Sample records for polyelectrolyte complex nanoparticles

  1. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.

    PubMed

    Carnal, Fabrice; Stoll, Serge

    2011-10-27

    Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.

  2. Electrostatic Interactions and Self-Assembly in Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey

    Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.

  3. Nanocomplexes of Photolabile Polyelectrolyte and Upconversion Nanoparticles for Near-Infrared Light-Triggered Payload Release.

    PubMed

    Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue

    2018-06-07

    A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.

  4. Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

    PubMed

    Dávila-Ibáñez, Ana B; Buurma, Niklaas J; Salgueiriño, Verónica

    2013-06-07

    The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear evidence of the type of interactions established, reflects the importance of the DNA length, the nanoparticle size and the ionic strength, and permits the identification of the parameters controlling both the stability and the type of magnetoplexes formed. This information can be used to develop targeted systems with properties optimized for the various proposed applications of magnetoplexes.

  5. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    PubMed

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  6. Cyborg cells: functionalisation of living cells with polymers and nanomaterials.

    PubMed

    Fakhrullin, Rawil F; Zamaleeva, Alsu I; Minullina, Renata T; Konnova, Svetlana A; Paunov, Vesselin N

    2012-06-07

    Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.

  7. Thin film of polyelectrolyte complex nanoparticles for protein sensing

    NASA Astrophysics Data System (ADS)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2018-04-01

    Polyelectrolyte complex nanoparticles (PEC NPs) are prepared using two polyelectrolytes poly(Na-4-styrene sulphonate) (PSS) and poly(diallyldimethylammoniumchloride) (PDADMAC) at a molar mixing ratio of n-/n+ ≈ 0.67 by consecutive centrifugation. PEC NPs formation is investigated through dynamic light scattering (DLS) and atomic force microscopy (AFM). Optical behaviors of PEC NPs in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. Although absorption peaks of PSS occurs at the same position before and after the formation of PEC NPs but emission peaks are found at ≈ 278 and 305 nm whereas for pure PSS emission peaks exist at ≈ 295 and 365 nm. Hence, thin film of PEC NPs can be applied as very sensitive material for protein sensing since absorption of protein is occurred at ≈ 278 nm. Protein sensing behavior of such PEC NPs thin film is studied using photoluminescence spectroscopy.

  8. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles.

    PubMed

    Darwish, Ghinwa H; Karam, Pierre

    2015-10-07

    We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (∼10(9), on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.

  9. Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation.

    PubMed

    Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M; Williford, John-Michael; Liu, Heng-Wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan

    2016-12-01

    Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress toward clinical translation of these nanoparticle-based gene medicine. Here the authors report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Continuous Production of Discrete Plasmid DNA-Polycation Nanoparticles Using Flash Nanocomplexation

    PubMed Central

    Santos, Jose Luis; Ren, Yong; Vandermark, John; Archang, Maani M.; Williford, John-Michael; Liu, Heng-wen; Lee, Jason; Wang, Tza-Huei; Mao, Hai-Quan

    2016-01-01

    Despite successful demonstration of linear polyethyleneimine (lPEI) as an effective carrier for a wide range of gene medicine, including DNA plasmids, small interfering RNAs, mRNAs, etc., and continuous improvement of the physical properties and biological performance of the polyelectrolyte complex nanoparticles prepared from lPEI and nucleic acids, there still exist major challenges to produce these nanocomplexes in a scalable manner, particularly for lPEI/DNA nanoparticles. This has significantly hindered the progress towards clinical translation of these nanoparticle-based gene medicine. Here we report a flash nanocomplexation (FNC) method that achieves continuous production of lPEI/plasmid DNA nanoparticles with narrow size distribution using a confined impinging jet device. The method involves the complex coacervation of negatively charged DNA plasmid and positive charged lPEI under rapid, highly dynamic, and homogeneous mixing conditions, producing polyelectrolyte complex nanoparticles with narrow distribution of particle size and shape. The average number of plasmid DNA packaged per nanoparticles and its distribution are similar between the FNC method and the small-scale batch mixing method. In addition, the nanoparticles prepared by these two methods exhibit similar cell transfection efficiency. These results confirm that FNC is an effective and scalable method that can produce well-controlled lPEI/plasmid DNA nanoparticles. PMID:27717227

  11. Development of antibacterial paper coated with sodium hyaluronate stabilized curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications

    NASA Astrophysics Data System (ADS)

    Rao Kummara, Madhusudana; Kumar, Anuj; Soo, Han Sung

    2017-11-01

    Sodium hyaluronate (HA) stabilized curcumin-Ag (Cur-Ag) hybrid nanoparticles were prepared in the water-ethanol mixture under constant mechanical stirring condition. The obtained HA stabilized Cur-Ag hybrid nanoparticles were characterized by fourier transform infrared spectroscopy, UV-visible spectroscopy, and x-ray diffraction to confirm the formation and structural interactions. The obtained Cur-Ag hybrid nanoparticles showed spherical shape with their size range 5-12 nm that was increased with the increasing a amount of silver ions as confirmed by transmission electron microscopic analysis. Further, a fibrous cellulose filter paper was impregnated with these hybrid nanoparticles and chitosan (CS) as biopolymer via polyelectrolyte complexation. The morphological analysis confirmed the uniform distribution of hybrid nanoparticle system onto the cellulose fibers of the fibrous filter paper. As per disc diffusion method, the Cur-Ag hybrid nanoparticles impregnated CS-coated filter paper exhibited excellent antibacterial properties against gram-negative Escherichia coli (E.coli) bacteria compared to HA stabilized Cur only. Moreover, as prepared hybrid nanoparticles impregnated biocomposite system is eco-friendly with efficient antibacterial property and have good potential to be used in medical applications.

  12. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions.

    PubMed

    Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr

    2017-10-01

    The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Stability of polyelectrolyte-coated iron nanoparticles for T2-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    McGrath, Andrew J.; Dolan, Ciaran; Cheong, Soshan; Herman, David A. J.; Naysmith, Briar; Zong, Fangrong; Galvosas, Petrik; Farrand, Kathryn J.; Hermans, Ian F.; Brimble, Margaret; Williams, David E.; Jin, Jianyong; Tilley, Richard D.

    2017-10-01

    Iron nanoparticles are highly-effective magnetic nanoparticles for T2 magnetic resonance imaging (MRI). However, the stability of their magnetic properties is dependent on good protection of the iron core from oxidation in aqueous media. Here we report the synthesis of custom-synthesized phosphonate-grafted polyelectrolytes (PolyM3) of various chain lengths, for efficient coating of iron nanoparticles with a native iron oxide shell. The size of the nanoparticle-polyelectrolyte assemblies was investigated by transmission electron microscopy and dynamic light scattering, while surface attachment was confirmed by Fourier transform infrared spectroscopy. Low cytotoxicity was observed for each of the nanoparticle-polyelectrolyte ("Fe-PolyM3") assemblies, with good cell viability (>80%) remaining up to 100 μg mL-1 Fe in HeLa cells. When applied in T2-weighted MRI, corresponding T2 relaxivities (r2) of the Fe-PolyM3 assemblies were found to be dependent on the chain length of the polyelectrolyte. A significant increase in contrast was observed when polyelectrolyte chain length was increased from 6 to 65 repeating units, implying a critical chain length required for stabilization of the α-Fe nanoparticle core.

  14. Fracturing fluid cleanup by controlled release of enzymes from polyelectrolyte complex nanoparticles

    NASA Astrophysics Data System (ADS)

    Barati Ghahfarokhi, Reza

    Guar-based polymer gels are used in the oil and gas industry to viscosify fluids used in hydraulic fracturing of production wells, in order to reduce leak-off of fluids and pressure, and improve the transport of proppants. After fracturing, the gel and associated filter cake must be degraded to very low viscosities using breakers to recover the hydraulic conductivity of the well. Enzymes are widely used to achieve this but injecting high concentrations of enzyme may result in premature degradation, or failure to gel; denaturation of enzymes at alkaline pH and high temperature conditions can also limit their applicability. In this study, application of polyelectrolyte nanoparticles for entrapping, carrying, releasing and protecting enzymes for fracturing fluids was examined. The objective of this research is to develop nano-sized carriers capable of carrying the enzymes to the filter cake, delaying the release of enzyme and protecting the enzyme against pH and temperature conditions inhospitable to native enzyme. Polyethylenimine-dextran sulfate (PEI-DS) polyelectrolyte complexes (PECs) were used to entrap two enzymes commonly used in the oil industry in order to obtain delayed release and to protect the enzyme from conditions inhospitable to native enzyme. Stability and reproducibility of PEC nanoparticles was assured over time. An activity measurement method was used to measure the entrapment efficiency of enzyme using PEC nanoparticles. This method was confirmed using a concentration measurement method (SDS-PAGE). Entrapment efficiencies of pectinase and a commercial high-temperature enzyme mixture in polyelectrolyte complex nanoparticles were maximized. Degradation, as revealed by reduction in viscoelastic moduli of borate-crosslinked hydroxypropyl guar (HPG) gel by commercial enzyme loaded in polyelectrolyte nanoparticles, was delayed, compared to equivalent systems where the enzyme mixture was not entrapped. This indicates that PEC nanoparticles delay the activity of enzymes by entrapping them. It was also observed that control PEC nanoparticles decreased both viscoelastic moduli, but with a slower rate compared to the PEC nanoparticles loaded with enzyme. Preparation shear and applied shear showed no significant effect on activity of enzyme-loaded PEC nanoparticles mixed with HPG solutions. However, fast addition of chemicals during the preparations showed smaller particle size compared to the drop-wise method. PEC nanoparticles (PECNPs) also protected both enzymes from denaturation at elevated temperature and pH. Following preparation, enzyme-loaded PEC nanoparticles were mixed with borate crosslinked HPG and the mixture was injected through a shear loop. Pectinase-loaded nanoparticles mixed with gelled HPG showed no sensitivity to shear applied along the shear loop at 25 °C. However, EL2X-loaded PEC nanoparticles showed sensitivity to shear applied along the shear loop at 40 °C. Filter cake was formed and degraded in a fluid loss cell for borate crosslinked HPG solutions mixed with either enzymes or enzyme-loaded PEC nanoparticles. Cleanup slopes of filter cake degraded using enzyme-loaded PEC nanoparticles and systems with enzymes mixed with HPG gel were significantly higher than for the filter cake formed with HPG gel mixed with no enzyme. In a different application, enzyme-loaded PEC nanoparticles showed significantly slower reduction in viscosity of HPG solution over time compared to the HPG systems mixed with enzyme. Increasing the viscosity of low concentration HPG, used as slick-water, decreases the proppant settling velocity. This is of specific interest in fracturing fluids used for unconventional reservoirs.

  15. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    PubMed

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  16. Nanohybrid conjugated polyelectrolytes: highly photostable and ultrabright nanoparticles

    NASA Astrophysics Data System (ADS)

    Darwish, Ghinwa H.; Karam, Pierre

    2015-09-01

    We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques.We present a general and straightforward one-step approach to enhance the photophysical properties of conjugated polyelectrolytes. Upon complexation with an amphiphilic polymer (polyvinylpyrrolidone), an anionic conjugated polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene]) was prepared into small nanoparticles with exceptional photostability and brightness. The polymer fluorescence intensity was enhanced by 23 -fold and could be easily tuned by changing the order of addition. Single molecule experiments revealed a complete suppression of blinking. In addition, after only losing 18% of the original intensity, a remarkable amount of photons were emitted per particle (~109, on average). This number is many folds greater than popular organic fluorescent dyes. We believe that an intimate contact between the two polymers is shielding the conjugated polyelectrolyte from the destructive photooxidation. The prepared nanohybrid particles will prove instrumental in single particle based fluorescent assays and can serve as a probe for the current state-of-the-art bioimaging fluorescence techniques. Electronic supplementary information (ESI) available: Dynamic light scattering, photostability of different nanohybrids, and emission and absorption spectra. See DOI: 10.1039/c5nr03299g

  17. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  18. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-11-01

    Polyelectrolyte complex (PEC) nanoparticles between chitosan (CS) and biomacromolecules offer better physicochemical properties as delivery vehicles for nutrients than other CS-based nanoparticles. Our major objective was to fabricate PEC nanoparticles between water soluble gallic acid-chitosan conjugate (GA-CS) and gum arabic. The optimal fabrication method, physicochemical characteristics and stability were investigated. Furthermore, we also evaluated the effects of nano spray drying technology on the morphology and redispersibility of nanoparticle powders using Buchi B-90 Nano Spray Dryer. Results showed that the mass ratio between GA-CS and gum arabic and the preparation pH had significant contributions in determining the particle size and count rate of the nanoparticles, with the ratio of 3:1 and pH 5.0 being the optimal conditions that resulted in 112.2nm and 122.9kcps. The polyethylene glycol (PEG) played a vital role in forming the well-separated spray dried nanoparticles. The most homogeneous nanoparticles with the smoothest surface were obtained when the mass ratio of GA-CS and PEG was 1:0.5. In addition, the GA-CS/gum arabic spray dried nanoparticles exhibited excellent water-redispersibiliy compared to native CS/gum arabic nanoparticles. Our results demonstrated GA-CS/gum arabic nanoparticles were successfully fabricated with promising physicochemical properties and great potential for their applications in food and pharmaceutical industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fabrication of Thickness-Controllable Micropatterned Polyelectrolyte-Film/Nanoparticle Surfaces by Using the Plasma Oxidation Method.

    PubMed

    Zhu, Chun-Tao; Ma, Sheng-Hua; Zhang, Ying; Wang, Xue-Jing; Lv, Peng; Han, Xiao-Jun

    2016-04-05

    We have demonstrated a novel way to form thickness-controllable polyelectrolyte-film/nanoparticle patterns by using a plasma etching technique to form, first, a patterned self-assembled monolayer surface, followed by layer-by-layer assembly of polyelectrolyte-films/nanoparticles. Octadecyltrimethoxysilane (ODS) and (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayers (SAMs) were used for polyelectrolyte-film and nanoparticle patterning, respectively. The resolution of the proposed patterning method can easily reach approximately 2.5 μm. The height of the groove structure was tunable from approximately 2.5 to 150 nm. The suspended lipid membrane across the grooves was fabricated by incubating the patterned polyelectrolyte groove arrays in solutions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) giant unilamellar vesicles (GUVs). The method demonstrated here reveals a new path to create patterned 2D or 3D structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interfacial complexation in microfluidic droplets for single-step fabrication of microcapsule

    NASA Astrophysics Data System (ADS)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Williams, Danielle; Liu, Wei; Schloss, Ashley; Regan, Lynn; Yan, Elsa; Dufrense, Eric; Loewenberg, Michael; Osuji, Chinedum

    We present microfluidic interfacial complexation in emulsion droplets as a simple single-step approach for fabricating a large variety of stable monodisperse microcapsules with tailored mechanical properties, protein binding and controlled release behavior. We rely on electrostatic interactions and hydrogen bonding to direct the assembly of complementary species at oil-water droplet interfaces to form microcapsules with polyelectrolyte shells, composite polyelectrolyte-nanoparticle shells, and copolymer-nanofiber shells. Additionally, we demonstrate the formation of microcapsules by adsorption of an amphiphilic bacterial hydrophobin, BslA, at oil-in-water and water-in-oil droplets, and protein capture on these capsules using engineered variants of the hydrophobin. We discuss the composition dependence of mechanical properties, shell thickness and release behavior, and regimes of stability for microcapsule fabrication. Nanoparticle based microcapsules display an intriguing plastic deformation response which enables the formation of large aspect ratio asperities by pipette aspiration of the shell.

  1. Assembly of Functional Porous Solids in Complex Hybrid Composites

    DTIC Science & Technology

    2004-03-19

    synthesis … 30 7.1.2 Grafting … 34 7.2 Surface functionalization of 3DOM oxide supports with polyelectrolytes and nanoparticles of another oxide … 34...incorporating hydrothermally prepared rutile/anatase nanoparticles (᝿ nm) within the walls of 3DOM silica, varying the titania content from ca. 0.5-20 wt... nanoparticles showing the bright colors that can be obtained and varied through synthesis parameters. 5.7 Effects of 3DOM particle sizes on optical

  2. Deposition of zeolite nanoparticles onto porous silica monolith

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gackowski, Mariusz; Bielanska, Elzbieta; Szczepanowicz, Krzysztof

    2016-06-01

    A facile and effective method of deposition of MFl zeolite nanoparticles (nanocrystals) onto macro-/mesoporous silica monolith was proposed. The electrostatic interaction between those two materials was induces by adsorption of cationic polyelectrolytes. That can be realized either by adsorption of polyelectrolyte onto silica monolith or on zeolite nanocrystals. The effect of time, concentration of zeolite nanocrystals, type of polyelectrolyte, and ultrasound treatment is scrutinized. Adsorption of polyelectrolyte onto silica monolith with subsequent deposition of nanocrystals resulted in a monolayer coverage assessed with SEM images. Infrared spectroscopy was applied as a useful method to determine the deposition effectiveness of zeolite nanocrystalsmore » onto silica. Modification of nanocrystals with polyelectrolyte resulted in a multilayer coverage due to agglomeration of particles. On the other hand, the excess of polyelectrolyte in the system resulted in a low coverage due to competition between polyelectrolyte and modified nanocrystals.« less

  3. Effect of gold nanoparticles on the structure and electron-transfer characteristics of glucose oxidase redox polyelectrolyte-surfactant complexes.

    PubMed

    Cortez, M Lorena; Marmisollé, Waldemar; Pallarola, Diego; Pietrasanta, Lía I; Murgida, Daniel H; Ceolín, Marcelo; Azzaroni, Omar; Battaglini, Fernando

    2014-10-06

    Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox-active polyelectrolyte-surfactant complex containing [Os(bpy)2Clpy](2+) (bpy=2,2'-bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron-transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz-crystal microbalance with dissipation (QCM-D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron-transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five-fold increase in current response to glucose compared with analogous supramolecular AuNP-free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron-transfer process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin.

    PubMed

    Yan, Jing-Kun; Qiu, Wen-Yi; Wang, Yao-Yao; Wu, Jian-Yong

    2017-07-19

    Polyelectrolyte complex nanoparticles (PEC NPs) were fabricated via electrostatic interactions between positively charged heat-denatured lactoferrin (LF) particles and negatively charged pectin. The obtained PEC NPs were then utilized as curcumin carriers. PEC NPs were prepared by mixing 1.0 mg/mL solutions of heat-denatured LF and pectin at a mass ratio of 1:1 (w/w) in the absence of NaCl at pH 4.50. PEC NPs that were prepared under optimized conditions were spherical in shape with a particle size of ∼208 nm and zeta potential of ∼-32 mV. Hydrophobic curcumin was successfully encapsulated into LF/pectin PEC NPs with high encapsulation efficiency (∼85.3%) and loading content (∼13.4%). The in vitro controlled release and prominent antioxidant activities of curcumin from LF/pectin PEC NPs were observed. The present work provides a facile and fast method to synthesize nanoscale food-grade delivery systems for the improved water solubility, controlled release, and antioxidant activity of hydrophobic curcumin.

  5. Amorphization strategy affects the stability and supersaturation profile of amorphous drug nanoparticles.

    PubMed

    Cheow, Wean Sin; Kiew, Tie Yi; Yang, Yue; Hadinoto, Kunn

    2014-05-05

    Amorphous drug nanoparticles have recently emerged as a promising bioavailability enhancement strategy of poorly soluble drugs attributed to the high supersaturation solubility generated by the amorphous state and fast dissolution afforded by the nanoparticles. Herein we examine the effects of two amorphization strategies in the nanoscale, i.e., (1) molecular mobility restrictions and (2) high energy surface occupation, both by polymer excipient stabilizers, on the (i) morphology, (ii) colloidal stability, (iii) drug loading, (iv) amorphous state stability after three-month storage, and (v) in vitro supersaturation profiles, using itraconazole (ITZ) as the model drug. Drug-polyelectrolyte complexation is employed in the first strategy to prepare amorphous ITZ nanoparticles using dextran sulfate as the polyelectrolyte (ITZ nanoplex), while the second strategy employs pH-shift precipitation using hydroxypropylmethylcellulose as the surface stabilizer (nano-ITZ), with both strategies resulting in >90% ITZ utilization. Both amorphous ITZ nanoparticles share similar morphology (∼300 nm spheres) with the ITZ nanoplex exhibiting better colloidal stability, albeit at lower ITZ loading (65% versus 94%), due to the larger stabilizer amount used. The ITZ nanoplex also exhibits superior amorphous state stability, attributed to the ITZ molecular mobility restriction by electrostatic complexation with dextran sulfate. The higher stability, however, is obtained at the expense of slower supersaturation generation, which is maintained over a prolonged period, compared to the nano-ITZ. The present results signify the importance of selecting the optimal amorphization strategy, in addition to formulating the excipient stabilizers, to produce amorphous drug nanoparticles having the desired characteristics.

  6. Processes in suspensions of nanocomposite microcapsules exposed to external electric fields

    NASA Astrophysics Data System (ADS)

    Ermakov, A. V.; Lomova, M. V.; Kim, V. P.; Chumakov, A. S.; Gorbachev, I. A.; Gorin, D. A.; Glukhovskoy, E. G.

    2016-04-01

    Microcapsules with and without magnetite nanoparticles incorporated in the polyelectrolyte shell were prepared. The effect of external electric field on the nanocomposite polyelectrolyte microcapsules containing magnetite nanoparticles in the shell was studied in this work as a function of the electric field strength. Effect of electric fields on polyelectrolyte microcapsules and the control over integrity of polyelectrolyte microcapsules with and without inorganic nanoparticles by constant electric field has been investigated. Beads effect, aggregation and deformations of nanocomposite microcapsule shell in response to electric field were observed by confocal laser scanning microscopy (CLSM). Thus, a new approach for effect on the nanocomposite microcapsule, including opening microcapsule shell by an electric field, was demonstrated. These results can be used for creation of new systems for drug delivery systems with controllable release by external electric field.

  7. Gd-functionalised Au nanoparticles as targeted contrast agents in MRI: relaxivity enhancement by polyelectrolyte coating.

    PubMed

    Warsi, Muhammad Farooq; Adams, Ralph W; Duckett, Simon B; Chechik, Victor

    2010-01-21

    Monolayer-protected, Gd(3+)-functionalised gold nanoparticles with enhanced spin-lattice relaxivity (r(1)) were prepared; adsorption of polyelectrolytes on these materials further increased r(1) and ligand exchange with a biotin-derivatised disulfide led to a prototype avidin-targeted contrast agent.

  8. Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces.

    PubMed

    Hedayati, Mohammadhasan; Kipper, Matt J

    2018-06-15

    Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.

  9. Effect of dielectric discontinuity on a spherical polyelectrolyte brush

    NASA Astrophysics Data System (ADS)

    Tergolina, Vinicius B.; dos Santos, Alexandre P.

    2017-09-01

    In this paper we perform molecular dynamics simulations of a spherical polyelectrolyte brush and counterions in a salt-free medium. The dielectric discontinuity on the grafted nanoparticle surface is taken into account by the method of image charges. Properties of the polyelectrolyte brush are obtained for different parameters, including valency of the counterions, radius of the nanoparticle, and the brush total charge. The monovalent counterions density profiles are obtained and compared with a simple mean-field theoretical approach. The theory allows us to obtain osmotic properties of the system.

  10. [Preparation of polyelectrolyte microcapsules contained gold nanoparticles].

    PubMed

    Sun, Ya-jie; Zhu, Jia-bi; Zheng, Chun-li

    2010-03-01

    In this work, polyelectrolyte microcapsules containing gold nanoparticles were prepared via layer by layer assembly. Gold nanoparticles and poly (allyamine hydrochloride) (PAH) were coated on the CaCO3 microparticles. And then EDTA was used to remove the CaCO3 core. Scanning electron microscopy (SEM) was used to characterize the surface of microcapsules. SEM images indicate that the microcapsules and the polyelectrolyte multilayer were deposited on the surface of CaCO3 microparticles. FITC-bovine serum albumin (FITC-BSA, 2 mg) was incorporated in the CaCO3 microparticles by co-precipitation. Fluorescence microscopy was used to observe the fluorescence intensity of microcapsules. The encapsulation efficiency was (34.31 +/- 2.44) %. The drug loading was (43.75 +/- 3.12) mg g(-1).

  11. Polyelectrolyte Complex Optimization for Macrophage Delivery of Redox Enzyme Nanoparticles

    PubMed Central

    Zhao, Yuling; Haney, Matthew J.; Klyachko, Natalia L.; Li, Shu; Booth, Stephanie L.; Higginbotham, Sheila M.; Jones, Jocelyn; Zimmerman, Matthew C.; Mosley, R. Lee; Kabanov, Alexander V.; Gendelman, Howard E.; Batrakova, Elena V.

    2011-01-01

    Background We posit that cell-mediated drug delivery can improve transport of therapeutic enzymes to the brain and decrease inflammation and neurodegeneration induced during Parkinson’s disease. Our prior work demonstrated that macrophages loaded with nanoformulated catalase (“nanozyme”) protect the nigrostriatum in a murine model of Parkinson’s disease. Packaging of catalase into block ionomer complex with a synthetic polyelectrolyte block copolymers protects the enzyme degradation in macrophages. Methods We examined relationships between the composition and structure of block ionomer complexes, their physicochemical characteristics, and loadings, release rates, and catalase activity in bone marrow-derived macrophages. Results Formation of block-ionomer complexes resulted in improved aggregation stability. Block ionomer complexes with ε-polylisine, and poly-L-glutamic acid -poly(ethylene glycol) demonstrated the least cytotoxicity and high loading and release rates, however, did not efficiently protect catalase inside macrophages. Conclusion nanozymes with polyethyleneimine- and poly(L-lysine)10-poly(ethylene glycol) provided the best protection of enzymatic activity for cell-mediated drug delivery. PMID:21182416

  12. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  13. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE PAGES

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...

    2017-10-06

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  14. A Demonstration of Le Chatelier’s Principle on the Nanoscale

    PubMed Central

    2017-01-01

    Photothermal desorption of molecules from plasmonic nanoparticles is an example of a light-triggered molecular release due to heating of the system. However, this phenomenon ought to work only if the molecule–nanoparticle interaction is exothermic in nature. In this study, we compare protein adsorption behavior onto gold nanoparticles for both endothermic and exothermic complexation reactions, and demonstrate that Le Chatelier’s principle can be applied to predict protein adsorption or desorption on nanomaterial surfaces. Polyelectrolyte-wrapped gold nanorods were used as adsorption platforms for two different proteins, which we were able to adsorb/desorb from the nanorod surface depending on the thermodynamics of their interactions. Furthermore, we show that the behaviors hold up under more complex biological environments such as fetal bovine serum. PMID:29104926

  15. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    PubMed Central

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  16. Comparative study of cytotoxicity of ferromagnetic nanoparticles and magnetitecontaining polyelectrolyte microcapsules

    NASA Astrophysics Data System (ADS)

    Minaeva, O. V.; Brodovskaya, E. P.; Pyataev, M. A.; Gerasimov, M. V.; Zharkov, M. N.; Yurlov, I. A.; Kulikov, O. A.; Kotlyarov, A. A.; Balykova, L. A.; Kokorev, A. V.; Zaborovskiy, A. V.; Pyataev, N. A.; Sukhorukov, G. B.

    2017-01-01

    The cytotoxicity of magnetite nanoparticles (MNP) stabilized with citrate acidand polyelectrolyte multilayer microcapsules containing these particles in the shell is analyzed. Microcapsules were prepared by co-precipitation of iron (II) and (III) chlorides. Polyelectrolyte microcapsules synthesized by the layer-by-layer method from biodegradable polymers polyarginine and dextran sulfate. Cytotoxicity of the synthesized objects was studied on the L929 cells culture and human leucocytes. It was also investigated the phagocytic activity of leukocytes for the MNP and magnetite containing polyelectrolyte microcapsules (MCPM). A set of tests (MTT assay, neutral red uptake assay, lactate dehydrogenase release assay) was used to study the cytotoxicity in vitro. All the tests have shown that the magnetic nanoparticles have a greater cytotoxicity in comparison with microcapsules containing an equivalent amount of magnetite. In contrast to the mouse fibroblast culture, human leukocytes were more resistant to the toxic effects of magnetite. At the concentrations used in our studies no significant reduction in the viability of leukocytes has been registered. Both MNP and MCPM undergo phagocytosis, however, the phagocytic activity of leukocytes for these particles was lower than for the standard objects (latex microparticles).

  17. Surface modification of upconverting nanoparticles by layer-by-layer assembled polyelectrolytes and metal ions.

    PubMed

    Palo, Emilia; Salomäki, Mikko; Lastusaari, Mika

    2017-12-15

    Modificating and protecting the upconversion luminescence nanoparticles is important for their potential in various applications. In this work we demonstrate successful coating of the nanoparticles by a simple layer-by-layer method using negatively charged polyelectrolytes and neodymium ions. The layer fabrication conditions such as number of the bilayers, solution concentrations and selected polyelectrolytes were studied to find the most suitable conditions for the process. The bilayers were characterized and the presence of the desired components was studied and confirmed by various methods. In addition, the upconversion luminescence of the bilayered nanoparticles was studied to see the effect of the surface modification on the overall intensity. It was observed that with selected deposition concentrations the bilayer successfully shielded the particle resulting in stronger upconversion luminescence. The layer-by-layer method offers multiple possibilities to control the bilayer growth even further and thus gives promises that the use of upconverting nanoparticles in applications could become even easier with less modification steps in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Significance of Algal Polymer in Designing Amphotericin B Nanoparticles

    PubMed Central

    Bhatia, Saurabh; Kumar, Vikash; Sharma, Kiran; Nagpal, Kalpana; Bera, Tanmoy

    2014-01-01

    Development of oral amphotericin B (AmB) loaded nanoparticles (NPs) demands a novel technique which reduces its toxicity and other associated problems. Packing of AmB in between two oppositely charged ions by polyelectrolyte complexation technique proved to be a successful strategy. We have developed a novel carrier system in form of polyelectrolyte complex of AmB by using chitosan (CS) and porphyran (POR) as two oppositely charged polymers with TPP as a crosslinking agent. Initially POR was isolated from Porphyra vietnamensis followed by the fact that its alkali induced safe reduction in molecular weight was achieved. Formulation was optimized using three-factor three-level (33) central composite design. High concentration of POR in NPs was confirmed by sulfated polysaccharide (SP) assay. Degradation and dissolution studies suggested the stability of NPs over wide pH range. Hemolytic toxicity data suggested the safety of prepared formulation. In vivo and in vitro antifungal activity demonstrated the high antifungal potential of optimized formulation when compared with standard drug and marketed formulations. Throughout the study TPP addition did not cause any significant changes. Therefore, these experimental oral NPs may represent an interesting carrier system for the delivery of AmB. PMID:25478596

  19. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner-Camcı, Merve; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and themore » capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.« less

  20. Layer-by-Layer Polyelectrolyte Encapsulation of Mycoplasma pneumoniae for Enhanced Raman Detection

    PubMed Central

    Rivera-Betancourt, Omar E.; Sheppard, Edward S.; Krause, Duncan C.; Dluhy, Richard A.

    2014-01-01

    Mycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency. Here we report the layer-by-layer (LBL) encapsulation of M. pneumoniae cells with Ag nanoparticles in a matrix of the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS). We evaluated nanoparticle encapsulated mycoplasma cells as a platform for the differentiation of M. pneumoniae strains using surface enhanced Raman scattering (SERS) combined with multivariate statistical analysis. Three separate M. pneumoniae strains (M129, FH and II-3) were studied. Scanning electron microscopy and fluorescence imaging showed that the Ag nanoparticles were incorporated between the oppositely charged polyelectrolyte layers. SERS spectra showed that LBL encapsulation provides excellent spectral reproducibility. Multivariate statistical analysis of the Raman spectra differentiated the three M. pneumoniae strains with 97 – 100% specificity and sensitivity, and low (0.1 – 0.4) root mean square error. These results indicated that nanoparticle and polyelectrolyte encapsulation of M. pneumoniae is a potentially powerful platform for rapid and sensitive SERS-based bacterial identification. PMID:25017005

  1. Small angle neutron scattering study of polyelectrolyte brushes grafted to well-defined gold nanoparticle interfaces.

    PubMed

    Jia, Haidong; Grillo, Isabelle; Titmuss, Simon

    2010-05-18

    Small angle neutron scattering (SANS) has been used to study the conformations, and response to added salt, of a polyelectrolyte layer grafted to the interfaces of well-defined gold nanoparticles. The polyelectrolyte layer is prepared at a constant coverage by grafting thiol-functionalized polystyrene (M(w) = 53k) to gold nanoparticles of well-defined interfacial curvature (R(c) = 26.5 nm) followed by a soft-sulfonation of 38% of the segments to sodium polystyrene sulfonate (NaPSS). The SANS profiles can be fit by Fermi-Dirac distributions that are consistent with a Gaussian distribution but are better described by a parabolic distribution plus an exponential tail, particularly in the high salt regime. These distributions are consistent with the predictions and measurements for osmotic and salted brushes at interfaces of low curvature. When the concentration of added salt exceeds the concentration of counterions inside the brush, there is a salt-induced deswelling, but even at the highest salt concentration the brush remains significantly swollen due to a short-ranged excluded volume interaction. This is responsible for the observed resistance to aggregation of these comparatively high concentration polyelectrolyte stabilized gold nanoparticle dispersions even in the presence of a high concentration of added salt.

  2. Lipid Layers on Polyelectrolyte Multilayers: Understanding Lipid-Polyelectrolyte Interactions and Applications on the Surface Engineering of Nanomaterials.

    PubMed

    Diamanti, Eleftheria; Gregurec, Danijela; Gabriela, Romero; Cuellar, J L; Donath, E; Moya, S E

    2016-06-01

    In this manuscript we review work of our group on the assembly of lipid layers on top of polyelectrolyte multilayers (PEMs). The assembly of lipid layers with zwitterionic and charged lipids on PEMs is studied as a function of lipid and polyelectrolyte composition by the Quartz Crystal Microbalance. Polyelectrolyte lipid interactions are studied by means of Atomic Force Spectroscopy. We also show the coating of lipid layers for engineering different nanomaterials, i.e., carbon nanotubes and poly(lactic-co-glycolic) nanoparticles and how these can be used to decrease in vitro toxicity and to direct the intracellular localization of nanomaterials.

  3. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  4. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    PubMed

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular interactions in self-assembled nano-structures of chitosan-sodium alginate based polyelectrolyte complexes.

    PubMed

    Wasupalli, Geeta Kumari; Verma, Devendra

    2018-03-16

    We report here the self-assembled structures of polyelectrolyte complexes (PECs) of polyanionic sodium alginate with the polycationic chitosan at room temperature. The PECs prepared at different pH values exhibited two distinct morphologies. The chitosan-alginate PECs self-assembled into the fibrous structure in a low pH range of pH3 to 7. The PECs obtained at high pH series around pH8 and above resulted in the formation of colloidal nanoparticles in the range of 120±9.48nm to 46.02±16.66nm. The zeta potential measurement showed that PECs prepared at lower pH (pH<6) exhibited nearly neutral surface charge, whereas PECs prepared at higher pH than 6 exhibited highly negative surface charge. The molecular interactions in nano-colloids and fibers were evaluated using FTIR analysis. The results attest that the ionic state of the chitosan and alginate plays an important role controlling the morphologies of the PECS. The present study has identified the enormous potential of the polyelectrolytes complexes to exploit shape by the alteration of ionic strength. These findings might be useful in the development of novel biomaterial. The produced fibers and nanocolloids could be applied as a biomaterial for tissue engineering and drug delivery. Copyright © 2017. Published by Elsevier B.V.

  6. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery.

    PubMed

    Wang, Fengzhang; Yang, Yijie; Ju, Xingrong; Udenigwe, Chibuike C; He, Rong

    2018-03-21

    Curcumin is a polyphenol that exhibits several biological activities, but its low aqueous solubility results in low bioavailability. To improve curcumin bioavailability, this study has focused on developing a polyelectrolyte complexation method to form layer-by-layer assembled nanoparticles, for curcumin delivery, with positively charged chitosan (CS) and negatively charged acylated cruciferin (ACRU), a rapeseed globulin. Nanoparticles (NPs) were prepared from ACRU and CS (2:1) at pH 5.7. Three samples with weight of 5%, 10%, and 15% of curcumin, respectively, in ACRU/CS carrier were prepared. To verify the stability of the NPs, encapsulation efficiency and size of the 5% Cur-ACRU/CS NPs were determined at intervals of 5 days in a one month period. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and differential scanning calorimetry confirmed the electrostatic interaction and hydrogen bond formation between the carrier and core. The result showed that hollow ACRU/CS nanocapsules (ACRU/CS NPs) and curcumin-loaded ACRU/CS nanoparticles (Cur-ACRU/CS NPs) were homogenized spherical with average sizes of 200-450 nm and zeta potential of +15 mV. Encapsulation and loading efficiencies were 72% and 5.4%, respectively. In vitro release study using simulated gastro (SGF) and intestinal fluids (SIF) showed controlled release of curcumin in 6 h of exposure. Additionally, the Cur-ACRU/CS NPs are nontoxic to cultured Caco-2 cells, and the permeability assay indicated that Cur-ACRU/CS NPs had improved permeability efficiency of free curcumin through the Caco-2 cell monolayer. The findings suggest that ACRU/CS NPs can be used for encapsulation and delivery of curcumin in functional foods.

  7. Formation of charge-nanopatterned templates with flexible geometry via layer by layer deposition of polyelectrolytes for directed self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sayin, Mustafa; Dahint, Reiner

    2017-03-01

    Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.

  8. Evaluation of carboxymethyl moringa gum as nanometric carrier.

    PubMed

    Rimpy; Abhishek; Ahuja, Munish

    2017-10-15

    In the present study, carboxymethylation of Moringa oleifera gum was carried out by reacting with monochloroacetic acid. Modified gum was characterised employing Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Rheology study. The carboxymethyl modification of moringa gum was found to increase its degree of crystallinity, reduce viscosity and swelling, increase the surface roughness and render its more anionic. The interaction between carboxymethyl moringa gum and chitosan was optimised by 2-factor, 3-level central composite experimental design to prepare polyelectrolyte nanoparticle using ofloxacin, as a model drug. The optimal calculated parameters were found to be carboxymethyl moringa gum- 0.016% (w/v), chitosan- 0.012% (w/v) which provided polyelectrolyte nanoparticle of average particle size 231nm and zeta potential 28mV. Carboxymethyl moringa gum-chitosan polyelectrolyte nanoparticles show sustained in vitro release of ofloxacin upto 6h which followed first order kinetics with mechanism of release being erosion of polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core.

    PubMed

    Richter, Alexander P; Brown, Joseph S; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A; Paunov, Vesselin N; Stoyanov, Simeon D; Velev, Orlin D

    2015-09-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

  10. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity.

    PubMed

    Deng, Liandong; Dong, Hongxu; Dong, Anjie; Zhang, Jianhua

    2015-11-01

    Efficient oral administration of anticancer agents requires a nanocarrier to long survive in the stomach, effectively penetrate across the small intestine, tightly retain the drug during bloodstream and quickly release drug in tumor cells. Herein a kind of dual pH-sensitive polyelectrolyte complex nanoparticles (CNPs) was developed by employing electrostatic interaction between positively charged chitosan (CS) and negative poly (L-glutamic acid) grafted polyethylene glycol-doxorubicin conjugate nanoparticles (PG-g-PEG-hyd-DOX NPs) with acid-labile hydrazone linkages. The obtained NPs and CNPs were characterized for their morphology, particle size, ζ-potential, pH-sensitivity under the simulated physiological conditions, drug release, as well as in vivo antitumor activity and biodistribution. The results indicated that CNPs can remain intact structure in pH range from 3.0 to 6.5. After detaching CS layer due to the pH-induced deprotonation with increasing pH to 7.4 in the mucus layer of the small intestine, the inner NPs would be released and effectively absorbed into blood circulation via opening the tight junctions by CS. PG-g-PEG-hyd-DOX NPs with demonstrated long-circulating properties can be accumulated in the tumor via EPR effect and dump the drug within tumor cells by acid-cleavage of hydrazone bonds between PG-g-PEG and DOX, achieving high therapeutic efficacy and low systemic toxicity. These results suggest that the design presented here, combining the functions of the gastrointestinal pH-sensitive electrostatic complex and intracellular acid-sensitive macromolecular prodrugs NPs, can sequentially overcome the biological barriers of oral anticancer drug delivery, which thus provides a promising nanomedicine platform for oral chemotherapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles.

    PubMed

    Nap, Rikkert J; Gonzalez Solveyra, Estefania; Szleifer, Igal

    2018-05-01

    When engineering nanomaterials for application in biological systems, it is important to understand how multivalent ions, such as calcium, affect the structural and chemical properties of polymer-modified nanoconstructs. In this work, a recently developed molecular theory was employed to study the effect of surface curvature on the calcium-induced collapse of end-tethered weak polyelectrolytes. In particular, we focused on cylindrical and spherical nanoparticles coated with poly(acrylic acid) in the presence of different amounts of Ca2+ ions. We describe the structural changes that grafted polyelectrolytes undergo as a function of calcium concentration, surface curvature, and morphology. The polymer layers collapse in aqueous solutions that contain sufficient amounts of Ca2+ ions. This collapse, due to the formation of calcium bridges, is not only controlled by the calcium ion concentration but also strongly influenced by the curvature of the tethering surface. The transition from a swollen to a collapsed layer as a function of calcium concentration broadens and shifts to lower amounts of calcium ions as a function of the radius of cylindrical and spherical nanoparticles. The results show how the interplay between calcium binding and surface curvature governs the structural and functional properties of the polymer molecules. This would directly impact the fate of weak polyelectrolyte-coated nanoparticles in biological environments, in which calcium levels are tightly regulated. Understanding such interplay would also contribute to the rational design and optimization of smart interfaces with applications in, e.g., salt-sensitive and ion-responsive materials and devices.

  12. An environmentally benign antimicrobial nanoparticle based ...

    EPA Pesticide Factsheets

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and together with silver ions can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies showed that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

  13. Structural and plasmonic properties of gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Sivapalan, Sean T.

    The design of gold nanoparticles for surface-enhanced Raman scattering (SERS) and plasmonic enhanced fluorescence are more involved than simply maximizing the local field enhancement. The enhancement is a function of the excitation wavelength relative to the plasmon resonance as well as the distance of the reporter molecules from the nanoparticles' surface. For suspension based measurements, additional considerations must also be made regarding absorption and scattering effects as light propagates through the sample. These effects are in addition to the other more commonly observed effects such as nanocrystal shape. With such a wide number of variables in play, a series of studies breaking down each of these components and their contribution to the observed enhancement is warranted. In this thesis, a series of experiments were undertaken using a platform based on polyelectrolyte coating of gold nanoparticles by layer-by-layer deposition. The reporter molecules are bound onto the surface of polyelectrolyte coated nanoparticles before trap coating them with an additional oppositely charged polyelectrolyte layer. By etching away the gold nanoparticle using potassium cyanide, we are then able to quantify the number of reporter molecule per nanoparticle using mass spectrometry. With this quantitative approach, we can the directly compare the effects of the aforementioned enhancement mechanisms on the observed signal intensity. This method overcomes some of the disparities in literature between reported values of enhancement due to assumption in the number of reporter molecules contribution to the signal intensity. Using our group's expertise, we synthesized gold nanoparticle libraries of nanorods, cubes, trisoctahedra and spheres of different sizes. Each geometric configuration was characterized using a recently developed TEM technique---nano-beam coherent area diffraction. The as-synthesized were exposed to a coherent electron beam with probe size similar to that of the nanoparticles. The nanoparticles were then tilted such that were oriented so that the electron beam was parallel to a major zone axis and the diffraction pattern recorded. We observed streaks at each Bragg reflection that changed depending on the shape of the nanoparticle. This is in contrast to the spots for the Bragg reflections observed for normal small area diffraction patterns of gold nanoparticles. The angles between the streaks were compared using vector analysis to theoretical simulated three dimensional models and showed good correlation. These studies indicate such a platform can be used to elucidate the structure of high-index gold nanoparticle shapes such as trisoctahedra. The as-synthesized gold nanoparticles had surface plasmon resonances that incrementally spanned the spectral region of 500-900 nm. The reporter molecules used all have an absorption maximum far from the excitation wavelength. This ensures that chemical resonant based effects are minimized and plasmonic electromagnetic effects dominate the observed signal enhancement. For gold nanorods, the highest SERS signal from six different aspect ratios was observed with absorption maxima blue-shifted from the laser excitation wavelength. This finding is in contrast to substrate measurements where the maximum observed signal is red-shifted from the laser excitation wavelength. A similar platform was used to compare the effects of changing the nanoparticle shape on the observed SERS enhancement. We synthesized trisoctahedral, cubic and spherical geometries with electronic absorption maxima that overlapped within 3 nm. The relative SERS enhancement with 785 nm excitation was compared to theoretical simulations using finite element analysis. The observed signal intensities correlated well to the theory, suggesting the electromagnetic fields focused towards sharp edges and corners dominated the spectral response. The final chapters of this thesis are tailored towards understanding the distance dependence of plasmonic effects on the two photon absorption (TPA) cross section of an organic chromophore. First, we optimized the protocol to coat as-synthesized gold nanorod with multiple polyelectrolyte layers. By varying the purification and complexation parameters we were able to obtain up to ten layers of wrapping without great losses in nanoparticle concentration. The TPA molecules were then electrostatically attached at different incremental distances to compare the relative enhancement as a function of distance. We compared the TPA enhancement for on-resonant excitation and find a 40 fold enhancement for the molecules closest to the surface of the nanoparticles. For the off-resonant excitation, we observed an interesting trend where the TPA enhancement recovers for higher number of polyelectrolyte layers.

  14. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    EPA Science Inventory

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green a...

  15. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Daniel V.; Wang, Dongbo; Lin-Gibson, Sheng

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transformmore » infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.« less

  16. Advanced nanocarriers based on heparin and its derivatives for cancer management.

    PubMed

    Yang, Xiaoye; Du, Hongliang; Liu, Jiyong; Zhai, Guangxi

    2015-02-09

    To obtain a satisfying anticancer effect, rationally designed nanocarriers are intensively studied. In this field, heparin and its derivatives have been widely attempted recently as potential component of nanocarriers due to their unique biological and physiochemical features, especially the anticancer activity. This review focuses on state-of-the-art nanocarriers with heparin/heparin derivatives as backbone or coating material. At the beginning, the unique advantages of heparin used in cancer nanotechnology are discussed. After that, different strategies of heparin chemical modification are reviewed, laying the foundation of developing various nanocarriers. Then a systematic summary of diverse nanoparticles with heparin as component is exhibited, involving heparin-drug conjugate, polymeric nanoparticles, nanogels, polyelectrolyte complex nanoparticles, and heparin-coated organic and inorganic nanoparticles. The application of these nanoparticles in various novel cancer therapy (containing targeted therapy, magnetic therapy, photodynamic therapy, and gene therapy) will be highlighted. Finally, future challenges and opportunities of heparin-based biomaterials in cancer nanotechnology are discussed.

  17. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  18. Nanocomposite capsules with directional, pulsed nanoparticle release.

    PubMed

    Udoh, Christiana E; Cabral, João T; Garbin, Valeria

    2017-12-01

    The precise spatiotemporal delivery of nanoparticles from polymeric capsules is required for applications ranging from medicine to materials science. These capsules derive key performance aspects from their overall shape and dimensions, porosity, and internal microstructure. To this effect, microfluidics provide an exceptional platform for emulsification and subsequent capsule formation. However, facile and robust approaches for nanocomposite capsule fabrication, exhibiting triggered nanoparticle release, remain elusive because of the complex coupling of polymer-nanoparticle phase behavior, diffusion, phase inversion, and directional solidification. We investigate a model system of polyelectrolyte sodium poly(styrene sulfonate) and 22-nm colloidal silica and demonstrate a robust capsule morphology diagram, achieving a range of internal morphologies, including nucleated and bicontinuous microstructures, as well as isotropic and non-isotropic external shapes. Upon dissolution in water, we find that capsules formed with either neat polymers or neat nanoparticles dissolve rapidly and isotropically, whereas bicontinuous, hierarchical, composite capsules dissolve via directional pulses of nanoparticle clusters without disrupting the scaffold, with time scales tunable from seconds to hours. The versatility, facile assembly, and response of these nanocomposite capsules thus show great promise in precision delivery.

  19. Electrolyte-stimulated biphasic dissolution profile and stability enhancement for tablets containing drug-polyelectrolyte complexes.

    PubMed

    Kindermann, Christoph; Matthée, Karin; Sievert, Frank; Breitkreutz, Jörg

    2012-10-01

    Recently introduced drug-polyelectrolyte complexes prepared by hot-melt extrusion should be processed to solid dosage forms with tailor-made release properties. Their potential of stability enhancement should be investigated. Milled hot-melt extruded naproxen-EUDRAGIT® E PO polyelectrolyte complexes were subsequently processed to double-layer tablets with varying complex loadings on a rotary-die press. Physicochemical interactions were studied under ICH guideline conditions and using the Gordon-Taylor equation. Sorption and desorption were determined to investigate the influence of moisture and temperature on the complex and related to stability tests under accelerated conditions. Naproxen release from the drug-polyelectrolyte complex is triggered by electrolyte concentration. Depending on the complex loading, phosphate buffer pH 6.8 stimulated a biphasic dissolution profile of the produced double-layer tablets: immediate release from the first layer with 65% loading and prolonged release from the second layer within 24 h (98.5% loading). XRPD patterns proved pseudopolymorphism for tablets containing the pure drug under common storage conditions whereas the drug-complex was stable in the amorphous state. Drug-polyelectrolyte complexes enable tailor-made dissolution profiles of solid dosage forms by electrolyte stimulation and increase stability under common storage conditions.

  20. A preliminary study on the potency of nanofluids as the electro-active materials for nanoelectrofuel flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristiawan, B., E-mail: budi-k@uns.ac.id; Wijayanta, A. T., E-mail: agungtw@uns.ac.id; Juwana, W. E., E-mail: wibawa.ej@gmail.com

    2016-03-29

    This study presents a characterization of nanofluids as electroactive materials with dispersing metal oxide nanoparticles into aqueous polyelectrolytes of 20 wt.%, in particular, their electrochemical activites. The fundamental characterizations including X-ray diffraction, transmission electron microscopy, and Fourier ttransform iinfrared measurement were performed to ensure metal oxide component used in this work. Alumina (Al{sub 2}O{sub 3}) and copper oxide (CuO) nanoparticles of 0.5 vol.% in volume fraction were dispersed into Poly(diallyldimethylammonium chloride) solution (PDADMAC) and Poly(sodium 4-styrenesulfonate) (PSS), respectively. Alumina and copper oxide nanoparticles were dispersed into ionic solution with volume fraction of 0.5 vol.% by using two-step method. The generalmore » cyclic voltammetry measurement was used to analyze electrochemical behavior within three-electrode cell setup. The results show that PSS-based nanofluids demonstrate redox process. However, unclearly redox phenomenon was depicted PDADMAC-based nanofluids. Dispersing nanoparticles could shift pure ionic solution’s cyclic profile. It is clear that a significant impact on electrochemical behavior can be provided because of the existence metal oxide nanoparticles into polyelectrolyte solution.« less

  1. Self-assembled virus-membrane complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlatedmore » arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.« less

  2. Novel polyelectrolyte complex based carbon nanotube composite architectures

    NASA Astrophysics Data System (ADS)

    Razdan, Sandeep

    This study focuses on creating novel architectures of carbon nanotubes using polyelectrolytes. Polyelectrolytes are unique polymers possessing resident charges on the macromolecular chains. This property, along with their biocompatibility (true for most polymers used in this study) makes them ideal candidates for a variety of applications such as membranes, drug delivery systems, scaffold materials etc. Carbon nanotubes are also unique one-dimensional nanoscale materials that possess excellent electrical, mechanical and thermal properties owing to their small size, high aspect ratio, graphitic structure and strength arising from purely covalent bonds in the molecular structure. The present study tries to investigate the synthesis processes and material properties of carbon nanotube composites comprising of polyelectrolyte complexes. Carbon nanotubes are dispersed in a polyelectrolyte and are induced into taking part in a complexation process with two oppositely charged polyelectrolytes. The resulting stoichiometric precipitate is then drawn into fiber form and dried as such. The material properties of the carbon nanotube fibers were characterized and related to synthesis parameters and material interactions. Also, an effort was made to understand and predict fiber morphology resulting from the complexation and drawing process. The study helps to delineate the synthesis and properties of the said polyelectrolyte complex-carbon nanotube architectures and highlights useful properties, such as electrical conductivity and mechanical strength, which could make these structures promising candidates for a variety of applications.

  3. Adsorption of nonuniformly charged fullerene-like nanoparticles on planar polyelectrolyte brushes in aqueous solutions.

    PubMed

    Hu, Yiyu; Cao, Dapeng

    2009-05-05

    On the basis of the coarse grained model, we investigated the adsorption of nonuniformly charged fullerene-like nanoparticles on planar polyelectrolyte brushes (PEBs) in aqueous solution by using Brownian dynamics simulation. It is found that the electroneutral nanoparticles can be adsorbed by the PEB, which is attributed to the asymmetrical electrostatic interactions of the PEB with the positively charged sites and negatively charged sites of the fullerene-like nanoparticles. The simulation results indicated that the adsorption amount exhibits non-monotonic behavior with the dipole moment of nanoparticles. First, the adsorption amount increases with the dipole moment and then reaches the maximum at the dipole moment of micro = 10.45. Finally, the adsorption falls at the dipole moment of micro = 14.39. The reason may be that, at the extremely large dipole moment of micro = 14.39, the fullerene-like nanoparticles aggregate together to form a big cluster in the bulk phase, which can be confirmed by the extremely high peak in the radial distribution function between nanoparticles. Accordingly, it is difficult for nanoparticles to enter into the PEB at the dipole moment of micro = 14.39. In addition, it is also found that the brush grafting density is an important factor affecting the brush thickness.

  4. Silica Encapsulation of Ferrimagnetic Zinc Ferrite Nanocubes Enabled by Layer-by-layer Polyelectrolyte Deposition

    PubMed Central

    Park, Jooneon; Porter, Marc D.; Granger, Michael C.

    2016-01-01

    Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, due to the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, i.e., >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σs ~100 emu/g, m~4×10−13 emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrene sulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented. PMID:25756216

  5. Nanoengineered capsules for selective SERS analysis of biological samples

    NASA Astrophysics Data System (ADS)

    You, Yil-Hwan; Schechinger, Monika; Locke, Andrea; Coté, Gerard; McShane, Mike

    2018-02-01

    Metal nanoparticles conjugated with DNA oligomers have been intensively studied for a variety of applications, including optical diagnostics. Assays based on aggregation of DNA-coated particles in proportion to the concentration of target analyte have not been widely adopted for clinical analysis, however, largely due to the nonspecific responses observed in complex biofluids. While sample pre-preparation such as dialysis is helpful to enable selective sensing, here we sought to prove that assay encapsulation in hollow microcapsules could remove this requirement and thereby facilitate more rapid analysis on complex samples. Gold nanoparticle-based assays were incorporated into capsules comprising polyelectrolyte multilayer (PEMs), and the response to small molecule targets and larger proteins were compared. Gold nanoparticles were able to selectively sense small Raman dyes (Rhodamine 6G) in the presence of large protein molecules (BSA) when encapsulated. A ratiometric based microRNA-17 sensing assay exhibited drastic reduction in response after encapsulation, with statistically-significant relative Raman intensity changes only at a microRNA-17 concentration of 10 nM compared to a range of 0-500 nM for the corresponding solution-phase response.

  6. Diffusion of Sites versus Polymers in Polyelectrolyte Complexes and Multilayers.

    PubMed

    Fares, Hadi M; Schlenoff, Joseph B

    2017-10-18

    It has long been assumed that the spontaneous formation of materials such as complexes and multilayers from charged polymers depends on (inter)diffusion of these polyelectrolytes. Here, we separately examine the mass transport of polymer molecules and extrinsic sites-charged polyelectrolyte repeat units balanced by counterions-within thin films of polyelectrolyte complex, PEC, using sensitive isotopic labeling techniques. The apparent diffusion coefficients of these sites within PEC films of poly(diallyldimethylammonium), PDADMA, and poly(styrenesulfonate), PSS, are at least 2 orders of magnitude faster than the diffusion of polyelectrolytes themselves. This is because site diffusion requires only local rearrangements of polyelectrolyte repeat units, placing far fewer kinetic limitations on the assembly of polyelectrolyte complexes in all of their forms. Site diffusion strongly depends on the salt concentration (ionic strength) of the environment, and diffusion of PDADMA sites is faster than that of PSS sites, accounting for the asymmetric nature of multilayer growth. Site diffusion is responsible for multilayer growth in the linear and into the exponential regimes, which explains how PDADMA can mysteriously "pass through" layers of PSS. Using quantitative relationships between site diffusion coefficient and salt concentration, conditions were identified that allowed the diffusion length to always exceed the film thickness, leading to full exponential growth over 3 orders of magnitude thickness. Both site and polymer diffusion were independent of molecular weight, suggesting that ion pairing density is a limiting factor. Polyelectrolyte complexes are examples of a broader class of dynamic bulk polymeric materials that (self-) assemble via the transport of cross-links or defects rather than actual molecules.

  7. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP)more » with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  8. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  9. Influence of Hydrophobicity on Polyelectrolyte Complexation

    DOE PAGES

    Sadman, Kazi; Wang, Qifeng; Chen, Yaoyao; ...

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low-viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials, their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture, it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) withmore » methyl, ethyl, and propyl substituents—thereby increasing the hydrophobicity with increasing side chain length—and complexing them with a common anionic polyelectrolyte, poly(styrenesulfonate). The mechanical behavior of these complexes is compared to the more hydrophilic system of poly(styrenesulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling–modulus master curves that are quantified in this work. Furthermore, the rheological behaviors of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.« less

  10. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro Jose; Goicoechea, Javier; Urrutia, Aitor; Matias, Ignacio Raul; Arregui, Francisco Javier

    2013-10-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs.

  11. Multicolor Layer-by-Layer films using weak polyelectrolyte assisted synthesis of silver nanoparticles

    PubMed Central

    2013-01-01

    In the present study, we show that silver nanoparticles (AgNPs) with different shape, aggregation state and color (violet, green, orange) have been successfully incorporated into polyelectrolyte multilayer thin films using the layer-by-layer (LbL) assembly. In order to obtain colored thin films based on AgNPs is necessary to maintain the aggregation state of the nanoparticles, a non-trivial aspect in which this work is focused on. The use of Poly(acrylic acid, sodium salt) (PAA) as a protective agent of the AgNPs is the key element to preserve the aggregation state and makes possible the presence of similar aggregates (shape and size) within the LbLcolored films. This approach based on electrostatic interactions of the polymeric chains and the immobilization of AgNPs with different shape and size into the thin films opens up a new interesting perspective to fabricate multicolornanocomposites based on AgNPs. PMID:24148227

  12. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    PubMed Central

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging. PMID:28091590

  13. High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones

    NASA Astrophysics Data System (ADS)

    Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto

    2017-01-01

    Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging.

  14. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  15. Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.

    PubMed

    Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang

    2015-02-07

    In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.

  16. Top-down and Bottom-up Approaches in Production of Aqueous Nanocolloids of Low Soluble Drug Paclitaxel

    PubMed Central

    Pattekari, P.; Zheng, Z.; Zhang, X.; Levchenko, T.; Torchilin, V.

    2015-01-01

    Nano-encapsulation of poorly soluble anticancer drug was developed with sonication assisted layer-by-layer polyelectrolyte coating (SLbL). We changed the strategy of LbL-encapsulation from making microcapsules with many layers in the walls for encasing highly soluble materials to using very thin polycation / polyanion coating on low soluble nanoparticles to provide their good colloidal stability. SLbL encapsulation of paclitaxel resulted in stable 100-200 nm diameter colloids with high electrical surface ξ-potential (of -45 mV) and drug content in the nanoparticles of 90 wt %. In the top-down approach, nanocolloids were prepared by rupturing powder of paclitaxel using ultrasonication and simultaneous sequential adsorption of oppositely charged biocompatible polyelectrolytes. In the bottom-up approach paclitaxel was dissolved in organic solvent (ethanol or acetone), and drug nucleation was initiated by gradual worsening the solution with the addition of aqueous polyelectrolyte assisted by ultrasonication. Paclitaxel release rates from such nanocapsules were controlled by assembling multilayer shells with variable thicknesses and are in the range of 10-20 hours. PMID:21442095

  17. Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules.

    PubMed

    Parakhonskiy, Bogdan V; Yashchenok, Alexey M; Konrad, Manfred; Skirtach, Andre G

    2014-05-01

    Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The evolution of cyclopropenium ions into functional polyelectrolytes

    PubMed Central

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.

    2015-01-01

    Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes. PMID:25575214

  19. The evolution of cyclopropenium ions into functional polyelectrolytes

    DOE PAGES

    Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; ...

    2015-01-09

    We report that versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion.We demonstrate the facile synthesis of a series ofmore » polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. In conclusion, the materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.« less

  20. Metal nanoparticle inks

    DOEpatents

    Lewis, Jennifer A [Urbana, IL; Ahn, Bok Yeop [Champaign, IL; Duoss, Eric B [Urbana, IL

    2011-04-12

    Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.

  1. Nanoparticle modification by weak polyelectrolytes for pH-sensitive pickering emulsions.

    PubMed

    Haase, Martin F; Grigoriev, Dmitry; Moehwald, Helmuth; Tiersch, Brigitte; Shchukin, Dmitry G

    2011-01-04

    The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte.

  2. Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix

    DOE PAGES

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; ...

    2017-09-18

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less

  3. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify the surface of SiCWs to further investigate the epoxy nanocomposite system. The process of composites formation was studied to evaluate the effects of the surface modification on the epoxy curing reaction. The obtained composites were tested and analyzed to assess their thermal and thermo-mechanical properties. These properties were related to the dispersion and surface chemical composition of the fillers in the nanocomposites. It was determined that magnetically modified SiCWs have lower ability for interfacial stress transfer in the composite systems under consideration. The final portion of this work was focused on reinforcing the magnetic layer of the SiCWs. This was accomplished by structurally toughening the magnetic layer with poly(glycidyl methacrylate) (PGMA) layer. As a result, the thermal and mechanical properties of the magnetic composite system were improved significantly.

  4. Nanoparticle uptake and their co-localization with cell compartments - a confocal Raman microscopy study at single cell level

    NASA Astrophysics Data System (ADS)

    Estrela-Lopis, I.; Romero, G.; Rojas, E.; Moya, S. E.; Donath, E.

    2011-07-01

    Confocal Raman Microscopy, a non-invasive, non-destructive and label-free technique, was employed to study the uptake and localization of nanoparticles (NPs) in the Hepatocarcinoma human cell line HepG2 at the level of single cells. Cells were exposed to carbon nanotubes (CNTs) the surface of which was engineered with polyelectrolytes and lipid layers, aluminium oxide and cerium dioxide nanoparticles. Raman spectra deconvolution was applied to obtain the spatial distributions of NPs together with lipids/proteins in cells. The colocalization of the NPs with different intracellular environments, lipid bodies, protein and DNA, was inferred. Lipid coated CNTs associated preferentially with lipid rich regions, whereas polyelectrolyte coated CNTs were excluded from lipid rich regions. Al2O3 NPs were found in the cytoplasm. CeO2 NPs were readily taken up and have been observed all over the cell. Raman z-scans proved the intracellular distribution of the respective NPs.

  5. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    PubMed Central

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  6. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    PubMed

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  7. Biosensors from conjugated polyelectrolyte complexes

    PubMed Central

    Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.

    2002-01-01

    A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675

  8. Surface analysis monitoring of polyelectrolyte deposition on Ba 0.5Sr 0.5TiO 3 thin films

    NASA Astrophysics Data System (ADS)

    Morales-Cruz, Angel L.; Fachini, Estevão R.; Miranda, Félix A.; Cabrera, Carlos R.

    2007-09-01

    Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in Fig. 1. The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and atomic force microscopy (AFM). The surface analysis results are presented through the adsorption steps of the polyelectrolytes layer by layer.

  9. Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization.

    PubMed

    Braz, Luis; Grenha, Ana; Ferreira, Domingos; Rosa da Costa, Ana M; Gamazo, Carlos; Sarmento, Bruno

    2017-03-01

    This work proposes the design of nanoparticles based on locus bean gum (LBG) and chitosan to be used as oral immunoadjuvant for vaccination purposes. LBG-based nanoparticles were prepared by mild polyelectrolyte complexation between chitosan (CS) and a synthesized LBG sulfate derivative (LBGS). Morphological characterization suggested that nanoparticles present a solid and compact structure with spherical-like shape. Sizes around 180-200nm and a positive surface charge between +9mV and +14mV were obtained. CS/LBGS nanoparticles did not affect cell viability of Caco-2 cells after 3h and 24h of exposure when tested at concentrations up to 1.0mg/mL. Two model antigens (a particulate acellular extract HE of Salmonella enterica serovar Enteritidis, and ovalbumin as soluble antigen) were associated to CS/LBGS nanoparticles with efficiencies around 26% for ovalbumin and 32% for HE, which resulted in loading capacities up to 12%. The process did not affect the antigenicity of the associated antigens. BALB/c mice were orally immunized with ovalbumin-loaded nanoparticles (100μg), and results indicate an adjuvant effect of the CS/LBGS nanoparticles, eliciting a balanced Th1/Th2 immune response. Thus, CS/LBGS nanoparticles are promising as antigen mucosal delivery strategy, with particular interest for oral administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.

    PubMed

    Chai, Fujuan; Sun, Linlin; He, Xinyi; Li, Jieli; Liu, Yuanfen; Xiong, Fei; Ge, Liang; Webster, Thomas J; Zheng, Chunli

    2017-01-01

    Natural polyelectrolyte multilayers of chitosan (CHI) and alginate (ALG) were alternately deposited on doxorubicin (DOX)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with layer by layer self-assembly to control drug release for antitumor activity. Numerous factors which influenced the multilayer growth on nano-colloidal particles were studied: polyelectrolyte concentration, NaCl concentration and temperature. Then the growth regime of the CHI/ALG multilayers was elucidated. The coated NPs were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction and a zeta potential analyzer. In vitro studies demonstrated an undesirable initial burst release of DOX-loaded PLGA NPs (DOX-PLGA NPs), which was relieved from 55.12% to 5.78% through the use of the layer by layer technique. The release of DOX increased more than 40% as the pH of media decreased from 7.4 to 5.0. More importantly, DOX-PLGA (CHI/ALG) 3 NPs had superior in vivo tumor inhibition rates at 83.17% and decreased toxicity, compared with DOX-PLGA NPs and DOX in solution. Thus, the presently formulated PLGA-polyelectrolyte NPs have strong potential applications for numerous controlled anticancer drug release applications.

  11. Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug

    PubMed Central

    Vannozzi, Lorenzo; Ricotti, Leonardo; Filippeschi, Carlo; Sartini, Stefania; Coviello, Vito; Piazza, Vincenzo; Pingue, Pasqualantonio; La Motta, Concettina; Dario, Paolo; Menciassi, Arianna

    2016-01-01

    This work aims to demonstrate the possibility to fabricate ultra-thin polymeric films loaded with an anti-restenotic drug and capable of tunable drug release kinetics for the local treatment of restenosis. Vascular nanopatches are composed of a poly(lactic acid) supporting membrane (thickness: ~250 nm) on which 20 polyelectrolyte bilayers (overall thickness: ~70 nm) are alternatively deposited. The anti-restenotic drug is embedded in the middle of the polyelectrolyte structure, and released by diffusion mechanisms. Nanofilm fabrication procedure and detailed morphological characterization are reported here. Barium titanate nanoparticles (showing piezoelectric properties) are included in the polymeric support and their role is investigated in terms of influence on nanofilm morphology, drug release kinetics, and cell response. Results show an efficient drug release from the polyelectrolyte structure in phosphate-buffered saline, and a clear antiproliferative effect on human smooth muscle cells, which are responsible for restenosis. In addition, preliminary evidences of ultrasound-mediated modulation of drug release kinetics are reported, thus evaluating the influence of barium titanate nanoparticles on the release mechanism. Such data were integrated with quantitative piezoelectric and thermal measurements. These results open new avenues for a fine control of local therapies based on smart responsive materials. PMID:26730191

  12. Nanostructured multilayer thin films of multiwalled carbon nanotubes/gold nanoparticles/glutathione for the electrochemical detection of dopamine

    NASA Astrophysics Data System (ADS)

    Detsri, Ekarat; Rujipornsakul, Sirilak; Treetasayoot, Tanapong; Siriwattanamethanon, Pawarit

    2016-10-01

    In the present study, multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs), and glutathione (GSH) were used to fabricate multilayer nanoscale thin films. The composite thin films were fabricated by layer-by-layer technique as the films were constructed by the alternate deposition of cationic and anionic polyelectrolytes. The MWCNTs were modified via a noncovalent surface modification method using poly(diallydimethylammonium chloride) to form a cationic polyelectrolyte. An anionic polyelectrolyte was prepared by the chemical reduction of HAuCl4 using sodium citrate as both the stabilizing and reducing agent to form anionic AuNPs. GSH was used as an electrocatalyst toward the electro-oxidation of dopamine. The constructed composite electrode exhibits excellent electrocatalytic activity toward dopamine with a short response time and a wide linear range from 1 to 100 μmol/L. The limits of detection and quantitation of dopamine are (0.316 ± 0.081) μmol/L and (1.054 ± 0.081) μmol/L, respectively. The method is satisfactorily applied for the determination of dopamine in plasma and urine samples to obtain the recovery in the range from 97.90% to 105.00%.

  13. Self-assembled carrageenan/protamine polyelectrolyte nanoplexes-Investigation of critical parameters governing their formation and characteristics.

    PubMed

    Dul, Maria; Paluch, Krzysztof J; Kelly, Hazel; Healy, Anne Marie; Sasse, Astrid; Tajber, Lidia

    2015-06-05

    The aim of this work was to investigate the feasibility of cross-linker free polyelectrolyte complex formation at the nanoscale between carrageenan (CAR) and protamine (PROT). The properties of CAR/PROT nanoparticles (NPs) were dependent on the carrageenan type: kappa (KC), iota (IC) and lambda (LC), concentration of components, addition of divalent cations, weight mixing ratio (WMR) of constituents and mode of component addition. In the case of 0.1% w/v solutions, IC-based NPs had the smallest particle sizes (100-150nm) and low polydispersity indices (0.1-0.4). A decrease in the solution concentration from 0.1% to 0.05% w/v enabled the formation of KC/PROT NPs. All carrageenans exhibited the ability to form NPs with surface charge ranging from -190 to 40mV. The inclusion of divalent cations caused an increase in the particle size and zeta potential. Infrared analysis confirmed the presence of a complex between CAR and PROT and showed that IC chains undergo structural changes when forming NPs. Colloidal stability of NPs was related to the initial surface charge of particles and was time- and pH-dependent. IC was found to be the most suitable type of CAR when forming nanoplexes with PROT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Magnetically aligned nanodomains: application in high-performance ion conductive membranes.

    PubMed

    Hasani-Sadrabadi, Mohammad Mahdi; Majedi, Fatemeh Sadat; Coullerez, Géraldine; Dashtimoghadam, Erfan; VanDersarl, Jules John; Bertsch, Arnaud; Moaddel, Homayoun; Jacob, Karl I; Renaud, Philippe

    2014-05-28

    Polyelectrolyte-coated magnetic nanoparticles were prepared by decorating the surface of superparamagnetic iron oxide nanoparticles (SPIONs) with crosslinked chitosan oligopolysaccharide (CS). These positively charged particles (CS-SPIONs) were then added to a negatively charged polymer (Nafion), and cast into membranes under an applied magnetic field. TEM and SAXS measurements confirmed this process created aligned, cylindrical nanodomains in the membranes. This was also indirectly confirmed by proton conductivity values. The strong electrostatic interaction between chitosan and Nafion prevented oxygen permeability and water evaporation at elevated temperatures through the proton conductive channels. The resultant proton exchange membranes showed lower conduction dependency to relative humidity, which is highly desirable for hydrogen fuel cells. The fuel cell performance tests were performed on the designed polyelectrolyte membrane by hydrogen-oxygen single cells at elevated temperature (120 °C) and low relative humidity.

  15. Layer-by-Layer Self-Assembly of Plexcitonic Nanoparticles

    DTIC Science & Technology

    2013-08-12

    nitrate , trisodium citrate tribasic dihydrate, sodium poly(styrene sulfonate) (PSS, MW ~70,000), poly(diallyldimethyl ammonium chloride ) (PDADMAC...Abstract: Colloidal suspensions of multilayer nanoparticles composed of a silver core, a polyelectrolyte spacer layer (inner shell), and a J-aggregate...multilayer architecture served as a framework for examining the coupling of the localized surface plasmon resonance exhibited by the silver core with

  16. Surface colonized silver nano particles over chitosan poly-electrolyte micro-spheres and their multi-functional behavior

    NASA Astrophysics Data System (ADS)

    Prakash, B.; Asha, S.; Nimrodh Ananth, A.; Vanithakumari, G.; Okram, G. S.; Jose, Sujin P.; Jothi Rajan, M. A.

    2018-02-01

    Chitosan/tripolyphosphate polyelectrolyte (TPP) microspheres, decorated and surface functionalized with silver nanoparticles (NPs) of average diameter of 15 nm, were synthesized following a simple two-step procedure. These Ag NP-functionalized polyelectrolyte microspheres (Ag-CSPMs) are found to be biocompatible and enhancing the reactive oxygen species in curcumin with excellent anti-bacterial activity for selected Gram-positive and negative bacterial strains, making them much attractive relative to bare surface counterparts; the well-stabilized silver NPs do not form any agglomerations on the surface of the chitosan microspheres. They also show excellent cytotoxic behavior towards MCF7 cell lines, showing a half-maximal inhibitory concentration (IC50) of 32 μg ml-1. Therefore, Ag-CSPMs exhibit multi-functional ability having potential towards theranostics applications.

  17. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  18. Biocolloids with ordered urease multilayer shells as enzymatic reactors.

    PubMed

    Lvov, Y; Caruso, F

    2001-09-01

    The preparation of biocolloids with organized enzyme-containing multilayer shells for exploitation as colloidal enzymatic nanoreactors is described. Urease multilayers were assembled onto submicrometer-sized polystyrene spheres by the sequential adsorption of urease and polyelectrolyte, in a predetermined order, utilizing electrostatic interactions for layer growth. The catalytic activity of the biocolloids increased proportionally with the number of urease layers deposited on the particles, demonstrating that biocolloid particles with tailored enzymatic activities can be produced. It was further found that precoating the latex spheres with nanoparticles (40-nm silica or 12-nm magnetite) enhanced both the stability (with respect to adsorption) and enzymatic activity of the urease multilayers. The presence of the magnetite nanoparticle coating also provided a magnetic function that allowed the biocolloids to be easily and rapidly separated with a permanent magnet. The fabrication of such colloids opens new avenues for the application of bioparticles and represents a promising route for the creation of complex catalytic particles.

  19. Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles

    PubMed Central

    Kuo, Cheng-Hsiang; Leon, Lorraine; Chung, Eun Ji; Huang, Ru-Ting; Sontag, Timothy J.; Reardon, Catherine A.; Getz, Godfrey S.; Tirrell, Matthew; Fang, Yun

    2015-01-01

    Polyelectrolyte complex micelles have great potential as gene delivery vehicles because of their ability to encapsulate charged nucleic acids forming a core by neutralizing their charge, while simultaneously protecting the nucleic acids from non-specific interactions and enzymatic degradation. Furthermore, to enhance specificity and transfection efficiency, polyelectrolyte complex micelles can be modified to include targeting capabilities. Here, we describe the design of targeted polyelectrolyte complex micelles containing inhibitors against dys-regulated microRNAs (miRNAs) that promote atherosclerosis, a leading cause of human mortality and morbidity. Inhibition of dys-regulated miRNAs in diseased cells associated with atherosclerosis has resulted in therapeutic efficacy in animal models and has been proposed to treat human diseases. However, the non-specific targeting of microRNA inhibitors via systemic delivery has remained an issue that may cause unwanted side effects. For this reason, we incorporated two different peptide sequences to our miRNA inhibitor containing polyelectrolyte complex micelles. One of the peptides (Arginine-Glutamic Acid-Lysine-Alanine or REKA) was used in another micellar system that demonstrated lesion-specific targeting in a mouse model of atherosclerosis. The other peptide (Valine-Histidine-Proline-Lysine-Glutamine-Histidine-Arginine or VHPKQHR) was identified via phage display and targets vascular endothelial cells through the vascular cell adhesion molecule-1 (VCAM-1). In this study we have tested the in vitro efficacy and efficiency of lesion- and cell-specific delivery of microRNA inhibitors to the cells associated with atherosclerotic lesions via peptide-targeted polyelectrolyte complex micelles. Our results show that REKA-containing micelles (fibrin-targeting) and VHPKQHR-containing micelles (VCAM-1 targeting) can be used to carry and deliver microRNA inhibitors into macrophages and human endothelial cells, respectively. Additionally, the functionality of miRNA inhibitors in cells was demonstrated by analyzing miRNA expression as well as the expression or the biological function of its downstream target protein. Our study provides the first demonstration of targeting dys-regulated miRNAs in atherosclerosis using targeted polyelectrolyte complex micelles and holds promising potential for translational applications. PMID:25685357

  20. Nanoparticle missiles from exploding polyelectrolyte capsules.

    PubMed

    Dähne, Lars

    2009-01-01

    Out with a bang! Microcapsules have been prepared which, as a result of an explosion triggered by an external stimulus, distribute nanoparticles throughout the local environment both efficiently and rapidly (see picture). In this way a principle found in nature for the dispersal of seeds and defensive materials has now been realized in nanotechnology and might be utilized, for example, for the better distribution of drugs in organs.

  1. Fluorescent Biosensor for Phosphate Determination Based on Immobilized Polyfluorene-Liposomal Nanoparticles Coupled with Alkaline Phosphatase.

    PubMed

    Kahveci, Zehra; Martínez-Tomé, Maria José; Mallavia, Ricardo; Mateo, C Reyes

    2017-01-11

    This work describes the development of a novel fluorescent biosensor based on the inhibition of alkaline phosphatase (ALP). The biosensor is composed of the enzyme ALP and the conjugated cationic polyfluorene HTMA-PFP. The working principle of the biosensor is based on the fluorescence quenching of this polyelectrolyte by p-nitrophenol (PNP), a product of the hydrolysis reaction of p-nitrophenyl phosphate (PNPP) catalyzed by ALP. Because HTMA-PFP forms unstable aggregates in buffer, with low fluorescence efficiency, previous stabilization of the polyelectrolyte was required before the development of the biosensor. HTMA-PFP was stabilized through its interaction with lipid vesicles to obtain stable blue-emitting nanoparticles (NPs). Fluorescent NPs were characterized, and the ability to be quenched by PNP was evaluated. These nanoparticles were coupled to ALP and entrapped in a sol-gel matrix to produce a biosensor that can serve as a screening platform to identify ALP inhibitors. The components of the biosensor were examined before and after sol-gel entrapment, and the biosensor was optimized to allow the determination of phosphate ion in aqueous medium.

  2. Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers.

    PubMed

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-14

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications.

  3. Methods for functionalization of microsized polystyrene beads with titania nanoparticles for cathodic electrophoretic deposition.

    PubMed

    Radice, S; Kern, P; Dietsch, H; Mischler, S; Michler, J

    2008-02-15

    Functionalization of colloidal particles based on the use of polyelectrolytes and heterocoagulation was combined with electrophoretic deposition (EPD), with the aim of depositing titania-polystyrene (TiO(2)-PS) composite particles on Ti6Al4V substrates. The composite particles were obtained by heterocoagulation of TiO(2) nanoparticles on the surface of monosized polystyrene beads of 4.6 microm in diameter. Two alternative methods were developed for the preparation of the TiO(2)-PS suspensions in organic fluids for cathodic electrodeposition. The first method was carried out in alkaline aqueous medium with the use of polyelectrolytes and intermediate control measurements of zeta potential, conductivity, and pH; the second one was carried out directly in the organic solvent used for EPD, typically isopropanol. Examples of deposits obtained by EPD in both suspensions and a comparative analysis between the two methods are presented.

  4. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  5. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  6. Size, Loading Efficiency, and Cytotoxicity of Albumin-Loaded Chitosan Nanoparticles: An Artificial Neural Networks Study.

    PubMed

    Baharifar, Hadi; Amani, Amir

    2017-01-01

    When designing nanoparticles for drug delivery, many variables such as size, loading efficiency, and cytotoxicity should be considered. Usually, smaller particles are preferred in drug delivery because of longer blood circulation time and their ability to escape from immune system, whereas smaller nanoparticles often show increased toxicity. Determination of parameters which affect size of particles and factors such as loading efficiency and cytotoxicity could be very helpful in designing drug delivery systems. In this work, albumin (as a protein drug model)-loaded chitosan nanoparticles were prepared by polyelectrolyte complexation method. Simultaneously, effects of 4 independent variables including chitosan and albumin concentrations, pH, and reaction time were determined on 3 dependent variables (i.e., size, loading efficiency, and cytotoxicity) by artificial neural networks. Results showed that concentrations of initial materials are the most important factors which may affect the dependent variables. A drop in the concentrations decreases the size directly, but they simultaneously decrease loading efficiency and increase cytotoxicity. Therefore, an optimization of the independent variables is required to obtain the most useful preparation. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Methods, compositions and kits for imaging cells and tissues using nanoparticles and spatial frequency heterodyne imaging

    DOEpatents

    Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian

    2016-04-19

    Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.

  8. Biocompatible Polymeric Nanoparticles as Promising Candidates for Drug Delivery.

    PubMed

    Łukasiewicz, Sylwia; Szczepanowicz, Krzysztof; Błasiak, Ewa; Dziedzicka-Wasylewska, Marta

    2015-06-16

    The use of polymeric nanoparticles (NPs) in pharmacology provides many benefits because this approach can increase the efficacy and selectivity of active compounds. However, development of new nanocarriers requires better understanding of the interactions between NPs and the immune system, allowing for the optimization of NP properties for effective drug delivery. Therefore, in the present study, we focused on the investigation of the interactions between biocompatible polymeric NPs and a murine macrophage cell line (RAW 264.7) and a human monocytic leukemia cell line (THP-1). NPs based on a liquid core with polyelectrolyte shells were prepared by sequential adsorption of polyelectrolytes (LbL) using AOT (docusate sodium salt) as the emulsifier and the biocompatible polyelectrolytes polyanion PGA (poly-l-glutamic acid sodium salt) and polycation PLL (poly l-lysine). The average size of the obtained NPs was 80 nm. Pegylated external layers were prepared using PGA-g-PEG (PGA grafted by PEG poly(ethylene glycol)). The influence of the physicochemical properties of the NPs (charge, size, surface modification) on viability, phagocytosis potential, and endocytosis was studied. Internalization of NPs was determined by flow cytometry and confocal microscopy. Moreover, we evaluated whether addition of PEG chains downregulates particle uptake by phagocytic cells. The presented results confirm that the obtained PEG-grafted NPs are promising candidates for drug delivery.

  9. Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

    PubMed

    Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn

    2013-07-08

    A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.

  10. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  11. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  12. Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation.

    PubMed

    Kuroiwa, Takashi; Kobayashi, Isao; Chuah, Ai Mey; Nakajima, Mitsutoshi; Ichikawa, Sosaku

    2015-12-01

    This review paper presents an overview of the formulation and functionalization of nano-/microdispersion systems composed of edible materials. We first summarized general aspects on the stability of colloidal systems and the roles of natural polyelectrolytes such as proteins and ionic polysaccharides for the formation and stabilization of colloidal systems. Then we introduced our research topics on (1) stabilization of emulsions by the electrostatic deposition using natural polyelectrolytes and (2) formulation of stable nanodispersion systems by complexation of natural polyelectrolytes. In both cases, the preparation procedures were relatively simple, without high energy input or harmful chemical addition. The properties of the nano-/microdispersion systems, such as particle size, surface charge and dispersion stability were significantly affected by the concerned materials and preparation conditions, including the type and concentration of used natural polyelectrolytes. These dispersion systems would be useful for developing novel foods having high functionality and good stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Polymer mediated layer-by-layer assembly of different shaped gold nanoparticles.

    PubMed

    Budy, Stephen M; Hamilton, Desmond J; Cai, Yuheng; Knowles, Michelle K; Reed, Scott M

    2017-02-01

    Gold nanoparticles (GNPs) have a wide range of properties with potential applications in electronics, optics, catalysis, and sensing. In order to demonstrate that dense, stable, and portable samples could be created for these applications, multiple layers of GNPs were assembled via drop casting on glass substrates by layer-by-layer (LBL) techniques. Two cationic polyelectrolytes, poly(diallyldimethylammonium chloride) and polyethyleneimine, one anionic polyelectrolyte, poly(sodium 4-styrene sulfonate), and one neutral polymer, polyvinylpyrrolidone, were combined with four different shapes of GNPs (spherical, rod, triangular prismatic, and octahedral) to prepare thin films. A subset of these polymer nanoparticle combinations were assembled into thin films. Synthesized GNPs were characterized via dynamic light scattering, UV-vis spectroscopy, and transmission electron microscopy and the LBL thin films were characterized using UV-vis spectroscopy and atomic force microscopy. Sensing applications of the nanoparticles in solution and thin films were tested by monitoring the localized surface plasmon resonance of the GNPs. LBL thin films were prepared ranging from 25 to 100 layers with optical densities at plasmon from 0.5 to 3.0. Sensitivity in solutions ranged from 14 to 1002nm/refractive index units (RIU) and films ranged from 18.8 to 135.1nm/RIU suggesting reduced access to the GNPs within the films. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.

    PubMed

    He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan

    2017-06-01

    Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    NASA Astrophysics Data System (ADS)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via electrostatic interactions. Complex coacervates are highly regarded for their extremely low interfacial energy resulting in an ability to spread and adhere to surfaces under water, utilized by marine organisms (e.g. mussels and tubeworms), as well as many encapsulation applications (e.g. pigment encapsulation for carbon-less paper and electronic paper displays). Here, the interfacial energy of coacervates composed of oppositely charged polypeptides, poly(L-lysine) and poly(L-glutamic acid), was investigated using the SFA in regards to changes in bulk mono-valent salt concentrations.

  16. Coarse-grained simulations of polyelectrolyte complexes: MARTINI models for poly(styrene sulfonate) and poly(diallyldimethylammonium)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vögele, Martin; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt a. M.; Holm, Christian

    2015-12-28

    We present simulations of aqueous polyelectrolyte complexes with new MARTINI models for the charged polymers poly(styrene sulfonate) and poly(diallyldimethylammonium). Our coarse-grained polyelectrolyte models allow us to study large length and long time scales with regard to chemical details and thermodynamic properties. The results are compared to the outcomes of previous atomistic molecular dynamics simulations and verify that electrostatic properties are reproduced by our MARTINI coarse-grained approach with reasonable accuracy. Structural similarity between the atomistic and the coarse-grained results is indicated by a comparison between the pair radial distribution functions and the cumulative number of surrounding particles. Our coarse-grained models aremore » able to quantitatively reproduce previous findings like the correct charge compensation mechanism and a reduced dielectric constant of water. These results can be interpreted as the underlying reason for the stability of polyelectrolyte multilayers and complexes and validate the robustness of the proposed models.« less

  17. Employment of Gibbs-Donnan-based concepts for interpretation of the properties of linear polyelectrolyte solutions

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1991-01-01

    Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.

  18. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  19. Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2014-03-01

    Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.

  20. Multifunctional Fe3O4@SiO2-Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes.

    PubMed

    Sun, Zhenli; Du, Jingjing; Yan, Li; Chen, Shu; Yang, Zhilin; Jing, Chuanyong

    2016-02-10

    Nanofabrication of multifunctional surface-enhanced Raman scattering (SERS) substrates is strongly desirable but currently remains a challenge. The motivation of this study was to design such a substrate, a versatile core-satellite Fe3O4@SiO2-Au (FA) hetero-nanostructure, and demonstrate its use for charge-selective detection of food dye molecules as an exemplary application. Our experimental results and three-dimensional finite difference time domain (FDTD) simulation suggest that tuning the Au nanoparticle (NP) gap to sub-10 nm, which could be readily accomplished, substantially enhanced the Raman signals. Further layer-by-layer deposition of a charged polyelectrolyte on this magnetic SERS substrate induced active adsorption and selective detection of food dye molecules of opposite charge on the substrates. Molecular dynamics (MD) simulations suggest that the selective SERS enhancement could be attributed to the high affinity and close contact (within a 20 Å range) between the substrate and molecules. Density function theory (DFT) calculations confirm the charge transfer from food dye molecules to Au NPs via the polyelectrolytes. This multifunctional SERS platform provides easy separation and selective detection of charged molecules from complex chemical mixtures.

  1. Interpolymer complexation: comparisons of bulk and interfacial structures.

    PubMed

    Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W

    2015-04-14

    The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.

  2. Particles decorated by an ionizable thermoresponsive polymer brush in water: experiments and self-consistent field modeling.

    PubMed

    Alves, S P C; Pinheiro, J P; Farinha, J P S; Leermakers, F A M

    2014-03-20

    We have synthesized anionic multistimuli responsive core-shell polymer nanoparticles with low size dispersity composed of glassy poly(methyl methacrylate) (PMMA) cores of ca. 40 nm radius and poly(N-isopropylacrylamide) (PNIPAM) anionic brush-like shells with methacrylic acid comonomers. Using dynamic light scattering, we observed a volume phase transition upon an increase in temperature and this response was pH and ionic strength dependent. Already at room temperature we observed a pronounced polyelectrolyte effect, that is, a shift of the apparent pKa extracted from the degree of dissociation of the acids as a function of the pH. The multiresponsive behavior of the hydrophobic polyelectrolyte brush has been modeled using the Scheutjens-Fleer self-consistent field (SF-SCF) approach. Using a phenomenological relation between the Flory-Huggins χ parameter and the temperature, we confront the predicted change in the brush height with the observed change of the hydrodynamic radius and degree of dissociation and obtain estimates for the average chain lengths (number of Kuhn segments) of the corona chains, the grafting density and charge density distributions. The theory reveals a rich internal structure of the hydrophobic polyelectrolyte brush, especially near the collapse transition, where we find a microphase segregated structure. Considering this complexity, it is fair to state that the theoretical predictions follow the experimental data semiquantitatively, and it is attractive to attribute the observed disparity between theory and experiments to the unknown polydispersity of the chains, the unknown distribution of the charges, or other experimental complications. More likely, however, the deviations point to significant problems of the mean field theory, which focuses solely on the radial distributions and ignores the possibility of the formation of lateral (local) inhomogeneities in partially collapsed polyelectrolyte brushes. We argue that the PNIPAM brush at room temperature is already behaving nonideally.

  3. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    PubMed

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  4. Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration.

    PubMed

    Shovsky, Alexander; Varga, Imre; Makuska, Ricardas; Claesson, Per M

    2009-06-02

    The formation of complexes with stoichiometric (1:1) as well as nonstoichiometric (2:1) and (1:2) compositions between oppositely charged synthetic polyelectrolytes carrying strong ionic groups and significantly different molecular weights is reported in this contribution. Poly(sodium styrenesulfonate) (NaPSS) was used as polyanion, and a range of copolymers with various molar ratios of the poly(methacryloxyethyltrimethylammonium) chloride, poly(METAC), and the nonionic poly(ethylene oxide) ether methacrylate, poly(PEO45MEMA), were used as polycations. Formation and stability of PECs have been investigated by dynamic and static light scattering (LS), turbidity, and electrophoretic mobility measurements as a function of polyelectrolyte solution concentration, charge density of the cationic polyelectrolyte, and mixing ratio. The data obtained demonstrate that in the absence of PEO45 side chains the 100% charged polymer (polyMETAC) formed insoluble PECs with PSS that precipitate from solution when exact stoichiometry is achieved. In nonstoichiometric complexes (1:2) and (2:1) large colloidally stable aggregates were formed. The presence of even a relatively small amount of PEO45 side chains (25%) in the cationic copolymer was sufficient for preventing precipitation of the formed stoichiometric and nonstoichiometric complexes. These PEC's are sterically stabilized by the PEO45 chains. By further increasing the PEO45 side-chain content (50 and 75%) of the cationic copolymer, small, water-soluble molecular complexes could be formed. The data suggest that PSS molecules and the charged backbone of the cationic brush form a compact core, and with sufficiently high PEO45 chain density (above 25%) molecular complexes are formed that are stable over prolonged times.

  5. Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, C. Q.; Thio, Y. S.; Gerhardt, R. A.

    2008-12-01

    A new salt-free approach was developed for fabricating conductive paper by layer-by-layer (LBL) assembly of conductive indium tin oxide (ITO) nanoparticles and polyelectrolytes onto wood fibers. Subsequent to the coating procedure, the fibers were manufactured into conductive paper using traditional paper making methods. The wood fibers were first coated with polyethyleneimine (PEI) and then LBL assembled with poly(sodium 4-styrenesulfonate) (PSS) and ITO for several bilayers. The surface charge intensity of both the ITO nanoparticles and the coated wood fibers were evaluated by measuring the ζ-potential of the nanoparticles and short fibers, respectively. The ITO nanoparticles were found to preferentially aggregate on defects on the fiber surfaces and formed interconnected paths, which led to the formation of conductive percolation paths throughout the whole paper. With ten bilayer coatings, the as-made paper was made DC conductive, and its σdc was measured to be 5.2 × 10-6 S cm-1 in the in-plane (IP) direction, while the conductivity was 1.9 × 10-8 S cm-1 in the through-the-thickness (TT) direction. The percolation phenomena in these LBL-assembled ITO-coated paper fibers was evaluated using scanning electron microscopy (SEM), current atomic force microscopy (I-AFM), and impedance measurements. The AC electrical properties are reported for frequencies ranging from 0.01 Hz to 1 MHz. A clear transition from insulating to conducting behavior is observed in the AC conductivity.

  6. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study

    NASA Astrophysics Data System (ADS)

    Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke

    2010-12-01

    In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j

  7. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding.

    PubMed

    Pathak, Jyotsana; Priyadarshini, Eepsita; Rawat, Kamla; Bohidar, H B

    2017-12-01

    In this review, a number of systems are described to demonstrate the effect of polyelectrolyte chain stiffness (persistence length) on the coacervation phenomena, after we briefly review the field. We consider two specific types of complexation/coacervation: in the first type, DNA is used as a fixed substrate binding to flexible polyions such as gelatin A, bovine serum albumin and chitosan (large persistence length polyelectrolyte binding to low persistence length biopolymer), and in the second case, different substrates such as gelatin A, bovine serum albumin, and chitosan were made to bind to a polyion gelatin B (low persistence length substrate binding to comparable persistence length polyion). Polyelectrolyte chain flexibility was found to have remarkable effect on the polyelectrolyte-protein complex coacervation. The competitive interplay of electrostatic versus surface patch binding (SPB) leading to associative interaction followed by complex coacervation between these biopolymers is elucidated. We modelled the SPB interaction in terms of linear combination of attractive and repulsive Coulombic forces with respect to the solution ionic strength. The aforesaid interactions were established via a universal phase diagram, considering the persistence length of polyion as the sole independent variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  9. Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers

    PubMed Central

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications. PMID:25586238

  10. Highly magneto-responsive multilayer microcapsules for controlled release of insulin.

    PubMed

    Zheng, Chunli; Ding, Yafei; Liu, Xiaoqing; Wu, Yunkai; Ge, Liang

    2014-11-20

    In this study, magneto-responsive polyelectrolyte multilayer microcapsules were successfully prepared by the formation of shell with biocompatible iron oxide nanoparticles (Fe₃O₄ NPs) and polyallylamine hydrochloride (PAH) by layer-by-layer (LbL) self-assembly technique. The self-assembled microcapsules were characterized by SEM, TEM and zeta-potential analyzer. According to the pH sensitivity of the microcapsule membrane permeability, insulin was encapsulated, with the encapsulation efficiency of 92.08±5.57%. The in vitro release behavior in an external alternating magnetic field indicated that once the magnetic field was applied, the drug release was greatly accelerated. In addition, according to the observed pulse release upon cyclic on-off operations of magnetic field, it could be assumed that the magneto-responsive microcapsules had an excellent "switching on" effect, which might be attributed to the rearrangement of shell structure caused by magnetic nanoparticles twisting and polyelectrolyte chains shaking, hence the increase of microcapsule membrane permeability and the enhancement of insulin release. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery.

    PubMed

    Folchman-Wagner, Zoë; Zaro, Jennica; Shen, Wei-Chiang

    2017-06-30

    Polyelectrolyte complexes (PECs) are self-assembling nano-sized constructs that offer several advantages over traditional nanoparticle carriers including controllable size, biodegradability, biocompatibility, and lack of toxicity, making them particularly appealing as tools for drug delivery. Here, we discuss potential application of PECs for drug delivery to the slightly acidic tumor microenvironment, a pH in the range of 6.5-7.0. Poly(l-glutamic acid) (E n ), poly(l-lysine) (K n ), and a copolymer composed of histidine-glutamic acid repeats ((HE) n ) were studied for their ability to form PECs, which were analyzed for size, polydispersity, and pH sensitivity. PECs showed concentration dependent size variation at residue lengths of E 51 /K 55 and E 135 /K 127 , however, no complexes were observed when E 22 or K 21 were used, even in combination with the longer chains. (HE) 20 /K 55 PECs could encapsulate daunomycin, were stable from pH 7.4-6.5, and dissociated completely between pH 6.5-6.0. Conversely, the E 51-dauno /K 55 PEC dissociated between pH 4.0 and 3.0. These values for pH-dependent particle dissociation are consistent with the p K a 's of the ionizable groups in each formulation and indicate that the specific pH-sensitivity of (HE) 20-dauno /K 55 PECs is mediated by incorporation of histidine. This response within a pH range that is physiologically relevant to the acidic tumors suggests a potential application of these PECs in pH-dependent drug delivery.

  12. Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea.

    PubMed

    Chaiyasan, Wanachat; Praputbut, Sakonwun; Kompella, Uday B; Srinivas, Sangly P; Tiyaboonchai, Waree

    2017-01-01

    Topical application of drugs to the eyes suffers from poor bioavailability at the ocular surface and in the anterior chamber. This is due to rapid clearance of the drug because of tear secretion and outflow. This study has investigated mucoadhesive and penetration characteristics of chitosan-dextran sulfate nanoparticles (CDNs), prepared by polyelectrolyte complexation technique, following topical administration to the ocular surface. Topical FITC-labeled CDNs (FCDNs; mean size of 400nm and a surface charge of +48mV) were retained on the porcine ocular surface for more than 4h. Topical FCDNs were partially endocytosed into porcine corneal epithelial cells via a clathrin-dependent pathway. After 6h of topical FCDNs, particles accumulated in the corneal epithelium but not found in the corneal stroma. When epithelium was removed, FCDNs penetrated the stroma. Thus, CDNs are potentially useful for drug/gene delivery to the ocular surface and to stroma when epithelium is damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Highly Transparent, Nanofiller-Reinforced Scratch-Resistant Polymeric Composite Films Capable of Healing Scratches.

    PubMed

    Li, Yang; Chen, Shanshan; Li, Xiang; Wu, Mengchun; Sun, Junqi

    2015-10-27

    Integration of healability and mechanical robustness is challenging in the fabrication of highly transparent films for applications as protectors in optical and displaying devices. Here we report the fabrication of healable, highly transparent and scratch-resistant polymeric composite films that can conveniently and repeatedly heal severe damage such as cuts of several tens of micrometers wide and deep. The film fabrication process involves layer-by-layer (LbL) assembly of a poly(acrylic acid) (PAA) blend and branched poly(ethylenimine) (bPEI) blend, where each blend contains the same polyelectrolytes of low and high molecular weights, followed by annealing the resulting PAA/bPEI films with aqueous salt solution and incorporation of CaCO3 nanoparticles as nanofillers. The rearrangement of low-molecular-weight PAA and bPEI under aqueous salt annealing plays a critical role in eliminating film defects to produce optically highly transparent polyelectrolyte films. The in situ formation of tiny and well-dispersed CaCO3 nanoparticles gives the resulting composite films enhanced scratch-resistance and also retains the healing ability of the PAA/bPEI matrix films. The reversibility of noncovalent interactions among the PAA, bPEI, and CaCO3 nanoparticles and the facilitated migration of PAA and bPEI triggered by water enable healing of the structural damage and restoration of optical transparency of the PAA/bPEI films reinforced with CaCO3 nanoparticles.

  14. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    PubMed Central

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  15. Injectable glycosaminoglycan-protein nano-complex in semi-interpenetrating networks: A biphasic hydrogel for hyaline cartilage regeneration.

    PubMed

    Radhakrishnan, Janani; Subramanian, Anuradha; Sethuraman, Swaminathan

    2017-11-01

    Articular hyaline cartilage regeneration remains challenging due to its less intrinsic reparability. The study develops injectable biphasic semi-interpenetrating polymer networks (SIPN) hydrogel impregnated with chondroitin sulfate (ChS) nanoparticles for functional cartilage restoration. ChS loaded zein nanoparticles (∼150nm) prepared by polyelectrolyte-protein complexation were interspersed into injectable SIPNs developed by blending alginate with poly(vinyl alcohol) and calcium crosslinking. The hydrogel exhibited interconnected porous microstructure (39.9±5.8μm pore diameter, 57.7±5.9% porosity), 92% swellability and >350Pa elastic modulus. Primary chondrocytes compatibility, chondrocyte-matrix interaction with cell-cell clustering and spheroidal morphology was demonstrated in ChS loaded hydrogel and long-term (42days) proliferation was also determined. Higher fold expression of cartilage-specific genes sox9, aggrecan and collagen-II was observed in ChS loaded hydrogel while exhibiting poor expression of collagen-I. Immunoblotting of aggregan and collagen II demonstrate favorable positive influence of ChS on chondrocytes. Thus, the injectable biphasic SIPNs could be promising composition-mimetic substitute for cartilage restoration at irregular defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    PubMed Central

    Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826

  17. Magnetically responsive calcium carbonate microcrystals.

    PubMed

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  18. Resistance of poly(ethylene oxide)-silane monolayers to the growth of polyelectrolyte multilayers.

    PubMed

    Buron, Cédric C; Callegari, Vincent; Nysten, Bernard; Jonas, Alain M

    2007-09-11

    The ability of poly(ethylene oxide)-silane (PEO-silane) monolayers grafted onto silicon surfaces to resist the growth of polyelectrolyte multilayers under various pH conditions is assessed for different pairs of polyelectrolytes of varying molar mass. For acidic conditions (pH 3), the PEO-silane monolayers exhibit good polyelectrolyte repellency provided the polyelectrolytes bear no moieties that are able to form hydrogen bonds with the ether groups of the PEO chains. At basic pH, PEO-silane monolayers undergo substantial hydrolysis leading to the formation of negatively charged defects in the monolayers, which then play the role of adsorption sites for the polycation. Once the polycation is adsorbed, multilayer growth ensues. Because this is defect-driven growth, the multilayer is not continuous and is made of blobs or an open network of adsorbed strands. For such conditions, the molar mass of the polyelectrolyte plays a key role, with polyelectrolyte chains of larger molar mass adsorbing on a larger number of defects, resulting in stronger anchoring of the polyelectrolyte complex on the surfaces and faster subsequent growth of the multilayer. For polyelectrolytes of sufficiently low molar mass at pH 9, the growth of the multilayer can nevertheless be prevented for as much as five cycles of deposition.

  19. Adsorption of surfactants and polymers at interfaces

    NASA Astrophysics Data System (ADS)

    Rojas, Orlando Jose

    Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.

  20. Morphological and Spectral Characteristics of Hybrid Nanosystems Based on Mono- and Bimetallic Platinum Nanoparticles and Silver

    NASA Astrophysics Data System (ADS)

    Valueva, S. V.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2018-02-01

    Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by a cationic polyelectrolyte (CP), poly- N,N,N,N-trimethylmethacryloyloxyethylammonium methylsulfate, are determined via static/dynamic light scattering, UV spectroscopy, and atomic force microscopy. The formation of dense spherical polymolecular nanostructures is established. The possibility of controlling the morphological and spectral characteristics of the NS is shown by varying the nature and composition of NPs.

  1. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE)

    DOE PAGES

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B.; ...

    2015-07-14

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pHmore » or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.« less

  2. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE).

    PubMed

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B; Burdick, Jason A; Yoo, Pil J; Doh, Junsang; Lee, Daeyeon

    2015-08-25

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.

  3. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Miju; Yeo, Seon Ju; Highley, Christopher B.

    Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pHmore » or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.« less

  4. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release.

    PubMed

    Aw, M S; Paniwnyk, L

    2017-09-26

    One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target. Nanocapsules for oral delivery are found to be suitable candidates for targeting Toxoplasma gondii (T. gondii), a maneuvering and smart protozoic parasite found across Europe and America that causes a subtle but deadly infection. To overcome this disease, there is much potential of integrating protein-based cells into bioinspired nanocompartments such as via biodegradable cross-linked disulfide polyelectrolyte nanoparticles. The inner membrane vesicle system of these protein-drugs is not as simple as one might think. It is a complex transport network that includes sequential pathways, namely, endocytosis, exocytosis and autophagy. Unfortunately, the intracellular trafficking routes for nanoparticles in cells have not been extensively and intensively investigated. Hence, there lies the need to create robust protein nanocapsules for precise tracing and triggering of drug release to combat this protozoic disease. Protein nanocapsules have the advantage over other biomaterials due to their biocompatibility, use of natural ingredients, non-invasiveness, patient compliance, cost and time effectiveness. They also offer low maintenance, non-toxicity to healthy cells and a strictly defined route toward intracellular elimination through controlled drug delivery within the therapeutic window. This review covers the unprecedented opportunities that exist for constructing advanced nanocapsules to meet the growing needs arising from many therapeutic fields. Their versatile use includes therapeutic ultrasound for tumor imaging, recombinant DNA, ligand and functional group binding, the delivery of drugs and peptides via protein nanocapsules and polyelectrolytes, ultrasound-(US)-aided drug release through the gastrointestinal (GI) tract, and the recent progress in targeting tumor cells and a vast range of cancer therapies. This review also outlines the limitations of current technologies and the directions of future outlook.

  5. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less

  6. Phase behaviour and structure of stable complexes of oppositely charged polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Mengarelli, V.; Auvray, L.; Zeghal, M.

    2009-03-01

    We study the formation and structure of stable electrostatic complexes between oppositely charged polyelectrolytes, a long polymethacrylic acid and a shorter polyethylenimine, at low pH, where the polyacid is weakly charged. We explore the phase diagram as a function of the charge and concentration ratio of the constituents. In agreement with theory, turbidity and ζ potential measurements show two distinct regimes of weak and strong complexation, which appear successively as the pH is increased and are separated by a well-defined limit. Weak complexes observed by neutron scattering and contrast matching have an open, non-compact structure, while strong complexes are condensed.

  7. The Self-Assembly of Nanogold for Optical Metamaterials

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger nanoparticles and larger poly(styrene) ligands resulted in larger and smaller assemblies, respectively. Stirring the solution resulted in a wider size distribution of microbead assemblies due to the stirring's shear forces. Two undeveloped methods to self-assemble nanogold were investigated. One method used block-copolymer thin films as chemical templates to direct the electrostatic self-assembly of nanogold. Another method used gold nanorods that are passivated with different ligands on different faces. The stability of an alkanethiol ligand in different acids and bases was investigated to determine which materials could be used to produce Janus nanorods.

  8. Molecular Structure and Sequence in Complex Coacervates

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Lytle, Tyler; Madinya, Jason; Radhakrishna, Mithun

    Oppositely-charged polyelectrolytes in aqueous solution can undergo associative phase separation, in a process known as complex coacervation. This results in a polyelectrolyte-dense phase (coacervate) and polyelectrolyte-dilute phase (supernatant). There remain challenges in understanding this process, despite a long history in polymer physics. We use Monte Carlo simulation to demonstrate that molecular features (charge spacing, size) play a crucial role in governing the equilibrium in coacervates. We show how these molecular features give rise to strong monomer sequence effects, due to a combination of counterion condensation and correlation effects. We distinguish between structural and sequence-based correlations, which can be designed to tune the phase diagram of coacervation. Sequence effects further inform the physical understanding of coacervation, and provide the basis for new coacervation models that take monomer-level features into account.

  9. Engineering the Structure and Properties of DNA-Nanoparticle Superstructures Using Polyvalent Counterions.

    PubMed

    Chou, Leo Y T; Song, Fayi; Chan, Warren C W

    2016-04-06

    DNA assembly of nanoparticles is a powerful approach to control their properties and prototype new materials. However, the structure and properties of DNA-assembled nanoparticles are labile and sensitive to interactions with counterions, which vary with processing and application environment. Here we show that substituting polyamines in place of elemental counterions significantly enhanced the structural rigidity and plasmonic properties of DNA-assembled metal nanoparticles. These effects arose from the ability of polyamines to condense DNA and cross-link DNA-coated nanoparticles. We further used polyamine wrapped DNA nanostructures as structural templates to seed the growth of polymer multilayers via layer-by-layer assembly, and controlled the degree of DNA condensation, plasmon coupling efficiency, and material responsiveness to environmental stimuli by varying polyelectrolyte composition. These results highlight counterion engineering as a versatile strategy to tailor the properties of DNA-nanoparticle assemblies for various applications, and should be applicable to other classes of DNA nanostructures.

  10. Urea photosynthesis inside polyelectrolyte capsules: effect of confined media.

    PubMed

    Shchukin, Dmitry G; Möhwald, Helmuth

    2005-06-07

    The influence of the restricted volume of poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules of different size (2.2, 4.2, and 8.1 microm) on the TiO2-assisted photosynthesis of urea from inorganic precursors (CO2 and NO(3-)) in aqueous solution was demonstrated. Poly(vinyl alcohol) was employed as electron donor to facilitate the photosynthetic process. Decreasing the size of the confined microvolume of polyelectrolyte capsules accelerates the NO(3-) photoreduction, which is a limiting stage of the urea photosynthesis and, correspondingly, increases the efficiency of urea production. The highest yield of urea photosynthesis (37%) was achieved for Cu-modified TiO2 nanoparticles encapsulated inside 2.2 microm poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules.

  11. Layer-by-layer polyelectrolyte coating for surface-enhanced Raman scattering on gold nanostars inside hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Burmistrova, Natalia A.; Bondarenko, Sergei D.; Bratashov, Daniil N.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Khlebtsov, Boris N.; Skibina, Julia S.; Goryacheva, Irina Y.

    2018-04-01

    Photonic crystal fibers with hollow core (HC PCFs) are a specific class of optical fibers characterized by microstructure with periodic holes oriented along fiber. The combination of HC PCF with Raman spectroscopy for biosensors creation is attractive in the terms of the low sample volume, the possibility to increase the integration time without sample degradation and maintaining constant focus during experiments. Here we propose layer-by-layer polyelectrolyte coating of HC PCF inner surface in order to obtain charge-selective absorption of analyte, stabilization of Surface-Enhanced Raman scattering (SERS)-active gold nanoparticles. Distance between SERS hotspots and glass reduces nonlinear signals from glass, and increases signal-to-noise ratio of SERS spectra.

  12. Effects of conformational ordering on protein/polyelectrolyte electrostatic complexation: ionic binding and chain stiffening

    PubMed Central

    Cao, Yiping; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O.

    2016-01-01

    Coupling of electrostatic complexation with conformational transition is rather general in protein/polyelectrolyte interaction and has important implications in many biological processes and practical applications. This work studied the electrostatic complexation between κ-carrageenan (κ-car) and type B gelatin, and analyzed the effects of the conformational ordering of κ-car induced upon cooling in the presence of potassium chloride (KCl) or tetramethylammonium iodide (Me4NI). Experimental results showed that the effects of conformational ordering on protein/polyelectrolyte electrostatic complexation can be decomposed into ionic binding and chain stiffening. At the initial stage of conformational ordering, electrostatic complexation can be either suppressed or enhanced due to the ionic bindings of K+ and I− ions, which significantly alter the charge density of κ-car or occupy the binding sites of gelatin. Beyond a certain stage of conformational ordering, i.e., helix content θ > 0.30, the effect of chain stiffening, accompanied with a rapid increase in helix length ζ, becomes dominant and tends to dissociate the electrostatic complexation. The effect of chain stiffening can be theoretically interpreted in terms of double helix association. PMID:27030165

  13. Inkjet Deposition of Layer by Layer Assembled Films

    PubMed Central

    Andres, Christine M.; Kotov, Nicholas A.

    2010-01-01

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film build-up without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer was also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multi-component, and non-contact patterning for the simple production of stratified patterns that are much needed in advanced devices. PMID:20863114

  14. Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy.

    PubMed

    Xiong, Wei; Tang, Yiming; Shao, Changyu; Zhao, Yueqi; Jin, Biao; Huang, Tingting; Miao, Ya'nan; Shu, Lei; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2017-11-07

    Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited. Inspired by diatoms with naturally generated silica shells, we found that silica nanoparticles can be spontaneously incorporated onto cyanobacteria in the presence of poly(diallyldimethylammonium chloride), a cationic polyelectrolyte that can simulate biosilicification proteins. The resulting cyanobacteria-SiO 2 complexes can remain sedimentary in water. This strategy significantly inhibited the photoautotrophic growth of the cyanobacteria and decreased their biomass accumulation, which could effectively suppress harmful bloom events. Consequently, several of the adverse consequences of cyanobacteria blooms in water bodies, including oxygen consumption and microcystin release, were significantly alleviated. Based on the above results, we propose that the silica nanoparticle treatment has the potential for use as an efficient strategy for preventing cyanobacteria blooms.

  15. Effect of insulin-coated trimethyl chitosan nanoparticles on IGF-1, IGF-2, and apoptosis in the hippocampus of diabetic male rats.

    PubMed

    Kalantarian, Giti; Ziamajidi, Nasrin; Mahjoub, Reza; Goodarzi, Mohammad Taghi; Saidijam, Massoud; Asl, Sara Soleimani; Abbasalipourkabir, Roghayeh

    2018-06-06

    Subcutaneous injection of insulin can lead to problems such as hypoglycemia and edema. The purpose of this research was to evaluate the effect of oral insulin-coated trimethyl chitosan nanoparticles on control of glycemic status, IGF-1 and IGF-2 levels, and apoptosis in the hippocampus of rats with diabetes mellitus. Insulin-coated trimethyl chitosan nanoparticles were prepared by the complex polyelectrolyte (PEC) method. Insulin loading content, loading efficiency, quantity and quality of particle size were evaluated. In vivo study was performed in different treatment groups of male Wistar rats with diabetes mellitus by insulin-coated trimethyl chitosan nanoparticles or subcutaneous injection of trade insulin. The duration of diabetes was eight weeks and the treatment was started after that time and continued for another two weeks. Body weight, fasting blood glucose (FBS), hippocampal apoptosis, and immunohistochemical (IHC) protein levels of IGF-1 and IGF-2 were assessed at the end of the experiments. The size and polydispersity indexes were 533 nanometers and 0.533, respectively. Insulin coated trimethyl chitosan nanoparticles showed high loading efficiency (97.67% ) and loading content (48.83% ). The spherical shape of nanoparticle was confirmed by transmission electron microscopic (TEM). The amine, amide, ether and aliphatic groups were evaluated using FT-IR spectrophotometer which represented the correctness of the insulin coated trimethyl chitosan nanoparticles. Although the apoptotic index was not changed either by insulin-coated nano-particles or commercial insulin in vivo results showed the efficacy of insulin-coated nanoparticles as well as commercial insulin in compensated weight loss, FBS and protein levels of IGF-1 and IGF-2. The present study showed the efficacy of insulin coated nanoparticle in oral route manner that can be tested in Phase I- III clinical trials. However, a behavioral study could reveal the efficacy of insulin-loaded nanoparticles in the improvement of cognitive changes through the modulation of IGF-1 and IGF-2 levels in the hippocampus.

  16. Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media

    PubMed Central

    Farkas, Katalin; Földesi, Imre; Szekeres, Márta; Illés, Erzsébet; Tóth, Ildikó Y.; Nesztor, Daniel; Szabó, Tamás

    2016-01-01

    Nanoparticles do not exist in thermodynamical equilibrium because of high surface free energy, thus they have only kinetic stability. Spontaneous changes can be delayed by designed surface coating. In biomedical applications, superparamagnetic iron oxide nanoparticles (SPIONs) require an optimized coating in order to fulfil the expectation of medicine regulatory agencies and ultimately that of biocompatibility. In this work, we show the high surface reactivity of naked SPIONs due to ≡Fe–OH sites, which can react with H+/OH− to form pH- and ionic strength-dependent charges. We explain the post-coating of naked SPIONs with organic polyacids via multi-site complex bonds formed spontaneously. The excess polyacids can be removed from the medium. The free COOH groups in coating are prone to react with active biomolecules like proteins. Charging and pH- and salt-dependent behaviour of carboxylated SPIONs were characterized quantitatively. The interrelation between the coating quality and colloidal stability measured under biorelevant conditions is discussed. Our coagulation kinetics results allow us to predict colloidal stability both on storage and in use; however, a simpler method would be required to test SPION preparations. Haemocompatibility tests (smears) support our qualification for good and bad SPION manufacturing; the latter ‘promises’ fatal outcome in vivo. PMID:27920900

  17. The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder

    NASA Astrophysics Data System (ADS)

    Singh, Bimal P.; Nayak, Sasmita; Samal, Samata; Bhattacharjee, Sarama; Besra, Laxmidhar

    2012-02-01

    To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (-9.8 RT unit) and adsorption isotherms (-10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.

  18. Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation.

    PubMed

    Vitorazi, L; Ould-Moussa, N; Sekar, S; Fresnais, J; Loh, W; Chapel, J-P; Berret, J-F

    2014-12-21

    Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.

  19. Multifunctional nanoparticulate polyelectrolyte complexes.

    PubMed

    Hartig, Sean M; Greene, Rachel R; DasGupta, Jayasri; Carlesso, Gianluca; Dikov, Mikhail M; Prokop, Ales; Davidson, Jeffrey M

    2007-12-01

    Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <-30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.

  20. Polyelectrolyte-Surfactant Complexes: A New Class of Organogelators

    NASA Astrophysics Data System (ADS)

    Cavicchi, Kevin; Liu, Yuqing; Guzman, Gustavo

    2011-03-01

    Polyelectrolyte-surfactant complexes (PE-SURFs) are a class of polymers generated by neutralizing a polyelectrolyte with an oppositely charged surfactant. It has been found that PE-SURFs composed of polystyrene sulfonate and long chain alkyl dimethyl amines act as good organogelators for a range of hydrophobic, organic solvents. Thermo-reversible organogels are formed by heating and cooling PE-SURF/solvent solutions. The gel transition temperature is influenced by the degree of polymerization, the length of the alkyl side-chain, the solubility parameter of the solvent, and the concentration of the gelator. Freeze-drying and scanning electron microscopy characterization of the resultant xerogels shows the formation of rod- and plate-like network morphologies depending on the system parameters. This behavior is consistent with gelation driven by the self-assembly of the amphiphilic PE-SURFs into micellar networks.

  1. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  2. Integration of silver nanoparticle-impregnated polyelectrolyte multilayers into murine splinted cutaneous wound beds

    PubMed Central

    Guthrie, Kathleen M.; Agarwal, Ankit; Teixeira, Leandro B. C.; Dubielzig, Richard R.; Abbott, Nicholas L.; Murphy, Christopher J.; Singh, Harpreet; McAnulty, Jonathan F.; Schurr, Michael J.

    2013-01-01

    Silver is a commonly used topical antimicrobial. However, technologies to immobilize silver at the wound surface are lacking, while currently available silver-containing wound dressings release excess silver that can be cytotoxic and impair wound healing. We have shown that precise concentrations of silver at lower levels can be immobilized into a wound bed using a polyelectrolyte multilayer (PEM) attachment technology. These silver nanoparticle-impregnated PEMs are non-cytotoxic yet bactericidal in vitro, but their effect on wound healing in vivo was previously unknown. Objective The purpose of this study was to determine the effect on wound healing of integrating silver nanoparticle/PEMs into the wound bed. Methods A full-thickness, splinted, excisional murine wound healing model was employed in both phenotypically normal mice and spontaneously diabetic mice (healing impaired model). Results Gross image measurements showed an initial small lag in healing in the silver-treated wounds in diabetic mice, but no difference in time to complete wound closure in either normal or diabetic mice. Histological analysis showed modest differences between silver-treated and control groups on day 9, but no difference between groups at the time of wound closure. Conclusions We conclude that silver nanoparticle/PEMs can be safely integrated into the wound beds of both normal and diabetic mice without delaying wound closure, and with transient histological effects. The results of this study suggest the feasibility of this technology for use as a platform to effect nanoscale wound engineering approaches to microbial prophylaxis or to augment wound healing. PMID:23511285

  3. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    NASA Astrophysics Data System (ADS)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  4. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

    PubMed Central

    Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel

    2016-01-01

    Summary This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers. PMID:26977377

  5. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate).

    PubMed

    Guzmán, Eduardo; Maestro, Armando; Llamas, Sara; Álvarez-Rodríguez, Jesús; Ortega, Francisco; Maroto-Valiente, Ángel; Rubio, Ramón G

    2016-01-01

    This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers.

  6. Antibacterial Loaded Spray Dried Chitosan Polyelectrolyte Complexes as Dry Powder Aerosol for the Treatment of Lung Infections

    PubMed Central

    Mishra, Brahmeshwar; Mishra, Madhusmita; Yadav, Sarita Kumari

    2017-01-01

    Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections. Chitosan polyelectrolyte complex microparticles were formulated by spray drying process. Prepared spray dried chitosan PEC microparticles were studied for surface morphology, drug encapsulation efficiency, moisture content, Carr’s index, solid state interaction by XRD, aerosolization behaviour and in-vitro drug release. In-vitro cytotoxicity studies of microparticles were carried out on H1299 alveolar cell lines. Antibacterial efficacy of microparticles was assessed on the basis of determination of pharmacokinetic parameters in bronchial alveolar lavage (BAL) of rats using PK/PD analysis. The PEC microparticles were mostly spherical and exhibited high drug encapsulation efficiency. Release profiles showed an initial burst phase followed by a secondary sustained release phase. Good aerosolization behaviour as dry powder inhaler was demonstrated by microparticles with high values of recovered dose, emitted dose, and fine particle fraction. No overt cytotoxicity of microparticles was detected against H1299 alveolar cell line. More than 8 to 9 folds higher Cmax values were obtained in BAL fluid with microparticles as compared to intravenously administered antibacterial solution. The findings of the study suggest that chitosan polyelectrolyte complex based microparticles as dry powder inhaler can be an efficient antibacterial delivery system for sustained and effective management of lung infection. PMID:28496463

  7. Reversible Adhesion with Polyelectrolyte Brushes Tailored via the Uptake and Release of Trivalent Lanthanum Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Robert; Laugel, Nicolas; Yu, Jing

    Applications of end-tethered polyelectrolyte “brushes” to modify solid surfaces have been developed and studied for their colloidal stabilization and high lubrication properties. Current efforts have expanded into biological realms and stimuli-responsive materials. Our work explores responsive and reversible aspects of polyelectrolyte brush behavior when polyelectrolyte chains interact with oppositely charged multivalent ions and complexes, which act as counterions. There is a significant void in the polyelectrolyte literature regarding interactions with multivalent species. This paper demonstrates that interactions between solid surfaces bearing negatively charged polyelectrolyte brushes are highly sensitive to the presence of trivalent lanthanum, La3+. Lanthanum cations have unique interactionsmore » with polyelectrolyte chains, in part due to their small size and hydration radius which results in a high local charge density. Using La3+ in conjunction with the surface forces apparatus (SFA), adhesion has been observed to reversibly appear and disappear upon the uptake and release, respectively, of these multivalent cations acting as counterions. In media of fixed ionic strength set by monovalent sodium salt, at I0 = 0.003 M and I0 = 0.3 M, the sign of the interaction forces between overlapping brushes changes from repulsive to attractive when La3+ concentrations reach 0.1 mol % of the total ion concentration. These results are also shown to be generally consistent with, but subtlety different from, previous polyelectrolyte brush experiments using trivalent ruthenium hexamine in the role of the multivalent counterion.« less

  8. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.

  9. Development of functionalised polyelectrolyte capsules using filamentous Escherichia coli cells.

    PubMed

    Lederer, Franziska L; Günther, Tobias J; Weinert, Ulrike; Raff, Johannes; Pollmann, Katrin

    2012-12-23

    Escherichia coli is one of the best studied microorganisms and finds multiple applications especially as tool in the heterologous production of interesting proteins of other organisms. The heterologous expression of special surface (S-) layer proteins caused the formation of extremely long E. coli cells which leave transparent tubes when they divide into single E. coli cells. Such natural structures are of high value as bio-templates for the development of bio-inorganic composites for many applications. In this study we used genetically modified filamentous Escherichia coli cells as template for the design of polyelectrolyte tubes that can be used as carrier for functional molecules or particles. Diversity of structures of biogenic materials has the potential to be used to construct inorganic or polymeric superior hybrid materials that reflect the form of the bio-template. Such bio-inspired materials are of great interest in diverse scientific fields like Biology, Chemistry and Material Science and can find application for the construction of functional materials or the bio-inspired synthesis of inorganic nanoparticles. Genetically modified filamentous E. coli cells were fixed in 2% glutaraldehyde and coated with alternating six layers of the polyanion polyelectrolyte poly(sodium-4styrenesulfonate) (PSS) and polycation polyelectrolyte poly(allylamine-hydrochloride) (PAH). Afterwards we dissolved the E. coli cells with 1.2% sodium hypochlorite, thus obtaining hollow polyelectrolyte tubes of 0.7 μm in diameter and 5-50 μm in length. For functionalisation the polyelectrolyte tubes were coated with S-layer protein polymers followed by metallisation with Pd(0) particles. These assemblies were analysed with light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. The thus constructed new material offers possibilities for diverse applications like novel catalysts or metal nanowires for electrical devices. The novelty of this work is the use of filamentous E. coli templates and the use of S-layer proteins in a new material construct.

  10. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  11. Layer-by-layer self-assembly of micro-capsules for the magnetic activation of semi-permeable nano-shells

    NASA Astrophysics Data System (ADS)

    Prouty, Malcolm D.

    2007-12-01

    Layer-by-layer (LbL) self-assembly has demonstrated broad perspectives for encapsulating, and the controllable delivery, of drugs. The nano-scale polymer layers have the capability of material protection. Magnetic nanoparticles have great potential to be applied with LbL technology to achieve both "focusing" of the encapsulated drugs to a specific location followed by "switching" them on to release the encapsulated drugs. In this work, Phor21-betaCG(ala), dextran, and dexamethasone were used as model drugs. Encapsulation of these drugs with layer-by-layer self-assembly formed biolnano robotic capsules for controlled delivery and drug release. Silica nanoparticles coated with polyelectrolyte layers of sodium carboxymethyl cellulose (CMC) or gelatin B, along with an oppositely charged peptide drug (Phor2l-betaCG(ala)), were prepared using LbL self-assembly and confirmed using QCM and zeta potential measurements. The peptide drug was assembled as a component of the multilayer walls. The release kinetics of the embedded peptide were determined. Up to 18% of the embedded Phor21-betaCG(ala) was released from the CMC multilayers over a period of 28 hours. The release was based on physiological conditions, and an external control mechanism using magnetic nanoparticles needed to be developed. Magnetic permeability control experiments were setup by applying LbL self-assembly on MnCO3 micro-cores to fabricate polyelectrolyte microcapsules embedded with superparamagnetic gold coated cobalt (Co Au) nanoparticles. An alternating magnetic field was applied to the microcapsules to check for changes in permeability. Permeability experiments were achieved by adding fluorescein isothiocyanate (FITC) labeled dextran to the microcapsule solution. Before an alternating magnetic field was applied, the capsules remained impermeable to the FITC-dextran; however, after an alternating magnetic field was applied for 30 minutes, approximately 99% of the capsules were filled with FITC-dextran, showing that the Co Au embedded microcapsules were indeed "switched on" using an alternating magnetic field. LbL assembly was then applied to encapsulate micronized dexamethasone with biocompatible polyelectrolytes such as protamine sulfate C, chondroitin sulfate sodium salt, and gelatin B, along with a layer of superparamagnetic nanoparticles. The biocompatible polymers were used to retain and protect the vulnerable drug. In vitro drug release kinetics were investigated according to different environmental factors such as temperature and pH. An external oscillating magnetic field was applied to "switch on" and accelerate the drug release. The results were compared to those without applying a magnetic field.

  12. Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic-Inorganic Hybrid Adhesive.

    PubMed

    Li, Ang; Jia, Yunfei; Sun, Shengtong; Xu, Yisheng; Minsky, Burcu Baykal; Stuart, M A Cohen; Cölfen, Helmut; von Klitzing, Regine; Guo, Xuhong

    2018-03-28

    Underwater adhesion is crucial to many marine life forms living a sedentary lifestyle. Amongst them, mussel adhesion has been mostly studied, which inspires numerous investigations of 3,4-dihydroxyphenylalanine (DOPA)-based organic adhesives. In contrast, reef-building oysters represent another important "inorganic" strategy of marine molluscs for adhesion by generating biomineralized organic-inorganic adhesives, which is still rarely studied and no synthetic analogues have ever been reported so far. Here, a novel type of oyster-inspired organic-inorganic adhesive based on a biomineralized polyelectrolyte hydrogel is reported, which consists of polyacrylic acid physically cross-linked by very small amorphous calcium carbonate nanoparticles (<3 nm). The mineral-enhanced polyelectrolyte hydrogel adhesive is shown to be injectable, reusable, and optically clear upon curing in air. Moreover, comparable adhesion performance to DOPA-based adhesives is found for the hydrogel adhesive in both dry and wet conditions, which can even be further enhanced by introducing a small amount of second large cross-linker such as negatively charged nanoparticles. The present mineral hydrogel represents a new type of bio-inspired organic-inorganic adhesive that may find a variety of potential applications in adhesive chemistry.

  13. Enhancing gelation ability of a dendritic gelator through complexation with a polyelectrolyte.

    PubMed

    Zhang, Zijian; Yang, Miao; Zhang, Xinjun; Zhang, Lichu; Liu, Bo; Zheng, Ping; Wang, Wei

    2009-01-01

    A poly(urethane amide) (PUA) dendron with long alkyl chains on its periphery was synthesized and then attached to the backbone of a polyelectrolyte, in which each unit contained a positive charge, by ionizing the carboxyl groups on the apexes of the dendrons to form a dendronized polymer. We found that both the PUA dendron and the dendronized polymer could form organogels in toluene. Interestingly, both the minimum gelation concentration and the gelation time of the dendronized polymer gelator were greatly reduced compared with the dendron alone. Our investigations showed that in the gel phase the intermolecular hydrogen bonding between adjacent dendrons creates similar supramolecular structures in both the dendron and the dendronized polymer gelator, which immobilize solvent molecules by means of interactions between dendrons and solvent molecules. Further studies on the gelation kinetics indicated that the polyelectrolyte backbone plays an important role in prearranging the attached dendritic gelators orderly and quickly into the supramolecular structures through a nucleation-elongation mechanism. Therefore, the gel-forming ability of the dendritic PUA gelator is enhanced by being complexed with the polyelectrolyte. In this work, this positive macromolecular effect is discussed in detail.

  14. Smooth model surfaces from lignin derivatives. II. Adsorption of polyelectrolytes and PECs monitored by QCM-D.

    PubMed

    Norgren, Magnus; Gärdlund, Linda; Notley, Shannon M; Htun, Myat; Wågberg, Lars

    2007-03-27

    For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.

  15. Rheology of polyelectrolyte complex materials

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    Fluid polyelectrolyte complexes, sometimes known as complex coacervates, have rheological properties that are very sensitive to structure and salt concentration. Dynamic moduli of such viscoelastic materials very many orders of magnitude between solutions of no added salt to of order tenth molar salt, typical, for example of physiological saline. Indeed, salt plays a role in the rheology of complex coacervates analogous to that which temperature plays on polymer melts, leading to an empirical observation of what may be termed time-salt or frequency salt superposition. Block copolymers containing complexing ionic blocks also exhibit strong salt sensitivity of their rheological properties. Data representing these phenomena will be presented and discussed. Support from NIST, Department of Commerce, via the Center for Hierarchical Materials Design at Northwestern University and the University of Chicago is gratefully acknowledged.

  16. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    NASA Astrophysics Data System (ADS)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  17. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel

    2014-05-01

    Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.

  18. Polyelectrolyte assisted charge titration spectrometry: Applications to latex and oxide nanoparticles.

    PubMed

    Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F

    2016-08-01

    The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Next-Generation Theranostic Agents Based on Polyelectrolyte Microcapsules Encoded with Semiconductor Nanocrystals: Development and Functional Characterization

    NASA Astrophysics Data System (ADS)

    Nifontova, Galina; Zvaigzne, Maria; Baryshnikova, Maria; Korostylev, Evgeny; Ramos-Gomes, Fernanda; Alves, Frauke; Nabiev, Igor; Sukhanova, Alyona

    2018-01-01

    Fabrication of polyelectrolyte microcapsules and their use as carriers of drugs, fluorescent labels, and metal nanoparticles is a promising approach to designing theranostic agents. Semiconductor quantum dots (QDs) are characterized by extremely high brightness and photostability that make them attractive fluorescent labels for visualization of intracellular penetration and delivery of such microcapsules. Here, we describe an approach to design, fabricate, and characterize physico-chemical and functional properties of polyelectrolyte microcapsules encoded with water-solubilized and stabilized with three-functional polyethylene glycol derivatives core/shell QDs. Developed microcapsules were characterized by dynamic light scattering, electrophoretic mobility, scanning electronic microscopy, and fluorescence and confocal microscopy approaches, providing exact data on their size distribution, surface charge, morphological, and optical characteristics. The fluorescence lifetimes of the QD-encoded microcapsules were also measured, and their dependence on time after preparation of the microcapsules was evaluated. The optimal content of QDs used for encoding procedure providing the optimal fluorescence properties of the encoded microcapsules was determined. Finally, the intracellular microcapsule uptake by murine macrophages was demonstrated, thus confirming the possibility of efficient use of developed system for live cell imaging and visualization of microcapsule transportation and delivery within the living cells.

  20. Modeling the formation of ordered nano-assemblies comprised by dendrimers and linear polyelectrolytes: The role of Coulombic interactions

    NASA Astrophysics Data System (ADS)

    Eleftheriou, E.; Karatasos, K.

    2012-10-01

    Models of mixtures of peripherally charged dendrimers with oppositely charged linear polyelectrolytes in the presence of explicit solvent are studied by means of molecular dynamics simulations. Under the influence of varying strength of electrostatic interactions, these systems appear to form dynamically arrested film-like interconnected structures in the polymer-rich phase. Acting like a pseudo-thermodynamic inverse temperature, the increase of the strength of the Coulombic interactions drive the polymeric constituents of the mixture to a gradual dynamic freezing-in. The timescale of the average density fluctuations of the formed complexes initially increases in the weak electrostatic regime reaching a finite limit as the strength of electrostatic interactions grow. Although the models are overall electrically neutral, during this process the dendrimer/linear complexes develop a polar character with an excess charge mainly close to the periphery of the dendrimers. The morphological characteristics of the resulted pattern are found to depend on the size of the polymer chains on account of the distinct conformational features assumed by the complexed linear polyelectrolytes of different length. In addition, the length of the polymer chain appears to affect the dynamics of the counterions, thus affecting the ionic transport properties of the system. It appears, therefore, that the strength of electrostatic interactions together with the length of the linear polyelectrolytes are parameters to which these systems are particularly responsive, offering thus the possibility for a better control of the resulted structure and the electric properties of these soft-colloidal systems.

  1. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    PubMed Central

    Lim, Chaemin; Youn, Yu Seok; Lee, Kyung Soo; Hoang, Ngoc Ha; Sim, Taehoon; Lee, Eun Seong; Oh, Kyung Taek

    2016-01-01

    A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)–poly(lactic acid)–poly(ethylene imine) triblock copolymer (PEG–PLA–PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. PMID:26955270

  2. Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties.

    PubMed

    Yancheva, Elena; Paneva, Dilyana; Maximova, Vera; Mespouille, Laetitia; Dubois, Philippe; Manolova, Nevena; Rashkov, Iliya

    2007-03-01

    Novel polyelectrolyte complexes (PECs) between N-carboxyethylchitosan (CECh) and well-defined (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) have been obtained. The modification of chitosan into CECh allows the preparation of PECs in a pH range in which chitosan cannot form complexes. The CECh/PDMAEMA complex is formed in a narrow pH range around 7. The quaternization of the tertiary amino groups of PDMAEMA enables complex formation with CECh both in neutral and in alkaline medium. Cross-linked CECh is also capable of forming complexes with (quaternized) PDMAEMA. The antibacterial activity of (cross-linked) CECh, (quaternized) PDMAEMA, and their complexes against Escherichia coli has been evaluated. In contrast to (quaternized) PDMAEMA, (cross-linked) CECh exhibits no antibacterial activity. The complex formation between cross-linked CECh and (quaternized) PDMAEMA results in a loss of the inherent antibacterial activity of the latter in neutral medium. In acidic medium, the complexes exhibit strong antibacterial activity due to complex disintegration and release of (quaternized) PDMAEMA.

  3. Nanoparticles for Nonaqueous-phase liquids (NAPLs) Remediation

    NASA Astrophysics Data System (ADS)

    Jiemvarangkul, Pijit

    Nanotechnology has gained attention in various fields of science and engineering for more than decades. Many nanotechnologies using nanosorbents, nanosensors, and nanoparticles have been developed, studied, and used to solve environmental problems. This dissertation contributes to the applications of two types of nanoparticles: 1) using zero valent iron nanoparticle technology (nZVI) for treatment of groundwater contaminated by chlorinated hydrocarbons and study effect of polyelectrolyte polymers on enhancing the mobility of nZVI in porous media and 2) testing a new type of nanoparticle, nano-scale calcium peroxide (CaO2) particles (nano-peroxide); particles have been synthesized and preliminarily tests on their chemical properties and oxidizing reactions with petroleum hydrocarbons investigated. Trichloroethylene (TCE) is one of the high toxic, dense, non-aqueous phase liquids (DNAPLs) and it is one of the major problems of groundwater contamination. The direct reaction of nano-scale zerovalent iron (nZVI) particles and TCE liquid phase batch experiments shows that nZVI has capability to remove pure phase TCE and there is the reduction reaction occurred with reaction byproduct. Mass balance of nZVI-TCE reaction demonstrates that 7--9 % TCE mass was trapped in 1 g of nZVI sludge indicating that absorption occurred during the removal process confirming the absorption of TCE into nZVI sludge. The reaction and absorption abilities of nZVI are depended upon its surface areas. Increasing amount of nZVI reduces the space of batch experiment systems, so TCE removal efficiency of nZVI is decreased. These experiments show the practicability of using nZVI to directly remove TCE from contaminated groundwater. The transport of nanoscale zero-valent iron (nZVI) particles stabilized by three polyelectrolytes: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A), poly(acrylic acid) (PAA) and soy proteins were examined. The study shows the increase in nZVI mobility by reducing particle size and generating negatively charged surfaces of nZVI by those polyelectrolyte polymers. PV3A stabilized nZVI has the best transport performance among the three materials. It was found that approximately 100% of nZVI flowed through the column. Retardation of nZVI is observed in all tests. Due to the large surface area of nZVI, large amounts of polyelectrolytes are often needed. For example, soy proteins exhibited an excellent stabilization capability only at the dose over 30% of nZVI mass. Approximately 57% of nZVI remained in the column when nZVI was stabilized with PAA at the dosage of 50%. Results suggest that nZVI may be prepared with tunable travel distance to form an iron reactive zone for the in situ remediation. The new nano size particles of calcium peroxide (nano-peroxide) were synthesized by the mechanical milling method. The particle size diameter (d 50) is around 120 nm with the enormous specific surface area at 30 m 2/g. The dissolution and reaction rate of nano-peroxide is faster than typical micro powder calcium peroxide around 1.5 times. With metal catalyzes (Fe2+), nano-peroxide promoted modified Fenton's chemistry (MF) and showed an excellent performance for oxidizing hydrocarbon. Benzene solutions were completely oxidized as high as 800 mg/L of benzene and gasoline contaminated solution was significantly decreased within 24 hours. pH is a major factor to increase the oxidizing of nano-peroxide. This research also reports the synthesis method, images and composition of nano-peroxide.

  4. Weak polyelectrolyte complexation driven by associative charging.

    PubMed

    Rathee, Vikramjit S; Zervoudakis, Aristotle J; Sidky, Hythem; Sikora, Benjamin J; Whitmer, Jonathan K

    2018-03-21

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  5. Weak polyelectrolyte complexation driven by associative charging

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  6. Bathroom greywater recycling using polyelectrolyte-complex bilayer membrane: Advanced study of membrane structure and treatment efficiency.

    PubMed

    Oh, K S; Poh, P E; Chong, M N; Chan, E S; Lau, E V; Saint, C P

    2016-09-05

    Polyelectrolyte-complex bilayer membrane (PCBM) was fabricated using biodegradable chitosan and alginate polymers for subsequent application in the treatment of bathroom greywater. In this study, the properties of PCBMs were studied and it was found that the formation of polyelectrolyte network reduced the molecular weight cut-off (MWCO) from 242kDa in chitosan membrane to 2.71kDa in PCBM. The decrease in MWCO of PCBM results in better greywater treatment efficiency, subsequently demonstrated in a greywater filtration study where treated greywater effluent met the household reclaimed water standard of <2 NTU turbidity and <30ppm total suspended solids (TSS). In addition, a further 20% improvement in chemical oxygen demand (COD) removal was achieved as compared to a single layer chitosan membrane. Results from this study show that the biodegradable PCBM is a potential membrane material in producing clean treated greywater for non-potable applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Modeling competitive substitution in a polyelectrolyte complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Muthukumar, M., E-mail: muthu@polysci.umass.edu

    2015-12-28

    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longermore » than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution.« less

  9. Polyelectrolyte Complexes of Low Molecular Weight PEI and Citric Acid as Efficient and Nontoxic Vectors for in Vitro and in Vivo Gene Delivery.

    PubMed

    Giron-Gonzalez, M Dolores; Salto-Gonzalez, Rafael; Lopez-Jaramillo, F Javier; Salinas-Castillo, Alfonso; Jodar-Reyes, Ana Belen; Ortega-Muñoz, Mariano; Hernandez-Mateo, Fernando; Santoyo-Gonzalez, Francisco

    2016-03-16

    Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex of LMW-PEI and CA as promising generic nonviral gene carriers.

  10. Detection of mercury (II) ions in water by polyelectrolyte-gold nanoparticles coated long period fiber grating sensor

    NASA Astrophysics Data System (ADS)

    Tan, Shin-Yinn; Lee, Sheng-Chyan; Okazaki, Takuya; Kuramitz, Hideki; Abd-Rahman, Faidz

    2018-07-01

    This paper presents mercury (II) ions detection based on long period fiber grating (LPFG) sensor written on a single mode optical fiber by electrical arc induced technique that is suitable to be used for long term monitoring purpose. In the work, the LPFG was coated with both polyelectrolyte (PE) layers to enhance its sensitivity as well as a layer of gold nanoparticles (AuNP) for reaction to the mercury (II) ions. Experiments were conducted using double-pass configurations with mercury (II) ions concentrations varied between 0.5 ppm to 10 ppm. The results showed that the resonance wavelength of the PE-AuNP coated LPFG notch shifted to the longer wavelength, with a total shift of 1.34 nm and transmission power increment of 1.74 dBm over a period of 5 h. The results were then compared with uncoated as well as PE-only coated LPFGs, where no significant changes in resonance wavelength and transmission power were observed for these LPFGs. A novel PE-AuNP coated LPFG sensor that is suitable to be used for in-situ, long term and remote monitoring has been successfully demonstrated and tested for the detection of mercury (II) ions in water.

  11. In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application

    PubMed Central

    Cai, Rui; Tao, Gang; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing

    2017-01-01

    To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application. PMID:28820482

  12. Ionic Driven Embedment of Hyaluronic Acid Coated Liposomes in Polyelectrolyte Multilayer Films for Local Therapeutic Delivery

    NASA Astrophysics Data System (ADS)

    Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan

    2015-10-01

    The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.

  13. Organic and Inorganic Dyes in Polyelectrolyte Multilayer Films

    PubMed Central

    Ball, Vincent

    2012-01-01

    Polyelectrolyte multilayer films are a versatile functionalization method of surfaces and rely on the alternated adsorption of oppositely charged species. Among such species, charged dyes can also be alternated with oppositely charged polymers, which is challenging from a fundamental point of view, because polyelectrolytes require a minimal number of charges, whereas even monovalent dyes can be incorporated during the alternated adsorption process. We will not only focus on organic dyes but also on their inorganic counterparts and on metal complexes. Such films offer plenty of possible applications in dye sensitized solar cells. In addition, dyes are massively used in the textile industry and in histology to stain textile fibers or tissues. However, the excess of non bound dyes poses serious environmental problems. It is hence of the highest interest to design materials able to adsorb such dyes in an almost irreversible manner. Polyelectrolyte multilayer films, owing to their ion exchange behavior can be useful for such a task allowing for impressive overconcentration of dyes with respect to the dye in solution. The actual state of knowledge of the interactions between charged dyes and adsorbed polyelectrolytes is the focus of this review article.

  14. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  15. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.

    2016-11-01

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  16. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  17. Injection of polyelectrolytes enhances mobility of zero-valent iron nanoparticles in carbonate-rich porous media

    NASA Astrophysics Data System (ADS)

    Laumann, Susanne; Micić, Vesna; Schmid, Doris; Hofmann, Thilo

    2013-04-01

    The application of nanoscale zero-valent iron (nZVI) for in situ groundwater remediation has received increased attention as a beneficial and novel remediation technique. A precondition for effective nZVI field applications is its delivery to the contaminated source zones. This has proved to be difficult due to the limited mobility of nZVI, which remains one major obstacle to widespread utilization of this remediation approach (O'CAROLL ET AL., 2012). One important factor that controls mobility of nZVI is physical and chemical heterogeneity within the subsurface, such as mineralogical variations (KIM ET AL., 2012). In our previous study we showed that the nZVI transport in carbonate-rich porous media is significantly reduced compared to that in quartz porous media (LAUMANN ET AL., 2012). This is caused by favorable nZVI deposition onto carbonate sand and is attributed to the less negative surface charge of carbonate compared to that of quartz sand under the range of water chemical conditions typically encountered in aquifers. New strategies are therefore required to improve nZVI mobility in carbonate-rich porous media. One approach can be the injection of polyelectrolytes in the subsurface, which are expected to adsorb onto aquifer grains and provide greater repulsion between nZVI and the porous media. In this study the effect of co-injected polyelectrolytes on the transport of polyacrylic acid (PAA) coated nZVI in two model porous media, quartz and carbonate sands was evaluated. Column experiments were carried out aiming to evaluate mobility of PAA-nZVI co-injected with four polyelectrolytes, including natural organic matter (NOM), humic acid, carboxymethyl cellulose (CMC), and lignin sulfonate. The results demonstrated that the co-injection of the chosen polyelectrolytes does not influence mobility of PAA-nZVI in quartz sand; the breakthrough with co-injected polyelectrolytes was similar to that of the pure PAA-nZVI dispersion. This observation can be explained by the strong negative surface charge of the quartz sand, which was apparently not changed in the presence of polyelectrolytes. Conversely, the co-injected polyelectrolytes affected the breakthrough in carbonate sand, increasing nZVI mobility for approximately 15%. This can be explained by the attachment of the polyelectrolytes to the less negatively charged carbonate sand, which then promoted the PAA-nZVI mobility. Even though there are structural differences among the polyelectrolytes applied in this study, our results showed no significant variations in the PAA-nZVI mobility when these polyelectrolytes are present at concentration of 50 mg L-1. Lignin sulfonate was furthermore selected to investigate the effect of different polyelectrolyte concentrations (0, 10, 25, 50, 250, and 500 mg L-1) on the PAA-nZVI mobility. The results showed that higher lignin sulfonate concentrations (250 and 500 mg L-1) do not affect the transport of PAA-nZVI in quartz sand. In carbonate sand, on contrary, increasing mobility due to co-injected lignin sulfonate was observed at concentrations above 25 mg L-1, having the highest value with 500 mg L-1 co-injected with the PAA-nZVI dispersion. Overall, the results demonstrated that lignin sulfonate adsorption onto the carbonate sand reduce PAA-nZVI deposition onto aquifer grains and promote its mobility, the effect which is more pronounced at higher polyelectrolyte concentrations co-injected with the PAA-nZVI dispersion. The project is funded by the Federal Ministry of Agriculture, Forestry, Environment and Water Management (BMLFUW). Management by Kommunalkredit Public Consulting GmbH. Literature O'CAROLL, D. ET AL., (2012): Advances in Water Resources, in press. KIM, H.-J. ET AL., (2012): Journal of Colloid and Interface Science 370, 1-10. LAUMANN, S. ET AL., (2012): Environmental Pollution, submitted.

  18. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    PubMed

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  19. Criticality and Connectivity in Macromolecular Charge Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.

    We examine the role of molecular connectivity and architecture on the complexation of ionic macromolecules (polyelectrolytes) of finite size. A unified framework is developed and applied to evaluate the electrostatic correlation free energy for point-like, rod-like, and coil-like molecules. That framework is generalized to molecules of variable fractal dimensions, including dendrimers. Analytical expressions for the free energy, correlation length, and osmotic pressure are derived, thereby enabling consideration of the effects of charge connectivity, fractal dimension, and backbone stiffness on the complexation behavior of a wide range of polyelectrolytes. Results are presented for regions in the immediate vicinity of the criticalmore » region and far from it. A transparent and explicit expression for the coexistence curve is derived in order to facilitate analysis of experimentally observed phase diagrams.« less

  20. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: Effect of degree of PEG grafting on biological and cellular activity.

    PubMed

    Safari, Fatemeh; Tamaddon, Ali M; Zarghami, Nosratollah; Abolmali, S; Akbarzadeh, Abolfazl

    2016-09-01

    Gene silencing by siRNA (short interfering RNA)-targeted human telomerase reverse transcriptase (hTERT) is considered a successful strategy for cancer gene therapy. Polyelectrolyte complexes (PEC) of siRNA and cationic polymers such as polyethyleneimine (PEI) have been widely used for cellular transfection; however, they demonstrate some disadvantages such as cytotoxicity and extracellular matrix restrictions. PEG grafting technology was used in an attempt to improve the biocompatibility of PECs. Considering that this technology may compromise the cellular uptake of PECs, we aimed to study the effect of degree of PEI PEGylation on the carrier cytotoxicity, cellular association, and transfection efficiency of hTERT siRNA in the lung cancer cell line A549. Activated NHS ester of methoxy PEG-COOH 5 KDa was grafted to hyperbranched PEI 25 KDa in the molar ratios of 0.2 and 1. The copolymers were characterized by (1)H-NMR spectroscopy. PECs of PEI or PEG-g-PEI with siRNA, alone or co-incubated with heparin sulfate, were studied by the ethidium bromide exclusion assay. Cytotoxicity of the polymers (PEG-g-PEI vs PEI), alone and upon formation of PEC nanoparticles with hTERT siRNA, was determined by a validated MTT assay, in comparison to a scrambled control sequence, in A549 human lung carcinoma cells. The cellular uptake of the PECs of FITC-labeled siRNA was investigated by flow cytometry at different N/P ratios, and the silencing effect of the transfected siRNA was compared to that of the control sequence for different PECs by real time RT-PCR. The cytotoxicity of PEI decreased significantly by PEG grafting, even at a low degree of PEGylation. Moreover, the nonspecific cytotoxicity of PECs decreased by PEG grafting. PECs of PEG-g-PEI showed more biologic stability on incubation with heparin sulfate. Average particle size and zeta potential of PEC nanoparticles were diminished for those of PEG-g-PEI. The cellular association was more pronounced at an N/P ratio of 2.5 for PECs of PEI and PEG-g-PEI alike. The level of silencing of hTERT mRNA by PEC of PEG-g-PEI was sequence-dependent, and determined non-inferior when compared to the native PEI. Conclusively, the biocompatibility of PEI was improved by a low degree of PEGylation, with no adverse effect on the cellular uptake and the transfection activity. PEC nanoparticles of hTERT siRNA and PEG-g-PEI could act as a promising weapon against A549 cells, which has to be considered for an in vivo evaluation.

  1. Study of electrostatically self-assembled thin films of CdS and ZnS nanoparticle semiconductors

    NASA Astrophysics Data System (ADS)

    Suryajaya

    In this work, CdS and ZnS semiconducting colloid nanoparticles coated with organic shell, containing either SO[3-] or NH[2+] groups, were deposited as thin films using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy and spectroscopic ellipsometry - for optical properties; atomic force microscopy (AFM) - for morphology study; mercury probe - for electrical characterisation; and photon counter - for electroluminescence study. UV-vis spectra show a substantial blue shift of the main absorption band of both CdS and ZnS, either in the form of solutions or films, with respect to the bulk materials. The calculation of nanoparticles' radii yields the value of about 1.8 nm for both CdS and ZnS.The fitting of standard ellipsometry data gave the thicknesses (d) of nanoparticle layers of around 5 nm for both CdS and ZnS which corresponds well to the size of particles evaluated from UV-vis spectral data if an additional thickness of the organic shell is taken into account. The values of refractive index (n) and extinction coefficient (k) obtained were about 2.28 and 0.7 at 633 nm wavelength, for both CdS and ZnS.Using total internal reflection (TIRE), the process of alternative deposition of poly-allylamine hydrochloride (PAH) and CdS (or ZnS) layers could be monitored in-situ. The dynamic scan shows that the adsorption kinetic of the first layer of PAH or nanoparticles was slower than that of the next layer. The fitting of TIRE spectra gavethicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. It supports the suggestion of the formation of three-dimensional aggregates of semiconductor nanoparticles intercalated with polyelectrolyte.AFM images show the formation of large aggregates of nanoparticles, about 40-50 nm, for the films deposited from original colloid solutions, while smaller aggregates, about 12-20 nm, were obtained if the colloid solutions were diluted.Current-voltage (I-V) and capacitance-frequency (C-f) measurements of polyelectrolyte/nanoparticles (CdS or ZnS) films suggest the tunnelling behaviour in the films while capacitance- voltage (C-V) and conductance-voltage (G-V) measurements suggest that these nanoparticles are conductive. The electroluminescence was detected in sandwich structures of (PAH/CdS/PAH)[N] using a photon counting detector, but not in the case of ZnS films.

  2. Integration of micro nano and bio technologies with layer-by-layer self-assembly

    NASA Astrophysics Data System (ADS)

    Kommireddy, Dinesh Shankar

    In the past decade, layer-by-layer (LbL) nanoassembly has been used as a tool for immobilization and surface modification of materials with applications in biology and physical sciences. Often, in such applications, LbL assembly is integrated with various techniques to form functional surface coatings and immobilized matrices. In this work, integration of LbL with microfabrication and microfluidics, and tissue engineering are explored. In an effort to integrate microfabrication with LbL nanoassembly, microchannels were fabricated using soft-lithography and the surface of these channels was used for the immobilization of materials using LbL and laminar flow patterning. Synthesis of poly(dimethyldiallyl ammonium chloride)/poly(styrene sulfonate) and poly(dimethyldiallyl ammonium chloride)/bovine serum albumin microstrips is demonstrated with the laminar flow microfluidic reactor. Resulting micropatterns are 8-10 mum wide, separated with few micron gaps. The width of these microstrips as well as their position in the microchannel is controlled by varying the flow rate, time of interaction and concentration of the individual components, which is verified by numerical simulation. Spatially resolved pH sensitivity was observed by modifying the surface of the channel with a pH sensitive dye. In order to investigate the integration of LbL assembly with tissue engineering, glass substrates were coated with nanoparticle/polyelectrolyte layers, and two different cell types were used to test the applicability of these coatings for the surface modification of medical implants. Titanium dioxide (TiO 2), silicon dioxide, halloysite and montmorillonite nanoparticles were assembled with oppositely charged polyelectrolytes. In-vitro cytotoxicity tests of the nanoparticle substrates on human dermal firbroblasts (HDFs) showed that the nanoparticle surfaces do not have toxic effects on the cells. HDFs retained their phenotype on the nanoparticle coatings, by synthesizing type-I collagen. These cells also showed active proliferation on the nanoparticle substrates. Cells attached on TiO2 substrates showed faster rate of spreading compared with the other types of nanoparticle coatings. Mesenchymal stem cells (MSCs) were used as a second cell type to support and elaborate on the results obtained with the HDFs. Increasing surface roughness was observed with increasing number of layers of TiO2. Tests with a higher number of layers of TiO2, showed an increased attachment, proliferation and faster spreading of the MSCs on a larger number of layers of TiO2.

  3. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    PubMed

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  4. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system.

    PubMed

    Al-Remawi, Mayyas; Elsayed, Amani; Maghrabi, Ibrahim; Hamaidi, Mohammad; Jaber, Nisrein

    2017-05-01

    In the present work, insulin-chitosan polyelectrolyte complexes associated to lecithin liposomes were investigated as a new carrier for oral delivery of insulin. The preparation was characterized in terms of particle size, zeta potential and encapsulation efficiency. Surface tension measurements revealed that insulin-chitosan polyelectrolyte complexes have some degree of hydrophobicity and should be added to lecithin liposomal dispersion and not the vice versa to prevent their adsorption on the surface. Stability of insulin was enhanced when it was associated to liposomes. Significant reduction of blood glucose levels was noticed after oral administration of liposomal preparation to streptozotocin diabetic rats compared to control. The hypoglycemic activity was more prolonged compared to subcutaneously administered insulin.

  5. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Sarah; Li, Yue; Priftis, Dimitrios

    2014-06-01

    Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specificmore » interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.« less

  6. Polyelectrolyte Structure and Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Slimmer, Scott; Angelini, Thomas; Liang, Hongjun; Butler, John; Wong, Gerard C. L.

    2002-03-01

    Cystic fibrosis sputum is a complex fluid consisting of a number of components, including mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems were created to simulate CF sputum in vitro, in order to elucidate the contributions of the different components. Preliminary results will be presented. This work was supported by NSF DMR-0071761, DOE DEFG02-91ER45439, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  7. [Evaluation of the sanitary-and-epidemiological safety of flocculating agents used for portable water purification].

    PubMed

    Zholdakova, Z I; Sinitsyna, O O; Tul'skaia, E A

    2006-01-01

    Polyelectrolytes used in the practice of water supply to the population were comparatively hygienically studied, by using a complex of hazard indices and a new approach to sanitary-and-epidemiological evaluation of the safety of water-soluble polymers is substantiated. The anionic and cationic flocculating agents from different chemical classes, such as Superflok A-100, Fennopol A 321E, Fennopol K 221E, Praestol 2530 TR, VPK-402, Superflok C-577, Saipan, KF-91, Ecosol-401, a low molecular-weight sodium polyacrylate were tested as model compounds. Moreover, the information already available in the scientific literature on the toxicity of synthetic polyelectrolytes was analyzed. The generalized maximum permissible concentrations were substantiated for individual chemical classes of synthetic polyelectrolytes: polyacrylamides, polyamines, polydiallyldimethylammonium chloride.

  8. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    NASA Astrophysics Data System (ADS)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration of FA, oppositely charged amphiphiles (surfactant-polyelectrolyte), and the charge ratio of the surfactant-polyelectrolyte on the extent of coacervation have been investigated. Furthermore, the chemical composition of each phase formed in the coacervate system was determined as a function of HFIP percentage. Phase diagrams of HFIP-PMA-CTAB and 2-propanol-PMA-CTAB were studied. The phase separation occurs over a wide range of polyelectrolyte, surfactant and alcohol concentration. In addition, a study of the dependence of coacervate volume on phase composition in different system (as defined by concentrations and mole charge ratio of amphihiles and alcohols) provided useful insight about possible underlying interactions and mechanisms. It has been concluded that neutralization favors coacervation in both systems. However, according to the compositional analysis of both HFIP and 2-propanol SPCC system, it seems that coacervation mechanisms are different. In Chapter III the properties of 2-propanol--SPCC, with analogous surfactant (CTAB) and polyelectrolyte (PMA) used in Chapter II, will be investigated. In particular, we are interested in examining the difference between the phase separation characteristics of the coacervates induced by 2-propanol and HFIP as coacervator. For this purpose, the phase behavior and the chemical composition of the phases will be analyzed as a function of 2-propanol and constituents concentrations. Chapter IV contains results of our investigations on the activity of a model enzyme (Trypsin) in 2-propanol- and FA-induced SPCC system. These investigations will facilitate understanding whether the aliphatic alcohol, AA- and FA-induced SPCC system denature the model enzymes. Such investigations also help in evaluation of the applicability of the coacervate systems developed in this work in proteomics where the proteolytic activity of enzymes is used for protein digestion. Finally, in Chapter V, the efficiency of the coacervate system (2-propanol-induced-PMA-CTAB) for extraction of cytochrome c, as a model protein, will be investigated.

  9. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation.

    PubMed

    Kang, Hongki; Lee, Gu-Haeng; Jung, Hyunjun; Lee, Jee Woong; Nam, Yoonkey

    2018-02-27

    Localized heat generation by the thermo-plasmonic effect of metal nanoparticles has great potential in biomedical engineering research. Precise patterning of the nanoparticles using inkjet printing can enable the application of the thermo-plasmonic effect in a well-controlled way (shape and intensity). However, a universally applicable inkjet printing process that allows good control in patterning and assembly of nanoparticles with good biocompatibility is missing. Here we developed inkjet-printing-based biofunctional thermo-plasmonic interfaces that can modulate biological activities. We found that inkjet printing of plasmonic nanoparticles on a polyelectrolyte layer-by-layer substrate coating enables high-quality, biocompatible thermo-plasmonic interfaces across various substrates (rigid/flexible, hydrophobic/hydrophilic) by induced contact line pinning and electrostatically assisted nanoparticle assembly. We experimentally confirmed that the generated heat from the inkjet-printed thermo-plasmonic patterns can be applied in micrometer resolution over a large area. Lastly, we demonstrated that the patterned thermo-plasmonic effect from the inkjet-printed gold nanorods can selectively modulate neuronal network activities. This inkjet printing process therefore can be a universal method for biofunctional thermo-plasmonic interfaces in various bioengineering applications.

  10. Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles.

    PubMed

    Biswas, Aniket; Nagaraja, Ashvin T; McShane, Michael J

    2014-12-10

    Nanosized luminescent sensors were prepared as reagents for optical sensing and imaging of oxygen using ratiometric emission properties of a two-dye system. Polymeric capsules were fabricated utilizing poly(vinylsulfonic acid) (PVSA)-stabilized vaterite CaCO3 nanoparticles (CCNPs) as sacrificial templates. The buffer and polymeric surfactant requirements of the layer-by-layer (LbL) process were evaluated toward deposition of multilayer coatings and, ultimately, formation of hollow capsules using these interesting materials. CCNPs were found to be more stable in alkaline NaHCO3 buffer after repeated cycles of washing under sonication and resuspension. An intermediate PVSA concentration was required to maximize the loading of oxygen-sensitive porphyrin and oxygen-insensitive fluorescent nanoparticles in the CCNPs while maintaining minimal nanoparticle size. The CCNPs were then coated with polyelectrolyte multilayers and subsequent removal of the CaCO3 core yielded nanocapsules containing dye and fluorescent nanoparticles. The resulting nanocapsules with encapsulated luminophores functioned effectively as oxygen sensors with a quenching response of 89.28 ± 2.59%, and O2 (S = 1/2) = 20.91 μM of dissolved oxygen.

  11. Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition

    DOE PAGES

    Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; ...

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  12. Macromolecular Colloids of Diblock Poly(amino acids) That Bind Insulin.

    PubMed

    Constancis; Meyrueix; Bryson; Huille; Grosselin; Gulik-Krzywicki; Soula

    1999-09-15

    The diblock polymer poly(l-leucine-block-l-glutamate), bLE, was synthesized by acid hydrolysis of the ester poly(l-leucine-block-l-methyl glutamate). During the hydrolysis reaction the leucine block precipitates from the reaction mixture, forming nanosized particulate structures. These particles can be purified and further suspended in water or in 0.15 M phosphate saline buffer (PBS) to give stable, colloidal dispersions. TEM analysis shows the predominant particle form to be that of platelets with a diameter of 200 nm. Smaller cylindrical or spherical particles form a relatively minor fraction of the sample. After fractionation, analysis shows the platelets to be compositionally rich in leucine, while the spheres are glutamate-rich. (1)H NMR, CD, and X-ray diffraction indicate that the core of the platelets is composed of crystalline, helical leucine segments. The poly(l-glutamate) polyelectrolyte brush extending out from the two faces of the disk stabilizes individual particles from flocculation. At pH 7.4, the nanoparticles (platelets and cylinders) spontaneously adsorb proteins, such as insulin, directly from solution. Partial desorption of the protein in its native configuration can be induced by simple dilution. The reversibility of the insulin-nanoparticle complex is the basis for a potential new delivery system. Copyright 1999 Academic Press.

  13. Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunny, S; Vogel, N; Howell, C

    2014-09-01

    Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less

  14. Formation of Polyelectrolyte Complex Colloid Particles between Chitosan and Pectin with Different Degree of Esterification

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Sun, Hongyuan; He, Jieyu

    2017-12-01

    The effects of degree of esterification, pectin/chitosan ratio and pH on the formation of polyelectrolyte complex colloid particles between chitosan (CS) and pectin (PE) were investigated. Low methoxyl pectin (LPE) was achieved by de-esterifying high methoxyl pectin (HPE) with pectin methyl esterase. Turbidity titration and colorimetric method was used to determine the stability of complex colloid particles. The structure and morphology of complex particles were characterized by FTIR and TEM. When pectin solution was dropped into chitosan solution, complex colloidal dispersion was stable as PE/CS mass ratio was no more than 3:2. Colloidal particles of HPE-CS complex coagulated at larger ratio of PE/CS than LPE-CS. The maximum complex occurred at pH 6.1 for HPE-CS and pH 5.7 for LPE-CS, and decreasing pH leaded to the dissociation of complex particles. Electrostatic interactions between carboxyl groups on pectin and amino groups on chitosan were confirmed by FTIR. Colloidal particle sizes ranged from about 100 nm to 400 nm with spherical shape.

  15. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    PubMed

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein-polyelectrolyte systems. Hence, the present protein-PEGylated poly(amino acid) mixture provides an ideal water-soluble model system to study the important role of electrostatic interaction in the complexation between proteins and polymers, leading to important new knowledge on the protein-polymer interactions. Moreover, the polyelectrolyte complex micelle formed between protein and PEGylated polymer may provide a good drug delivery vehicle for therapeutic proteins.

  16. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  17. Dielectric function of two-phase colloid-polymer nanocomposite.

    PubMed

    Mitzscherling, S; Cui, Q; Koopman, W; Bargheer, M

    2015-11-28

    The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses.

  18. An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rivero, Pedro José; Urrutia, Aitor; Goicoechea, Javier; Zamarreño, Carlos Ruiz; Arregui, Francisco Javier; Matías, Ignacio Raúl

    2011-12-01

    In this work a novel antibacterial surface composed of an organic-inorganic hybrid matrix of tetraorthosilicate and a polyelectrolyte is presented. A precursor solution of tetraethoxysilane (TEOS) and poly(acrylic acid sodium salt) (PAA) was prepared and subsequently thin films were fabricated by the dip-coating technique using glass slides as substrates. This hybrid matrix coating is further loaded with silver nanoparticles using an in situ synthesis route. The morphology and composition of the coatings have been studied using UV-VIS spectroscopy and atomic force microscopy (AFM). Energy dispersive X-ray (EDX) was also used to confirm the presence of the resulting silver nanoparticles within the thin films. Finally the coatings have been tested in bacterial cultures of genus Lactobacillus plantarum to observe their antibacterial properties. It has been experimentally demonstrated that these silver loaded organic-inorganic hybrid films have a very good antimicrobial behavior against this type of bacteria.

  19. Influence of natural organic matter (NOM) and synthetic polyelectrolytes on colloidal behavior of metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghosh, Saikat

    The colloidal behavior of engineered nanomaterials exposed in an aquatic environment may significantly influence their bioavailability as well as toxicity to different species. Natural organic matter (NOM) is one of the major colloidal materials ubiquitous in the environment with significant structural heterogeneity. Therefore, role of NOM molecules on environmental fate of these engineered NPs needs to be addressed. Colloidal behavior of aluminum (Al2O 3) and magnetic iron oxide (gammaFe2O3) NPs was studied in the presence of structurally different HAs and synthetic polyacrylic acids (PAAs). The conformation behavior of the adsorobed NOM/polyelectrolyte under specific solution conditions were determined with dynamic light scattering, atomic force microscopy measurements. Al2O3 NPs followed the classical DLVO model of colloidal behavior in their pristine state. However, a significant deviation from the classical DLVO model was observed when these NPs were coated with structurally different HAs. Low polar, high molecular weight HA fractions showed much stronger stabilization against Ca2+ induced aggregation. Previously, we observed that these low polar, high molecular weight fractions strongly destabilized the NP suspension when added in a small quantity. A significant transformation in suspension stability was observed possibly due to steric effect of these adsorbed HAs. The colloidal behavior of PAA/NOM coated ferrimagnetic gammaFe 2O3 NPs were investigated. Pure gammaFe2O 3 NPs were extremely unstable in aqueous solution but a significant enhancement in colloidal stability was observed after coating with polyelectrolytes/NOM. The steric as well as electrostatic stabilization introduced by the polyelectrolyte coating strongly dictated the colloidal stability. The alteration of electrosteric stabilization mechanisms by pH-induced conformation change profoundly influences the colloidal stability. Atomic force microscopy (AFM) study revealed a highly stretched conformation of the HA molecular chains adsorbed on gammaFe 2O3 NP surface with increasing pH from 5 to 9 which enhanced the colloidal stability trough long range electrosteric stabilization. The depletion of the polyelectrolytes during dilution of the suspension in the acidic solution conditions and in the presence of Na+ or Ca 2+ decreased the colloidal stability. The conformation of the polyelectrolytes adsorbed on the NP surface altered significantly as a function of substrate surface charge as viewed from the AFM imaging.

  20. Polymeric nanocapsules with up-converting nanocrystals cargo make ideal fluorescent bioprobes.

    PubMed

    Bazylińska, U; Wawrzyńczyk, D; Kulbacka, J; Frąckowiak, R; Cichy, B; Bednarkiewicz, A; Samoć, M; Wilk, K A

    2016-07-13

    An innovative approach for up-converting nanoparticles adaptation for bio-related and theranostic applications is presented. We have successfully encapsulated multiple, ~8 nm in size NaYF4 nanoparticles inside the polymeric nanocarriers with average size of ~150 nm. The initial coating of nanoparticles surfaces was preserved due to the hydrophobic environment inside the nanocapsules, and thus no single nanoparticle surface functionalization was necessary. The selection of biodegradable and sugar-based polyelectrolyte shells ensured biocompatibility of the nanostructures, while the choice of Tm(3+) and Yb(3+) NaYF4 nanoparticles co-doping allowed for near-infrared to near-infrared bioimaging of healthy and cancerous cell lines. The protective role of organic shell resulted in not only preserved high up-converted emission intensity and long luminescence lifetimes, without quenching from water environment, but also ensured low cytotoxicity and high cellular uptake of the engineered nanocapsules. The multifunctionality of the proposed nanocarriers is a consequence of both the organic exterior part that is accessible for conjugation with biologically important molecules, and the hydrophobic interior, which in future application may be used as a container for co-encapsulation of inorganic nanoparticles and anticancer drug cargo.

  1. Polymeric nanocapsules with up-converting nanocrystals cargo make ideal fluorescent bioprobes

    PubMed Central

    Bazylińska, U.; Wawrzyńczyk, D.; Kulbacka, J.; Frąckowiak, R.; Cichy, B.; Bednarkiewicz, A.; Samoć, M.; Wilk, K. A.

    2016-01-01

    An innovative approach for up-converting nanoparticles adaptation for bio-related and theranostic applications is presented. We have successfully encapsulated multiple, ~8 nm in size NaYF4 nanoparticles inside the polymeric nanocarriers with average size of ~150 nm. The initial coating of nanoparticles surfaces was preserved due to the hydrophobic environment inside the nanocapsules, and thus no single nanoparticle surface functionalization was necessary. The selection of biodegradable and sugar-based polyelectrolyte shells ensured biocompatibility of the nanostructures, while the choice of Tm3+ and Yb3+ NaYF4 nanoparticles co-doping allowed for near-infrared to near-infrared bioimaging of healthy and cancerous cell lines. The protective role of organic shell resulted in not only preserved high up-converted emission intensity and long luminescence lifetimes, without quenching from water environment, but also ensured low cytotoxicity and high cellular uptake of the engineered nanocapsules. The multifunctionality of the proposed nanocarriers is a consequence of both the organic exterior part that is accessible for conjugation with biologically important molecules, and the hydrophobic interior, which in future application may be used as a container for co-encapsulation of inorganic nanoparticles and anticancer drug cargo. PMID:27406954

  2. Polymeric nanocapsules with up-converting nanocrystals cargo make ideal fluorescent bioprobes

    NASA Astrophysics Data System (ADS)

    Bazylińska, U.; Wawrzyńczyk, D.; Kulbacka, J.; Frąckowiak, R.; Cichy, B.; Bednarkiewicz, A.; Samoć, M.; Wilk, K. A.

    2016-07-01

    An innovative approach for up-converting nanoparticles adaptation for bio-related and theranostic applications is presented. We have successfully encapsulated multiple, ~8 nm in size NaYF4 nanoparticles inside the polymeric nanocarriers with average size of ~150 nm. The initial coating of nanoparticles surfaces was preserved due to the hydrophobic environment inside the nanocapsules, and thus no single nanoparticle surface functionalization was necessary. The selection of biodegradable and sugar-based polyelectrolyte shells ensured biocompatibility of the nanostructures, while the choice of Tm3+ and Yb3+ NaYF4 nanoparticles co-doping allowed for near-infrared to near-infrared bioimaging of healthy and cancerous cell lines. The protective role of organic shell resulted in not only preserved high up-converted emission intensity and long luminescence lifetimes, without quenching from water environment, but also ensured low cytotoxicity and high cellular uptake of the engineered nanocapsules. The multifunctionality of the proposed nanocarriers is a consequence of both the organic exterior part that is accessible for conjugation with biologically important molecules, and the hydrophobic interior, which in future application may be used as a container for co-encapsulation of inorganic nanoparticles and anticancer drug cargo.

  3. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less

  4. Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potential measurements.

    PubMed

    López-Maldonado, E A; Oropeza-Guzman, M T; Jurado-Baizaval, J L; Ochoa-Terán, A

    2014-08-30

    Based on the polyelectrolyte-contaminant physical and chemical interactions at the molecular level, this article analyzed and discussed the coagulation-flocculation and chemical precipitation processes in order to improve their efficiency. Bench experiments indicate that water pH, polyelectrolyte (PE) dosing strategy and cationic polyelectrolyte addition are key parameters for the stability of metal-PE complexes. The coagulation-flocculation mechanism is proposed based on zeta potential (ζ) measurement as the criteria to define the electrostatic interaction between pollutants and coagulant-flocculant agents. Polyelectrolyte and wastewater dispersions are exposed to an electrophoretic effect to determine ζ. Finally, zeta potential values are compared at pH 9, suggesting the optimum coagulant dose at 162mg/L polydadmac and 67mg/L of flocculant, since a complete removal of TSS and turbidity is achieved. Based on the concentration of heavy metals (0.931mg/L Sn, 0.7mg/L Fe and 0.63mg/L Pb), treated water met the Mexican maximum permissible limits. In addition, the treated water has 45mg O2/L chemical oxygen demand (COD) and 45mg C/L total organic carbon (TOC). The coagulation-flocculation mechanism is proposed taking into account both: zeta potential (ζ)-pH measurement and chemical affinity, as the criteria to define the electrostatic and chemical interaction between pollutants and polyelectrolytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Nanotemplated polyelectrolyte films as porous biomolecular delivery systems

    PubMed Central

    Gand, Adeline; Hindié, Mathilde; Chacon, Diane; van Tassel, Paul R; Pauthe, Emmanuel

    2014-01-01

    Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface). PMID:25482416

  6. Nanotemplated polyelectrolyte films as porous biomolecular delivery systems. Application to the growth factor BMP-2.

    PubMed

    Gand, Adeline; Hindié, Mathilde; Chacon, Diane; Van Tassel, Paul R; Pauthe, Emmanuel

    2014-01-01

    Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface).

  7. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  8. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  9. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay.

    PubMed

    da Costa, Marcia Parente Melo; de Mello Ferreira, Ivana Lourenço; de Macedo Cruz, Mauricio Tavares

    2016-08-01

    A new nanocomposite hydrogel was prepared by forming a crosslinked hybrid polymer network based on chitosan and pectin in the presence of montmorillonite clay. The influence of clay concentration (0.5 and 2% wt) as well as polymer ratios (1:1, 1:2 and 2:1) was investigated carefully. The samples were characterized by different techniques: transmission and scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, swelling degree and compression test. Most samples presented swelling degree above 1000%, which permits characterizing them as superabsorbent material. Images obtained by transmission electron microscopy showed the presence of clay nanoparticles into hydrogel. The hydrogels' morphological properties were evaluated by scanning electron microscope in high and low-vacuum. The micrographs showed that the samples presented porous. The incorporation of clay produced hydrogels with differentiated morphology. Thermogravimetric analysis results revealed that the incorporation of clay in the samples provided greater thermal stability to the hydrogels. The compression resistance also increased with addition of clay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chitosan-phosphotungstic acid complex as membranes for low temperature H2-O2 fuel cell

    NASA Astrophysics Data System (ADS)

    Santamaria, M.; Pecoraro, C. M.; Di Quarto, F.; Bocchetta, P.

    2015-02-01

    Free-standing Chitosan/phosphotungstic acid polyelectrolyte membranes were prepared by an easy and fast in-situ ionotropic gelation process performed at room temperature. Scanning electron microscopy was employed to study their morphological features and their thickness as a function of the chitosan concentration. The membrane was tested as proton conductor in low temperature H2-O2 fuel cell allowing to get peak power densities up to 350 mW cm-2. Electrochemical impedance measurements allowed to estimate a polyelectrolyte conductivity of 18 mS cm-1.

  11. Interactions Between DNA and Actin in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Kyung, Hee; Sanders, Lori; Angelini, Thomas; Butler, John; Wong, Gerard

    2003-03-01

    Cystic fibrosis sputum is a complex fluid which has a high concentration of DNA and F-actin, two anionic biological polyelectrolytes. In this work, we study the interactions between DNA and actin in an aqueous environment over a wide range of polyelectrolyte lengths and salt levels, using synchrotron Small Angle X-ray Scattering(SAXS) and confocal microscopy. Perliminary results indicate the existence of a compressed phase of nematic F-actin in the presence of DNA. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  12. Linear Titration Curves of Acids and Bases.

    PubMed

    Joseph, N R

    1959-05-29

    The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.

  13. Polymer Stabilized Nanosuspensions Formed via Flash Nanoprecipitation: Nanoparticle Formation, Formulation, and Stability

    NASA Astrophysics Data System (ADS)

    Zhu, ZhengXi

    Nanoparticles loaded with hydrophobic components (e.g., active pharmaceutical ingredients, medical diagnostic agents, nutritional or personal care chemicals, catalysts, dyes/pigments, and substances with exceptional magnetic/optical/electronic/thermal properties) have tremendous industrial applications. The common desire is to efficiently generate nanoparticles with a desired size, size distribution, and size stability. Recently, Flash NanoPrecipition (FNP) technique with a fast, continuous, and easily scalable process has been developed to efficiently generate hydrophobe-loaded nanoparticles. This dissertation extended this technique, optimized process conditions and material formulations, and gave new insights into the mechanism and kinetics of nanoparticle formation. This dissertation demonstrated successful generation of spherical beta-carotene nanoparticles with an average diameter of 50--100 nm (90 wt% nanoparticles below 200 nm), good size stability (maintained an average diameter below 200 nm for at least one week in saline), and much higher loading (80--90 wt%) than traditional carriers, such as micelles and polymersomes (typically <20 wt%). Moreover, the nanoparticles are amorphous and expected to have a high dissolution rate and bioavailability. To give insights into the mechanism and kinetics of nanoparticle formation, much remarkable evidence supported the kinetically frozen structures of the nanoparticles rather than the thermodynamic equilibrium micelles. Time scales of the particle formation via FNP were proposed. To optimize the material formulations, either polyelectrolytes (i.e., epsilon-polylysine, branched and linear poly(ethylene imine), and chitosan) or amphiphilic diblock copolymers (i.e., polystyrene-b-poly(ethylene glycol) (PS-b-PEG), polycarprolactone-b-poly(ethylene glycol) (PCL-b-PEG), poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)) were selectively screened to study the nanoparticle size, distribution, and stability. The effect of the molecular weight of the polymers and pH were also studied. Chitosan and PLGA-b-PEG best stabilized the beta-carotene nanoparticles. Solubility of the hydrophobic drug solute in the aqueous mixture was considered to dominate the nanoparticle stability (i.e., size and morphology) in terms of Ostwald ripening and recrystallization. The lower solubility the drug is of, the greater stability the nanoparticles have. Chemically bonding drug compounds with cleavable hydrophobic moieties to form prodrugs were used to enhance their hydrophobicity and thus the nanoparticle stability. It opened a generic strategy to enhance the stability of nanoparticles formed via FNP. beta-carotene, paclitaxel, paclitaxel prodrug, betulin, hydrocortisone, and hydrocortisone prodrug as the drugs were studied. Solubility parameter (delta), and octanol/water partition coefficients (LogP), provide hydrophobicity indicators for the compounds. LogP showed a good correlation with the nanoparticle stability. An empirical rule was built to conveniently predict particle stability for randomly selected drugs. To optimize the process conditions, two-stream confined impinging jet mixer (CIJ) and four-stream confined vortex jet mixer were used. The particle size was studied by varying drug and polymer concentrations, and flow rate (corresponding to Reynolds number (Re)). To extend the FNP technique, this dissertation demonstrated successful creation of stabilized nanoparticles by integrating an in-situ reactive coupling of a hydrophilic polymer block with a hydrophobic one with FNP. The kinetics of the fast coupling reaction was studied. This dissertation also introduced polyelectrolytes (i.e., epsilon-polylysine, poly(ethylene imine), and chitosan) into FNP to electrosterically stabilize nanoparticles.

  14. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    PubMed

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  15. Computer simulations of dendrimer-polyelectrolyte complexes.

    PubMed

    Pandav, Gunja; Ganesan, Venkat

    2014-08-28

    We carry out a systematic analysis of static properties of the clusters formed by complexation between charged dendrimers and linear polyelectrolyte (LPE) chains in a dilute solution under good solvent conditions. We use single chain in mean-field simulations and analyze the structure of the clusters through radial distribution functions of the dendrimer, cluster size, and charge distributions. The effects of LPE length, charge ratio between LPE and dendrimer, the influence of salt concentration, and the dendrimer generation number are examined. Systems with short LPEs showed a reduced propensity for aggregation with dendrimers, leading to formation of smaller clusters. In contrast, larger dendrimers and longer LPEs lead to larger clusters with significant bridging. Increasing salt concentration was seen to reduce aggregation between dendrimers as a result of screening of electrostatic interactions. Generally, maximum complexation was observed in systems with an equal amount of net dendrimer and LPE charges, whereas either excess LPE or dendrimer concentrations resulted in reduced clustering between dendrimers.

  16. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  17. Mg2+-induced DNA compaction, condensation, and phase separation in gene delivery vehicles based on zwitterionic phospholipids: a dynamic light scattering and surface-enhanced Raman spectroscopic study.

    PubMed

    Süleymanoğlu, Erhan

    2017-12-01

    Despite the significant efforts towards applying improved non-destructive and label-free measurements of biomolecular structures of lipid-based gene delivery vectors, little is achieved in terms of their structural relevance in gene transfections. Better understanding of structure-activity relationships of lipid-DNA complexes and their gene expression efficiencies thus becomes an essential issue. Raman scattering offers a complimentary measurement technique for following the structural transitions of both DNA and lipid vesicles employed for their transfer. This work describes the use of SERS coupled with light scattering approaches for deciphering the bioelectrochemical phase formations between nucleic acids and lipid vesicles within lipoplexes and their surface parameters that could influence both the uptake of non-viral gene carriers and the endocytic routes of interacting cells. As promising non-viral alternatives of currently employed risky viral systems or highly cytotoxic cationic liposomes, complexations of both nucleic acids and zwitterionic lipids in the presence of Mg 2+ were studied applying colloidal Ag nanoparticles. It is shown that the results could be employed in further conformational characterizations of similar polyelectrolyte gene delivery systems.

  18. Composite carbohydrate interpenetrating polyelectrolyte nano-complexes (IPNC) as a controlled oral delivery system of citalopram HCl for pediatric use: in-vitro/in-vivo evaluation and histopathological examination.

    PubMed

    Kamel, Rabab; Abbas, Haidy; El-Naa, Mona

    2018-06-01

    Citalopram HCl (CH) is one of the few drugs which can be used safely in childhood psychiatric disorders. This study was focused on the preparation of interpenetrating polyelectrolytes nano-complexes (IPNC) to transform the hydrophilic carbohydrate polymers into an insoluble form. The IPNCs were loaded with CH to sustain its effect. The IPNC2 (composed of chitosan:pectin in a 3:1 ratio) showed the most extended drug release pattern (P < 0.05) and followed a Higuchi-order kinetics model. It was characterized using SEM, X-rays diffractometry, and FTIR. In-vivo studies were performed using immature rats with induced depression, and were based on the investigation of behavioral, biochemical, and histopathological changes at different time intervals up to 24 h. Rats treated with IPNC2 showed a significant more rapid onset of action and more extended effect in the behavioral tests, in addition to a significantly higher serotonin brain level up to 24 h, compared to rats treated with the market product (P < 0.05). The histopathological examination showed a profound amelioration of the cerebral cortex features of the depressed rats after IPNC2 administration. This study proves the higher efficacy and more extended effect of the new polyelectrolytes nano-complexes compared to the market product.

  19. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    PubMed

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  20. Mechanical properties of bulk graphene oxide/poly(acrylic acid)/poly(ethylenimine) ternary polyelectrolyte complex.

    PubMed

    Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S

    2018-05-30

    Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.

  1. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    PubMed

    Sami, Haider; Maparu, Auhin K; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+) was observed after internalization of LaF(3):Tb(3+)(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification.

  2. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    PubMed Central

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  3. Cell Uptake and Validation of Novel PECs for Biomedical Applications.

    PubMed

    Palamà, Ilaria E; Musarò, Mariarosaria; Coluccia, Addolorata M L; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  4. Cell Uptake and Validation of Novel PECs for Biomedical Applications

    PubMed Central

    Palamà, Ilaria E.; Musarò, Mariarosaria; Coluccia, Addolorata M. L.; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability. PMID:21876815

  5. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    PubMed Central

    Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai

    2017-01-01

    To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852

  6. Water-dissolvable sodium sulfate nanowires as a versatile template for the fabrication of polyelectrolyte- and metal-based nanotubes.

    PubMed

    Pu, Ying-Chih; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng

    2006-09-06

    This study presents the synthesis of water-dissolvable sodium sulfate nanowires, where Na(2)SO(4) nanowires were produced by an easy reflux process in an organic solvent, N,N-dimethylformamide (DMF) and formed from the coexistence of AgNO(3), SnCl(2), dodecylsodium sulfate (SDS), and cetyltrimethylammonium bromide (CTAB). Na(2)SO(4) nanowires were derived from SDS, and the morphology control of the Na(2)SO(4) nanowires was established by the cooperative effects of Sn and NO(3)(-), while CTAB served as the template and led to homogeneous nanowires with a smooth surface. Since the as-synthesized sodium sulfate nanowires are readily dissolved in water, these nanowires can be treated as soft templates for the fabrication of nanotubes by removing the Na(2)SO(4) core. This process is therefore significantly better than other reported methodologies to remove the templates under harsh condition. We have demonstrated the preparation of biocompatible polyelectrolyte (PE) nanotubes using a layer-by-layer (LbL) method on the Na(2)SO(4) nanowires and the formation of Au nanotubes by the self-assembly of Au nanoparticles. In both nanotube synthesis processes, PEI (polyethylenimine), PAA (poly(acrylic acid)), and Au nanoparticles served as the building blocks on the Na(2)SO(4) templates, which were then rinsed with water to remove the core templates. This unique water-dissolvable template is anticipated to bring about versatile and flexible downstream applications.

  7. [Preparation of polyelectrolyte microcapsules containing ferrosoferric oxide nanoparticles].

    PubMed

    Liu, Xiao-Qing; Zheng, Chun-Li; Zhu, Jia-Bi

    2011-01-01

    In this study, polyelectrolyte microcapsules have been fabricated by biocompatible ferrosoferric oxide nanoparticles (Fe3O4 NPs) and poly allyamine hydrochloride (PAH) using layer by layer assembly technique. The Fe3O4 NPs were prepared by chemical co-precipitation, and characterized by transmission electron microscopy (TEM) and infrared spectrum (IR). Quartz cell also was used as a substrate for building multilayer films to evaluate the capability of forming planar film. The result showed that Fe3O4 NPs were selectively deposited on the surface of quartz cell. Microcapsules containing Fe3O4 NPs were fabricated by Fe3O4 NPs and PAH alternately self-assembly on calcium carbonate microparticles firstly, then 0.2 molL(-1) EDTA was used to remove the calcium carbonate. Scanning electron microscopy (SEM), Zetasizer and vibrating sample magnetometer (VSM) were used to characterize the microcapsule's morphology, size and magnetic properties. The result revealed that Fe3O4 NPs and PAH were successfully deposited on the surface of CaCO3 microparticles, the microcapsule manifested superparamagnetism, size and saturation magnetization were 4.9 +/- 1.2 microm and 8.94 emu x g(-1), respectively. As a model drug, Rhodamin B isothiocyanate labeled bovine serum albumin (RBITC-BSA) was encapsulated in microcapsule depended on pH sensitive of the microcapsule film. When pH 5.0, drug add in was 2 mg, the encapsulation efficiency was (86.08 +/- 3.36) % and the drug loading was 8.01 +/- 0.30 mg x m(L-1).

  8. Stability of foam films of oppositely charged polyelectrolyte/surfactant mixtures: effect of isoelectric point.

    PubMed

    Kristen-Hochrein, Nora; Laschewsky, André; Miller, Reinhard; von Klitzing, Regine

    2011-12-15

    In the present paper, the influence of the surfactant concentration and the degree of charge of a polymer on foam film properties of oppositely charged polyelectrolyte/surfactant mixtures has been investigated. To verify the assumption that the position of the isoelectric point (IEP) does not change the character of the foam film stabilities, the position of the IEP of the polyelectrolyte/surfactant mixtures has been shifted in two different ways. Within the first series of experiments, the foam film properties were studied using a fixed surfactant concentration of 3 × 10(-5) M in the mixture. Due to the low surfactant concentration, this is a rather dilute system. In the second approach, a copolymer of nonionic and ionic monomer units was used to lower the charge density of the polymer. This gave rise to additional interactions between the polyelectrolyte and the surfactant, which makes the description of the foam film behavior more complex. In both systems, the same characteristics of the foam film stabilities were found: The foam film stability is reduced toward the IEP of the system, followed by a destabilization around the IEP. At polyelectrolyte concentrations above the IEP, foam films are very stable. However, the concentration range where unstable films were formed was rather broad, and the mechanisms leading to the destabilization had different origins. The results were compared with former findings on PAMPS/C(14)TAB mixtures with an IEP of 10(-4) M.

  9. [An electron microscopy study of the structure of polyelectrolyte microcapsules containing protein and containing no protein].

    PubMed

    Kazakova, L I; Dubrovskiĭ, A V; Moshkov, D A; Shabarchina, L I; Sukhorukov, B I

    2007-01-01

    Electron micrographs of ultrathin sections of polyelectrolyte microparticles containing protein and free from protein for the formation of which CaCO3 spherulites served as a core basis have been obtained and analyzed. Polyelectrolyte microparticles with the number of alternately layered polyelectrolyte layers of polystyrene sulfonate and polyallylamine from 6 to 11 have been studied. It follows from the data obtained that protein-free polyelectrolyte particles having the dimensions 4.5-5 mm are formations of an intricate internal organization, which consist of a set of threadlike and closed nanoelements of polyelectrolyte nature with a thickness of 20-30 nm. The particles containing six to eight polyelectrolyte layers lack the external envelope; therefore, they were called polyelectrolyte microspherulites. With the number of layers nine and more, when a polyelectrolyte envelope appears on the surface, they transfer into polyelectrolyte microcapsules. It was found that, in a protein-containing polyelectrolyte microcapsule, as distinct from protein-free polyelectrolyte microspherulite and microcapsule, polyelectrolytes are located only in the nearsurface layer, and the external spatially organized envelope restricts the internal volume filled with protein solution. As the number of polyelectrolyte layers increases, the thickness of the envelope increases. The reasons for such substantial differences in the structures of polyelectrolyte microcapsules formed on protein-containing and protein-free CaCO3 spherulite are discussed.

  10. Effect of PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin.

    PubMed

    Välimäki, Salla; Khakalo, Alexey; Ora, Ari; Johansson, Leena-Sisko; Rojas, Orlando J; Kostiainen, Mauri A

    2016-09-12

    Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation. The only clinically approved antidote for heparin is protamine sulfate, which is, however, ineffective against low molecular weight heparin and can cause severe adverse reactions in patients. In this study, the facile synthesis of cationic-neutral diblock copolymers and their effective heparin binding is presented. Poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PDMAEMA) block copolymers were synthesized in two steps via atom-transfer radical polymerization (ATRP) using PEG as a macroinitiator. Solution state binding between heparin and a range of PEG-PDMAEMA block copolymers and one homopolymer was studied with dynamic light scattering and methylene blue displacement assay. Also in vitro binding in plasma was studied by utilizing a chromogenic heparin anti-Xa assay. Additionally, quartz crystal microbalance and multiparametric surface plasmon resonance were used to study the surface adsorption kinetics of the polymers on a heparin layer. It was shown that the block copolymers and heparin form electrostatically bound complexes with varying colloidal properties, where the block lengths play a key role in controlling the heparin binding affinity, polyelectrolyte complex size and surface charge. With the optimized polymers (PEG114PDMAEMA52 and PEG114PDMAEMA100), heparin could be neutralized in a dose-dependent manner, and bound efficiently into small neutral complexes, with a hydrodynamic radius less than 100 nm. These complexes had only a limited effect on cell viability. Based on these studies, our approach paves the way for the development of new polymeric heparin binding agents.

  11. Proton and metal ion binding to natural organic polyelectrolytes-I. Studies with synthetic model compounds

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    A unified physico-chemical model, based on a modified Henderson-Hasselbalch equation, for the analysis of ion complexation reactions involving charged polymeric systems is presented and verified. In this model pH = pKa+p(??Ka) + log(??/1 - ??) where Ka is the intrinsic acid dissociation constant of the ionizable functional groups on the polymer, ??Ka is the deviation of the intrinsic constant due to electrostatic interaction between the hydrogen ion and the polyanion, and alpha (??) is the polyacid degree of ionization. Using this approach pKa values for repeating acidic units of polyacrylic (PAA) and polymethacrylic (PMA) acids were found to be 4.25 ?? 0.03 and 4.8 ?? 0.1, respectively. The polyion electrostatic deviation term derived from the potentiometric titration data (i.e. p(??Ka)) is used to calculate metal ion concentration at the complexation site on the surface of the polyanion. Intrinsic cobalt-polycarboxylate binding constants (7.5 for PAA and 5.6 for PMA), obtained using this procedure, are consistent with the range of published binding constants for cobalt-monomer carboxylate complexes. In two phase systems incorporation of a Donnan membrane potential term allows determination of the intrinsic pKa of a cross-linked PMA gel, pKa = 4.83, in excellent agreement with the value obtained for the linear polyelectrolyte and the monomer. Similarly, the intrinsic stability constant for cobalt ion binding to a PMA-gel (??CoPMA+ = 11) was found to be in agreement with the linear polyelectrolyte analogue and the published data for cobalt-carboxylate monodentate complexes. ?? 1984.

  12. Tunable Nanocomposite Membranes for Water Remediation and Separations

    NASA Astrophysics Data System (ADS)

    Sierra, Sebastian Hernandez

    Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes. Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these responsive materials prevent the loss of nanomaterials to the environment and improve reactivity due to their larger surface areas, expanding their range of applications. The present work describes different techniques used to create nanocomposites based on poly(vinylidene fluoride) (PVDF) hollow fiber and flat sheet membranes, both thick sponge-like and thin. Due to their hydrophobicity, hollow fiber membranes were hydrophilized by a water-based green process of cross-linking polyvinylpyrrolidone (PVP) onto their surface. Commercial hydrophilic and hydrophilized lab-prepared membranes were subsequently functionalized with a poly(acrylic acid) (PAA) hydrogel through free radical polymerizations. This work advanced membrane functionalization, specifically flat sheet membranes, from lab-scale to full-scale by modifications of the polymerization procedures. The hydrogel functionalized membranes by redox polymerization showed an expected responsive behavior, represented by permeability variation at various pH values (4.0 ≤ pH ≤ 9.0), from 53.9 to 3.4 L/(m2EhEbar) and a change in effective pore size from 222 to 111 nm, being 3800 L/(m 2EhEbar) and 650 nm the former permeability and pore size values of the non-functionalized membrane. Then, throughout a double ion exchange of sodium/iron and a subsequent reduction, bimetallic Fe/Pd nanoparticles were synthesized in-situ. Similarly, it was possible to use the reacted accelerants of the redox polymerization to synthesize Fe0 nanoparticles. These hydrogel-membrane systems with Fe/Pd nanoparticles were studied throughout the reduction of trichloroethylene (TCE). This work has demonstrated an effective improvement in TCE reduction by the variation of the supporting membrane types and the functionalization (polymerization and nanoparticle synthesis) processes. The TCE normalized dechlorination rates (k sa) are 3 times greater and 8 times for hollow fiber and sponge-like flat sheet membranes, respectively, than previous studies. For membrane supported Fe/Pd nanoparticles by redox functionalization, the dechlorination rates are similar to previous works in flat sheet membranes; and for the redox polymerized hydrogel, the dechlorination rates are the highest results with 1.3 times greater than the rates of solution-phase nanoparticles and 10 times the rate values of the membranes. All supports showed nonsignificant nanoparticle loss (up to 1%). Up to 80% of reduction was achieved within 2 hours with chloride production near to stoichiometric values (3:1), demonstrating absence of intermediates. As an extension of the membrane functionalization, it was possible to immobilize Outer membrane protein F precursor (OmpF) from Escherichia coli within the PVDF membrane pore structure, using layer-by-layer (LbL) assembly of polyeletrolytes. This LbL technique allows to reuse the membranes numerous times, having reproducibility and greater selective rejections of uncharged (organic species) over charged solutes (small ions) than similar functionalized membranes without OmpF: 1.7 times and 2.0 times higher for Organic/CaCl2 and Organic/NaCl, respectively. Additionally, the permeability of OmpFmembranes is almost double of the non-OmpF: 2.6 to 1.5 L/(m2˙h˙bar).

  13. Novel computational approach for studying ph effects, excluded volume and ion-ion correlations in electrical double layers around polyelectrolytes and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ovanesyan, Zaven

    Highly charged cylindrical and spherical objects (macroions) are probably the simplest structures for modeling nucleic acids, proteins and nanoparticles. Their ubiquitous presence within biophysical systems ensures that Coulomb forces are among the most important interactions that regulate the behavior of these systems. In these systems, ions position themselves in a strongly correlated manner near the surface of a macroion and form electrical double layers (EDLs). These EDLs play an important role in many biophysical and biochemical processes. For instance, the macroion's net charge can change due to the binding of many multivalent ions to its surface. Thus, proper description of EDLs near the surface of a macroion may reveal a counter-intuitive charge inversion behavior, which can generate attraction between like-charged objects. This is relevant for the variety of fields such as self-assembly of DNA and RNA folding, as well as for protein aggregation and neurodegenerative diseases. Certainly, the key factors that contribute to these phenomena cannot be properly understood without an accurate solvation model. With recent advancements in computer technologies, the possibility to use computational tools for fundamental understanding of the role of EDLs around biomolecules and nanoparticles on their physical and chemical properties is becoming more feasible. Establishing the impact of the excluded volume and ion-ion correlations, ionic strength and pH of the electrolyte on the EDL around biomolecules and nanoparticles, and how changes in these properties consequently affect the Zeta potential and surface charge density are still not well understood. Thus, modeling and understanding the role of these properties on EDLs will provide more insights on the stability, adsorption, binding and function of biomolecules and nanoparticles. Existing mean-field theories such as Poisson Boltzmann (PB) often neglect the ion-ion correlations, solvent and ion excluded volume effects, which are important details for proper description of EDL properties. In this thesis, we implement an efficient and accurate classical solvation density functional theory (CDSFT) for EDLs of spherical macroions and cylindrical polyelectrolytes embedded in aqueous electrolytes. This approach extends the capabilities of mean field approximations by taking into account electrostatic ion-ion correlations, size asymmetry and excluded volume effects without compromising the computational cost. We apply the computational tool to study the structural and thermodynamic properties of the ionic atmosphere around B-DNA and spherical nanoparticles. We demonstrate that the presence of solvent molecules at experimental concentration and size values has a significant impact on the layering of ions. This layering directly influences the integrated charge and mean electrostatic potential in the diffuse region of the spherical electrical double layer (SEDL) and have a noticeable impact on the behavior of zeta potential (ZP). Recently, we have extended the aforementioned CSDFT to account for the charge-regulated mechanisms of the macroion surface on the structural and thermodynamic properties of spherical EDLs. In the approach, the CSDFT is combined with a surface complexation model to account for ion correlation and excluded volume effects on the surface titration of spherical macroions. We apply the proposed computational approach to describe the role that the ion size and solvent excluded volume play on the surface titration properties of silica nanoparticles. We analyze the effects of the nanoparticle size, pH and salt concentration of the aqueous solution on the nanoparticle's surface charge and zeta potential. The results reveal that surface charge density and zeta potential significantly depend on excluded volume and ion-ion correlation effects as well as on pH for monovalent ion species at high salt concentrations. Overall, our results are in good agreement with Monte Carlo simulations and available experimental data. We discuss future directions of this work, which includes extension of the solvation model for studying the flexibility properties of rigid peptides and globular proteins, and describes benefits that this research can potentially bring to scientific and non scientific communities.

  14. Shining Light on Chitosan: A Review on the Usage of Chitosan for Photonics and Nanomaterials Research.

    PubMed

    Marpu, Sreekar B; Benton, Erin N

    2018-06-17

    Chitosan (CS) is a natural polymer derived from chitin that has found its usage both in research and commercial applications due to its unique solubility and chemical and biological attributes. The biocompatibility and biodegradability of CS have helped researchers identify its utility in the delivery of therapeutic agents, tissue engineering, wound healing, and more. Industrial applications include cosmetic and personal care products, wastewater treatment, and corrosion protection, to name a few. Many researchers have published numerous reviews outlining the physical and chemical properties of CS, as well as its use for many of the above-mentioned applications. Recently, the cationic polyelectrolyte nature of CS was found to be advantageous for stabilizing fascinating photonic materials including plasmonic nanoparticles (e.g., gold and silver), semiconductor nanoparticles (e.g., zinc oxide, cadmium sulfide), fluorescent organic dyes (e.g., fluorescein isothiocyanate (FITC)), luminescent transitional and lanthanide complexes (e.g., Au(I) and Ru(II), and Eu(III)). These photonic systems have been extensively investigated for their usage in antimicrobial, wound healing, diagnostics, sensing, and imaging applications. Highlighted in this review are the different works involving some of the above-mentioned molecular-nano systems that are prepared or stabilized using the CS polymer. The advantages and the role of the CS for synthesizing and stabilizing the above-mentioned optically active materials have been illustrated.

  15. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA.

    PubMed

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli

    2014-09-01

    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Modification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Borzov, Victor M.; Savenko, Olga A.; Skaptsov, Alexander A.; Skibina, Yulia S.; Goryacheva, Irina Yu.; Rusanova, Tatiana Yu.

    2017-03-01

    Photonic crystal fibers (PCFs) are one of the most promising materials for biosensors construction due to their unique optical properties. The modification of PCF by noble metal nanoparticles (NPs) provides the SPR and SERS signal detection where as the application amino group-containing compounds allows efficient binding of biomolecules. In this work the internal surface of glass hollow core photonic crystal fibers (HC-PCFs) has been modified Ag and Au nanoparticles using three different approaches. PCFs were treated by: 1) mixture of NPs and precursors for silanization (tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)); 2) alternately deposition of polyelectrolytes and NPs, 3) mixture of chitosan with NPs. The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of NPs on the HC-PCF inner surface. The most efficient techniques were the chitosan application for Ag NPs and silanization for Au NPs. The obtaining PCFs could be useful for creating biosensitive elements.

  17. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles.

    PubMed

    Bala, Rajni; Kumar, Munish; Bansal, Kavita; Sharma, Rohit K; Wangoo, Nishima

    2016-11-15

    In this work, we have demonstrated a novel sensing strategy for an organophosphorus pesticide namely, malathion, employing unmodified gold nanoparticles, aptamer and a positively charged, water-soluble polyelectrolyte Polydiallyldimethylammonium chloride (PDDA). The PDDA when associated with the aptamer prevents the aggregation of the gold-nanoparticles while no such inhibition is observed when the aptamer specific pesticide is added to the solution, thereby changing the color of the solution from red to blue. This type of biosensor is quite simple and straightforward and can be completed in a few minutes without the need of any expensive equipment or trained personnel. The proposed method was linear in the concentration range of 0.5-1000pM with 0.06pM as the limit of detection. Moreover, the proposed assay selectively recognized malathion in the presence of other interfering substances and thus, can be applied to real samples for the rapid screening of malathion. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy

    PubMed Central

    Jang, Mihue; Han, Hee Dong; Ahn, Hyung Jun

    2016-01-01

    Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy. Therefore, this RNA nanoparticles approach has an efficient tool for a simultaneous co-delivery of RNAi molecules in the RNAi-based biomedical applications, and our current studies present an efficient strategy to overcome multi-drug resistance caused by malfunction of genes in chemotherapy. PMID:27562435

  19. Separation of pharmacologically active nitrogen-containing compounds on silica gels modified with 6,10-ionene, dextran sulfate, and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.

    2017-12-01

    New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.

  20. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    NASA Astrophysics Data System (ADS)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton conductivity due to precluded segmental motion and physical blockage of the PE chains during crosslinking. In addition, a maximum effective amount of PE (55-60wt%, neutralized form) beneficial for proton conductivity was revealed. Some of the aforementioned effects may possibly have been overlooked if a high-throughput study including plentiful combinations of multiple precursors hadn't been performed. In the case of composite membranes, despite the fact that nanoparticle dispersion was thermodynamically limited, a general improvement in proton conductivity was evidenced at low to medium nanoparticle loadings (0.5 to 1wt%) in comparison to non-hybrid PVDF/PE references. This beneficial effect was particularly noticeable in membranes based on PVDF homopolymers (7% to 14.3% increment), where the nanoparticles induced a "healing" effect by providing proton-conducting paths between non-crosslinked PE channels separated by dense PVDF areas resulting from large PVDF crystallites. In general, the results presented herein are promising for the development of new cost-effective alternative PEMs.

  1. Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.

    PubMed

    Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios

    2015-01-20

    We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.

  2. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.

    PubMed

    Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin

    2011-09-15

    Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  3. Equilibration of a polycation - anionic surfactant mixture at the water/vapor interface.

    PubMed

    Akanno, Andrew; Guzmán, Eduardo; Fernández-Peña, Laura; Llamas, Sara; Ortega, Francisco; Rubio, Ramon Gonzalez

    2018-06-01

    The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC) - sodium lauryl ether sulfate (SLES) mixtures at the water / vapor interface has been studied by different surface tension techniques and dilational visco-elasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte - surfactant complexes in the bulk affects to the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC - SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work helps on the understanding of the most fundamental bases of the physico-chemical behavior of concentrated polyelectrolyte - surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.

  4. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes.

    PubMed

    Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2015-10-28

    Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.

  5. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    PubMed

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DNA - peptide polyelectrolyte complexes: Phase control by hybridization

    NASA Astrophysics Data System (ADS)

    Vieregg, Jeffrey; Lueckheide, Michael; Marciel, Amanda; Leon, Lorraine; Tirrell, Matthew

    DNA is one of the most highly-charged molecules known, and interacts strongly with charged molecules in the cell. Condensation of long double-stranded DNA is one of the classic problems of biophysics, but the polyelectrolyte behavior of short and/or single-stranded nucleic acids has attracted far less study despite its importance for both biological and engineered systems. We report here studies of DNA oligonucleotides complexed with cationic peptides and polyamines. As seen previously for longer sequences, double-stranded oligonucleotides form solid precipitates, but single-stranded oligonucleotides instead undergo liquid-liquid phase separation to form coacervate droplets. Complexed oligonucleotides remain competent for hybridization, and display sequence-dependent environmental response. We observe similar behavior for RNA oligonucleotides, and methylphosphonate substitution of the DNA backbone indicates that nucleic acid charge density controls whether liquid or solid complexes are formed. Liquid-liquid phase separations of this type have been implicated in formation of membraneless organelles in vivo, and have been suggested as protocells in early life scenarios; oligonucleotides offer an excellent method to probe the physics controlling these phenomena.

  7. From dots to doughnuts: Two-dimensionally confined deposition of polyelectrolytes on block copolymer templates

    DOE PAGES

    Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...

    2016-07-05

    The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined “dots” patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (“doughnut”) shape, which results from retraction of dangling polyelectrolyte segmentsmore » into the “dots” upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. In conclusion, these insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes.« less

  8. From dots to doughnuts: Two-dimensionally confined deposition of polyelectrolytes on block copolymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.

    The combination of block copolymer templating with electrostatic self-assembly provides a simple and robust method for creating nano-patterned polyelectrolyte multilayers over large areas. The deposition of the first polyelectrolyte layer provides important insights on the initial stages of multilayer buildup. Here, we focus on two-dimensionally confined “dots” patterns afforded by block copolymer films featuring hexagonally-packed cylinders that are oriented normal to the substrate. Rendering the cylinder caps positively charged enables the selective deposition of negatively charged polyelectrolytes on them under salt-free conditions. The initially formed polyelectrolyte nanostructures adopt a toroidal (“doughnut”) shape, which results from retraction of dangling polyelectrolyte segmentsmore » into the “dots” upon drying. With increasing exposure time to the polyelectrolyte solution, the final shape of the deposited polyelectrolyte transitions from a doughnut to a hemisphere. In conclusion, these insights would enable the creation of patterned polyelectrolyte multilayers with increased control over adsorption selectivity of the additional incoming polyelectrolytes.« less

  9. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04055d

  10. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Carciello, Neal R.

    1987-01-01

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80.degree. C. The polyelectrolyte or the precoat is present in about 0.5-5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150.degree. C. to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2.times.10.sup.5 gave improved ductility modulus effect.

  11. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Carciello, N.R.

    1987-04-21

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80 C. The polyelectrolyte or the precoat is present in about 0.5--5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150 C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 [times] 10[sup 5] gave improved ductility modulus effect. 5 figs.

  12. Ductile polyelectrolyte macromolecule-complexed zinc phosphate conversion crystal pre-coatings and topcoatings embodying a laminate

    DOEpatents

    Sugama, Toshifumi; Kukacka, L.E.; Carciello, N.R.

    1985-11-05

    This invention relates to a precoat, laminate, and method for ductile coatings on steel and non-ferrous metals which comprises applying a zinc phosphating coating solution modified by a solid polyelectrolyte selected from polyacrylic acid (PAA), polymethacrylic acid (PMA), polyitaconic acid (PIA), and poly-L-glutamic acid. The contacting of the resin with the phosphating solution is made for a period of up to 20 hours at about 80/sup 0/C. The polyelectrolyte or the precoat is present in about 0.5 to 5.0% by weight of the total precoat composition and after application, the precoat base is dried for up to 5 hours at about 150/sup 0/C to desiccate. Also, a laminate may be formed where polyurethane (PU) is applied as an elastomeric topcoating or polyfuran resin is applied as a glassy topcoating. It has been found that the use of PAA at a molecular weight of about 2 x 10/sup 5/ gave improved ductility modulus effect.

  13. Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies.

    PubMed

    Yashchenok, Alexey M; Gorin, Dmitry A; Badylevich, Mikhail; Serdobintsev, Alexey A; Bedard, Matthieu; Fedorenko, Yanina G; Khomutov, Gennady B; Grigoriev, Dmitri O; Möhwald, Helmuth

    2010-09-21

    Optical and electrical properties of polyelectrolyte/iron oxide nanocomposite planar films on silicon substrates were investigated for different amount of iron oxide nanoparticles incorporated in the films. The nanocomposite assemblies prepared by the layer-by-layer assembly technique were characterized by ellipsometry, atomic force microscopy, and secondary ion mass-spectrometry. Absorption spectra of the films reveal a shift of the optical absorption edge to higher energy when the number of deposited layers decreases. Capacitance-voltage and current-voltage measurements were applied to study the electrical properties of metal-oxide-semiconductor structures prepared by thermal evaporation of gold electrodes on nanocomposite films. The capacitance-voltage measurements show that the dielectric constant of the film increases with the number of deposited layers and the fixed charge and the trapped charge densities have a negative sign.

  14. Yield stress and scaling of polyelectrolyte multilayer modified suspensions: effect of polyelectrolyte conformation during multilayer assembly.

    PubMed

    Hess, Andreas; Aksel, Nuri

    2013-09-10

    The yield stress of polyelectrolyte multilayer modified suspensions exhibits a surprising dependence on the polyelectrolyte conformation of multilayer films. The rheological data scale onto a universal master curve for each polyelectrolyte conformation as the particle volume fraction, φ, and the ionic strength of the background fluid, I, are varied. It is shown that rough films with highly coiled, brushy polyelectrolytes significantly enhance the yield stress. Moreover, via the ionic strength I of the background fluid, the dynamic yield stress of brushy polyelectrolyte multilayers can be finely adjusted over 2 decades.

  15. [DNA complexes, formed on aqueous phase surfaces: new planar polymeric and composite nanostructures].

    PubMed

    Antipina, M N; Gaĭnutdinov, R V; Rakhnianskaia, A A; Sergeev-Cherenkov, A N; Tolstikhina, A L; Iurova, T V; Kislov, V V; Khomutov, G B

    2003-01-01

    The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and nanobiotechnology.

  16. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response.

    PubMed

    Prasad, Preethy; Gordijo, Claudia R; Abbasi, Azhar Z; Maeda, Azusa; Ip, Angela; Rauth, Andrew Michael; DaCosta, Ralph S; Wu, Xiao Yu

    2014-04-22

    Insufficient oxygenation (hypoxia), acidic pH (acidosis), and elevated levels of reactive oxygen species (ROS), such as H2O2, are characteristic abnormalities of the tumor microenvironment (TME). These abnormalities promote tumor aggressiveness, metastasis, and resistance to therapies. To date, there is no treatment available for comprehensive modulation of the TME. Approaches so far have been limited to regulating hypoxia, acidosis, or ROS individually, without accounting for their interdependent effects on tumor progression and response to treatments. Hence we have engineered multifunctional and colloidally stable bioinorganic nanoparticles composed of polyelectrolyte-albumin complex and MnO2 nanoparticles (A-MnO2 NPs) and utilized the reactivity of MnO2 toward peroxides for regulation of the TME with simultaneous oxygen generation and pH increase. In vitro studies showed that these NPs can generate oxygen by reacting with H2O2 produced by cancer cells under hypoxic conditions. A-MnO2 NPs simultaneously increased tumor oxygenation by 45% while increasing tumor pH from pH 6.7 to pH 7.2 by reacting with endogenous H2O2 produced within the tumor in a murine breast tumor model. Intratumoral treatment with NPs also led to the downregulation of two major regulators in tumor progression and aggressiveness, that is, hypoxia-inducible factor-1 alpha and vascular endothelial growth factor in the tumor. Combination treatment of the tumors with NPs and ionizing radiation significantly inhibited breast tumor growth, increased DNA double strand breaks and cancer cell death as compared to radiation therapy alone. These results suggest great potential of A-MnO2 NPs for modulation of the TME and enhancement of radiation response in the treatment of cancer.

  17. Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles.

    PubMed

    Pryamitsyn, Victor; Ganesan, Venkat

    2015-10-28

    We study the effective pair interactions between two charged spherical particles in polyelectrolyte solutions using polymer self-consistent field theory. In a recent study [V. Pryamitsyn and V. Ganesan, Macromolecules 47, 6095 (2015)], we considered a model in which the particles possess fixed charge density, the polymers contain a prespecified amount of dissociated charges and, the dielectric constant of the solution was assumed to be homogeneous in space and independent of the polymer concentration. In this article, we present results extending our earlier model to study situations in which either or both the particle and the polymers possess partially dissociable groups. Additionally, we also consider the case when the dielectric constant of the solution depends on the local concentration of the polymers and when the particle's dielectric constant is lower than that of the solvent. For each case, we quantify the polymer-mediated interactions between the particles as a function of the polymer concentrations and the degree of dissociation of the polymer and particles. Consistent with the results of our previous study, we observe that the polymer-mediated interparticle interactions consist of a short-range attraction and a long-range repulsion. The partial dissociablity of the polymer and particles was seen to have a strong influence on the strength of the repulsive portion of the interactions. Rendering the dielectric permittivity to be inhomogeneous has an even stronger effect on the repulsive interactions and results in changes to the qualitative nature of interactions in some parametric ranges.

  18. Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.

    2018-01-01

    The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.

  19. Photoactive Gel for Assisted Cleaning during Olive Mill Wastewater Membrane Microfiltration

    PubMed Central

    Han, Yilong

    2017-01-01

    A photoactive gel has been fabricated on the surface of polyethylene membranes for enhancing the fouling resistance during olive mill wastewater treatment. Light and pH responsive materials have been introduced in the membrane surface through the build up of a layer-by-layer pattern, which is formed by photocatalytic nanoparticles and ionic polyelectrolytes. The best working conditions to contrast foulants adsorption have been explored and identified. Repulsive interfacial forces and assisted transfer of foulants to catalytic sites have been envisaged as crucial factors for contrasting the decline of the flux during microfiltration. Tests in submerged configuration have been implemented for six continuous hours under irradiation at two different pH conditions. As a result, a worthy efficiency of the photoactive gel has been reached when suitable chemical microenvironments have been generated along the shell side of the membranes. No additional chemical reagents or expensive back-flushing procedures have been necessary to further clean the membranes; rather, fast and reversible pH switches have been enough to remove residues, thereby preserving the integrity of the layer-by-layer (LBL) complex onto the membrane surface. PMID:29186819

  20. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.

    PubMed

    Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas

    2013-08-01

    To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    PubMed

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  2. Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule.

    PubMed

    Nicolas, Henning; Yuan, Bin; Zhang, Xi; Schönhoff, Monika

    2016-03-15

    The powerful host-guest chemistry of cucurbit[8]uril (CB[8]) was employed to obtain photoresponsive polyelectrolyte multilayer films for the reversible and photocontrolled binding and release of an organic guest molecule. For this purpose, we designed and synthesized a polyelectrolyte with azobenzene side groups. Then, CB[8] was associated with the azo side group to obtain a supramolecular host-guest complex that was further used as building block in order to prepare photoresponsive and CB[8]-containing polyelectrolyte multilayer films. Ultraviolet spectroscopy and a dissipative quartz crystal microbalance are employed to monitor the formation of the host-guest complex and the layer-by-layer self-assembly of the multilayer films, respectively. We demonstrate that the photoresponsive properties of the azo side groups are maintained before and after host-guest complexation with CB[8] in solution and within the multilayer films, respectively. A guest molecule was then specifically included as second binding partner into the CB[8]-containing multilayer films. Subsequently, the release of the guest was performed by UV light irradiation due to the trans-cis isomerization of the adjacent azo side groups. Re-isomerization of the azo side groups was achieved by VIS light irradiation and enabled the rebinding of the guest into CB[8]. Finally, we demonstrate that the photocontrolled binding and release within CB[8]-containing multilayer films can reliably and reversibly be performed over a period of more than 2 weeks with constant binding efficiency. Therefore, we expect such novel type of photosensitive films to have promising future applications in the field of stimuli-responsive nanomaterials.

  3. Coencapsulation of oxygen carriers and glucose oxidase in polyelectrolyte complex capsules for the enhancement of D-gluconic acid and delta-gluconolactone production.

    PubMed

    Bucko, Marek; Gemeiner, Peter; Vikartovská, Alica; Mislovicová, Danica; Lacík, Igor; Tkác, Ján

    2010-04-01

    A novel encapsulated oxidative biocatalyst comprising glucose oxidase (GOD) coencapsulated with oxygen carriers within polyelectrolyte complex capsules was developed for the production of D-gluconic acid and delta-gluconolactone. The capsules containing immobilized GOD were produced by polyelectrolyte complexation with sodium alginate (SA) and cellulose sulfate (CS) as polyanions, poly(methylene-co-guanidine) (PMCG) as the polycation, CaCl(2) as the gelling agent and NaCl as the antigelling agent (GOD-SA-CS/PMCG capsules). Poly(dimethylsiloxane) (PDMS) and an emulsion of n-dodecane (DOD) or perfluorodecaline (PFD) with PDMS were used as the oxygen carriers and MnO(2) was used as a hydrogen peroxide decomposition catalyst. Water-soluble PDMS was found to act as both an oxygen carrier and an emulsifier of water-insoluble DOD and PFD. Stable microcapsules could be produced with concentrations of up to 4% (w/w) of PDMS, 10% (w/w) of DOD and PFD, and 25% (w/w) of MnO(2) in the polyanion solution of SA and CS. Roughly a two-fold increase in the GOD activity from 21.0+/-1.1 to 38.4+/-2.0 U*g(-1) and product space-time yields (STY) from 44.3+/-2.0 to 83.4+/-3.4 g*H*day(-1) could be achieved utilizing coencapsulated oxygen carriers compared to GOD encapsulated in the absence of oxygen carriers. This enhanced production does not significantly depend on the selected oxygen carrier under the conditions used in this study.

  4. NMR imaging of chitosan and carboxymethyl starch tablets: swelling and hydration of the polyelectrolyte complex.

    PubMed

    Wang, Y J; Assaad, E; Ispas-Szabo, P; Mateescu, M A; Zhu, X X

    2011-10-31

    The hydration and swelling properties of the tablets made of chitosan, carboxymethyl starch, and a polyelectrolyte complex of these two polysaccharides have been studied by NMR imaging. We studied the effect of pH and ionic strength on the swelling of the tablets and on the diffusion of fluid into the tablets in water and simulated physiological fluids. The pH value of the fluids exerts a more significant effect than their ionic strengths on the swelling of the tablets. The tablets are compared also with those made of cross-linked high amylose starch. The formation of complex helps to keep the integrity of the tablets in various media and render a slow and restricted swelling similar to that of the tablets of the cross-linked high amylase starch, which is significantly lower than the swelling of chitosan and of carboxymethyl starch. The capacities to modulate the release rate of drugs in different media are discussed by comparing the matrices and evaluating the preparation process of the complex. A sustained release of less soluble drugs such as aspirin in gastrointestinal fluids can be provided by the complex, due to the ionic interaction and hydrogen bonding between the drug and the biopolymer complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    PubMed Central

    2015-01-01

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  6. Largely Enhanced Single-molecule Fluorescence in Plasmonic Nanogaps formed by Hybrid Silver Nanostructures

    PubMed Central

    Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787

  7. Polyelectrolyte induced formation of silver nanoparticles in copolymer hydrogel and their application as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yongqiang; Huang, Guanbo, E-mail: gbhuang2007@hotmail.com; Pan, Zeng

    2015-10-15

    Highlights: • A simple route for the in situ preparation of Ag nanoparticles has been developed. • The Ag loaded hydrogel showed catalytic activity for reduction of 4-nitrophenol. • The catalyst can be recovered by simple separation and showed good recyclability. - Abstract: A simple route for the in situ preparation of catalytically active Ag nanoparticles (NPs) in hydrogel networks has been developed. The electronegativity of the amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains caused strong binding of the Ag{sup +} ions which made the ions distribute uniformly inside the hydrogels. When the Ag{sup +} loaded hydrogels weremore » immersed in NaBH{sub 4} solution, the Ag{sup +} ions on the polymer networks were reduced to Ag NPs. The resultant hydrogel showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with sodium borohydride. A kinetic study of the catalytic reaction was carried out and a possible reason for the decline of the catalytic performance with reuse is proposed.« less

  8. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    NASA Astrophysics Data System (ADS)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  9. Like-charged protein-polyelectrolyte complexation driven by charge patches

    NASA Astrophysics Data System (ADS)

    Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim

    2015-08-01

    We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.

  10. Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase C.

    PubMed

    Liu, Yan; Ogawa, Katsu; Schanze, Kirk S

    2008-01-01

    A fluorescence turnoff assay for phospholipase C (PLC) from Clostridium perfringens is developed based on the reversible interaction between the natural substrate, phosphatidylcholine, and a fluorescent, water-soluble conjugated polyelectrolyte (CPE). The fluorescence intensity of the CPE in water is increased substantially by the addition of the phospholipid due to the formation of a CPE-lipid complex. Incubation of the CPE-lipid complex with the enzyme PLC causes the fluorescence intensity to decrease (turnoff sensor); the response arises due to PLC-catalyzed hydrolysis of the phosphatidylcholine, which effectively disrupts the CPE-lipid complex. The PLC assay operates with phospholipid substrate concentrations in the micromolar range, and the analytical detection limit for PLC is <1 nM. The optimized assay provides a convenient, rapid, and real-time sensor for PLC activity. The real-time fluorescence intensity from the CPE can be converted to substrate concentration by using an ex situ calibration curve, allowing PLC-catalyzed reaction rates and kinetic parameters to be determined. PLC activation by Ca2+ and inhibition by EDTA and fluoride ion are demonstrated using the optimized sensor.

  11. Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres

    NASA Astrophysics Data System (ADS)

    Cherstvy, A. G.; Winkler, R. G.

    2006-08-01

    We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation and calculate the electrostatic potential and the energy of the complex. We discuss some biological applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in the Hulthén potential, which is used as an approximation for the screened Debye-Hückel potential of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere charge density exhibits a distinctively different dependence on the Debye screening length than for PE adsorption onto a flat surface. We compare our findings with experimental measurements on complexation of various PEs with oppositely charged colloidal particles. We also present some numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE adsorption in an assembly of oppositely charged spheres.

  12. Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies

    NASA Astrophysics Data System (ADS)

    Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team

    2015-03-01

    Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.

  13. Directed assembly of three-dimensional structures with micron-scale features

    DOEpatents

    Gratson, Gregory; Lewis, Jennifer A.

    2006-11-28

    The invention provides polyelectrolyte inks comprising a solvent, a cationic polyelectrolyte, dissolved in the solvent, and an anionic polyelectrolyte, dissolved in the solvent. The concentration of at least one of the polyelectrolytes in the solvent is in a semidilute regime.

  14. Cell Permeating Nano-Complexes of Amphiphilic Polyelectrolytes Enhance Solubility, Stability, and Anti-Cancer Efficacy of Curcumin.

    PubMed

    Fatima, Munazza T; Chanchal, Abhishek; Yavvari, Prabhu S; Bhagat, Somnath D; Gujrati, Mansi; Mishra, Ram K; Srivastava, Aasheesh

    2016-07-11

    Many hydrophobic drugs encounter severe bioavailability issues owing to their low aqueous solubility and limited cellular uptake. We have designed a series of amphiphilic polyaspartamide polyelectrolytes (PEs) that solubilize such hydrophobic drugs in aqueous medium and enhance their cellular uptake. These PEs were synthesized through controlled (∼20 mol %) derivatization of polysuccinimide (PSI) precursor polymer with hydrophobic amines (of varying alkyl chain lengths, viz. hexyl, octyl, dodecyl, and oleyl), while the remaining succinimide residues of PSI were opened using a protonable and hydrophilic amine, 2-(2-amino-ethyl amino) ethanol (AE). Curcumin (Cur) was employed as a representative hydrophobic drug to explore the drug-delivery potential of the resulting PEs. Unprecedented enhancement in the aqueous solubility of Cur was achieved by employing these PEs through a rather simple protocol. In the case of PEs containing oleyl/dodecyl residues, up to >65000× increment in the solubility of Cur in aqueous medium could be achieved without requiring any organic solvent at all. The resulting suspensions were physically and chemically stable for at least 2 weeks. Stable nanosized polyelectrolyte complexes (PECs) with average hydrodynamic diameters (DH) of 150-170 nm (without Cur) and 220-270 nm (after Cur loading) were obtained by using submolar sodium polyaspartate (SPA) counter polyelectrolyte. The zeta potential of these PECs ranged from +36 to +43 mV. The PEC-formation significantly improved the cytocompatibility of the PEs while affording reconstitutable nanoformulations having up to 40 wt % drug-loading. The Cur-loaded PECs were readily internalized by mammalian cells (HEK-293T, MDA-MB-231, and U2OS), majorly through clathrin-mediated endocytosis (CME). Cellular uptake of Cur was directly correlated with the length of the alkyl chain present in the PECs. Further, the PECs significantly improved nuclear transport of Cur in cancer cells, resulting in their death by apoptosis. Noncancerous cells were completely unaffected under this treatment.

  15. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery.

    PubMed

    Yin, Lichen; Ding, Jieying; He, Chunbai; Cui, Liming; Tang, Cui; Yin, Chunhua

    2009-10-01

    Trimethyl chitosan-cysteine conjugate (TMC-Cys) was synthesized in an attempt to combine the mucoadhesion and the permeation enhancing effects of TMC and thiolated polymers related to different mechanisms for oral absorption. TMC-Cys with various molecular weights (30, 200, and 500 kDa) and quaternization degrees (15 and 30%) was allowed to form polyelectrolyte nanoparticles with insulin through self-assembly, which demonstrated particle size of 100-200 nm, zeta potential of +12 to +18 mV, and high encapsulation efficiency. TMC-Cys/insulin nanoparticles (TMC-Cys NP) showed a 2.1-4.7-fold increase in mucoadhesion compared to TMC/insulin nanoparticles (TMC NP), which might be partly attributed to disulfide formation between TMC-Cys and mucin as evidenced by DSC measurement. Compared to insulin solution and TMC NP, TMC-Cys NP induced increased insulin transport through rat intestine by 3.3-11.7 and 1.7-2.6 folds, promoted Caco-2 cell internalization by 7.5-12.7 and 1.7-3.0 folds, and augmented uptake in Peyer's patches by 14.7-20.9 and 1.7-5.0 folds, respectively. Such results were further confirmed by in vivo experiment with the optimal TMC-Cys NP. Biocompatibility assessment revealed lack of toxicity of TMC-Cys NP. Therefore, self-assembled nanoparticles between TMC-Cys and protein drugs could be an effective and safe oral delivery system.

  16. Scaling Theory of Polyelectrolyte Nanogels

    NASA Astrophysics Data System (ADS)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  17. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    PubMed

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  18. Physical and anti-microbial characteristics of carbon nanoparticles prepared from lamp soot

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Verma, Anita K.; Claesson, P.; Bohidar, H. B.

    2007-11-01

    Soot originating from the burning of butter and mustard oil in a lamp with a cotton wick was collected on a brass plate and dispersed in water and carbon tetrachloride (CCl4) as naked, and as Gum Arabic (GA, a anionic polyelectrolyte)-coated nanoparticles in water. They were physically characterized, and their anti-bacterial activities were probed on gram positive and negative bacterial colonies. TEM data revealed the presence of 35-55 nm diameter spherical carbon nanoparticles in water and CCl4. The dynamic light scattering determined the average hydrodynamic diameter for the same samples, which was found to be ≈100 nm (in CCl4) and ≈240 nm (in water), implying the packing of these nanoparticles into clusters. GA-coated particles yielded stable suspensions in water, but the clusters were almost the same in size (≈250 nm). The zeta potential distributions of the naked and the GA-coated nanoparticles were found to be unimodal and bimodal, respectively, with both yielding mean zeta potential values nearly equal to zero. Results of energy-dispersive x-ray analysis (EDAX) confirmed the absence of toxic metallic elements inside the specimen. X-ray diffraction study confirmed the presence of amorphous as well as graphitized carbon in these nanostructures. The anti-microbial activities in terms of growth inhibition for the carbon nanoparticles against Staphylococcus aureus, ATCC 13709 (native strain) and Klebsiella pneumonia ATCC 29655 (native strain) were assayed in agar gel. In vitro testing revealed significant anti-microbial activity against Klebsiella pneumonia, but carbon nanoparticles were unable to kill Staphylococcus aureus.

  19. A Combination RNAi-Chemotherapy Layer-by-Layer Nanoparticle for Systemic Targeting of KRAS/P53 with Cisplatin to Treat Non-small Cell Lung Cancer

    PubMed Central

    Gu, Li; Deng, Zhou J.; Roy, Sweta; Hammond, Paula T.

    2017-01-01

    Purpose Mutation of the Kirsten ras sarcoma viral oncogene homolog (KRAS) and loss of p53 function are commonly seen in non-small cell lung cancer (NSCLC). Combining therapeutics targeting these tumor defensive pathways with cisplatin in a single nanoparticle platform are rarely developed in clinic. Experimental Design Cisplatin was encapsulated in liposomes which multiple polyelectrolyte layers including siKRAS and miR-34a were built on to generate multifunctional layer-by-layer nanoparticle. Structure, size, and surface charge were characterized, in addition to in vitro toxicity studies. In vivo tumor targeting and therapy was investigated in an orthotopic lung cancer model by microCT, fluorescence imaging, and immunohistochemistry. Results The singular nanoscale formulation, incorporating oncogene siKRAS, tumor suppressor stimulating miR-34a, and cisplatin, has shown enhanced toxicity against lung cancer cell line, KP cell. In vivo, systemic delivery of the nanoparticles indicated a preferential uptake in lung of the tumor-bearing mice. Efficacy studies indicated prolonged survival of mice from the combination treatment. Conclusion The combination RNA-chemotherapy in an LbL formulation provides an enhanced treatment efficacy against NSCLC, indicating promising potential in clinic. PMID:28912139

  20. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins.

    PubMed

    Tan, Chen; B Celli, Giovana; Lee, Michelle; Licker, Jonathan; Abbaspourrad, Alireza

    2018-05-14

    This study fabricated a novel biohybrid microgel containing polysaccharide-based polyelectrolyte complexes (PECs) for anthocyanins. Herein, anthocyanins were encapsulated into PECs composed of chondroitin sulfate and chitosan, followed by incorporation into alginate microgels using emulsification/internal gelation method. We demonstrated that PECs incorporation strongly affected the properties of microgels, dependent on the polysaccharide concentration and pH in which they were fabricated. The dense internal network surrounded by an alginate shell was clearly visualized in cross-sectioned PECs-microgels. Stability studies carried out under varying ionic strength and pH conditions demonstrated the stimuli-responsiveness of the PECs-microgels. Additionally, the presence of PECs conferred microgels with high rigidity during freeze-drying and excellent reconstitution capacity upon rehydration. These observations were attributed to the modulation of electrostatic and hydrogen-bonding cross-linking between PECs and the alginate gel matrix and suggest the PECs inclusive microgels hold promise as delivery vehicles for the controlled release of hydrophilic bioactive compounds.

  1. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  2. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide).

    PubMed

    Kononova, Svetlana V; Kruchinina, Elena V; Petrova, Valentina A; Baklagina, Yulia G; Romashkova, Kira A; Orekhov, Anton S; Klechkovskaya, Vera V; Skorik, Yury A

    2017-12-14

    Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone- N -phenylphthalimide) and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol) mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH₃⁺ for chitosan and -SO₃ - for sulfoethylcellulose) show high permselectivity (the water content in the permeate was 100%). Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  3. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.

    2018-02-01

    Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.

  4. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    PubMed

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (<1%), whereas substantial (>10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Unfolding and refolding details of lysozyme in the presence of β-casein micelles.

    PubMed

    Wu, Fu-Gen; Luo, Jun-Jie; Yu, Zhi-Wu

    2011-02-28

    In this work, we selected a small globular protein, lysozyme, to study how it unfolds and refolds in the presence of micelles composed of the unstructured β-casein proteins by using microcalorimetry and circular dichroism spectroscopy. It was found that a partially unfolded structure of lysozyme starts to form when the β-casein/lysozyme molar ratio is above 0.7, and the structure forms exclusively when the β-casein/lysozyme molar ratio is above 1.6. This partially unfolded state of lysozyme loses most of its tertiary structure and after heating, the denatured lysozyme molecules are trapped in the charged coatings of β-casein micelles and cannot refold upon cooling. The thus obtained protein complex can be viewed as a kind of special polyelectrolyte complex micelle. The net charge ratios of the two proteins and the ionic strength of the dispersions can significantly modulate the electrostatic and hydrophobic interactions between the two proteins. Our present work may have implications for the nanoparticle protein engineering therapy in the biomedicine field and may provide a better understanding of the principles governing the protein-protein interactions. Besides, the heating-cooling-reheating procedure employed in this work can also be used to study the unfolding and refolding details of the target protein in other protein-protein, protein-polymer and protein-small solute systems.

  6. Preparation and evaluation of periodontal films based on polyelectrolyte complex formation.

    PubMed

    Kassem, Abeer Ahmed; Ismail, Fatma Ahmed; Naggar, Viviane Fahim; Aboulmagd, Elsayed

    2015-05-01

    Local intra-pocket drug delivery devices can provide an effective concentration of the antimicrobial agent at the site of action with avoidance of undesirable side effects. This study explored the application of chitosan-alginate and chitosan-pectin polyelectrolyte complex (PEC) films as drug release regulators for tetracycline HCl (Tc) to treat periodontal pockets. Periodontal films with 1:1 Tc:PEC ratio were prepared using 1:1 chitosan (Ch) to sodium alginate (A) or 1:3 Ch to pectin (P). The scanning electron microscope showed acceptable film appearance and differential scanning calorimetry analysis confirmed complex formation. The in vitro release studies for both films showed a burst drug release, followed by prolonged release for 70 h. A prolonged antibacterial activity of both films against Staphylococcus aureus ATCC 6538 was observed over a period of 21 days. Aging studies indicated that the five months storage period in freezer did not significantly influence the drug release profile or the antibacterial activity of both films. Clinical evaluation showed a significant reduction in pocket depth (p < 0.0001) to their normal values (≤3 mm). PEC films could be exploited as a prolonged drug release devices for treatment of periodontal pockets.

  7. Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform

    DOEpatents

    Chen, Liaohai

    2004-05-18

    The present invention provides a method of detecting a biological agent including contacting a sample with a sensor including a polymer system capable of having an alterable measurable property from the group of luminescence, anisotropy, redox potential and uv/vis absorption, the polymer system including an ionic conjugated polymer and an electronically inert polyelectrolyte having a biological agent recognition element bound thereto, the electronically inert polyelectrolyte adapted for undergoing a conformational structural change upon exposure to a biological agent having affinity for binding to the recognition element bound to the electronically inert polyelectrolyte, and, detecting the detectable change in the alterable measurable property. A chemical moiety being the reaction product of (i) a polyelectrolyte monomer and (ii) a biological agent recognition element-substituted polyelectrolyte monomer is also provided.

  8. Polyelectrolyte properties of single stranded DNA measured using SAXS and single molecule FRET: beyond the wormlike chain model

    PubMed Central

    Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois

    2013-01-01

    Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337

  9. Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films.

    PubMed

    Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique

    2016-09-01

    Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Study of BMP-2-Loaded Bipotential Electrolytic Complex around a Biphasic Calcium Phosphate-Derived (BCP) Scaffold for Repair of Large Segmental Bone Defect

    PubMed Central

    Paul, Kallyanashis; Padalhin, Andrew R.; Linh, Nguyen Thuy Ba; Kim, Boram; Sarkar, Swapan Kumar; Lee, Byong Taek

    2016-01-01

    A bipotential polyelectrolyte complex with biphasic calcium phosphate (BCP) powder dispersion provides an excellent option for protein adsorption and cell attachment and can facilitate enhanced bone regeneration. Application of the bipotential polyelectrolyte complex embedded in a spongy scaffold for faster healing of large segmental bone defects (LSBD) can be a promising endeavor in tissue engineering application. In the present study, a hollow scaffold suitable for segmental long bone replacement was fabricated by the sponge replica method applying the microwave sintering process. The fabricated scaffold was coated with calcium alginate at the shell surface, and genipin-crosslinked chitosan with biphasic calcium phosphate (BCP) dispersion was loaded at the central hollow core. The chitosan core was subsequently loaded with BMP-2. The electrolytic complex was characterized using SEM, porosity measurement, FTIR spectroscopy and BMP-2 release for 30 days. In vitro studies such as MTT, live/dead, cell proliferation and cell differentiation were performed. The scaffold was implanted into a 12 mm critical size defect of a rabbit radius. The efficacy of this complex is evaluated through an in vivo study, one and two month post implantation. BV/TV ratio for BMP-2 loaded sample was (42±1.76) higher compared with hollow BCP scaffold (32±0.225). PMID:27711142

  11. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles.

    PubMed

    Venkatesan, Jayachandran; Lee, Jin-Young; Kang, Dong Seop; Anil, Sukumaran; Kim, Se-Kwon; Shim, Min Suk; Kim, Dong Gyu

    2017-05-01

    The main aim of this study was to obtain porous antimicrobial composites consisting of chitosan, alginate, and biosynthesized silver nanoparticles (AgNPs). Chitosan and alginate were used owing to their pore-forming capacity, while AgNPs were used for their antimicrobial property. The developed porous composites of chitosan-alginate-AgNPs were characterized using Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The FT-IR results revealed the presence of a strong chemical interaction between chitosan and alginate due to polyelectrolyte complex; whereas, the XRD results confirmed the presence of AgNPs in the composites. The dispersion of AgNPs in the porous membrane was uniform with a pore size of 50-500μm. Antimicrobial activity of the composites was checked with Escherichia coli and Staphylococcus aureus. The developed composites resulted in the formation of a zone of inhibition of 11±1mm for the Escherichia coli, and 10±1mm for Staphylococcus aureus. The bacterial filtration efficiency of chitosan-alginate-AgNPs was 1.5-times higher than that of the chitosan-alginate composite. The breast cancer cell line MDA-MB-231 was used to test the anticancer activity of the composites. The IC 50 value of chitosan-alginate-AgNPs on MDA-MB-231 was 4.6mg. The developed chitosan-alginate-AgNPs composite showed a huge potential for its applications in antimicrobial filtration and cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation and Layer-by-Layer Solution Deposition of Cu(In,Ga)O2 Nanoparticles with Conversion to Cu(In,Ga)S2 Films

    PubMed Central

    Dressick, Walter J.; Soto, Carissa M.; Fontana, Jake; Baker, Colin C.; Myers, Jason D.; Frantz, Jesse A.; Kim, Woohong

    2014-01-01

    We present a method of Cu(In,Ga)S2 (CIGS) thin film formation via conversion of layer-by-layer (LbL) assembled Cu-In-Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1–2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization. PMID:24941104

  13. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect.

  14. The role of polyelectrolytes in the stabilization of calcium phosphate nanoparticles for the production of biomimetic materials

    NASA Astrophysics Data System (ADS)

    Krogstad, Daniel; Wang, Dongbo; Lin-Gibson, Sheng

    2014-03-01

    The exceptional mechanical properties of bone are a result of the hierarchical assembly of hydroxyapatite and the bone matrix, which is primarily composed of collagen. However, it has been shown that without highly acidic, non-collagenous proteins (NCP), which comprise only a few percent of the total organic material, collagen cannot be mineralized correctly. Although the exact roles of these NCP are unknown, it is believed that they are responsible for the stabilization and transportation of the apatite precursor, amorphous calcium phosphate (ACP). In this work, polyaspartic acid was used as a synthetic analog for NCP and the structure and kinetics of calcium phosphate nanoparticle formation were determined at various concentrations using cryo-TEM and scattering. From this investigation, it was determined that the size and stability of the ACP nanoparticles could be directly controlled by the relative ion and polymer concentrations. Interestingly, at high polymer concentrations, the particles remained suspended in solution even after they transformed from ACP to apatite indicating that the polymers have a strong ability to prevent particle aggregation. Through these results, control over the particle size and stability has been increased which will help in the design and development of biomimetic materials.

  15. Effect of screening on the transport of polyelectrolytes through nanopores

    NASA Astrophysics Data System (ADS)

    Oukhaled, G.; Bacri, L.; Mathé, J.; Pelta, J.; Auvray, L.

    2008-05-01

    We study the transport of dextran sulfate molecules (Mw=8000 Da) through a bacterial α-hemolysin channel inserted into a bilayer lipid membrane submitted to an external electric field. We detect the current blockades induced by the molecules threading through one pore and vary the ionic strength in an unexplored range starting at 10-3 M. In the conditions of the experiment, the polyelectrolyte molecules enter the pore only if the Debye screening length is smaller than the pore radius in agreement with theory. We also observe that large potentials favour the passage of the molecules. The distribution of blockade durations suggests that a complex process governs the kinetics of the molecules. The dwelling time increases sharply as the Debye length increases and approaches the pore radius.

  16. Actin - Lysozyme Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Sanders, Lori; Slimmer, Scott; Angelini, Thomas; Wong, Gerard C. L.

    2003-03-01

    Cystic fibrosis sputum is a complex fluid consisting of mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems containing actin, lysozyme, and KCl were created to simulate CF sputum in vitro. These model systems were studied using small angle x-ray scattering and confocal fluorescence microscopy. Preliminary results will be presented. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  17. Ionic content and permeability of polyelectrolyte multilayers and complexes

    NASA Astrophysics Data System (ADS)

    Ghostine, Ramy A.

    Ultrathin films of polyelectrolyte multilayers (PEMUs) are built by the alternating deposition of oppositely charged polymers from aqueous solutions onto a clean substrate. The most used protocol to fabricate this type of films is called the Layer-by-Layer assembly technique. The type of polyelectrolytes, the buildup conditions, and the post-assembly treatments can be modified in order to control both the chemical and physical properties of multilayers. In recent years, multilayers have been used in commercially available products, corrosion protection, biocompatible surfaces, hydrophobic and hydrophilic coatings and chromatographic applications. Their robustness and stability make polyelectrolyte multilayer thin films good candidates for a series of other applications such as cell growth control, ion exchange membranes, drug delivery, sensors and electronics. In this dissertation, the permeability of polyelectrolyte multilayers made from poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(4-styrene sulfonate) (NaPSS) is discussed in details. The permeability was studied by measuring the flux of redox active ions across a PEMU coated electrode. The effect of temperature, salt type and concentration was studied and it was determined that the flux of ions increases with temperature and salt concentration, and the permeability of ions strongly depends on the type of salt ions present in solution. The membrane concentration of the redox active ion was also calculated using attenuated total reflectance Fourier transform infra red spectroscopy. In another part of this dissertation, the ionic content of PEMUs was investigated by using radioactive counterions to track the ratio of positive to negative polymer repeat units. It was found that the accepted model of charge overcompensation for each layer is incorrect. In fact, overcompensation at the surface occurs only on the addition of the polycation, whereas the polyanion merely compensates the polycation. After the assembly of about a dozen layers, positive sites begin to accrue in the multilayer. The buildup mechanism is highly asymmetric with respect to the layer number, thus a new model profile for PEMU was employed. The critical impact of asymmetric growth on various properties of multilayers is also discussed. Thickness change, surface roughness, mechanical properties and ionic content of PEMUs were also studied in another part of this dissertation. The effect of salt annealing on these properties was investigated by the use of radiolabeling technique and atomic force microscopy. It was determined that salt annealing causes the polymer mobility in the multilayer to increase, reducing the amount of extrinsic charges and decreasing the surface roughness of the multilayer. The incorporation of 2nd generation fibroblast growth factor was studied in another chapter of this dissertation. FGF-1 is an important protein used in the wound healing process. The addition of FGF into films of PEMU was successful after modifying the ionic content of these films. It was shown that treating PSS terminated PEMU films with 10 mM PSS at high salt concentration would remove all positive extrinsic charges from the multilayer and add extra PSS chains in the bulk of the film. The addition of extra PSS depends on the salt concentration used during the PSS treatment. The highest amount of incorporated FGF was 58 mug cm-2. The release of FGF in phosphate buffer saline solution was also tracked for 30 days period. A total of 13 mug cm-2 of FGF were released from (PDADMA/PSS) 10 when treated with PSS at 1.5 M NaCl. Doping constants and diffusion coefficients for an extruded, stoichiometric, dense polyelectrolyte complex, exPEC, were determined for a Hofmeister series of anions in the last part of this dissertation. Both parameters describe the extent and speed to which a complex may be doped, where they followed a Hofmeister ordering and covered a wide range of response. Doping and undoping kinetics of polyelectrolyte complexes of PDADMA and PSS were also investigated using conductivity and radioactivity techniques. Tracer diffusion of radiolabeled Na+, compared with coupled diffusion of NaCl, revealed slightly faster diffusion of Na+ compared to Cl- withing the PEC.

  18. From the 2-dimensional unstable polyelectrolyte multilayer to the 3-dimensional stable dry polyelectrolyte capsules.

    PubMed

    Li, Xiaodong; Zhang, Jianxiang; Hu, Qiaoling; Li, Xiaohui

    2011-11-01

    Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The resultant capsules could keep their three-dimensional (3D) spherical shape after being dried at room temperature, dramatically different from the conventional polyelectrolyte capsules based on nonhybrid templates by layer-by-layer procedure. The instable polyelectrolyte multilayer, hybrid templates, and assembly cycles were demonstrated to be three indispensable factors responsible for the formation of this type of 3D stable capsules. The formation mechanism was also discussed in this study. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Mechanical reinforcement of gellan gum polyelectrolyte hydrogels by cationic polyurethane soft nanoparticles.

    PubMed

    Sahraro, Maryam; Barikani, Mehdi; Daemi, Hamed

    2018-05-01

    Novel mechanically reinforced nanocomposite hydrogels (NCHs) were developed based on methacrylated gellan gum (MGG) and cationic polyurethane nanoparticles (CPUNs) through a green chemical approach. A series of NCHs were synthesized by the incorporation of CPUNs with weight ratios of 0, 10, 30 and 50 w/w% into the MGG solution, with two different methacrylation degrees (1.2, 5.6%). The chemical structure, morphology, mechanical properties, stimuli-responsivity and cytotoxicity of synthesized NCHs were investigated. Analysis of the hydrogels mechanical testing demonstrated that the addition of CPUNs affords the significant increase in compressive properties. Meanwhile, the formulation of NCH containing the MGG with lower methacrylation degree and 30 w/w% CPUNs showed the highest mechanical properties. Furthermore, equilibrium swelling ratio of the hydrogels decreased by CPUNs addition. Finally, it is worth mentioning that NCHs showed no significant toxicity to human dermal fibroblast cells (HDFs) which idealize them as the suitable hydrogels for biomedical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comprehensive overview of recent preparation and application trends of various open tubular capillary columns in separation science.

    PubMed

    Cheong, Won Jo; Ali, Faiz; Kim, Yune Sung; Lee, Jin Wook

    2013-09-20

    Open tubular (OT) capillary columns have been increasingly used in a variety of fields of separation science such as CEC, LC, and SPE. Especially their application in CEC has attracted a lot of attention for their outstanding separation performance. Various forms of OT stationary phase materials have been employed such as in-situ prepared polymers, molecular imprinted polymers (MIPs), brush ligands, host ligands, block copolymers, aptamers, carbon nanotubes, polysaccharides, proteins, tentacles, nanoparticles, monoliths, and polyelectrolyte multi-layers. They have been prepared either in the chemically bound format or physically adsorbed format. Sol-gel technologies and nanoparticles have been sometimes involved in their preparation. There have been also some unique miscellaneous studies, for example, adopting preferentially adsorbed mobile phase components as stationary phases. In this review, recent progresses since mostly 2007 will be critically discussed in detail with some summarized descriptions for the work before the date. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation of K+-Doped Core-Shell NaYF4:Yb, Er Upconversion Nanoparticles and its Application for Fluorescence Immunochromatographic Assay of Human Procalcitonin.

    PubMed

    Tang, Jie; Lei, Lijiang; Feng, Hui; Zhang, Hongman; Han, Yuwang

    2016-11-01

    In the present study, we reported a convenient route to prepare well dispersed and functionalized K + -doped core-shell upconversion nanoparticles (UCP) by layer-by-layer (LbL) assembly of polyelectrolytes. UCP was firstly transferred to aqueous phase using cationic surfactant cetyl trimethyl ammonium bromide (CTAB) via hydrophobic interaction without removing the existing oleic acid (OA). Then the positively charged hydrophilic UCP@CTAB was further alternately deposited with negatively charged [poly (sodium 4-styrenesulfonate)] (PSS), positively charged [poly (allylamine hydrochloride)] (PAH) and negatively charged [poly (acrylic acid)] (PAA). The final carboxyl functionalized UCP@CTAB@PSS@PAH@PAA was then conjugated with monoclonal antibody1 (AB1) of procalcitonin (PCT), resulting in successful detection of PCT antigens based on the immunochromatographic assay (ICA). Linear response was achieved from 0 to 10 ng/mL, and the lowest limit of detection (LLD) was 0.18 ng/mL.

  2. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  3. Urinary excretion of ciprofloxacin after administration of extended release tablets in healthy volunteers. Swellable drug-polyelectrolyte matrix versus bilayer tablets.

    PubMed

    Guzmán, M L; Romañuk, C B; Sanchez, M F; Luciani Giacobbe, L C; Alarcón-Ramirez, L P; Battistini, F D; Alovero, F L; Jimenez-Kairuz, A F; Manzo, R H; Olivera, María Eugenia

    2018-02-01

    This paper builds on a previous paper in which new ciprofloxacin extended-release tablets were developed based on a ciprofloxacin-based swellable drug polyelectrolyte matrix (SDPM-CIP). The matrix contains a molecular dispersion of ciprofloxacin ionically bonded to the acidic groups of carbomer, forming the polyelectrolyte-drug complex CB-CIP. This formulation showed that the release profile of the ciprofloxacin bilayer tablets currently commercialised can be achieved with a simpler strategy. Thus, since ciprofloxacin urine concentrations are associated with the clinical cure of urinary tract infections, the goal of this work was to compare the urinary excretion of SDPM-CIP tablets with those of the CIPRO XR® bilayer tablets. A batch of SDPM-CIP tablets was manufactured by the wet granulation method and the CB-CIP ionic complex was obtained in situ. Fasted healthy volunteers received a single oral dose of 500 mg ciprofloxacin of either formulation in a randomised crossover study. Urinary concentrations were assessed by HPLC at intervals up to 36 h. Pharmacokinetic parameters (rate of urinary excretion, maximum urine excretion rate, t max , area under the curve, amount and percentage of the ciprofloxacin dose excreted in urine) showed no statistical differences between both formulations at any of the time intervals of collection. The processing conditions to obtain SDPM-CIP tablets are easy to scale up since they involve technology currently employed in the pharmaceutical industry and the process is less challenging to implement. In addition, SDPM-CIP tablets met pharmacopoeial quality specifications.

  4. Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions.

    PubMed

    Terada, Dohiko; Kobayashi, Hisatoshi; Zhang, Kun; Tiwari, Ashutosh; Yoshikawa, Chiaki; Hanagata, Nobutaka

    2012-02-01

    The processing of a polyelectrolyte (whose functionality is derived from its ionized functional groups) into a nanofiber may improve its functionality and yield multiple functionalities. However, the electrospinning of nanofibers from polyelectrolytes is imperfect because polyelectrolytes differ considerably from neutral polymers in their rheological properties. In our study, we attempt to solve this problem by applying a voltage of opposite polarity to charges on a polyelectrolyte. The application of this 'countervoltage' can temporarily mask or screen a specific rheological property of the polyelectrolyte, making it behave as a neutral polymer. This approach can significantly contribute to the development of new functional nanofiber materials.

  5. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.

    PubMed

    Majoinen, Johanna; Walther, Andreas; McKee, Jason R; Kontturi, Eero; Aseyev, Vladimir; Malho, Jani Markus; Ruokolainen, Janne; Ikkala, Olli

    2011-08-08

    Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.

  6. Design strategy of pH-sensitive triblock copolymer micelles for efficient cellular uptake by computer simulations

    NASA Astrophysics Data System (ADS)

    Xia, Qiang-sheng; Ding, Hong-ming; Ma, Yu-qiang

    2018-03-01

    Efficient delivery of nanoparticles into specific cell interiors is of great importance in biomedicine. Recently, the pH-responsive micelle has emerged as one potential nanocarrier to realize such purpose since there exist obvious pH differences between normal tissues and tumors. Herein, by using dissipative particle dynamics simulation, we investigate the interaction of the pH-sensitive triblock copolymer micelles composed of ligand (L), hydrophobic block (C) and polyelectrolyte block (P) with cell membrane. It is found that the structure rearrangement of the micelle can facilitate its penetration into the lower leaflet of the bilayer. However, when the ligand-receptor specific interaction is weak, the micelles may just fuse with the upper leaflet of the bilayer. Moreover, the ionization degree of polyelectrolyte block and the length of hydrophobic block also play a vital role in the penetration efficiency. Further, when the sequence of the L, P, C beads in the copolymers is changed, the translocation pathways of the micelles may change from direct penetration to Janus engulfment. The present study reveals the relationship between the molecular structure of the copolymer and the uptake of the pH-sensitive micelles, which may give some significant insights into the experimental design of responsive micellar nanocarriers for highly efficient cellular delivery.

  7. Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Shiyao; Zheng, Junsheng; Huang, Jun; Dai, Ningning; Li, Ping; Zheng, Jim P.

    2018-07-01

    Polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) functionalized carbon nanotubes (CNTs) supported Pt electrocatalyst was synthesized as a substitute for commonly used Pt/C and Pt/CNTs (modified by harsh acid-oxidation treatment) catalysts. In addition, this catalyst was fabricated as the cathode catalyst layer (CL) with a unique double-layered structure for proton exchange membrane fuel cells (PEMFCs). Thermogravimetric analysis shows an enhanced thermal stability of Pt/PDDA-CNTs. The Pt/PDDA-CNTs catalyst with an average Pt particle size of ∼3.1 nm exhibits the best electrocatalytic activity and a significantly enhanced electrochemical stability. Scanning electron microscope, energy dispersive spectrometer and mercury intrusion porosimetry results demonstrate the gradient distribution of Pt content and pore size along the thickness of buckypaper catalyst layer (BPCL). The accelerated degradation test results of BPCLs indicate that this gradient structure can ensure a high Pt utilization in the BPCLs (up to 90%) and further improve the catalyst durability. In addition, the membrane electrode assembly (MEA) fabricated with cathode BPCL-PDDA shows the best single cell performance and long-term stability, and a reduction of Pt loading can be achieved. The feasibility of BPCL for improving the Pt utilization is also demonstrated by the cathode cyclic voltammetry in MEA.

  8. [Inclusion of proteins into polyelectrolyte microcapsules by coprecipitation and adsorption].

    PubMed

    Kochetkova, O Iu; Kazakova, L I; Moshkov, D A; Vinokurov, M G; Shabarchina, L I

    2013-01-01

    In present study microcapsules composed of synthetic (PSS and PAA) and biodegradable (DS and PAr) polyelectrolytes on calcium carbonate microparticles were obtained. The ultrastructural organization of biodegradable microcapsules was studied using transmission electron microscopy. The envelope of such capsules consisting of six polyelectrolyte layers is already well-formed, having the average thickness of 44 ± 3.0 nm, and their internal polyelectrolyte matrix is sparser compared to the synthetic microcapsules. Spectroscopy was employed to evaluate the efficiency of incorporation of FITC-labeled BSA into synthetic microcapsules by adsorption, depending on the number of polyelectrolyte layers. It was shown that the maximal amount of protein incorporated into the capsules with 6 or 7 polyelectrolyte layers (4 and 2 pg/capsule, correspondingly). As a result we conclude that, in comparison with co-precipitation, the use of adsorption allows to completely avoid the loss of protein upon encapsulation.

  9. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    PubMed

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads to systematic, but in general small, corrections to earlier theoretical predictions describing the behavior of weak polyelectrolyte layers. However, polyelectrolyte uncharging results in a decrease in the concentration of counterions and inclusion of the Born Energy can result in a substantial decrease of the counterion concentration. The effect of considering the Born energy contribution is explored for end-grafted weak polyelectrolyte layers by calculating experimental observables which are known to depend on the presence of charges within the polyelectrolyte layer: inclusion of the Born energy contribution leads to a decrease in the capacitance of polyelectrolyte-modified electrodes, a decrease of conductivity of polyelectrolyte-modified nanopores and an increase in the repulsion exerted by a planar polyelectrolyte layer confined by an opposing wall.

  10. Thermodynamics of the interaction of the food additive tartrazine with serum albumins: a microcalorimetric investigation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2015-05-15

    The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Chitosan/pectin/gum Arabic polyelectrolyte complex: process-dependent appearance, microstructure analysis and its application.

    PubMed

    Tsai, Ruei-Yi; Chen, Pin-Wen; Kuo, Ting-Yun; Lin, Che-Min; Wang, Da-Ming; Hsien, Tzu-Yang; Hsieh, Hsyue-Jen

    2014-01-30

    Novel chitosan/pectin/gum Arabic polyelectrolyte complex (PEC) solutions and membranes with various compositions were prepared for biomedical applications. The appearance of the PEC solutions, either clear or turbid, was process-dependent and depended on how the three components were dissolved and mixed. The addition of gum Arabic to the chitosan and pectin significantly decreased the viscosities of the resultant PEC solutions due to the formation of globe-like microstructures that was accompanied by network-like microstructures and other molecular entanglements. The mechanical strength and hydrophilicity of the PEC membranes manufactured from the PEC solutions, especially for a weight ratio of 84/8/8 (chitosan/pectin/gum Arabic), were enhanced compared to pure chitosan membranes. Moreover, the use of the 84/8/8 PEC membranes as a drug carrier exhibited steady and fairly complete release of a drug (insulin) for 6h. Based on these promising results, the chitosan/pectin/gum Arabic PEC membranes have great potential in controlled drug release applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    PubMed

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  13. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    NASA Astrophysics Data System (ADS)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  14. Polyelectrolyte/Graphene Oxide Barrier Film for Flexible OLED.

    PubMed

    Yang, Seung-Yeol; Park, Jongwhan; Kim, Yong-Seog

    2015-10-01

    Ultra-thin flexible nano-composite barrier layer consists of graphene oxide and polyelectrolyte was prepared using the layer-by-layer processing method. Microstructures of the barrier layer was optimized via modifying coating conditions and inducing chemical reactions. Although the barrier layer consists of hydrophilic polyelectrolyte was not effective in blocking the water vapor permeation, the chemical reduction of graphene oxide as well as conversion of polyelectrolyte to hydrophobic nature were very effective in reducing the permeation.

  15. Altering surface charge nonuniformity on individual colloidal particles.

    PubMed

    Feick, Jason D; Chukwumah, Nkiru; Noel, Alexandra E; Velegol, Darrell

    2004-04-13

    Charge nonuniformity (sigmazeta) was altered on individual polystyrene latex particles and measured using the novel experimental technique of rotational electrophoresis. It has recently been shown that unaltered sulfated latices often have significant charge nonuniformity (sigmazeta = 100 mV) on individual particles. Here it is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged. Reduction of charge uniformity occurs as large domains of nonuniformity are minimized, giving a more random distribution of charge on individual particle surfaces. Targeted reduction of charge nonuniformity opens new opportunities for the dispersion of nanoparticles and the oriented assembly of particles.

  16. Development of Highly-Conductive Polyelectrolytes for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Shriver, D. F.; Ratner, M. A.; Vaynman, S.; Annan, K. O.; Snyder, J. F.

    2003-01-01

    Future NASA and Air Force missions require reliable and safe sources of energy with high specific energy and energy density that can provide thousands of charge-discharge cycles at more than 40% depth- of-discharge and that can operate at low temperatures. All solid-state batteries have substantial advantages with respect to stability, energy density, storage fife and cyclability. Among all solid-state batteries, those with flexible polymer electrolytes offer substantial advantages in cell dimensionality and commensurability, low temperature operation and thin film design. The above considerations suggest that lithium-polymer electrolyte systems are promising for high energy density batteries and should be the systems of choice for NASA and US Air Force applications. Polyelectrolytes (single ion conductors) are among most promising avenues for achieving a major breakthrough 'in the applicability of polymer- based electrolyte systems. Their major advantages include unit transference number for the cation, reduced cell polarization, minimal salt precipitation, and favorable electrolyte stability at interfaces. Our research is focused on synthesis, modeling and cell testing of single ion carriers, polyelectrolytes. During the first year of this project we attempted the synthesis of two polyelectrolytes. The synthesis of the first one, the poly(ethyleneoxide methoxy acrylateco-lithium 1,1,2-trifluorobutanesulfonate acrylate, was attempted few times and it was unsuccessful. We followed the synthetic route described by Cowie and Spence. The yield was extremely low and the final product could not be separated from the impurities. The synthesis of this polyelectrolyte is not described in this report. The second polyelectrolyte, comb polysiloxane polyelectrolyte containing oligoether and perfluoroether sidechains, was synthesized in sufficient quantity to study the range of properties such as thermal stability, Li- ion- conductivity and stability toward lithium metal. Also, the batteries containing this polyelectrolyte were assembled and tested. The results are detailed below. The synthesis of another polyelectrolyte similar to polysiloxane polyelectrolyte has been started, however, the synthesis was not completed due to termination of the project.

  17. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    PubMed

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.

  18. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate.

    PubMed

    Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija

    2017-08-30

    The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chain Conformation and Dynamics in Spin-Assisted Weak Polyelectrolyte Multilayers

    DOE PAGES

    Zhuk, Aliaksandr; Selin, Victor; Zhuk, Iryna; ...

    2015-03-13

    In this paper, we report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescencemore » recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. Finally, this persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.« less

  20. Monte Carlo simulations of polyelectrolytes inside viral capsids.

    PubMed

    Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per

    2006-04-01

    Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.

  1. New Polymer Electrolyte Cell Systems

    NASA Technical Reports Server (NTRS)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  2. Nucleic acid polymeric properties and electrostatics: Directly comparing theory and simulation with experiment.

    PubMed

    Sim, Adelene Y L

    2016-06-01

    Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Polyelectrolytes and Their Biological Interactions

    PubMed Central

    Katchalsky, A.

    1964-01-01

    Polyelectrolytes are water-soluble electrically charged polymers. Their properties are determined by the interplay of the electrical forces, the Brownian motion of the macromolecular chain, and intermolecular Van der Waals forces. Charged polyacids or polybases are stretched by the electrostatic forces, as evidenced by increase in solution viscosity, or by the stretching of polyelectrolyte gels. The electrical field of the polyions is neutralized by a dense atmosphere of counter-ions. The counter-ion attraction to the polyions is expressed by a reduction of the osmotic activity of the polyion—the osmotic pressure being only 15 to 20 per cent of the ideal in highly charged polyelectrolytes neutralized by monovalent counter-ions, and as low as 1 to 3 per cent of the ideal for polyvalent counter-ions. Since the ionic atmosphere is only slightly dependent on added low molecular salt, the osmotic pressure of polyelectrolyte salt mixtures is approximately equal to the sum of the osmotic pressure of polyelectrolyte and salt alone. Acidic and basic polyelectrolytes interact electrostatically with precipitation at the point of polymeric electroneutrality. At higher salt concentrations the interaction is inhibited by the screening of polymeric fixed charges. The importance of these interactions in enzymatic processes is discussed. The electrical double layer is polarizable as may be deduced from dielectric and conductometric studies. The polarizability leads to strong dipole formation in an electrical field. These macromolecular dipoles may play a role in the adsorption of polyelectrolytes on charged surfaces. The final part of the paper is devoted to interactions of polyelectrolytes with cell membranes and the gluing of cells to higher aggregates by charged biocolloids. ImagesFigure 17Figure 18Figure 19Figure 20 PMID:14104085

  4. Assembly of purple membranes on polyelectrolyte films.

    PubMed

    Saab, Marie-belle; Estephan, Elias; Cloitre, Thierry; Legros, René; Cuisinier, Frédéric J G; Zimányi, László; Gergely, Csilla

    2009-05-05

    The membrane protein bacteriorhodopsin in its native membrane bound form (purple membrane) was adsorbed and incorporated into polyelectrolyte multilayered films, and adsorption was in situ monitored by optical waveguide light-mode spectroscopy. The formation of a single layer or a double layer of purple membranes was observed when adsorbed on negatively or positively charged surfaces, respectively. The purple membrane patches adsorbed on the polyelectrolyte multilayers were also evidenced by atomic force microscopy images. The driving forces of the adsorption process were evaluated by varying the ionic strength of the solution as well as the purple membrane concentration. At high purple membrane concentration, interpenetrating polyelectrolyte loops might provide new binding sites for the adsorption of a second layer of purple membranes, whereas at lower concentrations only a single layer is formed. Negative surfaces do not promote a second protein layer adsorption. Driving forces other than just electrostatic ones, such as hydrophobic forces, should play a role in the polyelectrolyte/purple membrane layering. The subtle interplay of all these factors determines the formation of the polyelectrolyte/purple membrane matrix with a presumably high degree of orientation for the incorporated purple membranes, with their cytoplasmic, or extracellular side toward the bulk on negatively or positively charged polyelectrolyte, respectively. The structural stability of bacteriorhodopsin during adsorption onto the surface and incorporation into the polyelectrolyte multilayers was investigated by Fourier transform infrared spectroscopy in attenuated total reflection mode. Adsorption and incorporation of purple membranes within polyelectrolyte multilayers does not disturb the conformational majority of membrane-embedded alpha-helix structures of the protein, but may slightly alter the structure of the extramembraneous segments or their interaction with the environment. This high stability is different from the lower stability of the predominantly beta-sheet structures of numerous globular proteins when adsorbed onto surfaces.

  5. On the role of methacrylic acid copolymers in the intracellular delivery of antisense oligonucleotides.

    PubMed

    Yessine, Marie-Andrée; Meier, Christian; Petereit, Hans-Ulrich; Leroux, Jean-Christophe

    2006-05-01

    The delivery of active biomacromolecules to the cytoplasm is a major challenge as it is generally hindered by the endosomal/lysosomal barrier. Synthetic titratable polyanions can overcome this barrier by destabilizing membrane bilayers at pH values typically found in endosomes. This study investigates how anionic polyelectrolytes can enhance the cytoplasmic delivery of an antisense oligonucleotide (ODN). Novel methacrylic acid (MAA) copolymers were examined for their pH-sensitive properties and ability to destabilize cell membranes in a pH-dependent manner. Ternary complex formulations prepared with the ODN, a cationic lipid and a MAA copolymer were systematically characterized with respect to their size, zeta potential, antisense activity, cytotoxicity and cellular uptake using the A549 human lung carcinoma cell line. The MAA copolymer substantially increased the activity of the antisense ODN in inhibiting the expression of protein kinase C-alpha. Uptake, cytotoxicity and antisense activity were strongly dependent on copolymer concentration. Metabolic inhibitors demonstrated that endocytosis was the major internalization pathway of the complexes, and that endosomal acidification was essential for ODN activity. Confocal microscopy analysis of cells incubated with fluorescently-labeled complexes revealed selective delivery of the ODN, but not of the copolymer, to the cytoplasm/nucleus. This study provides new insight into the mechanisms of intracellular delivery of macromolecular drugs, using synthetic anionic polyelectrolytes.

  6. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish

    PubMed Central

    2018-01-01

    ABSTRACT The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo. Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis. PMID:29305467

  8. Ion transferring in polyelectrolyte networks in electric fields

    NASA Astrophysics Data System (ADS)

    Li, Honghao; Erbas, Aykut; Zwanikken, Jos; Olvera de La Cruz, Monica

    Ion-conducting polyelectrolyte gels have drawn the attention of many researchers in the last few decades as they have wide applications not only in lithium batteries but also as stretchable, transparent ionic conductor or ionic cables devices. However, ion dynamics in polyelectrolyte gels has been much less studied analytically or computationally due to the complicated interplay of long-range electrostatic and short-range interactions. Here we propose a coarse-grained non-equilibrium molecular dynamics simulation to study the ion dynamics in polyelectrolyte gels under external electric fields. We found a nonlinear response region where the molar conductivity of polyelectrolyte gels increases with external fields. We propose counterion redistribution under electric fields as the driving mechanism. We also found the ionic conductivity to be modulated by changing polylelectrolyte network topology such as the chain length. Our discovery reveals the essential difference of ion dynamics between electrolytes and polyelectrolyte gels. These results will expand our understanding in charged polymeric systems and help in designing ion-conducting devices with higher conductivity.

  9. Interaction of Poly(l-lysine)/Polysaccharide Complex Nanoparticles with Human Vascular Endothelial Cells.

    PubMed

    Weber, Dominik; Torger, Bernhard; Richter, Karsten; Nessling, Michelle; Momburg, Frank; Woltmann, Beatrice; Müller, Martin; Schwartz-Albiez, Reinhard

    2018-05-23

    Angiogenesis plays an important role in both soft and hard tissue regeneration, which can be modulated by therapeutic drugs. If nanoparticles (NP) are used as vectors for drug delivery, they have to encounter endothelial cells (EC) lining the vascular lumen, if applied intravenously. Herein the interaction of unloaded polyelectrolyte complex nanoparticles (PECNP) composed of cationic poly(l-lysine) (PLL) and various anionic polysaccharides with human vascular endothelial cells (HUVEC) was analyzed. In particular PECNP were tested for their cell adhesive properties, their cellular uptake and intracellular localization considering composition and net charge. PECNP may form a platform for both cell coating and drug delivery. PECNP, composed of PLL in combination with the polysaccharides dextran sulfate (DS), cellulose sulfate (CS) or heparin (HEP), either unlabeled or labeled with fluorescein isothiocyanate (FITC) and either with positive or negative net charge were prepared. PECNP were applied to human umbilical cord vein endothelial cells (HUVEC) in both, the volume phase and immobilized phase at model substrates like tissue culture dishes. The attachment of PECNP to the cell surface, their intracellular uptake, and effects on cell proliferation and growth behavior were determined. Immobilized PECNP reduced attachment of HUVEC, most prominently the systems PLL/HEP and PLL/DS. A small percentage of immobilized PECNP was taken up by cells during adhesion. PECNP in the volume phase showed no effect of the net charge sign and only minor effects of the composition on the binding and uptake of PECNP at HUVEC. PECNP were stored in endosomal vesicles in a cumulative manner without apparent further processing. During mitosis, internalized PECNP were almost equally distributed among the dividing cells. Both, in the volume phase and immobilized at the surface, PECNP composed of PLL/HEP and PLL/DS clearly reduced cell proliferation of HUVEC, however without an apparent cytotoxic effect, while PLL/CS composition showed minor impairment. PECNP have an anti-adhesive effect on HUVEC and are taken up by endothelial cells which may negatively influence the proliferation rate of HUVEC. The negative effects were less obvious with the composition PLL/CS. Since uptake and binding for PLL/HEP was more efficient than for PLL/DS, PECNP of PLL/HEP may be used to deliver growth factors to endothelial cells during vascularization of bone reconstitution material, whereas those of PLL/CS may have an advantage for substituting biomimetic bone scaffold material.

  10. Encapsulation of Bacterial Spores in Nanoorganized Polyelectrolyte Shells (Postprint)

    DTIC Science & Technology

    2009-05-27

    Nanoorganized polyelectrolyte shells have already found applica- tions in drug microencapsulation as a result of the tunable properties of the...polyelectrolyte shell.19 The same LbL technology allowed the introduction of enzymatic activity onto yeast cell shells in order to promote the conversion of

  11. Counterion adsorption and desorption rate of a charged macromolecule

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Yang, Jingfa; Zhao, Jiang

    The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.

  12. Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Qin, Shiyi; Yong, Xin

    We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).

  13. Controlled etching of internal and external structures of SiO2 nanoparticles using hydrogen bond of polyelectrolytes.

    PubMed

    Islam, Md Shahinul; Choi, Won San; Lee, Ha-Jin

    2014-06-25

    We have demonstrated a novel strategy for the synthesis of mesoporous silica nanoparticles (MSNPs) using a surfactant-free method under ambient conditions. By the simple addition of an amine-based polymer (polyethylenimine; PEI) with a high molecular weight to a silica nanoparticle (SNP) solution, two types of MSNPs, including rambutan-like MSNPs (R-MSNPs) and hollow MSNPs (H-MSNPs), were produced. The structural changes of the MSNPs were systematically studied using various reaction conditions (reaction time, molar ratio and molecular weight of PEI, etc.) and were observed using electron microscopic techniques. The formation mechanisms of both MSNPs were carefully investigated using XPS, Raman, and IR spectroscopies. Because the synthesized MSNPs are highly porous materials that contain internal organic/inorganic networks, we investigated the removal/adsorption properties of these MSNPs with respect to pollutants toward possible future use in environmental remediation applications. The H-MSNPs exhibited better environmental remediation capabilities relative to the R-MSNPs because PEI is present between the cobweb-like internal structures of the H-MSNPs, thereby providing a significant number of reaction sites for the adsorption of pollutants. The approach presented here can also be used as a direct method for the preparation of intraconnected networks within the substructures.

  14. Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles.

    PubMed

    Correa, Santiago; Choi, Ki Young; Dreaden, Erik C; Renggli, Kasper; Shi, Aria; Gu, Li; Shopsowitz, Kevin E; Quadir, Mohiuddin A; Ben-Akiva, Elana; Hammond, Paula T

    2016-02-16

    Layer-by-layer (LbL) self-assembly is a versatile technique from which multicomponent and stimuli-responsive nanoscale drug carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, we describe a generalizable method for increasing throughput with LbL assembly by using highly scalable, closed-loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid-polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. We also explore the cytotoxicity, shelf life and long-term storage of LbL nanoparticles produced using this approach. We find that LbL coated systems can be reliably and rapidly produced: specifically, LbL-modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug-carriers that show low toxicity and are amenable to clinically relevant storage conditions.

  15. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms.

    PubMed

    Malik, Akhtar Hussain; Hussain, Sameer; Kalita, Anamika; Iyer, Parameswar Krishnan

    2015-12-09

    Spontaneously formed conjugated polymer nanoparticles (CPNs) or polymer dots displayed remarkable fluorescence response toward nitroexplosive-picric acid (PA) in multiple environments including 100% aqueous media, solid support using portable paper strips and vapor phase detection via two terminal device. This new cationic conjugated polyelectrolyte (CPE) poly(3,3'-((2-phenyl-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium)bromide) (PFMI) was synthesized by Suzuki coupling polymerization followed by post functionalization method without employing any hectic purification technique. Highest quenching constant value (K(sv)) of 1.12 × 10(8) M(-1) and a very low detection limit of 30.9 pM/7.07 ppt were obtained exclusively for PA in 100% aqueous environment which is rare and unique for any CPE/CPNs. Contact mode detection of PA was also performed using simple, cost-effective and portable fluorescent paper strips for achieving on-site detection. Furthermore, the two terminal sensor device fabricated with nanoparticles of PFMI (PFMI-NPs) provides an exceptional and unprecedented platform for the vapor mode detection of PA under ambient conditions. The mechanism for the ultrasensitivity of PFMI-NPs probe to detect PA is attributed to the "molecular-wire effect", electrostatic interaction, photoinduced electron transfer (PET), and possible resonance energy transfer (RET).

  16. Production methodologies of polymeric and hydrogel particles for drug delivery applications.

    PubMed

    Lima, Ana Catarina; Sher, Praveen; Mano, João F

    2012-02-01

    Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration. This paper reviews the methodologies used for the production of polymeric micro/nanoparticles. Emulsions, phase separation, spray drying, ionic gelation, polyelectrolyte complexation and supercritical fluids precipitation are all widely used processes for polymeric micro/nanoencapsulation. This paper also discusses the recent developments and patents reported in this field. Other less conventional methodologies are also described, such as the use of superhydrophobic substrates to produce hydrogel and polymeric particulate biomaterials. Polymeric drug delivery systems have gained increased importance due to the need for improving the efficiency and versatility of existing therapies. This allows the development of innovative concepts that could create more efficient systems, which in turn may address many healthcare needs worldwide. The existing methods to produce polymeric release systems have some critical drawbacks, which compromise the efficiency of these techniques. Improvements and development of new methodologies could be achieved by using multidisciplinary approaches and tools taken from other subjects, including nanotechnologies, biomimetics, tissue engineering, polymer science or microfluidics.

  17. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    PubMed

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  18. Interplay of polyelectrolytes with different adsorbing surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Feng

    We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly with traditional polymer adsorption onto surfaces whose structure is "frozen" and unresponsive. Finally, preliminary studies on dynamical properties of biomembrane surfaces interacting with polyelectrolytes are presented, using fluorescence correlation spectroscopy (FCS). The significance is to characterize domains induced by polyelectrolyte binding.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here in this study, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO 2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the averagemore » NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Lastly, structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.« less

  20. Polyelectrolyte Bundles: Finite size at thermodynamic equilibrium?

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet

    2005-03-01

    Experimental observation of finite size aggregates formed by polyelectrolytes such as DNA and F-actin, as well as synthetic polymers like poly(p-phenylene), has created a lot of attention in recent years. Here, bundle formation in rigid rod-like polyelectrolytes is studied via computer simulations. For the case of hydrophobically modified polyelectrolytes finite size bundles are observed even in the presence of only monovalent counterions. Furthermore, in the absence of a hydrophobic backbone, we have also observed formation of finite size aggregates via multivalent counterion condensation. The size distribution of such aggregates and the stability is analyzed in this study.

  1. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point

    NASA Astrophysics Data System (ADS)

    de Vries, R.

    2004-02-01

    Electrostatic complexation of flexible polyanions with the whey proteins α-lactalbumin and β-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Hückel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that α-lactalbumin complexes much more strongly than β-lactoglobulin. For α-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for β-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches.

  2. Complexation of Polyelectrolyte Micelles with Oppositely Charged Linear Chains.

    PubMed

    Kalogirou, Andreas; Gergidis, Leonidas N; Miliou, Kalliopi; Vlahos, Costas

    2017-03-02

    The formation of interpolyelectrolyte complexes (IPECs) from linear AB diblock copolymer precursor micelles and oppositely charged linear homopolymers is studied by means of molecular dynamics simulations. All beads of the linear polyelectrolyte (C) are charged with elementary quenched charge +1e, whereas in the diblock copolymer only the solvophilic (A) type beads have quenched charge -1e. For the same Bjerrum length, the ratio of positive to negative charges, Z +/- , of the mixture and the relative length of charged moieties r determine the size of IPECs. We found a nonmonotonic variation of the size of the IPECs with Z +/- . For small Z +/- values, the IPECs retain the size of the precursor micelle, whereas at larger Z +/- values the IPECs decrease in size due to the contraction of the corona and then increase as the aggregation number of the micelle increases. The minimum size of the IPECs is obtained at lower Z +/- values when the length of the hydrophilic block of the linear diblock copolymer decreases. The aforementioned findings are in agreement with experimental results. At a smaller Bjerrum length, we obtain the same trends but at even smaller Z +/- values. The linear homopolymer charged units are distributed throughout the corona.

  3. Distinctive viscoelastic and viscoplastic nanomechanics of ionically cross-linked polyelectrolyte complexes under intermittent relaxation and creep

    NASA Astrophysics Data System (ADS)

    Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin

    This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.

  4. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  5. 50th Anniversary Perspective: A Perspective on Polyelectrolyte Solutions

    PubMed Central

    2017-01-01

    From the beginning of life with the information-containing polymers until the present era of a plethora of water-based materials in health care industry and biotechnology, polyelectrolytes are ubiquitous with a broad range of structural and functional properties. The main attribute of polyelectrolyte solutions is that all molecules are strongly correlated both topologically and electrostatically in their neutralizing background of charged ions in highly polarizable solvent. These strong correlations and the necessary use of numerous variables in experiments on polyelectrolytes have presented immense challenges toward fundamental understanding of the various behaviors of charged polymeric systems. This Perspective presents the author’s subjective summary of several conceptual advances and the remaining persistent challenges in the contexts of charge and size of polymers, structures in homogeneous solutions, thermodynamic instability and phase transitions, structural evolution with oppositely charged polymers, dynamics in polyelectrolyte solutions, kinetics of phase separation, mobility of charged macromolecules between compartments, and implications to biological systems. PMID:29296029

  6. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions

    NASA Astrophysics Data System (ADS)

    Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo

    2014-08-01

    All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.

  7. Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates

    DOE PAGES

    Oded, Meirav; Kelly, Stephen T.; Gilles, Mary K.; ...

    2016-04-07

    Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. We present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm 2 -scale areas. We used chemically modified block copolymer thin films featuring alternating charged and neutral domains as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topographymore » that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.« less

  8. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  9. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    PubMed

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  10. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  11. Enzyme-polyelectrolyte complexes in water-ethanol mixtures: negatively charged groups artificially introduced into alpha-chymotrypsin provide additional activation and stabilization effects.

    PubMed

    Kudryashova, E V; Gladilin, A K; Vakurov, A V; Heitz, F; Levashov, A V; Mozhaev, V V

    1997-07-20

    Formation of noncovalent complexes between alpha-chymotrypsin (CT) and a polyelectrolyte, polybrene (PB), has been shown to produce two major effects on enzymatic reactions in binary mixtures of polar organic cosolvents with water. (i) At moderate concentrations of organic cosolvents (10% to 30% v/v), enzymatic activity of CT is higher than in aqueous solutions, and this activation effect is more significant for CT in complex with PB (5- to 7-fold) than for free enzyme (1.5- to 2.5-fold). (ii) The range of cosolvent concentrations that the enzyme tolerates without complete loss of catalytic activity is much broader. For enhancement of enzyme stability in the complex with the polycation, the number of negatively charged groups in the protein has been artificially increased by using chemical modification with pyromellitic and succinic anhydrides. Additional activation effect at moderate concentrations of ethanol and enhanced resistance of the enzyme toward inactivation at high concentrations of the organic solvent have been observed for the modified preparations of CT in the complex with PB as compared with an analogous complex of the native enzyme. Structural changes behind alterations in enzyme activity in water-ethanol mixtures have been studied by the method of circular dichroism (CD). Protein conformation of all CT preparations has not changed significantly up to 30% v/v of ethanol where activation effects in enzymatic catalysis were most pronounced. At higher concentrations of ethanol, structural changes in the protein have been observed for different forms of CT that were well correlated with a decrease in enzymatic activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 267-277, 1997.

  12. Concentration and Purification of Influenza Virus on Insoluble Polyelectrolytes

    PubMed Central

    Wallis, Craig; Homma, Akira; Melnick, Joseph L.

    1972-01-01

    A method for rapid concentration and purification of influenza virus by adsorption on and elution from an insoluble polyelectrolyte is described. To accomplish this task, influenza virus had to be rendered stable at pH 4 to 5, since viruses adsorb to the polyelectrolyte more efficiently at this pH range. A precipitate which forms in influenza harvests under acid conditions in the cold can be removed by ammonium sulfate at a concentration which traps the precipitate but not the virus. Thus, ammonium sulfate-treated influenza virus in allantoic fluid could be readily concentrated on the polyelectrolyte. Elution yielded a virus concentrate essentially free of nonviral proteins. PMID:4553141

  13. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Wen, Dongsheng; Tarakina, Nadezda V.; Liang, Jierong; Bushby, Andy J.; Sukhorukov, Gleb B.

    2016-02-01

    Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery.Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06666b

  14. Synthesis and characterization of ion containing polymers

    NASA Astrophysics Data System (ADS)

    Dou, Shichen

    Two types of ion-containing polymers are included in this dissertation. The first was focused on the rheology, solvation, and correlation length of polyelectrolyte solutions in terms of charge density, solvent dielectric constant, and solvent quality. The second was focused on the PEO-based polyester ionomers as single ion conductors. A series of polyelectrolytes with varied charge density (0.03 < alpha < 0.6) and counterions (Cl- and I-) were investigated in good solvent (EG, NMF, and GC) and poor solvent (DW and F). The concentration dependence of the specific viscosity and relaxation time of polyelectrolytes in solution agrees with Dobrynin's theoretical predictions at c < c**. Effective charge density greatly impacts the viscosity of polyelectrolyte semidilute solutions, while residual salt significantly reduces the viscosity of polyelectrolyte solutions at concentrations c < 2cs/f. For polyelectrolyte solutions with less condensed counterions, the correlation length obtained from SAXS and rheology perfectly matches and agrees with de Gennes prediction. Dobrynin scaling model successfully predicts the rheology of polyelectrolyte solutions in all cases: without salt, with low residual salt, and with high residual salt concentration. PEO-based polyester ionomers were synthesized by melt polycondensation. Mn was determined using the 1H NMR of ionomers. No ion-cluster was observed from the DSC, SAXS, and rheology measurements. Ionic conductivity greatly depends on the Tg, T-T g and ion content of the ionomers. PEG600-PTMO650 (z)-Li copolyester ionomers show microphase separation and much lower ionic conductivity, compared to that of PE600-Li. PTMO650-Li shows nonconductor behavior.

  15. Acquisition of Infrared Variable Angle Spectroscopic Ellipsometer (IR-VASE)

    DTIC Science & Technology

    2016-04-22

    External Advisory Board Meeting in Rio Piedras, PR. March 2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte...April 2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte multilayers: Physicochemical characterization and in...2016 Quiñonez B.*, Castilla D., Almodóvar J.; “ Polysaccharide -based polyelectrolyte multilayers: Physicochemical characterization and in vitro

  16. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 21, 1994--March 22, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.

  17. Multiscale Simulations of Barrier and Aging Properties of Polymer Nanocomposites

    DTIC Science & Technology

    2013-10-29

    Complexation Between Weakly Basic Dendrimers and Linear Polyelectrolytes: Effects of Chain Stiffness, Grafts, and pOH,” Thomas Lewis, Gunja Pandav, Ahmad Omar...November 2012. (c) Presentations 20.0010/29/2013 Venkat Ganesan, Thomas Lewis. Interactions between Grafted Cationic Dendrimers and Anionic Bilayer... dendrimers have shown great promise in drug and gene therapy applications. Despite the advantages realized through positively charged dendrimers , a

  18. Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.

    PubMed

    He, Qiang; Möhwald, Helmuth; Li, Junbai

    2009-09-17

    Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  20. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    PubMed

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

  1. Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Duan, Xiaozheng; Li, Yunqi; Zhang, Ran; Shi, Tongfei; An, Lijia; Huang, Qingrong

    2013-06-01

    We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl-choline, PC) and multivalent anionic (phosphatidylinositol, PIP2) lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.

  2. Dendritic polyelectrolytes as seen by the Poisson-Boltzmann-Flory theory.

    PubMed

    Kłos, J S; Milewski, J

    2018-06-20

    G3-G9 dendritic polyelectrolytes accompanied by counterions are investigated using the Poisson-Boltzmann-Flory theory. Within this approach we solve numerically the Poisson-Boltzmann equation for the mean electrostatic potential and minimize the Poisson-Boltzmann-Flory free energy with respect to the size of the molecules. Such a scheme enables us to inspect the conformational and electrostatic properties of the dendrimers in equilibrium based on their response to varying the dendrimer generation. The calculations indicate that the G3-G6 dendrimers exist in the polyelectrolyte regime where absorption of counterions into the volume of the molecules is minor. Trapping of ions in the interior region becomes significant for the G7-G9 dendrimers and signals the emergence of the osmotic regime. We find that the behavior of the dendritic polyelectrolytes corresponds with the degree of ion trapping. In particular, in both regimes the polyelectrolytes are swollen as compared to their neutral counterparts and the expansion factor is maximal at the crossover generation G7.

  3. Monomer volume fraction profiles in pH responsive planar polyelectrolyte brushes

    DOE PAGES

    Mahalik, Jyoti P.; Yang, Yubo; Deodhar, Chaitra V.; ...

    2016-03-06

    Spatial dependencies of monomer volume fraction profiles of pH responsive polyelectrolyte brushes were investigated using field theories and neutron reflectivity experiments. In particular, planar polyelectrolyte brushes in good solvent were studied and direct comparisons between predictions of the theories and experimental measurements are presented. The comparisons between the theories and the experimental data reveal that solvent entropy and ion-pairs resulting from adsorption of counterions from the added salt play key roles in affecting the monomer distribution and must be taken into account in modeling polyelectrolyte brushes. Furthermore, the utility of this physics-based approach based on these theories for the predictionmore » and interpretation of neutron reflectivity profiles in the context of pH responsive planar polyelectrolyte brushes such as polybasic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and polyacidic poly(methacrylic acid) (PMAA) brushes is demonstrated. The approach provides a quantitative way of estimating molecular weights of the polymers polymerized using surface-initiated atom transfer radical polymerization.« less

  4. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that at 50 mmol L -1 KCl the extra negative charge due to the interaction between polyDADMAC and PAHA is just compensated by K + incorporation in the complex. Therefore, a pseudo 1-1 stoichiometry exists at about 50 mmol L -1 1-1 electrolyte concentration and only at this salt concentration polyDADMAC titrations and conventional proton titrations give identical results. Most likely this is also true for other HA samples and other pH values. For FA further study is required to reveal the conditions for which polyDADMAC and proton titrations give identical results.

  5. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability.

    PubMed

    Fauser, Heiko; von Klitzing, Regine; Campbell, Richard A

    2015-01-08

    We have studied the oppositely charged polyelectrolyte/surfactant mixture of poly(acrylamidomethylpropanesulfonate) sodium salt (PAMPS) and tetradecyl trimethylammonium bromide (C14TAB) using a combination of neutron reflectivity and ellipsometry measurements. The interfacial composition was determined using three different analysis methods involving the two techniques for the first time. The bulk surfactant concentration was fixed at a modest value while the bulk polyelectrolyte concentration was varied over a wide range. We reveal complex changes in the surface adsorption behavior. Mixtures with low bulk PAMPS concentrations result in the components interacting synergistically in charge neutral layers at the air/water interface. At the bulk composition where PAMPS and C14TAB are mixed in an equimolar charge ratio in the bulk, we observe a dramatic drop in the surfactant surface excess to leave a large excess of polyelectrolyte at the interface, which we infer to have loops in its interfacial structure. Further increase of the bulk PAMPS concentration leads to a more pronounced depletion of material from the surface. Mixtures containing a large excess of PAMPS in the bulk showed enhanced adsorption, which is attributed to the large increase in total ionic strength of the system and screening of the surfactant headgroup charges. The data are compared to our former results on PAMPS/C14TAB mixtures [Kristen et al. J. Phys. Chem. B, 2009, 23, 7986]. A peak in the surface tension is rationalized in terms of the changing surface adsorption and, unlike in more concentrated systems, is unrelated to bulk precipitation. Also, a comparison between the determined interfacial composition with zeta potential and foam film stability data shows that the highest film stability occurs when there is enhanced synergistic adsorption of both components at the interface due to charge screening when the total ionic strength of the system is highest. The additional contribution to the foam stability of the negatively charged polyelectrolyte within the film bulk is also discussed.

  6. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de; Institut Max von Laue-Paul Langevin; Farago, Bela

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for differentmore » anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and the dynamics especially of the polyelectrolyte within the complexes.« less

  7. Preparation and assessment of carboxylate polyelectrolyte as draw solute for forward osmosis.

    PubMed

    Cui, Hongtao; Zhang, Hanmin; Jiang, Wei; Yang, Fenglin

    2018-02-01

    Reverse draw solute diffusion not only reduces the water flux in forward osmosis (FO), but also contaminates the feed solution and eventually increases the regeneration cost of draw solution. In the present study, a new polyelectrolyte was synthesized as FO draw solute to address this problem. Acrylic acid and sodium p-styrenesulfonate monomers with hydrophilic group were used to fabricate carboxylate polyelectrolyte through free radical polymerization reaction. Results demonstrated that the osmotic pressure of carboxylate polyelectrolyte solution had a good linear relationship with concentration, and the viscosity of 0.18 g/mL solution was less than 5.4 cP. Active layer facing draw solution produced the initial water flux of 11.77 LMH and active layer facing feed solution yielded the initial water flux of 6.68 LMH when the concentration of draw solution was 0.18 g/mL. The reverse solute flux was around 1 gMH, and specific reverse solute flux of 0.18 g/mL carboxylate polyelectrolyte draw solution was 0.11 g/L which was much lower than that of traditional inorganic salts. Finally, diluted draw solution was regenerated via ultrafiltration, and the recovery efficiency of 94.78% was achieved. So, carboxylate polyelectrolyte can be suitable draw solute for FO.

  8. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles.

    PubMed

    Pallotta, Arnaud; Philippe, Valentin; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2018-03-01

    A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.6mm, 3µm) column and with a mobile phase containing acetonitrile and 0.1% trifluoroacetic acid aqueous solution (25/75, V/V) at 1.0mLmin -1. and at a wavelength of 555nm. The method was validated using methodology described by the International Conference on Harmonization and was shown to be specific, precise (RSD < 11%), accurate and linear in the range of 0.1 - 30.0µM with a lower limit of quantification (LLOQ) of 0.1µM. This method was in a first time applied to AuNP quality control after their synthesis. In a second time, the absence of gold leakage (either as AuNP or gold salt form) from nanostructured multilayered polyelectrolyte films under shear stress was assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite → Calcite Recrystallization-Mediated Release Performance.

    PubMed

    Sergeeva, Alena; Sergeev, Roman; Lengert, Ekaterina; Zakharevich, Andrey; Parakhonskiy, Bogdan; Gorin, Dmitry; Sergeev, Sergey; Volodkin, Dmitry

    2015-09-30

    Biocompatibility and high loading capacity of mesoporous CaCO3 vaterite crystals give an option to utilize the polycrystals for a wide range of (bio)applications. Formation and transformations of calcium carbonate polymorphs have been studied for decades, aimed at both basic and applied research interests. Here, composite multilayer-coated calcium carbonate polycrystals containing Fe3O4 magnetite nanoparticles and model protein lysozyme are fabricated. The structure of the composite polycrystals and vaterite → calcite recrystallization kinetics are studied. The recrystallization results in release of both loaded protein and Fe3O4 nanoparticles (magnetic manipulation is thus lost). Fe3O4 nanoparticles enhance the recrystallization that can be induced by reduction of the local pH with citric acid and reduction of the polycrystal crystallinity. Oppositely, the layer-by-layer assembled poly(allylamine hydrochloride)/poly(sodium styrenesulfonate) polyelectrolyte coating significantly inhibits the vaterite → calcite recrystallization (from hours to days) most likely due to suppression of the ion exchange giving an option to easily tune the release kinetics for a wide time scale, for example, for prolonged release. Moreover, the recrystallization of the coated crystals results in formulation of multilayer capsules keeping the feature of external manipulation. This study can help to design multifunctional microstructures with tailor-made characteristics for loading and controlled release as well as for external manipulation.

  10. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: effect of collision speed, polyelectrolyte concentration and molar mass.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-07-01

    Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    NASA Astrophysics Data System (ADS)

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-Dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-12-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest--and more attractive--systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination--without nanoparticle aggregation and without complex dissociation--of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude.

  12. Electrochemical behavior of platinum nanoparticles on a carbon xerogel support modified with a [(trifluoromethyl)-benzenesulfonyl]imide electrolyte.

    PubMed

    Liu, Bing; Mei, Hua; DesMarteau, Darryl; Creager, Stephen E

    2014-12-11

    A monoprotic [(trifluoromethyl)benzenesulfonyl]imide (SI) superacid electrolyte was used to covalently modify a mesoporous carbon xerogel (CX) support via reaction of the corresponding trifluoromethyl aryl sulfonimide diazonium zwitterion with the carbon surface. Electrolyte attachment was demonstrated by elemental analysis, acid-base titration, and thermogravimetric analysis. The ion-exchange capacity of the fluoroalkyl-aryl-sulfonimide-grafted carbon xerogel (SI-CX) was ∼0.18 mequiv g(-1), as indicated by acid-base titration. Platinum nanoparticles were deposited onto the SI-grafted carbon xerogel samples by the impregnation and reduction method, and these materials were employed to fabricate polyelectrolyte membrane fuel-cell (PEMFC) electrodes by the decal transfer method. The SI-grafted carbon-xerogel-supported platinum (Pt/SI-CX) was characterized by X-ray diffraction and transmission electron microscopy to determine platinum nanoparticle size and distribution, and the findings are compared with CX-supported platinum catalyst without the grafted SI electrolyte (Pt/CX). Platinum nanoparticle sizes are consistently larger on Pt/SI-CX than on Pt/CX. The electrochemically active surface area (ESA) of platinum catalyst on the Pt/SI-CX and Pt/CX samples was measured with ex situ cyclic voltammetry (CV) using both hydrogen adsorption/desorption and carbon monoxide stripping methods and by in situ CV within membrane electrode assemblies (MEAs). The ESA values for Pt/SI-CX are consistently lower than those for Pt/CX. Some possible reasons for the behavior of samples with and without grafted SI layers and implications for the possible use of SI-grafted carbon layers in PEMFC devices are discussed.

  13. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose.

    PubMed

    Qi, Guohua; Wang, Yi; Zhang, Biying; Sun, Dan; Fu, Cuicui; Xu, Weiqing; Xu, Shuping

    2016-10-01

    Glucose oxidase (GOx) possessing a Raman-active chromophore (flavin adenine dinucleotide) is used as a signal reporter for constructing a highly specific "turn off" surface-enhanced Raman scattering (SERS) sensor for glucose. This sensing chip is made by the electrostatic assembly of GOx over silver nanoparticle (Ag NP)-functionalized SERS substrate through a positively charged polyelectrolyte linker under the pH of 6.86. To trace glucose in blood serum, owing to the reduced pH value caused by the production of gluconic acid in the GOx-catalyzed oxidation reaction, the bonding force between GOx and polyelectrolyte weakens, making GOx drop off from the sensing chip. As a result, the SERS intensity of GOx on the chip decreases along with the concentration of glucose. This glucose SERS sensor exhibits excellent selectivity based on the specific GOx/glucose catalysis reaction and high sensitivity to 1.0 μM. The linear sensing range is 2.0-14.0 mM, which also meets the requirement on the working range of the human blood glucose detection. Using GOx as a probe shows superiority over other organic probes because GOx almost has no toxicity to the biological system. This sensing mechanism can be applied for intracellular in vivo SERS monitoring of glucose in the future. Graphical abstract Glucose oxidase is used as a Raman signal reporter for constructing a highly specific glucose surface-enhanced Raman scattering (SERS) sensor.

  15. Molecular lego for the assembly of biosensing layers.

    PubMed

    Mano, N; Kuhn, A

    2005-03-31

    We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD(+). In the next step we use the intrinsic affinity of the NAD(+) monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca(2+)/NAD(+)/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.

  16. Complexation of ferric oxide particles with pectins of different charge density.

    PubMed

    Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska

    2008-09-02

    The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.

  17. Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property.

    PubMed

    Chen, Yu; Yan, Xiaoting; Zhao, Jian; Feng, Huaiyu; Li, Puwang; Tong, Zongrui; Yang, Ziming; Li, Sidong; Yang, Jueying; Jin, Shaohua

    2018-07-01

    In the current study, a novel semi-dissolution/acidification/sol-gel transition (SD-A-SGT) method was explored for the preparation of polyelectrolyte complexing (PEC) composite hydrogels with natural polymers only. A chitosan (CS) powder was uniformly dispersed in a solution of poly(glutamic acid) (PGA) and alginate (SA) to form a semi-dissolved slurry mixture that was then exposed to an gaseous acidic atmosphere. CS was gradually dissolved and interacted with PGA and SA to form a CS/PGA/SA PEC composite hydrogel with a homogeneous structure. The SD-A-SGT procedure was able to overcome the shortcomings of direct mixing method via the PEC interaction. The effects of the hydrogel composition on its structure and properties were investigated by FTIR, XRD, rheology study, XPS, SEM, and swelling kinetics. The drug delivery performance of the CS/PGA/SA hydrogel was explored using piroxicam (PXC) as a model drug. PXC was in situ embedded in the hydrogel by the SD-A-SGT method. The hydrogel exhibited pH responsive drug release behaviors that were affected by the hydrogel composition. In all, the SD-A-SGT method for preparing PEC composite hydrogels has a great application potential in constructing the CS based hydrogels as medical materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Electro-actuated hydrogel walkers with dual responsive legs.

    PubMed

    Morales, Daniel; Palleau, Etienne; Dickey, Michael D; Velev, Orlin D

    2014-03-07

    Stimuli responsive polyelectrolyte hydrogels may be useful for soft robotics because of their ability to transform chemical energy into mechanical motion without the use of external mechanical input. Composed of soft and biocompatible materials, gel robots can easily bend and fold, interface and manipulate biological components and transport cargo in aqueous solutions. Electrical fields in aqueous solutions offer repeatable and controllable stimuli, which induce actuation by the re-distribution of ions in the system. Electrical fields applied to polyelectrolyte-doped gels submerged in ionic solution distribute the mobile ions asymmetrically to create osmotic pressure differences that swell and deform the gels. The sign of the fixed charges on the polyelectrolyte network determines the direction of bending, which we harness to control the motion of the gel legs in opposing directions as a response to electrical fields. We present and analyze a walking gel actuator comprised of cationic and anionic gel legs made of copolymer networks of acrylamide (AAm)/sodium acrylate (NaAc) and acrylamide/quaternized dimethylaminoethyl methacrylate (DMAEMA Q), respectively. The anionic and cationic legs were attached by electric field-promoted polyion complexation. We characterize the electro-actuated response of the sodium acrylate hydrogel as a function of charge density and external salt concentration. We demonstrate that "osmotically passive" fixed charges play an important role in controlling the bending magnitude of the gel networks. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices and robots in aqueous solutions.

  19. Confined polyelectrolytes: The complexity of a simple system.

    PubMed

    Nunes, Sandra C C; Skepö, Marie; Pais, Alberto A C C

    2015-08-05

    The interaction between polyelectrolytes and counterions in confined situations and the mutual relationship between chain conformation and ion condensation is an important issue in several areas. In the biological field, it assumes particular relevance in the understanding of the packaging of nucleic acids, which is crucial in the design of gene delivery systems. In this work, a simple coarse-grained model is used to assess the cooperativity between conformational change and ion condensation in spherically confined backbones, with capsides permeable to the counterions. It is seen that the variation on the degree of condensation depends on counterion valence. For monovalent counterions, the degree of condensation passes through a minimum before increasing as the confining space diminishes. In contrast, for trivalent ions, the overall tendency is to decrease the degree of condensation as the confinement space also decreases. Most of the particles reside close to the spherical wall, even for systems in which the density is higher closer to the cavity center. This effect is more pronounced, when monovalent counterions are present. Additionally, there are clear variations in the charge along the concentric layers that cannot be totally ascribed to polyelectrolyte behavior, as shown by decoupling the chain into monomers. If both chain and counterions are confined, the formation of a counterion rich region immediately before the wall is observed. Spool and doughnut-like structures are formed for stiff chains, within a nontrivial evolution with increasing confinement. © 2015 Wiley Periodicals, Inc.

  20. Noncovalent PEGylation through Protein-Polyelectrolyte Interaction: Kinetic Experiment and Molecular Dynamics Simulation.

    PubMed

    Kurinomaru, Takaaki; Kuwada, Kengo; Tomita, Shunsuke; Kameda, Tomoshi; Shiraki, Kentaro

    2017-07-20

    Noncovalent binding of polyethylene glycol (PEG) to a protein surface is a unique protein handling technique to control protein function and stability. A diblock copolymer containing PEG and polyelectrolyte chains (PEGylated polyelectrolyte) is a promising candidate for noncovalent attachment of PEG to a protein surface because of the binding through multiple electrostatic interactions without protein denaturation. To obtain a deeper understanding of protein-polyelectrolyte interaction at the molecular level, we investigated the manner in which cationic PEGylated polyelectrolyte binds to anionic α-amylase in enzyme kinetic experiments and molecular dynamics (MD) simulations. Cationic PEG-block-poly(N,N-dimethylaminoethyl) (PEG-b-PAMA) inhibited the enzyme activity of anionic α-amylase due to binding of PAMA chains. Enzyme kinetics revealed that the inhibition of α-amylase activity by PEG-b-PAMA is noncompetitive inhibition manner. In MD simulations, the PEG-b-PAMA molecule was initially located at six different placements of the x-, y-, and z-axis ±20 Å from the center of α-amylase, which showed that the PEG-b-PAMA nonspecifically bound to the α-amylase surface, corresponding to the noncompetitive inhibition manner that stems from the polymer binding to an enzyme surface other than the active site. In addition, the enzyme activity of α-amylase in the presence of PEG-b-PAMA was not inhibited by increasing the ionic strength, consistent with the MD simulation; i.e., PEG-b-PAMA did not interact with α-amylase in high ionic strength conditions. The results reported in this paper suggest that enzyme inhibition by PEGylated polyelectrolyte can be attributed to the random electrostatic interaction between protein and polyelectrolyte.

  1. Novel polyelectrolytes

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor)

    1978-01-01

    Cationic polyelectrolytes are formed by the polymerization in absence of oxygen of a monomer of the general formula: ##STR1## where x is 3 or more than 6 and Z is I, Br or Cl to form high charge density linear polymers. Segments of the linear polymer may be attached to or formed in the presence of polyfunctional reactive tertiary amines or halogen polymeric substrates or polyfunctional lower molecular reactive polyfunctional substrates to form branched or star polyelectrolytes by a quaternization polymerization reaction.

  2. Influence of Protamine Functionalization on the Colloidal Stability of 1D and 2D Titanium Oxide Nanostructures.

    PubMed

    Rouster, Paul; Pavlovic, Marko; Horváth, Endre; Forró, László; Dey, Sandwip K; Szilagyi, Istvan

    2017-09-26

    The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.

  3. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    NASA Astrophysics Data System (ADS)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  4. Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor

    PubMed Central

    Muthukumar, M.

    2012-01-01

    Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728

  5. Thermodynamic model for polyelectrolyte hydrogels.

    PubMed

    Arndt, Markus C; Sadowski, Gabriele

    2014-09-04

    The composition and swelling behavior of hydrogels may be dramatically influenced by external stimuli. Polyelectrolyte hydrogels consisting of charged polymers are particularly well-known for a high sensitivity to the presence of ionic species. For a thermodynamic description of such systems, the polyelectrolyte Perturbed-Chain Statistical Association Fluid Theory (pePC-SAFT) equation of state was augmented and merged with an extension of the modeling of hydrogels. This combined approach allowed for two effects to be taken into account: first, charges along the polymer chain and their interaction with mobile ions of the same or opposite charge in aqueous solutions and, second, the elastic interactions of swellable networks and their effect on Helmholtz energy and pressure. Thus, predictions of the degree of counterion condensation on the polymer chains could be made both for vapor-liquid equilibria of aqueous polyelectrolyte solutions and for polyelectrolyte hydrogels in aqueous salt solutions. The influence of temperature and molecular weight thereon was predicted successfully, and the impact of the degree of neutralization and the effect of additional salts were examined in comparison to literature data. With the inclusion of the influence of the Donnan potential, our model gave good predictions of swellable polyelectrolyte hydrogel systems in salt solutions. Poly(acrylic acid) and poly(methacrylic acid) gels were studied along with their corresponding sodium salts. Their swelling behavior in aqueous NaCl and NaNO3 solutions was examined.

  6. Motion-based, high-yielding, and fast separation of different charged organics in water.

    PubMed

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    NASA Astrophysics Data System (ADS)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  8. Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes

    PubMed Central

    Prado, Yoann; Daffé, Niéli; Michel, Aude; Georgelin, Thomas; Yaacoub, Nader; Grenèche, Jean-Marc; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe; Arrio, Marie-Anne; Cartier-dit-Moulin, Christophe; Sainctavit, Philippe; Fleury, Benoit; Dupuis, Vincent; Lisnard, Laurent; Fresnais, Jérôme

    2015-01-01

    Superparamagnetic nanoparticles are promising objects for data storage or medical applications. In the smallest—and more attractive—systems, the properties are governed by the magnetic anisotropy. Here we report a molecule-based synthetic strategy to enhance this anisotropy in sub-10-nm nanoparticles. It consists of the fabrication of composite materials where anisotropic molecular complexes are coordinated to the surface of the nanoparticles. Reacting 5 nm γ-Fe2O3 nanoparticles with the [CoII(TPMA)Cl2] complex (TPMA: tris(2-pyridylmethyl)amine) leads to the desired composite materials and the characterization of the functionalized nanoparticles evidences the successful coordination—without nanoparticle aggregation and without complex dissociation—of the molecular complexes to the nanoparticles surface. Magnetic measurements indicate the significant enhancement of the anisotropy in the final objects. Indeed, the functionalized nanoparticles show a threefold increase of the blocking temperature and a coercive field increased by one order of magnitude. PMID:26634987

  9. Development of novel cationic chitosan-and anionic alginate–coated poly(d,l-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol

    PubMed Central

    Sanna, Vanna; Roggio, Anna Maria; Siliani, Silvia; Piccinini, Massimo; Marceddu, Salvatore; Mariani, Alberto; Sechi, Mario

    2012-01-01

    Background Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may be achieved via suitable carriers able to associate controlled release and protection. In this context, nanotechnology is proving to be a powerful strategy. In this study, we developed novel cationic chitosan (CS)- and anionic alginate (Alg)-coated poly(d,l-lactide-co-glycolide) nanoparticles (NPs) loaded with the bioactive polyphenolic trans-(E)-resveratrol (RSV) for biomedical applications. Methods NPs were prepared by the nanoprecipitation method and characterized in terms of morphology, size and zeta potential, encapsulation efficiency, Raman spectroscopy, swelling properties, differential scanning calorimetry, and in vitro release studies. The protective effect of the nanosystems under the light-stressed RSV and long-term stability were investigated. Results NPs turned out to be spherical in shape, with size ranging from 135 to about 580 nm, depending on the composition and the amount of polyelectrolytes, while the encapsulation efficiencies increased from 8% of uncoated poly(d,l-lactide-co-glycolide) (PLGA) to 23% and 32% of Alg- and CS-coated PLGA NPs, respectively. All nanocarriers are characterized by a biphasic release pattern, and more effective controlled release rates are obtained for NPs formulated with higher polyelectrolyte concentrations. Stability studies revealed that encapsulation provides significant protection against light-exposure degradation, by reducing the trans–cis photoisomerization reaction. Moreover, the nanosystems are able to prevent the degradation of trans isoform and the leakage of RSV from the carrier for a period of 6 months. Conclusion Our findings indicated that the newly developed CS- and Alg-coated PLGA NPs are suitable to be used for the delivery of bioactive RSV. The encapsulation of RSV into optimized polymeric NPs provides improved drug loading, effective controlled release, and protection against light-exposure degradation, thus opening new perspectives for the delivery of bioactive related phytochemicals to be used for (nano)chemoprevention/chemotherapy. PMID:23093904

  10. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.

    PubMed

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2016-01-01

    Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.

  11. Multifunctional Delivery Systems for Advanced oral Uptake of Peptide/Protein Drugs.

    PubMed

    Park, Jin Woo; Kim, Sun Jin; Kwag, Dong Sup; Kim, Sol; Park, Jeyoung; Youn, Yu Seok; Bae, You Han; Lee, Eun Seong

    2015-01-01

    In recent years, advances in biotechnology and protein engineering have enabled the production of large quantities of proteins and peptides as important therapeutic agents. Various researchers have used biocompatible functional polymers to prepare oral dosage forms of proteins and peptides for chronic use and for easier administration to enhance patient compliance. However, there is a need to enhance their safety and effectiveness further. Most macromolecules undergo severe denaturation at low pH and enzymatic degradation in the gastrointestinal tract. The macromolecules' large molecular size and low lipophilicity cause low permeation through the intestinal membrane. The major strategies that have been used to overcome these challenges (in oral drug carrier systems) can be classified as follows: enteric coating or encapsulation with pH-sensitive polymers or mucoadhesive polymers, co-administration of protease inhibitors, incorporation of absorption enhancers, modification of the physicochemical properties of the macromolecules, and site-specific delivery to the colon. This review attempts to summarize the various advanced oral delivery carriers, including nanoparticles, lipid carriers, such as liposomes, nano-aggregates using amphiphilic polymers, complex coacervation of oppositely charged polyelectrolytes, and inorganic porous particles. The particles were formulated and/or surface modified with functional polysaccharides or synthetic polymers to improve oral bioavailability of proteins and peptides. We also discuss formulation strategies to overcome barriers, therapeutic efficacies in vivo, and potential benefits and issues for successful oral dosage forms of the proteins and peptides.

  12. A Water-Borne Adhesive Modeled after the Sandcastle Glue of P. californicaa

    PubMed Central

    Shao, Hui; Bachus, Kent N.

    2010-01-01

    Polyacrylate glue protein analogs of the glue secreted by Phragmatopoma californica, a marine polycheate, were synthesized with phosphate, primary amine, and catechol sidechains with molar ratios similar to the natural glue proteins. Aqueous mixtures of the mimetic polyelectrolytes condensed into liquid complex coacervates around neutral pH. Wet cortical bone specimens bonded with the coacervates, oxidatively crosslinked through catechol sidechains, had bond strengths nearly 40% of the strength of a commercial cyanoacrylate. The unique material properties of complex coacervates may be ideal for development of clinically useful adhesives and other biomaterials. PMID:19040222

  13. Dual Electrophoresis Detection System for Rapid and Sensitive Immunoassays with Nanoparticle Signal Amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Ma, Junjie; Watanabe, Junji; Tang, Jinlong; Liu, Huiyu; Shen, Heyun

    2017-02-01

    An electrophoretic technique was combined with an enzyme-linked immunosorbent assay (ELISA) system to achieve a rapid and sensitive immunoassay. A cellulose acetate filter modified with polyelectrolyte multilayer (PEM) was used as a solid substrate for three-dimensional antigen-antibody reactions. A dual electrophoresis process was used to induce directional migration and local condensation of antigens and antibodies at the solid substrate, avoiding the long diffusion times associated with antigen-antibody reactions in conventional ELISAs. The electrophoretic forces drove two steps in the ELISA process, namely the adsorption of antigen, and secondary antibody-labelled polystyrene nanoparticles (NP-Ab). The total time needed for dual electrophoresis-driven detection was just 4 min, nearly 2 h faster than a conventional ELISA system. Moreover, the rapid NP-Ab electrophoresis system simultaneously achieved amplification of the specific signal and a reduction in noise, leading to a more sensitive NP-Ab immunoassay with a limit of detection (LOD) of 130 fM, and wide range of detectable concentrations from 0.13 to 130 pM. These results suggest that the combination of dual electrophoresis detection and NP-Ab signal amplification has great potential for future immunoassay systems.

  14. Hyaluronan–cisplatin conjugate nanoparticles embedded in Eudragit S100-coated pectin/alginate microbeads for colon drug delivery

    PubMed Central

    Tsai, Shiao-Wen; Yu, Ding-Syuan; Tsao, Shu-Wei; Hsu, Fu-Yin

    2013-01-01

    Hyaluronan–cisplatin conjugate nanoparticles (HCNPs) were chosen as colon-targeting drug-delivery carriers due to the observation that a variety of malignant tumors overexpress hyaluronan receptors. HCNPs were prepared by mixing cisplatin with a hyaluronan solution, followed by dialysis to remove trace elements. The cells treated with HCNPs showed significantly lower viability than those treated with cisplatin alone. HCNPs were entrapped in Eudragit S100-coated pectinate/alginate microbeads (PAMs) by using an electrospray method and a polyelectrolyte multilayer-coating technique in aqueous solution. The release profile of HCNPs from Eudragit S100-coated HCNP-PAMs was pH-dependent. The percentage of 24-hour drug release was approximately 25.1% and 39.7% in pH 1.2 and pH 4.5 media, respectively. However, the percentage of drug released quickly rose to 75.6% at pH 7.4. Moreover, the result of an in vivo nephrotoxicity study demonstrated that Eudragit S100-coated HCNP-PAMs treatment could mitigate the nephrotoxicity that resulted from cisplatin. From these results, it can be concluded that Eudragit S100-coated HCNP-PAMs are promising carriers for colonspecific drug delivery. PMID:23861585

  15. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability.

    PubMed

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, -32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, -18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties.

  16. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    PubMed Central

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351

  17. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanze, Kirk S

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  18. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  19. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    PubMed

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  20. Polyelectrolyte multilayers: preparation and applications

    NASA Astrophysics Data System (ADS)

    Izumrudov, V. A.; Mussabayeva, B. Kh; Murzagulova, K. B.

    2018-02-01

    The review concerns the results of studies on the synthesis of polyelectrolyte coatings on charged surfaces. These coatings represent nanostructured systems with clearly defined tendency to self-assembly and self-adjustment, which is of particular interest for materials science, biomedicine and pharmacology. A breakthrough in this area of knowledge is due to the development and introduction of a new technique, so-called layer-by-layer (LbL) deposition of nanofilms. The technique is very simple, viz., multilayers are formed as a result of alternating treatment of a charged substrate of arbitrary shape with water-salt solutions of differently charged polyelectrolytes. Nevertheless, efficient use of the LbL method to fabricate nanofilms requires meeting certain conditions and limitations that were revealed in the course of research on model systems. Prospects for applications of polyelectrolyte layers in various fields are discussed. The bibliography includes 58 references.

  1. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  2. An authentic imaging probe to track cell fate from beginning to end.

    PubMed

    Lee, Seung Koo; Mortensen, Luke J; Lin, Charles P; Tung, Ching-Hsuan

    2014-10-17

    Accurate tracing of cell viability is critical for optimizing delivery methods and evaluating the efficacy and safety of cell therapeutics. A nanoparticle-based cell tracker is developed to image cell fate from live to dead. The particle is fabricated from two types of optically quenched polyelectrolytes, a life indicator and a death indicator, through electrostatic interactions. On incubation with cells, the fabricated bifunctional nanoprobes are taken up efficiently and the first colour is produced by normal intracellular proteolysis, reflecting the healthy status of the cells. Depending on the number of coated layers, the signal can persist for several replication cycles. However, as the cells begin dying, the second colour appears quickly to reflect the new cell status. Using this chameleon-like cell tracker, live cells can be distinguished from apoptotic and necrotic cells instantly and definitively.

  3. Self-recovery of stressed nanomembranes

    NASA Astrophysics Data System (ADS)

    Jiang, Chaoyang; Rybak, Beth M.; Markutsya, Sergiy; Kladitis, Paul E.; Tsukruk, Vladimir V.

    2005-03-01

    Long-term stability and self-recovery properties were studied for the compliant nanomembranes with a thickness of 55nm free suspended over openings of several hundred microns across. These nanomembranes were assembled with spin-assisted layer-by-layer routines and were composed of polymer multilayers and gold nanoparticles. In a wide pressure range, the membranes behave like completely elastic freely suspended plates. Temporal stability was tested under extreme deformational conditions close to ultimate strain and very modest creep behavior was observed. A unique "self-recovery" ability of these nanomembranes was revealed in these tests. We observed a complete restoration of the initial nanomembrane shape and properties after significant inelastic deformation. These unique micromechanical properties are suggested to be the result of strong Coulombic interaction between the polyelectrolyte layers combined with a high level of biaxial orientation of polymer chains and in-plane prestretching stresses.

  4. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-12-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure.

  5. Nanoparticle bioconjugates as "bottom-up" assemblies of artifical multienzyme complexes

    NASA Astrophysics Data System (ADS)

    Keighron, Jacqueline D.

    2010-11-01

    The sequential enzymes of several metabolic pathways have been shown to exist in close proximity with each other in the living cell. Although not proven in all cases, colocalization may have several implications for the rate of metabolite formation. Proximity between the sequential enzymes of a metabolic pathway has been proposed to have several benefits for the overall rate of metabolite formation. These include reduced diffusion distance for intermediates, sequestering of intermediates from competing pathways and the cytoplasm. Restricted diffusion in the vicinity of an enzyme can also cause the pooling of metabolites, which can alter reaction equilibria to control the rate of reaction through inhibition. Associations of metabolic enzymes are difficult to isolate ex vivo due to the weak interactions believed to colocalize sequential enzymes within the cell. Therefore model systems in which the proximity and diffusion of intermediates within the experiment system are controlled are attractive alternatives to explore the effects of colocalization of sequential enzymes. To this end three model systems for multienzyme complexes have been constructed. Direct adsorption enzyme:gold nanoparticle bioconjugates functionalized with malate dehydrogenase (MDH) and citrate synthase (CS) allow for proximity between to the enzymes to be controlled from the nanometer to micron range. Results show that while the enzymes present in the colocalized and non-colocalized systems compared here behaved differently overall the sequential activity of the pathway was improved by (1) decreasing the diffusion distance between active sites, (2) decreasing the diffusion coefficient of the reaction intermediate to prevent escape into the bulk solution, and (3) decreasing the overall amount of bioconjugate in the solution to prevent the pathway from being inhibited by the buildup of metabolite over time. Layer-by-layer (LBL) assemblies of MDH and CS were used to examine the layering effect of sequential enzymes found in multienzyme complexes such as the pyruvate dehydrogenase complex (PDC). By controlling the orientation of enzymes in the complex (i.e. how deeply embedded each enzyme is) it was hypothesized that differences in sequential activity would determine an optimal orientation for a multienzyme complex. It was determined during the course of these experiments that the polyelectrolyte (PE) assembly itself served to slow diffusion of intermediates, leading to a buildup of oxaloacetate within the PE layers to form a pool of metabolite that equalized the rate of sequential reaction between the different orientations tested. Hexahistidine tag -- Ni(II) nitriliotriacetic acid (NTA) chemistry is an attractive method to control the proximity between sequential enzymes because each enzyme can be bound in a specific orientation, with minimal loss of activity, and the interaction is reversible. Modifying gold nanoparticles or large unilamellar vesicles with this functionality allows for another class of model to be constructed in which proximity between enzymes is dynamic. Some metabolic pathways (such as the de novo purine biosynthetic pathway), have demonstrated dynamic proximity of sequential enzymes in response to specific cellular stimuli. Results indicate that Ni(II)NTA scaffolds immobilize histidine-tagged enzymes non-destructively, with a near 100% reversibility. This model can be used to demonstrate the possible implications of dynamic proximity such as pathway regulation. Insight into the benefits and mechanisms of sequential enzyme colocalization can enhance the general understanding of cellular processes, as well as allow for the development of new and innovative ways to modulate pathway activity. This may provide new designs for treatments of metabolic diseases and cancer, where metabolic pathways are altered.

  6. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  7. Electro-responsive polyelectrolyte-coated surfaces.

    PubMed

    Sénéchal, V; Saadaoui, H; Rodriguez-Hernandez, J; Drummond, C

    2017-07-01

    The anchoring of polymer chains at solid surfaces is an efficient way to modify interfacial properties like the stability and rheology of colloidal dispersions, lubrication and biocompatibility. Polyelectrolytes are good candidates for the building of smart materials, as the polyion chain conformation can often be tuned by manipulation of different physico-chemical variables. However, achieving efficient and reversible control of this process represents an important technological challenge. In this regard, the application of an external electrical stimulus on polyelectrolytes seems to be a convenient control strategy, for several reasons. First, it is relatively easy to apply an electric field to the material with adequate spatiotemporal control. In addition, in contrast to chemically induced changes, the molecular response to a changing electric field occurs relatively quickly. If the system is properly designed, this response can then be used to control the magnitude of surface properties. In this work we discuss the effect of an external electric field on the adhesion and lubrication properties of several polyelectrolyte-coated surfaces. The influence of the applied field is investigated at different pH and salt conditions, as the polyelectrolyte conformation is sensitive to these variables. We show that it is possible to fine tune friction and adhesion using relatively low applied fields.

  8. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  9. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.

    PubMed

    Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A

    2009-05-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.

  10. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry.

    PubMed

    Amuda, O S; Amoo, I A; Ajayi, O O

    2006-02-28

    This study investigated the effect of coagulation/flocculation treatment process on wastewater of Fumman Beverage Industry, Ibadan, Nigeria. The study also compared different dosages of coagulant, polyelectrolyte (non-ionic polyacrylamide) and different pH values of the coagulation processes. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results reveal that low pH values (3-8), enhance removal efficiency of the contaminants. Percentage removal of 78, 74 and 75 of COD, TSS and TP, respectively, were achieved by the addition of 500 mg/L Fe2(SO4)3.3H2O and 93, 94 and 96% removal of COD, TSS and TP, respectively, were achieved with the addition of 25 mg/L polyelectrolyte to the coagulation process. The volume of sludge produced, when coagulant was used solely, was higher compared to the use of polyelectrolyte combined with Fe2(SO4)3.3H2O. This may be as a result of non-ionic nature of the polyelectrolyte; hence, it does not chemically react with solids of the wastewater. Coagulation/flocculation may be useful as a pre-treatment process for beverage industrial wastewater prior to biological treatment.

  11. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  12. Conjugated-polyelectrolyte-grafted cotton fibers act as "micro flypaper" for the removal and destruction of bacteria.

    PubMed

    Ista, Linnea K; Dascier, Dimitri; Ji, Eunkyung; Parthasarathy, Anand; Corbitt, Thomas S; Schanze, Kirk S; Whitten, David G

    2011-08-01

    We demonstrate herein a method for chemically modifying cotton fibers and cotton-containing fabric with a light-activated, cationic phenylene-ethynylene (PPE-DABCO) conjugated polyelectrolyte biocide. When challenged with Pseudomonas aeruginosa and Bacillus atropheaus vegetative cells from liquid suspension, light-activated PPE-DABCO effects 1.2 and 8 log, respectively, losses in viability of the exposed bacteria. These results suggest that conjugated polyelectrolytes retain their activity when grafted to fabrics, showing promise for use in settings where antimicrobial textiles are needed.

  13. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    PubMed

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  14. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions

    PubMed Central

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F.; de Pablo, Juan J.

    2008-01-01

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory–Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory–Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions. PMID:19045224

  15. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.

    PubMed

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F; de Pablo, Juan J

    2008-10-21

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory-Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory-Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions.

  16. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes.

    PubMed

    Kazakova, Lyubov I; Shabarchina, Lyudmila I; Anastasova, Salzitsa; Pavlov, Anton M; Vadgama, Pankaj; Skirtach, Andre G; Sukhorukov, Gleb B

    2013-02-01

    The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell. After dissolution of the calcium carbonate the enzymes and dyes remain in the multilayer capsules. In this study we produced enzyme-containing microcapsules sensitive to glucose and lactate. Calibration curves based on fluorescence intensity of Ru(dpp) and DHR123 were linearly dependent on substrate concentration, enabling reliable sensing in the millimolar range. The main advantages of using these capsules with optical recording is the possibility of building single capsule-based sensors. The response from individual capsules was observed by confocal microscopy as increasing fluorescence intensity of the capsule on addition of lactate at millimolar concentrations. Because internalization of the micron-sized multi-component capsules was feasible, they could be further optimized for in-situ intracellular sensing and metabolite monitoring on the basis of fluorescence reporting.

  17. Lateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brettmann, Blair; Pincus, Philip; Tirrell, Matthew

    2017-01-13

    We provide a theoretical model for the collapse of polyelectrolyte brushes in the presence of multivalent ions, focusing on the formation of lateral inhomogeneties in the collapsed state. Polyelectrolyte brushes are important in a variety of applications, including stabilizing colloidal particles and lubricating surfaces. Many uses rely on the extension of the densely grafted polymer chains from the surface in the extended brush morphology. In the presence Extended Brush of multivalent ions, brushes are significantly shorter than in monovalent ionic solutions, which greatly affects their properties. We base our theoretical analysis on an analogous collapse of polyelectrolyte brushes in amore » poor solvent, providing an energy balance representation for pinned micelles and cylindrical bundles. The equilibrium brush heights predicted for these structures are of a similar magnitude to those measured experimentally. The formation of lateral structures can open new avenues for stimuli-responsive applications that rely on nanoscale pattern formation on surfaces.« less

  18. Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles

    NASA Astrophysics Data System (ADS)

    Borisov, O. V.; Zhulina, E. B.

    1997-03-01

    The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.

  19. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    PubMed

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  20. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Chen, Yu; Yao, Ying; Tong, Zong-Rui; Li, Pu-Wang; Yang, Zi-Ming; Jin, Shao-Hua

    2018-02-01

    Hydrogels have drawn many attentions as the solid-state electrolytes in flexible solid-state supercapacitors (SCs) recently. Among them, the polyelectrolyte complex hydrogel (PECH) electrolytes of natural polymers are more competitive because of their environmentally friendly property and low cost. However, while mixing two biopolymer solutions with opposite charges, the strong electrostatic interactions between the cationic and anionic biopolymers may result in precipitates instead of hydrogels. Here we report a novel method, semi-dissolution acidification sol-gel transition (SD-A-SGT), for the preparation of the PECH of chitosan (CTS) and sodium alginate (SA), with the controllable sol-gel transition and uniform composition and successfully apply it as the hydrogel electrolyte of solid-state supercapacitors (SCs). The CTS-SA PECH exhibits an extremely high ionic conductivity of 0.051 S·cm-1 and reasonable mechanical properties with a tensile strength of 0.29 MPa and elongation at break of 109.5%. The solid-state SC fabricated with the CTS-SA PECH and conventional polyaniline (PANI) nanowire electrodes provided a high specific capacitance of 234.6 F·g-1 at 5 mV·s-1 and exhibited excellent cycling stability with 95.3% capacitance retention after 1000 cycles. Our work may pave a novel avenue to the preparation of biodegradable PECHs of full natural polymers, and promote the development of environmentally friendly electronic devices.

  1. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NASA Astrophysics Data System (ADS)

    Lindhoud, Saskia; Stuart, Martien A. Cohen; Norde, Willem; Leermakers, Frans A. M.

    2009-11-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins χ parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT ’s) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT ) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CMI.

  2. A Novel Chitosan-γPGA Polyelectrolyte Complex Hydrogel Promotes Early New Bone Formation in the Alveolar Socket Following Tooth Extraction

    PubMed Central

    Chang, Hao-Hueng; Wang, Yin-Lin; Chiang, Yu-Chih; Chen, Yen-Liang; Chuang, Yu-Horng; Tsai, Shang-Jye; Heish, Kuo-Huang; Lin, Feng-Huei; Lin, Chun-Pin

    2014-01-01

    A novel chitosan-γPGA polyelectrolyte complex hydrogel (C-PGA) has been developed and proven to be an effective dressing for wound healing. The purpose of this study was to evaluate if C-PGA could promote new bone formation in the alveolar socket following tooth extraction. An animal model was proposed using radiography and histomorphology simultaneously to analyze the symmetrical sections of Wistar rats. The upper incisors of Wistar rats were extracted and the extraction sockets were randomly treated with gelatin sponge, neat chitosan, C-PGA, or received no treatment. The extraction sockets of selected rats from each group were evaluated at 1, 2, 4, or 6 wk post-extraction. The results of radiography and histopathology indicated that the extraction sockets treated with C-PGA exhibited lamellar bone formation (6.5%) as early as 2 wk after the extraction was performed. Moreover, the degree of new bone formation was significantly higher (P < 0.05) in the extraction sockets treated with C-PGA at 6 wk post-extraction than that in the other study groups. In this study, we demonstrated that the proposed animal model involving symmetrical sections and simultaneous radiography and histomorphology evaluation is feasible. We also conclude that the novel C-PGA has great potential for new bone formation in the alveolar socket following tooth extraction. PMID:24658174

  3. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  4. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  5. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene.

    PubMed

    Phenrat, Tanapon; Schoenfelder, Daniel; Kirschling, Teresa L; Tilton, Robert D; Lowry, Gregory V

    2018-03-01

    For in situ groundwater remediation, polyelectrolyte-modified nanoscale zerovalent iron particles (NZVIs) have to be delivered into the subsurface, where they degrade pollutants such as trichloroethylene (TCE). The effect of groundwater organic and ionic solutes on TCE dechlorination using polyelectrolyte-modified NZVIs is unexplored, but is required for an effective remediation design. This study evaluates the TCE dechlorination rate and reaction by-products using poly(aspartate) (PAP)-modified and bare NZVIs in groundwater samples from actual TCE-contaminated sites in Florida, South Carolina, and Michigan. The effects of groundwater solutes on short- and intermediate-term dechlorination rates were evaluated. An adsorbed PAP layer on the NZVIs appeared to limit the adverse effect of groundwater solutes on the TCE dechlorination rate in the first TCE dechlorination cycle (short-term effect). Presumably, the pre-adsorption of PAP "trains" and the Donnan potential in the adsorbed PAP layer prevented groundwater solutes from further blocking NZVI reactive sites, which appeared to substantially decrease the TCE dechlorination rate of bare NZVIs. In the second and third TCE dechlorination cycles (intermediate-term effect), TCE dechlorination rates using PAP-modified NZVIs increased substantially (~100 and 200%, respectively, from the rate of the first spike). The desorption of PAP from the surface of NZVIs over time due to salt-induced desorption is hypothesized to restore NZVI reactivity with TCE. This study suggests that NZVI surface modification with small, charged macromolecules, such as PAP, helps to restore NZVI reactivity due to gradual PAP desorption in groundwater.

  6. Zein/caseinate/pectin complex nanoparticles: Formation and characterization.

    PubMed

    Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao

    2017-11-01

    In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems

    NASA Astrophysics Data System (ADS)

    Plucktaveesak, Nopparat

    The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly(styrene-alt-sodium maleate) and poly(diisobutylene- alt-sodium maleate) show the polyelectrolyte behavior as predicted. However, the viscosity as a function of concentration of sodium maleate based copolymers with 1-alkenes; 1-octene (C8), 1-decene (C10), 1-dodecene (C12) and 1-hexene (C14) exhibit an abnormal scaling power, which might be caused by aggregation of the alkene tails to form micelles. In the last chapter, we report the rheological properties of aqueous solutions of poly(acrylic acid) and oppositely charged surfactant, dodecyl trimethylammonium bromide (C12TAB). The solution viscosity decreases as surfactant is added, partly because the polyelectrolyte wraps around the surface of the spherical surfactant micelles, shortening the effective chain length. The effects of polymer molecular weight, polymer concentration, and polymer charge have been studied with no added salt. The results are compared with the predictions of a simple model based on the scaling theory for the viscosity of dilute and unentangled semidilute polyelectrolyte solutions in good solvent. This model takes into account two effects of added surfactant. The effective chain length of the polyelectrolyte is shortened when a significant fraction of the chain wraps around micelles. Another effect is the change of solution ionic strength resulting from surfactant addition that further lowers the viscosity. The parameters used in this model are independently determined, allowing the model to make a quantitative prediction of solution viscosity with no adjustable parameters. The model is also applied to predict the decrease in viscosity of various polyelectrolyte/oppositely charged surfactant systems reported in literature. The results are in good agreement with experimental data, proving that our model applies to all polyelectrolytes mixed with oppositely charged surfactants that form spherical micelles.

  8. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    NASA Astrophysics Data System (ADS)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  9. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    PubMed

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Modeling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator.

    PubMed

    Salomäki, Mikko; Kankare, Jouko

    2007-07-26

    The layer-by-layer buildup of chitosan/hyaluronan (CH/HA) and poly(l-lysine)/hyaluronan (PLL/HA) multilayers was followed on a quartz crystal resonator (QCR) in different ionic strengths and at different temperatures. These polyelectrolytes were chosen to demonstrate the method whereby useful information is retrieved from acoustically thick polymer layers during their buildup. Surface acoustic impedance recorded in these measurements gives a single or double spiral when plotted in the complex plane. The shape of this spiral depends on the viscoelasticity of the layer material and regularity of the growth process. The polymer layer is assumed to consist of one or two zones. A mathematical model was devised to represent the separation of the layer to two zones with different viscoelastic properties. Viscoelastic quantities of the layer material and the mode and parameters of the growth process were acquired by fitting a spiral to the experimental data. In all the cases the growth process was mainly exponential as a function of deposition cycles, the growth exponent being between 0.250 and 0.275.

  11. The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air-water interface.

    PubMed

    Zhang, X L; Taylor, D J F; Thomas, R K; Penfold, J

    2011-04-15

    The role of the polyelectrolyte, poly(ethyleneimine), PEI, and the electrolytes NaCl and CaCl(2), on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, LAS, at the air-water interface have been investigated by neutron reflectivity and surface tension. The surface tension data for the PEI/LAS mixtures are substantially affected by pH and the addition of electrolyte, and are consistent with a strong adsorption of surface polymer/surfactant complexes down to relatively low surfactant concentrations. The effects are most pronounced at high pH, and this is confirmed by the adsorption data obtained directly from neutron reflectivity. However, the effects of the addition of PEI and electrolyte on the LAS adsorption are not as pronounced as previously reported for PEI/SDS mixtures. This is attributed primarily to the steric hindrance of the LAS phenyl group resulting in a reduction in the ion-dipole attraction between the LAS sulfonate and amine groups that dominates the interaction at high pH. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.

    PubMed

    Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C

    2016-08-10

    Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.

  13. Thermo-controlled rheology of electro-assembled polyanionic polysaccharide (alginate) and polycationic thermo-sensitive polymers.

    PubMed

    Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc

    2016-03-30

    Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    NASA Astrophysics Data System (ADS)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  15. Multilayered Polyelectrolyte Microcapsules: Interaction with the Enzyme Cytochrome C Oxidase

    PubMed Central

    Pastorino, Laura; Dellacasa, Elena; Noor, Mohamed R.; Soulimane, Tewfik; Bianchini, Paolo; D'Autilia, Francesca; Antipov, Alexei; Diaspro, Alberto; Tofail, Syed A. M.; Ruggiero, Carmelina

    2014-01-01

    Cell-sized polyelectrolyte capsules functionalized with a redox-driven proton pump protein were assembled for the first time. The interaction of polyelectrolyte microcapsules, fabricated by electrostatic layer-by-layer assembly, with cytochrome c oxidase molecules was investigated. We found that the cytochrome c oxidase retained its functionality, that the functionalized microcapsules interacting with cytochrome c oxidase were permeable and that the permeability characteristics of the microcapsule shell depend on the shell components. This work provides a significant input towards the fabrication of an integrated device made of biological components and based on specific biomolecular functions and properties. PMID:25372607

  16. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing

    2014-01-01

    A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries

    NASA Astrophysics Data System (ADS)

    Fenton, Julie L.; Steimle, Benjamin C.; Schaak, Raymond E.

    2018-05-01

    Complex heterostructured nanoparticles with precisely defined materials and interfaces are important for many applications. However, rationally incorporating such features into nanoparticles with rigorous morphology control remains a synthetic bottleneck. We define a modular divergent synthesis strategy that progressively transforms simple nanoparticle synthons into increasingly sophisticated products. We introduce a series of tunable interfaces into zero-, one-, and two-dimensional copper sulfide nanoparticles using cation exchange reactions. Subsequent manipulation of these intraparticle frameworks yielded a library of 47 distinct heterostructured metal sulfide derivatives, including particles that contain asymmetric, patchy, porous, and sculpted nanoarchitectures. This generalizable mix-and-match strategy provides predictable retrosynthetic pathways to complex nanoparticle features that are otherwise inaccessible.

  18. Biomimetic assembly of polypeptide-stabilized CaCO(3) nanoparticles.

    PubMed

    Zhang, Zhongping; Gao, Daming; Zhao, Hui; Xie, Chenggen; Guan, Guijian; Wang, Dapeng; Yu, Shu-Hong

    2006-05-04

    In this paper, we report a simple polypeptide-directed strategy for fabricating large spherical assembly of CaCO(3) nanoparticles. Stepwise growth and assembly of a large number of nanoparticles have been observed, from the formation of an amorphous liquidlike CaCO(3)-polypeptide precursor, to the crystallization and stabilization of polypeptide-capped nanoparticles, and eventually, the spherical assembly of nanoparticles. The "soft" poly(aspartate)-capping layer binding on a nanoparticle surface resulted in the unusual soft nature of nanoparticle assembly, providing a reservoir of primary nanoparticles with a moderate mobility, which is the basis of a new strategy for reconstructing nanoparticle assembly into complex nanoparticle architectures. Moreover, the findings of the secondary assembly of nanoparticle microspheres and the morphology transformation of nanoparticle assembly demonstrate a flexible and controllable pathway for manipulating the shapes and structures of nanoparticle assembly. In addition, the combination of the polypeptide with a double hydrophilic block copolymer (DHBC) allows it to possibly further control the shape and complexity of the nanoparticle assembly. A clear perspective is shown here that more complex nanoparticle materials could be created by using "soft" biological proteins or peptides as a mediating template at the organic-inorganic interface.

  19. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a uniquemore » opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.« less

  20. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    NASA Astrophysics Data System (ADS)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.

  1. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors

    NASA Astrophysics Data System (ADS)

    Mbese, Johannes Z.; Ajibade, Peter A.

    2017-09-01

    Homonuclear tris-dithiocarbamato ruthenium(III) complexes, [Ru(S2CNR2)3] were prepared and characterized by spectroscopic techniques and thermogravimetric analyses. The thermogravimetric analyses (TGA) of the ruthenium complexes showed that the complexes decompose to ruthenium(III) sulfide nanoparticles. The ruthenium(III) complexes were dispersed in oleic acid and thermolysed in hexadecylamine to prepared oleic acid/hexadecylamine capped Ru2S3 nanoparticles. FTIR revealed that Ru2S3 nanoparticles are capped through the interaction of the -NH2 group of hexadecylamine HDA adsorbed on the surfaces of nanoparticles and it also showed that oleic acid (OA) is acting as both coordinating stabilizing surfactant and capping agent. EDS spectra revealed that the prepared nanoparticles are mainly composed of Ru and S, confirming the formation of Ru2S3 nanoparticles. Powder XRD confirms that the nanoparticles are in cubic phase. The inner morphology of nanoparticles obtained from transmission electron microscopy (TEM) showed nanoparticles with narrow particle size distributions characterized by an average diameter of 8.45 nm with a standard deviation of 1.6 nm. The optical band gap (Eg) determined from Tauc plot are in the range 3.44-4.18 eV.

  2. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin.

    PubMed

    Feng, Tao; Wang, Ke; Liu, Fangfang; Ye, Ran; Zhu, Xiao; Zhuang, Haining; Xu, Zhimin

    2017-06-01

    Naringin is a bioflavonoid that is rich in citrus plants and possesses enormous health benefits. However, the use of naringin as a nutraceutical is significantly limited by its low bioavailability. In this study, a novel water-soluble ternary nanoparticle material consisting of amylose, α-linoleic acid and β-lactoglobulin was developed to encapsulate naringin to improve its bioavailability. The physicochemical characteristics of the ternary nanoparticle-naringin inclusion complex were analysed by ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), high-resolution transmission electron microscopy (TEM), X-ray diffractometry (XRD) and particle size distribution. The results confirmed the formation of the ternary nanoparticle-naringin inclusion complex. The encapsulation efficiency (EE) and loading content (LC) of the ternary nanoparticle-naringin inclusion complex were 78.73±4.17% and 14.51±3.43%, respectively. In addition, the results of the ternary nanoparticle-naringin inclusion complex in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that naringin can be gradually released from the complex. In conclusion, ternary nanoparticles are considered promising carriers to effectively improve the bioavailability of naringin. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets.

    PubMed

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H; Yin, Geping; Lin, Yuehe

    2011-03-22

    Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity toward formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.

  4. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte

    PubMed Central

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-01-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure. PMID:26691661

  5. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Zhang, Sheng; Du, Dan

    A nanohybrid of gold nanoparticles (Au NPs) and chemically reduced graphene oxide nanosheets (cr-Gs) was synthesized by in situ growth of Au NPs on the surface of graphene nanosheets in the presence of poly(diallyldimethylammonium chloride) (PDDA), which not only improved the dispersion of Au NPs but also stabilized cholinesterase with high activity and loading efficiency. The obtained nanohybrid was characterized by TEM, XRD, XPS, and electrochemistry. Then an enzyme nanoassembly (AChE/Au NPs/cr-Gs) was prepared by self-assembling acetylcholinesterase (AChE) on Au NP/cr-Gs nanohybrid. An electrochemical sensor based on AChE/Au NPs/cr-Gs was further developed for ultrasensitive detection of organophosphate pesticide. The resultsmore » demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.

    Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less

  7. Poly(l-glutamic acid)-g-poly(ethylene glycol) external layer in polyelectrolyte multilayer films: Characterization and resistance to serum protein adsorption.

    PubMed

    Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr

    2018-06-01

    Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  9. Characterization of a Biomimetic Polymeric-Lipid Bilayer by Phase Sensitive Neutron Reflectivity

    NASA Astrophysics Data System (ADS)

    Perez-Salas, Ursula A.; Krueger, Susan; Majkrzak, Charles F.; Berk, Norman F.; Faucher, Keith M.; Chaikof, Elliot L.

    2003-03-01

    Lipid membranes, the boundaries for cellular and intracellular structures, regulate many crucial biological processes. Planar supported mimics of cell membranes are of great interest as model systems for the study of membrane structure/function phenomena in fundamental biophysics research. We studied a supported biomedically relevant membrane-mimetic system composed of a polyelectrolyte cushion, a terpolymer and a self-assembled phospholipid monolayer and obtained a detailed profile characterization of the system by neutron reflectometry. The water-swellable hydrophilic polyelectrolyte acts as a support for the biomembrane, not unlike the cytoskeletal support found in actual mammalian cell membranes. The "cushion" polymers are fixed to the flat, hard surface by having the polymer interact with it electrostatically. The terpolymer has the following desirable features: it tethers to the polyelectrolyte layer and it creates a hydrophilic and a hydrophobic region. Unilamellar phospholipid vesicle fusion on to the hydrophobic region of the terpolymer creates the hybrid tethered membrane. For added stability to external force fields (such as shear flow), the phospholipid monolayer is then polymerized in situ, effectively anchoring the lipid layer to the hydrophobic region of the terpolymer. Neutron reflectivity measurements were done on the polyelectrolyte layer, the polyelectrolyte layer plus terpolymer and the polylectrolyte layer plus terpolymer plus phospholipid. The layers were studied dry and hydrated and under 95α D_2O and 50% \\ 50% α H_2O \\ α D_2O) on the polyelectrolyte layer plus terpolymer and the polylectrolyte layer plus terpolymer plus phospholipid the distribution of water in the layers was obtained. The results will be correlated to impedance measurements flourescence measurements and infrared spectroscopy measurements made on equivalent samples.

  10. Structure of flexible and semiflexible polyelectrolyte chains in confined spaces of slit micro/nanochannels.

    PubMed

    Jeon, Jonggu; Chun, Myung-Suk

    2007-04-21

    Understanding the behavior of a polyelectrolyte in confined spaces has direct relevance in design and manipulation of microfluidic devices, as well as transport in living organisms. In this paper, a coarse-grained model of anionic semiflexible polyelectrolyte is applied, and its structure and dynamics are fully examined with Brownian dynamics (BD) simulations both in bulk solution and under confinement between two negatively charged parallel plates. The modeling is based on the nonlinear bead-spring discretization of a continuous chain with additional long-range electrostatic, Lennard-Jones, and hydrodynamic interactions between pairs of beads. The authors also consider the steric and electrostatic interactions between the bead and the confining wall. Relevant model parameters are determined from experimental rheology data on the anionic polysaccharide xanthan reported previously. For comparison, both flexible and semiflexible models are developed accompanying zero and finite intrinsic persistence lengths, respectively. The conformational changes of the polyelectrolyte chain induced by confinements and their dependence on the screening effect of the electrolyte solution are faithfully characterized with BD simulations. Depending on the intrinsic rigidity and the medium ionic strength, the polyelectrolyte can be classified as flexible, semiflexible, or rigid. Confined flexible and semiflexible chains exhibit a nonmonotonic variation in size, as measured by the radius of gyration and end-to-end distance, with changing slit width. For the semiflexible chain, this is coupled to the variations in long-range bond vector correlation. The rigid chain, realized at low ionic strength, does not have minima in size but exhibits a sigmoidal transition. The size of confined semiflexible and rigid polyelectrolytes can be well described by the wormlike chain model once the electrostatic effects are taken into account by the persistence length measured at long length scale.

  11. Nonlinear Layer-by-Layer Films: Effects of Chain Diffusivity on Film Structure and Swelling

    DOE PAGES

    Selin, Victor; Ankner, John F.; Sukhishvili, Svetlana A.

    2017-08-09

    Here in this paper, we report on the role of molecular diffusivity in the formation of nonlinearly growing polyelectrolyte multilayers (nlPEMs). Electrostatically bound polyelectrolyte multilayers were assembled from poly(methacrylic acid) (PMAA) as a polyanion and quaternized poly(2-(dimethylamino)ethyl methacrylate) (QPC) as a polycation. Film growth as measured by ellipsometry was strongly dependent on the time allowed for each polymer deposition step, suggesting that the diffusivities of the components are crucial in controlling the rate of film growth. Uptake of polyelectrolytes within nlPEMs was relatively slow and occurred on time scales ranging from minutes to hours, depending on the film thickness. Spectroscopicmore » ellipsometry measurements with nlPEM films exposed to aqueous solutions exhibited high (severalfold) degrees of film swelling and different swelling values for films exposed to QPC or PMAA solutions. FTIR spectroscopy showed that the average ionization of film-assembled PMAA increased upon binding of QPC and decreased upon binding of PMAA, in agreement with the charge regulation mechanism for weak polyelectrolytes. The use of neutron reflectometry (NR) enabled quantification of chain intermixing within the film, which was drastically enhanced when longer times were allowed for polyelectrolyte deposition. Diffusion coefficients of the polycation derived from the uptake rates of deuterated chains within hydrogenated films were of the order of 10 –14 cm 2/s, i.e., 5–6 orders of magnitude smaller than those found for diffusion of free polymer chains in solution. Exchange of the polymer solutions to buffer inhibited film intermixing. Taken together, these results contribute to understanding the mechanism of the growth of nonlinear polyelectrolyte multilayers and demonstrate the possibility of controlling film intermixing, which is highly desirable for potential future applications.« less

  12. Gels of sodium alginate‒chitosan interpolyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Brovko, O. S.; Palamarchuk, I. A.; Val'chuk, N. A.; Chukhchin, D. G.; Bogolitsyn, K. G.; Boitsova, T. A.

    2017-08-01

    Aspects of the formation of gels of interpolyelectrolyte complexes (IPECs) based on sodium alginate (NaAlg) and chitosan are studied. The effect the conditions of synthesis and complex composition have on the morphological structure and functional properties of these complexes is examined. It is established that complexation in this system proceeds according to a mechanism of electrostatic interaction between the oppositely charged carboxylic groups of the L-hyaluronic acid pyranose cycles of NaAlg proximal polymer chains and chitosan's amino groups, along with a multitude of hydrogen bonds and dispersion forces. We show that the mechanism of IPEC formation is strongly influenced by the conformational state of a lyophilizing component that is present in the system in excess. The inner surfaces of cryogels based on NaAlg‒chitosan IPECs is found to be strongly influenced by the degree of conversion between the parental polyelectrolytes. The most developed mesoporous structure is obtained when a denser gel forms in the system.

  13. Investigation of oxygen reduction and methanol oxidation reaction activity of PtAu nano-alloy on surface modified porous hybrid nanocarbon supports

    NASA Astrophysics Data System (ADS)

    Parambath Vinayan, Bhaghavathi; Nagar, Rupali; Ramaprabhu, Sundara

    2016-09-01

    We investigate the electrocatalytic activity of PtAu alloy nanoparticles supported on various chemically modified carbon morphologies towards oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The surface-modification of graphene nanosheets (f-G), multi-walled carbon nanotubes (f-MWNTs) and (graphene nanosheets-carbon nanotubes) hybrid support (f-G-MWNTs) were carried out by soft functionalization method using a cationic polyelectrolyte poly-(diallyldimethyl ammonium chloride). The Pt and PtAu alloy nanoparticles were dispersed over chemically modified carbon supports by sodium-borohydride assisted modified polyol reduction method. The electrochemical performance of all electrocatalysts were studied by half- and full-cell proton exchange membrane fuel cell (PEMFC) measurements and PtAu/f-G-MWNTs catalyst comparatively yielded the best catalytic performance. PEMFC full cell measurements of PtAu/f-G-MWNTs cathode electrocatalyst yield a maximum power density of 319 mW cm-2 at 60 °C without any back pressure,which is 2.1 times higher than that of cathode electrocatalyst Pt on graphene support. The high ORR and MOR activity of PtAu/f-G-MWNTs electrocatalyst is due to the alloying effect and inherent beneficial properties of porous hybrid nanocarbon support.

  14. Enzyme-synthesized Poly(amine-co-esters) as Non-viral Vectors for Gene Delivery

    PubMed Central

    Liu, Jie; Jiang, Zhaozhong; Zhou, Jiangbing; Zhang, Shengmin; Saltzman, W. Mark

    2010-01-01

    A family of biodegradable poly(amine-co-esters) was synthesized in one step via enzymatic copolymerization of diesters with amino-substituted diols. Diesters of length C4–C12 (i.e., from succinate to dodecanedioate) were successfully copolymerized with diethanolamines with either an alkyl (methyl, ethyl, n-butyl, t-butyl) or an aryl (phenyl) substituent on the nitrogen. Upon protonation at slightly acidic conditions, these poly(amine-co-esters) readily turned to cationic polyelectrolytes, which were capable of condensing with polyanionic DNA to form nanometer-sized polyplexes. In vitro screening with pLucDNA revealed that two of the copolymers, poly(N-methyldiethyleneamine sebacate) (PMSC) and poly(N-ethyldiethyleneamine sebacate) (PESC), possessed comparable or higher transfection efficiencies compared to Lipofectamine 2000. PMSC/pLucDNA and PESC/pLucDNA nanoparticles had desirable particle sizes (40–70 nm) for cellular uptake and were capable of functioning as proton sponges to facilitate endosomal escape after cellular uptake. These polyplex nanoparticles exhibited extremely low cytotoxicity. Furthermore, in vivo gene transfection experiments revealed that PMSC is a substantially more effective gene carrier than PEI in delivering pLucDNAto cells in tumors in mice. All these properties suggest that poly(amine-co-esters) are promising non-viral vectors for safe and efficient DNA delivery in gene therapy. PMID:21171165

  15. Reversible water uptake/release by thermoresponsive polyelectrolyte hydrogels derived from ionic liquids.

    PubMed

    Deguchi, Yuki; Kohno, Yuki; Ohno, Hiroyuki

    2015-06-07

    Thermoresponsive polyelectrolyte hydrogels, derived from tetra-n-alkylphosphonium 3-sulfopropyl methacrylate-type ionic liquid monomers, show reversible water uptake/release, in which the gels absorb/desorb water for at least ten cycles via a lower critical solution temperature-type phase transition.

  16. Salt dependence of compression normal forces of quenched polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Hernandez-Zapata, Ernesto; Tamashiro, Mario N.; Pincus, Philip A.

    2001-03-01

    We obtained mean-field expressions for the compression normal forces between two identical opposing quenched polyelectrolyte brushes in the presence of monovalent salt. The brush elasticity is modeled using the entropy of ideal Gaussian chains, while the entropy of the microions and the electrostatic contribution to the grand potential is obtained by solving the non-linear Poisson-Boltzmann equation for the system in contact with a salt reservoir. For the polyelectrolyte brush we considered both a uniformly charged slab as well as an inhomogeneous charge profile obtained using a self-consistent field theory. Using the Derjaguin approximation, we related the planar-geometry results to the realistic two-crossed cylinders experimental set up. Theoretical predictions are compared to experimental measurements(Marc Balastre's abstract, APS March 2001 Meeting.) of the salt dependence of the compression normal forces between two quenched polyelectrolyte brushes formed by the adsorption of diblock copolymers poly(tert-butyl styrene)-sodium poly(styrene sulfonate) [PtBs/NaPSS] onto an octadecyltriethoxysilane (OTE) hydrophobically modified mica, as well as onto bare mica.

  17. Carrier-inside-carrier: polyelectrolyte microcapsules as reservoir for drug-loaded liposomes.

    PubMed

    Maniti, Ofelia; Rebaud, Samuel; Sarkis, Joe; Jia, Yi; Zhao, Jie; Marcillat, Olivier; Granjon, Thierry; Blum, Loïc; Li, Junbai; Girard-Egrot, Agnès

    2015-01-01

    Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.

  18. Target binding influences permeability in aptamer-polyelectrolyte microcapsules.

    PubMed

    Sultan, Yasir; DeRosa, Maria C

    2011-05-09

    Aptamer-polyelectrolyte microcapsules are prepared for potential use as triggered delivery vehicles and microreactors. The hollow microcapsules are prepared from the sulforhodamine B aptamer and the polyelectrolytes poly(allylamine hydrochloride) and poly(sodium 4-styrene-sulfonate), using layer-by-layer (LbL) film deposition templated on a sacrificial CaCO(3) spherical core. Scanning electron microscopy and confocal microscopy confirm the formation of spherical CaCO(3) cores and LbL-aptamer microcapsules. Colocalization studies with fluorescently-tagged aptamer and sulforhodamine B verify the ability of the aptamer to recognize its cognate target in the presence of the K(+) ions that are required for its characteristic G-quadruplex formation. Fluorescence recovery after photobleaching studies confirms a significant difference in the permeability of the aptamer-polyelectrolyte microcapsules for the sulforhodamine B dye target compared to control microcapsules prepared with a random oligonucleotide. These results suggest that aptamer-based 'smart' responsive films and microcapsules could be applied to problems of catalysis and controlled release. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A study of properties of "micelle-enhanced" polyelectrolyte capsules: Structure, encapsulation and in vitro release.

    PubMed

    Li, Xiaodong; Lu, Tian; Zhang, Jianxiang; Xu, Jiajie; Hu, Qiaoling; Zhao, Shifang; Shen, Jiacong

    2009-07-01

    "Micelle-enhanced" polyelectrolyte capsules were fabricated via a layer-by-layer technique, templated on hybrid calcium carbonate particles with built-in polymeric micelles based on polystyrene-b-poly(acrylic acid). Due to the presence of a large number of negatively charged micelles inside the polyelectrolyte capsule, which were liberated from templates, the capsule wall was reconstructed and had properties different to those of conventional polyelectrolyte capsules. This type of capsule could selectively entrap positively charged water-soluble substances. The encapsulation efficiency of positively charged substances was dependent on their molecular weight or size. For some positively charged compounds, such as rhodamine B and lysozyme, the concentration in the capsules was orders of magnitude higher than that in the incubation solution. In addition, in vitro release study suggested that the encapsulated compounds could be released through a sustained manner to a certain degree. All these results point to the fact that these capsules might be used as novel delivery systems for some water-soluble compounds.

  20. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  1. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    PubMed

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.

  2. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  3. Simulations of free-solution electrophoresis of polyelectrolytes with a finite Debye length using the Debye-Hückel approximation.

    PubMed

    Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W

    2012-08-31

    We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.

  4. pH-Sensitive breathing of clay within the polyelectrolyte matrix.

    PubMed

    Chaturbedy, Piyush; Jagadeesan, Dinesh; Eswaramoorthy, Muthusamy

    2010-10-26

    Stimuli-responsive organic-inorganic hybrid spheres were synthesized by coating the colloidal polystyrene spheres with polyelectrolyte-protected aminoclay, Mg phyllo(organo)silicate layers in a layer-by-layer method. The clay layers are sandwiched between the polyelectrolyte layers. The aminoclay swells in water due to protonation of amino groups, and the degree of swelling depends on the pH of the medium. As a result, the hybrid spheres undergo a size change up to 60% as the pH is changed from 9 to 4. The stimuli-responsive property of the hybrid spheres was used for the release of ibuprofen and eosin at different pH.

  5. Influence of network topology on the swelling of polyelectrolyte nanogels.

    PubMed

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  6. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  7. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    PubMed

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  8. Effect of the cross-linking agent on performances of NaCS-CS/WSC microcapsules.

    PubMed

    Wu, Qing-Xi; Xu, Xin; Wang, Zu-Li; Yao, Shan-Jing; Tong, Wang-Yu; Chen, Yan

    2016-11-01

    Based on the properties of oppositely charged natural polysaccharides, the polyelectrolyte complexes (PECs) prepared with chitosan-related polycationic polyelectrolytes and cellulose-related polyanionic polyelectrolytes have been widely concerned for their potential applications as micro-drug-carriers for colon. However, the poor mechanical property of the PECs becomes the obstacle encountered in practical applications. This study investigated the effect of the cross-linking agent (sodium polyphosphate, PPS) on the performances of sodium cellulose sulfate -chitosan/water soluble chitosan (NaCS-CS/WSC) microcapsules. The results revealed that PPS could penetrate through the PEC film and form tighter interior structures compared with the microcapsules without the addition of cross-linking agent. The NaCS-CS microcapsules and NaCS-WSC microcapsules with or without PPS had distinct microstructures, which could be ascribed to the different physicochemical properties of CS and WSC. During the formation process, CS can be dissolved in water under acidic conditions, while WSC can be directly dissolved and protonated in acid-free aqueous providing NH3(+) groups quickly, which resulted in the microstructure's difference. Further analysis showed the NaCS-CS-PPS microcapsules and NaCS-WSC-PPS microcapsules had lower swelling ratios due to their tighter interior microstructures that formed. The cross-linking agent had important effect on the total mass of PECs that produced; moreover, the decline of zeta potential of NaCS-CS-PPS microcapsules was lower than that of NaCS-CS microcapsules, similar trend was found in the NaCS-WSC-PPS microcapsules compared with NaCS-WSC microcapsules, indicating the PPS participated in the interactions and played a role in the microcapsules' formation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Structure Formation in Salt-Free Solutions of Amphiphilic Sulfonated Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Bockstaller, Michael; Koehler, Werner

    2000-03-01

    Self-assembled systems have long attracted attention due to their practical importance in many technical and biological fields. Dodecyl-substituted poly(para-phenylen)sulfonates (abbreviated PPPS) are highly charged polyelectrolytes which in the uncharged state have been investigated extensively and an intrinsic persistence length of 15 nm has been reported. Due to their hydrophobic side chains, PPPS are compatible with water only as micellar aggregates and tend to form supramolecular structures even at concentrations as low as 10-5mol_mon.units/l. Because of the rodlike conformation of PPPS, this self-assembly leads to aggregates of anisotropic shape. Therefore, depolarized light scattering was employed to yield complementary information about structure and dynamics of these complex fluids. Aqueous solutions of PPPS at room temperature undergo a structural transition at a critical concentration of c_crit.=0.016 g/l. This transition is characterized by a strong increase of scattered intensity in forward direction and dynamic depolarized scattering. Above c_crit. the cylindrical micelles (L=310 nm, d=3.1 nm, N_radial=12) self assembly into large ellipsoidal clusters of size in the μ m range. Due to the strong increase of depolarized scattered intensity there has to be a preferential orientation of the micelles inside those clusters, which thus represent a lyotropic mesophase. By combining static and dynamic light scattering for the low q-range as well as small angle x-ray scattering for the higher q-range it is possible to determine size and shape of each aggregation step. Decreasing the molecular weight of the PPPS has profound influence on the micellar length and hence on c_crit. which is close to the overlap concentration (c ~ 1/L^3) allowing for the observation of the polyelectrolyte effect.

  10. Effects of ion size and charge asymmetry on the salt distribution in polyelectrolyte blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Shull, Kenneth R.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    Polyelectrolytes have received much attention as potential candidates for rechargeable batteries, membrane fuel cells, and drug delivery carriers, as they can combine the electrochemical properties of the charged components with the mechanical stability and biocompatibility of the polymer backbone. The role of salt in determining the bulk and interfacial behaviors of polyelectrolytes has been of particular interest, as the miscibility has shown to depend significantly on salt identity and concentration. Recent studies employing the SCFT-LS method have shown that ionic correlations can enhance phase separation in polyelectrolytes and can induce selectivity in neutral solvents. Here, we extend the theory to investigate the role of salt in strongly correlated polyelectrolytes. We find that in lamellae-forming block copolymers, the addition of monovalent, symmetric salt can lead to a decreased lamellar spacing due to increased selectivity of the salt. When multiple electrostatic interactions are introduced via size and valency asymmetry in the salt pair, the bulk phase behavior and salt distribution across interfaces are significantly altered, as size and charge mismatch can transform the charge ordering seen in monovalent, symmetric salts. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  11. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    NASA Astrophysics Data System (ADS)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other wastewater samples, the EC treated solution also contained a fair amount of organic foulants. These PEM membranes, however, indicated better anti-fouling properties than commercial NF/RO membranes under normal flow conditions. The last part of our work was focused on improving the anti-fouling properties of these membranes by the incorporation of clay nanoplatelets within polyelectrolyte multilayers. In this project, a commercial polyethersulfone (PES) membrane was modified by clay-polyelectrolyte composite thin films and tested against the EC effluent under tangential flow conditions. In comparison to the PEM membranes, these clay-PEM (c-PEM) hybrid membranes offered superior anti-fouling properties with higher fluxes and also required lesser number of layers. On crosslinking the polyelectrolytes, the c-PEM membranes yielded improved anti-fouling properties and high COD removal. Introduction of these inorganic nanoplatelets, however, led to a significant decline in the initial flux of the modified membranes as compared to bare PES membranes, which therefore necessitates further optimization. Some strategies which can potentially help in optimizing the performance of these c-PEM membranes have been discussed in this thesis.

  12. Multilayer Films and Capsules of Sodium Carboxymethylcellulose and Polyhexamethylenguanidine Hydrochloride

    NASA Astrophysics Data System (ADS)

    Guzenko, Nataliia; Gabchak, Oleksandra; Pakhlov, Evgenij

    The complexation of polyhexamethylenguanidine hydrochloride (PHMG) and sodium carboxymethylcellulose (CMC) was investigated for different conditions. Mixing of equiconcentrated aqueous solutions of the polyelectrolytes was found to result in the formation of an insoluble interpolyelectrolyte complex with an overweight of carboxymethylcellulose. A step-by-step formation of stable, irreversibly adsorbed multilayer film of the polymers was demonstrated using the quartz crystal microbalance method. Unusually thick polymer shells with a large number of loops and tails of the polyanion were formed by the method of layer-by-layer self-assembly of PHMG and CMC on spherical CaCO3 particles. Hollow multilayer capsules stable in neutral media were obtained by dissolution of the inorganic matrix in EDTA solution.

  13. Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication

    NASA Astrophysics Data System (ADS)

    Song, Jing; Jańczewski, Dominik; Guo, Yuanyuan; Xu, Jianwei; Vancso, G. Julius

    2013-11-01

    Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery.Redox responsive nanotubes were fabricated by the template assisted layer-by-layer (LbL) assembly method and employed as platforms for molecular payload release. Positively and negatively charged organometallic poly(ferrocenylsilane)s (PFS) were used to construct the nanotubes, in combination with other polyions. During fabrication, multilayers of these polyions were deposited onto the inner pores of template porous membranes, followed by subsequent removal of the template. Anodized porous alumina and track-etched polycarbonate membranes were used as templates. The morphology, electrochemistry, composition and other properties of the obtained tubular structure were characterized by fluorescence microscopy, scanning (SEM) and transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy. Composite nanotubes, consisting of poly(acrylic acid) anions with PFS+ and nanoparticles including fluorophore labelled dextran and decorated quantum dots, with PFS polyelectrolytes were also fabricated, broadening the scope of the structures. Cyclic voltammograms of PFS containing nanotubes showed similar redox responsive behaviour to thin LbL assembled films. Redox triggered release of labelled macromolecules from these tubular structures demonstrated application potential in controlled molecular delivery. Electronic supplementary information (ESI) available: Nanotube wall thickness determination protocol. See DOI: 10.1039/c3nr03927g

  14. In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template.

    PubMed

    Abbah, Sunny-Akogwu; Liu, Jing; Lam, Raymond W M; Goh, James C H; Wong, Hee-Kit

    2012-09-10

    Electrostatic interactions between polycations and polyanions are being explored to fabricate polyelectrolyte complexes (PEC) that could entrap and regulate the release of a wide range of biomolecules. Here, we report the in vivo application of PEC shells fabricated from three different polycations: poly-l-ornithine (PLO), poly-l-arginine (PLA) and DEAE-dextran (DEAE-D) to condense heparin on the surface of alginate microbeads and further control the delivery of recombinant human bone morphogenetic protein 2 (rhBMP-2) in spinal fusion application. We observed large differences in the behavior of PEC shells fabricated from the cationic polyamino acids (PLO and PLA) when compared to the cationic polysaccharide, DEAE-D. Whereas DEAE-D-based PEC shells eroded and released rhBMP-2 over 2 days in vitro, PLO- and PLA-based shells retained at least 60% of loaded rhBMP-2 after 3 weeks of incubation in phosphate-buffered saline. In vivo implantation in a rat model of posterolateral spinal fusion revealed robust bone formation in the PLO- and PLA-based PEC shell groups. This resulted in a significantly enhanced mechanical stability of the fused segments. However, bone induction and biomechanical stability of spine segments implanted with DEAE-D-based carriers were significantly inferior to both PLO- and PLA-based PEC shell groups (p<0.01). From these results, we conclude that PEC shells incorporating native heparin could be used for growth factor delivery in functional bone tissue engineering application and that PLA- and PLO-based complexes could represent superior options to DEAE-D for loading and in vivo delivery of bioactive BMP-2 in this approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes.

    PubMed

    Gonçalves, Raquel M; Antunes, Joana C; Barbosa, Mário A

    2012-04-10

    Human mesenchymal stem cells (hMSCs) have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration. Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc. Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs) with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1) was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  16. Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles

    PubMed Central

    Tang, Christina; Amin, Devang; Messersmith, Phillip B.; Anthony, John E.; Prud’homme, Robert K.

    2015-01-01

    We have developed pH-responsive, multifunctional nanoparticles based on encapsulation of an antioxidant, tannic acid (TA), using Flash NanoPrecipitation, a polymer directed self-assembly method. Formation of insoluble coordination complexes of tannic acid and iron during mixing drives nanoparticle assembly. Tuning the core material to polymer ratio, the size of the nanoparticles can be readily tuned between 50 and 265 nm. The resulting nanoparticle is pH-responsive, i.e. stable at pH 7.4 and soluble under acidic conditions due to the nature of the coordination complex. Further, the coordination complex can be coprecipitated with other hydrophobic materials such as therapeutics or imaging agents. For example, coprecipitation with a hydrophobic fluorescent dye creates fluorescent nanoparticles. In vitro, the nanoparticles have low cytotoxicity show antioxidant activity. Therefore, these particles may facilitate intracellular delivery of antioxidants. PMID:25760226

  17. Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy.

    PubMed

    Daley, Ethan Lh; Coleman, Rhima M; Stegemann, Jan P

    2015-10-28

    Articular cartilage has a limited healing capacity that complicates the treatment of joint injuries and osteoarthritis. Newer repair strategies have focused on the use of cells and biomaterials to promote cartilage regeneration. In the present study, we developed and characterized bioinspired materials designed to mimic the composition of the cartilage extracellular matrix. Chondroitin sulfate (CS) and chitosan (CH) were used to form physically cross-linked macromolecular polyelectrolyte complexes (PEC) without the use of additional crosslinkers. A single-step water-in-oil emulsification process was used to either directly embed mesenchymal stem cells (MSC) in PEC particles created with a various concentrations of CS and CH, or to co-embed MSC with PEC in agarose-based microbeads. Direct embedding of MSC in PEC resulted in high cell viability but irregular and large particles. Co-embedding of PEC particles with MSC in agarose (Ag) resulted in uniform microbeads 80-90 μm in diameter that maintained high cell viability over three weeks in culture. Increased serum content resulted in more uniform PEC distribution within the microbead matrix, and both high and low CS:CH ratios resulted in more homogeneous microbeads than 1:1 formulations. Under chondrogenic conditions, expression of sulfated GAG and collagen type II was increased in 10:1 CS:CH PEC-Ag microbeads compared to pure Ag beads, indicating a chondrogenic influence of the PEC component. Such PEC-Ag microbeads may have utility in the directed differentiation and delivery of progenitor cell populations for cartilage repair.

  18. Live celloidosome structures based on the assembly of individual cells by colloid interactions.

    PubMed

    Fakhrullin, Rawil F; Brandy, Marie-Laure; Cayre, Olivier J; Velev, Orlin D; Paunov, Vesselin N

    2010-10-14

    A new class of colloid structures, celloidosomes, has been developed which represent hollow microcapsules whose membranes consist of a single monolayer of living cells. Two routes for producing these structures were designed based on templating of: (i) air bubbles and (ii) anisotropic microcrystals of calcium carbonate with living cells, which allowed us to fabricate celloidosomes of spherical, rhombohedral and needle-like morphologies. Air microbubbles were templated by yeast cells coated with poly(allylamine hydrochloride) (PAH), then coated with carboxymethylcellulose and rehydrated resulting in the formation of spherical multicellular structures. Similarly, calcium carbonate microcrystals of anisotropic shapes were coated with several consecutive layers of oppositely charged polyelectrolytes to obtain a positive surface charge which was used to immobilise yeast cells coated with anionic polyelectrolyte of their surfaces. After dissolving of sacrificial cores, hollow multicellular structures were obtained. The viability of the cells in the produced structures was confirmed by using fluorescein diacetate. In order to optimize the separation of celloidosomes from free cells magnetic nanoparticles were immobilised onto the surface of templates prior to the cells deposition, which greatly facilitated the separation using a permanent magnet. Two alternative approaches were developed to form celloidosome structures using magnetically functionalised core-shell microparticles which resulted in the formation of celloidosomes with needle-like and cubic-like geometries which follows the original morphology of the calcium carbonate microcrystals. Our methods for fabrication of celloidosomes may found applications in the development of novel symbiotic bio-structures, artificial multicellular organisms and in tissue engineering. The unusual structure of celloidosomes resembles the primitive forms of multicellular species, like Volvox, and other algae and could be regarded as one possible mechanism of the evolutionary development of multicellularity.

  19. Electro-osmotic flow of semidilute polyelectrolyte solutions.

    PubMed

    Uematsu, Yuki; Araki, Takeaki

    2013-09-07

    We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.

  20. Kinetics of polyelectrolyte adsorption

    NASA Astrophysics Data System (ADS)

    Cohen Stuart, M. A.; Hoogendam, C. W.; de Keizer, A.

    1997-09-01

    The kinetics of polyelectrolyte adsorption has been investigated theoretically. In analogy with Kramers' rate theory for chemical reactions we present a model which is based on the assumption that a polyelectrolyte encounters a barrier in its motion towards an adsorbing surface. The height of the barrier, which is of electrostatic origin, is calculated with a self-consistent-field (SCF) model. The salt concentration strongly affects the height of the barrier. At moderate salt concentrations (0953-8984/9/37/009/img1) equilibrium in the adsorption is attained; at low salt concentration (0953-8984/9/37/009/img2) equilibrium is not reached on the time scale of experiments. The attachment process shows resemblances to the classical DLVO theory.

Top