2016-12-27

    Solid Li-ion electrolytes used in all-solid-state lithium-ion batteries (LIBs) are being considered to replace conventional liquid electrolytes that have leakage, flammability, and poor chemical stability issues, which represents one major challenge and opportunity for next-generation high-energy-density batteries. However, the low mobility of lithium ions in solid electrolytes limits their practical applications. Here, we report a solid composite polymer electrolyte with Y2O3-doped ZrO2 (YSZ) nanowires that are enriched with positive-charged oxygen vacancies. The morphologies and ionic conductivities have been studied systemically according to concentration of Y2O3 dopant in the nanowires. In comparison to the conventional filler-free electrolyte with a conductivity of 3.62 × 10(-7) S cm(-1), the composite polymer electrolytes with the YSZ nanowires show much higher ionic conductivity. It indicates that incorporation of 7 mol % of Y2O3-doped ZrO2 nanowires results in the highest ionic conductivity of 1.07 × 10(-5) S cm(-1) at 30 °C. This conductivity enhancement originates from the positive-charged oxygen vacancies on the surfaces of the nanowires that could associate with anions and then release more Li ions. Our work demonstrates a composite polymer electrolyte with oxygen-ion conductive nanowires that could address the challenges of all-solid-state LIBs.

  9. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity.

    PubMed

    Randeniya, Lakshman K; Bendavid, Avi; Martin, Philip J; Tran, Canh-Dung

    2010-08-16

    Unique macrostructures known as spun carbon-nanotube fibers (CNT yarns) can be manufactured from vertically aligned forests of multiwalled carbon nanotubes (MWCNTs). These yarns behave as semiconductors with room-temperature conductivities of about 5 x 10(2) S cm(-1). Their potential use as, for example, microelectrodes in medical implants, wires in microelectronics, or lightweight conductors in the aviation industry has hitherto been hampered by their insufficient electrical conductivity. In this Full Paper, the synthesis of metal-CNT composite yarns, which combine the unique properties of CNT yarns and nanocrystalline metals to obtain a new class of materials with enhanced electrical conductivity, is presented. The synthesis is achieved using a new technique, self-fuelled electrodeposition (SFED), which combines a metal reducing agent and an external circuit for transfer of electrons to the CNT surface, where the deposition of metal nanoparticles takes place. In particular, the Cu-CNT and Au-CNT composite yarns prepared by this method have metal-like electrical conductivities (2-3 x 10(5) S cm(-1)) and are mechanically robust against stringent tape tests. However, the tensile strengths of the composite yarns are 30-50% smaller than that of the unmodified CNT yarn. The SFED technique described here can also be used as a convenient means for the deposition of metal nanoparticles on solid electrode supports, such as conducting glass or carbon black, for catalytic applications.

  10. Thermal conductivity of polymer composite pigmented with titanium dioxide

    NASA Astrophysics Data System (ADS)

    Ghebrid, N.; Guellal, M.; Rouabah, F.

    2017-04-01

    The aim of this work is to provide a numerical modeling of thermal conductivity of a polymer matrix polystyrene composite filled with titanium dioxide spheres, and to compare the obtained results with theoretical prediction models and the experimental data as a function of the quenching temperature. For this purpose, a numerical study was conducted using the finite element method to predict the effective thermal conductivity of the composite. In addition, a comparison with the results from the analytical models showed that the proposed numerical model is in good agreement with the analytical models of Hatta-Taya and Hashin-Shtrikman. Finally, the comparison of the numerical model to experimental results based on the quenching temperature shows that the best quenching temperature that agrees well with the theoretical model Hashin-Shtrikman is 20 °C.

  11. Smart conducting polymer composites having zero temperature coefficient of resistance

    NASA Astrophysics Data System (ADS)

    Chu, Kunmo; Lee, Sung-Chul; Lee, Sangeui; Kim, Dongearn; Moon, Changyoul; Park, Sung-Hoon

    2014-12-01

    Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self-heating properties for thermal stability and reliable temperature control. The bi-layer composites consisted of a carbon nanotube (CNT)-based layer having an NTC of resistance and a carbon black (CB)-based layer having a PTC of resistance which was in direct contact with electrodes to stabilize the electrical resistance change during electric Joule heating. The composite showed nearly constant resistance values with less than 2% deviation of the normalized resistance until 200 °C. The CB layer worked both as a buffer and as a distributor layer against the current flow from an applied voltage. This behavior, which was confirmed both experimentally and theoretically, has been rarely reported for polymer-based composite systems.Zero temperature coefficient of resistance (TCR) is essential for the precise control of temperature in heating element and sensor applications. Many studies have focused on developing zero-TCR systems with inorganic compounds; however, very few have dealt with developing zero-TCR systems with polymeric materials. Composite systems with a polymer matrix and a conducting filler show either a negative (NTC) or a positive temperature coefficient (PTC) of resistance, depending on several factors, e.g., the polymer nature and the filler shape. In this study, we developed a hybrid conducting zero-TCR composite having self

  12. Strain sensing conductive polymer composites: Sensitivity and stability

    NASA Astrophysics Data System (ADS)

    Deng, Hua; Du, Rongni; Duan, Linyan; Fu, Qiang

    2016-03-01

    The effect of conductive network morphology and interfacial interaction on the strain sensing capability of conductive polymer composites (CPCs) is thought as crucial. Nevertheless, the stability in strain sensing behavior has barely been investigated. Herein, the resistivity-strain behavior in terms of stability and sensitivity of CPCs based on poly(styrene-butadiene-styrene) (SBS) containing multiwalled carbon nanotubes (MWCNTs) are studied. It is shown that the preparation method has an important influence on the resistivity-strain behavior of these CPCs. The sensitivity increases with decreasing filler content for both composites under linear uniaxial strain, showing higher strain sensitivity near the percolation threshold. A higher and wider range of sensitivities is obtained for melt mixed SBS/MWCNT. Meanwhile, resistivity downward drifting and shoulder peaks are shown for composites from melt mixing under dynamic strain. Interestingly, linear relationships and reversible resistivity in every cycle are observed for composites from solution mixing, showing good electromechanical consistency, stability and durability. From the TEM, rheology, SEM, SAXS, Raman microscopy and analytical modeling studies, the difference in morphology is thought to be responsible for such resistivity-strain behavior. As more disordered and less densely packed conductive networks in melt mixed CPCs are more easily destroyed under strain, evenly distributed and densely packed networks in solution mixed CPCs are more stable during cyclic stretching. Finally, different human motions have been detected using these CPCs, demonstrating the potential application of these CPCs as movement sensors.

  13. Investigation of Thermal and Electrical Properties for Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Juwhari, Hassan K.; Abuobaid, Ahmad; Zihlif, Awwad M.; Elimat, Ziad M.

    2017-10-01

    This study addresses the effects of temperature ranging from 300 K to 400 K on thermal ( κ) and electrical ( σ) conductivities, and Lorenz number ( L) for different conductive polymeric composites (CPCs), as tailoring the ratios between both conductivities of the composites can be influential in the design optimization of certain thermo-electronic devices. Both κ and σ were found to have either a linear or a nonlinear (2nd and 3rd degree polynomial function) increasing behavior with increased temperatures, depending on the conduction mechanism occurring in the composite systems studied. Temperature-dependent behavior of L tends to show decreasing trends above 300 K, where at 300 K the highest and the lowest values were found to be 3 × 103 W Ω/K2 for CPCs containing iron particles and 3 × 10-2 W Ω/K2 for CPCs-containing carbon fibers respectively. Overall, temperature-dependent behavior of κ/ σ and L can be controlled by heterogeneous structures produced via mechanical-molding-compression. These structures are mainly responsible for energy-transfer processes or transport properties that take place by electrons and phonons in the CPCs' bulks. Hence, the outcome is considered significant in the development process of high performing materials for the thermo-electronic industry.

  14. Thermal conductivity and multiferroics of electroactive polymers and polymer composites

    NASA Astrophysics Data System (ADS)

    Jin, Jiezhu

    Electronically conducting polymers and electromechanical polymers are the two important branches of the cutting-edge electroactive polymers. They have shown significant impact on many modern technologies such as flat panel display, energy transport, energy conversion, sensors and actuators. To utilize conducting polymers in microelectronics, optoelectronics and thermoelectrics, it is necessary to have a comprehensive study of their thermal conductivity since thermal conductivity is a fundamental materials property that is particularly important and sometimes a determining factor of the device performance. For electromechanical polymers, larger piezoelectric effect will contribute to the improvement of magnetoelectric (ME) coupling efficiency in their multiferroic composites. This dissertation is devoted to characterizing electronically conducting polymers for their electrical and thermal conductivity, and developing new classes of electromechanical polymers and strain-mediated electromechanical polymer-based multiferroic ME composites. Conducting polymers opened up new possibilities for devices combining novel electrical and thermal properties, but there has been limited understanding of the length-scale effect of the electrical and thermal conductivity, and the mechanism underlying the electricity and heat transport behavior. In this dissertation, the analytical model and experimental technique are presented to measure the in-plane thermal conductivity of polyaniline thin films. For camphorsulfonic acid doped polyaniline patterned on silicon oxide/silicon substrate using photolithography and reactive ion etching, the thermal conductivity of the film with thickness of 20 nm is measured to be 0.0406 W/m˙K, which significantly deviates from their bulk (> 0.26 W/m˙K). The size effect on thermal conductivity at this scale is attributed to the significant phonon boundary scattering. When the film goes up to 130 nm thick, the thermal conductivity increases to 0.166 W

  15. Phonon conduction in GaN-diamond composite substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.

    2017-02-01

    The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.

  16. Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Singer, S. (Inventor)

    1970-01-01

    A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.

  17. Transient Response of Different Highly Conductive PCM Composites

    NASA Astrophysics Data System (ADS)

    Mahmoud Alhamdo, Mohammed H.; Bdaiwi, Bashar A.; Hasan, Ali H.

    In this work, the thermal conductivity of paraffin wax has been enhanced by employing four different high conductivity additives infiltrated within the PCM. These include the use of Graphite Powder (GP), Copper Particles (CP), Aluminum oxide Particles (AP), and Copper Network (CN). Four different types of pure waxes were selected, tested and compared. Twelve samples of wax/additives composites were prepared by adding different mass ratios of 3, 6 and 9 % of additives by weight in each type of wax. The storage system contains spherical capsules filled with composite PCMs that are packed in an insulated cylindrical storage. Transient temperature based governing equations have been developed and solved numerically by both ANSYS FLUENT 14 code and by numerical implicit time marching model. With progress of time, results showed that the numerical predictions of ANSYS software start to deviate from the experimental observations. The grade-B paraffin was found to be the best one. Results indicate that all the enhancement methods have significant effect on the thermal response of the system. However, the utilization of 6 % additives by weight has been found to provide the best enhancement effect. The developed new-sort CN composite is found to produce the best thermal response due to its good homogeneity with wax and its high conductivity. Results showed that for CN composite with 6 % additives, the charging and discharging time decreased by 26.4 and 30.3 % respectively than that of pure wax and the thermal conductivity enhanced by 2.57 times that of pure wax.

  18. Conducting polymer composite materials for smart microwave windows

    NASA Astrophysics Data System (ADS)

    Barnes, Alan; Lees, K.; Wright, Peter V.; Chambers, Barry

    1999-07-01

    Samples of poly(aniline)-silver-polymer electrolyte particulate composites have been characterized at microwave frequencies when small d.c. electric fields are applied across them in both coaxial line and waveguide measurement test sets. The experimental data shows that the initial conductivity of the materials is dependent on the concentration of sliver metal and suggest that changes in resistance due to chemical switching take place, at least in part, in the manufacture of the composites. When silver is used as the electrodes, the experimental data show that changes in the slope of the cyclic voltammograms coincide with large changes in microwave reflectivity or transmission consistent with increasing conductivity of the composites when fields are applied. The reverse change occurs when the fields are removed. Measurements have shown that the composites are able to switch between the two impedance stats in times of less than one second for well over a million cycles with no apparent depreciation in material properties. Large area films have also been prepared and studied using the 'free space' technique.

  19. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    SciTech Connect

    Lee, Pyoung-Chan Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-09

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  20. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  1. High Surface Area Conducting Polymer Composites for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Gutowska, Anna; Tarasevich, Barbara; Shin, Yongsoon; Ferris, Kim; Linehan, John; White, James

    2004-03-01

    We are investigating high surface area mesoporous conducting polymer composites as new materials for on-board hydrogen storage. A recent study reported significant levels of hydrogen storage in two conducting polymers, polyaniline (PANI) and polypyrrole (PPy) (8 wtPANI).1 We have used templated synthesis methods to obtain PPy and PANI composites with mesoporous structure. We have designed composites that offer a combination of several desirable properties: - favorable wt. - multiple mechanisms of hydrogen storage (physi-, chemi-sorption, and voids available for gas compression), and high surface area meoporous morphology for enhanced gas-material interactions and greater control of gas transport. Our experimental approaches to materials design were supported by computational methods aimed at developing predictive capabilities for the structure-property relationship (SPR) of electronic structure effects on hydrogen storage capacity in conducting polymers. Computational methods were also used to support design of mesoporous structures for optimized gas-material interactions and effective diffusion control of gas transport. 1. Cho, J. J.; Song, K. S.; Kim, J. W.; Kim, T. H.; Choo, K. Fuel Chemistry Div. Reprints 2002, 47, 790.

  2. Impact of tuning CO2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation

    DOE PAGES

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.; ...

    2017-02-22

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO2 permeability and CO2/N2 selectivity. The overall gas separation performance (CO2 permeability 6800 Barrer; CO2/N2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO2-philicity within rubbery polymer matrices influences gas transport properties. Key parameters for tuning gasmore » transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  3. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Good processability is often required for applications of conducting materials like polyaniline (PANI), carbon nanotubes (CNTs) and graphene. This can be achieved by either physical stabilization or chemical functionalization. Functionalization usually expands the possible applications for the conducting materials depending on the properties of the functional groups. Processable conducting materials can also be combined with other co-dissolving materials to prepare composites with desired chemical and physical properties. Polyanilines (PANI) doped with dodecylbenzenesulfonic acid (DBSA) are soluble in many organic solvents such as chloroform and toluene. Single wall carbon nanotubes (SWCNTs) can be dispersed into PANI/DBSA to form homogeneous solutions. PANI/DBSA functions as a conducting surfactant for SWCNTs. The mixture can be combined with two-parts polyurethanes that co-dissolve in the organic solvent to produce conducting polymer composites. The composite mixtures can be applied onto various substrates by simple spray-on methods to obtain transparent and conducting coatings. Graphene, a single layer of graphite, has drawn intense interest for its unique properties. Processable graphene has been produced in N-methyl-2-pyrrolidone (NMP) by a one-step solvothermal reduction of graphite oxide without the aid of any reducing reagent and/or surfactant. The as-synthesized graphene disperses well in a variety of organic solvents such as dimethylsulfoxide (DMSO), ethanol and tetrahydrogenfuran (THF). The conductivity of solvothermal reduced graphite oxide is comparable to hydrazine reduced graphite oxide. Attempts were made to create intrinsically conducting glue comparable to mussel adhesive protiens using polyaniline and graphene. Mussels can attach to a variety of substrates under water. Catechol residue in 3,4-dihydroxyphenylalanine (L-DOPA) is the key to the wet adhesion. Tyrosine and phosphoserine with primary alkyl amine groups also participate in adhesion. A

  4. Ignition Sensitivity and Electrical Conductivity of a Composite Energetic Material with Conductive Nanofillers

    SciTech Connect

    Eric S. Collins; Brandon R. Skelton; Michelle L. Pantoya; Fahmida Irin; Micah J. Green; Michael A. Daniels

    2014-12-01

    The safe handling of powdered composite energetic materials requires an understanding of their response to electrostatic ignition stimuli. A binary composite comprised of Al and polytetrafluoroethylene (PTFE) was tailored for ESD ignition sensitivity with varied concentrations of highly conductive nanofillers. The goal was to control the ESD ignition response of the Al+PTFE with small concentrations of nanofillers that may not significantly affect the overall combustion performance of the mixture. The nanofillers examined include carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). Adding CNTs created percolation at a lower volumetric percentage than GNPs and were found to be the controlling nanofiller, creating percolation for the mixture containing both CNTs and GNPs. Various mixing methods were examined. Ignition was achieved only for adding nanofillers at a volumetric percentage and mixing method that led to a bulk conductivity of approximately 5x10-3 ?S/cm.

  5. Synthesis of Conductive Nanofillers/Nanofibers and Electrical Properties of their Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Sarvi, Ali

    Thanks to their corrosion resistance, light weight, low cost, and ease of processing, electrically conducting polymer composites (CPCs) have received significant attention for the replacement of metals and inorganic materials for sensors, actuators, supercapacitors, and electromagnetic interference (EMI) shields. In this PhD thesis, high aspect ratio conductive nanofillers namely copper nanowires (CuNWs) and multiwall carbon nanotubes (MWCNTs) were coated with polyaniline (PANi) using solution mixing and in-situ polymerization method, respectively. Transmission electron microscopy (TEM) showed a smooth polyaniline nano-coating between 5--18 nm in thickness on the nanofillers' surface. The coating thickness and; consequently, electrical conductivity was controlled and tuned by polyaniline/aniline concentration in solution. Composites with tunable conductivity may be used as chemisensors, electronic pressure sensors and switches. Coated nanofillers demonstrated better dispersion in polystyrene (PS) and provided lower electrical percolation threshold. Dispersion of nanofillers in PS was investigated using rheological measurements and confirmed with electron micrographs and nano-scale images of CPCs. Polyaniline (PANi), when used as a coating layer, was able to attenuate electromagnetic (EM) waves via absorption and store electrical charges though pseudocapacitance mechanism. The dielectric measurements of MWCNT-PANi/PS composites showed one order of magnitude increase in real electrical permittivity compared to that of MWCNT/PS composites making them suitable for charge storage purposes. Incorporation of PANi also brought a new insight into conductive network formation mechanism in electrospun mats where the orientation of conductive high aspect ratio nanofillers is a major problem. Conductive nanofibers of poly(vinylidene fluoride) (PVDF) filled with coated multiwall carbon nanotubes (MWCNTs) were fabricated using electrospinning. These highly oriented PVDF

  6. Copper-based conductive composites with tailored thermal expansion.

    PubMed

    Della Gaspera, Enrico; Tucker, Ryan; Star, Kurt; Lan, Esther H; Ju, Yongho Sungtaek; Dunn, Bruce

    2013-11-13

    We have devised a moderate temperature hot-pressing route for preparing metal-matrix composites which possess tunable thermal expansion coefficients in combination with high electrical and thermal conductivities. The composites are based on incorporating ZrW2O8, a material with a negative coefficient of thermal expansion (CTE), within a continuous copper matrix. The ZrW2O8 enables us to tune the CTE in a predictable manner, while the copper phase is responsible for the electrical and thermal conductivity properties. An important consideration in the processing of these materials is to avoid the decomposition of the ZrW2O8 phase. This is accomplished by using relatively mild hot-pressing conditions of 500 °C for 1 h at 40 MPa. To ensure that these conditions enable sintering of the copper, we developed a synthesis route for the preparation of Cu nanoparticles (NPs) based on the reduction of a common copper salt in aqueous solution in the presence of a size control agent. Upon hot pressing these nanoparticles at 500 °C, we are able to achieve 92-93% of the theoretical density of copper. The resulting materials exhibit a CTE which can be tuned between the value of pure copper (16.5 ppm/°C) and less than 1 ppm/°C. Thus, by adjusting the relative amount of the two components, the properties of the composite can be designed so that a material with high electrical conductivity and a CTE that matches the relatively low CTE values of semiconductor or thermoelectric materials can be achieved. This unique combination of electrical and thermal properties enables these Cu-based metal-matrix composites to be used as electrical contacts to a variety of semiconductor and thermoelectric devices which offer stable operation under thermal cycling conditions.

  7. Shear induced electrical behaviour of conductive polymer composites

    NASA Astrophysics Data System (ADS)

    Starý, Zdeněk; Krückel, Johannes; Schubert, Dirk W.

    2013-04-01

    The time-dependent electrical resistance of polymethylmethacrylate containing carbon black was measured under oscillatory shear in the molten state. The electrical signal was oscillating exactly at the doubled frequency of the oscillatory shear deformation. Moreover, the experimental results gave a hint to the development of conductive structures in polymer melts under shear deformation. It was shown that the flow induced destruction of conductive paths dominates over the flow induced build-up in the beginning of the shear deformations. However, for longer times both competitive effects reach a dynamic equilibrium and only the thermally induced build-up of pathways influences the changes in the composite resistance during the shear. Furthermore, the oscillating electrical response depends clearly on the deformation amplitude applied. A simple physical model describing the behaviour of conductive pathways under shear deformation was derived and utilized for the description of the experimental data.

  8. Fabrication, Modelling and Application of Conductive Polymer Composites

    NASA Astrophysics Data System (ADS)

    Price, Aaron David

    Electroactive polymers (EAP) are an emerging branch of smart materials that possess the capability to change shape in the presence of an electric field. Opportunities for the advancement of knowledge were identified in the branch of EAP consisting of inherently electrically conductive polymers. This dissertation explores methods by which the unique properties of composite materials having conductive polymers as a constituent may be exploited. Chapter 3 describes the blending of polyaniline with conventional thermoplastics. Processing these polyblends into foams yielded a porous conductive material. The effect of blend composition and processing parameters on the resulting porous morphology and electrical conductivity was investigated. These findings represent the first systematic study of porous conductive polymer blends. In Chapter 4, multilayer electroactive polymer actuators consisting of polypyrrole films electropolymerized on a passive polymer membrane core were harnessed as actuators. The membrane is vital in the transport of ionic species and largely dictates the stiffness of the layered configuration. The impact of the mechanical properties of the membrane on the actuation response of polypyrrole-based trilayer bending actuators was investigated. Candidate materials with distinct morphologies were identified and their mechanical properties were evaluated. These results indicated that polyvinylidene difluoride membranes were superior to the other candidates. An electrochemical synthesis procedure was proposed, and the design of a novel polymerization vessel was reported. These facilities were utilized to prepare actuators under a variety of synthesis conditions to investigate the impact of conductive polymer morphology on the electromechanical response. Characterization techniques were implemented to quantitatively assess physical and electrochemical properties of the layered composite. Chapter 5 proposes a new unified multiphysics model that captures the

  9. Conductive macroporous composite chitosan-carbon nanotube scaffolds.

    PubMed

    Lau, Carolin; Cooney, Michael J; Atanassov, Plamen

    2008-06-01

    Multiwalled carbon nanotubes (MWCNTs) were used as doping material for three-dimensional chitosan scaffolds to develop a highly conductive, porous, and biocompatible composite material. The porous and interconnected structures were formed by the process of thermally induced phase separation followed by freeze-drying applied to an aqueous solution of 1 wt % chitosan acetic acid. The porosity was characterized to be 97% by both mercury intrusion porosimetry measurements and SEM image analysis. When MWCNTs were used as a filler to introduce conductive pathways throughout the chitosan skeleton, the solubilizing hydrophobic and hydrophilic properties of chitosan established stable polymer/MWCNT solutions that yielded a homogeneous distribution of nanotubes throughout the final composite matrix. A percolation theory threshold of approximately 2.5 wt % MWCNTs was determined by measurement of the conductivity as a function of chitosan/MWCNT ratios. The powder resistivity of completely compressed scaffolds also was measured and was found to be similar for all MWCNT concentrations (0.7-0.15 Omega cm powder resistivity for MWCNTs of 0.8-5 wt %) and almost five times lower than the 20 k Omega cm value found for pure chitosan scaffolds.

  10. Tunneling conduction in graphene/(poly)vinyl alcohol composite

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Banerjee, Sourish; Chakravorty, Dipankar

    2013-04-01

    Graphene/(Poly)vinyl alcohol (PVA) composite film with thickness 60μm was synthesized by solidification of a PVA solution comprising of dispersed graphene nanosheets. The close proximity of the graphene sheets enables the fluctuation induced tunneling of electrons to occur from one sheet to another. The dielectric data show that the present system can be simulated to a parallel resistance-capacitor network. The high frequency exponent of the frequency variation of the ac conductivity indicates that the charge carriers move in a two-dimensional space. The sample preparation technique will be helpful for synthesizing flexible conductors.

  11. Designing of conducting polymer composites for shielding of microwave radiations

    NASA Astrophysics Data System (ADS)

    Saini, Parveen; Barala, Sunil Kumar; Arora, Manju; Kotnala, R. K.

    2013-06-01

    Nanocomposites (NCs) possessing moderate conductivity and dielectric/magnetic properties were prepared by in-situ incorporation of different fillers [BaTiO3 (BT) and γ-Fe2O3 (FO) nanoparticles (NPs)] within polyaniline (PANI) matrix. Several compositions were prepared by keeping PANI:filler ratio as 2:1 and varying the FO:BT ratio of the NCs. The X-Ray diffraction patterns confirmed the formation of electrically conducting PANI and proper incorporation of BT or FO NPs. Similarly, HRTEM images and EDX elemental analysis confirm the formation of NCs and phase preservation of incorporated FO or BT NPS. The magnetization measurements revealed that incorporation of γ-Fe2O3 resulted in improvement in magnetic properties with saturation magnetization value of 12.8 emu/g. The microwave shielding studies in the 12.4-18.0 GHz frequency range (P-band) revealed that the among various NCs, refelction loss was minimum (-4.6 dB) for composition having BT:FO ratio of 1:1 (i.e. PBF3) probably due to better matching of input impedance. Further, the incorporation of BT and FO NPs leads to reduction of skin depth and additional dielectric/magnetic losses resulting in absorption loss of -20.2 dB. The total attenuation (T) of -24.8 dB (i.e. >99 % attenuation) demonstrate the potential of these NCs for making futuristic microwave shields.

  12. Electrically conductive nano graphite-filled bacterial cellulose composites.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Rhodes, Kevin; Emanetoglu, Nuri W; Blumentritt, Melanie; Gardner, Douglas J

    2016-01-20

    A unique three dimensional (3D) porous structured bacterial cellulose (BC) can act as a supporting material to deposit the nanofillers in order to create advanced BC-based functional nanomaterials for various technological applications. In this study, novel nanocomposites comprised of BC with exfoliated graphite nanoplatelets (xGnP) incorporated into the BC matrix were prepared using a simple particle impregnation strategy to enhance the thermal properties and electrical conductivity of the BC. The flake-shaped xGnP particles were well dispersed and formed a continuous network throughout the BC matrix. The temperature at 10% weight loss, thermal stability and residual ash content of the nanocomposites increased at higher xGnP loadings. The electrical conductivity of the composites increased with increasing xGnP loading (attaining values 0.75 S/cm with the addition of 2 wt.% of xGnP). The enhanced conductive and thermal properties of the BC-xGnP nanocomposites will broaden applications (biosensors, tissue engineering, etc.) of BC and xGnP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing.

    PubMed

    Liu, Yu; Turner, Anthony P F; Zhao, Maojun; Mak, Wing Cheung

    2017-09-18

    A new approach for the facile fabrication of electrochemical biosensors using a biohybrid conducting polymer was demonstrated using glucose oxidase (GOx) and poly (3, 4-ethylenedioxythiophene) (PEDOT) as a model. The biohybrid conducting polymer was prepared based on a template-assisted chemical polymerisation leading to the formation of PEDOT microspheres (PEDOT-MSs), followed by in-situ deposition of platinum nanoparticles (PtNPs) and electrostatic immobilisation of glucose oxidase (GOx) to form water processable GOx-PtNPs-PEDOT-MSs. The morphology, chemical composition and electrochemical performance of the GOx-PtNPs-PEDOT-MS-based glucose biosensor were characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared (FTIR) spectroscopy, zeta potential and electrochemical measurements, respectively. The biosensor delivered a linear response for glucose over the range 0.1-10mM (R(2) = 0.9855) with a sensitivity of 116.25µAmM(-1)cm(-2), and limit of detection of 1.55µM (3×SD/sensitivity). The sensitivity of the developed PEDOT-MS based biosensor is significantly higher (2.7 times) than the best reported PEDOT-based glucose biosensor in the literature. The apparent Michaelis-Menten constant (Km(app)) of the GOx-PtNPs-PEDOT-MS-based biosensors was calculated as 7.3mM. Moreover, the biosensor exhibited good storage stability, retaining 97% of its sensitivity after 12 days storage. This new bio-hybrid conducting polymer combines the advantages of micro-structured morphology, compatibility with large-scale manufacturing processes, and intrinsic biocatalytic activity and conductivity, thus demonstrating its potential as a convenient material for printed bioelectronics and sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biocompatible silk-conducting polymer composite trilayer actuators

    NASA Astrophysics Data System (ADS)

    Fengel, Carly V.; Bradshaw, Nathan P.; Severt, Sean Y.; Murphy, Amanda R.; Leger, Janelle M.

    2017-05-01

    Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymer actuators are of interest because they operate in aqueous electrolytes at low voltages and can generate stresses similar to natural muscle. Recently, our group has demonstrated a composite material of silk and poly(pyrrole) (PPy) that is mechanically robust, made from biocompatible materials, and bends under an applied voltage when incorporated into a simple bilayer device architecture and actuated using a biologically relevant electrolyte. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. The trilayer architecture allows one side to expand while the other contracts, resulting in improved performance over bilayer devices. Specifically, this configuration shows a larger angle of deflection per volt applied than the analogous bilayer system, while maintaining a consistent current response throughout cycling. In addition, the overall motion of the trilayer devices is more symmetric than that of the bilayer analogs, allowing for fully reversible operation.

  15. Effect of composition on thermal conductivity of silica insulation media.

    PubMed

    Park, Sung; Kwon, Young-Pil; Kwon, Hyuk-Chon; Lee, Hae-Weon; Lee, Jae Chun

    2008-10-01

    Nano-sized fumed silica-based insulation media were prepared by adding TiO2 powders and ceramic fibers as opacifiers and structural integrity improvers, respectively. The high temperature thermal conductivities of the fumed silica-based insulation media were investigated using different types of TiO2 opacifier and by varying its content. The opacifying effects of nanostructured TiO2 powders produced by homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial TiO2 powder. The nanostructured HPPLT TiO2 powder with a mean particle size of 1.8 microm was more effective to reduce radiative heat transfer than the commercial one with a similar mean particle size. The insulation samples with the HPPLT TiO2 powder showed about 46% lower thermal conductivity at temperatures of about 820 degrees C than those with the commercial one. This interesting result might be due to the more effective radiation scattering efficiency of the nanostructured HPPLT TiO2 powder which has better gap filling and coating capability in nano-sized composite compacts.

  16. Fiber/Matrix Interfacial Thermal Conductance Effect on the Thermal Conductivity of SiC/SiC Composites

    SciTech Connect

    Nguyen, Ba Nghiep; Henager, Charles H.

    2013-04-20

    SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al.

  17. Muscle Fiber Conduction Velocity, Muscle Fiber Composition, and Power Performance.

    PubMed

    Methenitis, Spyridon; Karandreas, Nikolaos; Spengos, Konstantinos; Zaras, Nikolaos; Stasinaki, Angeliki-Nikoletta; Terzis, Gerasimos

    2016-09-01

    The aim of this study was to explore the relationship between muscle fiber conduction velocity (MFCV), fiber type composition, and power performance in participants with different training background. Thirty-eight young males with different training background participated: sedentary (n = 10), endurance runners (n = 9), power trained (n = 10), and strength trained (n = 9). They performed maximal countermovement jumps (CMJ) and maximal isometric leg press for the measurement of the rate of force development (RFD). Resting vastus lateralis MFCV was measured with intramuscular microelectrodes on a different occasion, whereas muscle fiber type and cross-sectional area (CSA) of vastus lateralis were evaluated through muscle biopsies 1wk later. MFCV, CMJ power, RFD, and % CSA of type II and type IIx fibers were higher for the power-trained group (P < 0.001). No difference was found between sedentary participants and endurance runners in these variables, but both of these groups performed worse than strength/power participants. Close correlations were found between MFCV and fiber CSA as well as the % CSA of all fiber types as well as with RFD and CMJ power (r = 0.712-0.943, P < 0.005). Partial correlations revealed that the % CSA of IIx fibers dictates a large part of the correlation between MFCV and RFD, power performance. Significant models for the prediction of the % CSA of type IIa and type II as well as the CSA of all muscle fibers based upon MFCV, RFD, and CMJ were revealed (P = 0.000). MFCV is closely associated with muscle fiber % CSA. RFD and jumping power are associated with the propagation of the action potentials along the muscle fibers. This link is regulated by the size and the distribution of type II, and especially type IIx muscle fibers.

  18. Highly conductive, multi-layer composite precursor composition to fuel cell flow field plate or bipolar plate

    DOEpatents

    Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH; Guo, Jiusheng [Centerville, OH

    2011-02-15

    This invention provides a moldable, multiple-layer composite composition, which is a precursor to an electrically conductive composite flow field plate or bipolar plate. In one preferred embodiment, the composition comprises a plurality of conductive sheets and a plurality of mixture layers of a curable resin and conductive fillers, wherein (A) each conductive sheet is attached to at least one resin-filler mixture layer; (B) at least one of the conductive sheets comprises flexible graphite; and (C) at least one resin-filler mixture layer comprises a thermosetting resin and conductive fillers with the fillers being present in a sufficient quantity to render the resulting flow field plate or bipolar plate electrically conductive with a conductivity no less than 100 S/cm and thickness-direction areal conductivity no less than 200 S/cm.sup.2.

  19. Conducting and non-conducting biopolymer composites produced by particle bonding

    USDA-ARS?s Scientific Manuscript database

    In this report, we introduce two types of processes for the production of biopolymer composites: one is fabricated by bonding biopolymers with corn protein or wheat protein and the other by bonding starch with a synthetic polymer. These two types of biopolymer composites make use of the strong bon...

  20. Facile Method to Fabricate Highly Thermally Conductive Graphite/PP Composite with Network Structures.

    PubMed

    Feng, Changping; Ni, Haiying; Chen, Jun; Yang, Wei

    2016-08-03

    Thermally conductive polymer composites have aroused significant academic and industrial interest for several decades. Herein, we report a novel fabrication method of graphite/polypropylene (PP) composites with high thermal conductivity in which graphite flakes construct a continuous thermally conductive network. The thermal conductivity coefficient of the graphite/PP composites is markedly improved to be 5.4 W/mK at a graphite loading of 21.2 vol %. Such a great improvement of the thermal conductivity is ascribed to the occurrence of orientations of crystalline graphite flakes with large particles around PP resin particles and the formation of a perfect thermally conductive network. The model of Hashin-Shtrikman (HS) is adopted to interpret the outstanding thermally conductive property of the graphite/PP composites. This work provides a guideline for the easy fabrication of thermally conductive composites with network structures.

  1. Effective conductivity of particulate polymer composite electrolytes using random resistor network method

    SciTech Connect

    Kalnaus, Sergiy; Sabau, Adrian S; Newman, Sarah M; Tenhaeff, Wyatt E; Daniel, Claus; Dudney, Nancy J

    2011-01-01

    The effective DC conductivity of particulate composite electrolytes was obtained by solving electrostatics equations using random resistors network method in three dimensions. The composite structure was considered to consist of three phases: matrix, particulate filler, and conductive shell that surrounded each particle; each phase possessing a different conductivity. Different particle size distributions were generated using Monte Carlo simulations. Unlike effective medium formulations, it was shown that the random resistors network method was able to predict percolation thresholds for the effective composite conductivity. It was found that the mean particle radius has a higher influence on the effective composite conductivity compared to the effect of type of the particle size distributions that were considered. The effect of the shell thickness on the composite conductivity has been investigated. It was found that the conductivity enhancement due to the presence of the conductive shell phase becomes less evident as the shell thickness increases.

  2. Photoinduced conductivity of a porphyrin-gold composite nanowire

    SciTech Connect

    Kilina, Svletana; Balatsky, Alexander; Kilin, Dmitri S; Prezhdo, Oleg; Tsemekhman, Kiril

    2009-01-01

    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  3. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    PubMed Central

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-01-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances. PMID:27193448

  4. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution

    NASA Astrophysics Data System (ADS)

    Orikasa, Yuki; Gogyo, Yuma; Yamashige, Hisao; Katayama, Misaki; Chen, Kezheng; Mori, Takuya; Yamamoto, Kentaro; Masese, Titus; Inada, Yasuhiro; Ohta, Toshiaki; Siroma, Zyun; Kato, Shiro; Kinoshita, Hajime; Arai, Hajime; Ogumi, Zempachi; Uchimoto, Yoshiharu

    2016-05-01

    Composite electrodes containing active materials, carbon and binder are widely used in lithium-ion batteries. Since the electrode reaction occurs preferentially in regions with lower resistance, reaction distribution can be happened within composite electrodes. We investigate the relationship between the reaction distribution with depth direction and electronic/ionic conductivity in composite electrodes with changing electrode porosities. Two dimensional X-ray absorption spectroscopy shows that the reaction distribution is happened in lower porosity electrodes. Our developed 6-probe method can measure electronic/ionic conductivity in composite electrodes. The ionic conductivity is decreased for lower porosity electrodes, which governs the reaction distribution of composite electrodes and their performances.

  5. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  6. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity.

    PubMed

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-19

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  7. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.

  8. Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity

    PubMed Central

    Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2016-01-01

    Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258

  9. Electrical and morphological properties of conducting layers formed from the silver-glass composite conducting powders prepared by spray pyrolysis.

    PubMed

    Jung, D S; Koo, H Y; Kang, Y C

    2010-03-01

    Ag-glass composite powders with various glass contents and excellent conducting properties were prepared by spray pyrolysis. Irrespective of the glass content, all the prepared powders were found to comprise spherical particles with nonaggregation characteristics. The crystal structure of the powder particles resembled that of pure Ag particles, irrespective of the glass content. Conducting layers formed from pure Ag did not melt even when sintered at 400 degrees C. On the other hand, conducting layers formed from composite powders containing 3 and 5 wt% glass melted when sintered at 400 degrees C. The optimum glass content of the composite powders was 3 wt% at sintering temperatures of 400 and 450 degrees C. However, the optimum glass content decreased to 1 wt% when the sintering temperature was increased to 550 degrees C. The lowest specific resistances of the conducting layers formed from the composite powders were 5.3 and 2.3 microohms-cm at sintering temperatures of 400 and 550 degrees C, respectively.

  10. Conductivity in zeolite-polymer composite membranes for PEMFCs

    NASA Astrophysics Data System (ADS)

    Sancho, T.; Soler, J.; Pina, M. P.

    Structured materials, such as zeolites can be candidates to be used as electrolytes in proton exchange membrane fuel cells (PEMFC) to substitute polymeric membranes, taking advantage of their higher chemical and thermal stability and their specific adsorption properties. The possibility to work at temperatures of nearly 150 °C would make easy the selection of the fuel, decreasing the influence of CO in the catalyst poisoning, and it would also improve the kinetics of the electrochemical reactions involved. In this work, four zeolites and related materials have been studied: mordenite, NaA zeolite, umbite and ETS-10. In special, the influence of relative humidity and temperature have been carefully explored. A conductivity cell was designed and built to measure in cross direction, by using the electrochemical impedance spectroscopy. The experimental system was validated using Nafion ® as a reference material by comparing the results with bibliography data. Samples were prepared by pressing the zeolite powders, with size of 1 μm on average, using polymer PVDF (10 wt.%) as a binder. The results here obtained, in spite of not reaching the absolute values of the Nafion ® ones, show a lower effect of the dehydration phenomenon on the conduction performance in the temperature range studied (from room temperature to 150 °C). This increase of the operation temperature range would give important advantages to the PEMFC. ETS-10 sample shows the best behaviour with respect to conductivity exhibiting an activation energy value comparable with reported for Nafion ® membrane.

  11. Measuring and modeling the thermal conductivities of three-dimensionally woven fabric composites

    NASA Astrophysics Data System (ADS)

    Schuster, J.; Heider, D.; Sharp, K.; Glowania, M.

    2009-03-01

    The effect of a three-dimensional fiber reinforcement on the out-of-plane thermal conductivity of composite materials is investigated. Composite preforms with different fibers in the thickness direction were fabricated. After in fusion by using a vacuum-assisted resin transfer molding process, their through-thickness thermal conductivities were evaluated. The measured thermal conductivities showed a significant increase compared with those of a typical laminated composite. Although the through-thickness thermal conductivity of the samples increased with through-thickness fiber volume fraction, its values did not match those predicted by the simple rule of mixtures. By using finite-element models to better under stand the behavior of the composite material, improvements in an existing analytical model were performed to predict the effective thermal conductivity as a function of material properties and in-contact thermal properties of the composite.

  12. Influence of raw materials composition on firing shrinkage, porosity, heat conductivity and microstructure of ceramic tiles

    NASA Astrophysics Data System (ADS)

    Kurovics, E.; Buzimov, A. Y.; Gömze, L. A.

    2016-04-01

    In this work some new raw material compositions from alumina, conventional brick-clays and sawdust were mixed, compacted and heat treated by the authors. Depending on raw material compositions and firing temperatures the specimens were examined on shrinkage, water absorption, heat conductivity and microstructures. The real raised experiments have shown the important role of firing temperature and raw material composition on color, heat conductivity and microstructure of the final product.

  13. A tactile sensor using a conductive graphene-sponge composite

    NASA Astrophysics Data System (ADS)

    Chun, Sungwoo; Hong, Ahyoung; Choi, Yeonhoi; Ha, Chunho; Park, Wanjun

    2016-04-01

    For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor.For sensors that emulate human tactile perception, we suggest a simple method for fabricating a highly sensitive force sensor using a conductive polyurethane sponge where graphene flakes are self-assembled into the porous structure of the sponge. The complete sensor device shows a sensitive and reliable detection response for a broad range of pressure and dynamic pressure that correspond to human tactile perception. Sensitivity of the sensor to detect vibration is also confirmed with vertical actuations due to slipping over micro-scale ridge structures attached on the sensors. Based on the sensor's ability to detect both pressure and vibration, the sensor can be utilized as a flexible tactile sensor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00774k

  14. Thermal Conductivity of Composites of Beryllia and Lithium Titanate

    NASA Astrophysics Data System (ADS)

    Rath, B. N.; Ghanwat, S. J.; Kaity, Santu; Danani, Chandan; Kulkarni, R. V.; Alur, V. D.; Sathiyamoorthy, D.; Anantharaman, S.

    2013-11-01

    The International Thermonuclear Experimental Reactor (ITER) is designed to demonstrate the scientific and technological feasibility of fusion power for energy purposes. Wide varieties of solid breeders and multiplier materials have been proposed for fusion blankets. Beryllium and lithium titanate (Li2TiO3) have been accepted as neutron multiplier and breeder materials, respectively. However, swelling of beryllium due to helium and tritium permeation through metallic beryllium and low thermal conductivity of lithium titanate have caused serious limitations when ITER is in the demo version. It has been well established that BeO due its highest thermal conductivity among the known ceramics, low neutron absorption cross section, and high neutron reflection cross section is a good neutron multiplier. In the present investigation, a novel ceramic single compound of BeO-Li2TiO3 was synthesized, keeping the BeO content to Li2TiO3 in the volume ratio of 80:20, 75:25, 65:35, and 55:45 with the aim of maintaining the tritium breeding ratio as more than one, and characterized for phases present by x-ray diffraction and scanning electron microscopy.

  15. Electrically conductive, optically transparent polymer/carbon nanotube composites

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Watson, Kent A. (Inventor); Ounaies, Zoubeida (Inventor)

    2011-01-01

    The present invention is directed to the effective dispersion of carbon nanotubes (CNTs) into polymer matrices. The nanocomposites are prepared using polymer matrices and exhibit a unique combination of properties, most notably, high retention of optical transparency in the visible range (i.e., 400-800 nm), electrical conductivity, and high thermal stability. By appropriate selection of the matrix resin, additional properties such as vacuum ultraviolet radiation resistance, atomic oxygen resistance, high glass transition (T.sub.g) temperatures, and excellent toughness can be attained. The resulting nanocomposites can be used to fabricate or formulate a variety of articles such as coatings on a variety of substrates, films, foams, fibers, threads, adhesives and fiber coated prepreg. The properties of the nanocomposites can be adjusted by selection of the polymer matrix and CNT to fabricate articles that possess high optical transparency and antistatic behavior.

  16. Processing-thermal conductivity relationships in MGO-pyrochlore composite inert matrix materials

    NASA Astrophysics Data System (ADS)

    Yates, Samantha J.

    2009-12-01

    Inert matrix (IM) materials are proposed to act as non-fertile matrices to burn excess plutonium and minor actinides in nuclear reactors. MgO is a good IM candidate because of its high thermal conductivity, good radiation resistance, and high temperature stability, but its hot water corrosion resistance is poor limiting its use in light water reactors. A composite approach has been suggested to improve the hydration resistance of the MgO by adding a pyrochlore phase to act as a hydration barrier while maximizing the effective thermal conductivity of the composite. In this work, MgO-Nd 2Zr2O7 composites are fabricated using four different processing methods to deliberately vary the microstructure thus enabling the investigation of processing-microstructure-thermal conductivity relationships in the composites. The first processing-microstructure-property relationship that is developed is the effect of the composite processing method on the sample-to-sample variation in the thermal diffusivity. The processing method affects the formation of agglomerates in the mixed composite powders, and these agglomerates are the source of MgO and Nd2Zr2O7 heterogeneities in the sintered composites. Differential sintering occurs in some of the agglomerates, resulting in the formation of circumferential cracks between the heterogeneity and the matrix. The presence of the circumferential cracks cause sample-to-sample variations of up to +/- 2 Wm-1K-1 in the thermal conductivity between composites fabricated from the same batch of mixed composite powder. This variation makes it more difficult to accurately and reliably predict the thermal conductivity of the composites. The second processing-microstructure-property relationship developed describes the effect of the contiguity of the MgO on the average thermal conductivity of the composites. The processing method is found to affect the contiguity of the MgO in the composites. Lower MgO contiguity values cause the average thermal

  17. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    NASA Technical Reports Server (NTRS)

    Kumar, Binod (Inventor)

    2003-01-01

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  18. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    DOEpatents

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  19. Improved conductivity of carbon-nano-fiber (CNF)/polytetrafluoroethylene (PTFE) composite

    SciTech Connect

    Chandra, Sarita; Kalra, G. S.; Pushkar, Vinay K.; Gill, Fateh Singh; Panwar, Variz; Gupta, Himanshu; Pal, Pankaj K.; Pathak, Trilok K.; Purohit, L. P.

    2016-05-23

    A series of CNF/PTFE composite loaded with different weight % of CNFs as 0.01, 0.02, 0.03, 0.05, 1, 2, 3, 4, 5 into PTFE is fabricated. In this work, the 5wt% heat-treated CNFs were used as filler in PTFE. Current-voltage (I-V) study of the samples confirmed the samples as conducting composite. In scanning electron microscope (SEM) study, the conducting CNFs channels were observed from upper surface to inside throughout the polymer matrix. A sintered composite of 5 wt% loading of CNFs showed an improved conductivity and SEM image exhibited a good binding of CNFs into PTFE.

  20. Effect of Filler Orientation on Thermal Conductivity of Polypropylene Matrix Carbon Nanofiber Composites

    NASA Astrophysics Data System (ADS)

    Enomoto, Kazuki; Fujiwara, Shu; Yasuhara, Toshiyuki; Murakami, Hiroya; Teraki, Junichi; Ohtake, Naoto

    2005-06-01

    Polypropylene matrix carbon nanofiber composites were obtained by injection molding after kneading with a batch-type twin-screw kneader. The thermal conductivity of the composites in the thickness direction was evaluated, with particular focus on the effects of carbon nanofiber (CNF) content and filler orientation. The thermal conductivity of the composites increased with increasing CNF content, and was obtained as 3.46 W/(m\\cdotK) when the CNF content was 50% in weight fraction and the CNFs were highly oriented along the measuring direction of thermal conductivity. This value is approximately seventeenfold higher than that of neat polypropylene.

  1. Monte Carlo Simulation of Thermal Conductivity in Randomly Distributed Nanowire Composites

    NASA Astrophysics Data System (ADS)

    Tian, W.; Yang, R.

    2007-03-01

    In this paper, we investigated the thermal conductivity of composites made of two types of randomly stacked nanowires with high contrast ratio of bulk thermal conductivity. Thermal conductivity predictions based on solving the phonon Boltzmann transport equation by using the Monte Carlo method are presented for different contrast ratios of thermal conductivity, sizes of nanowires and the volumetric fractions in the composites. For composites made of nanowires with high contrast ratio thermal conductivity, the thermal conductivity of the nanocomposites increase dramatically when the volumetric fraction of high thermal conductivity nanowire is higher than the geometry percolation threshold, although existing correlations in percolation theory do not fit the results due to the phonon interface scattering. On the other hand, when the the size of nanowires is small and the volumetric fraction of high thermal conductivity nanowire is less than percolation threshold, the thermal conductivity of the nanocomposites decreases with increasing the volumetric fraction of the high thermal conductivity nanowires. The results of this study may help the development of nanoscale thermoelectric materials in which the figure of merit is optimized by choosing appropriate nanowire size, property contrast and composition. RY acknowledges the funding support for this work by DoD/AFOSR MURI grant FA9550-06-1-0326. The simulation was conducted on a 24-node cluster supported by Intel Corporation and managed by Prof. Gang Chen and Mr. Lu Hu at MIT.

  2. Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films.

    PubMed

    Jafarzadeh, Shadi; Claesson, Per M; Sundell, Per-Erik; Pan, Jinshan; Thormann, Esben

    2014-11-12

    The presence and characteristics of a connected network of polyaniline (PANI) within a composite coating based on polyester acrylate (PEA) has been investigated. The bulk electrical conductivity of the composite was measured by impedance spectroscopy. It was found that the composite films containing PANI have an electrical conductivity level in the range of semiconductors (order of 10(-3) S cm(-1)), which suggests the presence of a connected network of the conductive phase. The nanoscopic distribution of such a network within the cured film was characterized by PeakForce tunneling atomic force microscopy (AFM). This method simultaneously provides local information about surface topography and nanomechanical properties, together with electrical conductivity arising from conductive paths connecting the metallic substrate to the surface of the coating. The data demonstrates that a PEA-rich layer exists at the composite-air interface, which hinders the conductive phase to be fully detected at the surface layer. However, by exposing the internal structure of the composites using a microtome, a much higher population of a conductive network of PANI, with higher elastic modulus than the PEA matrix, was observed and characterized. Local current-voltage (I-V) spectroscopy was utilized to investigate the conduction mechanism within the nanocomposite films, and revealed non-Ohmic characteristics of the conductive network.

  3. Enhancing through thickness thermal conductivity of ultra-thin composite laminates. Final report

    SciTech Connect

    Ramani, K.; Vaidyanathan, A.

    1994-12-31

    The materials used in electronic applications have specific requirements for stiffness, thermal conductivity, and electromagnetic shielding making the choice of materials used very important. Electronic components are very sensitive to heat, hence the heat dissipation or cooling of the various components is necessary to prevent failure. Thus, any material used in the electronic industry must have a high thermal conductivity in addition to a specified thermal expansion, stiffness and strength properties. The purpose of this project was to design and manufacture composite panels which would conduct heat from an electronic chip attached to the top surface to a cooling liquid flowing at its lower surface. To maximize the heat conducted from the chip to the cooling liquid, the composite must have a high through thickness thermal conductivity. Further, design restrictions on the thickness of the composite panel had to be taken into account. It was found that the presence of excess resin adversely affects the conductivity of a woven fabric composite due to which the through thickness conductivity of the 400 {micro}m thick panel was better than the 500 {micro}m thick panel. The through thickness conductivity of the panel with short fibers alone was better than that of the woven cloth panel. The finite element model developed for a priori prediction of the through thickness thermal conductivity of the composite panels is a very powerful tool that can save enormous prototyping times an associates coats.

  4. Analysis on Thermal Conductivity of Graphite/Al Composite by Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Xue, C.; Bai, H.; Tao, P. F.; Jiang, N.; Wang, S. L.

    2017-01-01

    Graphite/Al composites were fabricated by vacuum hot pressing technology in this study. The main factors affecting the thermal conductivity (TC) of graphite/Al composites were deeply investigated by experimental and modeling study. The results showed that the TC of graphite/Al composite can be improved via designing the preferred orientation of graphite flakes, selecting graphite flakes with large diameter, increasing the content of graphite flakes in graphite/Al composite and solving the poor wettability between Al and graphite. The modified model can well predict the heat transfer behavior of graphite/Al composite.

  5. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.

    PubMed

    Wu, Xiaodong; Han, Yangyang; Zhang, Xinxing; Lu, Canhui

    2017-07-12

    Flexible and stretchable electronics are highly desirable for next generation devices. However, stretchability and conductivity are fundamentally difficult to combine for conventional conductive composites, which restricts their widespread applications especially as stretchable electronics. Here, we innovatively develop a new class of highly stretchable and robust conductive composites via a simple and scalable structural approach. Briefly, carbon nanotubes are spray-coated onto a self-adhesive rubber film, followed by rolling up the film completely to create a spirally layered structure within the composites. This unique spirally layered structure breaks the typical trade-off between stretchability and conductivity of traditional conductive composites and, more importantly, restrains the generation and propagation of mechanical microcracks in the conductive layer under strain. Benefiting from such structure-induced advantages, the spirally layered composites exhibit high stretchability and flexibility, good conductive stability, and excellent robustness, enabling the composites to serve as highly stretchable conductors (up to 300% strain), versatile sensors for monitoring both subtle and large human activities, and functional threads for wearable electronics. This novel and efficient methodology provides a new design philosophy for manufacturing not only stretchable conductors and sensors but also other stretchable electronics, such as transistors, generators, artificial muscles, etc.

  6. Fabrication and thermal conductivity improvement of novel composite adsorbents adding with nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Qibai; Yu, Xiaofen; Zhang, Haiyan; Chen, Yiming; Liu, Liying; Xie, Xialin; Tang, Ke; Lu, Yiji; Wang, Yaodong; Roskilly, Anthony Paul

    2016-10-01

    Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent.

  7. High thermal conductivity SiC/SiC composites for fusion applications -- 2

    SciTech Connect

    Kowbel, W.; Tsou, K.T.; Withers, J.C.; Youngblood, G.E.

    1998-03-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion Structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. An unirradiated SiC/SiC composite made with MER-developed CVR SiC fiber and a hybrid PIP/CVI SiC matrix exhibited room temperature transverse thermal conductivity of 45 W/mK. An unirradiated SiC/SiC composite made from C/C composite totally CVR-converted to a SiC/SiC composite exhibited transverse thermal conductivity values of 75 and 35 W/mK at 25 and 1000 C, respectively. Both types of SiC/SiC composites exhibited non-brittle failure in flexure testing.

  8. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  9. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  10. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1991-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  11. Thermal conductivity and thermal expansion of graphite fiber-reinforced copper matrix composites

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Mcdanels, David L.

    1993-01-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  12. Thermal conductivity and thermal expansion of graphite fiber/copper matrix composites

    SciTech Connect

    Ellis, D.L.; McDanels, D.L.

    1994-09-01

    The high specific conductivity of graphite fiber/copper matrix (Gr/Cu) composites offers great potential for high heat flux structures operating at elevated temperatures. To determine the feasibility of applying Gr/Cu composites to high heat flux structures, composite plates were fabricated using unidirectional and cross-plied pitch-based P100 graphite fibers in a pure copper matrix. Thermal conductivity of the composites was measured from room temperature to 1073 K, and thermal expansion was measured from room temperature to 1050 K. The longitudinal thermal conductivity, parallel to the fiber direction, was comparable to pure copper. The transverse thermal conductivity, normal to the fiber direction, was less than that of pure copper and decreased with increasing fiber content. The longitudinal thermal expansion decreased with increasing fiber content. The transverse thermal expansion was greater than pure copper and nearly independent of fiber content.

  13. Measurement and Prediction of Effective Thermal Conductivity for Woven Fabric Composites

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Woo, Kyeongsik

    The current paper deals with the measurement and prediction of thermal conductivities for plain weave fabric composites. An experimental apparatus was setup to measure the temperature gradients from which the thermal conductivities were obtained. The thermal conductivities were also calculated using finite element analyses for plain weave unit cell models and then compared with experimental results. In addition, the effect of a phase shift and the fiber volume fraction in the tow on the thermal conductivities was addressed.

  14. Conduction of the three-dimensional model of a composite with structural anisotropy

    NASA Astrophysics Data System (ADS)

    Balagurov, B. Ya.

    2016-08-01

    The electric conduction of the model of a structurally anisotropic composite that represents an isotropic matrix with disk-shaped inclusions (oblate spheroids) is analytically studied. The disks have the same orientation and their centers are randomly distributed in the composite volume. The cases of dielectric and ideally conducting inclusions are considered. The conduction of the model in a broad concentration range is described by the approximate effective medium method. Conduction in the critical region (in the vicinity of the metal-dielectric phase transition point) is studied using the similarity hypothesis.

  15. Conduction of the three-dimensional model of a composite with structural anisotropy

    SciTech Connect

    Balagurov, B. Ya. E-mail: byabalagurov@mail.ru

    2016-08-15

    The electric conduction of the model of a structurally anisotropic composite that represents an isotropic matrix with disk-shaped inclusions (oblate spheroids) is analytically studied. The disks have the same orientation and their centers are randomly distributed in the composite volume. The cases of dielectric and ideally conducting inclusions are considered. The conduction of the model in a broad concentration range is described by the approximate effective medium method. Conduction in the critical region (in the vicinity of the metal–dielectric phase transition point) is studied using the similarity hypothesis.

  16. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, M.C.; Bloom, I.D.

    1992-10-13

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800--1200 C), for example 1000 C, than are typically required (1400 C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250 C with conductivity values of 2.5 to 4[times]10[sup [minus]2](ohm-cm)[sup [minus]1]. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300 C. 1 figure.

  17. The Electrical and Thermal Conductivity of Woven Pristine and Intercalated Graphite Fiber-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Vandenburg, Yvonne Yoder; Berkebile, Steven; Stueben, Heather; Balagadde, Frederick

    2002-01-01

    A series of woven fabric laminar composite plates and narrow strips were fabricated from a variety of pitch-based pristine and bromine intercalated graphite fibers in an attempt to determine the influence of the weave on the electrical and thermal conduction. It was found generally that these materials can be treated as if they are homogeneous plates. The rule of mixtures describes the resistivity of the composite fairly well if it is realized that only the component of the fibers normal to the equipotential surface will conduct current. When the composite is narrow with respect to the fiber weave, however, there is a marked angular dependence of the resistance which was well modeled by assuming that the current follows only along the fibers (and not across them in a transverse direction), and that the contact resistance among the fibers in the composite is negligible. The thermal conductivity of composites made from less conductive fibers more closely followed the rule of mixtures than that of the high conductivity fibers, though this is thought to be an artifact of the measurement technique. Electrical and thermal anisotropy could be induced in a particular region of the structure by weaving together high and low conductivity fibers in different directions, though this must be done throughout all of the layers of the structure as interlaminar conduction precludes having only the top layer carry the anisotropy. The anisotropy in the thermal conductivity is considerably less than either that predicted by the rule of mixtures or the electrical resistivity.

  18. Thermal conduction in a composite circular cylinder - A new technique for thermal conductivity measurements of lunar core samples

    NASA Technical Reports Server (NTRS)

    Horal, K.; Keihm, S. J.; Langseth, M. G.; Winkler, J. L., Jr.; Fountain, J. A.; West, E. A.

    1980-01-01

    A technique is described for the measurement of the thermal conductivity of lunar core samples. According to their technique, the core sample is heated radiatively from the outside at a known rate, the temperature is measured at the surface of the core-tube, and the thermal conductivity of the sample is determined by comparing the measured temperature with the theory. The corresponding problems for a composite slab or sphere were solved and the solutions are presented for possible future application to the thermal conductivity measurements. The experimental apparatus construction and procedure are examined as well as the number of precautions taken to preserve the sample from disturbances and to improve the measurement results.

  19. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  20. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  1. Connection between diffusion coefficient and thermal conductivity of a metal matrix composite

    NASA Astrophysics Data System (ADS)

    Anisimova, M. A.; Knyazeva, A. G.; Sevostianov, I.

    2017-02-01

    The paper discusses the calculation of the effective thermal and diffusion properties of metal matrix composites containing diamond particles. The effective properties are calculated using Maxwell homogenization scheme. We also establish cross-property connection between overall thermal conductivity and diffusion coefficient and illustrate it on example of Al\\diamond composites.

  2. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system

    PubMed Central

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-01-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)−1, which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis–Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally. PMID:27877843

  3. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding.

    PubMed

    Wu, Ying; Wang, Zhenyu; Liu, Xu; Shen, Xi; Zheng, Qingbin; Xue, Quan; Kim, Jang-Kyo

    2017-03-15

    Ultralight, high-performance electromagnetic interference (EMI) shielding graphene foam (GF)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are developed by drop coating of PEDOT:PSS on cellular-structured, freestanding GFs. To enhance the wettability and the interfacial bonds with PEDOT:PSS, GFs are functionalized with 4-dodecylbenzenesulfonic acid. The GF/PEDOT:PSS composites possess an ultralow density of 18.2 × 10(-3) g/cm(3) and a high porosity of 98.8%, as well as an enhanced electrical conductivity by almost 4 folds from 11.8 to 43.2 S/cm after the incorporation of the conductive PEDOT:PSS. Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE (SSE) of 3124 dB·cm(3)/g, both of which are the highest among those reported in the literature for carbon-based polymer composites. The excellent electrical conductivities of composites arising from both the GFs with three-dimensionally interconnected conductive networks and the conductive polymer coating, as well as the left-handed composites with absolute permittivity and/or permeability larger than one give rise to significant microwave attenuation by absorption.

  4. Thermal Conductivity of Polymer-Based Composites with Magnetic Aligned Hexagonal Boron Nitride Platelets.

    PubMed

    Yuan, Chao; Duan, Bin; Li, Lan; Xie, Bin; Huang, Mengyu; Luo, Xiaobing

    2015-06-17

    Hexagonal boron nitride (hBN) platelets are widely used as the reinforcing fillers for enhancing the thermal conductivity of polymer-based composites. Since hBN platelets have high aspect ratio and show a highly anisotropic thermal property, the thermal conductivity of the hBNs-filled composites should be strongly associated with the platelets' orientation. However, the orientation effect has been explored less frequently due to the technical difficulties in precontrol of the platelets' orientation in the polymer matrix. In this paper, we report the use of magnetic fields to assemble the platelets into various microstructures and to study the thermal conductivities of the designed composites. The experimental results showed that thermal conductivities are dramatically different among these composites. For instance, the thermal conductivities of the composites with platelets oriented parallel and perpendicular to the heat flux direction are respectively 44.5% higher and 37.9% lower than that of unaligned composites at the volume fraction of 9.14%. The results were also analyzed by a theoretical model. The model suggests that the orientation of the hBN platelets is the main reason for the variance in the thermal conductivity.

  5. Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system.

    PubMed

    Ha, Sung Min; Kwon, O Hwan; Oh, Yu Gyeong; Kim, Yong Seok; Lee, Sung-Goo; Won, Jong Chan; Cho, Kwang Soo; Kim, Byoung Gak; Yoo, Youngjae

    2015-12-01

    We explored the use of a hybrid filler consisting of graphite nanoplatelets (GNPs) and single walled carbon nanotubes (SWCNTs) in a polyamide 6 (PA 6) matrix. The composites containing PA 6, powdered GNP, and SWCNT were melt-processed and the effect of filler content in the single filler and hybrid filler systems on the thermal conductivity of the composites was examined. The thermal diffusivities of the composites were measured by the standard laser flash method. Composites containing the hybrid filler system showed enhanced thermal conductivity with values as high as 8.8 W (m · K)(-1), which is a 35-fold increase compared to the thermal conductivity of pure PA 6. Thermographic images of heat conduction and heat release behaviors were consistent with the thermal conductivity results, and showed rapid temperature jumps and drops, respectively, for the composites. A composite model based on the Lewis-Nielsen theory was developed to treat GNP and SWCNT as two separate types of fillers. Two approaches, the additive and multiplicative approaches, give rather good quantitative agreement between the predicted values of thermal conductivity and those measured experimentally.

  6. Silver-plated carbon nanotubes for silver/conducting polymer composites.

    PubMed

    Oh, Youngseok; Suh, Daewoo; Kim, Youngjin; Lee, Eungsuek; Mok, Jee Soo; Choi, Jaeboong; Baik, Seunghyun

    2008-12-10

    Carbon nanotubes (CNTs) have advantages as conductive fillers due to their large aspect ratio and excellent conductivity. In this study, a novel silver/conducting polymer composite was developed by the incorporation of silver-plated CNTs. It is important to achieve a homogeneous dispersion of nanotubes and to improve the interfacial bonding to utilize the excellent properties of reinforcements in the matrix material. The homogeneous dispersion of nanotubes was achieved by an acid treatment process, and the interfacial contact was improved by electroless silver plating around nanotubes. The resistivity of the silver/conducting polymer composite was decreased by 83% by the addition of silver-plated single-walled carbon nanotubes. Conductive bumps were also screen-printed to demonstrate the capability of the composite as electrical interconnects for multi-layer printed circuit boards.

  7. Highly conductive composites for fuel cell flow field plates and bipolar plates

    DOEpatents

    Jang, Bor Z; Zhamu, Aruna; Song, Lulu

    2014-10-21

    This invention provides a fuel cell flow field plate or bipolar plate having flow channels on faces of the plate, comprising an electrically conductive polymer composite. The composite is composed of (A) at least 50% by weight of a conductive filler, comprising at least 5% by weight reinforcement fibers, expanded graphite platelets, graphitic nano-fibers, and/or carbon nano-tubes; (B) polymer matrix material at 1 to 49.9% by weight; and (C) a polymer binder at 0.1 to 10% by weight; wherein the sum of the conductive filler weight %, polymer matrix weight % and polymer binder weight % equals 100% and the bulk electrical conductivity of the flow field or bipolar plate is at least 100 S/cm. The invention also provides a continuous process for cost-effective mass production of the conductive composite-based flow field or bipolar plate.

  8. Silver-plated carbon nanotubes for silver/conducting polymer composites

    NASA Astrophysics Data System (ADS)

    Oh, Youngseok; Suh, Daewoo; Kim, Youngjin; Lee, Eungsuek; Mok, Jee Soo; Choi, Jaeboong; Baik, Seunghyun

    2008-12-01

    Carbon nanotubes (CNTs) have advantages as conductive fillers due to their large aspect ratio and excellent conductivity. In this study, a novel silver/conducting polymer composite was developed by the incorporation of silver-plated CNTs. It is important to achieve a homogeneous dispersion of nanotubes and to improve the interfacial bonding to utilize the excellent properties of reinforcements in the matrix material. The homogeneous dispersion of nanotubes was achieved by an acid treatment process, and the interfacial contact was improved by electroless silver plating around nanotubes. The resistivity of the silver/conducting polymer composite was decreased by 83% by the addition of silver-plated single-walled carbon nanotubes. Conductive bumps were also screen-printed to demonstrate the capability of the composite as electrical interconnects for multi-layer printed circuit boards.

  9. Electrical Conductivity Response of Poly(Phenylene-vinylene)/Zeolite Composites Exposed to Ammonium Nitrate

    PubMed Central

    Kamonsawas, Jirarat; Sirivat, Anuvat; Niamlang, Sumonman; Hormnirun, Pimpa; Prissanaroon-Ouajai, Walaiporn

    2010-01-01

    Poly(p-phenylenevinylene) (PPV) was chemically synthesized via the polymerization of p-xylene-bis(tetrahydrothiophenium chloride) monomer and doped with H2SO4. To improve the electrical conductivity sensitivity of the conductive polymer, Zeolites Y (Si/Al = 5.1, 30, 60, 80) were added into the conductive polymer matrix. All composite samples show definite positive responses towards NH4NO3. The electrical conductivity sensitivities of the composite sensors increase linearly with increasing Si/Al ratio: with values of 0.201, 1.37, 2.80 and 3.18, respectively. The interactions between NH4NO3 molecules and the PPV/zeolite composites with respect to the electrical conductivity sensitivity were investigated through the infrared spectroscopy. PMID:22219677

  10. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    PubMed Central

    Guan, Kang; Wu, Jianqing; Cheng, Laifei

    2016-01-01

    The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130

  11. Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2002-02-01

    The function and performance of self-diagnostic composites embedded in concrete blocks and piles were investigated by bending tests and electrical resistance measurement. Carbon powder (CP) and carbon fiber (CF) were introduced into glass fiber reinforced plastic (GFRP) composites to provide electrical conductivity. The CPGFRP composite displays generally good performance in various bending tests of concrete block and piles compared to the CFGFRP composite. The electrical resistance of the CPGFRP composite increases remarkably at small strains in response to microcrack formation at about 200 μm strain, and can be used to detect smaller deformations before crack formation. The CPGFRP composite shows continuous change in resistance up to a large strain level just before the final fracture for concrete structures reinforced by steel bars. It is concluded that self-diagnostic composites can be used to predict damage and fracture in concrete blocks and piles.

  12. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets

    PubMed Central

    Kim, Hyun Su; Bae, Hyun Sung; Yu, Jaesang; Kim, Seong Yun

    2016-01-01

    One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K). PMID:27220415

  13. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets.

    PubMed

    Kim, Hyun Su; Bae, Hyun Sung; Yu, Jaesang; Kim, Seong Yun

    2016-05-25

    One of the most important physical factors related to the thermal conductivity of composites filled with graphene nanoplatelets (GNPs) is the dimensions of the GNPs, that is, their lateral size and thickness. In this study, we reveal the relationship between the thermal conductivity of polymer composites and the realistic size of GNP fillers within the polymer composites (measured using three-dimensional (3D) non-destructive micro X-ray CT analysis) while minimizing the effects of the physical parameters other than size. A larger lateral size and thickness of the GNPs increased the likelihood of the matrix-bonded interface being reduced, resulting in an effective improvement in the thermal conductivity and in the heat dissipation ability of the composites. The thermal conductivity was improved by up to 121% according to the filler size; the highest bulk and in-plane thermal conductivity values of the composites filled with 20 wt% GNPs were 1.8 and 7.3 W/m·K, respectively. The bulk and in-plane thermal conductivity values increased by 650 and 2,942%, respectively, when compared to the thermal conductivity values of the polymer matrix employed (0.24 W/m·K).

  14. Electrical Conductivity of SiC/Si Composites Obtained from Wood Preforms

    NASA Astrophysics Data System (ADS)

    Béjar, Marco Antonio; Mena, Rodrigo; Toro, Juan Esteban

    2011-02-01

    Biomorphic SiC/Si composites were produced from pine and beech wood, and the corresponding electrical conductivity was determined as a function of the temperature. Firstly, wood preforms were pyrolized at 1050 °C in nitrogen. Then, the pyrolized preforms were impregnated with liquid silicon and kept at 1600 °C for 2 h in vacuum. The SiC/Si composites were obtained due to the produced carbothermal reaction. As expected, the resulting electrical conductivity of these composites increased with the temperature and with the silicon content.

  15. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property

    NASA Astrophysics Data System (ADS)

    Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2017-08-01

    The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.

  16. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  17. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2017-04-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  18. Investigations on Thermal Conductivities of Jute and Banana Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Pujari, Satish; Ramakrishna, Avasarala; Balaram Padal, Korabu Tulasi

    2016-01-01

    The Jute and Banana fibers are used as reinforcement in epoxy resin matrix for making partially green biodegradable material composite via hand lay-up technique. The thermal conductivity of the jute fiber epoxy composites and banana fiber epoxy composites at different volume fraction of the fiber is determined experimentally by using guarded heat flow meter method. The experimental results had shown that thermal conductivity of the composites decrease with an increase in the fiber content. Experimental results are compared with theoretical models (Series model, Hashin model and Maxwell model) to describe the variation of the thermal conductivity versus the volume fraction of the fiber. Good agreement between theoretical and experimental results is observed. Thermal conductivity of Banana fiber composite is less when compared to that of Jute composite which indicates banana is a good insulator and also the developed composites can be used as insulating materials in building, automotive industry and in steam pipes to save energy by reducing rate of heat transfer.

  19. Novel Ag/Si composite particles through galvanic displacement and its conductive application.

    PubMed

    Yang, Chenfan; Liu, Xuelong; Lv, Tiezheng; Zhao, Lili; Cui, Can; Wang, Yuying; Cha, Limei

    2016-01-01

    Here we synthesized a novel Ag/Si composite sub-micro particle using galvanic displacement by capitalizing on the active chemical surface of Si particles sludge from wafer-slicing process. Si works as chemical reactant, as well as reaction site to form composite particles. Sequent structural characterizations and analysis which include X-ray diffraction, transmission electron microscopy, scanning electron microscope, energy dispersive X-ray and electrical properties of this composite particle were done. A well-proved hetero-epitaxial growth mechanism could explain Ag nano-island/layer with a satisfactory bond property deposited on the Si surface. Since these Si are mechanically cleaved from crystal, formed conductive Ag/Si composites retain the flake shape from Si sludge particles, and narrow size distribution. They are preferred as conductive fillers, an Ag/Si composite-based conductive ink was prepared, its conductance was tested through screen printing, film thickness and resistivity were measured. The resistivity reached the µΩ cm level, even without optimizing the ink formulation. Our methods not only convert this Si sludge into highly conductive composite particles as filler for applications, but also considerably reduce the consumption of precious metal.

  20. Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites.

    PubMed

    Duong, Hai M; Papavassiliou, Dimitrios V; Mullen, Kieran J; Maruyama, Shigeo

    2008-02-13

    A computational model was developed to study the thermal conductivity of single-walled carbon nanotube (SWNT)-polymer composites. A random walk simulation was used to model the effect of interfacial resistance on the heat flow in different orientations of SWNTs dispersed in the polymers. The simulation is a modification of a previous model taking into account the numerically determined thermal equilibrium factor between the SWNTs and the composite matrix material. The simulation results agreed well with reported experimental data for epoxy and polymethyl methacrylate (PMMA) composites. The effects of the SWNT orientation, weight fraction and thermal boundary resistance on the effective conductivity of composites were quantified. The present model is a useful tool for the prediction of the thermal conductivity within a wide range of volume fractions of the SWNTs, so long as the SWNTs are not in contact with each other. The developed model can be applied to other polymers and solid materials, possibly even metals.

  1. UO2-UN composites with enhanced uranium density and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Koo, Yang-Hyun

    2015-10-01

    A mixed ceramic composite composed of UO2-UN was studied to increase both the thermal conductivity and uranium density of the currently used UO2 pellet. UN powder was synthesized by hydriding and then nitriding spherical U metal powders. Disk-shaped mixed UO2-UN composites were fabricated by hot pressing UO2-UN powder mixtures within a temperature range of 1300 °C-1590 °C. A phase analysis was conducted using X-ray diffraction and a SEM analysis indicated that the sintered composite consists mainly of a mixture of UO2 and UN phases. Compared to pure UO2, the UO2-33vol% UN composite showed an increase in uranium density of 13% (10.91 g/cm3) and an increase in thermal conductivity of up to 100% (8.16 W/m k at 800 °C).

  2. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    NASA Astrophysics Data System (ADS)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  3. EMTA THERMAL CONDUCTIVITY PREDICTIONS FOR UNIRRADIATED AND IRRADIATED SIC/SIC COMPOSITES

    SciTech Connect

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2013-06-30

    The objective of this work is to achieve a predictive engineering tool to assess and tailor the thermophysical properties of unirradiated and irradiated SiC/SiC composites. Towards this objective, first, PNNL’s EMTA (Eshelby-Mori-Tanaka Approach) software was successfully applied to predict the thermal conductivity of unirradiated 2D SiC/SiC composites [1]. Next, we have extended the EMTA model reported in [1] to predict the thermal conductivity of these composites subjected to neutron irradiation at elevated temperatures and irradiation doses leading to defect saturation [2]. As EMTA thermal conductivity predictions compared well with the experimental results [1-2], in the future, a unified EMTA for SiC/SiC composites will be developed that addresses both thermal and mechanical properties.

  4. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    NASA Astrophysics Data System (ADS)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  5. Highly conductive and stretchable polymer composites based on graphene/MWCNT network.

    PubMed

    Chen, Mengting; Tao, Tao; Zhang, Ling; Gao, Wei; Li, Chunzhong

    2013-02-25

    We have manufactured a highly conductive and stretchable composite by backfilling a preformed graphene/MWCNT aerogel with poly(dimethylsiloxane) (PDMS). The electrical conductivity of our product can reach 2.8 S cm(-1) with only 1.3 wt% graphene/MWCNT loading, and remains constant after 100 times repeated stretching by 20% and 5000 times bending.

  6. Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs) under Static Loading Conditions.

    PubMed

    Paredes-Madrid, Leonel; Palacio, Carlos A; Matute, Arnaldo; Parra Vargas, Carlos A

    2017-09-14

    Conductive polymer composites are manufactured by randomly dispersing conductive particles along an insulating polymer matrix. Several authors have attempted to model the piezoresistive response of conductive polymer composites. However, all the proposed models rely upon experimental measurements of the electrical resistance at rest state. Similarly, the models available in literature assume a voltage-independent resistance and a stress-independent area for tunneling conduction. With the aim of developing and validating a more comprehensive model, a test bench capable of exerting controlled forces has been developed. Commercially available sensors-which are manufactured from conductive polymer composites-have been tested at different voltages and stresses, and a model has been derived on the basis of equations for the quantum tunneling conduction through thin insulating film layers. The resistance contribution from the contact resistance has been included in the model together with the resistance contribution from the conductive particles. The proposed model embraces a voltage-dependent behavior for the composite resistance, and a stress-dependent behavior for the tunneling conduction area. The proposed model is capable of predicting sensor current based upon information from the sourcing voltage and the applied stress. This study uses a physical (non-phenomenological) approach for all the phenomena discussed here.

  7. Mechanical Strength and Thermal Conductivity of Modified Expanded Vermiculite/Forsterite Composite Materials

    NASA Astrophysics Data System (ADS)

    Chen, Ding; Gu, Huazhi; Huang, Ao; Zhang, Meijie; Zhou, Fei; Wang, Chunfeng

    2016-01-01

    The mechanical and thermal insulation properties of expanded vermiculite (EV)/forsterite composite materials before and after the modification of EV by in situ alumina gel were characterized by three-point bending test, compressive strength test, and the flat-plate method for the determination of the thermal conductivity. The estimation method for the determination of the thermal conductivity of modified EV/forsterite composite materials was put forward, and the thermal conductivity in case of a high content of modified EV (the substitution rate of modified EV is more than 50 wt.%) is forecasted in this paper. The results show that, the mechanical properties and thermal insulation properties of the composite materials were significantly improved by increasing the modified EV content. When the substitution rate of modified EV was 50 wt.%, the flexural and compressive strength were 11.55 and 22.80 MPa, improved by 23.8 and 44.9%, respectively, compared with the unmodified sample; and the thermal conductivity was 0.169 W/m/K (at 1073 K), improved by 30.5%. The estimated thermal conductivities of modified EV/forsterite composite materials show good agreement with that of experiments, and the thermal conductivity of modified EV/forsterite composite materials was 0.157 W/m/K (at 1073 K) in case the substitution rate of modified EV was 100 wt.% through estimation.

  8. Effective thermal conductivities of four metal ceramic composite coatings in hydrogen-oxygen rocket firings

    NASA Technical Reports Server (NTRS)

    Schacht, R. L.; Price, H. G., Jr.; Quentmeyer, R. J.

    1972-01-01

    An experimental investigation was conducted to determine the effective conductivities of four plasma-arc-sprayed, metal-ceramic gradated coatings on hydrogen-oxygen thrust chambers. The effective thermal conductivities were not a function of pressure or oxidant-to-fuel ratio. The various materials that made up these composites do not seem to affect the thermal conductivity values as much as the differences in the thermal conductivities of the parent materials would lead one to expect. Contact resistance evolving from the spraying process seems to be the controlling factor. The thermal conductivities of all the composites tested fell in the range of 0.75 to 7.5 watts per meter kelvin.

  9. Electrospun carbon nanofibers for improved electrical conductivity of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Alarifi, Ibrahim M.; Alharbi, Abdulaziz; Khan, Waseem S.; Asmatulu, Ramazan

    2015-04-01

    Polyacrylonitrile (PAN) was dissolved in dimethylformamide (DMF), and then electrospun to generate nanofibers using various electrospinning conditions, such as pump speeds, DC voltages and tip-to-collector distances. The produced nanofibers were oxidized at 270 °C for 1 hr, and then carbonized at 850 °C in an argon gas for additional 1 hr. The resultant carbonized PAN nanofibers were placed on top of the pre-preg carbon fiber composites as top layers prior to the vacuum oven curing following the pre-preg composite curing procedures. The major purpose of this study is to determine if the carbonized nanofibers on the fiber reinforced composites can detect the structural defects on the composite, which may be useful for the structural health monitoring (SHM) of the composites. Scanning electron microscopy images showed that the electrospun PAN fibers were well integrated on the pre-preg composites. Electrical conductivity studies under various tensile loads revealed that nanoscale carbon fibers on the fiber reinforced composites detected small changes of loads by changing the resistance values. Electrically conductive composite manufacturing can have huge benefits over the conventional composites primarily used for the military and civilian aircraft and wind turbine blades.

  10. Giant Surface Conductivity Enhancement in a Carbon Nanotube Composite by Ultraviolet Light Exposure.

    PubMed

    Long, Christian J; Orloff, Nathan D; Twedt, Kevin A; Lam, Thomas; Vargas-Lara, Fernando; Zhao, Minhua; Natarajan, Bharath; Scott, Keana C; Marksz, Eric; Nguyen, Tinh; Douglas, Jack F; McClelland, Jabez; Garboczi, Edward; Obrzut, Jan; Liddle, J Alexander

    2016-09-07

    Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface. Our model implies that contacts between nanotube-rich microdomains dominate the conductivity of this layer at low UV dose, while tube-tube transport dominates at high UV dose. Further, we use this model to predictably pattern conductive traces with a UV laser, providing a facile approach for direct integration of lightweight conductors on nanocomposite surfaces.

  11. Conductivity of copper phthalocyanine-polystyrene composite films in the presence of adsorbed oxygen

    NASA Astrophysics Data System (ADS)

    Pochtennyi, A. E.; Misevich, A. V.; Dolgii, V. K.

    2014-09-01

    The electrical conductivity and adsorption-resistive response to nitrogen dioxide of composite films containing copper phthalocyanine nanoparticles dispersed into the polystyrene matrix are investigated experimentally. The results are analyzed using the two-level model of hopping conductivity. The contributions to the conductivity from intrinsic and impurity localization centers are singled out, and the concentrations of the localization centers in copper phthalocyanines free of impurities as well as the electron localization radii in impurity and intrinsic states are determined.

  12. Conducting nanotubes or nanostructures based composites, method of making them and applications

    NASA Technical Reports Server (NTRS)

    Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)

    2013-01-01

    An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.

  13. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  14. Highly conductive epoxy/graphite polymer composite bipolar plates in proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Ling

    In this work, highly conductive carbon-filled epoxy composites were developed for manufacturing bipolar plates in proton exchange membrane (PEM) fuel cells. These composites were prepared by solution intercalation mixing, followed by compression molding and curing. The in-plane and through-plane electrical conductivity, thermal and mechanical properties, gas barrier properties, and hygrothermal characteristics were determined as a function of carbon-filler type and content. For this purpose, expanded graphite and carbon black were used as a synergistic combination. Mixtures of aromatic and aliphatic epoxy resin were used as the polymer matrix to capitalize on the ductility of the aliphatic epoxy and chemical stability of the aromatic epoxy. The composites showed high glass transition temperatures (Tg ˜ 180°C), high thermal degradation temperatures (T2˜ 415°C), and in-plane conductivity of 200-500 S/cm with carbon fillers as low as 50 wt%. These composites also showed strong mechanical properties, such as flexural modulus, flexural strength, and impact strength, which either met or exceeded the targets. In addition, these composites showed excellent thermal conductivity greater than 50 W/m/K, small values of linear coefficient of thermal expansion, and dramatically reduced oxygen permeation rate. The values of mechanical and thermal properties and electrical conductivity of the composites did not change upon exposure to boiling water, aqueous sulfuric acid solution and hydrogen peroxide solution, indicating that the composites provided long-term reliability and durability under PEM fuel cell operating conditions. Experimental data show that the composites developed in this study are suitable for application as bipolar plates in PEM fuel cells.

  15. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    NASA Astrophysics Data System (ADS)

    Maaroufi, A.; Oabi, O.; Lucas, B.

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO-55 mol%P2O5, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator - semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10-1 S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10-8 S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 105 for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson-Cole model, and an account of the interpretation of results is given.

  16. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity.

    PubMed

    Xia, Changlei; Garcia, Andres C; Shi, Sheldon Q; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R; D'Souza, Nandika A; Nie, Xu

    2016-10-05

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m(-1) K(-1), which was 72.3% higher than that (3.600 W m(-1) K(-1)) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler's interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite's use as an engineered material.

  17. Proton conductivity and methanol permeability of Nafion-SiO2/SiWA composite membranes

    NASA Astrophysics Data System (ADS)

    Thiam, Hui San; Chia, Min Yan; Cheah, Qiao Rou; Koo, Charlene Chai Hoon; Lai, Soon Onn; Chong, Kok Chung

    2017-04-01

    Proton exchange membranes for a direct methanol fuel cell (DMFC) were prepared by incorporating silica/silicotungstic acid (SiO2/SiWA) inorganic composite into a Nafion polymer. The effects of SiO2/SiWA content on proton conductivity of membranes were investigated by using a four-probe conductivity cell. Methanol permeability of composite membrane was also determined by using a homemade diffusion cell and gas chromatography technique. It was found that proton conductivity of the composite membranes decreased with SiO2/SiWA content, however the highest proton conductivity achieved was 11% greater than the pure recast Nafion membrane. The methanol permeability of composite membrane was much lower than that of pure recast Nafion, in a reduction of 58% which indicated a better resistance to fuel crossover. Nafion-SiO2/SiWA composite membrane showed promising advantages over pure Nafion on electrochemical properties such as proton conductivity and fuel crossover and it is potentially attractive for use in DMFC.

  18. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.

    PubMed

    Shen, Dianyu; Zhan, Zhaolin; Liu, Zhiduo; Cao, Yong; Zhou, Li; Liu, Yuanli; Dai, Wen; Nishimura, Kazuhito; Li, Chaoyang; Lin, Cheng-Te; Jiang, Nan; Yu, Jinhong

    2017-06-01

    In this study, we report a facile approach to fabricate epoxy composite incorporated with silicon carbide nanowires (SiC NWs). The thermal conductivity of epoxy/SiC NWs composites was thoroughly investigated. The thermal conductivity of epoxy/SiC NWs composites with 3.0 wt% filler reached 0.449 Wm(-1) K(-1), approximately a 106% enhancement as compared to neat epoxy. In contrast, the same mass fraction of silicon carbide micron particles (SiC MPs) incorporated into epoxy matrix showed less improvement on thermal conduction properties. This is attributed to the formation of effective heat conduction pathways among SiC NWs as well as a strong interaction between the nanowires and epoxy matrix. In addition, the thermal properties of epoxy/SiC NWs composites were also improved. These results demonstrate that we developed a novel approach to enhance the thermal conductivity of the polymer composites which meet the requirement for the rapid development of the electronic devices.

  19. Thermal conductivity prediction of magnetic composite sheet for near-field electromagnetic absorption

    SciTech Connect

    Lee, Joonsik; Nam, Baekil; Ko, Frank K.; Kim, Ki Hyeon

    2015-05-07

    The magnetic composite sheets were designed by using core-shell structured magnetic fillers instead of uncoated magnetic fillers to resolve concurrently the electromagnetic interference and thermal radiation problems. To predict the thermal conductivity of composite sheet, we calculated the thermal conductivity of the uncoated magnetic fillers and core-shell structured fillers. And then, the thermal conductivity of the magnetic composites sheet filled with core-shell structured magnetic fillers was calculated and compared with that of the uncoated magnetic fillers filled in composite sheet. The magnetic core and shell material are employed the typical Fe-Al-Si flake (60 μm × 60 μm × 1 μm) and 250 nm-thick AlN with high thermal conductivity, respectively. The longitudinal thermal conductivity of the core-shell structured magnetic composite sheet (2.45 W/m·K) enhanced about 33.4% in comparison with that of uncoated magnetic fillers (1.83 W/m·K) for the 50 vol. % magnetic filler in polymer matrix.

  20. Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics.

    PubMed

    Park, Jae Sung; Kim, Taeil; Kim, Woo Soo

    2017-06-12

    We are reporting a 3D printable composite paste having strong thixotropic rheology. The composite has been designed and investigated with highly conductive silver nanowires. The optimized electrical percolation threshold from both simulation and experiment is shown from 0.7 vol. % of silver nanowires which is significantly lower than other composites using conductive nano-materials. Reliable conductivity of 1.19 × 10(2) S/cm has been achieved from the demonstrated 3D printable composite with 1.9 vol. % loading of silver nanowires. Utilizing the high conductivity of the printable composites, 3D printing of designed battery electrode pastes is demonstrated. Rheology study shows superior printability of the electrode pastes aided by the cellulose's strong thixotropic rheology. The designed anode, electrolyte, and cathode pastes are sequentially printed to form a three-layered lithium battery for the demonstration of a charging profile. This study opens opportunities of 3D printable conductive materials to create printed electronics with the next generation additive manufacturing process.

  1. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites.

    PubMed

    Yu, Seunggun; Park, Bo-In; Park, Cheolmin; Hong, Soon Man; Han, Tae Hee; Koo, Chong Min

    2014-05-28

    In this paper, we demonstrate a facile route to produce epoxy/carbon fiber composites providing continuous heat conduction pathway of Cu with a high degree of crystal perfection via electroplating, followed by rapid thermal annealing (RTA) treatment and compression molding. Copper shells on carbon fibers were coated through electroplating method and post-treated via RTA technique to reduce the degree of imperfection in the Cu crystal. The epoxy/Cu-plated carbon fiber composites with Cu shell of 12.0 vol % prepared via simple compression molding, revealed 18 times larger thermal conductivity (47.2 W m(-1) K(-1)) in parallel direction and 6 times larger thermal conductivity (3.9 W m(-1) K(-1)) in perpendicular direction than epoxy/carbon fiber composite. Our novel composites with RTA-treated carbon fiber/Cu core/shell hybrid showed heat conduction behavior of an excellent polymeric composite thermal conductor with continuous heat conduction pathway, comparable to theoretical values obtained from Hatta and Taya model.

  2. Thermal Conductivity of Epoxy Resin Composites Filled with Combustion Synthesized h-BN Particles.

    PubMed

    Chung, Shyan-Lung; Lin, Jeng-Shung

    2016-05-20

    The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN) particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent) for low filler loadings or a solvent method (using acetone as solvent) for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS) increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less -OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents (< 60 vol %) and became increasing higher than the experimental values at high filler contents (> 60 vol %).

  3. Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films

    NASA Astrophysics Data System (ADS)

    Son Hoang, Anh

    2011-06-01

    Multiwalled carbon nanotubes (MWCNTs) were homogeneously dispersed in a pure polyurethane resin by grinding in a planetary ball mill. The structure and surface morphology of the MWCNTs and MWCNT/polyurethane composites were studied by filed emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) methods. The electrical conductivity at room temperature and electromagnetic interference (EMI) shielding effectiveness (SE) of the composite films with different MWCNT loadings were investigated and the measurement of EMI SE was carried out in a frequency range of 8-12 GHz (X-band). The experimental results show that with a low MWCNT concentration the composite films could achieve a high conductivity and their EMI SE has a strong dependence on MWCNT content. For the composite films with 22 wt% of MWCNTs, the EMI SE attained an average value of 20 dB, so that the shielding effect reduced the penetrating power to 1%.

  4. Thermographic analysis of the anisotropy in the thermal conductivity of composite materials

    NASA Astrophysics Data System (ADS)

    Burleigh, Douglas D.; De La Torre, William

    1991-03-01

    Pitch-based graphite fibers, when used as a reinforcement in either polymeric or metal matrix composites, can significantly increase the in- plane thermal conductivity. An opportunity is thus presented by these composite materials to passively manage waste heat in electronics applications. Rule-of-mixtures calculations have predicted the thermal management performance of these composite materials when the fibrous reinforcements are in the form of either woven fabric or tape layups and the reinforcement orientation is either unidirectional or cross-plied. Many factors, however, complicate the prediction, including: fiber-to- matrix interfacial thermal resistance, the interply thermal resistance, and the highly anisotropic fiber thermal conductivity. Verification of the predictions was sought by the use of IR thermography. Heat was applied by a point source to the surface of the composite while the resulting thermal pattern was monitored and recorded thermographically.

  5. Enhanced ionic conductivity of AgI nanowires/AAO composites fabricated by a simple approach

    NASA Astrophysics Data System (ADS)

    Liu, Li-Feng; Lee, Seung-Woo; Li, Jing-Bo; Alexe, Marin; Rao, Guang-Hui; Zhou, Wei-Ya; Lee, Jae-Jong; Lee, Woo; Gösele, Ulrich

    2008-12-01

    AgI nanowires/anodic aluminum oxide (AgI NWs/AAO) composites have been fabricated by a simple approach, which involves the thermal melting of AgI powders on the surface of the AAO membrane, followed by the infiltration of the molten AgI inside the nanochannels. As-prepared AgI nanowires have corrugated outer surfaces and are polycrystalline according to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations. X-ray diffraction (XRD) shows that a considerable amount of 7H polytype AgI exists in the composites, which is supposed to arise from the interfacial interactions between the embedded AgI and the alumina. AC conductivity measurements for the AgI nanowires/AAO composites exhibit a notable conductivity enhancement by three orders of magnitude at room temperature compared with that of pristine bulk AgI. Furthermore, a large conductivity hysteresis and abnormal conductivity transitions were observed in the temperature-dependent conductivity measurements, from which an ionic conductivity as high as 8.0 × 102 Ω-1 cm-1 was obtained at around 70 °C upon cooling. The differential scanning calorimetry (DSC) result demonstrates a similar phase transition behavior as that found in the AC conductivity measurements. The enhanced ionic conductivity, as well as the abnormal phase transitions, can be explained in terms of the existence of the highly conducting 7H polytype AgI and the formation of well-defined conduction paths in the composites.

  6. Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material.

    PubMed

    Myekhlai, Munkhshur; Lee, Taejin; Baatar, Battsengel; Chung, Hanshik; Jeong, Hyomin

    2016-02-01

    The composite material consisted of graphene (GN) and silver nanoparticles (AgNPs) has been essential topic in science and industry due to its unique thermal, electrical and antibacterial proper- ties. However, there are scarcity studies based on their thermal properties of nanofluids. Therefore, GN-AgNPs composite material was synthesized using facile and environment friendly method and further nanofluids were prepared by ultrasonication in this study. The morphological and structural investigations were carried out using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) as well as ultra violet (UV)-visible spectroscopy. Furthermore, thermal conductivity measurements were performed for as-prepared nanofluids. As a result of thermal conductivity study, GN-AgNPs composite material was considerably enhanced the thermal conductivity of base fluid (water) by to 6.59% for the nanofluid (0.2 wt% GN and 0.4 wt% AgNPs).

  7. Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride.

    PubMed

    Chen, Lin; Xu, Hong-Fei; He, Shao-Jian; Du, Yi-Hang; Yu, Nan-Jie; Du, Xiao-Ze; Lin, Jun; Nazarenko, Sergei

    2017-01-01

    Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study.

  8. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  9. Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride

    PubMed Central

    Xu, Hong-Fei; He, Shao-Jian; Du, Yi-Hang; Yu, Nan-Jie; Du, Xiao-Ze; Lin, Jun; Nazarenko, Sergei

    2017-01-01

    Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study. PMID:28107466

  10. Novel Cu-Cr alloy matrix CNT composites with enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Zhang, Chao-ying; Cheng, Xiang

    2013-09-01

    Carbon nanotubes (CNTs) are incorporated into the Cu-Cr matrix to fabricate bulk CNT/Cu-Cr composites by means of a powder metallurgy method, and their thermal conductivity behavior is investigated. It is found that the formation of Cr3C2 interfacial layer improves the interfacial bonding between CNTs and Cu-Cr matrix, producing a reduction of interfacial thermal resistance, and subsequently enhancing the thermal conductivity of the composites. The thermal conductivity of the composites increases by 12 % and 17 % with addition of 5 vol.% and 10 vol.% CNTs, respectively. The experimental results are also theoretically analyzed using an effective medium approximation (EMA) model, and it is found that the EMA model combined with a Debye model can provide a satisfactory agreement to the experimental data.

  11. A Heuristic Approach to the Determination of the Effective Thermal Conductivity Coefficients of Biperiodic Composite Media

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2016-11-01

    A heuristic approach to determining the effective thermal conductivity coefficients of unidirectionally reinforced biperiodic composite media is suggested allowing one to substantially refine the calculated values of the effective coefficients of transverse thermal conductivity of the indicated compositions by using the simplest partitioning of a periodicity cell into thin layers (subelements) with subsequent application of the simplest formulas of averaging by simple and inverse mixture rules. A comparison of the calculated values of these coefficients with familiar experimental data is made. The good agreement of the prediction with experiment allows an assumption that the method developed can be used for practical calculations of the thermophysical characteristics of fibrous media with biperiodic structure. At the present time the accuracy of more complex structural models of the thermal conductivity of unidirectionally reinforced composites lacks a strict experimental justification.

  12. Carbon Nanotube/Cu Nanowires/Epoxy Composite Mats with Improved Thermal and Electrical Conductivity.

    PubMed

    Xing, Yajuan; Cao, Wei; Li, Wei; Chen, Hongyuan; Wang, Miao; Wei, Hanxing; Hu, Dongmei; Chen, Minghai; Li, Qingwen

    2015-04-01

    Polymer composites with carbon nanofillers have been regarded as a promising candidate for electronic package materials. The challenge for such materials is to increase the electrical and thermal conductivity of the composites. Herein, we reported an epoxy composite film with high thermal and electrical conductivity that were prepared by loading high volume fraction of well-dispersed multi-walled carbon nanotubes (MWCNTs, around 50 nm in diameter, 1-10 µm in length) and copper nanowires (Cu NWs, 60-70 nm in diameter, 1-5 µm in length) in epoxy matrix. The MWCNT-Cu NW hybrid mats were prepared by a vacuum filtration method with an optimum Cu NW content of 50 wt%. The hybrid mats was then impregnated by epoxy solution to prepare epoxy composite films. The epoxy was modified by the toughening agent to make the composite films tough and flexible. The loading fraction of MWCNTs and Cu NWs was tuned by controlling the viscosity of epoxy solution. A remarkable synergetic effect between the MWCNTs and Cu NWs in improving the electrical and thermal conductivity of epoxy composites was demonstrated. The results showed that the electrical conductivity of nanocomposites with 42.5 wt% epoxy was 1500 S/m, and the thermal conductivity was 2.83 W/m K, which was 10.1 times of the neat epoxy. Its thermal resistance was as low as 1% of the pure epoxy. And the mechanical properties of composites were also investigated. These robust and flexible nanocomposites showed prospective applications as thermal interface materials (TIMs) in the electronic industry.

  13. A study of conductive hydrogel composites of pH-responsive microgels and carbon nanotubes.

    PubMed

    Cui, Zhengxing; Zhou, Mi; Greensmith, Paula J; Wang, Wenkai; Hoyland, Judith A; Kinloch, Ian A; Freemont, Tony; Saunders, Brian R

    2016-05-14

    Conductive gel composites are attracting considerable attention because of their interesting electrical and mechanical properties. Here, we report conductive gel composites constructed using only colloidal particles as building blocks. The composites were prepared from mixed dispersions of vinyl-functionalised pH-responsive microgel particles (MGs) and multi-walled carbon nanotubes (CNTs). MGs are crosslinked pH-responsive polymer colloid particles that swell when the pH approaches the pKa of the particles. Two MG systems were used which contained ethyl acrylate (EA) or methyl acrylate (MA) and around 30 mol% of methacrylic acid (MAA). The MA-based MG is a new pH-responsive system. The mixed MG/CNT dispersions formed thixotropic physical gels. Those gels were transformed into covalent interlinked electrically conducting doubly crosslinked microgel/CNT composites (DX MG/CNT) by free-radical reaction. The MGs provided the dual roles of dispersant for the CNTs and macro-crosslinker for the composite. TEM data showed evidence for strong attraction between the MG and the CNTs which facilitated CNT dispersion. An SEM study confirmed CNT dispersion throughout the composites. The mechanical properties of the composites were studied using dynamic rheology and uniaxial compression measurements. Surprisingly, both the ductility and the modulus of the gel composites increased with increasing CNT concentration used for their preparation. Human adipose-derived mesenchymal stem cells (AD-MSCs) exposed to DX MG/CNT maintained over 99% viability with metabolic activity retained over 7 days, which indicated non-cytotoxicity. The results of this study suggest that our approach could be used to prepare other DX MG/CNT gel composites and that these materials may lead to future injectable gels for advanced soft-tissue repair.

  14. A Chemically Polymerized Electrically Conducting Composite of Polypyrrole Nanoparticles and Polyurethane for Tissue Engineering

    PubMed Central

    Broda, Christopher R.; Lee, Jae Y.; Sirivisoot, Sirinrath; Schmidt, Christine E.; Harrison, Benjamin S.

    2011-01-01

    A variety of cell types respond to electrical stimuli, accordingly many conducting polymers (CPs) have been used as tissue engineering (TE) scaffolds, one such CP is polypyrrole (PPy). PPy is a well studied biomaterial with potential TE applications due to its electrical conductivity and many other beneficial properties. Combining its characteristics with an elastomeric material, such as polyurethane (PU), may yield a hybrid scaffold with electrical activity and significant mechanical resilience. Pyrrole was in situ polymerized within a PU emulsion mixture in weight ratios of 1:100, 1:20, 1:10 and 1:5, respectively. Morphology, electrical conductivity, mechanical properties and cytocompatibility with C2C12 myoblast cells were characterized. The polymerization resulted in a composite with a principle base of PU interspersed with an electrically percolating network of PPy nanoparticles. As the mass ratio of PPy to PU increased so did electrical conductivity of the composites. In addition, as the mass ratio of PPy to PU increased, stiffness of the composite increased while maximum elongation length decreased. Ultimate tensile strength was reduced by approximately 47% across all samples with the addition of PPy to the PU base. Cytocompatibility assay data indicated no significant cytotoxic effect from the composites. Static cellular seeding of C2C12 cells and subsequent differentiation showed myotube formation on the composite materials. PMID:21681943

  15. Preliminary Evaluation of Low-Density, Low-Conductivity PAN Ablative Composites

    NASA Technical Reports Server (NTRS)

    Veazie, David R.; Vaughn, Keva

    1997-01-01

    In this study, the mechanical response of four low-density, low conductivity polyacrylonitrile (PAN) based carbon fiber reinforced phenolic resin composites was investigated, each prepared with ceramic microballoon fillers. Two of the four PAN composite systems were fabricated with 20% microballoon filler content, while the other two systems were fabricated with 15% microballoon content. Composites with 20% microballoon content were cured at pressures of 1.65 MPa and 0.35 MPa, whereas systems with 15% microballoon content were cured at 1.65 MPa and 0.69 MPa. The improvement in mechanical properties achieved by the influences of the microballoon content and the cure pressure was assessed by comparing the uniaxial tensile results of static strength of the composite at room temperature. Results included stress-strain curves, ultimate strength, strain-to-failure, initial modulus of the PAN composite, and the description of the observed modes of failure.

  16. Fabrication of polyaniline/polyimide composite fibers with electrically conductive properties

    NASA Astrophysics Data System (ADS)

    Lv, Pengxia; Zhao, Yong; Liu, Fangfang; Li, Guomin; Dai, Xuemin; Ji, Xiangling; Dong, Zhixin; Qiu, Xuepeng

    2016-03-01

    A series of polyaniline/polyimide (PANi/PI) composite fibers was prepared via dry-jet wet spinning followed by in situ polymerization growth. The resultant composite fibers showed good mechanical properties with a tensile strength of 0.90 GPa, a tensile modulus of 6.79 GPa, and an elongation at break of 14.63%. Thermogravimetric and thermal mechanical analyses revealed that the composite fibers had considerably good thermal stabilities in air and nitrogen atmospheres, as well as good size stabilities at 50-150 °C. Current-voltage curves indicated the transformation from electric insulation to electrical conductivity along the fiber axial direction. The composite fibers exhibited a sensitive response to immersion in solutions with different pH values. This work provides a simple approach to fabricate PANi/PI composite fibers that could be applied in the antistatic textile and military industries.

  17. Estimation of composite thermal conductivity of a heterogeneousmethane hydrate sample using iTOUGH2

    SciTech Connect

    Gupta, Arvind; Kneafsey, Timothy J.; Moridis, George J.; Seol,Yongkoo; Kowalsky, Michael B.; Sloan Jr., E.D.

    2006-05-15

    We determined the composite thermal conductivity (ktheta) ofa porous methanehydrate sample (composedof hydrate, water, and methan egas) as a function of density using iTOUGH2. X-ray computed tomography(CT) was used to visualize and quantify the density changes that occurredduring hydrate formation from granular ice. The composite thermalconductivity was estimated and validated by minimizing the differencesbetween the observed and the predicted thermal response using historymatching. The estimated density-dependent composite thermal conductivityranged between 0.25 and 0.58 W/m/K.

  18. Atmospheric-Pressure Processed Silver Nanowire (Ag-NW)/ZnO Composite Transparent Conducting Contacts

    SciTech Connect

    Perkins, John D.; Aggarwal, Shruti; van Hest, Maikel F. A. M.; Ginley, David S.

    2015-06-14

    Composite transparent contacts (TCs) based on metal nanowires and metal oxide matrix materials hold great promise for high performance transparent contacts for photovoltaics and opto-electronic technologies with the potential of all-atmospheric pressure processing. The metal nanowire mesh can provide both electrical conductivity and mechanical robustness against bending while the matrix material can both control the electrical interface and protect the metal nanowires. Here, we demonstrate all atmospheric pressure processed Ag-NW/ZnO composite TCs that are 90% transparent in the visible with sheet resistance Rs ~= 10 Ohms/sq. In addition, the composite TCs have higher infrared transmission than conventional TCO films with the same sheet resistance.

  19. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  20. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  1. Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers

    PubMed Central

    2014-01-01

    A solvent-free method for the fabrication of thermally conductive epoxy-boron nitride (BN) nanoplatelet composite material is developed in this study. By this method, polymer composites with nearly any filler fractions can be easily fabricated. The maximum thermal conductivity reaches 5.24 W/mK, which is 1,600% improvement in comparison with that of pristine epoxy material. In addition, the as-fabricated samples exhibit excellent overall performances with great mechanical property and thermal stability well preserved. PMID:25489292

  2. Thermal Diffusivity and Conductivity in Ceramic Matrix Fiber Composite Materials - Literature Study

    SciTech Connect

    R.G. Quinn

    2000-05-02

    A technical literature review was conducted to gain an understanding of the state of the art method, problems, results, and future of thermal diffusivity/conductivity of matrix-fiber composites for high temperature applications. This paper summarizes the results of test method development and theory. Results from testing on various sample types are discussed with concentration on the anisotropic characteristics of matrix-fiber composites, barriers to heat flow, and notable microstructure observations. The conclusion presents some observations from the technical literature, drawbacks of current information and discusses potential needs for future testing.

  3. Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating.

    PubMed

    Sun, Youhong; He, Linkai; Zhang, Chi; Meng, Qingnan; Liu, Baochang; Gao, Ke; Wen, Mao; Zheng, Weitao

    2017-09-06

    Boron carbide (B4C) coating on diamond particle is synthesized by heating diamond particles in a powder mix of H3BO3 and B in Ar atmosphere. The composition, bond state and coverage fraction of boron carbide coating on diamond particles are investigated. The boron carbide coating favors to grow on diamond (100) surface rather than on diamond (111) surface. Cu matrix composites reinforced with B4C-coated diamond particles were made by powder metallurgy. The addition of B4C coating gave rise to a dense composite. The influence of B4C coating on both tensile strength and thermal conductivity of the composite were investigated. When the B4C fully covered on diamond particles, the composite exhibited a greatly increase in tensile strength (115 MPa) which was much higher than that for uncoated-diamond/Cu (60 MPa) composites. Meanwhile, a high thermal conductivity of 687 W/mK was achieved in the B4C-coated-diamond/Cu composites.

  4. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity

    NASA Astrophysics Data System (ADS)

    Xia, Changlei; Garcia, Andres C.; Shi, Sheldon Q.; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R.; D’Souza, Nandika A.; Nie, Xu

    2016-10-01

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m‑1 K‑1, which was 72.3% higher than that (3.600 W m‑1 K‑1) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler’s interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite’s use as an engineered material.

  5. Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management.

    PubMed

    Yang, Zhi; Zhou, Lihui; Luo, Wei; Wan, Jiayu; Dai, Jiaqi; Han, Xiaogang; Fu, Kun; Henderson, Doug; Yang, Bao; Hu, Liangbing

    2016-11-24

    Phase change materials (PCMs) possessing ideal properties, such as superior mass specific heat of fusion, low cost, light weight, excellent thermal stability as well as isothermal phase change behavior, have drawn considerable attention for thermal management systems. Currently, the low thermal conductivity of PCMs (usually less than 1 W mK(-1)) greatly limits their heat dissipation performance in thermal management applications. Hexagonal boron nitride (h-BN) is a two-dimensional material known for its excellent thermally conductive and electrically insulating properties, which make it a promising candidate to be used in electronic systems for thermal management. In this work, a composite, consisting of h-BN nanosheets (BNNSs) and commercialized paraffin wax was developed, which inherits high thermally conductive and electrically insulating properties from BNNSs and substantial heat of fusion from paraffin wax. With the help of BNNSs, the thermal conductivity of wax-BNNS composites reaches 3.47 W mK(-1), which exhibits a 12-time enhancement compared to that of pristine wax (0.29 W mK(-1)). Moreover, an 11.3-13.3 MV m(-1) breakdown voltage of wax-BNNS composites was achieved, which shows further improved electrical insulating properties. Simultaneously enhanced thermally conductive and electrically insulating properties of wax-BNNS composites demonstrate their promising application for thermal management in electronic systems.

  6. Electrical Conductance Tuning and Bistable Switching in Poly(N-vinylcarbazole)-Carbon Nanotube Composite Films.

    PubMed

    Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang

    2009-07-28

    By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.

  7. Conductive thin-film composite hydrogels: Trapping an anionic polyelectrolyte in a polyaziridine host matrix

    SciTech Connect

    Wexler, A.; Suen, C.; Hill, S.

    1995-08-01

    Acid-catalyzed polymerization of sufficiently concentrated aqueous solutions of a trifunctional aziridine monomer affords hydrogels. Dynamic mechanical analysis has been used to demonstrate that composite hydrogels, obtained when the polymerization is effected in the presence of poly(sodium styrenesulfonate), have a composition dependent modulus. A region rich in the polyelectrolyte has a modulus which exceeds that of the {open_quotes}host{close_quotes} homogeneous polyaziridine hydrogel. This is consistent with ionic bonds between protonated sites on the polyaziridine matrix and sulfonate groups on the included polyelectrolyte augmenting the structural stability of the hydrogel. Thin films were prepared from coatings of the incipient hydrogel solutions. When the coatings are dried to a water content of 20%, water-insoluble thin films are obtained provided a critical weight fraction of the monomer is exceeded. Conductive thin films can be obtained, provided a critical weight fraction of polyelectrolyte is exceeded. FTIR analysis of the coatings in the attenuated total reflectance mode shows that conductivity increases as tight ion pairing decreases between the polyelectrolyte and its counter ions in the matrix. The S-shaped dependence of the normalized conductivity on the composition of the thin films is independent of the state of hydration of the film. Effective medium percolation theory, (EMPT), generally fits the S-shaped compositional dependence of the conductivity but overestimates the rate of growth of the conductivity beyond the critical point. 20 refs., 7 figs.

  8. Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity

    PubMed Central

    Xia, Changlei; Garcia, Andres C.; Shi, Sheldon Q.; Qiu, Ying; Warner, Nathaniel; Wu, Yingji; Cai, Liping; Rizvi, Hussain R.; D’Souza, Nandika A.; Nie, Xu

    2016-01-01

    Thermal conductivity was dramatically increased after adding natural fiber into hexagonal boron nitride (hBN)/epoxy composites. Although natural fiber does not show high-thermal conductivity itself, this study found that the synergy of natural fiber with hBN could significantly improve thermal conductivity, compared with that solely using hBN. A design of mixtures approach using constant fibers with increasing volume fractions of hBN was examined and compared. The thermal conductivity of the composite containing 43.6% hBN, 26.3% kenaf fiber and 30.1% epoxy reached 6.418 W m−1 K−1, which was 72.3% higher than that (3.600 W m−1 K−1) of the 69.0% hBN and 31.0% epoxy composite. Using the scanning electron microscope (SEM) and micro computed tomography (micro-CT), it was observed that the hBN powders were well distributed and ordered on the fiber surfaces enhancing the ceramic filler’s interconnection, which may be the reason for the increase in thermal conductivity. Additionally, the results from mechanical and dynamic mechanical tests showed that performances dramatically improved after adding kenaf fibers into the hBN/epoxy composite, potentially benefiting the composite’s use as an engineered material. PMID:27703226

  9. Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Hwan; Yin, Huiming

    2015-04-01

    A simplified model is presented to predict the effective electrical conductivity of carbon nanotube(CNT)-polymer composite with different material proportions, which is validated by the experiments of multi-walled CNT/polydimethylsiloxane (PDMS) composites. CNTs are well dispersed in a PDMS matrix, and the mixture is then cured and cast into thin films for electrical characterization. The CNTs are assumed to be statistically uniformly distributed in the PDMS matrix with the three-dimensional (3D) waviness. As the proportion of CNTs increases to a certain level, namely the percolation threshold, the discrete CNTs start to connect with each other, forming a 3D network which exhibits a significant increase of effective electrical conductivity. The eight-chain model has been used to predict the effective electrical conductivity of the composite, in which the contact resistance between CNTs has been considered through the Simmons’ equation. The eight-chain network features can be significantly changed with the modification to mixing process, CNT length and diameter, and CNT clustering and curling. A Gaussian statistics-based formulation is used to calculate the effective length of a single CNT well dispersed in the matrix. The modeling results of effective electrical conductivity agree with the experiments very well, which are highly dependent on a contact resistance between CNTs and the waviness of the CNTs. The effect of inner-nanotube distance and diameter of CNTs on the effective electrical conductivity of the CNT/PDMS composite is also discussed.

  10. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    DOE PAGES

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less

  11. Effect of Thermal Annealing on the Electrical Conductivity of Copper-Tin Polymer Composites.

    PubMed

    Yang, Qing; Beers, Megan Hoarfrost; Mehta, Vishrut; Gao, Ting; Parkinson, Dilworth

    2017-01-11

    Polyvinylidene fluoride (PVDF) copolymer conductive composites containing 40 vol % copper (Cu) and tin (Sn) fillers are prepared by injection molding. Postmolding thermal annealing is found to increase the electrical conductivity of the composites by an order of magnitude. The volume ratio between Cu and Sn is found to have a significant effect on filler distribution but a weaker effect on electrical conductivity compared to the annealing conditions. Synchrotron X-ray tomography is used to visualize and quantitatively analyze the morphology and distribution of the filler particles, indicating that higher conductivity can be attributed to better dispersion of the low-melting-point Sn filler, which provides better interparticle contact in the Cu network.

  12. Thermally Conductive-Silicone Composites with Thermally Reversible Cross-links.

    PubMed

    Wertz, J T; Kuczynski, J P; Boday, D J

    2016-06-08

    Thermally conductive-silicone composites that contain thermally reversible cross-links were prepared by blending diene- and dienophile-functionalized polydimethylsiloxane (PDMS) with an aluminum oxide conductive filler. This class of thermally conductive-silicones are useful as thermal interface materials (TIMs) within Information Technology (IT) hardware applications to allow rework of valuable components. The composites were rendered reworkable via retro Diels-Alder cross-links when temperatures were elevated above 130 °C and required little mechanical force to remove, making them advantageous over other TIM materials. Results show high thermal conductivity (0.4 W/m·K) at low filler loadings (45 wt %) compared to other TIM solutions (>45 wt %). Additionally, the adhesion of the material was found to be ∼7 times greater at lower temperatures (25 °C) and ∼2 times greater at higher temperatures (120 °C) than commercially available TIMs.

  13. Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture

    DOEpatents

    Hash, Mark C.; Bloom, Ira D.

    1992-01-01

    An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.

  14. Evidence of percolation related power law behavior in the thermal conductivity of nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Kim, B.-W.; Park, S.-H.; Kapadia, R. S.; Bandaru, P. R.

    2013-06-01

    A power law relation for the thermal conductivity, indicative of percolation, is reported through measurements on carbon nanotube/polymer composites. Our results contradict earlier assertions and indicate that synthesis methodologies may be adapted to facilitate such behavior. Consistent modeling of the experimentally determined electrical and thermal conductivity anisotropy, in addition to the incorporation of interfacial resistance, was used to understand the underlying mechanisms and variations.

  15. A percolation-based model for the conductivity of nanofiber composites.

    PubMed

    Chatterjee, Avik P

    2013-12-14

    A model is presented that integrates the critical path approximation with percolation theory to describe the dependence of electrical conductivity upon volume fraction in nanofiber-based composites. The theory accounts for clustering and correlation effects that reflect non-randomness in the spatial distribution of the particles. Results from this formalism are compared to experimental measurements performed upon carbon nanotube-based conductive nanocomposites.

  16. Highly Conductive, Melt Processable Polymer Composites Based on Nickel and Low Melting Eutectic Metal

    DTIC Science & Technology

    2010-01-01

    micron regime, driven by current trends in device miniaturiza- tion. Carbon nanotube based polymer composites are a promising alternative, where...conductivity can be achieved at lower filler loadings. However, the conductivity values are typically less than 1 S/cm, and dispersion of the nanotubes ...eutectic metal consisting of 58 mass % Bismuth / 42 mass % Tin (CerroMetal Products, Bellefonte, PA)was received as a 1.5 lb bar. The bar was processed

  17. Thermal Conductivity Database of Various Structural Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Ohlhorst, Craig W.; Vaughn, Wallace L.; Ransone, Philip O.; Tsou, Hwa-Tsu

    1997-01-01

    Advanced thermal protection materials envisioned for use on future hypersonic vehicles will likely be subjected to temperatures in excess of 1811 K (2800 F) and, therefore, will require the rapid conduction of heat away from the stagnation regions of wing leading edges, the nose cap area, and from engine inlet and exhaust areas. Carbon-carbon composite materials are candidates for use in advanced thermal protection systems. For design purposes, high temperature thermophysical property data are required, but a search of the literature found little thermal conductivity data for carbon-carbon materials above 1255 K (1800 F). Because a need was recognized for in-plane and through-the-thickness thermal conductivity data for carbon-carbon composite materials over a wide temperature range, Langley Research Center (LaRC) embarked on an effort to compile a consistent set of thermal conductivity values from room temperature to 1922 K (3000 F) for carbon-carbon composite materials on hand at LaRC for which the precursor materials and thermal processing history were known. This report documents the thermal conductivity data generated for these materials. In-plane thermal conductivity values range from 10 to 233 W/m-K, whereas through-the-thickness values range from 2 to 21 W/m-K.

  18. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  19. The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration

    PubMed Central

    Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M.; Ruesink, Terry; Lazcano, Eric; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

    2010-01-01

    Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in pre-formed PCLF scaffolds (Mn 7,000 or 18,000 g mol−1) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm−1 with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452

  20. High thermal conductivity SiC/SiC composites for fusion applications

    SciTech Connect

    Withers, J.C.; Kowbel, W.; Loutfy, R.O.

    1997-04-01

    SiC/SiC composites are considered for fusion applications due to their neutron irradiation stability, low activation, and good mechanical properties at high temperatures. The projected magnetic fusion power plant first wall and the divertor will operate with surface heat flux ranges of 0.5 to 1 and 4 to 6 MW/m{sup 2}, respectively. To maintain high thermal performance at operating temperatures the first wall and divertor coolant channels must have transverse thermal conductivity values of 5 to 10 and 20 to 30 W/mK, respectively. For these components exposed to a high energy neutron flux and temperatures perhaps exceeding 1000{degrees}C, SiC/SiC composites potentially can meet these demanding requirements. The lack of high-purity SiC fiber and a low through-the-thickness (transverse) thermal conductivity are two key technical problems with currently available SiC/SiC. Such composites, for example produced from Nicalon{trademark} fiber with a chemical vapor infiltrated (CVI) matrix, typically exhibit a transverse conductivity value of less than 8 W/mK (unirradiated) and less than 3 W/mK after neutron irradiation at 800{degrees}C. A new SiC/SiC composite fabrication process has been developed at MER Corp. This paper describes this process, and the thermal and mechanical properties which are observed in this new composite material.

  1. Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite.

    PubMed

    Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho

    2013-11-01

    We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.

  2. Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Plyushch, Artyom; Macutkevic, Jan; Kuzhir, Polina P.; Banys, Juras; Fierro, Vanessa; Celzard, Alain

    2016-03-01

    Results of broadband dielectric spectroscopy of flat micronic graphite (FMG)/polyurethane (PU) resin composites are presented in a wide temperature range (25-450 K). The electrical percolation threshold was found to lie between 1 and 2 vol. % of FMG. Above the percolation threshold, the composites demonstrated a huge hysteresis of properties on heating and cooling from room temperature up to 450 K, along with extremely high values of dielectric permittivity and electrical conductivity. Annealing proved to be a very simple but powerful tool for significantly improving the electrical properties of FMG-based composites. In order to explain this effect, the distributions of relaxation times were calculated by the complex impedance formalism. Below room temperature, both dielectric permittivity and electrical conductivity exhibited a very low temperature dependence, mainly caused by the different thermal properties of FMG and pure PU matrix.

  3. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2D-SICF/SIC COMPOSITES

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2002-09-01

    A hierarchical model was developed to describe the effective transverse thermal conductivity, K effective, of a 2D-SiC/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that include a significant amount of interlayer porosity. Model predictions were obtained for two versions of DuPont 2D-Hi Nicalon(Trademark)/PyC/ICVI-SiC composite, one with a thin (0.110 micron) and the other with a thick (1.040 micron) PyC fiber coating. The model predicts that the matrix porosity content and porosity shape factor have a major influence on K effective(T) for such a composite.

  4. Magnetic assembly of transparent and conducting graphene-based functional composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-06-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol-gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices.

  5. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    NASA Astrophysics Data System (ADS)

    Xia, Xiaodong; Wang, Yang; Zhong, Zheng; Weng, George J.

    2016-08-01

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-void composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.

  6. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    SciTech Connect

    Xia, Xiaodong; Wang, Yang; Weng, George J.; Zhong, Zheng

    2016-08-28

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-void composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.

  7. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications.

    PubMed

    Qazi, Taimoor H; Rai, Ranjana; Dippold, Dirk; Roether, Judith E; Schubert, Dirk W; Rosellini, Elisabetta; Barbani, Niccoletta; Boccaccini, Aldo R

    2014-06-01

    Cardiovascular diseases, especially myocardial infarction, are the leading cause of morbidity and mortality in the world, also resulting in huge economic burdens on national economies. A cardiac patch strategy aims at regenerating an infarcted heart by providing healthy functional cells to the injured region via a carrier substrate, and providing mechanical support, thereby preventing deleterious ventricular remodeling. In the present work, polyaniline (PANI) was doped with camphorsulfonic acid and blended with poly(glycerol-sebacate) at ratios of 10, 20 and 30vol.% PANI content to produce electrically conductive composite cardiac patches via the solvent casting method. The composites were characterized in terms of their electrical, mechanical and physicochemical properties. The in vitro biodegradability of the composites was also evaluated. Electrical conductivity increased from 0Scm(-1) for pure PGS to 0.018Scm(-1) for 30vol.% PANI-PGS samples. Moreover, the conductivities were preserved for at least 100h post fabrication. Tensile tests revealed an improvement in the elastic modulus, tensile strength and elasticity with increasing PANI content. The degradation products caused a local drop in pH, which was higher in all composite samples compared with pure PGS, hinting at a buffering effect due to the presence of PANI. Finally, the cytocompatibility of the composites was confirmed when C2C12 cells attached and proliferated on samples with varying PANI content. Furthermore, leaching of acid dopants from the developed composites did not have any deleterious effect on the viability of C2C12 cells. Taken together, these results confirm the potential of PANI-PGS composites for use as substrates to modulate cellular behavior via electrical stimulation, and as biocompatible scaffolds for cardiac tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Morphology tailoring of nano/micro-structured conductive polymers, composites and their applications in chemical sensors.

    PubMed

    Ma, Xingfa; Gao, Mingjun; He, Xiaochun; Li, Guang

    2010-11-01

    Conductive polymer is one of the important multi-functional materials. It has many applications in light-emitting diodes, chemical sensors, biosensors, et al. This paper provides a relatively comprehensive review on the progress of conductive polymer and composite as sensitive film for sensors to chemical vapors including patents, papers and our preliminary research results. Especially, the feature of conjugated polymers, the processing technology, doping characteristics and some factors affecting gas responses are discussed. Otherwise, the developments of nanostructured conductive polymer and organic-inorganic hybrid film sensor with high sensitivity and rapid response to vapors are also described, and some suggestions are proposed.

  9. Conduction mechanisms in some graphite - polymer composites: the effect of a direct-current electric field

    NASA Astrophysics Data System (ADS)

    Celzard, A.; McRae, E.; Furdin, G.; Marêché, J. F.

    1997-03-01

    This paper deals with the possible conduction mechanisms in highly anisotropic composites comprising 0 - 10 vol% graphite flakes within a polymer host. Conductivity measurements as a function of DC electric field have been made. In most cases, a non-linear behaviour of the current - voltage relationships is observed. A number of theoretical models are considered and we show that none of them is, by itself, able to explain our results. We further develop several arguments which lead us to consider the existence of a combined tunnelling effect and ionic conduction mechanism.

  10. New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall

    NASA Astrophysics Data System (ADS)

    Jimbou, R.; Saidoh, M.; Nakamura, K.; Akiba, M.; Suzuki, S.; Gotoh, Y.; Suzuki, Y.; Chiba, A.; Yamaki, T.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1996-10-01

    A new composite was created from B 4C powder and carbon fiber by hot-pressing at 1700°C or more. The composite sintered at 1700°C with 20-35 vol% B 4C shows a thermal conductivity of 250 W/m·K at 25°C which is slightly lower than the felt type C/C, but its value becomes higher than the C/C at temperatures above 400°C. The composite with 40 at% B shows more controllable recycling properties than B 4C. The erosion yield for the composite is about half the yield for graphite at 800 K. After electron beam irradiation in order to test heat resistance no cracks were detected up to 22-23 MW/m 2 leading to a surface temperature of 2500°C.

  11. High-temperature electrically conductive ceramic composite and method for making same

    DOEpatents

    Beck, David E.; Gooch, Jack G.; Holcombe, Jr., Cressie E.; Masters, David R.

    1983-01-01

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  12. Synthesis and Thermal Conductivity of Exfoliated Hexagonal Boron Nitride/Alumina Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Lizcano, Maricela; Kelly, Marisabel

    2017-01-01

    Exfoliated hexagonal boron nitride (hBN)/alumina composite can be fabricated by following the process of (1) heating a mixture of hBN, AlCl3, and NaF in nitrogen for intercalation; (2) heating the intercalated product in air for exfoliation and at the same time converting the intercalate (AlCl3) into Al2O3, (3) rinsing the oxidized product, (4) coating individual exfoliated hBN platelets that contain Al2O3 with new layers of aluminum oxide, and finally, (5) hot pressing the product into the composite. The composite thus obtained has a composition of approximately 60 percent by weight hBN and 40 percent by weight alumina. Its in-plane and through-plane thermal conductivity were measured to be 86 and 18 watts per meter Kelvin, respectively, at room temperature.

  13. High-temperature electrically conductive ceramic composite and method for making same

    SciTech Connect

    Beck, D.E.; Gooch, J.G.; Holcombe, C.E. Jr.; Masters, D.R.

    1981-06-09

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  14. A new modified conducting carbon composite electrode as sensor for ascorbate and biosensor for glucose.

    PubMed

    Barsan, Madalina M; Brett, Christopher M A

    2009-09-01

    A new carbon-based conducting composite has been developed as electrochemical sensor and biosensor for the amperometric detection of ascorbate and glucose. Electrocatalytic oxidation of ascorbate has been done successfully at unmodified cellulose acetate-graphite composite electrodes, the sensor being highly sensitive, selective and with a low detection limit at 0.0 V vs. SCE and was successfully applied for ascorbate determination in commercial fruit juice samples. An interference free glucose biosensor has also been developed, based on the immobilisation of glucose oxidase by cross-linking with glutaraldehyde on poly (neutral red) modified composite electrodes. The biosensor exhibits a higher sensitivity of 31.5+/-1.7 microA cm(-2) mM(-1) than other carbon-composite-based glucose biosensors, a detection limit of 20.3 microM and a very short response time.

  15. Composites of Polyindole nanowires within Silicate and Aluminosilicate hosts with distinct conductive properties

    NASA Astrophysics Data System (ADS)

    Juárez, J. M.; Gómez Costa, M. B.; Anunziata, O. A.

    2016-07-01

    Nanostructured silicate SBA-15 and aluminosilicate AlSBA-15 were synthesized in order to prepare polyindole composites. The Silica mesoporous materials were prepared by sol- gel method and alumination using post-synthesis technique and analysed by different methods (XRD, BET, TEM, and FTIR). Polyindole/host composites were prepared by in situ oxidative polymerization of pre-adsorbed indole, employing Cl3Fe as oxidant. TG, FTIR, BET, XRD, SEM and TEM were used to characterize the resulting composites. These studies show that the porous structures of the materials are preserved after polymerization, and polyindole is found within the porous channels. The composites have an electrical conductivity range between values higher than those of the pure chemically synthesized polyindole, close to those of the pure electrochemically synthesized polymer and lower than those of the pure chemically synthesized polymer, in the order of 10-8 S/cm.

  16. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    DOEpatents

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  17. Significant Enhancement of Thermal Conductivity in Polymer Composite via Constructing Macroscopic Segregated Filler Networks.

    PubMed

    Zhou, Hongju; Deng, Hua; Zhang, Li; Fu, Qiang

    2017-08-30

    The low efficiency of thermal conductive filler is an unresolved issue in the area of thermal conductive polymer composites. Although it is known that minimizing phonon or electron interfacial scattering is the key for achieving high thermal conductivity, the enhancement is generally limited by preparation methods that can yield the ideal morphology and interfaces. Herein, low temperature expandable graphite (LTEG) is added into a commercial impact modifier (Elvaloy4170), which is then coated onto poly(butylene terephthalate) (PBT) particles with various sizes at millimeter scale between their melting temperatures. Thus, macroscopic segregated filler networks with several considerations are constructed: high LTEG loading leads to a short distance between fillers and a robust filler network; continuous Elvaloy-LTEG phase leads to a continuous filler network; and good interaction among filler and matrix leads to good interfacial interaction. More importantly, the rather large size of PBT particles provides the filler networks with low specific interfacial area, which minimizes the interfacial scattering of phonons or electrons. Relative to homogeneous composites with an identical composition, the thermal conductivity is enhanced from 6.2 to 17.8 W/mK. Such an enhancement span is the highest compared with results reported in the literature. Due to possible "shortcut" behavior, much higher effectiveness can be achieved for the current system than found in literature results when the Elvaloy-LTEG phase is considered as filler, with the effectiveness even exceeding the upper limit of theoretical calculation for highly loaded Elvaloy-LTEG phase with relatively large PBT particle sizes. This could provide some guidelines for the fabrication of highly thermal conductive polymer composites as well as multifunctional polymer composites.

  18. Thermal Conductivity of Eutectic Nitrates and Nitrates/Expanded Graphite Composite as Phase Change Materials.

    PubMed

    Xiao, Xin; Zhang, Peng; Meng, Zhao-Nan; Li, Ming

    2015-04-01

    Nitrates and eutectic nitrate mixtures are considered as potential phase change materials (PCMs) for the middle-temperature-range solar energy storage applications. But the extensive utilization is restricted by the poor thermal conductivity and thermal stability. In the present study, sodium nitrate-potassium nitrate eutectic mixture was used as the base PCM, and expanded graphite (EG) was added to the mixture so as to improve the thermal conductivities. The elaboration method consists of a physically mixing of salt powders with or without EG, and the composite PCMs were cold-compressed to form shape-stabilized PCMs at room temperature. The thermal conductivities of the composite PCMs fabricated by cold-compression were investigated at different temperatures by the steady state method. The results showed that the addition of EG significantly enhanced the thermal conductivities. The thermal conductivities of pure nitrates and nitrates/EG composite PCMs in solid state showed the behavior of temperature dependant, and they slightly decreased with the increase of the temperature.

  19. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    NASA Astrophysics Data System (ADS)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  20. Proton conductivity of naphthalene sulfonate formaldehyde resin-doped mesoporous niobium and tantalum oxide composites.

    PubMed

    Turley, Jonathan P; Romer, Frederik; Trudeau, Michel L; Dias, Marcos L; Smith, Mark E; Hanna, John V; Antonelli, David M

    2015-01-01

    Proton conductivity in a series of mesoporous niobium and tantalum metal oxide (mX2 O5 ) composites of naphthalene sulfonic acid formaldehyde resin (NSF) that are resistant to moisture loss at temperatures greater than 50 °C is reported. The investigation focuses on the effect to proton conductivity by changing pore size and metal in the mesostructure of the mX2 O5 system and thus, a series of mX2 O5 -NSF composites were synthesized with C6 , C12 , and C18 templates. These were characterized by XRD, thermogravimetric analysis, nitrogen adsorption, and scanning TEM and then studied using impedance spectroscopy to establish proton conductivity values at various temperatures ranging from 25 to 150 °C. The most promising sample displayed a conductivity of 21.96 mS cm(-1) at 100 °C, surpassing the literature value for Nafion 117 (ca. 8 mS cm(-1) ). (1) H and (13) C solid state NMR studies the mX2 O5 -NSF composites demonstrate that the oligomeric nature of the NSF is preserved while in contact with the mX2 O5 surface, thus facilitating conductivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of Conductive Polyurethane/Graphite Composites for Electromagnetic Interference Shielding

    NASA Astrophysics Data System (ADS)

    Puri, Pooja; Mehta, Rajeev; Rattan, Sunita

    2015-11-01

    Among various nanofillers for composite systems, carbon-based fillers such as graphite, carbon fibers, carbon black, carbon nanotubes, graphene, etc. are attracting great attention in both academia and industry for the advent of highly integrated electronic devices. The objective in fabricating such composite materials is to obtain distinct properties evolved from the synergistic effects of the component materials that may be exploited for various applications such as electronics and optical devices. In the present work, polyurethane/graphite composites have been synthesized with the aim of using them for electromagnetic shielding applications. The polyurethane/graphite composites were prepared through an in situ polymerization method in the presence of graphite nanoparticles. The prepared composites were characterized by scanning electron microscope, transmission electron microscope (TEM), and x-ray diffraction techniques. The shifting of the major peak of graphite nanoplatelets (GNPs) in prepared nanocomposites towards the left from 26.336° d-spacing = 3.381 Å to 25.374° d-spacing = 3.507 Å on a 2 θ scale indicates the intercalation type of dispersion in the prepared nanocomposites. This was further validated with the TEM characterization. The introduction of GNPs in polyurethane (PU) during in situ polymerization creates an electrical network in the resulting composite, which therefore makes it highly conductive. The prepared nanocomposite showed an electrical network at 2.2 vol.% of the percolation threshold in DC condition and a similar percolation threshold was found at 100 Hz in AC conditions. The maximum conductivity found at 6.5 vol.% of filler loading was 0.01 S/cm. The resulting composites were evaluated for electromagnetic interference (EMI) shielding at different filler loadings. The prepared PU/GNPs composites were found to be highly effective with shielding effectiveness of 19.34 dB, and with electromagnetic interference shielding materials at 0

  2. Development of ammonia sensors by using conductive polymer/hydroxyapatite composite materials.

    PubMed

    Huixia, Li; Yong, Liu; Lanlan, Luo; Yanni, Tan; Qing, Zhang; Kun, Li

    2016-02-01

    In order to improve the gas sensing properties, hydroxyapatite (HAp)-based composites were prepared by mixing with different contents of conductive polymers: polypyrrole (PPy) and polyaniline (PAni). The compositions, microstructures and phase constitutions of polymer/HAp composites were characterized, and the sensing properties were studied using a chemical gas sensing (CGS-8) system. The results showed that, compared to pure HAp, the sensitivities of the composites to ammonia were improved significantly. 5%PPy/HAp and 20%PAni/HAp composites exhibited the best sensitivities to ammonia, and the sensitivities at 500ppm were 86.72% and 86.18%, respectively. Besides, the sensitivity of 5%PPy/HAp at 1000ppm was up to 90.7%. Compared to pure PPy and PAni, the response and the recovery time of 5%PPy/HAp and 20%PAni/HAp at 200ppm were shortened several times, and they were 24s/245s and 15s/54s, respectively. In addition, the composites showed a very high selectivity to ammonia. The mechanism for the enhancement of the sensitivity to ammonia was also discussed. The polymer/HAp composites are very promising in applications of ammonia sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.

    PubMed

    Lee, Sang-Don; Jung, Kyu-Nam; Kim, Hyeongil; Shin, Hyun-Seop; Song, Seung-Wan; Park, Min-Sik; Lee, Jong-Won

    2017-03-20

    All-solid-state lithium batteries offer notable advantages over conventional Li-ion batteries with liquid electrolytes in terms of energy density, stability, and safety. To realize this technology, it is critical to develop highly reliable solid-state inorganic electrolytes with high ionic conductivities and adequate processability. Li1+x Alx Ti2-x (PO4 )3 (LATP) with a NASICON (Na superionic conductor)-like structure is regarded as a potential solid electrolyte, owing to its high "bulk" conductivity (ca. 10(-3)  S cm(-1) ) and excellent stability against air and moisture. However, the solid LATP electrolyte still suffers from a low "total" conductivity, mainly owing to the blocking effect of grain boundaries to Li(+) conduction. In this study, an LATP-Bi2 O3 composite solid electrolyte shows very high total conductivity (9.4×10(-4)  S cm(-1) ) at room temperature. Bi2 O3 acts as a microstructural modifier to effectively reduce the fabrication temperature of the electrolyte and to enhance its ionic conductivity. Bi2 O3 promotes the densification of the LATP electrolyte, thereby improving its structural integrity, and at the same time, it facilitates Li(+) conduction, leading to reduced grain-boundary resistance. The feasibility of the LATP-Bi2 O3 composite electrolyte in all-solid-state Li batteries is also examined in this study.

  4. Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites

    SciTech Connect

    Sun, K.; Zhang, Z. D.; Qian, L.; Dang, F.; Zhang, X. H. E-mail: fan@sdu.edu.cn; Fan, R. H. E-mail: fan@sdu.edu.cn

    2016-02-08

    The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermal properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.

  5. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-10-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties.

  6. Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials

    PubMed Central

    Kim, Sangwoo; Choi, Seongdae; Oh, Eunho; Byun, Junghwan; Kim, Hyunjong; Lee, Byeongmoon; Lee, Seunghwan; Hong, Yongtaek

    2016-01-01

    A percolation theory based on variation of conductive filler fraction has been widely used to explain the behavior of conductive composite materials under both small and large deformation conditions. However, it typically fails in properly analyzing the materials under the large deformation since the assumption may not be valid in such a case. Therefore, we proposed a new three-dimensional percolation theory by considering three key factors: nonlinear elasticity, precisely measured strain-dependent Poisson’s ratio, and strain-dependent percolation threshold. Digital image correlation (DIC) method was used to determine actual Poisson’s ratios at various strain levels, which were used to accurately estimate variation of conductive filler volume fraction under deformation. We also adopted strain-dependent percolation threshold caused by the filler re-location with deformation. When three key factors were considered, electrical performance change was accurately analyzed for composite materials with both isotropic and anisotropic mechanical properties. PMID:27694856

  7. High Thermal and Electrical Conductivity of Template Fabricated P3HT/MWCNT Composite Nanofibers.

    PubMed

    Smith, Matthew K; Singh, Virendra; Kalaitzidou, Kyriaki; Cola, Baratunde A

    2016-06-15

    Nanoporous alumina membranes are filled with multiwalled carbon nanotubes (MWCNTs) and then poly(3-hexylthiophene-2,5-diyl) (P3HT) melt, resulting in nanofibers with nanoconfinement induced coalignment of both MWCNT and polymer chains. The simple sonication process proposed here can achieve vertically aligned arrays of P3HT/MWCNT composite nanofibers with 3 wt % to 55 wt % MWCNT content, measured using thermogravimetric methods. Electrical and thermal transport in the composite nanofibers improves drastically with increasing carbon nanotube content where nanofiber thermal conductivity peaks at 4.7 ± 1.1 Wm(-1)K(-1) for 24 wt % MWCNT and electrical percolation occurs once 20 wt % MWCNT content is surpassed. This is the first report of the thermal conductivity of template fabricated composite nanofibers and the first proposed processing technique to enable template fabrication of composite nanofibers with high filler content and long aspect ratio fillers, where enhanced properties can also be realized on the macroscale due to vertical alignment of the nanofibers. These materials are interesting for thermal management applications due to their high thermal conductivity and temperature stability.

  8. Effect of SiC Particles on the Electrical Conductivity of Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Rogti, F.; David, E.

    2017-02-01

    In this paper, the behavior of the electrical conductivity of epoxy/silicon carbide (SiC) composites as a function of weight fraction and particle size of SiC at room temperature has been investigated. Composite samples were prepared by a mixture composed of the same amount of hardener and resin (5 mg) with different amounts (ranging from 5 mg to 7 mg) of silicon carbide powder with different grain sizes (400 and 800 grit). The conduction current was measured under different applied voltages from 1 to 10 kV (corresponding to applied electrical fields from 0.04 kV/mm to 0.4 kV/mm), and the composites microstructure was characterized by scanning electron microscopy. It was shown that the electrical conductivity of epoxy/SiC composites was found to increase when the weight fraction of SiC was increased and also to increase non-linearly as a function of the electrical field.

  9. Conduction mechanism and dielectric properties of ZnO/MgO solid composites

    NASA Astrophysics Data System (ADS)

    Hafef, Olfa; Othman, Zayani Jaafar; Megdich, Makram; Matoussi, Adel

    2017-01-01

    In this paper, (1- x)ZnO/ xMgO solid composites, where x = 0, 10 and 20%, were prepared at high temperature 1200 °C by a solid-state method. The effect of increasing MgO content on structural, morphological, dielectric and the electrical properties of the ZnO/MgO composites has been investigated. The X-ray diffraction analysis indicates that all the samples have a prominent hexagonal crystalline structure with (002) and (101) as preferred growth directions and the segregation of MgO cubic phase took place for an MgO composition x ≥ 10 wt%. Analysis of infrared (IR) is in agreement with the diffraction results of X-ray diffraction. Morphological properties showed that the grain size was decreased with increasing MgO content. For the dielectric properties, a strong dispersion of permittivity constants was observed at low frequency, which can be attributed to interfacial relaxation. For the electrical properties, the frequency dependence of ac conductivity is interpreted in terms of Jonscher's law. The ac electrical conduction in ZnO/MgO composites is analyzed by different processes, which can be attributed to several models, the hopping correlated barrier (CBH) for the undoped ZnO sample, and the hopping correlated barrier (CBH) and the overlapping large polaron tunneling model for both composites ZnO/MgO:10% and ZnO/MgO:20%.

  10. Mechanism of direct current electrical charge conduction in p-toluenesulfonate doped polypyrrole/carbon composites

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Singh, Rajiv K.; Singh, Hari K.; Srivastava, Pankaj; Singh, Ramadhar

    2014-03-01

    Polypyrrole/carbon (PPy/C) composites have been synthesized using varying concentration of p-toluenesulfonate (pTS) dopant by surface initiated in-situ chemical oxidative polymerization. The synthesis and influence of pTS on the structure of the PPy/C composites are confirmed by Fourier transform infrared studies and the morphological features have been examined by scanning electron microscopy. X-ray photoelectron spectroscopy, employed to examine the surface composition and doping level of these composites, confirms the anionic doping into the polymer backbone. Electron spin resonance measurement has been carried out on these samples to identify the nature of the charge carriers and their concentration at different doping levels. The dc electrical conductivity of these composites has been measured in the temperature range ˜10-305 K. The observed results have been analyzed in the framework of existing theoretical models. Different Mott's parameters, such as characteristic temperature (T0), density of states at the Fermi level {N(EF)}, average hopping distance (R), and average hopping energy (W), evaluated from dc conductivity data supports the applicability of Mott's three dimensional variable range hopping mechanism in this system.

  11. Ferroelectric/ferromagnetic ceramic composite and its hybrid permittivity stemming from hopping charge and conductivity inhomogeneity

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Li, Lu; Xu, Zhaojun; Weng, Wenjian; Han, Gaorong; Ma, Ning; Du, Piyi

    2013-01-01

    Exploring the nature of multiferroic ceramic composite with dual high performances is much important to take full advantage of its novel dielectric properties. In this paper, Ni0.5Zn0.5291Fe2O4/BaTiO3 ceramic composite is proposed and successfully prepared from BTO and NZFO powders which are obtained by sol-gel process and citric acid combustion method, respectively. Results show that with increasing BTO content from 0 to 25 vol. % in the matrix of NZFO, the permittivity of the composite decreases from 220 k to 100 k at low frequencies (˜40 Hz) and contrarily from 20 to 100 at high frequencies (˜100 MHz). It is mainly ascribed to the instant polarization in NZFO at low frequencies and the polarization in the perovskite phase of BTO at sufficiently high frequencies. The permittivity of the ferrite and composite is shown to be compatible with a hybrid model proposed, which concerns hopping charges between Fe2+ and Fe3+, conductivity heterogeneity at the grain boundaries of the ferrite, and changes in the conductivities of the two phases induced by interdiffusion of the ions between the two phases. The composition dependence of the permittivity is agreeable with Kirkpatrick's compound law with the percolation threshold of NZFO to be about 55 vol. %.

  12. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  13. Conductivity and interfacial charge induced phenomena in ferroelectric films and composites

    NASA Astrophysics Data System (ADS)

    Wong, Chung Kwan

    2005-11-01

    Ferroelectric materials are polar dielectrics which normally possess small but finite electrical conductivity. We believe that conductivity in ferroelectrics can induce new phenomena or modify known physical phenomena, which may be difficult to understand if the materials are regarded as perfectly insulating. In this thesis, some "anomalous" phenomena are investigated for which the origins are still under debate in literature, and we suggest that these may very well be manifestations of electrical conduction and electric charges. Ferroelectric systems of interest to this investigation include composites and films. Electrical conductivity in ferroelectric composites allows free charge to accumulate at the matrix-inclusion interfaces. We focus on the role of interfacial charge at such interfaces in ferroelectric 0--3 composites (normally, ferroelectric ceramic inclusions dispersed in polymer matrices) in the interpretation of their peculiar experimental results. The effect of interfacial charge on the piezoelectric properties of ferroelectric 0--3 composites and the effect of electrical conductivity on their dielectric and piezoelectric properties are also investigated. Our previously developed model has been extended to include the additional contribution from the deformation of the inclusion particles (for discussing the effect of interfacial charge) due to the applied stresses in piezoelectric measurements, and for discussing the effect of conductivity to include its contribution as well as the frequency of measurement. Phenomena induced by electrical conductivity in other ferroelectric systems have also been studied. We consider the effects of electrical conductivity on the dynamic polarization behavior of ferroelectric films. Using a parallelogram-like P-E hysteresis model for the film material, explicit expressions are obtained for describing the D-E loops of ferroelectric films as would be measured from a Sawyer-Tower circuit which originally assumes the

  14. Light-induced Conductance Switching in Photomechanically Active Carbon Nanotube-Polymer Composites.

    PubMed

    Schneider, V; Polonskyi, O; Strunskus, T; Elbahri, M; Faupel, F

    2017-08-29

    Novel, optically responsive devices with a host of potential applications have been demonstrated by coupling carbon nanomaterials with photochromic molecules. For light-induced conductance switching in particular, we have recently shown that carbon nanotube-polymer nanocomposites containing azobenzene are very attractive and provide stable and non-degradable changes in conductivity over time at standard laboratory conditions. In these composites, the photoswitching mechanisms are based on light-induced changes in electronic properties and related to the Pool-Frenkel conduction mechanism. However, no link between conductivity switching and the molecular motion of azobenzene chromophores could be found due to application of high elastic modulus polymer matrices. Here we report on single wall carbon nanotube-polymer nanocomposites with a soft polycaprolactone polymer host. Such a system clearly shows the transfer of light-induced, nano-sized molecular motion to macroscopic thickness changes of the composite matrix. We demonstrate that these photomechanical effects can indeed overshadow the electronic effects in conductivity switching behavior and lead to a reversion of the conductivity switching direction near the percolation threshold.

  15. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  16. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1984-06-12

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  17. Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites

    DOEpatents

    Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN

    2010-07-27

    Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.

  18. Al-Ca and Al-Fe metal-metal composite strength, conductivity, and microstructure relationships

    SciTech Connect

    Kim, Hyong June

    2011-01-01

    Deformation processed metal-metal composites (DMMC’s) are composites formed by mechanical working (i.e., rolling, swaging, or wire drawing) of two-phase, ductile metal mixtures. Since both the matrix and reinforcing phase are ductile metals, the composites can be heavily deformed to reduce the thickness and spacing of the two phases. Recent studies have shown that heavily drawn DMMCs can achieve anomalously high strength and outstanding combinations of strength and conductivity. In this study, Al-Fe wire composite with 0.07, 0.1, and 0.2 volume fractions of Fe filaments and Al-Ca wire composite with 0.03, 0.06, and 0.09 volume fractions of Ca filaments were produced in situ, and their mechanical properties were measured as a function of deformation true strain. The Al-Fe composites displayed limited deformation of the Fe phase even at high true strains, resulting in little strengthening effect in those composites. Al-9vol%Ca wire was deformed to a deformation true strain of 13.76. The resulting Ca second-phase filaments were deformed to thicknesses on the order of one micrometer. The ultimate tensile strength increased exponentially with increasing deformation true strain, reaching a value of 197 MPa at a true strain of 13.76. This value is 2.5 times higher than the value predicted by the rule of mixtures. A quantitative relationship between UTS and deformation true strain was determined. X-ray diffraction data on transformation of Al + Ca microstructures to Al + various Al-Ca intermetallic compounds were obtained at the Advanced Photon Source at Argonne National Laboratory. Electrical conductivity was measured over a range of true strains and post-deformation heat treatment schedules.

  19. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  20. Effect of heat treatment on microstructure and thermal conductivity of carbon/carbon-copper composites

    NASA Astrophysics Data System (ADS)

    Yang, Peng'ao; Yin, Jian; Zhang, Hongbo; Xiong, Xiang

    2016-03-01

    Using 2.5-dimensional carbon fiber fabrics as the reinforcement, porous carbon/carbon(C/C) substrates were firstly fabricated by impregnation/carbonization (I/C) technique with furan resin and then treated at 2000, 2300 and 3000 °C, respectively. Finally, carbon fiber reinforced carbon and copper(C/C-Cu) composites were prepared by infiltrating melt copper alloy into C/C substrates under pressure. The effects of treating temperatures on microstructures and thermal conductivities of the composites were investigated. The results show that heat treatment plays an important role in the microstructure and thermal conductivity of C/C-Cu composites. It is conducive not only to rearrange the carbon crystallite of resin-based carbon in oriented layer structure, but also to improve the content and connectivity of copper alloy. The thermal conductivity increases with the increase in heat treatment temperature in both parallel and perpendicular direction; the thermal conductivity in parallel direction is evidently superior to that in perpendicular direction.

  1. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    SciTech Connect

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M.; Sherazi, Tauqir A.; Shakir, Imran; Mohsin, Munazza; Javed, Muhammad Sufyan; Zhu, Bin E-mail: zhubin@hubu.edu.cn

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  2. Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.

    Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).

  3. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE PAGES

    Chae, Jungseok; An, Sangmin; Ramer, Georg; ...

    2017-08-03

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  4. A multi-scale micromechanical investigation on thermal conductivity of cement-based composites

    NASA Astrophysics Data System (ADS)

    Liu, Jiahan; Xu, Shilang; Zeng, Qiang

    2017-01-01

    Cement-based composites (CBCs) are one of the most widely used materials in construction. An appealing characterization of thermal conductivity of CBCs plays an essential role to evaluate the energy consumption in buildings and to facilitate the development of novel thermal insulation materials. Based on Eshelby equivalent inclusion principle and multi-scale methodology, this paper attempted to present a generalized multi-scale micromechanical model in terms of thermal performance of the CBCs, which covers some classic models for thermal conductivity estimation. A Mori-Tanaka homogenization method was applied to investigate the thermal conductivity of the CBCs of different compounds, water-to-cement ratios and curing ages. In addition, saturation degree factor was considered. The results of this model are in good agreement with the experimental value, showing that the multi-scale model developed in this paper is able to evaluate the thermal conductivity of the CBCs in different conditions.

  5. Tunneling conductivity in anisotropic nanofiber composites: a percolation-based model.

    PubMed

    Chatterjee, Avik P; Grimaldi, Claudio

    2015-04-15

    The critical path approximation ('CPA') is integrated with a lattice-based approach to percolation to provide a model for conductivity in nanofiber-based composites. Our treatment incorporates a recent estimate for the anisotropy in tunneling-based conductance as a function of the relative angle between the axes of elongated nanoparticles. The conductivity is examined as a function of the volume fraction, degree of clustering, and of the mean value and standard deviation of the orientational order parameter. Results from our calculations suggest that the conductivity can depend strongly upon the standard deviation in the orientational order parameter even when all the other variables (including the mean value of the order parameter 〈S〉) are held invariant.

  6. Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.

    PubMed

    Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud

    2012-11-14

    Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.

  7. Facile Synthesis of Colored and Conducting CuSCN Composite Coated with CuS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Premalal, E. V. A.; Kannangara, Yasun Y.; Ratnayake, S. P.; Nalin de Silva, K. M.

    2017-08-01

    Conductivity-tunable, different colored CuS nanoparticle-coated CuSCN composites were synthesized in a single pot using a mixture of copper sulfate and sodium thiosulfate in the presence of triethyl amine hydrothiocyanate (THT) at the ambient condition. When these reagents are mixed in 1:1:1 molar ratio, white-gray-colored CuSCN was produced. In the absence of THT, microsized dark blue-colored CuS particles were produced. However, when THT is present in the solution mixture by different amounts, colored conducting CuS nanoparticle-coated CuSCN composite was produced. CuS nanoparticles are not deposited on CuSCN soon after mixing these regents, but it takes nearly overnight to see the color change (CuS production) in the white CuSCN dispersed mixture. TEM analysis shows that composite consists of hexagonal CuS nanoparticles in the range of 3-10 nm in size. It is interesting to note that CuS-coated CuSCN possesses higher conductivity than neat CuS or CuSCN. Moreover, strong IR absorption was observed for CuS-coated CuSCN composite compared to neat CuS (absence of THT) or CuSCN. Lowest resistivity of 0.05 Ω cm was observed for annealed (250 °C) CuS-coated CuSCN particles (adding 10 ml of THT) under nitrogen atmosphere. Also, this simple method could be extended to be used in the synthesis of CuS-coated composites on the other nanomaterials such as metal oxides, polymers, and metal nanoparticles.

  8. Facile Synthesis of Colored and Conducting CuSCN Composite Coated with CuS Nanoparticles.

    PubMed

    Premalal, E V A; Kannangara, Yasun Y; Ratnayake, S P; Nalin de Silva, K M

    2017-08-23

    Conductivity-tunable, different colored CuS nanoparticle-coated CuSCN composites were synthesized in a single pot using a mixture of copper sulfate and sodium thiosulfate in the presence of triethyl amine hydrothiocyanate (THT) at the ambient condition. When these reagents are mixed in 1:1:1 molar ratio, white-gray-colored CuSCN was produced. In the absence of THT, microsized dark blue-colored CuS particles were produced. However, when THT is present in the solution mixture by different amounts, colored conducting CuS nanoparticle-coated CuSCN composite was produced. CuS nanoparticles are not deposited on CuSCN soon after mixing these regents, but it takes nearly overnight to see the color change (CuS production) in the white CuSCN dispersed mixture. TEM analysis shows that composite consists of hexagonal CuS nanoparticles in the range of ~ 3-10 nm in size. It is interesting to note that CuS-coated CuSCN possesses higher conductivity than neat CuS or CuSCN. Moreover, strong IR absorption was observed for CuS-coated CuSCN composite compared to neat CuS (absence of THT) or CuSCN. Lowest resistivity of 0.05 Ω cm was observed for annealed (250 °C) CuS-coated CuSCN particles (adding 10 ml of THT) under nitrogen atmosphere. Also, this simple method could be extended to be used in the synthesis of CuS-coated composites on the other nanomaterials such as metal oxides, polymers, and metal nanoparticles.

  9. Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH).

    PubMed

    Omar, Fatin Saiha; Duraisamy, Navaneethan; Ramesh, K; Ramesh, S

    2016-05-15

    Nicotinamide Adenine Dinucleotide (NADH) is an important coenzyme in the human body that participates in many metabolic reactions. The impact of abnormal concentrations of NADH significantly causes different diseases in human body. Electrochemical detection of NADH using bare electrode is a challenging task especially in the presence of main electroactive interferences such as ascorbic acid (AA), uric acid (UA) and dopamine (DA). Modified electrodes have been widely explored to overcome the problems of poor sensitivity and selectivity occurred from bare electrodes. This review gives an overview on the progress of using conducting polymers, polyelectrolyte and its composites (co-polymer, carbonaceous, metal, metal oxide and clay) based modified electrodes for the sensing of NADH. In addition, developments on the fabrication of numerous conducting polymer composites based modified electrodes are clearly described.

  10. Rechargeable solid-state battery using a proton-conducting composite as electrolyte

    NASA Astrophysics Data System (ADS)

    Lakshmi, N.; Chandra, S.

    Proton-conducting composites of heteropolyacid hydrates (phospbotungstic acid, PTA and phosphomolybdic acid, PMA) with dispersoids such as insulating Al 2O 3, Al 2(SO 4) 3·16H 2O and (NH 4) 10W 12O 41·2H 2O are prepared for use as possible solid-state electrolytes in batteries. Bulk electrical conductivity as a function of composition is reported. Rechargeable solid-state proton batteries are fabricated and characterized. A cell with the configuration Zn+ZnSO 4·7H 2O+MH x|PMA+APT|PbO 2+V 2O 5+C+E gives an open circuit voltage of 1.5 V and can run for >850 h at a current drain of 2.4 μA cm -2. The cell can be recharged without much loss up to 18-20 cycles.

  11. Li + conducting 'fuzzy' poly(ethylene oxide)-SiO 2 polymer composite electrolytes

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lee, Jim Y.; Hong, L.

    Short and 'fuzzy' poly(ethylene) glycol chains with different molecule weights have been successfully grafted on to a pristine SiO 2 nanoparticle surface using toluene 2,4-diisocyanate as the bridging molecule. Solvent-free composite electrolytes based on poly(ethylene oxide), LiBF 4 and SiO 2 or modified SiO 2 particles have been prepared and compared. Composite electrolytes with modified SiO 2 show a noticeably smoother surface texture under scanning electron microscopy. This is attributed to improved compatibility between the ceramic particles and polymer. The increased amorphization of the polymer leads to increase in room-temperature ionic conductivity as more ion-conduction channels are created in close proximity to the modified silica particles. On the other hand, a lower transference number is the result of weakened Lewis acid-base interactions between the polymer backbone and a smaller number of OH groups on the silica surface.

  12. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  13. Controllable terahertz conductivity in single walled carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Polley, Debanjan; Barman, Anjan; Mitra, Rajib Kumar

    2015-01-01

    Terahertz (THz) conductivity of single walled carbon nanotube (SWNT)/poly-vinyl alcohol (PVA) composites has been studied in the frequency window of 0.3-2.0 THz. SWNT/PVA composite films with a constant thickness of 300 ± 20 μm are grown by dispersing required amount of SWNT in PVA solution via a slow drying process at room temperature under ambient condition. THz time domain spectroscopic measurements have been performed in transmission geometry at room temperature under N2 atmosphere and THz conductivity spectra have been extracted from the time domain data. It is found that conductivity of these samples can be efficiently tuned by changing the length of the SWNTs and also the SWNT weight fraction. For the highest weight fraction at a frequency of 1.5 THz, longer SWNT sample (average length ˜ 15 μm) showed 80% increased conductivity than its shorter counterpart (average length ˜ 2 μm) of the same diameter (1-2 nm). Shielding effectiveness of the samples has also been engineered by simply changing the effective length of SWNT inclusion in the polymer matrix. A modified Universal Dynamic Response model is applied to analyze the conductivity spectra of the samples.

  14. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    PubMed

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  15. One-pot synthesis of conducting graphene-polymer composites and their strain sensing application.

    PubMed

    Eswaraiah, Varrla; Balasubramaniam, Krishnan; Ramaprabhu, Sundara

    2012-02-21

    In situ reduction of graphite oxide in polymer powder has been implemented using focused solar electromagnetic radiation. The simultaneous reduction of graphite oxide, melting of the polymer and embedding of reduced graphite oxide nanoflakes in polymer offer a new way of synthesizing conducting graphene/polymer composites. An electromechanical application of the present reduced graphite oxide-PVDF nanocomposite has been proposed with a gauge factor of 12.1. This journal is © The Royal Society of Chemistry 2012

  16. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar; Greene, Sandra

    2015-01-01

    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  17. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    SciTech Connect

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.

  18. Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications.

    PubMed

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel; Pumera, Martin

    2017-06-22

    The exploration of hybridizing transition metal dichalcogenide (TMD) nanosheets with other materials as a unique approach for engineering their properties has attracted considerable attention from the scientific community for both basic studies and numerous potential applications. Among the various kinds of functional materials in hand, the utilization of intrinsically conducting polymers (CPs) in the construction of advanced hybrid composites with TMD nanosheets is considered as a fascinating approach. In this review, we aim at providing a survey of the literature on recent progress in composites based on 2D TMD and CPs. In this regard, we first discuss the different synthetic strategies used for the fabrication of two-dimensional transition metal dichalcogenide/conducting polymer (2D TMD/CP) composites in detail. Subsequently, we demonstrate the state-of-the-art advances in the utilization of these novel composites in promising applications such as energy storage, sensing devices, hydrogen production and so on. Finally, we also highlight some perspectives on the major challenges and future directions in this field of research.

  19. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  20. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites.

    PubMed

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A; Maitland, Duncan J

    2015-01-05

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg ) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C.

  1. Electrochemical synthesis of Sm2O3 nanoparticles: Application in conductive polymer composite films for supercapacitors.

    PubMed

    Mohammad Shiri, Hamid; Ehsani, Ali; Jalali Khales, Mina

    2017-11-01

    A novel electrosynthetic method was introduced to synthesize of Sm2O3 nanoparticles and furthermore, for improving the electrochemical performance of conductive polymer, hybrid POAP/Sm2O3 films have then been fabricated by POAP electropolymerization in the presence of Sm2O3 nanoparticles as active electrodes for electrochemical supercapacitors. The structure, morphology, chemical composition of Sm2O3 nanoparticles was examined. Surface and electrochemical analyses have been used for characterization of Sm2O3 and POAP/Sm2O3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. The supercapacity behavior of the composite film was attributed to the (i) high active surface area of the composite, (ii) charge transfer along the polymer chain due to the conjugation form of the polymer and finally (iii) synergism effect between conductive polymer and Sm2O3 nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Thermal Conductance Measurement of Metal-CNT Composites using Micro-Sized Suspended Structure

    NASA Astrophysics Data System (ADS)

    Suh, Ki Sung; Bak, Jung Hoon; Lee, Byung Yang; Hong, Seunghun; Park, Yun Daniel

    2008-03-01

    As CNTs have a unique structure and remarkable physical properties, CNT composites have attracted much attention from many researchers. Especially the thermal properties of CNTs and their composite materials have been studied intensively, because CNT has very good thermal transport properties [1-5]. For example, thermal conductivity of CNT is known to be much larger than that of metals such as Ag, Au, Cu and Al. To study the thermal conductance of metal-CNT composites, we have fabricated the micro-sized suspended structures. By using e-beam lithography and metallization, two thermometers have been patterned on the GaAs substrates. Thermal links made of metal or metal-CNT composite also have been patterned between the two thermometers. Then GaAs substrate has been under-etched to form suspended structures. We will show the fabrication methods and measurement scheme using these microstructures. ^* parkyd@phya.snu.ac.kr [1] J.A. Eastman et al., Appl. Phys. Lett. 78, 718 (2001). [2] S.U.S. Choi et al., Appl. Phys. Lett. 79, 2252 (2001). [3] M.J. Biercuk et al., Appl. Phys. Lett. 80, 2767 (2002). [4] R. Ramasubramaniam et al., Appl. Phys. Lett. 80, 4647 (2003). [5] H.Q. Xia et al., Appl. Phys. Lett. 94, 4967 (2003).

  3. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

    PubMed

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leendert G J; de With, Gijsbertus

    2016-08-03

    Conductive atomic force microscopy (C-AFM) is a valuable technique for correlating the electrical properties of a material with its topographic features and for identifying and characterizing conductive pathways in polymer composites. However, aspects such as compatibility between tip material and sample, contact force and area between the tip and the sample, tip degradation and environmental conditions render quantifying the results quite challenging. This study aims at finding the suitable conditions for C-AFM to generate reliable, reproducible, and quantitative current maps that can be used to calculate the resistance in each point of a single-walled carbon nanotube (SWCNT) network, nonimpregnated as well as impregnated with a polymer. The results obtained emphasize the technique's limitation at the macroscale as the resistance of these highly conductive samples cannot be distinguished from the tip-sample contact resistance. Quantitative C-AFM measurements on thin composite sections of 150-350 nm enable the separation of sample and tip-sample contact resistance, but also indicate that these sections are not representative for the overall SWCNT network. Nevertheless, the technique was successfully used to characterize the local electrical properties of the composite material, such as sample homogeneity and resistance range of individual SWCNT clusters, at the nano- and microscale.

  4. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    PubMed

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment.

  5. Nylon-Graphene Composite Nonwovens as Monolithic Conductive or Capacitive Fabrics.

    PubMed

    Pan, Qin; Shim, Eunkyoung; Pourdeyhimi, Behnam; Gao, Wei

    2017-03-08

    Here we describe a nylon-graphene nonwoven (NGN) composite, prepared via melt-blowing of nylon-6 into nonwoven fabrics and infiltrate those with graphene oxide (GO) in aqueous dispersions, which were further chemically reduced into graphene to offer electrical conductivity. The correlation between the conductivity and the graphene loading is described by the percolation scaling law σ = (p - pc)(t), with an exponent t of 1.2 and a critical concentration pc of 0.005 wt %, the lowest among all the nylon composites reported. Monolithic supercapacitors have been further developed on the nylon-GO nonwoven composites (NGO), via a programed CO2-laser patterning process. The nylon nonwoven works as an efficient matrix, providing high capacity to GO and ensuring enough electrode materials generated via the subsequent laser patterning processes. Our best monolithic supercapacitors exhibited an areal capacitance of 10.37 mF cm(-2) in PVA-H2SO4 electrolyte, much higher than the 1-3 mF cm(-2) reported for typical microsupercapacitors. Moreover, our supercapacitors were able to retain a capacitance density of 5.07 mF cm(-2) at an ultrahigh scan rate (1 V s(-1)), probably due to the facilitated ion migration within the highly porous nonwoven framework. This is the first report of highly functional nylon-6 nonwovens, fabricated via industrially scalable pathways into low-cost conductive polymer matrices and disposable energy storage systems.

  6. Thermal conductivity improvement of surface-enhanced polyetherimide (PEI) composites using polyimide-coated h-BN particles.

    PubMed

    Lee, Hoing Lae; Kwon, O Hwan; Ha, Sung Min; Kim, Byoung Gak; Kim, Yong Seok; Won, Jong Chan; Kim, Jooheon; Choi, Jong Han; Yoo, Youngjae

    2014-10-07

    In this study, we investigated the thermal conductivities and mechanical properties of polyetherimide (PEI) composites using polyimide (PI)-coated h-BN (PI-BN) particles. We found that PI-coated h-BN effectively increased adhesion with the PEI matrix, imparting enhanced mechanical and thermal stability and thermal conductivity with increasing BN content. The thermal conductivity of the PEI composite containing 60 wt% PI-BN was 3.3 W m(-1) K(-1), while the thermal conductivity of the PEI/BN composite without modification was 2.6 W m(-1) K(-1). The PEI/PI-BN composites show higher impact strengths than the PEI/BN composites because of less BN particle agglomeration and good wettability between PEI and h-BN. The results indicate that the PI-coated BN incorporated into the PEI matrix effectively enhances the thermal conductivity and mechanical properties of the PEI composites.

  7. Latest Progress In Novel High Conductivity And Highly Stable Composite Structure Developments For Satellite Applications

    NASA Astrophysics Data System (ADS)

    Klebor, Maximillian; Reichmann, Olaf; Pfeiffer, Ernst K.; Ihle, Alexander; Linke, Stefan; Tschepe, Christoph; Roddecke, Susanne; Richter, Ines; Berrill, Mark; Santiago-Prowald, Julian

    2012-07-01

    Materials such as aluminium, titanium and carbon fibre based composites are indispensable in space business. However, special demands on spaceborne applications require both new ideas and new concepts but also powerful novel materials. These days the trend is to substitute aluminium for CFRP basically in order to safe mass or to decrease thermal expansions. Nevertheless there are upcoming requirements that cannot be met using standard CFRP materials. In this connection innovative composites have to be introduced. In the frame of this paper three major applications for such material requests are considered, i.e.: • antennas • satellite platform structural panels • radiators. The new composites need to cope with the following challenges and demands: high operational temperature range, high stiffness, high strength, high thermal conductivity, vacuum compatibility, low mass, high in- orbit stability, compatibility with metallic parts and many more. Some of these demands have to be fulfilled in conjunction. Herein the innovative composites cover new raw materials and their combination, manufacturing process enhancement as well as new inspection and test methods. It has been observed that by using the developed CFRPs it is possible to satisfy and excel the needs. However, these materials feature a different behaviour than conventional composites which has to be taken into account during future design.

  8. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    NASA Astrophysics Data System (ADS)

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an “insulating” powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170°C , it is essentially a conductor at frequencies below 0.059±0.002Hz , and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170°C , are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (fce) , obtained from a scaling of the ac measurements, and the peak frequency (fcp) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170°C is not as good as at 25°C , probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction ϕc , as well as the interconnected conducting clusters above ϕc . These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  9. ac and dc percolative conductivity of magnetite-cellulose acetate composites

    SciTech Connect

    Chiteme, C.; McLachlan, D. S.; Sauti, G.

    2007-03-01

    ac and dc conductivity results for a percolating system, which consists of a conducting powder (magnetite) combined with an 'insulating' powder (cellulose acetate), are presented. Impedance and modulus spectra are obtained in a percolation system. The temperature dependence of the resistivity of the cellulose acetate is such that at 170 deg. C, it is essentially a conductor at frequencies below 0.059{+-}0.002 Hz, and a dielectric above. The percolation parameters, from the dc conductivity measured at 25 and 170 deg. C, are determined and discussed in relation to the ac results. The experimental results scale as a function of composition, temperature, and frequency. An interesting result is the correlation observed between the scaling parameter (f{sub ce}), obtained from a scaling of the ac measurements, and the peak frequency (f{sub cp}) of the arcs, obtained from impedance spectra, above the critical volume fraction. Scaling at 170 deg. C is not as good as at 25 deg. C, probably indicating a breakdown in scaling at the higher temperature. The modulus plots show the presence of two materials: a conducting phase dominated by the cellulose acetate and the isolated conducting clusters below the critical volume fraction {phi}{sub c}, as well as the interconnected conducting clusters above {phi}{sub c}. These results are confirmed by computer simulations using the two exponent phenomenological percolation equation. These results emphasize the need to analyze ac conductivity results in terms of both impedance and modulus spectra in order to get more insight into the behavior of composite materials.

  10. Stretchable conducting gold films prepared with composite MWNT/PDMS substrates

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Lemoine, P.; Dixon, D.; Hamilton, J. W. J.; Maguire, P. D.

    2015-10-01

    Novel stretchable conducting films were prepared by depositing gold layers onto polymer nano-composites substrates formed by in-situ crosslinking of polydimethylsiloxane (PDMS) in the presence of multiwall carbon nanotubes (MWNT). The MWNT content interferes with the PDMS cure reaction giving variations in thermal degradation, solvent swelling, mechanical and electrical properties. Tensile cycling experiments were carried out on the gold-coated PDMS and nano-composite substrates SEM analysis and electrical measurements demonstrated that the crack widening and increased electrical resistance observed during strain cycling were reversible. The inclusion of 8 % MWNT into PDMS brought more micro-cracking in the gold layer yet reduced the electrical resistance of the gold-coated samples by 172X at 5 % strain, 38X at 10 % strain and 19X at 20 %. Hence, this improvement in conduction is attributed to assisted-conduction through the MWNT loaded substrate. This mechanism results in a more stable and reproducible electrical behaviour, making electrical conduction less critically dependent on defects in the gold layer.

  11. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    PubMed Central

    Makled, M.H.; Sheha, E.; Shanap, T.S.; El-Mansy, M.K.

    2012-01-01

    PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54–1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33–0.87 eV. A significant value of hopping distance in the range 3.4–1.2 nm is estimated in agreement with the value of Bohr radius of the exciton. PMID:25685462

  12. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure.

    PubMed

    Shen, Heng; Guo, Jing; Wang, Hao; Zhao, Ning; Xu, Jian

    2015-03-18

    With the development of microelectronic technology, the demand of insulating electronic encapsulation materials with high thermal conductivity is ever growing and much attractive. Surface modification of chemical inert h-BN is yet a distressing issue which hinders its applications in thermal conductive composites. Here, dopamine chemistry has been used to achieve the facile surface modification of h-BN microplatelets by forming a polydopamine (PDA) shell on its surface. The successful and effective preparation of h-BN@PDA microplatelets has been confirmed by SEM, EDS, TEM, Raman spectroscopy, and TGA investigations. The PDA coating increases the dispersibility of the filler and enhances its interaction with PVA matrix as well. Based on the combination of surface modification and doctor blading, composite films with aligned h-BN@PDA are fabricated. The oriented fillers result in much higher in-plane thermal conductivities than the films with disordered structures produced by casting or using the pristine h-BN. The thermal conductivity is as high as 5.4 W m(-1) K(-1) at 10 vol % h-BN@PDA loading. The procedure is eco-friendly, easy handling, and suitable for the practical application in large scale.

  13. Reduction of thermal conductivity of bulk nanostructured bismuth telluride composites embedded with silicon nano-inclusions

    NASA Astrophysics Data System (ADS)

    Satyala, Nikhil; Tahmasbi Rad, Armin; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Tayebi, Lobat; Vashaee, Daryoosh

    2014-01-01

    Bulk nanostructured bismuth telluride (Bi2Te3) composite with silicon nano-crystallite inclusions was synthesized via sintering approach. The effect of the composite structure formed by the addition of miniscule quantity (5 at. %) of silicon on the thermoelectric properties of bulk nanostructured Bi2Te3 is shown via a 50% drop in thermal conductivity accompanied with a simultaneous enhancement in the Seebeck coefficient. We demonstrate that the addition of silicon nano-inclusions to the nanostructured compound combined with a systematic thermal treatment beneficially reduces the thermal conductivity to less than 1.0 W/mK over the entire temperature range of 300 K to 525 K. It is shown that the combinatorial techniques of nanostructuring, nano-inclusions, and annealing are effective in reducing thermal conductivity by a significant magnitude. This low thermal conductivity is comparable to that of Bi2Te3 based superlattices and significantly lower than that of bulk Bi2Te3. The technique is extendable to (Bi,Se)2(Sb,Te)3 based thermoelectric alloys for enhancing the figure-of-merit.

  14. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers.

    PubMed

    Xu, Geng; Zhao, Jingna; Li, Shan; Zhang, Xiaohua; Yong, Zhenzhong; Li, Qingwen

    2011-10-05

    Carbon nanotube (CNT) fiber is a promising candidate for lightweight cables. The introduction of metal particles on a CNT fiber can effectively improve its electrical conductivity. However, the decrease in strength is observed in CNT-metal composite fibers. Here we demonstrate a continuous process, which combines fiber spinning, CNT anodization and metal deposition, to fabricate lightweight and high-strength CNT-Cu fibers with metal-like conductivities. The composite fiber with anodized CNTs exhibits a conductivity of 4.08 × 10(4)-1.84 × 10(5) S cm(-1) and a mass density of 1.87-3.08 g cm(-3), as the Cu thickness is changed from 1 to 3 μm. It can be 600-811 MPa in strength, as strong as the un-anodized pure CNT fiber (656 MPa). We also find that during the tensile tests there are slips between the inner CNTs and the outer Cu layer, leading to the drops in electrical conductivity. Therefore, there is an effective fiber strength before which the Cu layer is robust. Due to the improved interfacial bonding between the Cu layer and the anodized CNT surfaces, such effective strength is still high, up to 490-570 MPa.

  15. Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites

    SciTech Connect

    Li, Jinsong; Luo, Ruiying; Yan, Ying

    2011-09-15

    Highlights: {yields} The CNFs improve the infiltration rate and thermal properties of carbon/carbon composites. {yields} The densification rate increases with the CNF content increasing at the beginning of infiltration. {yields} The values of the thermal conductivity of the composite obtain their maximum values at 5 wt.%. -- Abstract: Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electron microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.

  16. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires.

    PubMed

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-12-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  17. Enhanced Electrochemical Performances of Si/Graphite Composite Anode Using Commercial Promising Waterborne Conductive Binder

    NASA Astrophysics Data System (ADS)

    Huang, Shu; Ren, Jianguo; Liu, Rong; Yue, Min; Huang, Youyuan; Yuan, Guohui

    2017-04-01

    Silicon has attracted increasing attention as an anode material in Li-ion batteries (LIBs) owing to its high theoretical capacity. However, electrochemical properties of Si-based anodes are hindered by the electrode swelling during the charge/discharge process. In this paper, we developed a novel polymer binder with high electronic conductivity and self-healing function leading to stable cycling. These properties are attributed to the polymer structure which could provide more free Li+ leading to higher conductivity and capacity retention of the anodes. It is believed that this novel conductive binder could be a promising candidate for commercial application for the Si/graphite composite anodes in Li-ion batteries.

  18. Facile Synthesis and Electrical Conductivity of Carbon Nanotube Reinforced Nanosilver Composite

    NASA Astrophysics Data System (ADS)

    Pal, Hemant; Sharma, Vimal; Kumar, Rajesh; Thakur, Nagesh

    2012-12-01

    Metal matrix nanocomposites reinforced with carbon nanotubes (CNTs) have become popular in industrial applications. Due to their excellent thermophysical and mechanical properties, CNTs are considered as attractive filler for the improvement in properties of metals. In the present work, we have synthesized noncovalently functionalized CNT reinforced nanosilver composites by using a modified molecular level mixing method. The structure and morphology of nanocomposites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy. The electrical conductivity of silver-CNT nanocomposites measured by the four-point probe method is found to be more than that of the pure nanosilver. The significant improvement in electrical conductivity of Ag=CNT nanocomposites stems from homogenous and embedded distribution of CNTs in a silver matrix with intact structure resulting from noncovalent functionalization. The low temperature sintering also enhances the electrical conductivity of Ag=CNT nanocomposites.

  19. Computational screening of structural and compositional factors for electrically conductive coordination polymers.

    PubMed

    Tiana, Davide; Hendon, Christopher H; Walsh, Aron; Vaid, Thomas P

    2014-07-28

    The combination of organic and inorganic chemical building blocks to form metal-organic frameworks (MOFs) offers opportunities for producing functional materials suitable for energy generation, storage and conversion. However, such applications rely on robust electron transport and the design of conductive hybrid materials is still in its infancy. Here we apply density functional theory to assess the important structural and compositional factors for forming conducting MOFs. We focus on 1D metal-organic polymers as a model system and assess the choice of organic, inorganic and linking units. The results demonstrate that electronic communication is sensitive to the energy and symmetry of the frontier orbitals associated with the organic and inorganic building blocks and offers guidance on how to optimise electrical conduction in hybrid materials.

  20. Electrical conductivity of a two-dimensional model for a structurally anisotropic composite

    SciTech Connect

    Balagurov, B. Ya.

    2010-02-15

    The electrical conductivity of a two-dimensional structurally anisotropic model for a composite is considered. The model represents an isotropic matrix with a system of nonconducting inclusions in the form of infinitely thin straight line segments (scratches). The scratches make an angle {theta} or -{theta} with a preferred axis (for definiteness, axis y) at the same probability, and their centers are chaotically distributed. An approximate effective medium method is used to obtain a general expression for the effective conductivity tensor of this model that is valid over a wide concentration range. In this approximation, both components of tensor are shown to vanish at the same percolation threshold, which is expressed explicitly. The conductivity of the model in a critical region is considered in terms of the similarity hypothesis.

  1. The role of agglomeration in the conductivity of carbon nanotube composites near percolation

    NASA Astrophysics Data System (ADS)

    Tarlton, Taylor; Sullivan, Ethan; Brown, Joshua; Derosa, Pedro A.

    2017-02-01

    A detailed study of agglomeration in composite materials containing carbon nanotubes (CNT) is presented. Three dimensional samples with different degrees of agglomeration were created in three different ways, leading to a wider range of geometries available to study. Virtual charges are injected into the computer-generated samples and move through these samples according to a Monte Carlo hopping algorithm. Results show that there is an optimal level of agglomeration that is actually beneficial for charge transport at low volume concentrations, lowering the percolation threshold. It is found that near percolation, a more uniform CNT distribution (less agglomeration) leads to more conductive paths, but with a lower mobility. The optimum level of agglomeration comes from a trade off between these two properties. Beyond this optimum agglomeration state, it is observed that conductivity tends to decrease as dispersion increases at all concentrations studied here. At high concentration (percolated samples), where CNT clumps merge, conductivity seems to be less sensitive to agglomeration.

  2. Thermal conductivity of (VO2)1-xCux composites across the phase transition temperature

    NASA Astrophysics Data System (ADS)

    Dahal, Keshab; Zhang, Qian; He, Ran; Mishra, Ishwar Kumar; Ren, Zhifeng

    2017-04-01

    The thermal conductivity across the metal-insulator transition (MIT) of hot-pressed polycrystalline vanadium dioxide (VO2) samples is studied. The change in the total thermal conductivity (k) of hot-pressed VO2 is insignificant across the MIT temperature. By adding copper (Cu) to make (VO2)1-xCux composites with x from 0 to 0.5, we find an increase in the electrical conductivity from 4 × 104 S m-1 to 1 × 106 S m-1 at 120 °C, resulting in an electronic thermal conductivity increase from 0.38 W m-1 K-1 for x = 0 to 3.8 W m-1 K-1 for x = 0.3, which is a significant increase. However, the total thermal conductivity did not increase due to the decrease in the value of the Lorenz number by an order of magnitude than its standard value using the Wiedemann-Franz relationship. On the basis of our experimental result, an empirical model is proposed to explain the thermal conductivity behavior of all (VO2)1-xCux samples with different Cu concentrations.

  3. Effect of intermetallic compounds on the thermal conductivity of Ti-Cu composites

    SciTech Connect

    Jagannadham, K.

    2016-03-15

    Ti films were deposited by magnetron sputtering on polycrystalline Cu substrates. The samples were annealed at different temperatures and characterized by x-ray diffraction for phase identification, scanning electron microscopy, and energy dispersive spectrometry for microstructure and composition and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the diffused layer of Ti in Cu contained intermetallic compounds and solid solution of Ti in Cu. The thermal conductivity of the diffused layer is reduced, and the thickness increased for higher annealing temperature. The interface thermal conductance also decreased for higher temperature of annealing. A stable Cu{sub 4}Ti phase was formed after annealing at 725 °C with thermal conductivity of 10 W m{sup −1} K{sup −1}. The interface thermal conductance between the intermetallic compound and the solid solution of Ti in Cu also was reduced to 30 MW m{sup −2} K{sup −1}. The effective thermal resistance of the diffused layer and the interface was found to increase for higher annealing temperature.

  4. Improvement of the thermal conductivity of SiC{sub F}/SiC composite

    SciTech Connect

    Youngblood, G.E.; Kowbel, W.

    1996-04-01

    The methods, high temperature annealing and doping, were examined for improving the thermal conductivity of simulated CVI/{Beta}-SiC matrix material. For instance, a two hour 1500{degrees}C anneal led to the increase of the room temperature (RT) thermal conductivity from 38 to 59 W.mK. Be doping was even more effective in causing the thermal conductivity to increase with RT conductivity values up to 160 W/mK attained. To further optimize the thermal conductivity, hot-pressed SiC materials with carefully controlled amounts of Be-and B{sub 4}C-doping were investigated. Although a small improvement ({approx} 8%) was achieved with 2.0 wt % Be-doping, the effort to refine the amount of doping needed was largely unsuccessful. Apparently, hot-pressing SiC introduced numerous substructural stacking faults which effectively scattered phonons on the intermediate temperature range and nullified the benefits of doping. Nevertheless, Be and B{sub 4}C-doping and/or thermal treatments appear to be promising strategies to achieve the goal of eventually improving the thermal conductivity of SiC{sub f}/SiC composite.

  5. Final Scientific Report, New Proton Conductive Composite Materials for PEM Fuel Cells

    SciTech Connect

    Lvov, Serguei

    2010-11-08

    This project covered one of the main challenges in present-day PEM fuel cell technology: to design a membrane capable of maintaining high conductivity and mechanical integrity when temperature is elevated and water vapor pressure is severely reduced. The DOE conductivity milestone of 0.1 S cm-1 at 120 degrees C and 50 % relative humidity (RH) for designed membranes addressed the target for the project. Our approach presumed to develop a composite membrane with hydrophilic proton-conductive inorganic material and the proton conductive polymeric matrix that is able to “bridge” the conduction paths in the membrane. The unique aspect of our approach was the use of highly functionalized inorganic additives to benefit from their water retention properties and high conductivity as well. A promising result turns out that highly hydrophilic phosphorsilicate gels added in Nafion matrix improved PEM fuel cell performance by over 50% compared with bare Nafion membrane at 120 degrees C and 50 % RH. This achievement realizes that the fuel cell operating pressure can be kept low, which would make the PEM fuel cell much more cost efficient and adaptable to practical operating conditions and facilitate its faster commercialization particularly in automotive and stationary applications.

  6. Scaling in percolation behaviour in conductive insulating composites with particles of different size

    NASA Astrophysics Data System (ADS)

    Lebovka, N.; Lisunova, M.; Mamunya, Ye P.; Vygornitskii, N.

    2006-05-01

    The percolation behaviour of conductive composites containing particles of different sizes was analysed. A composite was simulated as the media containing small conductive particles distributed in the channels between large insulative particles, where each large particle is covered by n monolayers of the filler particles. The simulations were done for the cases of two-dimensional (2D) and three-dimensional (3D) lattices. It was shown that the percolation filler concentration x* versus the particle size ratio λ = R/r and the number of monolayers n may be approximated as x_{*}(\\lambda,n)=p_{*}^{\\infty}\\{ 1- [1+n_eff(n)/\\lambda]^{-d}\\} , where d is the space dimensionality; p_{*}^{\\infty} is the site random percolation threshold; neff is the effective number of monolayers, which decreases with increase in n and neff → n in the limit of n → ∞. The scaling behaviour of the percolation threshold inside the layers confined by the large particles was analysed. The data obtained at different values of λ and n gave the same correlation length exponent values as for the classical random percolation both for 2D and 3D cases. Analysis of the electrical conductivity behaviour near the percolation threshold in 2D systems showed the existence of the obvious differences at different values of λ and n, though the conductivity exponents s and t retained their universal values typical for the random percolation. The accuracy of the developed theoretical approach was experimentally tested for the polyvinyl chloride-copper (PVC-Cu) and polycarbonate-copper (PC-Cu) composites.

  7. Styrene-Butadiene Co-Polymer Based Highly Conducting and Flexible Polymer Composite Film with Low Percolation Threshold

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Conducting polymer composites are finding novel applications in various fields especially in device technology. In this work an effort has been made to synthesize polyaniline-synthetic rubber (Styrene-butadiene rubber) composite via ex-situ technique and its electrochemical properties are investigated. Highly conducting emeraldine form of polyaniline (20 S/cm) is prepared by the oxidative polymerization of aniline in aqueous acidic (CSA) media using ammonium peroxydisulfate as oxidizing agent. These composite films are characterized by UV-Visible spectroscopy to investigate their optical properties. The dc conductivity studies indicate that these composite films show extremely low percolation threshold.

  8. Low power, lightweight vapor sensing using arrays of conducting polymer composite chemically-sensitive resistors.

    PubMed

    Ryan, M A; Lewis, N S

    2001-01-01

    Arrays of broadly responsive vapor detectors can be used to detect, identify, and quantify vapors and vapor mixtures. One implementation of this strategy involves the use of arrays of chemically-sensitive resistors made from conducting polymer composites. Sorption of an analyte into the polymer composite detector leads to swelling of the film material. The swelling is in turn transduced into a change in electrical resistance because the detector films consist of polymers filled with conducting particles such as carbon black. The differential sorption, and thus differential swelling, of an analyte into each polymer composite in the array produces a unique pattern for each different analyte of interest, Pattern recognition algorithms are then used to analyze the multivariate data arising from the responses of such a detector array. Chiral detector films can provide differential detection of the presence of certain chiral organic vapor analytes. Aspects of the spaceflight qualification and deployment of such a detector array, along with its performance for certain analytes of interest in manned life support applications, are reviewed and summarized in this article.

  9. The relation of constant mean curvature surfaces to multiphase composites with extremal thermal conductivity

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Li, Qing

    2007-10-01

    The behaviour of a periodic composite material depends not only on the properties of the constituent phases but also strongly on the microstructural texture of those phases such as spheres, lamellae and needles. This paper shows how to design the microstructure for a specific extremal bulk (effective) thermal conductivity in a three-phase composite medium. An inverse homogenization technique that is driven by the computational topology optimization algorithm is presented. Apart from benchmarking examples such as the Vigdergauz-type and sandwich-like architectures, a series of new single length-scale designs of microstructures are generated from this procedure. The topological design results are validated by comparing their conductivities against the empirical formulae in the two-phase composites. This study interestingly finds that the phase interfaces yielded from the topology optimization highly resemble the constant mean curvature surfaces. A comparison of their respective attainability with the Milton-Kohn physical bounds is made and the equivalence of these two sets of topologies is consequently justified.

  10. Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

    DOE PAGES

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; ...

    2014-07-24

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this paper, a silicone membrane was used to inhibit water uptake into a thermoset SMP compositemore » containing conductive filler. Thermoset polyurethane SMPs were loaded with either 5 wt % carbon black or 5 wt % carbon nanotubes, and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37°C) and subsequent Tg depression versus uncoated composites. Finally, in turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37°C.« less

  11. Low power, lightweight vapor sensing using arrays of conducting polymer composite chemically-sensitive resistors

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Lewis, N. S.

    2001-01-01

    Arrays of broadly responsive vapor detectors can be used to detect, identify, and quantify vapors and vapor mixtures. One implementation of this strategy involves the use of arrays of chemically-sensitive resistors made from conducting polymer composites. Sorption of an analyte into the polymer composite detector leads to swelling of the film material. The swelling is in turn transduced into a change in electrical resistance because the detector films consist of polymers filled with conducting particles such as carbon black. The differential sorption, and thus differential swelling, of an analyte into each polymer composite in the array produces a unique pattern for each different analyte of interest, Pattern recognition algorithms are then used to analyze the multivariate data arising from the responses of such a detector array. Chiral detector films can provide differential detection of the presence of certain chiral organic vapor analytes. Aspects of the spaceflight qualification and deployment of such a detector array, along with its performance for certain analytes of interest in manned life support applications, are reviewed and summarized in this article.

  12. Nitrite Oxidation with Copper-Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite.

    PubMed

    Wang, Junjie; Xu, Guiyun; Wang, Wei; Xu, Shenghao; Luo, Xiliang

    2015-09-01

    Copper-cobalt bimetal nanoparticles (Cu-Co) have been electrochemically prepared on glassy carbon electrodes (GCEs), which were electrodeposited with conducting polymer nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). Owing to their good conductivity, high mechanical strength, and large surface area, the PEDOT/CNTs composites offered excellent substrates for the electrochemical deposition of Cu-Co nanoparticles. As a result of their nanostructure and the synergic effect between Cu and Co, the Cu-Co/PEDOT/CNTs composites exhibited significantly enhanced catalytic activity towards the electrochemical oxidation of nitrite. Under optimized conditions, the nanocomposite-modified electrodes had a fast response time within 2 s and a linear range from 0.5 to 430 μm for the detection of nitrite, with a detection limit of 60 nm. Moreover, the Cu-Co/PEDOT/CNTs composites were highly stable, and the prepared nitrite sensors could retain more than 96 % of their initial response after 30 days.

  13. Poly (vinylidene fluoride)/graphene nano-platelets electrically conductive composite foam for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Chen; Terakita, Daryl; Tseng, Alex C.; Naguib, Hani E.

    2015-04-01

    In this paper, we present the next generation of polymer based composite foam material fabricated from poly(vinylidene fluoride) (PVDF) and graphene nano-platelets (GNPs) as secondary fillers. We discovered that such composite material has thermoelectric properties and has the potential to be used in energy harvesting applications. The samples were fabricated though melt blending methods, which is a cheaper, simpler process and can be easily scaled up to industrial level for mass production. Our results indicate that melt blending processes can produce either similar or superior results compared to traditional solvent casting methods. In addition, we utilized a novel batch foaming method and successfully created closed-cell structure for the composite material. Our results also show that the thermal conductivity of PVDF/GNP foam samples have approximately an order of magnitude drop compared to solid samples, which is desired for thermoelectric materials. Furthermore, we observed a change in the electrical conductivity threshold of the GNP fillers after foaming. We report a Seebeck coefficient of 217 μV/K for 15 wt% GNP/PVDF foam samples, which is approximately 10 times higher than values reported previously.

  14. Magnetic assembly of transparent and conducting graphene-based functional composites

    PubMed Central

    Le Ferrand, Hortense; Bolisetty, Sreenath; Demirörs, Ahmet F.; Libanori, Rafael; Studart, André R.; Mezzenga, Raffaele

    2016-01-01

    Innovative methods producing transparent and flexible electrodes are highly sought in modern optoelectronic applications to replace metal oxides, but available solutions suffer from drawbacks such as brittleness, unaffordability and inadequate processability. Here we propose a general, simple strategy to produce hierarchical composites of functionalized graphene in polymeric matrices, exhibiting transparency and electron conductivity. These are obtained through protein-assisted functionalization of graphene with magnetic nanoparticles, followed by magnetic-directed assembly of the graphene within polymeric matrices undergoing sol–gel transitions. By applying rotating magnetic fields or magnetic moulds, both graphene orientation and distribution can be controlled within the composite. Importantly, by using magnetic virtual moulds of predefined meshes, graphene assembly is directed into double-percolating networks, reducing the percolation threshold and enabling combined optical transparency and electrical conductivity not accessible in single-network materials. The resulting composites open new possibilities on the quest of transparent electrodes for photovoltaics, organic light-emitting diodes and stretchable optoelectronic devices. PMID:27354243

  15. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials.

    PubMed

    Voge, Christopher M; Johns, Jeremy; Raghavan, Mekhala; Morris, Michael D; Stegemann, Jan P

    2013-01-01

    Composites of extracellular matrix proteins reinforced with carbon nanotubes have the potential to be used as conductive biopolymers in a variety of biomaterial applications. In this study, the effect of functionalization and polymer wrapping on the dispersion of multiwalled carbon nanotubes (MWCNT) in aqueous media was examined. Carboxylated MWCNT were wrapped in either Pluronic(®) F127 or gelatin. Raman spectroscopy and X-ray photoelectron spectroscopy showed that covalent functionalization of the pristine nanotubes disrupted the carbon lattice and added carboxyl groups. Polymer and gelatin wrapping resulted in increased surface adsorbed oxygen and nitrogen, respectively. Wrapping also markedly increased the stability of MWCNT suspensions in water as measured by settling time and zeta potential, with Pluronic(®)-wrapped nanotubes showing the greatest effect. Treated MWCNT were used to make 3D collagen-fibrin-MWCNT composite materials. Carboxylated MWCNT resulted in a decrease in construct impedance by an order of magnitude, and wrapping with Pluronic(®) resulted in a further order of magnitude decrease. Functionalization and wrapping also were associated with maintenance of fibroblast function within protein-MWCNT materials. These data show that increased dispersion of nanotubes in protein-MWCNT composites leads to higher conductivity and improved cytocompatibility. Understanding how nanotubes interact with biological systems is important in enabling the development of new biomedical technologies.

  16. Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.

    2017-07-01

    Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2]  +  x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2  ×  10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2]  +  3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14  ×  10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C  +  I2  +  Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz

  17. Strong and electrically conductive graphene-based composite fibers and laminates

    DOE PAGES

    Vlassiouk, Ivan V.; Polyzos, Georgios; Cooper, Ryan C.; ...

    2015-04-28

    In this study, graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In this study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layermore » graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 103 S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.« less

  18. Strong and electrically conductive graphene-based composite fibers and laminates

    SciTech Connect

    Vlassiouk, Ivan V.; Polyzos, Georgios; Cooper, Ryan C.; Ivanov, Ilia N.; Keum, Jong Kahk; Paulauskas, Felix L.; Datskos, Panos G.; Smirnov, Sergei

    2015-04-28

    In this study, graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In this study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layer graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 103 S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.

  19. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites.

    PubMed

    Jia, Jingjing; Sun, Xinying; Lin, Xiuyi; Shen, Xi; Mai, Yiu-Wing; Kim, Jang-Kyo

    2014-06-24

    Cellular-structured graphene foam (GF)/epoxy composites are prepared based on a three-step fabrication process involving infiltration of epoxy into the porous GF. The three-dimensional (3D) GF is grown on a Ni foam template via chemical vapor deposition. The 3D interconnected graphene network serves as fast channels for charge carriers, giving rise to a remarkable electrical conductivity of the composite, 3 S/cm, with only 0.2 wt % GF. The corresponding flexural modulus and strength increase by 53 and 38%, respectively, whereas the glass transition temperature increases by a notable 31 °C, compared to the solid neat epoxy. The GF/epoxy composites with 0.1 wt % GF also deliver an excellent fracture toughness of 1.78 MPa·m(1/2), 34 and 70% enhancements against their "porous" epoxy and solid epoxy counterparts, respectively. These observations signify the unrivalled effectiveness of 3D GF relative to 1D carbon nanotubes or 2D functionalized graphene sheets as reinforcement for polymer composites without issues of nanofiller dispersion and functionalization prior to incorporation into the polymer.

  20. Anomalous hopping conduction in nanocrystalline/amorphous composites and amorphous semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Kakalios, James; Bodurtha, Kent

    Composite nanostructured materials consisting of nanocrystals (nc) embedded within a thin film amorphous matrix can exhibit novel opto-electronic properties. Composite films are synthesized in a dual-chamber co-deposition PECVD system capable of producing nanocrystals of material A and embedding then within a thin film matrix of material B. Electronic conduction in composite thin films of hydrogenated amorphous silicon (a-Si:H) containing nc-germanium or nc-silicon inclusions, as well as in undoped a-Si:H, does not follow an Arrhenius temperature dependence, but rather is better described by an anomalous hopping expression (exp[-(To/T)3/4) , as determined from the ``reduced activation energy'' proposed by Zabrodskii and Shlimak. This temperature dependence has been observed in other thin film resistive materials, such as ultra-thin disordered films of Ag, Bi, Pb and Pd; carbon-black polymer composites; and weakly coupled Au and ZnO quantum dot arrays. There is presently no accepted theoretical understanding of this expression. The concept of a mobility edge, accepted for over four decades, appears to not be necessary to account for charge transport in amorphous semiconductors. Supported by NSF-DMR and the Minnesota Nano Center.

  1. Studies on the defluoridation of water using conducting polymer/montmorillonite composites.

    PubMed

    Karthikeyan, M; Kumar, K K Satheesh; Elango, K P

    2012-01-01

    Conducting polymer/inorganic hybrid composites have large surface areas, which makes the adsorbent properties of the polymer composites as good the constituents. Polyaniline/montmorilonite (PANi-MMT) and polypyrrole/montmorillonite (PPy-MMT) composites were prepared, characterized (Fourier transform infrared, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction patterns) and were employed as adsorbents for the removal of fluoride ions from aqueous solution by the batch sorption method. The spectral studies of the adsorbents before and after the adsorption are recorded to get better insight into the mechanism of the adsorption process. The results indicated that the removal of fluoride ions from water by these composites occurs via the combined effect of both the constituents, that is, through a physico-chemical mechanism. The amount of fluoride ion adsorbed by PANi-MMT and PPy-MMT at 30 degrees C is observed to be 2.3 and 5.1 mg g(-1), respectively, when compared to 0.77 and 2.66 mg g(-1), respectively, for the polymers alone. The Langmuir, Freundlich and Dubinin-Radushkevich isotherms were used to describe the adsorption equilibrium.

  2. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks

    NASA Astrophysics Data System (ADS)

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2012-05-01

    We demonstrate epoxy-silver nanoparticle composites with high thermal conductivity κ enabled by self-constructed nanostructured networks (SCNN) forming during the curing process at relatively low temperatures (150 °C). The networks formation mechanism involves agglomeration of the polyvinylpyrrolidone (PVP) coated nanoparticles, PVP removal, and sintering of the nanoparticles at suppressed temperatures induced by their small diameters (20-80 nm). Sintering and the SCNN formation are supported by differential scanning calorimetry and electron microscopy investigations. The formation of SCNN with high aspect ratio structures leads to enhancements in the measured thermal conductivity κ of the composite by more than two orders of magnitude versus the pure epoxy. However, κ enhancements are modest if microparticles (1.8-4.2 μm) are employed instead of PVP coated nanoparticles. The κ trends are qualitatively explained using a percolating threshold thermal conductivity model for the microcomposites. For the nanocomposites the measured κ is ˜14% of the upper limit value predicted by the Hashin and Shtrikman (H-S) theory for an ideally connected network, a measure of the non-ideal network inside the nanocomposites.

  3. Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite

    NASA Astrophysics Data System (ADS)

    Shubha, L. N.; Madhusudana Rao, P.

    2016-06-01

    The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.

  4. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment.

    PubMed

    Voge, Christopher M; Kariolis, Mihalis; MacDonald, Rebecca A; Stegemann, Jan P

    2008-07-01

    Composite biomaterials incorporating fibroblast cells, collagen Type I, fibrin, and 2 wt % carboxylated SWNT were created, and their properties were compared with similar control constructs without SWNT. Alignment of the matrix was stimulated by application of 8% cyclic strain for three 12-h periods over three days. All constructs underwent cell-mediated gel compaction to 15-20% of their initial volume, which was not affected by SWNT loading. Mechanical strain increased the rate of compaction, and strained constructs were significantly more compacted than unstrained controls by day 3. Cell viability and morphology were similar in both control and SWNT-loaded constructs, but unstrained samples exhibited a more stellate appearance with more numerous cellular projections. Application of mechanical strain caused clear alignment of both the cells and matrix in the direction of the applied strain. Bioimpedance measurements showed that SWNT loading increased the electrical conductivity of composite constructs, and that mechanically-induced alignment of the matrix/SWNT caused a further increase in conductivity. These results demonstrate that SWNT can be used to augment the electrical properties of 3D protein hydrogels, and that anisotropy in the matrix further enhances these properties. Such electrically conductive biopolymers may have a variety of applications in tissue engineering and biosensor development.

  5. Multifunctional Wearable Device Based on Flexible and Conductive Carbon Sponge/Polydimethylsiloxane Composite.

    PubMed

    Li, Yuan-Qing; Zhu, Wei-Bin; Yu, Xiao-Guang; Huang, Pei; Fu, Shao-Yun; Hu, Ning; Liao, Kin

    2016-12-07

    Wearable devices that can be used to monitor personal health, track human motions, and provide thermotherapy, etc., are highly desired in personalized healthcare. In this work, a multifunctional wearable "wrist band" which works as both heater for thermotherapy and sensor for personal health and motion monitoring is fabricated from a flexible and conductive carbon sponge/polydimethylsiloxane (CS/PDMS) composite. The key functional material of the wrist band, namely, the conductive CS, is synthesized from waste paper by a freeze-drying and high-temperature pyrolysis process. When the wrist band works as a heater under 15 V, a stable temperature difference of 20 °C is achieved between the wrist band and the ambient. When the wrist band serves as a wearable strain sensor, the wrist band exhibits fast and repeatable response and excellent durability within the strain range of 0-20% and the working frequency of 0.01-10 Hz. Finally, the typical applications of the multifunctional wearable wrist band, as a heater for thermotherapy and a sensor for blood pulse, breathe, and walk monitoring, are demonstrated. Due to its low cost, high flexibility, moderate conductivity, and excellent strain sensibility, the as-prepared wearable device based on the CS/PDMS composite is promising to be applied for the provision of personal healthcare.

  6. Performance of a single layer fuel cell based on a mixed proton-electron conducting composite

    NASA Astrophysics Data System (ADS)

    Zagórski, Krzysztof; Wachowski, Sebastian; Szymczewska, Dagmara; Mielewczyk-Gryń, Aleksandra; Jasiński, Piotr; Gazda, Maria

    2017-06-01

    Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm-2 at 600 °C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output.

  7. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices

    PubMed Central

    Feng, Ping; Du, Peifu; Wan, Changjin; Shi, Yi; Wan, Qing

    2016-01-01

    New-concept devices featuring the characteristics of ultralow operation voltages and low fabrication cost have received increasing attention recently because they can supplement traditional Si-based electronics. Also, organic/inorganic composite systems can offer an attractive strategy to combine the merits of organic and inorganic materials into promising electronic devices. In this report, solution-processed graphene oxide/chitosan composite film was found to be an excellent proton conducting electrolyte with a high specific capacitance of ~3.2 μF/cm2 at 1.0 Hz, and it was used to fabricate multi-gate electric double layer transistors. Dual-gate AND logic operation and two-terminal diode operation were realized in a single device. A two-terminal synaptic device was proposed, and some important synaptic behaviors were emulated, which is interesting for neuromorphic systems. PMID:27688042

  8. Stability test of conduction-cooled LTS/HTS composite coil

    NASA Astrophysics Data System (ADS)

    Cui, Ying Min; Wang, Yin Shun; Lv, Gang; Pi, Wei

    2016-06-01

    A small LTS/HTS composite coil made of NbTi/Cu and YBCO, with an inner diameter of 80 mm, an outer diameter of 88mm, a height of 50 mm, and an inductance of 5.5 μH, was designed to test its heat disturbance performance in a GM cryocooler. For comparison, a conventional LTS coil of a similar size made of NbTi/Cu wire was also tested. Transport current was applied from 50 A to 700 A at 8 K and 8.5 K, respectively. The two coils’ heat disturbance, minimum quench energy and quench propagation velocity performance were investigated and simulated. The results indicate that the LTS/HTS composite coil shows better thermal stability and is more fit for operation in conductive cryocooler systems compared to LTS coils.

  9. Proton Conducting Graphene Oxide/Chitosan Composite Electrolytes as Gate Dielectrics for New-Concept Devices

    NASA Astrophysics Data System (ADS)

    Feng, Ping; Du, Peifu; Wan, Changjin; Shi, Yi; Wan, Qing

    2016-09-01

    New-concept devices featuring the characteristics of ultralow operation voltages and low fabrication cost have received increasing attention recently because they can supplement traditional Si-based electronics. Also, organic/inorganic composite systems can offer an attractive strategy to combine the merits of organic and inorganic materials into promising electronic devices. In this report, solution-processed graphene oxide/chitosan composite film was found to be an excellent proton conducting electrolyte with a high specific capacitance of ~3.2 μF/cm2 at 1.0 Hz, and it was used to fabricate multi-gate electric double layer transistors. Dual-gate AND logic operation and two-terminal diode operation were realized in a single device. A two-terminal synaptic device was proposed, and some important synaptic behaviors were emulated, which is interesting for neuromorphic systems.

  10. An Investigation of Electrochemomechanical Actuation of Conductive Polyacrylonitrile (PAN) Nanofiber Composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.

    A polymer-based nanofiber composite actuator designed for linear actuation was fabricated by electrospinning, actuated by electrolysis, and characterized by electrical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural motion and function of muscle desperately needed to provide breakthroughs in the bio-medical and robotic fields. Previous research has shown activated Polyacrylonitrile (PAN) fibers having biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN is also known to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers especially show faster response to changes in environmental pH and improved mechanical properties over larger diameter fibers. Conductive additives were introduced to the electrospinning solution and activated in an attempt to create composite PAN nanofiber gel actuators with improved conductivity and eliminate the need of stiff electrodes. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Introducing conductive additives did not show a significant increase in conductivity and created unusable samples, requiring alternative electrode materials. Electrochemical contraction rates up to 25%/ min were achieved. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Improvements to contraction rates and young's moduli are necessary to capture the function and performance of skeletal muscles properly.

  11. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers

    NASA Astrophysics Data System (ADS)

    Kimmig, S.; Allen, I.; You, J. H.

    2013-09-01

    A SiC long fiber-reinforced copper composite offers a beneficial combination of high strength and high thermal conductivity at elevated temperatures. Both properties make the composite a promising material for the heat sink of high-heat-flux components. In this work, we developed a novel Cu/SiCf composite using the Sigma fiber. Based on HIP technique, a metallurgical process was established for fabricating high quality specimens using a TiC interface coating. Extensive tensile tests were conducted on the unidirectionally reinforced composite at 20 °C and 300 °C for a wide range of fiber volume fraction (Vf). In this paper, a large amount of test data is presented. The transversal thermal conductivity varies from 260 to 130 W/mK at 500 °C as Vf is increased from 13% to 37%. The tensile strength reached up to 1246 MPa at 20 °C for Vf = 37.6%, where the fracture strain was limited to 0.8%. The data of both elastic modulus and ultimate strength exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. The strength of the composite with the Sigma fibers turned out to be superior to those of the SCS6 fibers at 300 °C, although the SCS6 fiber actually has a higher strength than the Sigma fiber. The fractographic pictures of tension test and fiber push-out test manifested a sufficient interfacial bonding. Unidirectional copper composite reinforced by long SiC fibers was fabricated using the Sigma SM1140+ fiber for a wide range of fiber volume fraction from 14% to 40%. Extensive tensile tests were carried out at RT and 300 °C. The data of ultimate strength as well as elastic modulus exhibited a good agreement with the rule-of-mixture predictions indicating a high quality of the materials. In terms of the tensile strength, the Cu/Sigma composite turned out to be superior to the previous Cu/SCS6 composite at 300 °C, while comparable at RT, although the SCS6 fiber has a higher strength than the Sigma fiber. Such a

  12. Carbon nanotubes filled polymer composites: A comprehensive study on improving dispersion, network formation and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Chakravarthi, Divya Kannan

    In this dissertation, we determine how the dispersion, network formation and alignment of carbon nanotubes in polymer nanocomposites affect the electrical properties of two different polymer composite systems: high temperature bismaleimide (BMI) and polyethylene. The knowledge gained from this study will facilitate optimization of the above mentioned parameters, which would further enhance the electrical properties of polymer nanocomposites. BMI carbon fiber composites filled with nickel-coated single walled carbon nanotubes (Ni-SWNTs) were processed using high temperature vacuum assisted resin transfer molding (VARTM) to study the effect of lightning strike mitigation. Coating the SWNTs with nickel resulted in enhanced dispersions confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS). An improved interface between the carbon fiber and Ni-SWNTs resulted in better surface coverage on the carbon plies. These hybrid composites were tested for Zone 2A lightning strike mitigation. The electrical resistivity of the composite system was reduced by ten orders of magnitude with the addition of 4 weight percent Ni-SWNTs (calculated with respect to the weight of a single carbon ply). The Ni-SWNTs - filled composites showed a reduced amount of damage to simulated lightning strike compared to their unfilled counterparts indicated by the minimal carbon fiber pull out. Methods to reduce the electrical resistivity of 10 weight percent SWNTs --- medium density polyethylene (MDPE) composites were studied. The composites processed by hot coagulation method were subjected to low DC electric fields (10 V) at polymer melt temperatures to study the effect of viscosity, nanotube welding, dispersion and, resultant changes in electrical resistivity. The electrical resistivity of the composites was reduced by two orders of magnitude compared to 10 wt% CNT-MDPE baseline. For effective alignment of SWNTs, a new process called Electric field Vacuum Spray was devised to

  13. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  14. Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances.

    PubMed

    Chen, Mengting; Zhang, Ling; Duan, Shasha; Jing, Shilong; Jiang, Hao; Luo, Meifang; Li, Chunzhong

    2014-04-07

    New flexible and conductive materials (FCMs) comprising a quartz fiber cloth (QFC) reinforced multi-walled carbon nanotubes (MWCNTs)-carbon aerogel (QMCA) and poly(dimethylsiloxane) (PDMS) have been successfully prepared. The QMCA-PDMS composite with a very low loading of MWCNTs (∼1.6 wt%) demonstrates enhanced performance in tensile strength (129.6 MPa), modulus (3.41 GPa) and electromagnetic interference (EMI) shielding efficiency (SE) (∼16 dB in X-band (8.2-12.4 GHz) region). Compared to the QC (where MWCNTs were simply deposited on the QFCs without forming aerogel networks) based PDMS composite, a ∼120%, 330% and 178% increase of tensile strength, modulus, and EMI SE was obtained, respectively. Moreover, the EMI SE of the QMCA-PDMS composite can further reach 20 dB (a SE level needed for commercial applications) with only 2 wt% MWCNTs. Furthermore, the conductivity of the QMCA-PDMS laminate can reach 1.67 S cm(-1) even with very low MWCNTs (1.6 wt%), which still remains constant even after 5000 times bending and exhibits an increase of ∼170% than that of MWCNT-carbon aerogel (MCA)-PDMS at 20% strain. Such intriguing performances are mainly attributed to their unique networks in QMCA-PDMS composites. In addition, these features can also protect electronics against harm from external forces and EMI, giving the brand-new FCMs huge potential in next-generation devices, like E-skin, robot joints and so on.

  15. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  16. Applications of high thermal conductivity composites to electronics and spacecraft thermal design

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Loftin, Timothy A.

    1990-01-01

    Recently, high thermal conductivity continuous graphite fiber reinforced metal matrix composites (MMC's) have become available that can save much weight over present methods of heat conduction. These materials have two or three times higher thermal conductivity in the fiber direction than the pure metals when compared on a thermal conductivity to weight basis. Use of these materials for heat conduction purposes can result in weight savings of from 50 to 70 percent over structural aluminum. Another significant advantage is that these materials can be used without the plumbing and testing complexities that accompany the use of liquid heat pipes. A spinoff of this research was the development of other MMC's as electronic device heat sinks. These use particulates rather than fibers and are formulated to match the coefficient of thermal expansion of electronic substrates in order to alleviate thermally induced stresses. The development of both types of these materials as viable weight saving substitutes for traditional methods of thermal control for electronics packaging and also for spacecraft thermal control applications are the subject of this report.

  17. Ion-Electron-Conducting Polymer Composites: Promising Electromagnetic Interference Shielding Material.

    PubMed

    Vyas, Manoj Kumar; Chandra, Amita

    2016-07-20

    Polymer nanocomposites consisting of poly(vinylidenefluoride-co-hexafluoropropylene) PVdF-HFP, inorganic salt (LiBF4), organic salt (EMIMBF4), multiwalled carbon nanotubes (MWCNTs), and Fe3O4 nanoparticles were prepared as electromagnetic shield material. Improvement in conductivity and dielectric property due to the introduction of EMIMBF4, LiBF4, and MWCNTs was confirmed by complex impedance spectroscopy. The highest conductivity obtained is ∼1.86 mS/cm. This is attributed to the high ionic conductivity of the ionic liquids and the formation of a connecting network by the MWCNTs facilitating electron conduction. The total electromagnetic interference (EMI) shielding effectiveness has a major contribution to it due to absorption. Although the total shielding effectiveness in the Ku band (12.4-18 GHz) of pure ion-conducting system was found to be ∼19 dB and that for the polymer composites which are mixed (ion + electron) conductors is ∼46 dB, the contributions due to absorption are ∼16 and ∼42 dB, respectively.

  18. Separation of conductivity and distance measurements for eddy current nondestructive inspection of graphite composite materials

    NASA Astrophysics Data System (ADS)

    Dufour, Isabelle; Placko, Dominique

    1993-06-01

    This article deals with the study of a process based on the principle of eddy current sensors for the nondestructive evaluation of graphite composite plates. This research has been carried out in the Laboratoire d'Electricitd Signaux et Robotique by the team working on datacollecting sensors for robotics in collaboration with Aerospatiale. Eddy current sensors are characterized by their impedance, which varies when a conducting material is approached in their sensitive area. For a given sensor, the output signal depends directly on the electrical and geometrical properties of the object. In the case discussed here, the interesting data are the distance between the sensor and the object, and its local conductivity. In order to invert the relationships between the sensor signal and the properties of the material, an external parametrical model has been developed. A scanning of the surface with a sensor designed for good spatial resolution measurements gives two accurate maps of the useful data.

  19. Role of the particle size polydispersity in the electrical conductivity of carbon nanotube-epoxy composites.

    PubMed

    Majidian, Maryam; Grimaldi, Claudio; Forró, László; Magrez, Arnaud

    2017-10-02

    Carbon nanotubes (CTNs) with large aspect-ratios are extensively used to establish electrical connectedness in polymer melts at very low CNT loadings. However, the CNT size polydispersity and the quality of the dispersion are still not fully understood factors that can substantially alter the desired characteristics of CNT nanocomposites. Here we demonstrate that the electrical conductivity of polydisperse CNT-epoxy composites with purposely-tailored distributions of the nanotube length L is a quasiuniversal function of the first moment of L. This finding challenges the current understanding that the conductivity depends upon higher moments of the CNT length. We explain the observed quasiuniversality by a combined effect between the particle size polydispersity and clustering. This mechanism can be exploited to achieve controlled tuning of the electrical transport in general CNT nanocomposites.

  20. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.

    PubMed

    Sajesh, K M; Jayakumar, R; Nair, Shantikumar V; Chennazhi, K P

    2013-11-01

    A polypyrrole based conducting scaffold was developed by incorporating polypyrrole-alginate (PPy-Alg) blend with chitosan using lyophilization technique and employed this composite as a substrate for bone tissue engineering. PPy-Alg blend was developed by oxidative chemical synthesis of polypyrrole using FeCl3 as oxidizing agent and characterized. The physiochemical characterization of the scaffold was done using SEM, FT-IR along with porosity measurement, swelling and in vitro degradation studies. Surface conductivity of the scaffolds was analyzed using Scanning Electrochemical microscopy (SECM). Results from cell viability and cell proliferation with MG-63 cells using Alamar blue assay confirmed the cytocompatible nature of the developed scaffold. In vitro biomineralization ability of the scaffold was assessed and thus the effectiveness of PPy-Alg/chitosan scaffold in the field of tissue engineering was evaluated. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube.

    PubMed

    Koga, Hirotaka; Saito, Tsuguyuki; Kitaoka, Takuya; Nogi, Masaya; Suganuma, Katsuaki; Isogai, Akira

    2013-04-08

    Ultrastrong, transparent, conductive and printable nanocomposites were successfully prepared by mixing single-walled carbon nanotubes (CNTs) with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with abundant sodium carboxyl groups on the crystalline nanocellulose surfaces. The surface-anionic cellulose nanofibrils had reinforcing and nanodispersing effects on the CNTs both in water used as the dispersed medium and in the dried composite film, providing highly conductive and printable nanocomposites with a small amount of CNTs. TOCNs are therefore expected as an effective flexible matrix that can be used as an alternative to conventional polymers for various electrical materials, when nanocomposited with CNTs and also graphene. Our findings provide a promising route to realize green and flexible electronics.

  2. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.

    PubMed

    Firkowska, Izabela; Boden, André; Boerner, Benji; Reich, Stephanie

    2015-07-08

    We developed a nanocomposite with highly aligned graphite platelets in a copper matrix. Spark plasma sintering ensured an excellent copper-graphite interface for transmitting heat and stress. The resulting composite has superior thermal conductivity (500 W m(-1) K(-1), 140% of copper), which is in excellent agreement with modeling based on the effective medium approximation. The thermal expansion perpendicular to the graphite platelets drops dramatically from ∼20 ppm K(-1) for graphite and copper separately to 2 ppm K(-1) for the combined structure. We show that this originates from the layered, highly anisotropic structure of graphite combined with residual stress under ambient conditions, that is, strain-engineering of the thermal expansion. Combining excellent thermal conductivity with ultralow thermal expansion results in ideal materials for heat sinks and other devices for thermal management.

  3. Thermal conductivity and retention characteristics of composites made of boron carbide and carbon fibers with extremely high thermal conductivity for first wall armour

    NASA Astrophysics Data System (ADS)

    Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.

    1997-02-01

    The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.

  4. A study of tensile and thermal properties of 3D printed conductive ABS - ZnO composite

    NASA Astrophysics Data System (ADS)

    Aw, Y. Y.; Yeoh, C. K.; Idris, M. A.; Amali, H. K.; Aqzna, S. S.; Teh, P. L.

    2017-04-01

    Research into 3D printed composites are interesting because the properties of 3D printed components are usually insufficient for robust engineering applications. In this paper, conductive ABS - ZnO composites were successfully fabricated using a 3D printer. Tensile strength increases when filler loading increases up to 11wt%. Dynamic storage modulus of the conductive ABS-ZnO composite increases with the addition of ZnO filler, indicating stiffness enhancement of the composites. Higher loss modulus is also observed on samples with ZnO filler. Thermal conductivity increases from 0.2204 W/mK to 0.3508 W/mK when the filler concentration increases to 14wt% due to the formation of conductive network among fillers within the polymer matrix. With these promising tensile and thermal properties, the 3D printed composites are suitable to be used as automobile parts.

  5. Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications

    NASA Astrophysics Data System (ADS)

    Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.

    2017-02-01

    Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.

  6. Conduction mechanisms in some graphite-polymer composites: Effects of temperature and hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Celzard, A.; McRae, E.; Marêché, J. F.; Furdin, G.; Sundqvist, B.

    1998-02-01

    This article is devoted to the conduction mechanisms involved in some highly electrically anisotropic resin-graphite particle composites. These materials are known to show a percolation phenomenon as the filler content is varied; they are epoxy or polyurethane based, the conducting particles are oriented single-crystal platelets, and samples are in the form of thick films. Because of their strong anisotropy, two types of measurements were made, i.e., parallel to and perpendicular to the plane of the films. Study of the resistivity variations of samples containing various concentrations in conducting particles was carried out first as a function of temperature from 4.2 to 300 K at ambient pressure, and second as a function of hydrostatic pressure up to 1.2 GPa, at room temperature. As the temperature is varied, the changes in resistivity of all the samples studied (i.e., above percolation threshold) are weak; analysis leads to the conclusion that thermally activated tunneling plays a dominant role above but close to the percolation threshold φc. As a function of pressure, more samples were studied: when the filler content is above φc, resistivity changes are quantitatively in agreement with what is expected from both percolation theory and tunneling; below threshold, the observed behavior is partially attributable to an ionic conduction mechanism throughout the polymer.

  7. Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers

    NASA Astrophysics Data System (ADS)

    Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran

    2017-02-01

    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

  8. Effects of titanium impregnation on the thermal conductivity of carbon/copper composite materials

    NASA Astrophysics Data System (ADS)

    Oku, Tatsuo; Kurumada, Akira; Sogabe, Toshiaki; Oku, Takeo; Hiraoka, Toshiharu; Kuroda, Koji

    1998-09-01

    Carbon/copper-based materials with high thermal conductivity and good stability at high temperatures were developed by adding a small amount of titanium. The isotropic fine-grained nuclear grade graphite and felt type C/C composite, which were impregnated by copper (10-18 vol.%) and titanium (0.5-0.8 vol.%), provided ˜1.3 times higher thermal conductivity of 110 and 200 W/mK at 1200 K than the original carbon materials. Microstructural analyses showed that the increase of thermal conductivity is due to the formation of titanium compounds at the carbon/copper interface, and that the thermal energy would pass through both the carbon and copper. The present study indicates that addition of a small amount of a third element with a low enthalphy of alloy formation with carbon and copper will increase the thermal conductivity and the stability of carbon/copper-based materials. These carbon-based materials could be one of candidate materials for the plasma facing components of the fusion devices.

  9. Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiu-Wen; Wu, Nan; Shi, Chun-Qing; Zheng, Zhi-Yuan; Qi, Hong-Bin; Wang, Ya-Fang

    2016-12-01

    The preparation of Nafion membranes modified with montmorillonites is less studied, and most relative works mainly applied in direct methanol fuel cells, less in direct ethanol fuel cells. Organic/inorganic composite membranes are prepared with different montmorillonites (Ca-montmorillonite, Na-montmorillonite, K-montmorillonite, Mg-montmorillonite, and H-montmorillonite) and Nafion solution via casting method at 293 K in air, and with balance of their proton conductivity and ethanol permeability. The ethanol permeability and proton conductivity of the membranes are comparatively studied. The montmorillonites can well decrease the ethanol permeability of the membranes via inserted them in the membranes, while less decrease the proton conductivities of the membranes depending on the inserted amount and type of montmorillonites. The proton conductivities of the membranes are between 36.0 mS/cm and 38.5 mS/cm. The ethanol permeability of the membranes is between 0.69 × 10-6 cm2/s and 2.67 × 10-6 cm2/s.

  10. Composites Formed from Thermoresponsive Polymers and Conductive Nanowires for Transient Electronic Systems.

    PubMed

    Zhang, Xin; Bellan, Leon M

    2017-07-05

    The disintegration of transient electronic systems after a preprogrammed time or a particular stimulus (e.g., water, light, or temperature) is fundamentally linked to the properties and behavior of the materials used for their construction. Herein, we demonstrate that polymers exhibiting lower critical solution temperature (LCST) behavior can work as thermoresponsive substrates for circuitry and that these materials can be coupled with conductive nanowires to form a transient electronics platform with unique, irreversible temperature-responsive behavior. The transient systems formed from composites of LCST polymers and conductive nanowires exhibit stable electrical performance in solution (Tsolution > LCST) for over 24 h until a cooling stimulus triggers a rapid (within 5 min) and gigantic (3-4 orders of magnitude) transition in electrical conductance due to polymer dissolution. Using a parylene mask, we are able to fabricate thermoresponsive electrical components, such as conductive traces and parallel-plate capacitors, demonstrating the versatility of this material and patterning technique. With this unique stimulus-responsive transient system and polymers with LCSTs above room temperature (e.g., poly(N-isopropylacrylamide), methyl cellulose), we have developed a platform in which a circuit requires a source of heat to remain viable and is destroyed and vanishes once this heat source is lost.

  11. Structural vs. compositional disorder in thermal conductivity reduction of SiGe alloys

    NASA Astrophysics Data System (ADS)

    Nie, Jihui; Ranganathan, Raghavan; Liang, Zhi; Keblinski, Pawel

    2017-07-01

    We use equilibrium molecular dynamics simulations to determine the relative role of compositional and structural disorder in a phononic thermal conductivity reduction by studying three 50-50 SiGe alloy structures: ordered alloys, disordered alloys, and amorphous alloys, as well as pure amorphous Si and Ge structures for reference. While both types of disorders significantly reduce thermal conductivity, structural disorder is much more effective to this aim. The examination of phonon lifetimes in disordered alloys shows high values in a low frequency regime governed by Umklapp scattering that are reduced rapidly with increasing frequency following Rayleigh scattering behavior. The local properties analysis reveals that the structural disorder leads to elastic heterogeneities that are significantly larger than density heterogeneities, which is likely the key reason for amorphous semiconductor alloys having lower thermal conductivity than disordered alloys. Temperature dependence of thermal conductivity indicates the importance of propagating phonons and associated Umklapp scattering in SiGe alloy structures. Interestingly, longitudinal modes in amorphous and disordered alloys exhibit similar lifetimes, while transverse modes lifetimes show significant differences and are more temperature dependent.

  12. An addressable conducting network for autonomic structural health management of composite structures

    NASA Astrophysics Data System (ADS)

    Takahashi, Kosuke; Park, Jong Se; Hahn, H. Thomas

    2010-10-01

    The electrical resistance change method (ERCM) has long been an area of interest as an in-service health monitoring system. To apply the ERCM to existing structures, a new concept, the addressable conducting network (ACN), is proposed for autonomic structural health management of graphite/polymer composites. The ACN consists of two sets of conducting lines normal to each other, where one set resides on the top surface of the laminate and the other on the bottom surface. Damage can be detected by monitoring the resistance change 'through the laminate thickness' between two lines. By using a thermally mendable polymer as the matrix, the same conducting lines can be used to supply the electric current needed for resistive heating, thereby allowing the detected damage to be healed. As shown experimentally, the electrical resistance change method using an ACN distinguishes between laminates made of properly and improperly cured prepreg as well as revealing damage generated during three-point bending tests. Finite element analysis was performed to examine the feasibility of the ACN and indicated that the damage can be easily located from the spatial distribution of resistance changes and that the damaged area can be locally heated by supplying a large amount of current to selected conducting lines.

  13. Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers.

    PubMed

    Zubair, Nur Afifah; Rahman, Norizah Abdul; Lim, Hong Ngee; Sulaiman, Yusran

    2017-12-01

    Electrically conductive nanofiber is well known as an excellent nanostructured material for its outstanding performances. In this work, poly(3,4-ethylenedioxythiophene) (PEDOT)-coated polyvinyl alcohol-graphene oxide (PVA-GO)-conducting nanofibers were fabricated via a combined method using electrospinning and electropolymerization techniques. During electrospinning, the concentration of PVA-GO solution and the applied voltage were deliberately altered in order to determine the optimized electrospinning conditions. The optimized parameters obtained were 0.1 mg/mL of GO concentration with electrospinning voltage of 15 kV, which displayed smooth nanofibrous morphology and smaller diameter distribution. The electrospun PVA-GO nanofiber mats were further modified by coating with the conjugated polymer, PEDOT, using electropolymerization technique which is a facile approach for coating the nanofibers. SEM images of the obtained nanofibers indicated that cauliflower-like structures of PEDOT were successfully grown on the surface of the electrospun nanofibers during the potentiostatic mode of the electropolymerization process. The conductive nature of PEDOT coating strongly depends on the different electropolymerization parameters, resulting in good conductivity of PEDOT-coated nanofibers. The optimum electropolymerization of PEDOT was at a potential of 1.2 V in 5 min. The electrochemical measurements demonstrated that the fabricated PVA-GO/PEDOT composite nanofiber could enhance the current response and reduce the charge transfer resistance of the nanofiber.

  14. An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Kumar, Pradip; Kumar, Asheesh; Cho, Kie Yong; Das, Tapas Kumar; Sudarsan, V.

    2017-01-01

    Here, we study the self-aligned asymmetric electrically conductive composite thin film prepared via casting of graphene oxide (GO)/poly (vinylidene-hexafluoropropylene) (PVDF-HFP) dispersion, followed by low temperature hydriodic acid reduction. The results showed that composite thin film revealed the high orientation of graphene sheets along the direction of film surface. However, graphene sheets are asymmetrically distributed along the film thickness direction in the composite film. Both sides of as prepared composite film showed different surface characteristics. The asymmetric surface properties of composite film induced distinction of surface resistivity response; top surface resistivity (21 Ohm) is ˜ 4 times higher than bottom surface resistivity (5 Ohm). This asymmetric highly electrically conducting composite film revealed efficient electromagnetic interference (EMI) shielding effectiveness of ˜ 30 dB. This study could be crucial for achieving aligned asymmetric composite thin film for high-performance EMI shielding radiation.

  15. Computational investigation on thermal conductivity behavior of Al 6061-SiC-Gr hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Krishna, S. A. Mohan; Shridhar, T. N.; Krishnamurthy, L.

    2015-10-01

    Metal matrix composites (MMCs) are regarded to be one of the most principal classifications in composite materials. The thermal characterization of hybrid MMCs has become increasingly important in a wide range of applications. Thermal conductivity is one of the most important properties of MMCs. Since nearly all MMCs are used in various temperature ranges, measurement of thermal conductivity as a function of temperature is necessary in order to know the behavior of the material. In the present research, evaluation of thermal conductivity has been accomplished for aluminum alloy (Al) 6061, silicon carbide (SiC) and graphite (Gr) hybrid MMCs from room temperature to 300∘C. Al-based composites reinforced with SiC and Gr particles have been prepared by stir casting technique. The thermal conductivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated using laser flash technique. The results have indicated that the thermal conductivity of the different compositions of hybrid MMCs decreases by the addition of Gr with SiC and Al 6061. Few empirical models have been validated concerning with the evaluation of thermal conductivity of composites. Using the experimental values namely density, thermal conductivity, specific heat capacity and enthalpy at varying temperature ranges, computational investigation has been carried out to evaluate the thermal gradient and thermal flux.

  16. Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework

    NASA Astrophysics Data System (ADS)

    Yin, Yongheng; Li, Zhen; Yang, Xin; Cao, Li; Wang, Chongbin; Zhang, Bei; Wu, Hong; Jiang, Zhongyi

    2016-11-01

    Design and fabrication of efficient proton transport channels within solid electrolytes is crucial and challenging to new energy-relevant devices such as proton exchange membrane fuel cells (PEMFCs). In this study, the phosphoric acid (H3PO4) molecules are impregnated into SNW-1-type covalent organic frameworks (COFs) via vacuum assisted method. High loading of H3PO4 in SNW-1 and low guest leaching rate are achieved due to the similar diameter between H3PO4 and micropores in SNW-1. Then the COF-based composite membranes are fabricated for the first time with impregnated COFs (H3PO4@SNW-1) and Nafion matrix. For the composite membranes, the acid-base pairs formed between H3PO4@SNW-1 networks and Nafion optimize the interfacial interactions and hydrophilic domains. The acidic -PO3H2 groups in pores of H3PO4@SNW-1 provide abundant proton transfer sites. As a result, the continuous proton transfer channels with low energy barrier are created. At the filler content of 15 wt%, the composite membrane exhibits a superior proton conductivity of 0.0604 S cm-1 at 51% relative humidity and 80 °C. At the same time, the maximum power density of single fuel cell is 60.3% higher than that of the recast Nafion membrane.

  17. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds.

    PubMed

    Liu, Haixia; Wang, Ran; Chu, Henry K; Sun, Dong

    2015-09-01

    A novel biodegradable and conductive composite consisting of magnesium (Mg), polypyrrole-block-ploycaprolactone (PPy-PCL), and poly(lactic-co-glycolic acid) (PLGA) is synthesized in a core-shell-skeleton manner for tissue engineering applications. Mg particles in the composite are first coated with a conductive nanostructured PPy-PCL layer for corrosion resistance via the UV-induced photopolymerization method. PLGA matrix is then added to tailor the biodegradability of the resultant composite. Composites with different composition ratios are examined through experiments, and their material properties are characterized. The in vitro experiments on culture of 293FT-GFP cells show that the composites are suitable for cell growth and culture. Biodegradability of the composite is also evaluated. By adding PLGA matrix to the composite, the degrading time of the composite can last for more than eight weeks, hence providing a longer period for tissue formation as compared to Mg composites or alloys. The findings of this research will offer a new opportunity to utilize a conductive, nanostructured-coated Mg/PLGA composite as the scaffold material for implants and tissue regeneration. © 2015 Wiley Periodicals, Inc.

  18. Electrical/dielectric properties and conductivity mechanism of epoxy/expanded graphite composites

    NASA Astrophysics Data System (ADS)

    Kanapitsas, Athanasios; Logakis, Emmanuel; Pandis, Christos; Pissis, Polycarpos; Jovic, Natasa; Djokovic, Vladimir

    2009-03-01

    In this work the electrical and dielectric properties, as well as the temperature dependence of the electrical conductivity of epoxy/expanded graphite (EG) composites, are studied by employing dielectric relaxation spectroscopy (DRS). For the preparation of the composites EG was sonicated in acetone for 10h and then the appropriate amount of epoxy resin added to the mixture. The sonication was prolonged for another 3 h. The mixture was dried at 60^oC for a few hours and then the appropriate amount of hardener (triethylenetetramine) was added followed by mechanical stirring for 15 min. Finally, the mixture was cast in a glass mould and outgassed overnight at room temperature. Before they were removed from the mould, all samples were post-cured at 127^oC for 10 min in air. Samples with EG weight fractions ranging from 0 to 8 wt.% were produced. Preliminary DRS results at room temperature indicate that electrical percolation threshold (pc) lies between 3-5 wt.% EG. The influence of the EG fillers (for concentrations below pc) on the dielectric relaxation mechanisms of the epoxy matrix, as well as the conductivity mechanism (for concentrations above pc) are investigated.

  19. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  20. Thermal properties of composite materials : effective conductivity tensor and edge effects

    NASA Astrophysics Data System (ADS)

    Matine, A.; Boyard, N.; Cartraud, P.; Legrain, G.; Jarny, Y.

    2012-11-01

    The homogenization theory is a powerful approach to determine the effective thermal conductivity tensor of heterogeneous materials such as composites, including thermoset matrix and fibres. Once the effective properties are calculated, they can be used to solve a heat conduction problem on the composite structure at the macroscopic scale. This approach leads to good approximations of both the heat flux and temperature in the interior zone of the structure, however edge effects occur in the vicinity of the domain boundaries. In this paper, following the approach proposed in [10] for elasticity, it is shown how these edge effects can be corrected. Thus an additional asymptotic expansion is introduced, which plays the role of a edge effect term. This expansion tends to zero far from the boundary, and is assumed to decrease exponentially. Moreover, the length of the edge effect region can be determined from the solution of an eigenvalue problem. Numerical examples are considered for a standard multilayered material. The homogenized solutions computed with a finite element software, and corrected with the edge effect terms, are compared to a heterogeneous finite element solution at the microscopic scale. The influences of the thermal contrast and scale factor are illustrated for different kind of boundary conditions.

  1. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aymen, Mannai; Sami, Saidi; Ahmed, Souissi; Fethi, Gmati; Abdellatif, Belhadj Mohamed

    2013-08-01

    The aim of this work is to correlate the Raman spectroscopic studies to the electrical properties of graphite/polyaniline composites (G/PANI) reacted with hydrogen peroxide. Raman spectroscopic studies have been performed for G/PANI composites with different graphite weight concentrations (y% = 0, 10, 20, 50). As expected, Raman bands situated at 1350 and 1580 cm-1 coming from graphite lattice appear, and their intensity increases with increasing graphite concentrations. The measured Raman region (1170-1800 cm-1) of PANI reacted with hydrogen peroxide was convoluted and fitted with seven Lorentzian curves. Three Lorentzian curves centred at 1609, 1578 and 1336 cm-1 are investigated. We find that the band at 1578 cm-1 attributed to the C=C stretching vibration in the quinonoid ring (Q) is slightly shifted to 1584 cm-1 and its intensity increases during the reaction with hydrogen peroxide. However, the peaks at 1609 and 1336 cm-1 attributed respectively to the C-C stretching of the benzenoid ring (B) and C-N+. vibration of delocalized polaronic structures (protonation band—PB), keep the same position and their intensities decrease. This could be interpreted as a deprotonation of imines nitrogen atoms in PANI. These results were correlated with the electrical percolation behaviour which occurs in the composite. Indeed, the electrical conductivity of G/PANI composites treated with H2O2 increases with increasing G weight concentration, only when this later becomes higher than a critical concentration yc known as the percolation threshold. We find that the percolation behaviour is linked to the intensity decrease of B and PB bands and to the intensity increase of Q band.

  2. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

    PubMed

    Vilčáková, Jarmila; Moučka, Robert; Svoboda, Petr; Ilčíková, Markéta; Kazantseva, Natalia; Hřibová, Martina; Mičušík, Matej; Omastová, Mária

    2012-11-05

    The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  3. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  4. Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles.

    PubMed

    Gao, Wanli; Zheng, Yu; Shen, Jiabin; Guo, Shaoyun

    2015-01-28

    Materials consisting of alternating layers of pure polypropylene (PP) and carbon black filled polypropylene (PPCB) were fabricated in this work. The electrical behaviors of the multilayered composites were investigated from two directions: (1) Parallel to interfaces. The confined layer space allowed for a more compact connection between CB particles, while the conductive pathways tended to be broken up with increasing number of layers leading to a distinct enhancement of the electrical resistivity due to the separation of insulated PP layers. (2) Vertical to interfaces. The alternating assemblies of insulated and conductive layers like a parallel-plate capacitor made the electrical conductivity become frequency dependent. Following the layer multiplication process, the dielectric permittivity was significantly enhanced due to the accumulation of electrical charges at interfaces. Thus, as a microwave was incident on the dielectric medium, the interfacial polarization made the main contribution to inherent dissipation of microwave energy, so that the absorbing peak became strengthened when the material had more layers. Furthermore, the layer interfaces in the multilayered system were also effective to inhibit the propagation of cracks in the stretching process, leading to a larger elongation at the break than that of the PP/CB conventional system, which provided a potential route to fabricate electrical materials with optimal mechanical properties.

  5. Design Guidelines for Shielding Effectiveness, Current Carrying Capability, and the Enhancement of Conductivity of Composite Materials

    NASA Technical Reports Server (NTRS)

    Evans, R. W.

    1997-01-01

    These guidelines address the electrical properties of composite materials which may have an effect on electromagnetic compatibility (EMC). The main topics of the guidelines include the electrical shielding, fault current return, and lightning protection capabilities of graphite reinforced polymers, since they are somewhat conductive but may require enhancement to be adequate for EMC purposes. Shielding effectiveness depends heavily upon the conductivity of the material. Graphite epoxy can provide useful shielding against RF signals, but it is approximately 1,000 times more resistive than good conductive metals. The reduced shielding effectiveness is significant but is still useful in many cases. The primary concern is with gaps and seams in the material just as it is with metal. Current carrying capability of graphite epoxy is adequate for dissipation static charges, but fault currents through graphite epoxy may cause fire at the shorting contact and at joints. The effect of lightning on selected graphite epoxy material and mating surfaces is described, and protection methods are reviewed.

  6. Effects of Compression and Filler Particle Coating on the Electrical Conductivity of Thermoplastic Elastomer Composites

    NASA Astrophysics Data System (ADS)

    Albers, Willem M.; Karttunen, Mikko; Wikström, Lisa; Vilkman, Taisto

    2013-10-01

    Elastomeric polymers can be filled with metallic micro- or nanoparticles to obtain electrical conductivity, in which the conductivity is largely determined by the intrinsic conductivity of and contact resistance between the particles. Electrons will flow through the material effectively when the percolation threshold for near-neighbor contacts is exceeded and sufficiently close contacts between the filler particles are realized for electron tunneling to occur. Silver-coated glass microparticles of two types (fibers and spheres) were used as fillers in a thermoplastic elastomer composite based on styrene-ethylene-butylene-styrene copolymer, and the direct-current (DC) resistance and radiofrequency impedance were significantly reduced by coating the filler particles with octadecylmercaptan. Not only was the resistance reduced but also the atypical positive piezoresistivity effect observed in these elastomers was strongly reduced, such that resistivity values below 0.01 Ω cm were obtained for compression ratios up to 20%. In the DC measurements, an additional decrease of resistivity was obtained by inclusion of π-extended aromatic compounds, such as diphenylhexatriene. Some qualitative theories are presented to illuminate the possible mechanisms of action of these surface coatings on the piezoresistivity.

  7. Conduction mechanism and dielectric properties of pure and composite resorcinol formaldehyde aerogels doped with silver

    NASA Astrophysics Data System (ADS)

    Attia, S. M.; Abdelfatah, M. S.; Mossad, M. M.

    2017-07-01

    Pure and composite Resorcinol-Formaldehyde (RF) aerogel samples were prepared by sol-gel process using KOH as a catalyst and doped with silver nanoparticles at different concentrations (1.2×10-4, 2.4×10-4, 3.6×10-4, and 4.8×10-4 wt.% at catalyst ratio 0.024 wt.%). DC electrical conductivity σdc, AC electrical conductivity σ‧, and the dielectric properties of the prepared samples have been measured at different frequencies and temperatures. The results show that σ‧ increases with increasing frequency. The values of σ‧ range from ˜10-4 Ω-1m-1 to around unity at room temperature. The analysis of the results of σ‧(ω, T) reveals that the large overlapping polaron (OLP) is the most favorable mechanism to describe the conduction mechanism in these samples. The behavior of the dielectric constant with the frequency of these samples is normal, where it decreases with increasing frequency, while the behavior of dielectric loss tangent tanδ exhibits a peaking behavior at relatively higher temperature.

  8. A Flexible Solid Composite Electrolyte with Vertically Aligned and Connected Ion-Conducting Nanoparticles for Lithium Batteries.

    PubMed

    Zhai, Haowei; Xu, Pengyu; Ning, Mingqiang; Cheng, Qian; Mandal, Jyotirmoy; Yang, Yuan

    2017-04-14

    Replacing flammable organic liquid electrolytes with solid Li-ion conductors is a promising approach to realize safe rechargeable batteries with high energy density. Composite solid electrolytes, which are comprised of a polymer matrix with ceramic Li-ion conductors dispersed inside, are attractive, since they combine the flexibility of polymer electrolytes and high ionic conductivities of ceramic electrolytes. However, the high conductivity of ceramic fillers is largely compromised by the low conductivity of the matrix, especially when nanoparticles (NPs) are used. Therefore, optimizations of the geometry of ceramic fillers are critical to further enhance the conductivity of composite electrolytes. Here we report the vertically aligned and connected Li1+xAlxTi2-x(PO4)3 (LATP) NPs in the polyethylene oxide (PEO) matrix to maximize the ionic conduction, while maintaining the flexibility of the composite. This vertically aligned structure can be fabricated by an ice-templating-based method, and its conductivity reaches 0.52 × 10^-4 S/cm, which is 3.6 times that of the composite electrolyte with randomly dispersed LATP NPs. The composite electrolyte also shows enhanced thermal and electrochemical stability compared to the pure PEO electrolyte. This method opens a new approach to optimize ion conduction in composite solid electrolytes for next-generation rechargeable batteries.

  9. Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films with High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering.

    PubMed

    Hwang, Hyun-Jun; Joo, Sung-Jun; Kim, Hak-Sung

    2015-11-18

    In this work, multiwalled carbon nanotubes (MWNTs) were employed to improve the conductivity and fatigue resistance of flash light sintered copper nanoparticle (NP) ink films. The effect of CNT weight fraction on the flash light sintering and the fatigue characteristics of Cu NP/CNT composite films were investigated. The effect of carbon nanotube length was also studied with regard to enhancing the conductivity and fatigue resistance of flash light sintered Cu NP/CNT composite films. The flash light irradiation energy was optimized to obtain high conductivity Cu NP/CNT composite films. Cu NP/CNT composite films fabricated via optimized flash light irradiation had the lowest resistivity (7.86 μΩ·cm), which was only 4.6 times higher than that of bulk Cu films (1.68 μΩ·cm). It was also demonstrated that Cu NP/CNT composite films had better durability and environmental stability than those of Cu NPs only.

  10. Upper Mantle Composition Beneath the Petit-Spot Area in Northwestern Pacific: Insights From Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Baba, K.; Ichiki, M.; Abe, N.; Hirano, N.

    2007-12-01

    The mantle composition beneath the petit-spot area, where is about 500 km offshore from Japan Trench in northwestern Pacific, is discussed through electrical conductivity obtained by seafloor magnetotelluric (MT) survey. The seafloor MT data were collected using ocean bottom electromagnetometers (OBEMs) at four sites with the spacing of 100-150 km, between May and August, 2005. The survey was conducted as a part of the petit-spot multidsciplinary project. The petit-spot is young volcanic activity on very old (~130 Ma) oceanic plate characterized as a clump of small knolls which erupted strong to moderate alkaline basalt. This volcanic field is associated with neither any plate boundaries nor hot spots. To elucidate the magma generation process of this new-type volcanic activity, a collaborative study of various geophysical and geochemical approaches has been carried out. The MT survey aims to constrain the physical state of the lithosphere and asthenosphere where the petit-spot melt is probably generated. The acquired electromagnetic field variation data were analyzed and the MT responses, which is the transfer function between the electric and magnetic fields, were obtained. The effect for the ocean-land distribution and seafloor topography on the MT responses was modeled and stripped. As the result, the corrected responses indicate that the lateral heterogeneity in electrical conductivity is less significant beneath the survey area. One- dimensional inversion study shows that the data require a peak in conductivity (0.05 S/m) at about 200 km depth. The mantle temperature may be calculated from the conductivity using an experimental result for dry olivine (Constable et al., 1992). The resultant temperature is about 1750 °C which is lower than the dry solidus for garnet peridotite. Instead, assuming the temperature as GDH1 model (Stein and Stein, 1992) for 130 Myr old mantle, we calculate water content in olivine using an experimental result by Wang et al. (2006

  11. AC magnetic field-assisted method to develop porous carbon nanotube/conducting polymer composites for application in thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Chuang, Chun-Yu; Yang, Shu-Chian; Chang, Su-Hua; Yang, Ta-I.

    2015-04-01

    Thermoelectric materials are very effective in converting waste heat sources into useful electricity. Researchers are continuing to develop new polymeric thermoelectric materials. The segregated-network carbon nanotube (CNT)- polymer composites are most promising. Thus, the goal of this study is to develop novel porous CNT -polymer composites with improved thermoelectric properties. The research efforts focused on modifying the surface of the CNT with magnetic nanoparticles so that heat was released when subjecting to an AC magnetic field. Subsequently, polymers covered on the surface of the CNT were crosslinked. The porous CNT -polymer composites can be obtained by removing the un-crosslinked polymers. Polydimethylsiloxane polymer was utilized to investigate the effect of porosity and electrical conductivity on the thermoelectric properties of the composites. This AC magnetic field-assisted method to develop porous carbon nanotube/polymer composites for application in thermoelectric materials is introduced for the first time. The advantage of this method is that the electrical conductivity of the composites was high since we can easily to manipulate the CNT to form a conducting path. Another advantage is that the high porosity significantly reduced the thermal conductivity of the composites. These two advantages enable us to realize the polymer composites for thermoelectric applications. We are confident that this research will open a new avenue for developing polymer thermoelectric materials.

  12. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits

    PubMed Central

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-01-01

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics. PMID:26333352

  13. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-09-01

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics.

  14. Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits.

    PubMed

    Yang, Cheng; Cui, Xiaoya; Zhang, Zhexu; Chiang, Sum Wai; Lin, Wei; Duan, Huan; Li, Jia; Kang, Feiyu; Wong, Ching-Ping

    2015-09-03

    Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics.

  15. A highly sensitive pressure sensor using conductive composite elastomers with wavy structures

    NASA Astrophysics Data System (ADS)

    Sun, Rujie; Zhang, Xiao-Chong; Rossiter, Jonathan; Scarpa, Fabrizio

    2016-05-01

    Flexible pressure sensors are crucial components for the next generation wearable devices to monitor human physiological conditions. In this paper, we present a novel resistive pressure sensor based on hybrid composites made from carbon nanotube (CNT) for the conductive coating layer and polydimethylsiloxane (PDMS) elastomers as the substrate. The high sensitivity of these sensors is attributed to the change of contact resistance caused by the variation of the contact areas between the wavy film and the electrodes. Porous electrodes were designed to increase the roughness of the interfaces, thus further enhancing the pressure sensitivity. The developed device was verified through a series of tests, and the sensor exhibited a high sensitivity of 2.05 kPa-1 under a low pressure of 35.6 Pa.

  16. THERMAL DIFFUSIVITY/CONDUCTIVITY OF IRRADIATED HI-NICALON (Trademark) 2D-SICf/SIC COMPOSITE

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2003-06-15

    The H2L model was used to critically assess degradation within the individual fiber, fiber coating and matrix components for irradiated 2D-SiCf/SiC composite made with an ICVI-SiC matrix and Hi-Nicalon (Trademark) fabric. The composites were made with either a 1.044-micron (“thick”) or a 0.110-micron (“thin”) PyC fiber coating and were irradiated in the HFIR reactor as part of the JUPITER 12J (355 degrees C, 7.1 dpa-SiC) or 14J (330 and 800 degrees C, 5.8 and 7.2 dpa-SiC, respectively) series. Laser flash diffusivity measurements were made on representative samples before and after irradiation and after various annealing treatments. The ratio of the transverse thermal conductivity after to before irradiation K(sub-irr)/K(sub-zero) determined at the irradiation temperatures and predicted by the H2L model were: 0.18, 0.23 and 0.29 for the 330, 355 and 800 degrees C irradiations, respectively. Thermal diffusivity measurements in air, argon, helium and vacuum indicated that physical separation of the fiber/matrix interface was minimal after the irradiations, but was significant after annealing irradiated composites to 1200 degrees C. These results suggest that during irradiation to 6 dpa or more radial swelling of the PyC interface would compensate for the radial shrinkage of the Hi-Nicalon (Trademark) fiber and the SiC matrix swelling. The fiber shrinkage is due to irradiation-induced grain-growth and recrystallization and the matrix swelling is due to accumulation of irradiation-induced point defects. However, when the irradiation induced swelling in the matrix and fiber coating components was removed by recombination of point defects during high temperature annealing there was significant fiber/matrix separation.

  17. An investigation of electrochemomechanical actuation of conductive Polyacrylonitrile (PAN) nanofiber composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.; Walter, Wayne W.

    2014-03-01

    A polymer-based nanofiber composite actuator designed for contractile actuation was fabricated by electrospinning, stimulated by electrolysis, and characterized by electrochemical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural kinetics and mechanics of muscle needed to provide breakthroughs in the bio-medical and robotic fields. In this study, activated Polyacrylonitrile (PAN) fibers have demonstrated biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN has also been shown to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers (~500 nm) especially show faster response to changes in environmental pH and improved mechanical properties compared to larger diameter fibers. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Voltage driven transient effects of localized pH were examined to address pHdefined actuation thresholds of PAN fibers. Electrochemical contraction rates of the PAN/Graphite composite actuator demonstrated up to 25%/min. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Further improvements, however, to contraction rates and Young's moduli were found essential to capture the function and performance of skeletal muscles appropriately.

  18. Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene — fly ash composites

    NASA Astrophysics Data System (ADS)

    Baglari, Sanjib; Kole, Madhusree; Dey, T. K.

    2011-04-01

    As the disposal of fly ash (FA) poses a serious problem in terms of land use and potential environmental pollution, there exists a global interest for its utilization. Utilization of fly ash as filler material in polymer composites is considered important from both economic and commercial point of view. In this communication, the effective thermal conductivity and coefficient of thermal expansion (CTE) of composites synthesized with fly ash filler embedded in high-density polyethylene (HDPE) matrix is investigated. Incorporation of fly ash in HDPE enhances both the thermal stability and the effective thermal conductivity of the composites. CTE, however, significantly decreases as the FA content increases in HDPE. Effective thermal conductivity for HDPE containing 70-volume fraction (%) fly ash becomes almost twice than that for unfilled HDPE. Results on both the effective thermal conductivity and CTE of HDPE/FA composites have been discussed in light of various theoretical models. Our analysis indicates formation of conductive channels of FA particulates in HDPE, which causes rapid enhancement in the effective thermal conductivity of the HDPE/FA composites. We also confirm the importance of the role of the interphase volume and the strength of the polymer — filler interactions to successfully predict the CTE of HDPE/FA composites.

  19. Electrically Conducting Polymer-Copper Sulphide Composite Films, Preparation by Treatment of Polymer-Copper (2) Acetate Composites with Hydrogen Sulfide

    NASA Technical Reports Server (NTRS)

    Yamamoto, Takakazu; Kamigaki, Takahira; Kubota, Etsuo

    1988-01-01

    Polymer copper sulfide composite films were prepared by treatment of polymer poly(vinyl chloride), poly(acrylonitrile), copolymer of vinyl chloride and vinyl acetate (90:10), and ABS resin copper (2) acetate composites with hydrogen sulfide. The films showed electrical conductivity higher than 0.015 S/cm when they contained more than 20 wt percent of copper sulfide. A poly(acrylonitrile)-copper sulfide composite film containing 40 to 50 wt percent of copper sulfide showed electrical conductivity of 10 to 150.0 S/cm and had relatively high mechanical strength to be used in practical purposes.

  20. Composition, Temperature, and Pressure Dependence of the Phonon (Thermal) Conductivity of Silicate Geoliquids

    NASA Astrophysics Data System (ADS)

    Tikunoff, Dane Michael

    The study of geoliquids and their transport properties is a burgeoning field that sheds light on many critical geological problems. One such property, the thermal conductivity, measures the heat conduction capacity of a material and plays an important role in mantle and crust dynamics. Previous research has suggested that an increased insulation factor in rocks of the crust, regulated by relatively small values of the thermal conductivity, promotes anatexis and alleviates radiogenic heating requirements for the inducement of dehydration-triggered partial melting (Whittington et al., 2009). At greater depths, the proposed existence of melt patches along and immediately above the Core-Mantle Boundary (CMB) at ~2900 km depth could explain the discrete rather than graduated thermal gradient seen across the CMB (Murakami and Bass, 2011). This thesis describes the use of Molecular Dynamics (MD) simulations to compute thermal conductivity for three liquid silicates: CaMgSi2O6, NaAlSi3 O8 and MgSi2O4. The motivation for this study was to examine the temperature, pressure and compositional dependencies of thermal conductivity approximating conditions in the upper mantle (0-30 GPa, 2000-4500 K) for a few end member geosilicate liquids of natural importance. Results at low pressure and temperature show good agreement with recent laboratory measurements on CaMgSi2O6 and NaAlSi3O8 suggesting that MD simulation can provide realistic values at elevated pressure and temperature, conditions not readily accessible without great expense and time in the laboratory. For example, simulation results for molten diopside at 1763+/-13 K and 0.36+/-0.017 GPa provide a thermal conductivity value of k=1.186+/-0.019 W/m K while laser-flash data from Hofmeister et al. (2009) provides a value of k=1.178 +/-0.06 W/m K, agreement to within a percent. Further, a positive correlation between atomic structure and thermal conductivity is confirmed. At low pressure, the polymeric liquid NaAlSi3O8, in

  1. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration.

    PubMed

    Dodel, Masumeh; Hemmati Nejad, Nahid; Bahrami, S Hajir; Soleimani, Masoud; Mohammadi Amirabad, Leila; Hanaee-Ahvaz, Hana; Atashi, Amir

    2017-03-01

    One of the advances in the field of biomedical nanotechnology, is conductive nanofiber fabrication and the discovery of its applications. Biocompatible flexible nanofibers that have a good biocompatibility, mechanical properties and morphology. Poly (3, 4-ethylene dioxythiophene) (PEDOT) is a conductive polymer that has recently been used in medical applications. In this study, the electrospinning technique and vapor phase polymerization combination method with freeze drying was used to produce Silk fibroin/PEDOT/Chitosan nanocomposite scaffold. The aim of our study was to develop a ligament construct of PEDOT/Silk bilayer nanofibrous scaffold, to mimic the aligned collagen fiber bundles and Chitosan sponge coating was done on these fibrous scaffolds, to mimic the glycosaminoglycans of ECM sheath. The developed constructs were characterized. The unrestricted somatic human stem cells (USSC), were cultured on the scaffold. Then, the effect of applying DC electric pulses to cells cultured on polymer was assessed. Cellular function was actively exhibited in scaffold with electrical induction, as evident by the high expression of collagen I, collagen III, decorin, biglycan and aggrecan genes. Novel scaffold plus electrical stimulation shows facilitating cell seeding and promoting cell proliferation, differentiation. This composites can be used in this new field for stem cells differentiation to target tissues. Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  2. Dispersion Dependent conductivity of Single Wall Carbon Nanotubes in Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Bryning, M. B.; Islam, M. F.; Kikkawa, J. M.; Yodh, A. G.

    2004-03-01

    Aggregation and rope formation of single wall carbon nanotubes (SWNTs) play a key role in determining the electrical properties of SWNT-composite systems. We have developed a procedure for incorporating SWNTs into an epoxy matrix that allows us to control the dispersion of nanotubes from homogeneous to diffuse agglomerates to dense aggregates. Direct current conductivity measurements and images from optical and scanning electron microscopes show that if the nanotubes are allowed to form agglomerates/aggregates in the epoxy matrix, then the nanotubes form conductive network at a very low concentration ( 0.006 vol%). On the other hand, a homogeneous dispersion of nanotubes in the epoxy matrix leads to a higher percolation threshold (0.01 vol%). We will discuss the percolation behavior of nanotubes with existing models of non-interacting and interacting rods. This work has been partially supported by the NSF through the MRSEC grant DMR 00-79909, DMR-0203378, by DARPA/ONR through N00014-01-1-0831, and by NASA through grant NAG8-2172.

  3. Effect of composition, structure, and spin state on the thermal conductivity of the Earth's lower mantle

    SciTech Connect

    Goncharov, A F; Struzhkin, V V; Montoya, J A; Kharlamova, S; Kundargi, R; Siebert, J; Badro, J; Antonangeli, D; Ryerson, F J; Mao, W

    2010-07-23

    The change in electronic structure of iron at high pressures to spin-paired states in ferropericlase, silicate perovskite, and post-perovskite may have a profound influence on the thermal conductivity of the lower mantle. Here, we present optical absorption data for lower mantle minerals to assess the effect of composition (including iron oxidation state), structure, and iron spin state on radiative heat transfer. We confirm that the presence of ferric iron in ferropericlase strongly affects the optical properties, while the effect of the spin-pairing transition may be more secondary. We also show that post-perovskite exhibits larger optical absorption in the near infrared and visible spectral ranges than perovskite which may have a profound effect on the dynamics the lowermost mantle. We present preliminary results from measurements of the phonon thermal conductivity of perovskite at 125 GPa using a pulsed laser heating technique. The available data suggest a larger value than what previously estimated, although the uncertainty is large.

  4. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    NASA Astrophysics Data System (ADS)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  5. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    SciTech Connect

    Jayaraman, R.; Vickraman, P. Subramanian, N. M. V.; Justin, A. Simon

    2016-05-23

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) – filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10{sup −5} Scm{sup −1} was noted for 57.5 wt% −7.5 wt% plasticizer – filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10{sup −5} S cm{sup −1} and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 – 1000 cm{sup −1} both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  6. Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures

    DOEpatents

    Negm, Yehia; Zimmerman, George O.; Powers, Jr., Robert E.; McConeghy, Randy J.; Kaplan, Alvaro

    1994-12-27

    A composite lead is provided which electrically links and conducts a current between about 75-80K. and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizationl arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained.

  7. Composite lead for conducting an electrical current between 75--80K and 4. 5K temperatures

    DOEpatents

    Negm, Y.; Zimmerman, G.O.; Powers, R.E. Jr.; McConeghy, R.J.; Kaplan, A.

    1994-12-27

    A composite lead is provided which electrically links and conducts a current between about 75-80K and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizational arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained. 12 figures.

  8. Ionic conductivity and dielectric studies of LiClO4 doped poly(vinylalcohol)(PVA)/chitosan(CS) composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.

    2014-12-01

    This paper focuses on the dielectric constant (ɛ‧), dielectric loss factor (ɛ″) and frequency dependent conductivity (σac) properties of newly prepared poly(vinylalcohol) (PVA) chitosan (CS) composite films incorporated with different concentrations of LiClO4. The composite films were prepared using solution casting technique. The complexation between salt and polymer host is confirmed by FT Raman and UV-Vis studies. The sample containing 20 wt.% LiClO4 exhibits a highest ionic conductivity of 3 × 10-6 S/cm at room temperature. The dielectric properties of the composites follow non-Debye behavior.

  9. The crystallization kinetics and thermal conductivity of alumina/fluorescein sodium salt (Al2O3/FSS) composites

    NASA Astrophysics Data System (ADS)

    Yakuphanoglu, Fahrettin; Sekerci, M.

    2005-01-01

    The thermal conductivity and crystallization mechanism of alumina (Al2O3)/fluorescein sodium salt (FSS) composites prepared by the powder metallurgy method have been investigated by means of differential thermal analysis. The Kissinger method is applied to determine the crystallization kinetics from the endotherm peaks. The activation energy E and Avrami parameter n were calculated. The kinetic parameters (E and n) have made it possible to postulate the type of crystal growth exhibited in the crystallization process. The crystallization growth is found to be one-dimensional for the composite system. The thermal conductivity of the composite system was also determined by differential scanning calorimetry.

  10. Styrene-butadiene-styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities.

    PubMed

    Song, Yihu; Xu, Chunfeng; Zheng, Qiang

    2014-04-21

    We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.

  11. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.

    PubMed

    Mao, Cui; Zhu, Yutian; Jiang, Wei

    2012-10-24

    Polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends filled with octadecylamine-functionalized graphene (GE-ODA) have been fabricated to obtain conductive composites with a lower electrical percolation threshold according to the concept of double percolation. The dependence of the electrical properties of the composites on the morphology is examined by changing the proportion of PS and PMMA. Our results reveal that the electrical conductivity of the composites can be optimal when PS and PMMA phases form a cocontinuous structure and GE-ODA nanosheets are selectively located and percolated in the PS phase. For the PS/PMMA blend (50w/50w), the composites exhibit an extremely low electrical percolation threshold (0.5 wt %) because of the formation of a perfect double percolated structure. Moreover, the rheological properties of the composites are also measured to gain a fundamental understanding of the relationship between microstructure and electrical properties.

  13. What if the Electrical Conductivity of Graphene Is Significantly Deteriorated for the Graphene-Semiconductor Composite-Based Photocatalysis?

    PubMed

    Weng, Bo; Xu, Yi-Jun

    2015-12-23

    The extraordinary electrical conductivity of graphene has been widely regarded as the bible in literature to explain the activity enhancement of graphene-semiconductor composite photocatalysts. However, from the viewpoint of an entire composite-based artificial photosynthetic system, the significant matter of photocatalytic performance of graphene-semiconductor composite system is not just a simple and only issue of excellent electrical conductivity of graphene. Herein, the intentional design of melamine resin monomers functionalized three-dimensional (3D) graphene (donated as MRGO) with significantly deteriorated electrical conductivity enables us to independently focus on studying the geometry effect of MRGO on the photocatalytic performance of graphene-semiconductor composite. By coupling semiconductor CdS with graphene, including MRGO and reduced graphene oxide (RGO), it was found that the CdS-MRGO composites exhibit much higher visible light photoactivity than CdS-RGO composites although the electrical conductivity of MRGO is remarkably much lower than that of RGO. The comparison characterizations evidence that such photoactivity enhancement is predominantly attributed to the restacking-inhibited 3D architectural morphology of MRGO, by which the synergistic effects of boosted separation and transportation of photogenerated charge carriers and increased adsorption capacity can be achieved. Our work highlights that the significant matter of photocatalytic performance of graphene-semiconductor composite is not a simple issue on how to harness the electrical conductivity of graphene but the rational ensemble design of graphene-semiconductor composite, which includes the integrative optimization of geometrical and electrical factors of individual component and the interface composition.

  14. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  15. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    PubMed

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

  16. Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khurram, A. A.; Rakha, Sobia A.; Zhou, Peiheng; Shafi, M.; Munir, Arshad

    2015-07-01

    The DC electrical conductivity, percolation threshold, and dielectric properties of Graphene Nanoplatelets (GNPs) filled epoxy composites are studied and correlated with microwave absorption. The properties of GNPs filled composites are also compared with multiwalled carbon nanotubes (MWCNTs) composites, and GNPs are observed to have superior conductivity than MWCNTs. In all batches, the nanofillers have 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 wt. %. All composites irrespective of the type of nanofiller and viscosity of the matrix have shown electrical percolation threshold at 3.0 wt. %. The dielectric properties, i.e., complex permittivity, tan loss, and AC conductivity, are studied in 100 Hz-5.5 MHz. The DC and AC electrical conductivities (at and below the percolation) measured in 100 Hz-5.5 MHz are correlated to the GNPs and MWCNTs epoxy composites in the microwave frequency range (11-17 GHz). The maximum return loss of -12 dB and -6 dB was determined for MWCNTs and GNPs, respectively. The effects of nanofiller shape and the viscosity of the matrix on the dispersion and interparticle spacing of the conductive fillers within the polymer matrix have been discussed based on the results of conductivity, dielectric, and absorption properties.

  17. Enhanced thermal conductivity of novel multifunctional polyphenylene sulfide composites embedded with heat transfer networks of hybrid fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Chan, Ellen; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent; Lakatos-Hayward, Laszlo

    2011-04-01

    Today's smaller, more powerful electronic devices, communications equipment, and lighting apparatus required optimum heat dissipation solutions. Traditionally, metals are widely known for their superior thermal conductivity; however, their good electrical conductivity has limited their applications in heat management components for microelectronic applications. This prompts the requirement to develop novel plastic composites that satisfy multifunctional requirements thermally, electrically, and mechanically. Furthermore, the moldability of polymer composites would make them ideal for manufacturing three-dimensional, net-shape enclosures and/or heat management assembly. Using polyphenylene sulfide (PPS) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (BN) alone, blending BN fillers of different shapes and sizes, as well as hybridizing BN fillers with carbonaceous nano- and micro-fillers. Parametric studies were conducted to elucidate the effects of types, shapes, sizes, and hybridization of fillers on the composite's thermal and electrical properties. The use of hybrid fillers, with optimized material formulations, was found to effectively promote a composite's thermal conductivity. This was achieved by optimizing the development of an interconnected thermal conductive network through structuring hybrid fillers with appropriate shapes and sizes. The thermal conductive composite affords unique opportunities to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.

  18. Investigation into the effect of heat treatment on the thermal conductivity of 3-D carbon/carbon fiber composites

    SciTech Connect

    Dinwiddie, R.B.; Burchell, T.D. ); Baker, C.F. )

    1991-01-01

    The material used in this study was a carbon-carbon fiber composite manufactured from precursor yarn and petroleum based pitch through a process of repetitive densification of a woven preform. The resultant high temperature-high strength material exhibits relatively high thermal conductivity and is thus of interest to the fusion energy, plasma materials interactions (PMI) and plasma facing components (PFC) communities. Carbon-carbon fiber composite manufacture involves two distinct processes, preform weaving and component densification. In this study three samples were subjected to an additional heat treatment of 2550, 2750 or 3000{degree}C at Oak Ridge National Laboratory (ORNL) subsequent to their fourth graphitization at 2400{degree}C. It should be noted that no effort was made to optimize the composite for thermal conductivity, but rather only to provide a material with which to evaluate the effect of the final heat treatment temperature on the thermal conductivity. The fiber is the primary source of heat conduction in the composite. Consequently, increasing the fiber volume fraction, and/or the fiber thermal conductivity is expected to increase the composite thermal conductivity. 3 refs., 1 fig.

  19. Thermal conductivity of 2D C-C composites with pyrolytic and glass-like carbon matrices

    NASA Astrophysics Data System (ADS)

    Michalowski, J.; Mikociak, D.; Konsztowicz, K. J.; Blazewicz, S.

    2009-08-01

    This study examines the relationship of thermal properties of C-C composites with structural and microstructural features resulting from specific processing steps. Samples were made with the same type of fibres, but using two distinct different methods of matrix formation: liquid impregnation with phenolic resin and the P-CVI technique. In both cases, thermal treatment after densification had decisive effect on increase of composite coefficient of thermal conductivity, due to crystallization of carbon matrix material and thus increase of its own thermal conductivity. Higher values of thermal conductivity were obtained using the pyrolytic carbon matrix processing.

  20. Polyacrylonitrile and conducting polymer composite coatings on nickel: Electrodeposition and characterization by means of atomic force microscopy

    SciTech Connect

    Geskin, V.M.; Lazzaroni, R.; Bredas, J.L.; Mertens, M.; Calberg, C.; Jerome, R.

    1996-01-01

    This work is aimed at the electrochemical production of conducting/insulating polymer composite coatings on a commodity metal, nickel. Electrodeposited polyacrylonitrile is used as an adherent insulating matrix. Polyaniline and polybithiophene are studied as candidates for the conducting polymer component, since they can be anodically deposited onto Ni by making use of the passivation of the metal. It is shown that a uniform composite can be obtained when the conducting polymer is deposited in an organic medium. The morphologies of the coatings are studied by means of atomic force microscopy. {copyright} {ital 1996 American Institute of Physics.}

  1. Thermoplastic-based conductive composites containing multi-wall carbon nanotubes aligned under the application of external electric fields

    NASA Astrophysics Data System (ADS)

    Osazuwa, Osayuki

    The objective of this thesis is to prepare thermoplastic/multi-wall carbon nanotubes (MWCNTs) and to apply external alternating current (AC) electric fields to achieve enhanced conductivity and dielectric properties. The first part of the thesis focuses on preparing polyolefin-based composites containing welldispersed MWCNTs. MWCNTs are functionalized with a hyperbranched polyethylene (HBPE) using a non-covalent, non-specific functionalization approach and melt compounded with an ethylene-octene copolymer (EOC) matrix. The improved filler dispersion in the functionalized EOC/MWCNT composite results in higher elongation at break compared to the non-functionalized composite. However, the electrical percolation threshold and the ultimate conductivity of the composites are not affected considerably, suggesting that this functionalization approach leaves the inherent properties of the nanotubes intact. EOC/HBPE-functionalized MWCNT composites are further subjected to external AC electric fields (35 -- 212 kV/m), which induce the formation of aligned columnar structures, as evidenced by Scanning Electron Microscopy. Experimentally acquired resistivity data are used to derive correlations between the characteristic insulator-to-conductor transition times of the composites and the electric field strength (E), polymer viscosity (eta) and MWCNT volume fraction (φ). A criterion for the selection of (eta, E, φ) conditions that enable MWCNT assembly under an electric field controlled regime (minimal Brownian motion-driven aggregation effects) is developed. The dielectric properties of the solidified aligned EOC/MWCNT composites are further studied using dielectric spectroscopy. Annealing of the composites at 160 °C results in the formation of interconnected structures, whereas electrification, using AC field of 71 and 212 kV/m induces the formation of aligned columnar structures. The electrified and annealed composites have increased real and imaginary permittivity compared

  2. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application

    PubMed Central

    Stout, David A; Yoo, Jennie; Santiago-Miranda, Adriana Noemi; Webster, Thomas J

    2012-01-01

    of natural heart tissue, ie, 0.15 MPa for 100% PLGA to 5.41 MPa for the 50:50 (PLGA to CNF [wt%:wt%]) ratio at 0.025 g/mL. Atomic force microscopy indicated that the addition of CNF to PLGA increased the material surface area from 10% (100:0 [PLGA to carbon nanofiber (wt%:wt%)]) to over 60% (50:50 [PLGA to carbon nanofibers (wt%:wt%)]). Lastly, the adsorption of specific proteins (fibronectin and vitronectin) showed significantly more adsorption for the 50:50 PLGA to CNF (wt%:wt%) ratio at 0.025 g/mL PLGA compared with pure PLGA, which may be why cardiomyocyte function increased on CNF-enriched composites. Conclusion This study demonstrates that cardiomyocyte function was enhanced on 50:50 PLGA to CNF (wt%:wt%) composite ratios at 0.025 g/mL PLGA densities because they mimicked native heart tissue tensile strength/conductivity and increased the adsorption of proteins known to promote cardiomyocyte function. PMID:23180962

  3. The Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-ion Composite

    SciTech Connect

    Stevenson, Cynthia; Liu, G.; Zheng, H.; Kim, S.; Deng, Y.; Minor, A.M.; Song, X.; Battaglia, V.S.

    2008-08-07

    Fundamental electrochemical methods, cell performance tests, and physical characterization tests such as electron microscopy were used to study the effects of levels of the inert materials (acetylene black (AB), a nano-conductive additive, and polyvinylidene difluoride (PVDF), a polymer binder) on the power performance of lithium-ion composite cathodes. The electronic conductivity of the AB/PVDF composites at different compositions was measured with a four-point probe direct current method. The electronic conductivity was found to increase rapidly and plateau at a AB:PVDF ratio 0.2:1 (by weight), with 0.8:1 being the highest conductivity composition. AB:PVDF compositions along the plateau of 0.2:1, 0.4:1, 0.6:1 and 0.8:1 were investigated. Electrodes of each of those compositions were fabricated with different fractions of AB/PVDF to active material. It was found that at the 0.8:1 AB:PVDF, the rate performance improved with increases in the AB/PVDF loading, whereas at the 0.2:1 AB:PVDF, the rate performance improved with decreases in the AB/PVDF loading. The impedance of electrodes made with 0.6:1 AB:PVDF was low and relatively invariant.

  4. Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN.

    PubMed

    Hu, Jiantao; Huang, Yun; Yao, Yimin; Pan, Guiran; Sun, Jiajia; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Song, Bo; Wong, Ching-Ping

    2017-04-05

    In this work, we report a fabrication of epoxy resin/ordered three-dimensional boron nitride (3D-BN) network composites through combination of ice-templating self-assembly and infiltration methods. The polymer composites possess much higher thermal conductivity up to 4.42 W m(-1) K(-1) at relatively low loading 34 vol % than that of random distribution composites (1.81 W m(-1) K(-1) for epoxy/random 3D-BN composites, 1.16 W m(-1) K(-1) for epoxy/random BN composites) and exhibit a high glass transition temperature (178.9-229.2 °C) and dimensional stability (22.7 ppm/K). We attribute the increased thermal conductivity to the unique oriented 3D-BN thermally conducive network, in which the much higher thermal conductivity along the in-plane direction of BN microplatelets is most useful. This study paves the way for thermally conductive polymer composites used as thermal interface materials for next-generation electronic packaging and 3D integration circuits.

  5. Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity

    NASA Astrophysics Data System (ADS)

    de Podesta, Michael; Yang, Inseok; Mark, Darren F.; Underwood, Robin; Sutton, Gavin; Machin, Graham

    2015-10-01

    In 2013, a team from NPL, Cranfield University and SUERC published an estimate of the Boltzmann constant based on precision measurements of the speed of sound in argon. A key component of our results was an estimate of the molar mass of the argon gas used in our measurements. To achieve this we made precision comparison measurements of the isotope ratios found in our experimental argon against the ratios of argon isotopes found in atmospheric air. We then used a previous measurement of the atmospheric argon isotope ratios to calibrate the relative sensitivity of the mass spectrometer to different argon isotopes. The previous measurement of the atmospheric argon isotope ratios was carried out at KRISS using a mass spectrometer calibrated using argon samples of known isotopic composition, which had been prepared gravimetrically. We report here a new measurement made at KRISS in October 2014, which directly compared a sample of our experimental gas against the same gravimetrically-prepared argon samples. We consider that this direct comparison has to take precedence over our previous more indirect comparison. This measurement implies a molar mass which is 2.73(60) parts in 106 lighter than our 2013 estimate, a shift which is seven times our 2013 estimate of the uncertainty in the molar mass. In this paper we review the procedures used in our 2013 estimate of molar mass; describe the 2014 measurement; highlight some questions raised by the large change in our estimate of molar mass; and describe how we intend to address the inconsistencies between them. We also consider the effect of a new estimate of the low pressure thermal conductivity of argon at 273.16 K. Finally we report our new best estimate of the Boltzmann constant with revised uncertainty, taking account of the new estimates for the molar mass and the thermal conductivity of the argon.

  6. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGES

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  7. Steady-state heat conduction in multilayered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1991-01-01

    A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.

  8. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  9. Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams

    NASA Astrophysics Data System (ADS)

    Woltornist, Steven; Carrillo, Jan-Michael; Xu, Thomas; Dobrynin, Andrey; Adamson, Douglas

    2015-03-01

    The unique electrical, thermal and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water, common organic solvents, and polymer solutions and melts have limited its practical utilization. Here we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by a graphitic skin consisting of overlapping pristine graphene sheets that enables the synthesis of open cell foams containing a continuous graphitic skin network. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. These emulsions are used as templates for the synthesis of the open cell foams with densities below 0.35 g/cm3 and exhibiting remarkable mechanical and electrical properties including compressive moduli up to ~ 100 MPa, compressive strengths of over 8.3 MPa, and bulk conductivities approaching 7 S/m.

  10. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  11. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    SciTech Connect

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H.

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boiling solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.

  12. Study of conduction mechanism and electroluminescence in CdSe/ZnS quantum dot composites

    NASA Astrophysics Data System (ADS)

    Hikmet, R. A. M.; Talapin, D. V.; Weller, H.

    2003-03-01

    Charge transport and electroluminesence properties of colloidally synthesized CdSe/ZnS core-shell nanocrystal quantum dots (QDs) were studied. Nanocrystals were prepared using the conventional technique of pyrolisis of organometallic reagents in a hot coordinating solvent medium. Thin film diodes were produced by depositing a layer of QDs on top of a layer of conducting polymer poly (3,4-ethylenedioxythiophene): polystyrenesulfonate followed by the deposition of a metal electrode. For all the metals used in this study only a small rectification could be observed upon reversing the bias. The efficiency of the light generation showed strong dependence on the work function and bias of the metal electrodes, indicating that light generation in these devices is a result of recombination of injected holes and electrons. Assuming that the charge transport is due mainly to electrons, the voltage dependence of the current in QD composites could be explained by space charge limited current (SCLC) in the presence of defects. At sufficiently high voltages the traps could be filled and a quadratic dependence of current on voltage, characteristic of trap free SCLC, could be observed. The mobility and the trap density were estimated to be μn=1.5×10-10 m2/V s and Nt=8×1023 m-3, respectively, and the characteristic trap depth was estimated to be around 0.15 eV.

  13. Techniques for Reducing Thermal Contact Resistance in Steady-State Thermal Conductivity Measurements on Polymer Composites

    NASA Astrophysics Data System (ADS)

    Stacey, C.; Simpkin, A. J.; Jarrett, R. N.

    2016-11-01

    The National Physical Laboratory (NPL) has developed a new variation on the established guarded hot plate technique for steady-state measurements of thermal conductivity. This new guarded hot plate has been specifically designed for making measurements on specimens with a thickness that is practical for advanced industrial composite materials and applications. During the development of this new guarded hot plate, NPL carried out an experimental investigation into methods for minimising the thermal contact resistance between the test specimen and the plates of the apparatus. This experimental investigation included tests on different thermal interface materials for use in another NPL facility based on a commercial guarded heat flow meter apparatus conforming to standard ASTM E1530-11. The results show the effect of applying different quantities of the type of heat transfer compound suggested in ASTM E1530-11 (clause 10.7.3) and also the effect on thermal resistance of alternative types of thermal interface products. The optimum quantities of two silicone greases were determined, and a silicone grease filled with copper was found to offer the best combination of repeatability, small hysteresis effect and a low thermal contact resistance. However, two products based on a textured indium foil and pyrolytic graphite sheet were found to offer similar or better reductions in thermal contact resistance, but with quicker, easier application and the advantages of protecting the apparatus plates from damage and being useable with specimen materials that would otherwise absorb silicone grease.

  14. Determination of body composition in growing rats by total body electrical conductivity.

    PubMed

    Morbach, C A; Brans, Y W

    1992-04-01

    Total body electrical conductivity (TOBEC), measured with an Em-Scan SA-1 analyzer, was evaluated as a means of estimating fat-free mass and total body water content noninvasively in small laboratory animals. Ninety-four rats whose weight ranged from 5.53 to 170.84 g at 0-50 days of age were studied. The animals were killed by intraperitoneal injection of a pentobarbital overdose. After weight, crown-rump length (CRL) and TOBEC were measured, and the animals were minced with scissors and desiccated to constant weight in a convection oven. Fat was extracted by multiple bathings in petroleum ether followed by Soxhlet extraction. Fifty-four rats were used to determine the relation between fat-free mass (FFM), total body water (TBW), and TOBEC# (E) by regression analysis. The best correlations were observed between FFM and (E x CRL)1/2 (r = 0.995, p less than 0.0001). Forty rats were used to determine the predictive value of TOBEC estimates. With this instrument, TOBEC tended to underestimate FFM by an average of 3.9% and TBW by 5.3%. Accuracy was questionable for animals smaller than 13 g and TOBEC did not provide useful estimates of total body fat. Subject to these limitations, TOBEC instruments should prove to be useful for sequential in vivo estimations of body composition during growth and development of small animals.

  15. Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite

    PubMed Central

    Abdi, Mahnaz M.; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R.; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md.

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb2+ and Hg2+ ions. The Pb2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb2+ compared to Hg2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system. PMID:21931763

  16. Steady-state heat conduction in multilayered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Burton, W. S.

    1991-01-01

    A study is made of a predictor-corrector procedure for the accurate determination of the temperature and heat flux distributions in thick multilayered composite plates and shells. A linear through-the-thickness temperature distribution is used in the predictor phase. The functional dependence of temperature on the thickness coordinate is then calculated a posteriori and used in the corrector phase. Extensive numerical results are presented for linear steady-state heat conduction problems, showing the effects of variation in the geometric and lamination parameters on the accuracy of the thermal response predictions of the predictor-corrector approach. Both antisymmetrically laminated anisotropic plates and multilayered orthotropic cylinders are considered. The solutions are assumed to be periodic in the surface coordinates. For each problem the standard of comparison is taken to be the analytic three-dimensional solution based on treating each layer as a homogeneous anisotropic medium. The potential of the predictor-corrector approach for predicting the thermal response of multilayered plates and shells with complicated geometry is discussed.

  17. Highly Flexible and Conductive Cellulose-Mediated PEDOT:PSS/MWCNT Composite Films for Supercapacitor Electrodes.

    PubMed

    Zhao, Dawei; Zhang, Qi; Chen, Wenshuai; Yi, Xin; Liu, Shouxin; Wang, Qingwen; Liu, Yixing; Li, Jian; Li, Xianfeng; Yu, Haipeng

    2017-04-05

    Recent improvements in flexible electronics have increased the need to develop flexible and lightweight power sources. However, current flexible electrodes are limited by low capacitance, poor mechanical properties, and lack of cycling stability. In this article, we describe an ionic liquid-processed supramolecular assembly of cellulose and 3,4-ethylenedioxythiophene for the formation of a flexible and conductive cellulose/poly(3,4-ethylenedioxythiophene) PEDOT:poly(styrene sulfonate) (PSS) composite matrix. On this base, multiwalled carbon nanotubes (MWCNTs) were incorporated into the matrix to fabricate an MWCNT-reinforced cellulose/PEDOT:PSS film (MCPP), which exhibited favorable flexibility and conductivity. The MCPP-based electrode displayed comprehensively excellent electrochemical properties, such as a low resistance of 0.45 Ω, a high specific capacitance of 485 F g(-1) at 1 A g(-1), and good cycling stability, with a capacity retention of 95% after 2000 cycles at 2 A g(-1). An MCPP-based symmetric solid-state supercapacitor with Ni foam as the current collector and PVA/KOH gel as the electrolyte exhibited a specific capacitance of 380 F g(-1) at 0.25 A g(-1) and achieved a maximum energy density of 13.2 Wh kg(-1) (0.25 A g(-1)) with a power density of 0.126 kW kg(-1) or an energy density of 4.86 Wh kg(-1) at 10 A g(-1), corresponding to a high power density of 4.99 kW kg(-1). Another kind of MCPP-based solid-state supercapacitor without the Ni foam showed excellent flexibility and a high volumetric capacitance of 50.4 F cm(-3) at 0.05 A cm(-3). Both the electrodes and the supercapacitors were environmentally stable and could be operated under remarkable deformation or high temperature without damage to their structural integrity or a significant decrease in capacitive performance. Overall, this work provides a strategy for the fabrication of flexible and conductive energy-storage films with ionic liquid-processed cellulose as a medium.

  18. Strain induced insulator-to-conductor transition in conducting polymer composites from the auxetic behaviour of hierarchical microstructures.

    PubMed

    Polpaya, Indu Chanchal; Rao, C Lakshmana; Varughese, Susy

    2017-07-26

    Above their 'percolation threshold', intrinsically conducting polymer (ICP) based composites exhibit an increase or decrease in conductivity with strain. However, in this study we report an increase in conductivity and an associated insulator-to-conductor transition observed in certain conducting polymer composites below their percolation threshold under uniaxial tensile strain, thereby shifting the percolation to lower volume fractions. The 'auxetic behaviour' possible in certain types of 'hierarchical' microstructures is shown to be responsible for such changes in the polyaniline (PANI) composites studied. Using percolation models, the size and shape of the 'conducting units' that contribute to the percolation and its changes with strain were predicted. These conducting units are secondary and tertiary 'hierarchical structures' formed by the agglomeration of primary units of nano-rods (10 nm). An increase in the aspect ratio of these 'conducting units' is necessary for lowering the percolation threshold, which is possible in tertiary rod-like assemblies of PANI and not in secondary rod-like or platelet-like hierarchical structures. 'Auxetic behaviour' or a negative Poisson's ratio results in the expansion of the agglomerates and increase in the aspect ratio. This demonstrates the possibility of 'auxetic behaviour' contributing to changes in conductivity, which has not been reported before and could be used for novel applications.

  19. Evaluation of SOCl2 doping effect on electrical conductivity of thin films of SWNTs and SWNT/PEDOT-PSS composites.

    PubMed

    Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Chang, Jingbo; Kim, Jae-Ho

    2011-07-01

    Transparent conductive thin films of single-walled carbon nanotubes (SWNTs) and their nanocomposites with an organic conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) with different CNT loadings ranging from 20 to 90 wt% were prepared and doped by exposing them to thionyl chloride (SOCl2) vapors. After exposure to SOCl2 vapor for 1 h, the SWNT film showed about 15-18% increase of electrical conductivity, while on the other hand pristine polymer film showed a decrease of electrical conductivity. The SWNT-polymer composite films showed a drastic increase in conductivity by doping with SOCl2 vapor, most interestingly, the doping effect was much higher for composite films with less CNT weight fraction and it was linearly decreased with increasing CNT loading. For instance, composite film with 10% and 90% CNT loading demonstrated about 65% and 10% increase of electrical conductivity, respectively. The interaction of SOCl2 vapors on SWNTs and composite films is investigated by UV-visible absorption and Raman spectroscopy.

  20. Studies on the activation energy from the ac conductivity measurements of rubber ferrite composites containing manganese zinc ferrite

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd.; Alimuddin; Kumar, Shalendra; Shirsath, Sagar E.; Mohammed, E. M.; Chung, Hanshik; Kumar, Ravi

    2012-11-01

    Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1-x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.

  1. Refinement of the Upper and Lower Bounds of Effective Heat Conductivity Coefficients of Rib-Reinforced Composite Media

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2016-07-01

    We propose two refined structural models of the thermal behavior of a rib-reinforced composite medium at general anisotropy of the materials of compound components. For the criterion of equivalence of the rib-reinforced composite to the fictitious homogeneous anisotropic material, equality of the specific heat dissipation in them was used, which permits determining the upper and lower bounds of the effective heat conductivity coefficients of the composite material. The design values of the effective heat conductivity coefficients of a honeycomb structure with cavities filled and not filled with foam plastic have been determined. It has been shown that the refinement of certain thermal characteristics of 12%, and the refined "fork" of values of these quantities, does not exceed 2.5%. Indirect comparison has been made between the calculated and experimental values of the effective heat conductivity coefficients of such compounds, which has shown that the results obtained in the work are qualitatively reliable.

  2. A deformation-processed Al-matrix/Ca-nanofilamentary composite with low density, high strength, and high conductivity

    DOE PAGES

    Tian, Liang; Russell, Alan; Riedemann, Trevor; ...

    2017-03-06

    Light, strong materials with high conductivity are desired for many applications such as power transmission conductors, fly-by-wire systems, and downhole power feeds. However, it is difficult to obtain both high strength and high conductivity simultaneously in a material. In this study, an Al/Ca (20 vol%) nanofilamentary metal-metal composite was produced by powder metallurgy and severe plastic deformation. Fine Ca metal powders (~200 µm) were produced by centrifugal atomization, mixed with pure Al powder, and deformed by warm extrusion, swaging, and wire drawing to a true strain of 12.9. The Ca powder particles became fine Ca nanofilaments that reinforce the compositemore » substantially by interface strengthening. The conductivity of the composite is slightly lower than the rule-of-mixtures prediction due to minor quantities of impurity inclusions. As a result, the elevated temperature performance of this composite was also evaluated by differential scanning calorimetry and resistivity measurements.« less

  3. Significantly reduced dielectric loss and conductivity in polymer-based nano-composites from a suppressed interface Coulomb force

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Xu, Zhichao; Hu, Jianbing; Huang, Hongpu; Peng, Cheng

    2017-09-01

    A Coulomb force at an interface, namely induced polarization, has been found to have a significant effect on the permittivity of 0-3 type polymer-based composites with Si-based semiconductor fillers. These composites have the disadvantage of a higher dielectric loss and conductivity but the advantage of a larger permittivity when compared to composites filled with surface modified Si-based semiconductors. In the present work, the dielectric and conductive properties of 0-3 type varied polymer-based composite systems containing α-SiC and SiO2@SiC nanoparticles, respectively, were investigated in detail. It was found that use of a SiO2@SiC filler instead of neat SiC could effectively decrease the Coulomb force between the SiC and polymer, the overall induced dipole moment, the real permittivity of SiC and thus the measured permittivity of the composite. As a result, significantly decreased dielectric loss and conductivity as well as elevated breakdown strength were obtained thanks to the reduced Coulomb force at the interface. The lowest loss and conductivity achieved were 0.03 and 6.05  ×  10‑7 S cm‑1, respectively, at 100 Hz for 20 vol% SiO2@SiC-filled polyvinyl chloride (PVC)-based composite. Moreover, the dependence of interface-induced polarization on polymer polarity in three SiO2@SiC-loaded polymer-based composite systems was investigated and the lower polarity of polymer could favor the decline of induced polarity in the SiC. This work might lead to an easy way to obtain promising composite dielectric materials by suppressing the interface Coulomb force.

  4. Composite mixed ion-electron conducting (MIEC) membranes for hydrogen generation and separation

    NASA Astrophysics Data System (ADS)

    Wang, Haibing

    Decomposition of steam under a chemical driving force at moderate temperatures (˜900°C) offers a convenient and economical way to generate hydrogen. A significant amount of hydrogen can be generated and separated by splitting steam and removing oxygen using a mixed ion-electron conducting (MIEC) membrane. In this work, Gd0.2Ce0.8O1.9-deltaGd 0.08Sr0.88Ti0.95Al0.05O3+/-delta MIEC membranes have been explored in which, Gd0.2Ce 0.8O1.9-delta (GDC) functions as a predominantly oxygen ionic conductor, and Gd0.08Sr0.88Ti0.95Al 0.05O3+/-delta (GSTA) functions as a predominantly n-type electronic conductor under the process conditions. During the hydrogen generation process, oxygen transports from the feed side to the permeate side through coupled diffusion of oxygen ions and electrons under an oxygen partial pressure gradient across membranes. This process results in a H2-rich product on the feed side and depleted fuel gases on the permeate side. In this work, membrane architectures comprising self-supported thick membranes and thin membranes supported on porous supports of the same composition have been studied. The effect of membrane thickness on hydrogen generation has been studied by measuring the area-specific hydrogen generation rates at different experimental conditions. Experimental results have shown that the hydrogen generation process for the thick membranes was controlled by the oxygen bulk diffusion through membranes, while the hydrogen generation process for the dense thin membranes was controlled by both the surface exchange reactions and oxygen bulk diffusion process. The area-specific hydrogen generation rates of the supported dense thin membranes were significantly enhanced by applying a porous catalytic layer onto the surface of the membrane. Experimental results showed that the area-specific hydrogen generation rates were higher when the surface catalytic layer was exposed to the feed side rather than the permeate side. A mathematical model for

  5. Nanostructure and optoelectronic phenomena in germanium-transparent conductive oxide (Ge:TCO) composites

    NASA Astrophysics Data System (ADS)

    Shih, Grace Hwei-Pyng

    Nanostructured composites are attracting intense interest for electronic and optoelectronic device applications, specifically as active elements in thin film photovoltaic (PV) device architectures. These systems implement fundamentally different concepts of enhancing energy conversion efficiencies compared to those seen in current commercial devices. This is possible through considerable flexibility in the manipulation of device-relevant properties through control of the interplay between the nanostructure and the optoelectronic response. In the present work, inorganic nanocomposites of semiconductor Ge embedded in transparent conductive indium tin oxide (ITO) as well as Ge in zinc oxide (ZnO) were produced by a single step RF-magnetron sputter deposition process. It is shown that, by controlling the design of the nanocomposites as well as heat treatment conditions, decreases in the physical dimensions of Ge nanophase size provided an effective tuning of the optical absorption and charge transport properties. This effect of changes in the optical properties of nanophase semiconductors with respect to size is known as the quantum confinement effect. Variation in the embedding matrix material between ITO and ZnO with corresponding characterization of optoelectronic properties exhibit notable differences in the presence and evolution of an interfacial oxide within these composites. Further studies of interfacial structures were performed using depth-profiling XPS and Raman spectroscopy, while study of the corresponding electronic effects were performed using room temperature and temperature-dependent Hall Effect. Optical absorption was noted to shift to higher onset energies upon heat treatment with a decrease in the observed Ge domain size, indicating quantum confinement effects within these systems. This contrasts to previous investigations that have involved the introduction of nanoscale Ge into insulating, amorphous oxides. Comparison of these different matrix

  6. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites

    NASA Astrophysics Data System (ADS)

    Ma, Songdi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2017-04-01

    Mo2C submicron layer coated diamond particles prepared by a molten salts route with Mo powder as the starting material were used as the filler in Cu- and Al- matrix composites. The microstructure and thermal property of the composites prepared by a vacuum pressure infiltration method were investigated. When introducing a 500 nm thick Mo2C layer, the thermal conductivity of the composites with different matrix presented different performance. A high thermal conductivity (657 W m-1 K-1) was obtained in diamond/Cu composites owing to the improved interfacial bonding and lower interfacial thermal resistance, while the thermal conductivity of diamond/Al composites decreased from 553 W m-1 K-1 to 218 W m-1 K-1 when introducing the Mo2C layer, which can be attributed to the formation of harmful granule-phase (Al12Mo) at the interface of diamond and aluminum. This work provides a promising approach to improve performance of diamond reinforced metal matrix composites by selecting carbide as an interface modifier.

  7. Investigation on Temperature-Dependent Electrical Conductivity of Carbon Nanotube/Epoxy Composites for Sustainable Energy Applications.

    PubMed

    Njuguna, Michael K; Galpaya, Dilini; Yan, Cheng; Colwell, John M; Will, Geoffrey; Hu, Ning; Yarlagadda, Prasad; Bell, John M

    2015-09-01

    Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties have been found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites' thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

  8. EFFECTS OF SURFACE AREA DENSITY OF ALUMINUM FOAMS ON THERMAL CONDUCTIVITY OF ALUMINUM FOAM-PHASE CHANGE MATERIAL COMPOSITES

    SciTech Connect

    Hong, Sung-tae; Herling, Darrell R.

    2007-07-01

    The effects of the surface area density of open-cell aluminum foams on the effective thermal conductivity of aluminum foam-phase change material (PCM) composites were investigated. Paraffin was selected as the PCM. The experimental results show that the effective thermal conductivity increases as the temperature increases. The experimental results suggest that the effective thermal conductivities can be different for different surface area densities of foams even though the relative densities of foams are similar. Therefore, for an accurate estimation of the effective thermal conductivity, a correlation including the surface area density effect is needed.

  9. The influence of reduced graphene oxide on electrical conductivity of LiFePO4-based composite as cathode material

    NASA Astrophysics Data System (ADS)

    Arifin, Muhammad; Aimon, Akfiny Hasdi; Winata, Toto; Abdullah, Mikrajuddin; Iskandar, Ferry

    2016-02-01

    LiFePO4 is fascinating cathode active materials for Li-ion batteries application because of their high electrochemical performance such as a stable voltage at 3.45 V and high specific capacity at 170 mAh.g-1. However, their low intrinsic electronic conductivity and low ionic diffusion are still the hindrance for their further application on Li-ion batteries. Therefore, the efforts to improve their conductivity are very important to elevate their prospecting application as cathode materials. Herein, we reported preparation of additional of reduced Graphene Oxide (rGO) into LiFePO4-based composite via hydrothermal method and the influence of rGO on electrical conductivity of LiFePO4-based composite by varying mass of rGO in composition. Vibration of LiFePO4-based composite was detected on Fourier Transform Infrared Spectroscopy (FTIR) spectra, while single phase of LiFePO4 nanocrystal was observed on X-Ray Diffraction (XRD) pattern, it furthermore, Scanning Electron Microscopy (SEM) images showed that rGO was distributed around LiFePO4-based composite. Finally, the 4-point probe measurement result confirmed that the optimum electrical conductivity is in additional 2 wt% rGO for range 1 to 2 wt% rGO.

  10. Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly.

    PubMed

    Wang, Shuman; Zhang, Xinxing; Wu, Xiaodong; Lu, Canhui

    2016-01-21

    Conductive polymer composites (CPCs) just above the percolation threshold exhibit a unique strain-reversible electric response upon application of tensile strain, which can be used to prepare strain sensors. However, it is difficult to balance the electric conductivity which is fundamental to a stable output signal and the strain sensing sensitivity due to the relatively dense conductive pathways of the traditional CPCs. Constructing a "brittle" but effective conductive network structure in CPCs is the essential foundation of a desirable sensing material. Here, we demonstrate for the first time that highly flexible, stretchable, sensitive, and reversible strain sensors can be fabricated by a facile latex assembly approach, in which nontoxic, sustainable and biodegradable cellulose nanocrystals played a key role in tailoring the percolating network of conductive natural rubber (NR)/carbon nanotube (CNT) composites. The resulting nanocomposites with a continuous 3D conductive structure exhibited a very low electrical conductivity percolation threshold (4-fold lower than that of the conventional NR/CNT composites), high resistivity and sensitivity (gauge factor ≈ 43.5) and meanwhile good reproducibility of up to 100% strain. The proposed materials and principles in this study open up a novel practical approach to design high performance flexible sensors for a broad range of multifunctional applications.

  11. A study of the thermal conductivity of composite material Cu-epoxide resin at superfluid helium temperatures

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Wu, T. H.; Guo, F. Z.

    1994-02-01

    The influence of Kapitza thermal resistance of the composite material at superfluid helium temperatures is studied from the point of view of the heat transfer theory of cryogenics. A numerical model is developed for calculating the effective thermal conductivity coefficient of Cu-epoxide resin with the wires arranged in a square or crosswise. Experimental investigations have also been made at superfluid helium temperatures. The effective thermal conductivity coefficient of this kind of composite material measured by experiment is λ e=0.5929W/m·K.

  12. Building up graphene-based conductive polymer composite thin films using reduced graphene oxide prepared by γ-ray irradiation.

    PubMed

    Xie, Siyuan; Zhang, Bowu; Wang, Chunlei; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2013-01-01

    In this paper, reduced graphene oxide (RGO) was prepared by means of γ -ray irradiation of graphene oxide (GO) in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  13. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    PubMed Central

    Xie, Siyuan; Zhang, Bowu; Wang, Chunlei; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2013-01-01

    In this paper, reduced graphene oxide (RGO) was prepared by means of γ-ray irradiation of graphene oxide (GO) in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance. PMID:24170985

  14. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.

    PubMed

    He, Delong; Fan, Benhui; Zhao, Hang; Lu, Xiaoxin; Yang, Minhao; Liu, Yu; Bai, Jinbo

    2017-01-25

    Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.

  15. Prediction of thermal conductivity for irradiated SiC/SiC composites by informing continuum models with molecular dynamics data

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it computes the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal β-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  16. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal β-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  17. Development of novel multifunctional biobased polymer composites with tailored conductive network of micro-and-nano-fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Ghaffari, Shahriar; Naguib, Hani E.

    2013-04-01

    Biobased/green polymers and nanotechnology warrant a multidisciplinary approach to promote the development of the next generation of materials, products, and processes that are environmentally sustainable. The scientific challenge is to find the suitable applications, and thereby to create the demand for large scale production of biobased/green polymers that would foster sustainable development of these eco-friendly materials in contrast to their petroleum/fossil fuel derived counterparts. In this context, this research aims to investigate the synergistic effect of green materials and nanotechnology to develop a new family of multifunctional biobased polymer composites with promoted thermal conductivity. For instance, such composite can be used as a heat management material in the electronics industry. A series of parametric studies were conducted to elucidate the science behind materials behavior and their structure-toproperty relationships. Using biobased polymers (e.g., polylactic acid (PLA)) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (hBN) and graphene nanoplatelets (GNP) in the PLA matrix. The use of hybrid filler system, with optimized material formulation, was found to promote the composite's effective thermal conductivity by 10-folded over neat PLA. This was achieved by promoting the development of an interconnected thermally conductive network through structuring hybrid fillers. The thermally conductive composite is expected to afford unique opportunities to injection mold three-dimensional, net-shape, lightweight, and eco-friendly microelectronic enclosures with superior heat dissipation performance.

  18. New way of body composition analysis using total body electrical conductivity method

    NASA Astrophysics Data System (ADS)

    Piasecki, Wojciech; Koteja, Pawel; Weiner, January; Froncisz, Wojciech

    1995-04-01

    Traditional methods of measuring total body water and fat content of animals that require sacrificing specimens are generally unacceptable when endangered species, or large animal sizes, or humans are involved. These methods are also unsuitable for following changes of fat and water content in individuals. An alternative method, based on the nonresonant absorption of a rf electromagnetic field has been used for constructing a new body composition analyzer. As the electrical conductivity of lipids is approximately 20 times lower than that of lean tissues, the rf power absorbed by the animal provides information which enables one to calculate the lean body mass and total body water. The new instrument measures rf power absorbed by an animal by measuring the quality factor (Q) of the resonant circuit with an animal placed inside the coil. Numerical calculations of the rf power absorbed by a cylindrical object containing 0.9% NaCl aqueous solution have also been performed. Experimental values confirmed the calculated dependence of the absorbed power on the cylinder radius. The device built has been calibrated on 9 males and 11 females of laboratory mice. The amount of lipids was then measured by ether extraction. The relation between instrument reading, which is proportional to the power absorption, and lean body mass (LBM) or water mass (WM) was linear and highly significant: the simple regression coefficients of determination were 0.983 for LBM, and 0.990 for WM (p<0.001). It has been found that for an individual animal with a body mass ranging from 15.9 to 40.7 g, the accuracy of measurement was ±1.6 g for LBM and ±1 g for WM.

  19. Flexible touchpads based on inductive sensors using embedded conductive composite polymer

    NASA Astrophysics Data System (ADS)

    Rahbar, A.; Rahbar, M.; Gray, B. L.

    2014-04-01

    We present the design, fabrication, and preliminary testing of a flexible array of sensor switches intended for applications in wearable electronics and sensor systems. The touch pad sensor arrays feature flexible printed circuit board (flexible PCB) substrates and/or flexible conductive composite polymer (CCP) structures, resulting in highly flexible switch arrays. Each switch consists of 4 elements: fascia, target, spacer and a sensor coil. The user presses the fascia, bringing the target in contact with the sensor coil. Any change in the position of the target changes the coil inductance due to the generation of eddy currents, which are detected by an electronic circuit and custom software. Contact between the target and coil also measurably changes the inductance of the coils. Different sizes and geometries (square, circular, hexagonal and octagonal) of coils in both flexible PCB metal (copper) and CCP were investigated to determine which couple best with the CCP that forms the target for the inductive coils. We describe techniques for patterning two-layer inductive coils on flexible PCBs. Using this process, we demonstrate coil trace thicknesses of 200 micrometers. We also present a new low cost microfabrication technique to create inductive flexible coils using embedded CCP in polydimethylsiloxane (PDMS) as an alternative to flexible PCB metal coils. We further describe an electronic circuit that accurately measures inductances as low as 500 nH that is used to detect the change in the inductance of a sensor's coil when the user presses the target element of the sensor. The inductance for a sensor composed of CCP square coils and CCP target was measured to be approximately 35 μH before being pressed. When pressed, the inductance dropped to 3.8 μH, a change which was easily detected.

  20. Effects of uniaxial and biaxial orientation on fiber percolation in conductive polymer composites

    NASA Astrophysics Data System (ADS)

    Chang, Eunse; Ameli, Amir; Mark, Lun Howe; Park, Chul B.

    2015-12-01

    A Monte Carlo simulation was built to estimate the percolation threshold of fibers in a system under different fiber orientations. A 3-D model was built. The orientation effect was modeled by introducing a degree of alignment in the randomly generated fibers via appropriate mathematical relationships and various degrees of uniaxial strain were applied. The critical volume fraction was then analyzed in both normal direction (through-plane) and parallel direction (in-plane) to that of the cross-section plane. The effect of uniaxial orientation was modeled by measuring the through-plane percolation threshold under tensile strain. The effect of biaxial orientation was modeled by measuring the in-plane percolation threshold under compressive strain. The results indicated that the introduction of fiber alignment changed both through-plane and in-plane threshold values, albeit with different trends. With the introduction of slight uniaxial orientation, the through-plane percolation threshold reached a minimum value and further uniaxial orientation gave it a rise, while the in-plane threshold continuously increased with an increase in uniaxial orientation. On the other hand, under compression, an increase in biaxial orientation resulted in a monotonic increase in the through-plane threshold, whereas the in-plane threshold showed a minimal behavior before its rise. The results of this study indicate that the percolation threshold is minimized when fibers are slightly oriented (both uniaxial and biaxial) rather than being completely isotropic, and therefore, generation of conductive paths in a particular direction of interest can be induced via a proper choice of applied orientation with a lower critical concentration, thereby potentially reducing the filler loading. One particular implication of this work is modeling the percolation threshold in cellular polymer composites where local stresses are applied on the fillers around the cell walls during bubble growth.

  1. High Thermal Conductivity Carbon Nanomaterials for Improved Thermal Management in Armament Composites

    DTIC Science & Technology

    2017-03-01

    7 Figure 4: Thermal conductivies of various composite materials based on the Zyvex resin and fiber system, as well as the addition of N12...Benet. Epoxy-based composites were made using Epoxy 2120 (Fibre Glast) resin and hardener system. Carbon Nanofibers (Pyrograf Products, PR-24-HHT-LD...Emission Scanning Electron Microscope operating at 10kV. Carbon fiber (37-800, 30K)/epoxy composites were fabricated with a specialty resin by Zyvex

  2. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xiong, X.; Xiao, P.

    2009-11-01

    Multi-walled nanotubes were added into furan resin. Unidirectional carbon/carbon preforms were densified with the nanotube-doped furan resin by impregnation-carbonization cycle. The effects of Multi-walled nanotubes on the microstructure of resin carbon and thermal conductivity of carbon/carbon composites were investigated. The results show that Multi-walled nanotubes can induce the ordered arrangement of planar carbon microlites in resin carbon during high-temperature treatment and enhance the graphitization degree of resin carbon. Small amount of Multi-walled nanotubes in resin carbon can enhance the thermal conductivity of C/C composites evidently, especially the thermal conductivity vertical to the direction of fiber axis, due to the improvement of microstructure of resin carbon. Excess Multi-walled nanotubes in resin are disadvantageous to the enhancement of thermal conductivity instead, because they are difficult to disperse and easy to agglomerate, resulting thermal resistances in carbon matrix.

  3. Composition and Manufacturing Effects on Electrical Conductivity of Li/FeS 2 Thermal Battery Cathodes

    SciTech Connect

    Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; Lechman, Jeremy B.; Schunk, P. Randall

    2016-06-11

    The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is a step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.

  4. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  5. Alignment of carbon iron into polydimethylsiloxane to create conductive composite with low percolation threshold and high piezoresistivity: experiment and simulation

    NASA Astrophysics Data System (ADS)

    Dong, Shuai; Wang, Xiaojie

    2017-04-01

    In this study, various amounts of carbonyl iron particles (CIPs) were cured into polydimethylsiloxane (PDMS) matrix under a magnetic field up to 1.0 T to create anisotropy of conductive composite materials. The electrical resistivity for the longitudinal direction was measured as a function of filler volume fraction to understand the electrical percolation behavior. The electrical percolation threshold (EPT) of CIPs-PDMS composite cured under a magnetic field can be as low as 0.1 vol%, which is much less than most of those studies in particulate composites. Meanwhile, the effects of compressive strain on the electrical properties of CIPs-PDMS composites were also investigated. The strain sensitivity depends on filler volume fraction and decreases with the increasing of compressive strain. It has been found that the composites containing a small amount of CI particles curing under a magnetic field exhibit a high strain sensitivity of over 150. Based on the morphological observation of the composite structures, a two-dimensional stick percolation model for the CIPs-PDMS composites has been established. The Monte Carlo simulation is performed to obtain the percolation probability. The simulation results in prediction of the values of EPTs are close to that of experimental measurements. It demonstrates that the low percolation behavior of CIPs-PDMS composites is due to the average length of particle chains forming by external magnetic field.

  6. Effect of diameter of cellulosic nano-fiber on conductivity of poly(aniline sulfonic acid) composites

    NASA Astrophysics Data System (ADS)

    Konagaya, S.; Shimizu, K.; Terada, M.; Yamada, T.; Sanada, K.; Numata, O.; Sugino, G.

    2014-05-01

    The authors have been studying the effect of cellulosic nano-fiber (CeNF) with the diameter of less than 30 nm and the length of a few micrometers on the conductivity of the conductive polymer composites (PAS/PEs/CeNF) prepared from poly(aniline sulfonic acid) (PAS), a water dispersible polyester (PEs) and CeNF and confirmed that CeNF was effective for the enhancement of their conductivity, and that the conductivity enhancement was attributable to the strong adsorbing ability of CeNF to PAS molecules. Thiner CeNF has so larger surface area that it is expected to adsorb more PAS molecules on its surface, which possibly lead to further conductivity enhancement of the composites. The authors prepared thinner CeNF with the size of 16 nm by the use of ultrasonic dispersing machine. It was clarified that the thinner CeNF had a higher adsorbing ability to PAS molecules and a larger effect on the conductivity enhancement of PAS/PEs/CeNF composites.

  7. Investigation of the effect of laponite and crosslinkers on thermal, mechanical, swelling and conductive properties of the phtagel composite films

    NASA Astrophysics Data System (ADS)

    Ekici, Sema; Gungor, Gizem

    2017-03-01

    Phytagel (PHG)-laponite (L) composites were prepared in the form of films by using PHG known to be biocompatible with the body, L clay which has electrical conductivity, and weak and strong crosslinkers, i.e., 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (E) and Cu2+, respectively. Composites were obtained by using laponite in two different ratios and only one concentration of Cu2+. Bare PHG and PHG films crosslinked with E were also prepared simultaneously and characterization of all the films are presented comparatively. Cu2+ ions are more effective crosslinkers than E molecules for PHG chains and increased the mechanical strength of composites as revealed in swelling studies and differential scanning calorimetry analysis. It was determined that laponite and Cu2+ ions increased the conductivity of PHG hydrogel and conductivity decreased when the amount of laponite is increased. Wet film samples had conductivity between 0.95 × 10-8 and 5.94 × 10-8 S cm-1 values, while dry films were not conductive. Wet PHG, PHG-E, PHG-E-L1, and PHG-E-L2 films showed bending deformation towards the anode under electric field of 25 V in magnitude, while wet PHG-Cu-L2 films tended to bend towards the cathode side. It was concluded that these composites are intelligent hydrogel composites which can respond to stimuli such as environmental pH and electric field changes and can be considered for use in studies involving low electrical conductivity.

  8. Enhanced thermal conductivity of uranium dioxide-silicon carbide composite fuel pellets prepared by Spark Plasma Sintering (SPS)

    NASA Astrophysics Data System (ADS)

    Yeo, S.; Mckenna, E.; Baney, R.; Subhash, G.; Tulenko, J.

    2013-02-01

    Uranium dioxide (UO2)-10 vol% silicon carbide (SiC) composite fuel pellets were produced by oxidative sintering and Spark Plasma Sintering (SPS) at a range of temperatures from 1400 to 1600 °C. Both SiC whiskers and SiC powder particles were utilized. Oxidative sintering was employed over 4 h and the SPS sintering was employed only for 5 min at the highest hold temperature. It was noted that composite pellets sintered by SPS process revealed smaller grain size, reduced formation of chemical products, higher density, and enhanced interfacial contact compared to the pellets made by oxidative sintering. For given volume of SiC, the pellets with powder particles yielded a smaller grain size than pellets with SiC whiskers. Finally thermal conductivity measurements at 100 °C, 500 °C, and 900 °C revealed that SPS sintered UO2-SiC composites exhibited an increase of up to 62% in thermal conductivity compared to UO2 pellets, while the oxidative sintered composite pellets revealed significantly inferior thermal conductivity values. The current study points to the improved processing capabilities of SPS compared to oxidative sintering of UO2-SiC composites.

  9. Conductive ZnO:Zn Composites for High-Rate Sputtering Deposition of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Zhou, Li Qin; Dubey, Mukul; Simões, Raul; Fan, Qi Hua; Neto, Victor

    2015-02-01

    We report an electrically conductive composite prepared by sintering ZnO and metallic Zn powders. Microstructure analysis combined with electrical conductivity studies indicated that when the proportion of metallic Zn reached a threshold (˜20 wt.%), a metal matrix was formed in accordance with percolation theory. This composite has potential as a sputtering target for deposition of high-quality ZnO. Use of the ZnO:Zn composite completely eliminates target poisoning effects in reactive sputtering of the metal, and enables deposition of thin ZnO films at rates much higher than those obtained by sputtering of pure ZnO ceramic targets. The optical transmittance of the ZnO films prepared by use of this composite is comparable with that of films produced by radio frequency sputtering of pure ZnO ceramic targets. The sputtering characteristics of the conductive ZnO:Zn composite target are reported, and possible mechanisms of the high rate of deposition are also discussed.

  10. Atomistic simulation of the thermal conductivity in amorphous SiO2 matrix/Ge nanocrystal composites

    NASA Astrophysics Data System (ADS)

    Kuryliuk, Vasyl V.; Korotchenkov, Oleg A.

    2017-04-01

    We use nonequilibrium molecular dynamics computer simulations with the Tersoff potential aiming to provide a comprehensive picture of the thermal conductivity of amorphous SiO2 (a-SiO2) matrix with embedded Ge nanocrystals (nc-Ge). The modelling predicts the a-SiO2 matrix thermal conductivity in a temperature range of 50 < T < 500 K yielding a fair agreement with experiment at around room temperature. It is worth noticing that the predicted room-temperature thermal conductivity in a-SiO2 is in very good agreement with the experimental result, which is in marked contrast with the thermal conductivity calculated employing the widely used van Beest-Kramer-van Santen (BKS) potential. We show that the thermal conductivity of composite nc-Ge/a-SiO2 systems decreases steadily with increasing the volume fraction of Ge inclusions, indicative of enhanced interface scattering of phonons imposed by embedded Ge nanocrystals. We also observe that increasing the volume fractions above a certain threshold value results in a progressively increased thermal conductivity of the nanocomposite, which can be explained by increasing volume fraction of a better thermally conducting Ge. Finally, non-equilibrium molecular dynamics simulations with the Tersoff potential are promising for computing the thermal conductivity of nanocomposites based on amorphous SiO2 and can be readily scaled to more complex composite structures with embedded nanoparticles, which thus help design nanocomposites with desired thermal properties.

  11. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2014-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 m(sup.2)/g to 2600 m(sup.2)/g, and a method of making the same.

  12. Conductive Circuit Containing a Polymer Composition Containing Thermally Exfoliated Graphite Oxide and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2017-01-01

    A conductive circuit containing a polymer composite, which contains at least one polymer and a modified graphite oxide material, containing thermally exfoliated graphite oxide having a surface area of from about 300 sq m/g to 2600 sq m/g, and a method of making the same.

  13. Optimizing the transverse thermal conductivity of 2D-SiC f/SiC composites, II. Experimental

    NASA Astrophysics Data System (ADS)

    Youngblood, G. E.; Senor, D. J.; Jones, R. H.; Kowbel, Witold

    2002-12-01

    Model predictions of the transverse thermal conductivity ( Keff) are compared to experimentally determined values as a function of temperature for a commercial 2D-SiC f/SiC made by DuPont from plain weave Hi-Nicalon TM fabric and with an ICVI-SiC matrix. Two versions of the DuPont composite were examined: one with a 'thin' and one with a 'thick' pyrolytic carbon (PyC) fiber coating of thickness 0.110 and 1.044 μm, respectively. Generally good agreement of either the Hasselman-Johnson or the Markworth model predictions ( see companion paper, I. Modeling) with measured values of Keff for this composite suggest that these models can be used to predict Keff for composites with various 'non-ideal' fiber, interphase and matrix structures. Importantly, the models make it possible to separate the relative component contributions to Keff so that individual component degradation mechanisms can be examined in detail. For the two versions of the well-bonded, as-received DuPont composite made with Hi-Nicalon TM woven fabric, at 200 °C constituent values Km=22-25 W/m K (matrix thermal conductivity), Kc≈25 W/m K (PyC-coating thermal conductivity) and heq=2.4×10 7 W/m 2 K (equivalent fiber-matrix interfacial thermal conductance) were determined.

  14. The Electrical conductivities and Tribological properties of Vacuum Hot-Pressed Cu/Reduced Graphene Oxide Composite

    NASA Astrophysics Data System (ADS)

    Jia, Zhengfeng; Zhao, Pipeng; Ni, Junjie; Shao, Xin; Zhao, Limin; Huang, Baoxu; Ge, Bo; Ban, Chaolei

    2017-09-01

    The nanoscale reduced graphene oxide/copper (rGO/Cu) pellets were synthesized by reducing aqueous solution of graphene oxide and CuSO4. The Cu/rGO composite disks with high conductivity were fabricated by a vacuum hot-pressing sintering method. The composites were characterized by transmission electron microscopy, field emission scanning electron microscopy, x-ray diffraction. The results show that the vacuum hot-pressing sintering process can produce Cu/rGO composite successfully. The conductivities and wear resistance of the sintered Cu/rGO disks are improved, respectively, as rGO nanosheets being added into the matrix and/or increasing sintering temperatures, which are attributed to the destruction of the pores and the increasing compactness.

  15. Electrochemistry of conductive polymers. 45. Nanoscale conductivity of PEDOT and PEDOT:PSS composite films studied by current-sensing AFM.

    PubMed

    Lee, Hyo Joong; Lee, Joowook; Park, Su-Moon

    2010-03-04

    [Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)] (PEDOT:PSS, Baytron P) composite films were prepared under various conditions and their conductivities were studied by the current-sensing atomic force microscopy (CS-AFM) technique. Topographic and current images of pristine and additive-treated PEDOT:PSS as well as electrochemically synthesized PEDOT films were obtained in nanoscale using the CS-AFM. The as-prepared pristine PEDOT:PSS films showed a low population of conductive spots isolated by large insulating regions; both their population and the conductivities increased upon addition of a few additives to the PEDOT:PSS solution before spin-coating. From the current-voltage (I-V) traces recorded at a few representative spots of different electronic states, much improved pathways for charge percolation appeared to have been established in the additive-treated films. Electrochemically prepared PEDOT films showed much better electrical properties compared with spin-casted films of chemically prepared polymers. The conductivity of all these films was shown to be significantly enhanced by the electrochemical doping process.

  16. Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers.

    PubMed

    Ata, Seisuke; Kobashi, Kazufumi; Yumura, Motoo; Hata, Kenji

    2012-06-13

    By using long single-walled carbon nanotubes (SWNTs) as a filler possessing the highest aspect ratio and small diameter, we mimicked the chain structure of polymers in the matrix and realized a highly conductive elastomeric composite (30 S/cm) with an excellent mechanical durability (4500 strain cycles until failure), far superior to any other reported conductive elastomers. This exceptional mechanical durability was explained by the ability of long and traversing SWNTs to deform in concert with the elastomer with minimum stress concentration at their interfaces. The conductivity was sufficient to operate many active electronics components, and thus this material would be useful for practical stretchable electronic devices.

  17. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    PubMed

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-12

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm(-1) at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  18. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    NASA Astrophysics Data System (ADS)

    Palani, P. Bahavan; Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-01

    The highest proton conductivity value of 0.0802 Scm-1 is obtained at 6wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na+ MMT was modified (protonated) to H+ MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  19. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    SciTech Connect

    Palani, P. Bahavan Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-23

    The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  20. Electric conductivity-tunable transparent flexible nanowire-filled polymer composites: orientation control of nanowires in a magnetic field.

    PubMed

    Nagai, Takayuki; Aoki, Nobuyuki; Ochiai, Yuichi; Hoshino, Katsuyoshi

    2011-07-01

    Cobalt compound nanowires were dispersed in a transparent nonconductive polymer film by merely stirring, and the film's transparency and electrical conductivity were examined. This composite film is a unique system in which the average length of the nanowires exceeds the film's thickness. Even in such a system, a percolation threshold existed for the electric conductivity in the direction of the film thickness, and the value was 0.18 vol%. The electric conductivity value changed from ∼1 × 10(-12) S/cm to ∼1 × 10(-3) S/cm when the volume fraction exceeded the threshold. The electric conductivity apparently followed the percolation model until the volume fraction of the nanowires was about 0.45 vol %. The visible light transmission and electric conductivity of the composite film of about 1 vol % nanowires were 92% and 5 × 10(-3) S/cm, respectively. Moreover, the electric conductivity in the direction parallel to the film surface did not depend on the amount of the dispersed nanowires, and its value was about 1 × 10(-14) S/cm. Even in a weak magnetic field of about 100 mT, the nanowires were aligned in a vertical and parallel direction to the film surface, and the electric conductivity of each aligned composite film was 2.0 × 10(-2) S/cm and 2.1 × 10(-12) S/cm. The relation between the average wire length and the electric conductivity was examined, and the effect of the magnetic alignment on that relation was also examined.

  1. Electric properties of carbon nano-onion/polyaniline composites: a combined electric modulus and ac conductivity study

    NASA Astrophysics Data System (ADS)

    Papathanassiou, Anthony N.; Mykhailiv, Olena; Echegoyen, Luis; Sakellis, Ilias; Plonska-Brzezinska, Marta E.

    2016-07-01

    The complex electric modulus and the ac conductivity of carbon nano-onion/polyaniline composites were studied from 1 mHz to 1 MHz at isothermal conditions ranging from 15 K to room temperature. The temperature dependence of the electric modulus and the dc conductivity analyses indicate a couple of hopping mechanisms. The distinction between thermally activated processes and the determination of cross-over temperature were achieved by exploring the temperature dependence of the fractional exponent of the dispersive ac conductivity and the bifurcation of the scaled ac conductivity isotherms. The results are analyzed by combining the granular metal model (inter-grain charge tunneling of extended electron states located within mesoscopic highly conducting polyaniline grains) and a 3D Mott variable range hopping model (phonon assisted tunneling within the carbon nano-onions and clusters).

  2. Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites.

    PubMed

    Yu, Jiugao; Wang, Ning; Ma, Xiaofei

    2008-03-01

    By using acetyl tributyl citrate (ATBC) as the plasticizer of poly(lactic acid) (PLA) and carbon black (CB) as conductive filler, electrically conductive polymer composites (CPC) with different CB and ATBC contents were prepared. FTIR revealed that the interaction existed between PLA/ATBC matrix and CB filler and ATBC could improve this interaction. The rheology showed that ATBC could obviously decrease the shear viscosity and improve the fluidity of the composites but just the reverse for CB. With the increasing of CB contents, the enforcement effect, storage modulus, and glass-transition temperature increased but the elongation at break decreased. PLA/ATBC/CB composites exhibited the low electrical percolation thresholds of 0.516, 1.20, 2.46, and 2.74 vol % CB at 30, 20, 10, and 0 wt % ATBC. The conductivity of the composite containing 3.98 vol % CB and 30 wt % ATBC reached 1.60 S/cm. Scanning electron microscopy revealed that the addition of ATBC facilitated the dispersion of the CB in the PLA matrix. Water vapor permeability (WVP) showed that, at the same CB contents, the more ATBC contents there were, the less the values of WVP were.

  3. Interfacial characteristics of diamond/aluminum composites with high thermal conductivity fabricated by squeeze-casting method

    SciTech Connect

    Jiang, Longtao; Wang, Pingping; Xiu, Ziyang; Chen, Guoqin; Lin, Xiu; Dai, Chen; Wu, Gaohui

    2015-08-15

    In this work, aluminum matrix composites reinforced with diamond particles (diamond/aluminum composites) were fabricated by squeeze casting method. The material exhibited a thermal conductivity as high as 613 W / (m · K). The obtained composites were investigated by scanning electron microscope and transmission electron microscope in terms of the (100) and (111) facets of diamond particles. The diamond particles were observed to be homogeneously distributed in the aluminum matrix. The diamond{sub (111)}/Al interface was found to be devoid of reaction products. While at the diamond{sub (100)}/Al interface, large-sized aluminum carbides (Al{sub 4}C{sub 3}) with twin-crystal structure were identified. The interfacial characteristics were believed to be responsible for the excellent thermal conductivity of the material. - Graphical abstract: Display Omitted - Highlights: • Squeeze casting method was introduced to fabricate diamond/Al composite. • Sound interfacial bonding with excellent thermal conductivity was produced. • Diamond{sub (111)}/ aluminum interface was firstly characterized by TEM/HRTEM. • Physical combination was the controlling bonding for diamond{sub (111)}/aluminum. • The growth mechanism of Al{sub 4}C{sub 3} was analyzed by crystallography theory.

  4. Structure and electrical properties of Y, Fe-based perovskite mixed conducting composites fabricated by a modified polymer precursor method

    NASA Astrophysics Data System (ADS)

    Miruszewski, T.; Gdaniec, P.; Rosiński, W.; Karczewski, J.; Bochentyn, B.; Kusz, B.

    2017-08-01

    In this work, samples of Y0.07Sr0.93Ti1-xFexO3-δ with 20, 40, 60 and 80 mol% of iron amount were prepared by a low-temperature polymer precursor method. The SEM-EDS analysis proved that analyzed Y0.07Sr0.93Ti1-xFexO3-δ samples were composites of two Ti- and Fe-rich perovskite samples. This kind of composite consists of two phases in which one has a good ionic and the other electronic conductivity, which makes such a composite a potential mixed ionic and electronic conductors (MIECs) material. The total electrical conductivities of analyzed samples were measured in air atmosphere (cathode conditions in Solid Oxide Fuel Cell). The values changed from ∼10-3 to 10-1 S cm-1 and depended on the ratio between two observed perovskite phases. The 0.12 S cm-1 conductivity value at 800 °C for sample with the highest amount of Fe-rich perovskite in the structure makes this composite material a candidate for air electrode in electrochemical devices.

  5. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields.

    PubMed

    Ul-Islam, Mazhar; Khan, Shaukat; Ullah, Muhammad Wajid; Park, Joong Kon

    2015-12-01

    Bacterial cellulose (BC), owing to its pure nature and impressive physicochemical properties, including high mechanical strength, crystallinity, porous fibrous structure, and liquid absorbing capabilities, has emerged as an advanced biomaterial. To match the market demand and economic values, BC has been produced through a number of synthetic routes, leading to slightly different structural features and physical appearance. Chemical nature, porous geometry, and 3D fibrous structure of BC make it an ideal material for composites synthesis that successfully overcome certain deficiencies of pure BC. In this review, we have focused various strategies developed for synthesizing BC and BC composites. Reinforcement materials including nanoparticles and polymers have enhanced the antimicrobial, conducting, magnetic, biocompatible, and mechanical properties of BC. Both pure BC and its composites have shown impressive applications in medical fields and in the development of optoelectronic devices. Herein, we have given a special attention to discuss its applications in the medical and electronic fields. In conclusion, BC and BC composites have realistic potential to be used in future development of medical devices, artificial organs and electronic and conducting materials. The contents discussed herein will provide an eye-catching theme to the researchers concerned with practical applications of BC and BC composites.

  6. Conduction mechanism in Polyaniline-flyash composite material for shielding against electromagnetic radiation in X-band & Ku band

    NASA Astrophysics Data System (ADS)

    Singh, Avanish Pratap; Anoop Kumar, S.; Chandra, Amita; Dhawan, S. K.

    2011-06-01

    β-Naphthalene sulphonic acid (β-NSA) doped polyaniline (PANI)-flyash (FA) composites have been prepared by chemical oxidative polymerization route whose conductivity lies in the range 2.37-21.49 S/cm. The temperature dependence of electrical conductivity has also been recorded which shows that composites follow Mott's 3D-VRH model. SEM images demonstrate that β-NSA leads to the formation of the tubular structure with incorporated flyash phase. TGA studies show the improvement in thermal stability of composites with increase in loading level of flyash. Complex parameters i.e. permittivity (ɛ* = ɛ'- iɛ″) and permeability (μ*=μ'- iμ″) of PANI-FA composites have been calculated from experimental scattering parameters (S11 & S21) using theoretical calculations given in Nicholson-Ross and Weir algorithms. The microwave absorption properties of the composites have been studied in X-band (8.2 - 12.4 GHz) & Ku-Band (12.4 - 18 GHz) frequency range. The maximum shielding effectiveness observed was 32dB, which strongly depends on dielectric loss and volume fraction of flyash in PANI matrix.

  7. Fast ionic conduction in tetravalent metal pyrophosphate-alkali carbonate composites: New potential electrolytes for intermediate-temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Singh, Bhupendra; Bhardwaj, Aman; Gautam, Sandeep K.; Kumar, Devendra; Parkash, Om; Kim, In-Ho; Song, Sun-Ju

    2017-03-01

    Here we present a report on synthesis and characterization of tetravalent metal pyrophosphate (TMP) and alkali carbonate (A2CO3; A = Li and/or Na) composites. The TMP-carbonate composites are prepared by mixing indium-doped tin pyrophosphate or yttrium-doped zirconium pyrophosphate with Li2CO3 or an eutectic mixture of Li2CO3-Na2CO3 in different wt.% ratios. The phase composition, microstructure and electrical conductivity of the sintered specimen are analyzed. In addition, the effect of different TMP and A2CO3 phases is investigated. A maximum ionic conductivity of 5.5 × 10-2 S cm-1 at 630 °C is observed in this study with a Sn0.9In0.1P2O7-Li2CO3 composite. Based on the literature data, TMP-carbonate composites can be considered to be primarily a proton and oxygen-ion co-ionic conductor and, therefore, have strong potential as electrolytes in fuel cells in 500-700 °C range.

  8. Enhanced thermal conductance of polymer composites through embedding aligned carbon nanofibers

    DOE PAGES

    Nicholas, Roberts; Hensley, Dale K.; Wood, David

    2016-07-08

    The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers

  9. Enhanced thermal conductance of polymer composites through embedding aligned carbon nanofibers

    SciTech Connect

    Nicholas, Roberts; Hensley, Dale K.; Wood, David

    2016-07-08

    The focus of this work is to find a more efficient method of enhancing the thermal conductance of polymer thin films. This work compares polymer thin films embedded with randomly oriented carbon nanotubes to those with vertically aligned carbon nanofibers. Thin films embedded with carbon nanofibers demonstrated a similar thermal conductance between 40–60 μm and a higher thermal conductance between 25–40 μm than films embedded with carbon nanotubes with similar volume fractions even though carbon nanotubes have a higher thermal conductivity than carbon nanofibers

  10. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete.

    PubMed

    Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo

    2017-02-23

    Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing-thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.

  11. Effect of Material Composition and Environmental Condition on Thermal Characteristics of Conductive Asphalt Concrete

    PubMed Central

    Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo

    2017-01-01

    Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation. PMID:28772580

  12. Workshop for Conducting Phase 2 of the INTEC Glass Composition Variation Study

    SciTech Connect

    B. A. Staples; C. A. Musick

    1999-06-01

    During March 30-31, 1999, the Phase 2 Idaho Nuclear Technology and Engineering Center (INTEC) Glass Composition Variation Study Workshop was held at the Shilo Inn in Idaho Falls, Idaho. The workshop had the purpose of establishing a preparation and characterization protocol for the phase 2b glasses of the INTEC composition variation study. The workshop also had the purpose of reviewing the most recent estimates of INTEC high-level waste compositions for their impacts on the vitrification of these wastes. Waste composition estimates discussed included those of the various calcine types and of the high activity waste fractions from the calcine dissolution/separations process. Persons from the Idaho National Engineering and Environmental Laboratory, Pacific Northwest Laboratories, and Savannah River Technology Center participated in this workshop. As a result of the workshop, details for the preparation and characterization of the phase 2b matrix of glasses were completed. The impac ts on vitrification of updated waste composition estimates were discussed. Actions for the preparation and characterization of the glasses and development of the separations flowsheet were established.

  13. Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property.

    PubMed

    Xu, Yu; Li, Ying; Hua, Wei; Zhang, Aiming; Bao, Jianjun

    2016-09-14

    Herein, light-weight and exceptionally conductive epoxy composite foams were innovatively fabricated for electromagnetic interference (EMI) shielding applications using multiwalled carbon nanotubes (MWCNTs) and 3D silver-coated melamine foam (SF) as conductive frameworks. A novel and nontraditional polymer microsphere was used to reduce the material density. The preformed, highly porous, and electrically conductive SF provided channels for fast electron transport. The MWCNTs were used to offset the decrease in conductive pathways due to the crystal defects of the silver layer and the insulating epoxy resin. Consequently, an exceptional conductivity of 253.4 S m(-1), a remarkable EMI shielding effectiveness of above 68 dB at 0.05-18 GHz, and a thermal conductivity of 0.305 W mK(-1) were achieved in these novel foams employing only 2 wt % of MWCNTs and 3.7 wt % of silver due to the synergistic effects that originated in the MWCNT and SF. These parameters are substantially higher than that achieved for the foam containing 2 wt % MWCNTs. Also, the SF exhibited little weakening in the foamability of the epoxy blends and the compression properties of resulting foams. All the results indicated that this effort provided a novel, simple, low-cost, and easily industrialized concept for fabricating light-weight, high-strength epoxy composite foams for high-performance EMI shielding applications.

  14. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    DOE PAGES

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; ...

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling ofmore » lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.« less

  15. Conductivity degradation of polyvinylidene fluoride composite binder during cycling: Measurements and simulations for lithium-ion batteries

    SciTech Connect

    Grillet, Anne M.; Humplik, Thomas; Stirrup, Emily K.; Roberts, Scott A.; Barringer, David A.; Snyder, Chelsea M.; Janvrin, Madison R.; Apblett, Christopher A.

    2016-07-02

    The polymer-composite binder used in lithium-ion battery electrodes must both hold the electrodes together and augment their electrical conductivity while subjected to mechanical stresses caused by active material volume changes due to lithiation and delithiation. We have discovered that cyclic mechanical stresses cause significant degradation in the binder electrical conductivity. After just 160 mechanical cycles, the conductivity of polyvinylidene fluoride (PVDF):carbon black binder dropped between 45–75%. This degradation in binder conductivity has been shown to be quite general, occurring over a range of carbon black concentrations, with and without absorbed electrolyte solvent and for different polymer manufacturers. Mechanical cycling of lithium cobalt oxide (LiCoO2) cathodes caused a similar degradation, reducing the effective electrical conductivity by 30–40%. Mesoscale simulations on a reconstructed experimental cathode geometry predicted the binder conductivity degradation will have a proportional impact on cathode electrical conductivity, in qualitative agreement with the experimental measurements. Lastly, ohmic resistance measurements were made on complete batteries. Direct comparisons between electrochemical cycling and mechanical cycling show consistent trends in the conductivity decline. This evidence supports a new mechanism for performance decline of rechargeable lithium-ion batteries during operation – electrochemically-induced mechanical stresses that degrade binder conductivity, increasing the internal resistance of the battery with cycling.

  16. Statistical Continuum Theory for the Effective Conductivity of Fiber Filled Polymer Composites: Effect of Orientation Distribution and Aspect Ratio

    SciTech Connect

    Mikdam, Amed; Makradi, A.; Ahzi, Said; Garmestani, Hamid; Li, Dongsheng; Remond, Y.

    2010-03-01

    Effective conductivity of polymer composites, filled with conducting fibers such as carbon nanotubes, is studied using statistical continuum theory. The fiber orientation distribution in the matrix plays a very important role on their effective properties. To take into account their orientation, shape and distribution, two-point and three-point probability distribution functions are used. The effect of fibers orientation is illustrated by comparing the effective conductivity of microstructures with oriented and non-oriented fibers. The randomly oriented fibers result in an isotropic effective conductivity. The increased fiber orientation distribution can lead to higher anisotropy in conductivity. The effect of fiber’s aspect ratio on the effective conductivity is studied by comparing microstructures with varying degrees of fiber orientation distribution. Results show that the increase in anisotropy leads to higher conductivity in the maximum fiber orientation distribution direction and lower conductivity in the transverse direction. These results are in agreement with various models from the literature that show the increase of the aspect ratio of fibers improves the electrical and thermal conductivity.

  17. Effect of Applied Potential on the Electrochemical Deposition of Styrene-Butadiene Co-Polymer Based Conducting Polymer Composite

    NASA Astrophysics Data System (ADS)

    Mathew, Anisha Mary; Neena, P.

    2011-10-01

    Homogeneous conducting polymer composite films with improved electrical properties are synthesized via electrochemical polymerization of polyaniline on Styrene butadiene rubber coated steel electrode. The electrochemical polymerization is carried out by potentiostatic method using an aqueous solution of 0.2 M aniline and 1.5 M sulphuric acid as electrolyte in a single compartment electrochemical cell. The optical studies show successful incorporation of polyaniline into the matrix polymer film. The effect of applied potential on the electrodeposition of composite is studied by cyclic voltammetry and by impedance spectroscopic measurements.

  18. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  19. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  20. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.